Science.gov

Sample records for ferric corrole bonding

  1. Mono- and diboron corroles: factors controlling stoichiometry and hydrolytic reactivity.

    PubMed

    Albrett, Amelia M; Thomas, Kolle E; Maslek, Stefanie; Młodzianowska, Anna; Conradie, Jeanet; Beavers, Christine M; Ghosh, Abhik; Brothers, Penelope J

    2014-06-01

    The first example of a diboryl corrole complex, [(BF2)2(Br8T(4-F-P)C)](-) (Br8T(4-F-P)C = trianion of 2,3,7,8,12,13,17,18-octabromo-5,10,15-tris(4-fluorophenyl)corrole), has been isolated using the strongly electron-withdrawing and sterically crowded triaryl octabromocorrole ligand. Density functional theory (DFT) calculations show that the hydrolysis reaction producing the partially hydrolyzed complexes [B2OF2(Cor)](-) is more favored for the less sterically crowded triaryl corrole complexes. Monoboryl complexes BF2(H2Cor) (Cor = trianions of 5,10,15-triphenylcorrole (TPC), 5,10,15-tris(4-methylphenyl)corrole (T(4-CH3-P)C), 5,10,15-tris(4-trifluoromethylphenyl)corrole (T(4-CF3-P)C), and 5,10,15-tris(pentafluorophenyl)corrole (TPFPC)) were prepared and characterized. The experimental data are consistent with an out-of-plane dipyrrin coordination mode for these complexes, and DFT optimizations suggest that internal BF···HN hydrogen bonding may be significant in stabilizing these complexes. Further examples of the anionic diboron corrole [B2OF2(Cor)](-) containing the electron-withdrawing 5,10,15-tris(pentafluorophenyl)corrole (TPFPC) and the sterically hindered 10-(4-methoxyphenyl)-5,15-dimesitylcorrole (Mes2(4-MeOP)C) trianions are reported. PMID:24684580

  2. Hangman corroles: efficient synthesis and oxygen reaction chemistry.

    PubMed

    Dogutan, Dilek K; Stoian, Sebastian A; McGuire, Robert; Schwalbe, Matthias; Teets, Thomas S; Nocera, Daniel G

    2011-01-12

    The construction of a new class of compounds--the hangman corroles--is provided efficiently by the modification of macrocyclic forming reactions from bilanes. Hangman cobalt corroles are furnished in good yields from a one-pot condensation of dipyrromethane with the aldehyde of a xanthene spacer followed by metal insertion using microwave irradiation. In high oxidation states, X-band EPR spectra and DFT calculations of cobalt corrole axially ligated by chloride are consistent with the description of a Co(III) center residing in the one-electron oxidized corrole macrocycle. These high oxidation states are likely accessed in the activation of O-O bonds. Along these lines, we show that the proton-donating group of the hangman platform works in concert with the redox properties of the corrole to enhance the catalytic activity of O-O bond activation. The hangman corroles show enhanced activity for the selective reduction of oxygen to water as compared to their unmodified counterparts. The oxygen adduct, prior to oxygen reduction, is characterized by EPR and absorption spectroscopy. PMID:21142043

  3. Corroles cannot ruffle.

    PubMed

    Thomas, Kolle E; Conradie, Jeanet; Hansen, Lars Kristian; Ghosh, Abhik

    2011-04-18

    X-ray structures of Co(III)[(CF(3))(3)Cor](PPh(3)) [(CF(3))(3)Cor = meso-tris(trifluoromethyl)corrolato] and Cu[(CF(3))(4)Por] [(CF(3))(4)Por = meso-tetrakis(trifluoromethyl)porphyrinato] revealed planar and highly ruffled macrocycle conformations, respectively, in line with analogous observations for a handful of other meso-perfluoroalkylated porphyrins and corroles reported in the literature. To gain insights into the difference in conformational behavior, we evaluated DFT (BP86-D/TZP) ruffling potentials for a variety of corrole complexes, as well as their porphyrin analogues. The calculations led us to conclude that corrole derivatives, in essence, cannot ruffle. PMID:21366225

  4. meso-Ester Corroles.

    PubMed

    Canard, Gabriel; Gao, Di; D'Aléo, Anthony; Giorgi, Michel; Dang, Florian-Xuan; Balaban, Teodor Silviu

    2015-05-18

    The introduction of ester groups on the 5- and 15-meso positions of corroles stabilizes them against oxidation and induces a redshift of their absorption and emission spectra. These effects are studied through the photophysical and electrochemical characterization of up to 16 different 5,15-diester corroles, in which the third meso position is free or occupied by an aryl group, a long alkyl chain, or an ester moiety. Single-crystal X-ray structure analysis of five 5,15-diestercorroles and DFT and time-dependent DFT calculations show that the strong electron-withdrawing character of the 5,15 ester substituents is reinforced by their π overlap with the macrocyclic aromatic system. The crystal packing of corroles 2, 4, 6, 9, and 15 features short distances between chromophores that are stacked into columns thanks to the low steric hindrance of meso-ester groups. This close packing is partially due to intermolecular interactions that involve inner hydrogen and nitrogen atoms, and thereby, stabilize a single, identical corrole tautomeric form. PMID:25786789

  5. Fluorescent Bioactive Corrole Grafted-Chitosan Films.

    PubMed

    Barata, Joana F B; Pinto, Ricardo J B; Vaz Serra, Vanda I R C; Silvestre, Armando J D; Trindade, Tito; Neves, Maria Graça P M S; Cavaleiro, José A S; Daina, Sara; Sadocco, Patrizia; Freire, Carmen S R

    2016-04-11

    Transparent corrole grafted-chitosan films were prepared by chemical modification of chitosan with a corrole macrocycle, namely, 5,10,15-tris(pentafluorophenyl)corrole (TPFC), followed by solvent casting. The obtained films were characterized in terms of absorption spectra (UV-vis), FLIM (fluorescence lifetime imaging microscopy), structure (FTIR, XPS), thermal stability (TGA), thermomechanical properties (DMA), and antibacterial activity. The results showed that the chemical grafting of chitosan with corrole units did not affect its film-forming ability and that the grafting yield increased with the reaction time. The obtained transparent films presented fluorescence which increases with the amount of grafted corrole units. Additionally, all films showed bacteriostatic effect against S. aureus, as well as good thermomechanical properties and thermal stability. Considering these features, promising applications may be envisaged for these corrole-chitosan films, such as biosensors, bioimaging agents, and bioactive optical devices. PMID:26899016

  6. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding.

    PubMed

    Mittra, Kaustuv; Sengupta, Kushal; Singha, Asmita; Bandyopadhyay, Sabyasachi; Chatterjee, Sudipta; Rana, Atanu; Samanta, Subhra; Dey, Abhishek

    2016-02-01

    An iron porphyrin with a pre-organized hydrogen bonding (H-Bonding) distal architecture is utilized to avoid the inherent loss of entropy associated with H-Bonding from solvent (water) and mimic the behavior of metallo-enzyme active sites attributed to H-Bonding interactions of active site with the 2nd sphere residues. Resonance Raman (rR) data on these iron porphyrin complexes indicate that H-Bonding to an axial ligand like hydroxide can result in both stronger or weaker Fe(III)-OH bond relative to iron porphyrin complexes. The 6-coordinate (6C) complexes bearing water derived axial ligands, trans to imidazole or thiolate axial ligand with H-Bonding stabilize a low spin (LS) ground state (GS) when a complex without H-Bonding stabilizes a high spin (HS) ground state. DFT calculations reproduce the trend in the experimental data and provide a mechanism of how H-Bonding can indeed lead to stronger metal ligand bonds when the axial ligand donates an H-Bond and lead to weaker metal ligand bonds when the axial ligand accepts an H-Bond. The experimental and computational results explain how a weak Fe(III)-OH bond (due to H-Bonding) can lead to the stabilization of low spin ground state in synthetic mimics and in enzymes containing iron porphyrin active sites. H-Bonding to a water ligand bound to a reduced ferrous active site can only strengthen the Fe(II)-OH2 bond and thus exclusion of water and hydrophilic residues from distal sites of O2 binding/activating heme proteins is necessary to avoid inhibition of O2 binding by water. These results help demonstrate the predominant role played by H-Bonding and subtle changes in its orientation in determining the geometric and electronic structure of iron porphyrin based active sites in nature. PMID:26638009

  7. Intriguing Physical and Chemical Properties of Phosphorus Corroles.

    PubMed

    Vestfrid, Jenya; Kothari, Rashmi; Kostenko, Arseni; Goldberg, Israel; Tumanskii, Boris; Gross, Zeev

    2016-06-20

    The fluorescence intensity of phosphorus corroles increases upon meso-aryl C-F/C-H and P-OH/P-F substitutions, the latter affects corrole-centered redox processes more than C-H/C-F substitution on the corrole's skeleton, and the presence of F atoms allows for the first experimental insight into the electronic structures of oxidized corroles. Experimental and theoretical methodologies reveal that mono- but not bis-chlorosulfonation of the corrole skeleton is under kinetic control. Selective introduction of heavy atoms leads to complexes that are phosphorescent at room temperature. PMID:27228407

  8. Molecular structures of free-base corroles: nonplanarity, chirality, and enantiomerization.

    PubMed

    Capar, Jan; Conradie, Jeanet; Beavers, Christine M; Ghosh, Abhik

    2015-04-01

    The molecular structures of free-base corroles are illustrative of a variety of bonded and nonbonded interactions including aromaticity, intra- as well as intermolecular hydrogen bonding, steric interactions among multiple NH hydrogens within a congested central cavity, and the effects of peripheral substituents. Against this backdrop, an X-ray structure of 2,3,7,8,12,13,17,18-octabromo-5,10,15-tris(pentafluorophenyl)corrole, H3[Br8TPFPCor], corresponding to a specific tautomer, has been found to exhibit the strongest nonplanar distortions observed to date for any free-base corrole structure. Two adjacent N-protonated pyrrole rings are tilted with respect to each other by approximately 97.7°, while the remainder of the molecule is comparatively planar. Dispersion-corrected DFT calculations were undertaken to investigate to what extent the strong nonplanar distortions can be attributed to steric effects of the peripheral substituents. For meso-triphenylcorrole, DFT calculations revealed nonplanar distortions that are only marginally less pronounced than those found for H3(Br8TPFPCor). A survey of X-ray structures of sterically unhindered corroles also uncovered additional examples of rather strong nonplanar distortions. Detailed potential energy calculations as a function of different saddling dihedrals also emphasized the softness of the distortions. Because of nonplanar distortions, free-base corrole structures are chiral. For H3[Br8TPFPCor], DFT calculations led to an estimate of 15 kcal/mol (0.67 eV) as the activation barrier for enantiomerization of the free-base structures, which is significantly higher than the barrier for NH tautomerism calculated for this molecule, about 5 kcal/mol (0.2 eV). In summary, steric crowding of the internal NH hydrogens appears to provide the main driving force for nonplanar distortions of meso-triarylcorroles; the presence of additional β-substituents adds marginally to this impetus. PMID:25819028

  9. Cryptic noninnocence: FeNO corroles in a new light.

    PubMed

    Vazquez-Lima, Hugo; Norheim, Hans-Kristian; Einrem, Rune F; Ghosh, Abhik

    2015-06-14

    Multiple lines of evidence, including electronic absorption spectroscopy, infrared spectroscopy, and broken-symmetry DFT calculations, indicate that the well-known FeNO corroles, long assumed to be {FeNO}(6) complexes, are in fact better described as {FeNO}(7)-(corrole˙(2-)). PMID:25978788

  10. Wolves in Sheep's Clothing: μ-Oxo-Diiron Corroles Revisited.

    PubMed

    Ganguly, Sumit; Vazquez-Lima, Hugo; Ghosh, Abhik

    2016-07-18

    For well over 20 years, μ-oxo-diiron corroles, first reported by Vogel and co-workers in the form of μ-oxo-bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s(-1) , ΔEQ 2.35 mm s(-1) ), have been thought of as comprising a pair antiferromagnetically coupled low-spin Fe(IV) centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)-oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not Fe(IV) but intermediate-spin Fe(III) coupled to a corrole(.2-) . The intramolecular spin couplings in {Fe[TPC]}2 (μ-O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg-Dirac-van Vleck spin Hamiltonian H=JFe-corrole (SFe ⋅Scorrole )+JFe-Fe' (SFe ⋅SFe' )+JFe'-corrole (SFe' ⋅Scorrole' ), which yielded JFe-corrole =JFe'-corrole' =0.355 eV (2860 cm(-1) ) and JFe-Fe' =0.068 eV (548 cm(-1) ). The unexpected stability of μ-oxo-diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence. PMID:27333259

  11. Reaction mechanism for the highly efficient catalytic decomposition of peroxynitrite by the amphipolar iron(III) corrole 1-Fe.

    PubMed

    Avidan-Shlomovich, Shlomit; Gross, Zeev

    2015-07-21

    The amphipolar iron(III) corrole 1-Fe is one of the most efficient catalysts for the decomposition of peroxynitrite, the toxin involved in numerous diseases. This research focused on the mechanism of that reaction at physiological pH, where peroxynitrite is in equilibrium with its much more reactive conjugated acid, by focusing on the elementary steps involved in the catalytic cycle. Kinetic investigations uncovered the formation of a reaction intermediate in a process that is complete within a few milliseconds (k1 ∼ 3 × 10(7) M(-1) s(-1) at 5 °C, about 7 orders of magnitude larger than the first order rate constant for the non-catalyzed process). Multiple evidence points towards iron-catalyzed homolytic O-O bond cleavage to form nitrogen dioxide and hydroxo- or oxo-iron(iv) corrole. The iron(iv) intermediate was found to decay via multiple pathways that proceed at similar rates (k2 about 10(6) M(-1) s(-1)): reaction with nitrogen dioxide to form nitrate, nitration of the corrole macrocyclic, and dimerization to binuclear iron(iv) corrole. Catalysis in the presence of substrates affects the decay of the iron intermediate by either oxidative nitration (phenolic substrates) or reduction (ascorbate). A large enough excess of ascorbate accelerates the catalytic decomposition of PN by 1-Fe by orders of magnitude, prevents other decay routes of the iron intermediate, and eliminates nitration products as well. This suggests that the beneficial effect of the iron corrole under the reducing conditions present in most biological media might be even larger than in the purely chemical system. The acquired mechanistic insight is of prime importance for the design of optimally acting catalysts for the fast and safe decomposition of reactive oxygen and nitrogen species. PMID:25747957

  12. Determination of Fe-ligand bond lengths and the Fe-N-O bond angles in soybean ferrous and ferric nitrosylleghemoglobin a using multiple-scattering XAFS analyses.

    PubMed

    Rich, A M; Ellis, P J; Tennant, L; Wright, P E; Armstrong, R S; Lay, P A

    1999-12-14

    The NO adducts of leghemoglobin (Lb) are implicated in biological processes, but only the adduct with ferrous Lb (Lb(II)NO) has been characterized previously. We report the first characterization of ferric nitrosylleghemoglobin (Lb(III)NO) and XAS experiments performed on frozen aqueous solutions of Lb(II)NO and Lb(III)NO at 10 K. The XANES and electronic spectra of the NO adducts are similar in shape and energies to the myoglobin (Mb) analogues. The environment of the Fe atom has been refined using multiple-scattering (MS) analyses of the XAFS data. For Lb(II)NO, the MS analysis resulted in an averaged Fe-N(p)(pyrrole) distance of 2.02 A, an Fe-N(epsilon)(imidazole) distance of 1.98 A, an Fe-N(NO) distance of 1.77 A, and an Fe-N-O angle of 147 degrees. The Fe-N(NO) distance and Fe-N-O angle obtained from the analysis of Lb(II)NO are in good agreement with those determined crystallographically for [Fe(TPP)(NO)] (TPP, tetraphenylporphyrinato), with and without 1-methylimidazole (1-MeIm) as the sixth ligand, and the MS XAFS structures reported previously for the myoglobin (Mb(II)NO) analogue and [Fe(TPP)(NO)]. The MS analysis of Lb(III)NO yielded an average Fe-N(p) distance of 2.00 A, an Fe-N(epsilon) distance of 1.89 A, an Fe-N(NO) distance of 1.68 A, and an Fe-N-O angle of 173 degrees. These bond lengths and angles are consistent with those determined previously for the myoglobin analogue (Mb(III)NO) and the crystal structures of the model complexes, [Fe(III)(TPP)(NO)(OH(2))](+) and [Fe(OEP)(NO)](+) (OEP, octaethylporphyrinato). The final XAFS R values were 16.1 and 18.2% for Lb(II)NO and Lb(III)NO, respectively. PMID:10600110

  13. Corrole and nucleophilic aromatic substitution are not incompatible: a novel route to 2,3-difunctionalized copper corrolates

    PubMed Central

    Stefanelli, M.; Mandoj, F.; Nardis, S.; Raggio, M.; Fronczek, F.R.; McCandless, G.T.; Smith, K. M.; Paolesse, R.

    2015-01-01

    The insertion of a –NO2 group onto the corrole framework represents a key step for subsequent synthetic manipulation of the macrocycle based on the chemical versatility of such a functionality. Here we report results on the investigation of a copper 3-NO2-triarylcorrolate in nucleophilic aromatic substitution reactions with “active” methylene carbanions, namely diethyl malonate and diethyl 2-chloromalonate. Although similar reactions on nitroporphyrins afford chlorin derivatives, nucleophilic attack on carbon-2 of corrole produces 2,3-difunctionalized Cu corrolates in acceptable yields (ca. 30%), evidencing once again the erratic chemistry of this contracted porphyrinoid. PMID:25986693

  14. Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy.

    PubMed

    Galinato, Mary Grace I; Spolitak, Tatyana; Ballou, David P; Lehnert, Nicolai

    2011-02-15

    Although extensive research has been performed on various cytochrome P450s, especially Cyt P450cam, there is much to be learned about the mechanism of how its functional unit, a heme b ligated by an axial cysteine, is finely tuned for catalysis by its second coordination sphere. Here we study how the hydrogen-bonding network affects the proximal cysteine and the Fe-S(Cys) bond in ferric Cyt P450cam. This is accomplished using low-temperature magnetic circular dichroism (MCD) spectroscopy on wild-type (wt) Cyt P450cam and on the mutants Q360P (pure ferric high-spin at low temperature) and L358P where the "Cys pocket" has been altered (by removing amino acids involved in the hydrogen-bonding network), and Y96W (pure ferric low-spin). The MCD spectrum of Q360P reveals fourteen electronic transitions between 15200 and 31050 cm(-1). Variable-temperature variable-field (VTVH) saturation curves were used to determine the polarizations of these electronic transitions with respect to in-plane (xy) and out-of-plane (z) polarization relative to the heme. The polarizations, oscillator strengths, and TD-DFT calculations were then used to assign the observed electronic transitions. In the lower energy region, prominent bands at 15909 and 16919 cm(-1) correspond to porphyrin (P) → Fe charge transfer (CT) transitions. The band at 17881 cm(-1) has distinct sulfur S(π) → Fe CT contributions. The Q band is observed as a pseudo A-term (derivative shape) at 18604 and 19539 cm(-1). In the case of the Soret band, the negative component of the expected pseudo A-term is split into two features due to mixing with another π → π* and potentially a P → Fe CT excited state. The resulting three features are observed at 23731, 24859, and 25618 cm(-1). Most importantly, the broad, prominent band at 28570 cm(-1) is assigned to the S(σ) → Fe CT transition, whose intensity is generated through a multitude of CT transitions with strong iron character. For wt, Q360P, and L358P, this band

  15. Determination of iron-ligand bond lengths in ferric and ferrous horse heart cytochrome c using multiple-scattering analyses of XAFS data

    SciTech Connect

    Cheng, M.C.; Rich, A.M.; Armstrong, R.S.; Ellis, P.J.; Lay, P.A.

    1999-12-13

    Cytochrome c (cyt c) is a small heme protein (MW 12 384) that functions as a biological electron-transfer agent. It consists of a single polypeptide chain and a prosthetic heme group and provides a pathway for the transfer of electrons from cyt c reductase to cyt c oxidase in the mitochondrial respiratory chain (oxidative phosphorylation). The protein participates in oxidation-reduction reactions with the heme iron alternating between the oxidized (ferric, Fe{sup III}) state and the reduced (ferrous, Fe{sup II}) state. X-ray absorption fine structure (XAFS) data were obtained from frozen aqueous solutions (10 K) of horse heart ferri- and ferrocyt c. Models of the structure about the Fe center were refined to optimize the fit between the observed XAFS in the range 0 {le} k {le} 16.3 {angstrom}{sup {minus}1} and the XAFS calculated using both single-scattering (SS) and multiple-scattering (MS) calculations. The bond lengths obtained are more accurate and precise than those determined previously for cyt c from various species using X-ray crystallography. The Fe-N bond lengths are 1.98--1.99 {angstrom} for both oxidation states of cyt c. The Fe-S bond of derricyt c (2.33 {angstrom}) is significantly longer than that of ferrocyt c (2.29 {angstrom}). The small changes in the bond lengths are consistent with the small reorganizational energy required for the fast electron-transfer reaction of cyt c.

  16. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  17. Metal Complexes of meso-meso Linked Corrole Dimers.

    PubMed

    Ooi, Shota; Tanaka, Takayuki; Osuka, Atsuhiro

    2016-09-01

    Cobalt, gallium, silver, and copper complexes of 5,5'-linked corrole dimer 1 and 10,10'-linked corrole dimer 2 were synthesized by metalations with Co(OAc)2·4H2O, GaCl3, AgOAc, and Cu(OAc)2·H2O, respectively, in good yields. The structures of cobalt(III), gallium(III), and silver(III) complexes have been unambiguously revealed by X-ray diffraction analysis. Their optical and electrochemical properties have been studied, which revealed different electronic interactions between the two corrole units depending upon the positions of meso-meso linkage and axial-ligand coordination modes. PMID:27533780

  18. Corrole and Porphyrin Amino Acid Conjugates: Synthesis and Physicochemical Properties.

    PubMed

    Karikis, Kostas; Georgilis, Evangelos; Charalambidis, Georgios; Petrou, Athanasia; Vakuliuk, Olena; Chatziioannou, Theodore; Raptaki, Iliana; Tsovola, Sofia; Papakyriacou, Ioanna; Mitraki, Anna; Gryko, Daniel T; Coutsolelos, Athanassios G

    2016-08-01

    A series of conjugates of amino acids with porphyrins and corroles was synthesized. Their self-assembling ability under defined conditions was investigated by scanning electron microscopy. The morphology and photophysical properties of these molecules were studied by absorption and fluorescence spectroscopy in solid, liquid, and self-assembled forms. We observed that both corrole and porphyrin conjugated with the l-phenylalanine-l-phenylalanine peptide to form spherical nanostructures with bathochromic shifts in the emission spectra, indicating the formation of aggregates. These aggregates are characterized by the impressive absorption of light over nearly the whole visible range. The broadening of all bands was particularly strong in the case of corroles. The fluorescence lifetimes of self-assembled species were longer as compared to the solid-state form. PMID:27356185

  19. Fine tuning the reactivity of corrole-based catalytic antioxidants.

    PubMed

    Okun, Zoya; Gross, Zeev

    2012-08-01

    In order to determine the electronic factors that may affect the catalytic antioxidant activity of water-soluble metallocorroles a series of 10-aryl-5,15-pyridinium manganese(III) corroles was prepared. These complexes were examined regarding the effect of the C(10) substituent on the Mn(IV)/Mn(III) redox potentials, catalytic rate constants for decomposition of HOONO, prevention of tyrosine nitration, and superoxide dismutase activity. This structure-activity relationship investigation provides new insight regarding the mechanism by which manganese(III) corroles act as catalytic antioxidants. It also discloses the superiority of the C(10)-anysil-substituted complex in all examined aspects. PMID:22808919

  20. Axial histidyl imidazole non-exchangeable proton resonances as indicators of imidazole hydrogen bonding in ferric cyanide complexes of heme peroxidases.

    PubMed

    La Mar, G N; De Ropp, J S; Chacko, V P; Satterlee, J D; Erman, J E

    1982-11-19

    Proton NMR spectra of a model of low-spin cyanide complexes of ferric hemoproteins indicate that two broad single-protein resonances from the axial imidazole can be resolved outside the diamagnetic spectral region. Upon deprotonation of the imidazole in the model, the upfield resonance shifts dramatically to higher field, suggesting that its position may reflect the degree of hydrogen bonding or proton donation of the imidazole. Met-cyano myoglobin reveals a pair of such broad peaks in the regions expected for an essentially neutral axial imidazole. In the cyano complexes of horseradish peroxidase and cytochrome c peroxidase, a pair of single-proton resonances are located which are assigned to the same imidazole protons on the basis of their linewidth and shift changes upon altering the heme substituents. The upfiled proton, however, is found at much higher field than in metMbCN. The upfield bias of this resonance is taken as evidence for appreciable imidazolate character for the axial ligand in these heme peroxidases. PMID:6293582

  1. Modulation of the molecular spintronic properties of adsorbed copper corroles

    PubMed Central

    Wu, Fan; Liu, Jie; Mishra, Puneet; Komeda, Tadahiro; Mack, John; Chang, Yi; Kobayashi, Nagao; Shen, Zhen

    2015-01-01

    The ability to modulate the spin states of adsorbed molecules is in high demand for molecular spintronics applications. Here, we demonstrate that the spin state of a corrole complex can be tuned by expanding its fused ring as a result of the modification to the d–π interaction between the metal and ligand. A bicyclo[2.2.2]octadiene-fused copper corrole can readily be converted into a tetrabenzocorrole radical on an Au(111) substrate during the sublimation process. In the scanning tunnelling spectroscopy spectrum, a sharp Kondo resonance appears near the Fermi level on the corrole ligand of the tetrabenzocorrole molecule. In contrast, a non-fused-ring-expanded copper corrole molecule, copper 5,10,15-triphenylcorrole, shows no such Kondo feature. Mapping of the Kondo resonance demonstrates that the spin distribution of the tetrabenzocorrole molecule can be further modified by the rotation of the meso-aryl groups, in a manner that could lead to applications in molecular spintronics. PMID:26112968

  2. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    PubMed Central

    Capuano, Rosamaria; Pomarico, Giuseppe; Paolesse, Roberto; Di Natale, Corrado

    2015-01-01

    Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays. PMID:25856324

  3. Stabilization of hexa-coordinated P(v) corroles by axial silyloxy groups.

    PubMed

    Chatterjee, Tamal; Lee, Way-Zen; Ravikanth, Mangalampalli

    2016-05-01

    We report the stabilization of the hexa-coordination environment for P(v) corroles by using alkyl/aryl substituted silyloxy groups as axial ligands. The P(v) corroles are highly fluorescent in a hexa-coordination environment compared to in a penta-coordination environment. However, P(v) corroles generally undergo axial ligand dissociation to form a mixture of penta- and hexa-coordinated P(v) corroles in non-coordinating solvents such as toluene, CH2Cl2, CHCl3. The usage of moderately bulkier and electron-donating silyloxy groups helps to restrict the axial ligand dissociation of silyloxy substituted hexa-coordinated P(v) corroles in non-coordinating solvents. The crystal structure confirmed the hexa-coordination geometry for the P(v) corroles. The P(v) corroles strongly absorb and emit in the visible region, with decent quantum yields and singlet state lifetimes. The hexa-coordinated P(v) corroles are highly stable under electrochemical conditions. PMID:27063706

  4. The corrole and ferrocene marriage: 5,10,15-triferrocenylcorrolato Cu.

    PubMed

    Pomarico, Giuseppe; Vecchi, Andrea; Mandoj, Federica; Bortolini, Olga; Cicero, Daniel O; Galloni, Pierluca; Paolesse, Roberto

    2014-04-21

    Two synthetic routes have been defined for the preparation of a 5,10,15-triferrocenylcorrole Cu derivative. This complex has been characterized and the preliminary electrochemical investigation shows a strong interaction among the corrole and meso ferrocenyl substituents. The results obtained suggest that peculiar properties are gained by combining the eccentric characteristics of ferrocenyl substitution with the corrole macrocycle. PMID:24616907

  5. Synchrotron X-ray-Induced Photoreduction of Ferric Myoglobin Nitrite Crystals Gives the Ferrous Derivative with Retention of the O-bonded Nitrite Ligand

    SciTech Connect

    Yi, J.; Orville, A; Skinner, J; Skinner, M; Richter-Addo, G

    2010-01-01

    Exposure of a single crystal of the nitrite adduct of ferric myoglobin (Mb) at 100 K to high-intensity synchrotron X-ray radiation resulted in changes in the UV-vis spectrum that can be attributed to reduction of the ferric compound to the ferrous derivative. We employed correlated single-crystal spectroscopy with crystallography to further characterize this photoproduct. The 1.55 {angstrom} resolution crystal structure of the photoproduct reveals retention of the O-binding mode for binding of nitrite to the iron center. The data are consistent with cryogenic generation and trapping, at 100 K, of a ferrous d{sup 6} Mb{sup II}(ONO)* complex by photoreduction of the ferric precursor crystals using high-intensity X-ray radiation.

  6. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  7. DNA-Binding, Photocleavage, and Photodynamic Anti-cancer Activities of Pyridyl Corroles.

    PubMed

    Liang, Zhen-Hua; Liu, Hai-Yang; Zhou, Rong; Zhang, Zao; Ali, Atif; Han, Bing-Jie; Liu, Yun-Jun; Xiao, Xin-Yan

    2016-08-01

    The DNA-binding, photocleavage, and antitumor activity of three free base pyridyl corroles 1, 2, and 3 have been investigated. The binding affinity toward CT-DNA decreases with increasing number of pentafluorophenyl, whereas the photocleavage activity toward pBR322 DNA becomes more efficient. Singlet oxygen was demonstrated as active species responsible for DNA cleavage. These corroles exhibited high cytotoxicity against three tested cancer cells (Hela, HapG2, and A549) and the cytotoxicity could be further enhanced under irradiation. Intracellular reactive oxygen species level was also monitored using HeLa Cells upon the combined treatment of corroles and light. These corroles could be absorbed by HeLa cells at low concentration. They can induce the decrease of mitochondrial membrane potential and apoptosis of tumor cells under irradiation. PMID:26895317

  8. Metal-Ligand Misfits: Facile Access to Rhenium-Oxo Corroles by Oxidative Metalation.

    PubMed

    Einrem, Rune F; Gagnon, Kevin J; Alemayehu, Abraham B; Ghosh, Abhik

    2016-01-11

    With the exception of a single accidental synthesis, rhenium corroles are unknown, but of great interest as catalysts and potential radiopharmaceuticals. Oxidative metalation of meso-triarylcorroles with [Re2 (CO)10 ] in refluxing decalin has provided a facile and relatively high-yielding route to rhenium(V)-oxo corroles. The complexes synthesized could all be fully characterized by single-crystal X-ray structure analyses. PMID:26639951

  9. β-Pyrrolopyrazino Annulated Corroles via a Pictet-Spengler Approach.

    PubMed

    Berionni Berna, Beatrice; Nardis, Sara; Galloni, Pierluca; Savoldelli, Andrea; Stefanelli, Manuela; Fronczek, Frank R; Smith, Kevin M; Paolesse, Roberto

    2016-07-15

    Reaction of 2-amino-3-(pyrrol-1-yl)-5,10,15-tris(4-tert-butylphenyl)corrolato copper(II) with arylaldehydes affords novel π-extended β,β'-pyrrolo(1,2-a)pyrazino-fused corroles via a Pictet-Spengler reaction. Corrole shows an unprecedented reaction pathway, leading to a mixture of phenyl-substituted and nonsubstituted pyrrolopyrazino annulated species as reaction products. PMID:27378478

  10. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  11. Effect of ferric sulfate contamination on the bonding effectiveness of etch-and-rinse and self-etch adhesives to superficial dentin

    PubMed Central

    Ebrahimi, Shahram Farzin; Shadman, Niloofar; Abrishami, Arezoo

    2013-01-01

    Aim: This study investigated the effect of one hemostatic agent on the shear bond strength of self-etch and etch-and-rinse adhesive systems. Materials and Methods: Sixty extracted third molars were selected. After preparing a flat surface of superficial dentin, they were randomly divided into six groups. Adhesives were Tetric N-Bond, AdheSE, and AdheSE One F. Before applying adhesives, surfaces were contaminated with ViscoStat for 60 s in three groups and rinsed. Then composite were attached to surfaces and light cured. After thermocycling, the bond strength was calculated and failure modes were determined by stereomicroscope. The data were analyzed by t-test and one-way ANOVA with P < 0.05 as the level of significance. Results: ViscoStat had significantly decreased the shear bond strength of AdheSE (P < 0.0001) to dentin. Modes of failures in all groups were mainly adhesive. Conclusion: Contamination had an adverse effect on the shear bond strength of AdheSE and reduced it. PMID:23716963

  12. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    SciTech Connect

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.; Lukens, Wayne W.; Arnold, John

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  13. Ferric Carboxymaltose Injection

    MedlinePlus

    ... on dialysis. Ferric carboxymaltose injection is in a class of medications called iron replacement products. It works ... rapid, weak pulse; chest pain; or loss of consciousness. If you experience a severe reaction, your doctor ...

  14. Manipulation resolves non-trivial structure of corrole monolayer on Ag(111).

    PubMed

    Tebi, Stefano; Aldahhak, Hazem; Serrano, Giulia; Schöfberger, Wolfgang; Rauls, Eva; Schmidt, Wolf Gero; Koch, Reinhold; Müllegger, Stefan

    2016-01-15

    Non-trivial arrangement of molecules within a molecular network complicates structure determination due to interdigitation, partial overlap, or stacking. We demonstrate that combined imaging and lateral manipulation with a scanning tunneling microscope resolves the intricate structure of a molecular network in two-dimensions in a straightforward manner. The network, formed by a monolayer of 5,10,15-tris(pentafluorophenyl)-corrole molecules on Ag(111), is manipulated for the first time with single-molecule precision. Our results reveal a shingle-like packing of partially overlapping corrole molecules. Density functional theory calculations support our findings. PMID:26629708

  15. Manipulation resolves non-trivial structure of corrole monolayer on Ag(111)

    NASA Astrophysics Data System (ADS)

    Tebi, Stefano; Aldahhak, Hazem; Serrano, Giulia; Schöfberger, Wolfgang; Rauls, Eva; Gero Schmidt, Wolf; Koch, Reinhold; Müllegger, Stefan

    2016-01-01

    Non-trivial arrangement of molecules within a molecular network complicates structure determination due to interdigitation, partial overlap, or stacking. We demonstrate that combined imaging and lateral manipulation with a scanning tunneling microscope resolves the intricate structure of a molecular network in two-dimensions in a straightforward manner. The network, formed by a monolayer of 5,10,15-tris(pentafluorophenyl)-corrole molecules on Ag(111), is manipulated for the first time with single-molecule precision. Our results reveal a shingle-like packing of partially overlapping corrole molecules. Density functional theory calculations support our findings.

  16. Ferric Tourmaline from Mexico.

    PubMed

    Mason, B; Donnay, G; Hardie, L A

    1964-04-01

    Dark brown crystals, up to 10 mm long, occur in rhyolite at Mexquitic, San Luis Potosi, Mexico. They are short prismatic, showing {1120}, {3030}, {1011}, {0221}, with c/a 0.4521, measured with a goniometer, and distinct {1120} cleavage. With an unusual combination of cell dimensions, high density, high refractive indices, and extreme birefringence, this tourmaline falls outside the known elbaite-schorl and schorl-dravite series. A chemical analysis, recalculated on the basis of cell volume and density, gives close to the theoretical 150 atoms per cell, whether the iron is ferrous or ferric, but the physical properties indicate a ferric tourmaline. PMID:17729799

  17. Molecular structures and absorption spectra assignment of corrole NH tautomers.

    PubMed

    Beenken, Wichard; Presselt, Martin; Ngo, Thien H; Dehaen, Wim; Maes, Wouter; Kruk, Mikalai

    2014-02-01

    The individual absorption spectra of the two NH tautomers of 10-(4,6-dichloropyrimidin-5-yl)-5,15-dimesitylcorrole are assigned on the basis of the Gouterman four-orbital model and a quantum chemical TD-DFT study. The assignment indicates that the red-shifted T1 tautomer is the one with protonated pyrrole nitrogen atoms N(21), N(22) and N(23), whereas the blue-shifted T2 tautomer has pyrrole nitrogen atoms N(21), N(22) and N(24) protonated. A wave-like nonplanar distortion of the macrocycle in the ground state is found for both NH tautomers, with the wave axis going through the pyrroles containing N(22) and N(24). The 7C plane determined by the least-squares distances to the carbon atoms C1, C4, C5, C6, C9, C16, and C19 is suggested as a mean corrole macrocycle plane for the analysis of out-of-plane distortions. The magnitude of these distortions is distinctly different for the two NH tautomers, leading to substantial perturbations of their acid-base properties, which are rationalized by the interplay of the degree of out-of-plane distortion of the macrocycle as a whole and the tendency of the pyrrole nitrogen atoms toward pyramidalization, with the former leading to a basicity increase whereas the latter enhances the acidity. PMID:24432802

  18. Suzuki-Miyaura cross-coupling reaction on copper-trans-A(2)B corroles with excellent functional group tolerance.

    PubMed

    König, Michael; Reith, Lorenz Michael; Monkowius, Uwe; Knör, Günther; Bretterbauer, Klaus; Schoefberger, Wolfgang

    2011-06-10

    The palladium-catalyzed Suzuki-Miyaura cross-coupling reaction has been investigated on meso-substituted trans-A(2)B-corrole using tailored Pd-catalyst systems.We present the first examples of Suzuki-Miyaura cross-coupling reactions on meso-substituted trans-A(2)B-corrole derivatives with neutral, sterically hindered, inactivated and heteroaromatic boronic acids and esters, alkenylboronic acids, as well as quickly deboronating aryl boronic acids and benzo-condensated five membered heterocyclic boronic acids. In addition, we established a high-yield procedure for the Suzuki-Miyaura cross-coupling reaction of corroles with neutral boronic acids.Due to the lability of the free-base corrole macrocycles, functionalization of the corrole periphery was performed with the corresponding Cu-metallated species. meso-Substituted trans-A(2)B-corrole can hence be regarded as highly versatile platform towards more sophisticated corrole systems.X-ray structure analysis of a functionalized meso-substituted trans-A(2)B copper corrole exhibited the typical features of such a Cu-complex: short N-Cu distances and a saddled corrole configuration.Moreover, we observed a sensitivity of the formal oxidation state of the coordinated copper ions towards Suzuki-Miyaura cross-coupling reaction conditions, where the central copper(III) ion approaches the characteristic features of a copper(II) species. This redox behaviour was examined by UV/vis absorption spectra, nuclear magnetic resonance (NMR) experiments and time-dependent density functional theoretical calculations. PMID:21760646

  19. Slow and fast singlet energy transfers in BODIPY-gallium(III)corrole dyads linked by flexible chains.

    PubMed

    Brizet, Bertrand; Desbois, Nicolas; Bonnot, Antoine; Langlois, Adam; Dubois, Adrien; Barbe, Jean-Michel; Gros, Claude P; Goze, Christine; Denat, Franck; Harvey, Pierre D

    2014-04-01

    Red (no styryl), green (monostyryl), and blue (distyryl) BODIPY-gallium(III) (BODIPY = boron-dipyrromethene) corrole dyads have been prepared in high yields using click chemistry, and their photophysical properties are reported. An original and efficient control of the direction of the singlet energy transfers is reported, going either from BODIPY to the gallium-corrole units or from gallium-corroles to BODIPY, depending upon the nature of the substitution on BODIPY. In one case (green), both directions are possible. The mechanism for the energy transfers is interpreted by means of through-space Förster resonance energy transfer (FRET). PMID:24661249

  20. The Silver Complexes of Porphyrins, Corroles, and Carbaporphyrins: Silver in the Oxidation States II and III

    ERIC Educational Resources Information Center

    Bruckner, Christian

    2004-01-01

    Studies in relation to the silver complexes of porphyrins, corroles and carbaporphyrins are presented especially with relation to silver in the oxidation states II and III. It is seen that the Ag(sub III) complex was electrochemically readily and reversibly reduced to the corresponding Ag(sub II) complex, thus indicating that the complex could be…

  1. Thermal stability of meso-substituted metal corroles in inert and oxidative media

    NASA Astrophysics Data System (ADS)

    Thao, Vu Thi; Karimov, D. R.; Guseinov, S. S.; Balantseva, E. V.; Berezin, D. B.

    2016-03-01

    The thermal stability of 5,10,15-triphenylcorrole as the simplest representative of meso-substituted corroles and its complexes with d-metals (Cu3+, Mn3+, Mn4+, Co3+, Co4+, and Zn2+) is studied for the first time via thermogravimetry in oxidizing and inert atmospheres. It is shown that corroles, both as free ligands and in the form of metal complexes, are less thermally stable than porphyrins with a similar structure. It is found that if the free ligands of porphyrins are thermally more stable with respect to thermal oxidation than d-metal complexes, the thermal stability of metal corroles can be both lower and higher than those of free ligands. It is concluded that the order of thermal stability of compounds MnCor < CoCor < H3Cor < ZnCorH < CuCor is reversed upon moving from an oxidizing to an inert medium. It is shown that corroles complexes with many d-metals (Co, Mn, and others) readily participate in extracoordination reactions with electron-donating solvents, e.g., DMF, as is indicated by spectrophotometry and thermogravimetry.

  2. Solvent-dependent resonance Raman spectra of high-valent oxomolybdenum(V) tris[3,5-bis(trifluoromethyl)phenyl]corrolate.

    PubMed

    Czernuszewicz, Roman S; Mody, Vicky; Zareba, Adelajda A; Zaczek, Marzena B; Gałezowski, Michał; Sashuk, Volodymyr; Grela, Karol; Gryko, Daniel T

    2007-07-01

    UV-visible, infrared (IR), and resonance Raman (RR) spectra were measured and analyzed for a high-valent molybdenum(V)-oxo complex of 5,10,15-tris[3,5-bis(trifluoromethyl)phenyl]corrole (1) at room temperature. The strength of the metal-oxo bond in 1 was found to be strongly solvent-dependent. Solid-state IR and RR spectra of 1 exhibited the MoVO stretching vibration at nu(MoVO)=969 cm(-1). It shifted up by 6 cm(-1) to 975 cm(-1) in n-hexane and then gradually shifted to lower frequencies in more polar solvents, down to 960 cm(-1) in dimethyl sulfoxide. The results imply that stronger acceptor solvents weaken the MoVO bond. The 45-cm(-1) frequency downshifts displayed by 1 containing an 18O label in the molybdenum(V)-oxo unit confirmed the assignments for the observed IR and RR nu(MoVO) bands. The solvent-induced frequency shift for the nu(MoVO) RR band, measured in a series of 25 organic solvents ranging from n-hexane (AN=0.0) to N-methylformamide (AN=32.1), did not decrease in direct proportion to Gutmann's solvent acceptor numbers (ANs). However, a good linear correlation of the nu(MoVO) frequency was found against an empirical "solvent polarity" scale (A+B) of Swain et al. J. Am. Chem. Soc. 1983, 105, 502-513. A molecular association was observed between chloroform and oxomolybdenum(V) corrole 1 through MoO...H/CCl3 hydrogen-bonding interactions. This association manifested itself as a shift of the nu(MoVO) RR band of 1 in CDCl3 to a higher frequency compared to that in CHCl3. PMID:17547394

  3. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ferric chloride or ferric citrate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate,...

  4. Photoinduced Electron Transfer between Anionic Corrole and DNA.

    PubMed

    Wang, Li-Li; Zhang, Lei; Wang, Hui; Zhang, Yang; Huang, Jun-Teng; Zhu, He; Ying, Xiao; Ji, Liang-Nian; Liu, Hai-Yang

    2016-02-01

    The interaction between a water-soluble anionic Ga(III) corrole [Ga(tpfc)(SO3Na)2] and calf thymus DNA (ct-DNA) has been investigated by using femtosecond transient absorption spectroscopy. A significant broadening from 570 to 585 nm of positive absorption band of the blend of Ga(tpfc)(SO3Na)2 and ct-DNA (Ga(tpfc)(SO3Na)2-ctDNA) has been observed from 0.15 to 0.50 ps after photoexcitation of Ga(tpfc)(SO3Na)2 into the Soret band. The control experiment has been performed on the model DNA ([poly(dG-dC)]2) rich in guanine bases, which exhibits a similar spectral broadening, whereas it is absent for [poly(dA-dT)]2 without guanine bases. The molecular orbital calculation shows that HOMO of Ga(tpfc)(SO3Na)2 is lower than that of guanine bases. The results of the electrochemical experiment show the reversible electron transfer (ET) between Ga(tpfc)(SO3Na)2 and guanine bases of ct-DNA is thermodynamically favorable. The dynamical analysis of the transient absorption spectra reveals that an ultrafast forward ET from the guanine bases to Ga(tpfc)(SO3Na)2 occurs within the pulse duration (156 fs), leading to the formation of an intermediate state. The following back ET to the ground state of Ga(tpfc)(SO3Na)2 may be accomplished in 520 fs. PMID:26752116

  5. Understanding Arsenate Reaction Kinetics with Ferric Hydroxides

    PubMed Central

    Farrell, James; Chaudhary, Binod K.

    2015-01-01

    Understanding arsenic reactions with ferric hydroxides is important in understanding arsenic transport in the environment and in designing systems for removing arsenic from potable water. Many experimental studies have shown that the kinetics of arsenic adsorption on ferric hydroxides is biphasic, where a fraction of the arsenic adsorption occurs on a time scale of seconds while full equilibrium may require weeks to attain. This research employed density functional theory modeling in order to understand the mechanisms contributing to biphasic arsenic adsorption kinetics. The reaction energies and activation barriers for three modes of arsenate adsorption to ferric hydroxides were calculated. Gibbs free energies of reaction depended on the net charge of the complexes, which is a function of the system pH value. Physical adsorption of arsenate to ferric hydroxide proceeded with no activation barrier, with Gibbs free energies of reaction ranging from −21 to −58 kJ/mol. The highest Gibbs free energies of reaction for physical adsorption resulted from negative charge assisted hydrogen bonding between H atoms on the ferric hydroxide and O atoms in arsenate. The conversion of physically adsorbed arsenate into monodentate surface complexes had Gibbs free energies of activation ranging from 62 to 73 kJ/mol, and Gibbs free energies of reaction ranging from −23 to −38 kJ/mol. The conversion of monodentate surface complexes to bidentate, binuclear complexes had Gibbs free energies of activation ranging from 79 to 112 kJ/mol, and Gibbs free energies of reaction ranging from −11 to −55 kJ/mol. For release of arsenate from uncharged bidentate complexes, energies of activation as high as 167 kJ/mol were encountered. Increasingly negative charges on the complexes lowered the activation barriers for desorption of arsenate, and in complexes with −2 charges, the highest activation barrier was 65 kJ/mol. This study shows that the slow kinetics associated with arsenic

  6. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate...

  7. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate...

  8. Surface enhanced fluorescence from corroles and SERS studies of explosives using copper nanostructures

    NASA Astrophysics Data System (ADS)

    Hamad, Syed; Krishna Podagatlapalli, G.; Ahamad Mohiddon, Md.; Venugopal Rao, S.

    2015-02-01

    We report the deployment of complex copper nanoparticles (NPs) and nanostructures (NSs), fabricated in a single step by ultrafast laser ablation of copper (Cu) in corroles/chloroform solutions, for surface enhanced fluorescence and surface enhanced Raman scattering studies (SERS). The characterization was performed by TEM, SAED, UV-visible absorption, and SEM techniques. Florescence enhancement of five orders in magnitude was obtained from corroles conjugated to Cu complex NPs. Cu NSs were utilized to record the SERS spectra of adsorbed Rhodamine 6G and explosive molecules of 5-amino-3-nitro-1,2,4-triazole and 1,1-diamino-2,2-dinitroethene. The estimated enhancement factors were in the range of 106-108.

  9. Investigating photoexcitation-induced mitochondrial damage by chemotherapeutic corroles using multimode optical imaging

    NASA Astrophysics Data System (ADS)

    Hwang, Jae Youn; Lubow, David J.; Sims, Jessica D.; Gray, Harry B.; Mahammed, Atif; Gross, Zeev; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2012-01-01

    We recently reported that a targeted, brightly fluorescent gallium corrole (HerGa) is highly effective for breast tumor detection and treatment. Unlike structurally similar porphryins, HerGa exhibits tumor-targeted toxicity without the need for photoexcitation. We have now examined whether photoexcitation further modulates HerGa toxicity, using multimode optical imaging of live cells, including two-photon excited fluorescence, differential interference contrast (DIC), spectral, and lifetime imaging. Using two-photon excited fluorescence imaging, we observed that light at specific wavelengths augments the HerGa-mediated mitochondrial membrane potential disruption of breast cancer cells in situ. In addition, DIC, spectral, and fluorescence lifetime imaging enabled us to both validate cell damage by HerGa photoexcitation and investigate HerGa internalization, thus allowing optimization of light dose and timing. Our demonstration of HerGa phototoxicity opens the way for development of new methods of cancer intervention using tumor-targeted corroles.

  10. Ultrafast Photoinduced Charge Separation Leading to High-Energy Radical Ion-Pairs in Directly Linked Corrole-C60 and Triphenylamine-Corrole-C60 Donor-Acceptor Conjugates.

    PubMed

    Sudhakar, Kolanu; Gokulnath, Sabapathi; Giribabu, Lingamallu; Lim, Gary N; Trâm, Tạ; D'Souza, Francis

    2015-12-01

    Closely positioned donor-acceptor pairs facilitate electron- and energy-transfer events, relevant to light energy conversion. Here, a triad system TPACor-C60 , possessing a free-base corrole as central unit that linked the energy donor triphenylamine (TPA) at the meso position and an electron acceptor fullerene (C60) at the β-pyrrole position was newly synthesized, as were the component dyads TPA-Cor and Cor-C60. Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady-state fluorescence studies showed efficient energy transfer from (1) TPA* to the corrole and subsequent electron transfer from (1) corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron-transfer products, the corrole radical cation (Cor(⋅+) in Cor-C60 and TPA-Cor(⋅+) in TPACor-C60) and fullerene radical anion (C60(⋅-)), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS , was found to be about 10(11)  s(-1), suggesting the occurrence of an ultrafast charge-separation process. Interestingly, although an order of magnitude slower than kCS , the rate of charge recombination, kCR , was also found to be rapid (kCR ≈10(10)  s(-1)), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge-separated species relaxed directly to the ground state in polar solvents while in toluene, formation of (3) corrole* was observed, thus implying that the energy of the charge-separated state in a nonpolar solvent is higher than the energy of (3) corrole* being about 1.52 eV. That is, ultrafast formation of a high-energy charge-separated state in toluene has been achieved in these closely spaced corrole

  11. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride. The...

  12. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric...

  13. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric...

  14. 3-NO2-5,10,15-triarylcorrolato-Cu as a versatile platform for synthesis of novel 3-functionalized corrole derivatives

    PubMed Central

    Stefanelli, M.; Mancini, M.; Raggio, M.; Fronczeck, F. R.; McCandless, G. T.; Smith, K. M.; Paolesse, R.

    2014-01-01

    β–Nitrocorrole derivatives are potentially valuable platforms for the preparation of a wide range of more elaborated corrole derivatives possessing unique chemical functionalities and electronic properties. Here we report our results on the chemical manipulation of a copper 3-NO2-triarylcorrolate using different organic reactions, all involving the reduction of –NO2 to –NH2 at an early stage, followed by further transformations. By way of a β-acylated copper corrolate, a novel corrole derivative bearing an alkyl azide group on the peripheral positions was obtained and exploited in the Huisgen 1,3-dipolar cycloaddition. PMID:25005049

  15. Phosphorus(V) corrole: DNA binding, photonuclease activity and cytotoxicity toward tumor cells.

    PubMed

    Wang, Yi-Guang; Zhang, Zhao; Wang, Hui; Liu, Hai-Yang

    2016-08-01

    A new phosphorus(V) corrole, 10-(4-hydroxylphenyl)-5,15-bis(pentafluorophenyl)corrolato (trans-dihydroxo)phosphorus(V) 1-P, was synthesized and characterized. The interaction of 1-P with calf thymus DNA (CT-DNA) was studied by multi-spectroscopic methods. The photonuclease activity of this complex was examined by agarose gel electrophoresis. 1-P may bind to CT-DNA via an outside binding mode and display good photonuclease activity. 1-P displayed low dark toxicity but high photocytotoxic activity against H460 and A549 tumor cell lines. PMID:27281437

  16. Macrocyclic Transformations from Norrole to Isonorrole and an N-Confused Corrole with a Fused Hexacyclic Ring System Triggered by a Pyrrole Substituent.

    PubMed

    Li, Miao; Wei, Pingchun; Ishida, Masatoshi; Li, Xin; Savage, Mathew; Guo, Rui; Ou, Zhongping; Yang, Sihai; Furuta, Hiroyuki; Xie, Yongshu

    2016-02-01

    Three kinds of fused porphyrinoids, L2-L4, possessing different types of corrole-based frameworks were synthesized from a pyrrole-substituted corrole isomer (norrole L1). Oxidation of L1 afforded a unique N-Cmeso -fused pyrrolyl isonorrole L2, involving the fusion of an auxiliary pyrrolic NH moiety with a meso-sp(3) -hybridized carbon atom. Subsequently, L2 underwent macrocycle transformations to give singly and doubly N-CAr -fused N-confused corroles, L3 and L4, respectively. L3 and L4 contain fused [5.7.6.5]-tetra- and [5.6.7.7.6.5]-hexacyclic structures, respectively, prepared through lateral annulation. These skeletal transformation reactions from norrole to its isomer isonorrole and finally to N-confused corrole indicate that multiply fused porphyrinoids could be readily synthesized from pyrrole-appended confused porphyrinoids. PMID:26822959

  17. Low-energy states of manganese-oxo corrole and corrolazine: multiconfiguration reference ab initio calculations.

    PubMed

    Zhao, Hailiang; Pierloot, Kristine; Langner, Ernie H G; Swarts, Jannie C; Conradie, Jeanet; Ghosh, Abhik

    2012-04-01

    Manganese(V)-oxo corrole and corrolazine have been studied with ab initio multiconfiguration reference methods (CASPT2 and RASPT2) and large atomic natural orbital (ANO) basis sets. The calculations confirm the expected singlet d(δ)(2) ground states for both complexes and rule out excited states within 0.5 eV of the ground states. The lowest excited states are a pair of Mn(V) triplet states with d(δ)(1)d(π)(1) configurations 0.5-0.75 eV above the ground state. Manganese(IV)-oxo macrocycle radical states are much higher in energy, ≥1.0 eV relative to the ground state. The macrocyclic ligands in the ground states of the complexes are thus unambiguously 'innocent'. The approximate similarity of the spin state energetics of the corrole and corrolazine complexes suggests that the latter macrocycle on its own does not afford any special stabilization for the Mn(V)O center. The remarkable stability of an Mn(V)O octaarylcorrolazine thus appears to be ascribable to the steric protection afforded by the β-aryl groups. PMID:22432719

  18. Investigating the photosensitizer-potential of targeted gallium corrole using multimode optical imaging

    NASA Astrophysics Data System (ADS)

    Hwang, Jae Youn; Lubow, Jay; Chu, David; Gross, Zeev; Gray, Harry B.; Farkas, Daniel L.; Medina-Kauwe, Lali K.

    2011-02-01

    We recently developed a novel therapeutic particle, HerGa, for breast cancer treatment and detection. HerGa consists of a tumor-targeted cell penetration protein noncovalently assembled with a gallium-metallated corrole. The corrole is structurally similar to porphyrin, emits intense fluorescence, and has proven highly effective for breast tumor treatment preclinically, without light exposure. Here, we tested HerGa as a photosensitizer for photodynamic therapy and investigated its mechanism of action using multimode optical imaging. Using confocal fluorescence imaging, we observed that HerGa disrupts the mitochondrial membrane potential in situ, and this disruption is substantially augmented by light exposure. In addition, spectral and fluorescence lifetime imaging were utilized to both validate the mitochondrial membrane potential disruption and investigate HerGa internalization, allowing us to optimize the timing for light dosimetry. We observed, using advanced multimode optical imaging, that light at a specific wavelength promotes HerGa cytotoxicity, which is likely to cause disruption of mitochondrial function. Thus, we can identify for the first time the capacity of HerGa as a photosensitizer for photodynamic therapy and reveal its mechanism of action, opening possibilities for therapeutic intervention in human breast cancer management.

  19. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  20. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  1. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... color additive ferric ferrocyanide is a ferric hexacyanoferrate pigment characterized by the structual... ferrocyanide. (2) Color additive mixtures for drug use made with ferric ferrocyanide may contain only those diluents listed in this subpart as safe and suitable for use in color additive mixtures for coloring...

  2. Adverse Reactions of Ferric Carboxymaltose

    PubMed Central

    Patil, Navin; Shenoy, Smita; Bairy, K L; Sarma, Yashdeep

    2014-01-01

    The author reports a 55-year-old female diagnosed of chronic kidney disease grade-5 with associated co-morbidities like type 2 diabetes mellitus, diabetic retinopathy and hypothyroidism was admitted for arteriovenous fistula construction. She was started on ferric carboxymaltose for the treatment of anaemia. She was given a test dose before administering the drug intravenously and she did not develop any reaction. The drug ferric carboxymaltose was then administered over a period of one hour. About half an hour after drug administration, the patient developed breathlessness and myalgia. After half hour of the above episode of breathlessness and myalgia she also developed vomiting (one episode). Patient was managed with oxygen therapy, IV fluids and other drugs like corticosteroids, phenaramine maleate and nalbuphine which controlled the above symptoms. PMID:25478369

  3. Adverse reactions of ferric carboxymaltose.

    PubMed

    Thanusubramanian, Harish; Patil, Navin; Shenoy, Smita; Bairy, K L; Sarma, Yashdeep

    2014-10-01

    The author reports a 55-year-old female diagnosed of chronic kidney disease grade-5 with associated co-morbidities like type 2 diabetes mellitus, diabetic retinopathy and hypothyroidism was admitted for arteriovenous fistula construction. She was started on ferric carboxymaltose for the treatment of anaemia. She was given a test dose before administering the drug intravenously and she did not develop any reaction. The drug ferric carboxymaltose was then administered over a period of one hour. About half an hour after drug administration, the patient developed breathlessness and myalgia. After half hour of the above episode of breathlessness and myalgia she also developed vomiting (one episode). Patient was managed with oxygen therapy, IV fluids and other drugs like corticosteroids, phenaramine maleate and nalbuphine which controlled the above symptoms. PMID:25478369

  4. Arsenic removal by ferric chloride

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S.

    1996-04-01

    Bench-scale studies were conducted in model freshwater systems to investigate how various parameters affected arsenic removal during coagulation with ferric chloride and arsenic adsorption onto preformed hydrous ferric oxide. Parameters included arsenic oxidation state and initial concentration, coagulant dosage or adsorbent concentration, pH, and the presence of co-occurring inorganic solutes. Comparison of coagulation and adsorption experiments and of experimental results with predictions based on surface complexation modeling demonstrated that adsorption is an important (though not the sole) mechanism governing arsenic removal during coagulation. Under comparable conditions, better removal was observed with arsenic(V) [As(V)] than with arsenic(III) [As(III)] in both coagulation and adsorption experiments. Below neutral pH values, As(III) removal-adsorption was significantly decreased in the presence of sulfate, whereas only a slight decrease in As(V) removal-adsorption was observed. At high pH, removal-adsorption of As(V) was increased in the presence of calcium. Removal of As(V) during coagulation with ferric chloride is both more efficient and less sensitive than that of As(III) to variations in source water composition.

  5. Improving the photoinduced charge separation parameters in corrole-perylene carboximide dyads by tuning the redox and spectroscopic properties of the components.

    PubMed

    Flamigni, Lucia; Ciuciu, Adina I; Langhals, Heinz; Böck, Bernd; Gryko, Daniel T

    2012-03-01

    A couple of corrole-perylene carboximide dyads (C2-PIa and C2-PIx) have been synthesized and their photoreactivity has been evaluated. We aimed at obtaining better performances for photoinduced charge separation, both in terms of efficiency and in terms of lifetime, with respect to formerly studied systems. The energy level of the charge-separated state was tuned by selecting perylene and corrole components with diverse redox and spectroscopic properties. High spectroscopic energy levels of the perylene carboximide derivatives (PIs) allow a fast charge separation to be maintained in competition with an energy-transfer process from the PI to the corrole unit. Yields and lifetimes of charge separation in toluene are, respectively, 75% and 2.5 μs for C2-PIa and 65% and 24 ns for C2-PIx. The results and the effect of solvent polarity are discussed in the framework of current energy- and electron-transfer theories. PMID:22234895

  6. Gold Tris(carboxyphenyl)corroles as Multifunctional Materials: Room Temperature Near-IR Phosphorescence and Applications to Photodynamic Therapy and Dye-Sensitized Solar Cells.

    PubMed

    Alemayehu, Abraham B; Day, Nicholas U; Mani, Tomoyasu; Rudine, Alexander B; Thomas, Kolle E; Gederaas, Odrun A; Vinogradov, Sergei A; Wamser, Carl C; Ghosh, Abhik

    2016-07-27

    Two amphiphilic corroles-5,10,15-tris(3-carboxyphenyl)corrole (H3[mTCPC]) and 5,10,15-tris(4-carboxyphenyl)corrole (H3[pTCPC])-and their gold complexes have been synthesized, and their photophysical properties and photovoltaic behavior have been investigated. Like other nonpolar gold corroles, Au[mTCPC] and Au[pTCPC] were both found to exhibit room temperature phosphorescence in deoxygenated solutions with quantum yields of ∼0.3% and triplet lifetimes of ∼75 μs. Both compounds exhibited significant activity as dyes in photodynamic therapy experiments and in dye-sensitized solar cells. Upon irradiation at 435 nm, both Au corroles exhibited significant phototoxicity against AY27 rat bladder cancer cells while the free-base corroles proved inactive. Dye-sensitized solar cells constructed using the free bases H3[mTCPC] and H3[pTCPC] exhibited low efficiencies (≪1%), well under that obtained with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin, H2[pTCPP] (1.9%, cf. N719 9.5%). Likewise, Au[pTCPC] proved inefficient, with an efficiency of ∼0.2%. By contrast, Au[mTCPC] proved remarkably effective, exhibiting an open-circuit voltage (Voc) of 0.56 V, a short-circuit current of 8.7 mA cm(-2), a fill factor of 0.72, and an efficiency of 3.5%. PMID:27414087

  7. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate....

  8. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate....

  9. Synthesis of tyrosine-involved corrole Cu(III), Mn(IV), and Mn(III) complexes as biomimetic models of oxygen evolving complex in photosystem II

    NASA Astrophysics Data System (ADS)

    Xia, M.; Gao, Y.

    2014-12-01

    Boc-protected tyrosine-attached corrole ligand on the " ortho" position compound 3, its corresponding copper (III) 4a, manganese (IV) 4b, and manganese (III) 4c complexes have been designed and synthesized based on the structures of active-centers of related biological systems. 1H NMR and electronic absorption spectra of these metal complexes are investigated. The crystal structure of 4a displays the relative position of TyrOH unit to the high valent metal center. Electrochemistry investigations display the possibilities of intramolecular electron or energy transfer between TyrOH group and metal corrole group.

  10. Ferric sulfate montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.

    1993-01-01

    Spectroscopic analyses have shown that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite in these smectites has features in the visible to near-infrared region that resemble the energies and band-strengths of features in reflectance spectra observed for several bright regions on Mars. Ferric - sulfate - montmorillonite samples have been prepared more recently because they are a good compositional match with the surface material on Mars as measured by Viking. Reflectance spectra of montmorillonite doped with ferric sulfate in the interlayer regions include a strong 3 micron band that persists under dry conditions. This is in contrast to spectra of similarly prepared ferric-doped montmorillonites, which exhibit a relatively weaker 3 micron band under comparable dry environmental conditions. Presented here are reflectance spectra of a suite of ferric-sulfate exchanged montmorillonites prepared with variable ferric sulfate concentrations and variable pH conditions.

  11. Ultrafast electronic and vibrational dynamics in brominated aluminum corroles: Energy relaxation and triplet formation.

    PubMed

    Stensitzki, T; Yang, Y; Berg, A; Mahammed, A; Gross, Z; Heyne, K

    2016-07-01

    We combined femtosecond (fs) VIS pump-IR probe spectroscopy with fs VIS pump-supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm(-1) is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm(-1) and at 1508 cm(-1). These marker bands allow a precise identification of triplet dynamics in corrole systems. PMID:27226980

  12. Ultrafast electronic and vibrational dynamics in brominated aluminum corroles: Energy relaxation and triplet formation

    PubMed Central

    Stensitzki, T.; Yang, Y.; Berg, A.; Mahammed, A.; Gross, Z.; Heyne, K.

    2016-01-01

    We combined femtosecond (fs) VIS pump–IR probe spectroscopy with fs VIS pump–supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm−1 is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm−1 and at 1508 cm−1. These marker bands allow a precise identification of triplet dynamics in corrole systems. PMID:27226980

  13. Manganese(III) corrole-oxidant adduct as the active intermediate in catalytic hydrogen atom transfer.

    PubMed

    Zdilla, Michael J; Abu-Omar, Mahdi M

    2008-11-17

    Hydrogen atom transfer (HAT) reactions from dihydroanthracene to ArINTs (Ar = 2- tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) is catalyzed by Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole). Kinetics of HAT was monitored by gas chromatography. Conversion to the major products anthracene, TsNH 2, and ArI is too fast to be explained by direct HAT from the terminal imido complex TsN=Mn(tpfc), which forms from the reaction of Mn(tpfc) with ArINTs. Steady-state kinetics, isotope effects, and variation of the initial catalyst form (Mn (III)(tpfc) vs TsN=Mn (V)(tpfc)) support a mechanism in which the active catalytic species is an adduct of manganese(III) with the oxidant, (ArINTs)Mn (III)(tpfc). This species was detected by rapid-scan stopped-flow absorption spectroscopy. Kinetic simulations demonstrated the viability of this mechanism in contrast to other proposals. PMID:18855381

  14. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  15. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  16. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  17. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  18. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  19. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  20. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its intended use. (c) In...

  1. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  2. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  3. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  4. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  5. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  6. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  7. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  8. Role of the Imide Axial Ligand in the Spin and Oxidation State of Manganese Corrole and Corrolazine Complexes.

    PubMed

    Alcover-Fortuny, Gerard; Caballol, Rosa; Pierloot, Kristine; de Graaf, Coen

    2016-06-01

    Electronic structure calculations have been performed on four different Mn corrole and corrolazine complexes to clarify the role of the imide axial ligand on the relative stability of the different spin states and the stabilization of the high-valent Mn ion in these complexes. Multiconfigurational perturbation theory energy calculations on the DFT-optimized geometries show that all complexes have a singlet ground state except the complex with the strongest electron-withdrawing substituent on the imide axial ligand, which is found to have a triplet ground state. The analysis of the σ and π interaction between the metal and imide ligand shows that this spin crossover is caused by a subtle interplay of geometrical factors (Mn-N distance and coordination angle) and the electron-withdrawing character of the substituent on the imide, which reduces the electron donation to the metal center. The analysis of the multiconfigurational wave functions reveals that the formally Mn(V) ion is stabilized by an important electron transfer from both the equatorial corrole/corrolazine ligand and the axial imide. The macrocycle donates roughly half an electron, being somewhere between the closed-shell trianionic and the dianionic radical form. The imide ligand transfers 2.5 electrons to the metal center, resulting in an effective d-electron count close to five in all complexes. PMID:27163862

  9. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    PubMed Central

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

  10. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  11. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  12. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  13. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  14. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  15. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  16. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  17. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  18. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  19. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  20. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  1. 21 CFR 184.1304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 120, which is incorporated by... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric pyrophosphate. 184.1304 Section 184.1304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  2. Investigations of Ferric Heme Cyanide Photodissociation in Myoglobin and Horseradish Peroxidase

    PubMed Central

    Zeng, Weiqiao; Sun, Yuhan; Benabbas, Abdelkrim; Champion, Paul M.

    2013-01-01

    The photodissociation of cyanide from ferric myoglobin (MbCN) and horseradish peroxidase (HRPCN) has been definitively observed. This has implications for the interpretation of ultrafast IR (Helbing et al. Biophys. J. 2004, 87, 1881–1891) and optical (Gruia et al. Biophys. J. 2008, 94, 2252–2268) studies that had previously suggested the Fe-CN bond was photostable in MbCN. The photolysis of ferric MbCN takes place with a quantum yield of ~75% and the resonance Raman spectrum of the photoproduct observed in steady-state experiments as a function of laser power and sample spinning rate is identical to that of ferric Mb (metMb). The data are quantitatively analyzed using a simple model where cyanide is photodissociated and, although geminate rebinding with a rate kBA ≈ (3.6 ps)−1 is the dominant process, some CN− exits from the distal heme pocket and is replaced by water. Using independently determined values for the CN− association rate, we find that the CN− escape rate from the ferric myoglobin pocket to the solution at 293 K is kout ≈ 1–2 × 107 s−1. This value is very similar to, but slightly larger than, the histidine gated escape rate of CO from Mb (1.1×107 s−1) under the same conditions. The analysis leads to an escape probability kout/(kout+kBA) ~ 10−4, which is unobservable in most time domain kinetic measurements. However, the photolysis is surprisingly easy to detect in Mb using cw resonance Raman measurements. This is due to the anomalously slow CN− bimolecular association rate (170 M−1s−1), which arises from the need for water to exchange at the ferric heme binding site of Mb. In contrast, ferric HRP does not have a heme bound water molecule and its CN− bimolecular association rate is larger by ~103 making the CN− photolysis more difficult to observe. PMID:23472676

  3. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  4. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  5. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  6. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  7. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  8. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The color additive ferric ammonium...

  9. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5306 Ferric sodium pyrophosphate. (a) Product. Ferric sodium pyrophosphate....

  10. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.

    PubMed Central

    Brock, T D; Gustafson, J

    1976-01-01

    Acidophilic bacteria of the genera Thiobacillus and Sulfolobus are able to reduce ferric iron when growing on elemental sulfur as an energy source. It has been previously thought that ferric iron serves as a nonbiological oxidant in the formation of acid mine drainage and in the leaching of ores, but these results suggest that bacterial catalysis may play a significant role in the reactivity of ferric iron. PMID:825043

  11. Rapid assay for microbially reducible ferric iron in aquatic sediments.

    PubMed

    Lovley, D R; Phillips, E J

    1987-07-01

    The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction. PMID:16347384

  12. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5306 Ferric...

  13. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The... green forms, are deliquescent in air, and are reducible by light. (b) Specifications. Ferric ammonium... from certification. Certification of this color additive is not necessary for the protection of...

  14. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The... green forms, are deliquescent in air, and are reducible by light. (b) Specifications. Ferric ammonium... from certification. Certification of this color additive is not necessary for the protection of...

  15. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The... green forms, are deliquescent in air, and are reducible by light. (b) Specifications. Ferric ammonium... from certification. Certification of this color additive is not necessary for the protection of...

  16. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  17. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  18. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution. A containment system (cargo tank...

  19. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  20. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  1. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  2. Microwave drying of ferric oxide pellets

    SciTech Connect

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  3. Ferric chloride-catalyzed reaction of [60]fullerene with tert-butyl N-substituted carbamates: synthesis of oxazolidino[4,5:1,2][60]fullerenes.

    PubMed

    You, Xun; Wang, Guan-Wu

    2014-01-01

    The rare oxazolidinofullerenes have been prepared by the ferric chloride-catalyzed reaction of [60]fullerene with various tert-butyl N-substituted carbamates via t-Bu-O bond cleavage and heteroannulation under mild conditions. A possible mechanism for the formation of oxazolidinofullerenes is proposed. PMID:24328055

  4. Reduction of Ferric Leghemoglobin in Soybean Root Nodules 1

    PubMed Central

    Lee, Keuk-Ki; Klucas, Robert V.

    1984-01-01

    Reduction of ferric leghemoglobin to ferrous leghemoglobin in soybean nodules (Glycine max [L.] Merr. cv Woodworth) was studied using a spectrophotometer equipped with an in-cell space diffuse reflectance accessory. Nodule slices prepared and scanned under nitrogen gas showed a ferrous leghemoglobin absorption spectrum. Nodule slices equilibrated with 100% O2 or air exhibited two absorption bands characteristic of oxygenated leghemoglobin. The addition of CO shifted those bands to CO leghemoglobin absorption bands. Potassium ferricyanide was not effective in oxidizing ferrous to ferric leghemoglobin in nodule slices. However, ferric leghemoglobin was formed by treating the nodule slices with hydroxylamine, and this was confirmed by complexing the ferric leghemoglobin to acetate, fluoride, or nicotinic acid. The diminution of ferric leghemoglobin was monitored as a function of time, and in the presence of nicotinic acid, the conversion of ferric to ferrous leghemoglobin was monitored by the appearance of ferrous leghemoglobin nicotinate complex as a function of time. Ferric leghemoglobin reduction was also confirmed by direct transmission spectrophotometry. The evidence presented here suggests that ferrileghemoglobin reduction occurs in nodule slices. PMID:16663546

  5. Ferric carboxymaltose: a review of its use in iron deficiency.

    PubMed

    Keating, Gillian M

    2015-01-01

    Ferric carboxymaltose (Ferinject(®), Injectafer(®)) is an intravenous iron preparation approved in numerous countries for the treatment of iron deficiency. A single high dose of ferric carboxymaltose (up to 750 mg of iron in the US and 1,000 mg of iron in the EU) can be infused in a short time frame (15 min). Consequently, fewer doses of ferric carboxymaltose may be needed to replenish iron stores compared with some other intravenous iron preparations (e.g. iron sucrose). Ferric carboxymaltose improved self-reported patient global assessment, New York Heart Association functional class and exercise capacity in patients with chronic heart failure and iron deficiency in two randomized, placebo-controlled trials (FAIR-HF and CONFIRM-HF). In other randomized controlled trials, ferric carboxymaltose replenished iron stores and corrected anaemia in various populations with iron-deficiency anaemia, including patients with chronic kidney disease, inflammatory bowel disease or heavy uterine bleeding, postpartum iron-deficiency anaemia and perioperative anaemia. Intravenous ferric carboxymaltose was generally well tolerated, with a low risk of hypersensitivity reactions. It was generally better tolerated than oral ferrous sulfate, mainly reflecting a lower incidence of gastrointestinal adverse effects. The most common laboratory abnormality seen in ferric carboxymaltose recipients was transient, asymptomatic hypophosphataemia. The higher acquisition cost of ferric carboxymaltose appeared to be offset by lower costs for other items, with the potential for cost savings. In conclusion, ferric carboxymaltose is an important option for the treatment of iron deficiency. PMID:25428711

  6. The crystal chemistry of ferric oxyhydroxyapatite.

    PubMed

    Low, H R; Phonthammachai, N; Maignan, A; Stewart, G A; Bastow, T J; Ma, L L; White, T J

    2008-12-15

    Ferric hydroxyapatites (Fe-HAp) and oxyapatites (Fe-OAp) of nominal composition [Ca(10-x)Fe(x)(3+)][(PO(4))(6)][(OH)(2-x)O(x)] (0 < or = x < or = 0.5) were synthesized from a coprecipitated precursor calcined under flowing nitrogen. The solid solubility of iron was temperature-dependent, varying from x = 0.5 after firing at 600 degrees C to x approximately 0.2 at 1000 degrees C, beyond which Fe-OAp was progressively replaced by tricalcium phosphate (Fe-TCP). Crystal size (13-116 nm) was controlled by iron content and calcination temperature. Ferric iron replaces calcium by two altervalent mechanisms in which carbonate and oxygen are incorporated as counterions. At low iron loadings, carbonate predominantly displaces hydroxyl in the apatite channels (Ca(2+) + OH(-) --> Fe(3+) + CO(3)(2-)), while at higher loadings, "interstitial" oxygen is tenanted in the framework (2Ca(2+) + (vac) --> 2Fe(3+) + O(2+)). Although Fe(3+) is smaller than Ca(2+), the unit cell dilates as iron enters apatite, providing evidence of oxygen injection that converts PO(4) tetrahedra to PO(5) trigonal bipyramids, leading to the crystal chemical formula [Ca(10-x)Fe(x)][(PO(4))(6-x/2)(PO(5))(x/2)][(OH)(2-y)O(2y)] (x < or = 0.5). A discontinuity in unit cell expansion at x approximately 0.2 combined with a substantial reduction of the carbonate FTIR fingerprint shows that oxygen infusion, rather than tunnel hydroxyl displacement, is dominant beyond this loading. This behavior is in contrast to ferrous-fluorapatite where Ca(2+) --> Fe(2+) aliovalent replacement does not require oxygen penetration and the cell volume contracts with iron loading. All of the materials were paramagnetic, but at low iron concentrations, a transition arising from crystallographic modification or a change in spin ordering is observed at 90 K. The excipient behavior of Fe-OAp was superior to that of HAp and may be linked to the crystalline component or mediated by a ubiquitous nondiffracting amorphous phase. Fe-HAp and Fe

  7. Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives.

    PubMed

    Kunnus, Kristjan; Zhang, Wenkai; Delcey, Mickaël G; Pinjari, Rahul V; Miedema, Piter S; Schreck, Simon; Quevedo, Wilson; Schröder, Henning; Föhlisch, Alexander; Gaffney, Kelly J; Lundberg, Marcus; Odelius, Michael; Wernet, Philippe

    2016-07-28

    The valence-excited states of ferric and ferrous hexacyanide ions in aqueous solution were mapped by resonant inelastic X-ray scattering (RIXS) at the Fe L2,3 and N K edges. Probing of both the central Fe and the ligand N atoms enabled identification of the metal- and ligand-centered excited states, as well as ligand-to-metal and metal-to-ligand charge-transfer excited states. Ab initio calculations utilizing the RASPT2 method were used to simulate the Fe L2,3-edge RIXS spectra and enabled quantification of the covalencies of both occupied and empty orbitals of π and σ symmetry. We found that π back-donation in the ferric complex is smaller than that in the ferrous complex. This is evidenced by the relative amounts of Fe 3d character in the nominally 2π CN(-) molecular orbital of 7% and 9% in ferric and ferrous hexacyanide, respectively. Utilizing the direct sensitivity of Fe L3-edge RIXS to the Fe 3d character in the occupied molecular orbitals, we also found that the donation interactions are dominated by σ bonding. The latter was found to be stronger in the ferric complex, with an Fe 3d contribution to the nominally 5σ CN(-) molecular orbitals of 29% compared to 20% in the ferrous complex. These results are consistent with the notion that a higher charge at the central metal atom increases donation and decreases back-donation. PMID:27380541

  8. Dentine and enamel bonding agents.

    PubMed

    Bowen, R L; Tung, M S; Blosser, R L; Asmussen, E

    1987-09-01

    Previous studies have shown that sequential use of aqueous FO (ferric oxalate containing a small concentration of HNO3), acetone solutions of NPG (N-phenylglycine), and PMDM (the reaction product of pyromellitic dianhydride and 2-hydroxyethylmethacrylate) yields strong adhesive bonding of composite resins to both dentine and enamel. The purpose of this study was to determine if aluminum ions could be substituted for ferric ions and if the procedure could be simplified. Aqueous solutions containing aluminum oxalate and aluminum nitrate, followed in sequence by acetone solutions of NPG and PMDM, gave strong tensile adhesive bond strengths between a composite and extracted human teeth. Comparable values have been obtained with FO, NPG and PMDM. Aluminum oxalate solutions containing no nitrate gave lower bond strengths, as was the case with FO. Aqueous solutions of acidified aluminum oxalate can dissolve NPG, thereby allowing a simplification of the procedure. Tested for comparison, commercially available dentine bonding agents gave lower average bond strengths on dentine than did some of the experimental materials. PMID:3316044

  9. Potential Role for Extracellular Glutathione-Dependent Ferric Reductase in Utilization of Environmental and Host Ferric Compounds by Histoplasma capsulatum

    PubMed Central

    Timmerman, Michelle M.; Woods, Jon P.

    2001-01-01

    The mammalian host specifically limits iron during Histoplasma capsulatum infection, and fungal acquisition of iron is essential for productive infection. H. capsulatum expresses several iron acquisition mechanisms under iron-limited conditions in vitro. These components include hydroxamate siderophores, extracellular glutathione-dependent ferric reductase enzyme, extracellular nonproteinaceous ferric reductant(s), and cell surface ferric reducing agent(s). We examined the relationship between these mechanisms and a potential role for the extracellular ferric reductase in utilization of environmental and host ferric compounds through the production of free, soluble Fe(II). Siderophores and ferric reducing agents were coproduced under conditions of iron limitation. The H. capsulatum siderophore dimerum acid and the structurally similar basidiomycete siderophore rhodotorulic acid acted as substrates for the ferric reductase, and rhodotorulic acid removed Fe(III) bound by transferrin. The mammalian Fe(III)-binding compounds hemin and transferrin served both as substrates for the ferric reductase and as iron sources for yeast-phase growth at neutral pH. In the case of transferrin, there was a correlation between the level of iron saturation and efficacy for both of these functions. Our data are not consistent with an entirely pH-dependent mechanism of iron acquisition from transferrin, as has been suggested to occur in the macrophage phagolysosome. The foreign siderophore ferrioxamine B also acted as a substrate for the ferric reductase, while the foreign siderophore ferrichrome did not. Both ferrioxamine and ferrichrome served as iron sources for yeast- and mold-phase growth, the latter presumably by some other acquisition mechanism(s). PMID:11705947

  10. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  11. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  12. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  13. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  14. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  15. Polymeric Optical Sensors for Selective and Sensitive Nitrite Detection Using Cobalt(III) Corrole and Rh(III) Porphyrin as Ionophores

    PubMed Central

    Yang, Si; Wo, Yaqi; Meyerhoff, Mark E.

    2014-01-01

    Cobalt(III) 5, 10, 15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl)porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-penicillamine. PMID:25150700

  16. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  17. Hydrogen and Ferric Iron in Mars Materials

    NASA Technical Reports Server (NTRS)

    Dyar, Melinda D.

    2004-01-01

    Knowledge of oxygen and hydrogen fugacity is of paramount importance in constraining phase equilibria and crystallization processes of melts, as well as understanding the partitioning of elements between the cope and silicate portions of terrestrial planets. H and Fe(3+) must both be analyzed in order to reconstruct hydrogen and oxygen fugacities on Mars. To date, SIMS data have elucidated D/H and H contents of hydrous phases in SNC meteorites, but until now anhydrous martian minerals have not been systematically examined for trace hydrogen. Ferric iron has been quantified using XANES in many martian phases, but integrated studies of both Fe(3+) and H on the same spots are really needed to address the H budget. Finally, the effects of shock on both Fe(3+) and H in hydrous and anhydrous phases must be quantified. Thus, the overall goal of this research was to understand the oxygen and hydrogen fugacities under which martian samples crystallized. In this research one-year project, we approached this problem by 1) characterizing Fe(3+) and H contents of SNC meteorites using both bulk (Mossbauer spectroscopy and uranium extraction, respectively) and microscale (synchrotron micro-XANES and SIMS) methods; 2) relating Fe(3+) and H contents of martian minerals to their oxygen and hydrogen fugacities through analysis of experimentally equilibrated phases (for pyroxene) and through study of volcanic rocks in which the oxygen and hydrogen fugacities can be independently constrained (for feldspar); and 3) studying the effects of shock processes on Fe(3+) and H contents of the phases of interest. Results have been used to assess quantitatively the distribution of H and Fe(3+) among phases in the martian interior, which will better constrain the geodynamic processes of the interior, as well as the overall hydrogen and water budgets on Mars. There were no inventions funded by this research.

  18. Origin of the Individual Basicity of Corrole NH-Tautomers: A Quantum Chemical Study on Molecular Structure and Dynamics, Kinetics, and Thermodynamics.

    PubMed

    Beenken, Wichard; Maes, Wouter; Kruk, Mikalai; Martínez, Todd; Presselt, Martin

    2015-07-01

    Free-base corroles exist as individual NH-tautomers that may differ in their spectral and chemical properties. The present paper focuses on the origin of the basicity difference between two AB2-pyrimidinylcorrole NH-tautomers, which has been tentatively attributed to differences in the weak out-of-plane distortions of the pyrrolenic ring between two NH-tautomers. Using DFT-geometry optimizations, we show that the pyrroles involved in the NH-tautomerization process are approximately in-plane, whereas the other two pyrroles are tilted out-of-plane in opposite directions. Alternative out-of-plane distortion patterns play a minor role, as revealed by ab initio molecular dynamics simulations. Given that the protonated corrole is a unique species, the energy difference between the two NH-tautomers equals the difference in protonation driving force between them. This energy difference increases with improved theoretical level of accounting for intermolecular interactions and dielectric screening of surface charges. The different charge distributions of the two NH-tautomers result in electrostatic potential distributions that effect a larger proton attraction in the case of the T1 tautomer than in the case of the T2 tautomer. In summary, our quantum chemical results show clearly a higher basicity of the T1 tautomer as compared to the T2 tautomer: The previously assumed pronounced out-of-plane tilt of the T1-nonprotonated nitrogen is verified by ab initio molecular dynamics simulations. Together with analysis of the electrostatic potential distribution we show that the nonprotonated nitrogen is not only tilted stronger but also significantly more accessible for protons in the case of T1 as compared to T2. Additionally, the thermodynamic basicity is higher for T1 than for T2. PMID:26052732

  19. Arsenate precipitation using ferric iron in acidic conditions

    SciTech Connect

    Cadena, F.; Kirk, T.L.

    1995-12-31

    Arsenates (i.e., As(V)) can be removed from aqueous solution by precipitation with ferric iron (i.e., Fe(III)). The chemistry of arsenic acid describes the main properties of arsenates. This triprotic acid resembles the phosphoric acid system. For example, free arsenate ions (i.e., AsO{sub 4}{sup 3-}), like free phosphates, are present in significant concentration at pH values above pK{sub a,3}. On the other hand, the concentration of free ferric iron in solution, Fe{sup 3+}, is limited by ferric hydroxide precipitation and hydroxy complexation under neutral or basic conditions. Fe{sup 3+} is the predominant iron form only under very acidic conditions. Therefore, the absence of either ferric ions or arsenate ligands prevents ferric arsenate (FeAsO{sub 4}) precipitation in extreme pH conditions. Precipitation studies using ferric chloride show that the formation of ferric arsenate in water containing 0.667 mM/L (50 mg/L as As) is favored in the pH range between 3 and 4. Ferric iron dose required to remove arsenic from solution increases with pH in the range of 3 to 10. Sludge production also increases with increasing pH conditions. Optimum ferric iron doses at pH 3 and 4 are 4.8 and 10.0 mM/L, respectively, where the arsenate is removed from solution by 98.72 and 99.68 percent. Corresponding iron requirement to arsenate ratios at these two pH conditions are 7.2 and 15.0. Adverse effects on arsenic removal are observed at pH = 3, where the concentration of applied ferric iron exceeds the optimal dose. This effect is probably due to charge reversal on the surface of the precipitates. Overdosing above the optimal iron concentration at pH = 4 does not reduce treatment efficiency significantly. Presence of sodium chloride in solution at a concentration of 171 mM/L (10,000 mg/L as NaCl) does not impair system performance. However, sodium sulfate at a concentration of 104 mM/L (10,000 mg/L) affects adversely treatment performance.

  20. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  1. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  2. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  3. Cyanide binding to ferrous and ferric microperoxidase-11.

    PubMed

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low. PMID:27229515

  4. Hydrogen Reduction of Ferric Ions for Use in Copper Electrowinning

    SciTech Connect

    Karl S. Noah; Debby F. Bruhn; John E. Wey; Robert S. Cherry

    2005-01-01

    The conventional copper electrowinning process uses the water hydrolysis reaction as the anodic source of electrons. However this reaction generates acid mist and requires large quantities of energy. In order to improve energy efficiency and avoid acid mist, an alternative anodic reaction of ferrous ion oxidation has been proposed. This reaction does not involve evolution of acid mist and can be carried out at a lower cell voltage than the conventional process. However, because ferrous ions are converted to ferric ions at the anode in this process, there is a need for reduction of ferric ions to ferrous ions to continue this process. The most promising method for this reduction is the use of hydrogen gas since the resulting byproduct acid can be used elsewhere in the process and, unlike other reductants, hydrogen does not introduce other species that need subsequent removal. Because the hydrogen reduction technology has undergone only preliminary lab scale testing, additional research is needed to evaluate its commercial potential. Two issues for this research are the potentially low mass transfer rate of hydrogen into the electrolyte stream because of its low solubility in water, and whether other gaseous reductants less expensive than hydrogen, such as natural gas or syngas, might work. In this study various reductants were investigated to carry out the reduction of ferric ions to ferrous ions using a simulated electrolyte solution recycled through a trickle bed reactor packed with catalyst. The gases tested as reductants were hydrogen, methane, carbon monoxide, and a 50/50 mixture of H2 and CO. Nitrogen was also tested as an inert control. These gases were tested because they are constituents in either natural gas or syngas. The catalysts tested were palladium and platinum. Two gas flow rates and five electrolyte flow rates were tested. Pure hydrogen was an effective reductant of ferric ion. The rates were similar with both palladium and platinum. The ferric

  5. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  6. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  7. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  8. Ligand Induced Spin Crossover in Penta-Coordinated Ferric Dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Ganguli, P.; Iyer, R. M.

    1981-09-01

    On addition of lewis bases to Fe(dtc)2X, ligand exchange takes place through a SN2 mechanism, with a parallel spin crossover in the ferric ion. The two species (S = 3/2 and S = 5/2) formed are in dynamic chemical equilibrium, and a slow decomposition is then initiated.

  9. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  10. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  11. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  12. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed...

  13. What ferric oxide/oxyhydroxide phases are present on Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    1988-01-01

    The weathering history of Mars can be deduced largely from the mineralogy and distribution of ferric oxide/oxyhydroxide phases. As discussed, some insights can be gained through spectrophotometric remote sensing, but absolute determinations must depend on direct laboratory analysis of returned Martian samples.

  14. DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT

    EPA Science Inventory

    Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...

  15. ESTCP DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT

    EPA Science Inventory

    Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...

  16. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  17. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  18. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  19. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  20. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  1. Mechanism of catalytic aziridination with manganese corrole: the often postulated high-valent Mn(V) imido is not the group transfer reagent.

    PubMed

    Zdilla, Michael J; Abu-Omar, Mahdi M

    2006-12-27

    The reaction of Arl=NTs (Ar = 2-(tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) and (tpfc)Mn (tpfc=5,10,15-tris(pentafluorophenyl)corrole), 1, affords the high-valent (tpfc)MnV=NTs, 2, on stopped-flow time scale. The reaction proceeds via the adduct [(tpfc)MnIII(ArINTs)], 3, with formation constant K3 = (10 +/- 2) x 10(3) L mol-1. Subsequently, 3 undergoes unimolecular group transfer to give complex 2 with the rate constant k4 = 0.26 +/- 0.07 s-1 at 24.0 degrees C. The complex (tpfc)Mn catalyzes [NTs] group transfer from ArINTs to styrene substrates with low catalyst loading and without requirement of excess olefin. The catalytic aziridination reaction is most efficient in benzene because solvents such as toluene undergo a competing hydrogen atom transfer (HAT) reaction resulting in H2NTs and lowered aziridine yields. The high-valent manganese imido complex (tpfc)Mn=NTs does not transfer its [NTs] group to styrene. Double-labeling experiments with ArINTs and ArINTstBu (TstBu = (p-tert-butylphenyl)sulfonyl) establish the source of [NR] transfer as a "third oxidant", which is an adduct of Mn(V) imido, [(tpfc)Mn(NTstBu)(ArINTs)](4). Formation of this oxidant is rate limiting in catalysis. PMID:17177448

  2. Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2016-07-01

    This study systematically evaluated the effect of ferric iron on sulfate reduction to sulfide, feed digestion and fermentation, methane production, and populations of select ruminal microbes using in vitro rumen cultures. Ferric oxide (Fe2O3) and ferric citrate (C6H5FeO7) at six concentrations (0, 25, 50, 100, 150, and 200mg/L as Fe(3+)) were tested. Ferric iron decreased production of both H2S gas in culture headspace (up to 71.9%) and aqueous sulfide (up to 80.8%), without adversely affecting other fermentation parameters, with ferric citrate being more effective than ferric oxide. Total archaeal population was increased by ferric citrate, but methane production was not affected significantly. The population of sulfate reducing bacteria was affected differently by ferric oxide than by ferric citrate. The results of this study could guide future in vivo studies to develop effective solutions to abate sulfur-associated polioencephalomalacia in cattle fed high-sulfur diet such as dried distiller's grains with solubles. PMID:27043055

  3. Ferric saponite and serpentine in the nakhlite martian meteorites

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; Bridges, J. C.; Gurman, S. J.

    2014-07-01

    Transmission electron microscopy and Fe-K X-ray absorption spectroscopy have been used to determine structure and ferric content of the secondary phase mineral assemblages in the nakhlite martian meteorites, NWA 998, Lafayette, Nakhla, GV, Y 000593, Y 000749, MIL 03346, NWA 817, and NWA 5790. The secondary phases are a rapidly cooled, metastable assemblage that has preserved Mg# and Ca fractionation related to distance from the fluid source, for most of the nakhlites, though one, NWA 5790, appears not to have experienced a fluid pathway. All nine nakhlite samples have also been analysed with scanning electron microscopy, electron probe micro analysis, Bright Field high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction. By measuring the energy position of the Fe-K XANES 1s → 3d pre-edge transition centroid we calculate the ferric content of the minerals within the nakhlite meteorites. The crystalline phyllosilicates and amorphous silicate of the hydrothermal deposits filling the olivine fractures are found to have variable Fe3+/ΣFe values ranging from 0.4 to 0.9. In Lafayette, the central silicate gel parts of the veins are more ferric than the phyllosilicates around it, showing that the fluid became increasingly oxidised. The mesostasis of Lafayette and NWA 817 also have phyllosilicate, which have a higher ferric content than the olivine fracture deposits, with Fe3+/ΣFe values of up to 1.0. Further study, via TEM analyses, reveal the Lafayette and NWA 817 olivine phyllosilicates to have 2:1 T-O-T lattice structure with a the d001-spacing of 0.96 nm, whereas the Lafayette mesostasis phyllosilicates have 1:1 T-O structure with d001-spacings of 0.7 nm. Based on our analyses, the phyllosilicate found within the Lafayette olivine fractures is trioctahedral ferric saponite (Ca0.2K0.1)∑0.3(Mg2.6Fe2+1.3Fe3+1.7Mn0.1)∑5.7[(Si6.7AlIV0.9Fe3+0.4)∑8.0O20](OH)4·nH2O, and that found in the mesostasis fractures is an Fe

  4. Paracoccidioides spp. ferrous and ferric iron assimilation pathways

    PubMed Central

    Bailão, Elisa Flávia L. C.; Lima, Patrícia de Sousa; Silva-Bailão, Mirelle G.; Bailão, Alexandre M.; Fernandes, Gabriel da Rocha; Kosman, Daniel J.; Soares, Célia Maria de Almeida

    2015-01-01

    Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation. PMID:26441843

  5. Application of ferric sludge to immobilize leachable mercury in soils and concrete.

    PubMed

    Zhuang, J Ming; Walsh, T; Lam, T; Boulter, D

    2003-11-01

    A Hg-contaminated site in B.C. Province, Canada was caused by the previous operation of Hg-cell in chlor-alkali process for over 25 years. The soils and groundwater at the site are highly contaminated with mercury. An analysis of groundwater at the site has shown that most of the mercury is bonded with humic and fulvic acids (HFA) in colloidal form. The Hg-HFA colloids can be completely removed from the groundwater with ferric chloride treatment under optimized process conditions to form ferric sludge (FS), which is rendered non-leachable by standard TCLP (Toxicity Characteristic Leaching Procedure) test. The effluent discharged from a clarifier has achieved mercury levels of < 0.5 microkg l(-1). The studies of mercury adsorption characteristics of FS show it has low mercury leachability by TCLP, and great mercury adsorption capability. This feature is the basis for the application of FS to immobilization of leachable Hg-contaminants in solid wastes. Full-scale stabilization tests of Hg-contaminated soil have been carried out, and the time-based stability of the treated soil has been monitored by TCLP over a period of 60 days. All the results have shown a small variation in TCLP mercury levels within a range of 10-40 microg l(-1). Based on these results and with the approval of the B.C. Ministry of the Environment, 1850 tons of Hg-contaminated soils and 260 tons of Hg-contaminated concrete fines have been treated, stabilized with FS, and disposed in a non-hazardous waste disposal site. PMID:14733397

  6. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates.

    PubMed

    Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien

    2013-09-10

    The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms. PMID:23980143

  7. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates

    PubMed Central

    Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien

    2013-01-01

    The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms. PMID:23980143

  8. The secondary coordination sphere controlled reactivity of a ferric-superoxo heme: unexpected conversion to a ferric hydroperoxo intermediate by reaction with a high-spin ferrous heme.

    PubMed

    Nagaraju, Perumandla; Ohta, Takehiro; Liu, Jin-Gang; Ogura, Takashi; Naruta, Yoshinori

    2016-06-01

    A bio-inspired heme complex involving both a proton donor and an axial imidazole ligand reduces the activation energy for the formation of a ferric hydroperoxo intermediate. A high-spin ferrous heme is shown to be capable of reducing its superoxy species to generate a ferric hydroperoxo intermediate for the first time. PMID:27105471

  9. The crystal structures of the ferric and ferrous forms of the heme complex of HmuO, a heme oxygenase of Corynebacterium diphtheriae.

    PubMed

    Hirotsu, Shoko; Chu, Grace C; Unno, Masaki; Lee, Dong-Sun; Yoshida, Tadashi; Park, Sam-Yong; Shiro, Yoshitsugu; Ikeda-Saito, Masao

    2004-03-19

    Crystal structures of the ferric and ferrous heme complexes of HmuO, a 24-kDa heme oxygenase of Corynebacterium diphtheriae, have been refined to 1.4 and 1.5 A resolution, respectively. The HmuO structures show that the heme group is closely sandwiched between the proximal and distal helices. The imidazole group of His-20 is the proximal heme ligand, which closely eclipses the beta- and delta-meso axis of the porphyrin ring. A long range hydrogen bonding network is present, connecting the iron-bound water ligand to the solvent water molecule. This enables proton transfer from the solvent to the catalytic site, where the oxygen activation occurs. In comparison to the ferric complex, the proximal and distal helices move closer to the heme plane in the ferrous complex. Together with the kinked distal helix, this movement leaves only the alpha-meso carbon atom accessible to the iron-bound dioxygen. The heme pocket architecture is responsible for stabilization of the ferric hydroperoxo-active intermediate by preventing premature heterolytic O-O bond cleavage. This allows the enzyme to oxygenate selectively at the alpha-meso carbon in HmuO catalysis. PMID:14645223

  10. Organic matter mineralization with reduction of ferric iron in anaerobic sediments

    SciTech Connect

    Lovley, D.R.; Phillips, E.J.P.

    1986-04-01

    The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can out compete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.

  11. Organic matter mineralization with reduction of ferric iron in anaerobic sediments.

    PubMed

    Lovley, D R; Phillips, E J

    1986-04-01

    The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition. PMID:16347032

  12. Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments

    PubMed Central

    Lovley, Derek R.; Phillips, Elizabeth J. P.

    1986-01-01

    The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition. PMID:16347032

  13. Ferric citrate controls phosphorus and delivers iron in patients on dialysis.

    PubMed

    Lewis, Julia B; Sika, Mohammed; Koury, Mark J; Chuang, Peale; Schulman, Gerald; Smith, Mark T; Whittier, Frederick C; Linfert, Douglas R; Galphin, Claude M; Athreya, Balaji P; Nossuli, A Kaldun Kaldun; Chang, Ingrid J; Blumenthal, Samuel S; Manley, John; Zeig, Steven; Kant, Kotagal S; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P

    2015-02-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of -2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  14. Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis

    PubMed Central

    Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.

    2015-01-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  15. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  16. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation.

    PubMed

    Lai, Wenzhen; Shaik, Sason

    2011-04-13

    In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-à-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed. PMID:21413763

  17. Reaction mechanism for the ferric chloride leaching of sphalerite

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Henein, H.; Jin, Zuo-Mei

    1985-12-01

    Reaction mechanisms for the ferric chloride leaching of sphalerite are proposed based on data obtained in leaching and dual cell experiments presented in this work and in a previous study. The results from the leaching experiments show that at low concentrations the rate is proportional to [Fe3+]T 0.5 and [Cl-]T 0.43 but at higher concentrations the reaction order with respect to both [Fe3+]T and [Cl-]T decreases. Using dual cell experiments which allow the half cell reactions to be separated, increased rates are observed when NaCl is added to the anolyte and to the catholyte. The increase in rate is attributed to a direct, anodic electrochemical reaction of Cl- with the mineral. When NaCl is added only to the catholyte, a decrease in the rate is observed due to a decrease in the E 0 of the cathode which is attributed to the formation of ferric-chloro complexes. Several possible electrochemical mechanisms and mathematical models based on the Butler-Volmer relation are delineated, and of these, one model is selected which accounts for the experimentally observed changes in reaction order for both Fe3+ and Cl-. This analysis incorporates a charge transfer process for each ion and an adsorption step for ferric and chloride ions. The inhibiting effect of Fe2+ noted by previous investigators is also accounted for through a similar model which includes back reaction kinetics for Fe2+. The proposed models successfully provide a theoretical basis for describing the role of Cl-, Fe3+, and Fe2+ as well as their interrelationship in zinc sulfide leaching reactions. Possible applications of these results to chloride leaching systems involving other sulfides or complex sulfides are considered.

  18. Corynebactin and a Serine Trilactone Based Analogue-Chirality and Molecular Modeling of ferric Complexes

    SciTech Connect

    Bluhm, Martin E.; Hay, Benjamin P.; Kim, Sangoo S.; Dertz, Emily A.; Raymond, Kenneth N.

    2002-09-14

    The chirality of ferric siderophore complexes is a determinant for their cellular recognition and transport. Corynebactin (first isolated from a Gram-positive bacterium) contains L-threonine, unlike the closely related enterobactin, which contains L-serine. Also unlike enterobactin, ferric corynebactin is preferentially L at the iron center. Experimental (circular dichroism spectra and synthesis of a corynebactin/enterobactin hybrid) and theoretical (MM3 and density functional theory calculations) results explain ferric corynebactin's properties.

  19. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  20. Reaction of ferric heme proteins with nitrite and sulfite

    SciTech Connect

    Young, L.J.; Siegel, L.M.

    1988-04-19

    Optical and EPR spectroscopy of ferric heme proteins of the porphyrin, oxyporphyrin, and isobacteriochlorin classes has indicated that nitrite reacts with these proteins at the heme iron. Sulfite has been conclusively proven to react only with proteins containing the isobacteriochlorin macrocycle. Quantitative EPR spectroscopy of these nitrite and sulfite adducts showed that most contained a substantial quantity of undetectable heme. It is suggested that protein-induced autoreduction of nitrite (but not sulfite) and a strained and/or uniaxial g-tensor are the principal ways by which the silent state is produced.

  1. [Performance and Mechanism of Ferric Tannate in the Removal of Inorganic Nitrogen from Wastewater].

    PubMed

    Zhang, Rui-na; Li, Lin; Liu, Jun-xin

    2015-11-01

    A novel adsorbent material-ferric tannate was synthesized, and performances and mechanisms of NH4(+) -N, NO2(-) -N and NO3(-) -N were investigated via batch adsorption experiments. The results indicated that ferric tannate exhibited preferential adsorption for NH4(+) -N and NO2(-) -N. When the mass ratios of ferric tannate to NH4(+) -N and ferric tannate to NO2(-) -N were both 200, the removal efficiencies were both higher than 95%. The adsorption behaviors were analyzed with adsorption kinetic models, Langmuir and Freundlich isotherm adsorption models, and Weber-Morris equation. The results implied that NH4(+) -N and NO2(-) -N were adsorbed on the surface of ferric tannate in the forms of monolayer and multilayer, respectively. The pseudo-second order kinetic model was more suitable to describe the adsorption processes, and the external particle diffusion and surface adsorption played the key roles in the adsorption process. NH: -N could be combined with negative oxygen ions which distributed on the external surface of ferric tannate by the electrostatic interaction, whereas NO2(-) -N could be combined with ferric ions in ferric tannate by the electrostatic interaction and coordination. The present study provided scientific evidence for the application of ferric tannate as a potential adsorbent in the future. PMID:26911001

  2. Ion flotation and solvent extraction of ferric thiocyanate complexes

    SciTech Connect

    Jurkiewicz, K.

    1987-12-01

    The influence of thiocyanate and accompanying mineral acids concentration on the effectiveness of Fe(III) ion flotation, Fe(III) precipitation in cetyltrimethylammonium ferric-thiocyanate form (as sublate), and Fe(III) extraction using ethyl acetate was studied. The effectiveness of these processes improves with the extent of Fe(III) complexation by thiocyanates. In the presence of acids, flotation and precipitation are increased as follows: HClO/sub 4/ < HCl < HNO/sub 3/ < H/sub 2/SO/sub 4/. The position of H/sub 3/PO/sub 4/ in this series changes with changing thiocyanate concentration. Extraction effectiveness is increased in the series: H/sub 3/PO/sub 4/ < H/sub 2/SO/sub 4/ < HNO/sub 3/, HClO/sub 4/, HCl. The following points are discussed: (a) the influence of acid anions competing with thiocyanate anions in Fe(III) complexation; (b) the influence of the competition between acid anions and complex ferric-thiocyanate anions in sublate formation; (c) the influence of hydrogen ion concentration increase in thiocyanate medium on the results of Fe(III) flotation, precipitation, and extraction; and (d) the influence of anion affinity for a collector on the solution surface properties and on Fe(III) flotation.

  3. The leaching of galena in ferric sulfate media

    NASA Astrophysics Data System (ADS)

    Dutrizac, J. E.; Chen, T. T.

    1995-04-01

    The leaching of galena (PbS) in ferric sulfate media was investigated over the temperature range 55 °C to 95 °C and for various Fe(SO4)1.5, H2SO4, FeSO4, and MgSO4 concentrations. Relatively slow kinetics were consistently observed; in most instances, the 1-2/3α-(1-α)2/3 vs time relationship, indicative of a diffusion-controlled reaction, was closely obeyed. The diffusion-controlled kinetics were attributed to the formation of a tenacious layer of PbSO4 and S0 on the surface of the galena. The generation and morphology of the reaction products were systematically determined by scanning electron microscopy, and complex growth mechanisms were illustrated. The leaching rate increased rapidly with increasing temperature, and the apparent activation energy is 61.2 kJ/mol. The rate increases as the 0.5 power of the ferric ion concentration but is nearly independent of the concentration of the FeSO4 reaction product. The rate is insensitive to H2SO4 concentrations <0.1 M but increases at higher acid levels. The presence of neutral sulfates, such as MgSO4, decreases the leaching rate to a modest extent.

  4. The dissolution of galena in ferric chloride media

    NASA Astrophysics Data System (ADS)

    Dutrizac, J. E.

    1986-01-01

    The dissolution of galena (PbS) in ferric chloride-hydrochloric acid media has been investigated over the temperature range 28 to 95 °C and for alkali chloride concentrations from 0 to 4.0 M. Rapid parabolic kinetics were observed under all conditions, together with predominantly (>95 pet) elemental sulfur formation. The leaching rate decreased slightly with increasing FeCl3 concentrations in the range 0.1 to 2.0 M, and was essentially independent of the concentration of the FeCl2 reaction product. The rate was relatively insensitive to HCl concentrations <3.0 M, but increased systematically with increasing concentrations of alkali or alkaline earth chlorides. Most significantly, the leaching rate decreased sharply and linearly with increasing initial concentrations of PbCl2 in the ferric chloride leaching media containing either 0.0 or 3.0 M NaCl. Although the apparent activation energy was in the range 40 to 45 kJ/mol (˜10 kcal/mol), this value was reduced to 16 kJ/mol (3.5 kcal/mol) when the influence of the solubility of lead chloride on the reaction rate was taken into consideration. The experimental results are consistent with rate control by the outward diffusion of the PbCl2 reaction product through the solution trapped in pores in the constantly thickening elemental sulfur layer formed on the surface of the galena.

  5. Particulate and THM precursor removal with ferric chloride

    SciTech Connect

    Childress, A.E.; Vrijenhoek, E.M.; Elimelech, M.; Tanaka, T.S.; Beuhler, M.D.

    1999-11-01

    Pilot-scale experiments were performed to investigate the effectiveness of enhanced coagulation in removing particles and trihalomethane (THM) precursors from two surface source waters: California State Project water and Colorado River water. The removal of suspended particles and natural organic matter at various ferric chloride doses and coagulation pHs was assessed through source water and filter effluent measurements of turbidity, particle count. UV{sub 254}, TOC, and THM formation potential. Overall, it was found that optimal removal of particles and THM precursors by enhanced coagulation with ferric chloride is obtained at high coagulant doses and low pH conditions. Generally, turbidity removal is more efficient and head loss is more moderate at ambient pH compared with pH 5.5. Additionally, filter effluent particle counts were found to be consistent with residual turbidity data. The removal of THM precursors by enhanced coagulation is significantly enhanced at pH 5.5 compared with ambient pH. The reduction in THM formation potential is consistent with the trends observed for the THM precursor removal data. Furthermore, specific UV absorbance was used to estimate the proportion of humic substances in the raw waters. Enhanced coagulation was found to be less effective for the source water with the lower specific UV absorbance.

  6. Ferric chloride leach-electrolysis process for production of lead

    SciTech Connect

    Sandberg, R.G.; Wong, M.M.

    1980-01-01

    The U.S. Department of the Interior, Bureau of Mines, under a cost-sharing, cooperative research agreement with lead producers, is studying a process to eliminate sulfur oxide generation and to minimize lead emission in the production of lead. The new process consists of leaching lead sulfide concentrate with a ferric chloride-sodium chloride solution to produce lead chloride, and fused-salt electrolysis of lead chloride to produce lead metal and chlorine. The chlorine is used to regenerate ferric chloride in the leach solution. The study is being conducted in a process investigation unit which treats 750 lb of concentrate a day. This paper discusses the results of operation of the process investigation unit, data on lead monitoring, and the precautions employed to control lead levels in the workplace atmosphere. The monitoring data for the initial phase of the investigation show lead levels well within OSHA permissible exposure limits. Continued development is necessary before the process can be considered for implementation.

  7. Synthesis and characterization of akaganeite-like ferric oxyhydroxides

    SciTech Connect

    Linehan, J.C.; Darab, J.G.; Matson, D.W.; Chen, X.; Amonette, J.E.

    1997-08-01

    Iron-based powders have been used as catalytic and stoichiometric reactants in a variety of organic reactions and are receiving additional attention as ion exchange materials or once-through adsorbents for clean-up of toxic or radioactive waste streams. Recent efforts have been directed toward the design of iron-based products, in particular iron sulfides, capable of performing as hydrocracking catalysts for coal liquefaction and heavy crude or resid cracking. Here the authors present structural studies of new materials having akaganeite-like structures and of their use as hydrocracking catalyst precursors. Akaganeite, {beta}-FeOOH, a natural ferric oxyhydroxide mineral, has a structure containing tunnel-like cavities in which chloride ions reside. Analogs of akaganeite in which carbonate or sulfate groups replace the chloride ions have also been synthesized. Both akaganeite and its substituted analogs are known to be precursors for active hydrocracking catalysts. The authors present powder X-ray diffraction (XRD) and X-ray absorption fine-structure spectroscopy (XAFS) data confirming the synthesis of new ferric oxyhydroxides having structures similar to akaganeite, but contain molybdate and tungstate oxy-anions. They also present a new hydrothermal method to prepare this family of materials.

  8. Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia

    PubMed Central

    Friedrisch, João Ricardo; Cançado, Rodolfo Delfini

    2015-01-01

    Nutritional iron deficiency anemia is the most common deficiency disorder, affecting more than two billion people worldwide. Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia, but in many conditions, oral iron is less than ideal mainly because of gastrointestinal adverse events and the long course needed to treat the disease and replenish body iron stores. Intravenous iron compounds consist of an iron oxyhydroxide core, which is surrounded by a carbohydrate shell made of polymers such as dextran, sucrose or gluconate. The first iron product for intravenous use was the high molecular weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to use intravenous iron for the treatment of iron deficiency anemia over many years. Intravenous ferric carboxymaltose is a stable complex with the advantage of being non-dextran-containing and a very low immunogenic potential and therefore not predisposed to anaphylactic reactions. Its properties permit the administration of large doses (15 mg/kg; maximum of 1000 mg/infusion) in a single and rapid session (15-minute infusion) without the requirement of a test dose. The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, and safety profile of ferric carboxymaltose in the treatment of patients with iron deficiency anemia. PMID:26670403

  9. Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia.

    PubMed

    Friedrisch, João Ricardo; Cançado, Rodolfo Delfini

    2015-01-01

    Nutritional iron deficiency anemia is the most common deficiency disorder, affecting more than two billion people worldwide. Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia, but in many conditions, oral iron is less than ideal mainly because of gastrointestinal adverse events and the long course needed to treat the disease and replenish body iron stores. Intravenous iron compounds consist of an iron oxyhydroxide core, which is surrounded by a carbohydrate shell made of polymers such as dextran, sucrose or gluconate. The first iron product for intravenous use was the high molecular weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to use intravenous iron for the treatment of iron deficiency anemia over many years. Intravenous ferric carboxymaltose is a stable complex with the advantage of being non-dextran-containing and a very low immunogenic potential and therefore not predisposed to anaphylactic reactions. Its properties permit the administration of large doses (15mg/kg; maximum of 1000mg/infusion) in a single and rapid session (15-minute infusion) without the requirement of a test dose. The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, and safety profile of ferric carboxymaltose in the treatment of patients with iron deficiency anemia. PMID:26670403

  10. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals. PMID:26592037

  11. DFT studies of trans and cis influences in the homolysis of the Co-C bond in models of the alkylcobalamins.

    PubMed

    Govender, Penny P; Navizet, Isabelle; Perry, Christopher B; Marques, Helder M

    2013-04-11

    Density functional theory (DFT) calculations (BP86/6-31+G(d,p)) and an analysis of the electron density using Bader's quantum theory of atoms in molecules (QTAIM) are used to explore factors that influence the bond dissociation energy (BDE) of the Co-C bond in models for the cofactor in the coenzyme B12-dependent enzymes. An increase in the basicity of L in [L-Co(III)(corrin)-CH3](n+), L = NH3, NH2(-), and NH(2-), causes an elongation of the trans Co-C bond, but this does not necessarily cause the BDE to decrease. The bond between the metal and the N-donor of L, Co-Nα, usually becomes shorter after Co-C homolysis as the resulting five-coordinate product permits the metal ion to move toward L. This contraction increases with the basicity of L and stabilizes the five-coordinate product. The BDE is found to correlate well with two variables, the basicity of L and the difference in the Co-Nα bond length between the five-coordinate product and the six-coordinate ground state. When L is a naturally occurring amino acid or a model for its metal-coordinating side chain, the BDE is found to be moderately dependent on L and decrease with an increase in the softness of the donor atom of L. Sulfides produce a BDE < 30 kcal mol(-1), whereas neutral alcohol donors produce a stronger Co-C bond with a BDE of 34-35 kcal mol(-1). All other ligands are associated with a trans Co-C bond that is almost invariant in strength and with a BDE of 31-33 kcal mol(-1). Models of the type [H3N-Co(III)(N4)-CH3](n+), where N4 = bis(dimethylglyoxime), porphyrin, corrin, and corrole, show that the nature of the tetraaza equatorial ligand can change BDE values by over 8 kcal mol(-1); the BDE when N4 = bis(dimethylglyoxime) is significantly larger than for the other three systems, among which differences in BDE are quite small (2.4 kcal mol(-1)). The differential stabilization of the five-coordinate product by the shrinking of the Co-Nα bond (in corrin and in corrole) or its elongation (in

  12. Subsurface injection of dissolved ferric chloride to form a chemical barrier: Laboratory investigations

    SciTech Connect

    Morrison, S.J.; Spangler, R.R.; Morris, S.A.

    1996-01-01

    A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO{sub 3}), it may be viable to emplace a zone of amorphous ferric oxyhydroxide (an absorbent for U, Mo, and other inorganic contaminants) into calcite-bearing geologic units by injecting ferric chloride through wells. For a chemical barrier to be successful, it must remain permeable and must be immobile. This investigation monitored chemical compositions, hydraulic conductivity, and iron mobility in laboratory columns and in a two-dimensional tank to determine the viability of injecting ferric chloride to form an amorphous ferric oxyhydroxide chemical barrier. The authors introduced a ferric chloride solution (1,345 mg/1[0.024 m] Fe) to calcite-bearing alluvial gravel to form a chemical barrier of amorphous ferric oxyhydroxide, followed by solutions contaminated with U and Mo. The simulated chemical barriers decreased U and Mo concentrations to less than 0.05 mg/l (2.1 {times} 10{sup {minus}7} m) and 0.01 (1.0 {times} 10{sup {minus}7} m), respectively; however, the breakthrough front is spread out with concentrations increasing to more than regulatory guideline values sooner than predicted. The hydraulic conductivity of calcite-bearing alluvial gravel decreased substantially during ferric chloride introduction because of the formation of carbon dioxide but increased to within factors of 1 to 5 of the original value as synthetic ground water flowed through the system. Amorphous ferric oxyhydroxide that formed in these experiments remained immobile at flow rates exceeding those typical of ground water. These laboratory results, in conjunction with site-specific characterization data, can be used to design chemical barriers emplaced by injection of ferric chloride.

  13. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation.

    PubMed

    Karunakaran, Venugopal

    2015-12-21

    The excited-state dynamics of ferric cytochrome c (Cyt c), an important electron-transfer heme protein, in acidic to alkaline medium and in its unfolded form are investigated by using femtosecond pump-probe spectroscopy, exciting the heme and Tryptophan (Trp) to understand the electronic, vibrational, and conformational relaxation of the heme. At 390 nm excitation, the electronic relaxation of heme is found to be ≈150 fs at different pH values, increasing to 480 fs in the unfolded form. Multistep vibrational relaxation dynamics of the heme, including fast and slow processes, are observed at pH 7. However, in the unfolded form and at pH 2 and 11, fast phases of vibrational relaxation dominate, revealing the energy dissipation occurring through the covalent bond interaction between the heme and the nearest amino acids. A significant shortening of the excited-state lifetime of Trp is observed at various pH values at 280 nm excitation due to resonance energy transfer to the heme. The longer time constant (25 ps) observed in the unfolded form is attributed to a complete global conformational relaxation of Cyt c. PMID:26416435

  14. Institutional Bonding.

    ERIC Educational Resources Information Center

    Allard, M. June

    Institutional bonding was examined at a public, urban commuter college with exceptionally high attrition and visibly low morale. Changes in bonding and attrition were measured 6 years after a 2-year effort to develop school identity and student feelings of membership. It was found that a simple index of campus morale is provided by level of…

  15. Ferric iron budget of Kaapvaal cratonic mantle peridotite

    NASA Astrophysics Data System (ADS)

    Woodland, A.

    2012-04-01

    Oxidation fugacity plays an important role in many geochemical processes, such as partial melting and melt-rock interaction. How mantle peridotite responds during such processes is dependent on the amount of Fe2O3 present, since it occurs in much smaller quantities than Fe2+ and affects buffering capacity. This is particularly the case since redox reactions have been directly implicated in the rejuvenation and eventual breakup of cratons (e.g. Foley 2008, 2011). In addition, oxygen fugacity also influences the incorporation of OH in nominally anhydrous minerals, which can affect the mechanical integrity of cratonic blocks (Peslier et al. 2010). These issues are important for understanding the evolution of the upper mantle beneath the Kaapvaal craton. Canil and coworkers (1994, 1996) reported bulk ferric iron contents for 11 peridotites (10 garnet-bearing and 1 spinel-bearing) from the Kaapvaal. The purpose of this study is to build on their pioneering work to better assess the ferric iron budget of Kaapvaal cratonic mantle and to improve our understanding of how ferric iron is distributed within the peridotitic assemblage. Our data set includes more than 30 additional samples, predominantly garnet peridoites, from 7 localities in South Africa and Lesotho. Bulk Fe2O3 contents were determined by combining measured Fe3+ contents of individual minerals (by Mössbauer spectroscopy) with their respective modal proportion in each sample. Fe3+ contents of garnet and clinopyroxene reported in Woodland & Koch (2003), Lazarov et al. (2009) and Woodland (2009) were combined with new data for orthopyroxene (opx) and modal mineralogy to make this assessment. Opx has Fe3+/Fetot of 0.04-0.1 and Fe3+ contents are comparable between Opx and coexisting Cpx. Calculated whole rock Fe2O3 contents range from 0.02 to 0.29 wt % with contents systematically decreasing with increasing degrees of depletion (as indicated by increasing MgO and decreasing Al2O3 content). For a given MgO content

  16. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes.

    PubMed

    Ge, Qingchun; Fu, Fengjiang; Chung, Tai-Shung

    2014-07-01

    Cupric and ferric hydroacid complexes have proven their advantages as draw solutes in forward osmosis in terms of high water fluxes, negligible reverse solute fluxes and easy recovery (Ge and Chung, 2013. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications 49, 8471-8473.). In this study, cobaltous hydroacid complexes were explored as draw solutes and compared with the ferric hydroacid complex to study the factors influencing their FO performance. The solutions of the cobaltous complexes produce high osmotic pressures due to the presence of abundant hydrophilic groups. These solutes are able to dissociate and form a multi-charged anion and Na(+) cations in water. In addition, these complexes have expanded structures which lead to negligible reverse solute fluxes and provide relatively easy approaches in regeneration. These characteristics make the newly synthesized cobaltous complexes appropriate as draw solutes. The FO performance of the cobaltous and ferric-citric acid (Fe-CA) complexes were evaluated respectively through cellulose acetate membranes, thin-film composite membranes fabricated on polyethersulfone supports (referred as TFC-PES), and polybenzimidazole and PES dual-layer (referred as PBI/PES) hollow fiber membranes. Under the conditions of DI water as the feed and facing the support layer of TFC-PES FO membranes (PRO mode), draw solutions at 2.0 M produced relatively high water fluxes of 39-48 LMH (L m(-2) hr(-1)) with negligible reverse solute fluxes. A water flux of 17.4 LMH was achieved when model seawater of 3.5 wt.% NaCl replaced DI water as the feed and 2.0 M Fe-CA as the draw solution under the same conditions. The performance of these hydroacid complexes surpasses those of the synthetic draw solutes developed in recent years. This observation, along with the relatively easy regeneration, makes these complexes very promising as a novel class of draw solutes. PMID:24768702

  17. Functional analysis of the ferric uptake requlator gene, fur, in Xanthomonas vesicatoria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the f...

  18. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    SciTech Connect

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy; Panmand, Rajendra P.; Naik, Sonali D.; Mahajan, Satish M.; Chand, Ramesh; Kale, Bharat B.

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  19. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  20. Selective adsorption of phosphoproteins on gel-immobilized ferric chelate

    SciTech Connect

    Muszynska, G.; Andersson, L.; Porath, J.

    1986-11-04

    Ferric ions are very strongly adsorbed to iminodiacetic acid substituted agarose. This firmly immobilized complex acts as a selective immobilized metal affinity adsorbent for phosphoproteins. Chromatography based on this principle is illustrated by the adsorption-desorption behavior of egg yolk phosvitin before and after dephosphorylation as well as by the change in the chromatographic pattern before and after enzymic phosphorylation of selected histones. The strength of binding is dependent on the phosphate content. The difference is binding before and after phosphorylation of a single amino acid residue is demonstrated. Affinity elution can be accomplished by inclusion in the buffer of (1) phosphoserine or (2) a displacing metal ion such as Mg/sup 2 +/.

  1. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  2. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-01

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. PMID:26705889

  3. Synchrotron Characterization of Hydrogen and Ferric Iron in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Dyar, Melinda D.

    2003-01-01

    The hydrogen budget of the Martian interior is distributed among several phases: melts, hydrous minerals, and nominally anhydrous minerals like olivine, pyroxene, and garnet. All these phases are vulnerable to loss of hydrogen during shock, excavation and transport via the mechanism of dehydrogenation, in which the charge on the H protons is left behind as polarons on Fe atoms. Thus, both H and F(3x) must be analyzed in order to reconstruct hydrogen and oxygen fugacities on Mars. To date, SIMS data have elucidated D/H and H contents of hydrous phases in SNC meteorites, but anhydrous martian minerals have not been systematically examined for trace hydrogen. Ferric iron has been quantified using XANES in many marital phases, but integrated studies of both Fe(3x) and H on the same spots are really needed to address the H budget. Here, we measure and profile H and Fe(3x) abundances in and across individual grains of glass and silicates in Martian meteorites. We use the new technology of synchrotron microFI'lR spectroscopy to measure the hydrogen contents of hydrous and nominally anhydrous minerals in martian meteorites on 30-100 microns thick, doubly polished thin sections on spots down to 3 x 3 microns. Synchrotron microXANES was used to analyze Fe(3x) on the same scale, and complementary SIMS D/H data will be collected where possible, though at a slightly larger scale. Development of this combination of techniques is critical because future sample return missions will generate only microscopic samples for study. Results have been used to quantitatively assess the distribution of hydrogen and ferric iron among phases in the martian interior, which will better constrain the geodynamic processes of the interior, as well as the overall hydrogen and water budgets on Mars.

  4. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond. PMID:26910496

  5. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    NASA Astrophysics Data System (ADS)

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  6. Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties

    PubMed Central

    Zhao, Junhong; Zhang, Youjuan; Run, Zhen; Li, Pengwei; Guo, Qifei; Pang, Huan

    2015-01-01

    Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 μm forms with the “fractal growth rule” and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (TB) shows a dependence on size and shape, and a smaller size resulted in a lower TB. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance. PMID:26246988

  7. Iron fortification of flour with a complex ferric orthophosphate

    SciTech Connect

    Hallberg, L.; Rossander-Hulthen, L.; Gramatkovski, E.

    1989-07-01

    The unexpectedly low bioavailability in humans of elemental iron powder prompted us to search for other Fe compounds suitable for Fe fortification of flour that fulfill the two requirements of insolubility in water (due to high water content of flour) and good bioavailability in humans. Systematic studies of compatibility, solubility, and bioavailability led to this study of a microcrystalline complex ferric orthophosphate (CFOP), Fe/sub 3/H/sub 8/(NH/sub 4/)-(PO/sub 4/)6.6H/sub 2/O, a well-defined compound. This compound was labeled with /sup 59/Fe, and the native Fe in meals was labeled with /sup 55/FeCl3. The ratio of absorbed /sup 59/Fe to absorbed /sup 55/Fe is a direct measure of the fraction of CFOP that joins the nonheme Fe pool and that is made potentially available for absorption. The relative bioavailability of CFOP varied from 30% to 60% when labeled wheat rolls were served with different meals. The CFOP meets practical requirements of an Fe fortificant for flour well, with regard to both compatibility and bioavailability in humans.

  8. Ferric Leghemoglobin in Plant-Attached Leguminous Nodules.

    PubMed Central

    Lee, Kk.; Shearman, L. L.; Erickson, B. K.; Klucas, R. V.

    1995-01-01

    Leghemoglobin (Lb) is essential for nitrogen fixation by intact leguminous nodules. To determine whether ferric Lb (Lb3+) was detectable in nodules under normal or stressed conditions, we monitored the status of Lb in intact nodules attached to sweet clover (Melilotus officinalis) and soybean (Glycine max [L.] Merr.) roots exposed to various conditions. The effects of N2 and O2 streams and elevated nicotinate levels on root-attached nodules were tested to determine whether the spectrophotometric technique was showing the predicted responses of Lb. The soybean and sweet clover nodules' Lb spectra indicated predominantly ferrous Lb and LbO2 in young (34 d) plants. As the nodule aged beyond 45 d, it was possible to induce Lb3+ with a 100% O2 stream (15 min). At 65 d without inducement, the nodule Lb status indicated the presence of some Lb3+ along with ferrous Lb and oxyferrous Lb. Nicotinate and fluoride were used as ligands to identify Lb3+. Computer-calculated difference spectra were used to demonstrate the changes in Lb spectra under different conditions. Some conditions that increased absorbance in the 626 nm region (indicating Lb3+ accumulation) were root-fed ascorbate and dehydroascorbate, plant exposure to darkness, and nodule water immersion. PMID:12228593

  9. Localized corrosion of candidate container materials in ferric chloride solutions

    SciTech Connect

    Roy, A.K.; Fleming, D.L.; Lum, B.Y.

    1999-07-01

    Localized corrosion behavior of candidate inner- and outer-container materials of current nuclear waste package design was evaluated in aqueous solutions of various concentrations of ferric chloride (FeCl{sub 3}) at 30 C, 60 C and 90 C using the electrochemical cyclic potentiodynamic polarization (CPP) technique. Materials tested include A 516 carbon steel (UNS K01800), and high-performance UNS N08825, UNS N06985, UNS N06030, UNS N06455, UNS N06625, UNS N06022, and UNS R53400. A 516 steel suffered from severe general and localized attack including pitting and crevice corrosion. High-nickel UNS N08825 and N06985 also became susceptible to severe pitting and crevice corrosion. The extent of localized attack was less pronounced in UNS N06030 and N06455. UNS N06625 experienced severe surface degradation including general corrosion crevice corrosion and intergranular attack. In contrast, only slight crevice corrosion tendency was observed with nickel-base UNS N06022 in solutions containing higher concentrations of FeCl{sub 3} at 60 C and 90 C. UNS R53400 was immune to localized attack in all tested environments. The test solutions showed a significant amount of precipitated particles, especially at higher temperatures.

  10. Localized corrosion of candidate container materials in ferric chloride solutions

    SciTech Connect

    Fleming, D L; Lum, B Y; Roy, A K

    1998-10-01

    Localized corrosion behavior of candidate inner and outer container materials of currently-designed nuclear waste package was evaluated in aqueous solutions of various concentrations of ferric chloride (FeCl{sub 3}) at 30 C, 60 C and 90 C using the electrochemical cyclic potentiodynamic polarization (CPP) technique. Materials tested include A 5 16 carbon steel and high-performance alloys 825, G-3, G-30, C-4, 625. C-22, and Ti Gr-12. A 516 steel suffered from severe general and localized attack including pitting and crevice corrosion. High-nickel alloys 825 and G-3 also became susceptible to severe pitting and crevice corrosion. The extent of localized attack was less pronounced in alloys G-30 and C-4. Alloy 625 experienced severe surface degradation including general corrosion, crevice corrosion and intergranular attack. In contrast, only a slight crevice corrosion tendency was observed with nickel-base alloy C-22 in solutions containing higher concentrations of FeCl{sub 3} at 60 C and 90 C. Ti Gr-12 was immune to localized attack in all tested environments. The test solutions showed significant amount of precipitated particles during and after testing especially at higher temperatures.

  11. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  12. Arsenic sequestration by ferric iron plaque on cattail roots.

    PubMed

    Blute, Nicole Keon; Brabander, Daniel J; Hemond, Harold F; Sutton, Stephen R; Newville, Matthew G; Rivers, Mark L

    2004-11-15

    Typha latifolia (cattail) sequesters arsenic within predominantlyferric iron root coatings, thus decreasing mobility of this toxic element in wetland sediments. Element-specific XRF microtomographic imaging illustrated a high spatial correlation between iron and arsenic in root plaques, with little arsenic in the interior of the roots. XANES analyses demonstrated that the plaque was predominantly ferric iron and contained approximately 20% As(III) and 80% As(V), which is significant because the two oxidation states form species that differ in toxicity and mobility. For the first time, spatial distribution maps of As oxidation states were developed, indicating that As(III) and As(V) are both fairly heterogeneous throughoutthe plaque. Chemical extractions showed that As was strongly adsorbed in the plaque rather than coprecipitated. Iron and arsenic concentrations ranged from 0.03 to 0.8 g Fe g(-1) wet plaque and 30 to 1200 microg As g(-1) wet plaque, consistent with a mechanism of As adsorption onto Fe(III) oxyhydroxide plaque. Because this mechanism decreases the concentrations of both As(III) and As(V) in groundwater, we propose that disruption of vegetation could increase the concentrations of mobile arsenic. PMID:15573609

  13. Ferric chloride based downstream process for microalgae based biodiesel production.

    PubMed

    Seo, Yeong Hwan; Sung, Mina; Kim, Bohwa; Oh, You-Kwan; Kim, Dong Yeon; Han, Jong-In

    2015-04-01

    In this study, ferric chloride (FeCl3) was used to integrate downstream processes (harvesting, lipid extraction, and esterification). At concentration of 200 mg/L and at pH 3, FeCl3 exhibited an expected degree of coagulation and an increase in cell density of ten times (170 mg/10 mL). An iron-mediated oxidation reaction, Fenton-like reaction, was used to extract lipid from the harvested biomass, and efficiency of 80% was obtained with 0.5% H2O2 at 90 °C. The iron compound was also employed in the esterification step, and converted free fatty acids to fatty acid methyl esters under acidic conditions; thus, the fatal problem of saponification during esterification with alkaline catalysts was avoided, and esterification efficiency over 90% was obtained. This study clearly showed that FeCl3 in the harvesting process is beneficial in all downstream steps and have a potential to greatly reduce the production cost of microalgae-originated biodiesel. PMID:25647024

  14. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    USGS Publications Warehouse

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  15. Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels

    SciTech Connect

    Combes, J.M.; Manceau, A.; Calas, G. ); Bottero, J.Y. )

    1989-03-01

    X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond to the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.

  16. Nitric oxide binding to the cardiolipin complex of ferric cytochrome C.

    PubMed

    Silkstone, G; Kapetanaki, S M; Husu, I; Vos, M H; Wilson, M T

    2012-08-28

    Cardiolipin, a phospholipid specific to the mitochondrion, interacts with the small electron transfer heme protein cytochrome c through both electrostatic and hydrophobic interactions. Once in a complex with cardiolipin, cytochrome c has been shown to undergo a conformational change that leads to the rupture of the bond between the heme iron and the intrinsic sulfur ligand of a methionine residue and to enhance the peroxidatic properties of the protein considered important to its apoptotic activity. Here we report that the ferric cytochrome c/cardiolipin complex binds nitric oxide tightly through a multistep process in which the first step is the relatively slow displacement (5 s(-1)) from heme coordination of an intrinsic ligand that replaces methionine in the complex. Nanosecond photolysis of the nitrosyl adduct demonstrated that a fraction of the nitric oxide escapes from the heme pocket and subsequently recombines to the heme in second-order processes (k = 1.8 × 10(6) and 5.5 × 10(5) M(-1) s(-1)) that, under these conditions, were much faster than recombination of the intrinsic ligand with which they compete. Ultrafast (femtosecond) laser photolysis showed that the geminate recombination of nitric oxide to the heme occurred with time constants (τ = 22 and 72 ps) and that ~23% of the photolyzed nitric oxide escaped into the bulk phase. This high value for the escape fraction relative to other heme proteins indicates the open nature of the heme pocket in this complex. These results are summarized in a scheme and are discussed in terms of the possible modulation of the apoptotic activity of cytochrome c by nitric oxide. PMID:22803508

  17. Total X-ray scattering, EXAFS, and Mössbauer spectroscopy analyses of amorphous ferric arsenate and amorphous ferric phosphate

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Schröder, Christian; Marc Michel, F.

    2014-09-01

    Amorphous ferric arsenate (AFA, FeAsO4·xH2O) is an important As precipitate in a range of oxic As-rich environments, especially acidic sulfide-bearing mine wastes. Its structure has been proposed to consist of small polymers of single corner-sharing FeO6 octahedra (rFe-Fe ∼3.6 Å) to which arsenate is attached as a monodentate binuclear 2C complex (‘chain model’). Here, we analyzed the structure of AFA and analogously prepared amorphous ferric phosphates (AFP, FePO4·xH2O) by a combination of high-energy total X-ray scattering, Fe K-edge X-ray absorption spectroscopy, and 57Fe Mössbauer spectroscopy. Pair distribution function (PDF) analysis of total X-ray scattering data revealed that the coherently scattering domain size of AFA and AFP is about 8 Å. The PDFs of AFA lacked Fe-Fe pair correlations at r ∼3.6 Å indicative of single corner-sharing FeO6 octahedra, which strongly supports a local scorodite (FeAsO4·2H2O) structure. Likewise, the PDFs and Fe K-edge extended X-ray absorption fine structure data of AFP were consistent with a local strengite (FePO4·2H2O) structure of isolated FeO6 octahedra being corner-linked to PO4 tetrahedra (rFe-P = 3.25(1) Å). Mössbauer spectroscopy analyses of AFA and AFP indicated a strong superparamagnetism. While AFA only showed a weak onset of magnetic hyperfine splitting at 5 K, magnetic ordering of AFP was completely absent at this temperature. Mössbauer spectroscopy may thus offer a convenient way to identify and quantify AFA and AFP in mineral mixtures containing poorly crystalline Fe(III)-oxyhydroxides. In summary, our results imply a close structural relationship between AFA and AFP and suggest that these amorphous materials serve as templates for the formation of scorodite and strengite (phosphosiderite) in strongly acidic low-temperature environments.

  18. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  19. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-02101 Ford*, R. Rates of Hydrous Ferric Oxide Crystallization and the Influence on Coprecipitated Arsenate. Environmental Science & Technology 36 (11):2459-2463 (2002). EPA/600/J-02/240. Arsenate coprecipitated with hydrous fer...

  20. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water.

    PubMed

    Ren, Jing; Li, Nan; Li, Lei; An, Jing-Kun; Zhao, Lin; Ren, Nan-Qi

    2015-02-01

    Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. PMID:25446788

  1. An investigation of carbonaceous materials reducing ferric ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cooke, A. V.; Chilton, J. P.; Fray, D. J.

    1988-10-01

    By substituting the ferrous to ferric oxidation for anodic oxygen evolution in an electrowinning cell, it is possible to reduce the cell voltage by about 1 V. However, it is then necessary to reduce the ferric back to ferrous and, depending on the circumstances, acid needs to be cogenerated. Various possible reductants are discussed, and experiments are described on the use of lignite and other carbonaceous materials to reduce the ferric ion. It was found that lignite was able to reduce the ferric ion, in situ in the electrowinning cell, but that the rate of reduction was compatible only with a maximum current density of about 40 Am-2. The efficiency was increased by periodically interrupting the current flow.

  2. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    PubMed

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  3. Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1992-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  4. Effect of liposome-albumin coatings on ferric ion retention and release from chitosan beads.

    PubMed

    Chandy, T; Sharma, C P

    1996-01-01

    Ferric chloride was embedded in a chitosan matrix to develop a prolonged-release form. The in vitro release profiles of ferric ions from chitosan beads were monitored in 0.1 M Tris-HCl buffer, pH 7.4, using a UV spectrophotometer. The amount of drug release was much higher initially, followed by a constant slow release profile for a prolonged period. The initial burst release was substantially modified with liposome and albumin coatings. From scanning electron microscope studies, it appears that the ferric ions diffuse out slowly to the dissolution medium through the micropores of the chitosan matrix. Further, the liposome forms a phospholipid membrane layer in the pores of chitosan beads and encapsulates the ferric ions within their vesicles and controls the release profile. The chitosan beads loaded with ferric ions substantially inhibited the polyurethane-associated calcification, in an in vitro model system. The released ferric ions, appeared to alter the protein-surface binding and improved the biocompatibility of the matrix. The results propose the possibility of modifying the polymer matrix to obtain a desired controlled release of the drug for a prolonged period. PMID:8962949

  5. Ferric-Pyoverdine Recognition by Fpv Outer Membrane Proteins of Pseudomonas protegens Pf-5

    PubMed Central

    Hartney, Sierra L.; Mazurier, Sylvie; Girard, Maëva K.; Mehnaz, Samina; Davis, Edward W.; Gross, Harald; Lemanceau, Philippe

    2013-01-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  6. Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5.

    PubMed

    Hartney, Sierra L; Mazurier, Sylvie; Girard, Maëva K; Mehnaz, Samina; Davis, Edward W; Gross, Harald; Lemanceau, Philippe; Loper, Joyce E

    2013-02-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  7. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  8. Concentration of MS2 phage in river water by a combined ferric colloid adsorption and foam separation-based method, with MS2 phage leaching from ferric colloid.

    PubMed

    Suzuki, Yoshihiro; Kobayashi, Takumi; Nishiyama, Masateru; Kono, Tomoya

    2016-08-01

    The concentration of MS2 phage as a model RNA virus in river water using a combined ferric colloid adsorption and foam separation-based method was examined. The MS2 phage concentrations were determined by the plaque-forming unit (PFU) method and reverse transcription quantitative PCR (RT-qPCR) analysis. When ferric colloid adsorption was performed prior to foam separation, MS2 phage was effectively removed from river water and concentrated in the generated foam within 7 min. The removal efficiency was >99% at the optimum iron and casein concentrations of 5 mg-Fe/L and 10 mg/L, respectively. Furthermore, based on the analysis of the collected ferric colloid dissolved using deferoxamine, the MS2 concentration in the colloid-dissolved solution was 190-fold higher than that found in raw water according to RT-qPCR analysis. This is a novel method for concentrating RNA viruses to facilitate their detection in river water using coagulation and foam separation combined with chelate dissolution of ferric flocs. PMID:26868517

  9. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  10. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and

  11. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  12. Modeling ferrous ferric iron chemistry with application to martian surface geochemistry

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.; Catling, David C.

    2008-01-01

    The Mars Global Surveyor, Mars Exploration Rover, and Mars Express missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major recent mission findings are the presence of jarosite (a ferric sulfate salt), which requires formation from an acid-sulfate brine, and the occurrence of hematite and goethite on Mars. Recent ferric iron models have largely focused on 25 °C, which is a major limitation for models exploring the geochemical history of cold bodies such as Mars. Until recently, our work on low-temperature iron-bearing brines involved ferrous but not ferric iron, also obviously a limitation. The objectives of this work were to (1) add ferric iron chemistry to an existing ferrous iron model (FREZCHEM), (2) extend this ferrous/ferric iron geochemical model to lower temperatures (<0 °C), and (3) use the reformulated model to explore ferrous/ferric iron chemistries on Mars. The FREZCHEM model is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Ferric chloride and sulfate mineral parameterizations were based, in part, on experimental data. Ferric oxide/hydroxide mineral parameterizations were based exclusively on Gibbs free energy and enthalpy data. New iron parameterizations added 23 new ferrous/ferric minerals to the model for this Na-K-Mg-Ca-Fe(II)-Fe(III)-H-Cl-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-H 2O system. The model was used to develop paragenetic sequences for Rio Tinto waters on Earth and a hypothetical Martian brine derived from acid weathering of basaltic minerals. In general, model simulations were in agreement with field evidence on Earth and Mars in predicting precipitation of stable iron minerals such as jarosites, goethite, and hematite. In addition, paragenetic simulations for Mars suggest that other iron minerals such as

  13. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  14. Evaluation of ferric and ferrous iron therapies in women with iron deficiency anaemia.

    PubMed

    Berber, Ilhami; Diri, Halit; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kaya, Emin; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  15. Treatment of Iron Deficiency With Intravenous Ferric Carboxymaltose in General Practice: A Retrospective Database Study

    PubMed Central

    Kuster, Martina; Meli, Damian N.

    2015-01-01

    Background Iron deficiency is a frequent problem in general practice. Oral supplementation may in some cases not be well tolerated or not be efficient. Intravenous ferric carboxymaltose may be an alternative for iron supplementation in general practice. The aim of the present study was to analyze the indications for and the efficacy of intravenous ferric carboxymaltose in a primary care center. Methods We retropectively analyzed electronic data from 173 patients given intravenous ferric carboxymaltose between 2011 and 2013 in primary care center with 18 GPs in Bern, Switzerland. Results Of all patients, 34% were treated intravenously due to an inappropriate increase in ferritin levels after oral therapy, 24% had side effects from oral treatment, 10% were treated intravenously due to the patients explicit wish, and in 39% of all cases, no obvious reason of intravenous instead of oral treatment could be found. Intravenous ferric carboxymaltose led to a significant increase in hemoglobin and serum ferritin levels. Side effects of intravenous treatment were found in 2% of all cases. Conclusion We conclude that treatment with intravenous ferric carboxymaltose is an efficient alternative for patients with iron deficiency in general practice, when oral products are not well tolarated or effective. As treatment with iron carboxymaltose is more expensive and potentially dangerous due to side effects, the indication should be placed with (more) care. PMID:25368700

  16. Interaction of nanoparticles of ferric oxide with brain nerve terminals and blood platelets

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Sivko, Roman; Borisov, Arseniy

    2012-07-01

    Nanoparticles of ferric oxide are the components of Lunar and Martian soil simulants. The observations suggest that exposure to Lunar soli simulant can be deleterious to human physiology and the components of lunar soil may be internalized by lung epithelium and may overcome the blood-brain barrier. The study focused on the effects of nanoparticles of ferric oxide on the functional state of rat brain nerve terminals (synaptosomes) and rabbit blood platelets. Using photon correlation spectroscopy, we demonstrated the binding of nanoparticles of ferric oxide with nerve terminals and platelets. Nanoparticles did not depolarize the plasma membrane of nerve terminals and platelets that was shown by fluorimetry with potential-sensitive fluorescent dye rhodamine 6G. Using pH-sensitive fluorescent dye acridine orange, we revealed that the acidification of synaptic vesicles of nerve terminals and secretory granules of platelets did not change in the presence of nanoparticles. The initial velocity of uptake of excitatory neurotransmitter glutamate was not influenced by nanoparticles of ferric oxide, whereas glutamate binding to nerve terminals was altered. Thus, it was suggested that nanoparticles of ferric oxide might disturb glutamate transport in the mammalian CNS.

  17. Synthesis and characterization of γ-ferric oxide nanoparticles and their effect on Solanum lycopersicum.

    PubMed

    Pavani, Tambur; Rao, K Venkateswara; Chakra, Ch Shilpa; Prabhu, Y T

    2016-05-01

    γ-Ferric oxide nanoparticles are synthesized through modern and facile ayurvedic route followed by normal and special purification steps, which are both cost-effective and eco-friendly. These synthesized γ-ferric oxide nanoparticles were applied on Solanum lycopersicum to search the effect on chlorophyll content. This process involves multiple filtration and calcination steps. The synthesized samples were analyzed by X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and particle size analysis (PSA) to identify the purification step's influence on the structural, optical, morphological, magnetic, and particle size properties of ferric oxide nanoparticles (γ-phase). X-ray diffraction has revealed that ferric oxide nanoparticles have rhombohedral structure of α-phase (hematite) in initial purification process later transformed into cubic structure γ-phase (maghemite). UV-vis spectroscopy analysis has clearly shown that by repetitive purification steps, λmax has increased from 230 to 340 nm. TEM result has an intercorrelation with XRD results. γ-Ferric oxide nanoparticles were tested on Solanum lycopersicum (tomato seeds). The changes in the contents of chlorophyll a, chlorophyll b, and total carotene were studied using spectral measurements at two different dosages-0.5 and 2 M. As a result, at 0.5-M concentration, magnetic nanoparticles exhibit fruitful results by increasing the crop yield and being more resistant to chlorosis. PMID:26296507

  18. Basics of Fidelity Bonding.

    ERIC Educational Resources Information Center

    Kahn, Steven P.

    Fidelity bonds are important for an agency to hold to protect itself against any financial loss that can result from dishonest acts by its employees. Three types of fidelity bonds are available to an agency: (1) public official bonds; (2) dishonesty bonds; and (3) faithful performance bonds. Public official bonds are required by state law to be…

  19. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    PubMed

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  20. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation

    PubMed Central

    Kosman, Daniel J.

    2012-01-01

    Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron’s aqueous chemistry, occurs as ‘rust’, insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H2O)6]3+. Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting FeII which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the ‘rusting out’ of FeIII and the ROS-generating autoxidation of FeII so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology. PMID:23264695

  1. Juvenile ferric iron prevents microbiota dysbiosis and colitis in adult rodents

    PubMed Central

    Ettreiki, Chourouk; Gadonna-Widehem, Pascale; Mangin, Irène; Coëffier, Moïse; Delayre-Orthez, Carine; Anton, Pauline M

    2012-01-01

    AIM: To assess whether juvenile chronic ferric iron ingestion limit colitis and dysbiosis at adulthood in rats and mice. METHODS: Two sets of experiments were designed. In the first set, recently weaned mice were either orally administered ferrous (Fe2+) iron salt or ferric (Fe3+) microencapsulated iron for 6 wk. The last week of experiments trinitrobenzene sulfonic acid (TNBS) colitis was induced. In the second set, juvenile rats received the microencapsulated ferric iron for 6 wk and were also submitted to TNBS colitis during the last week of experiments. In both sets of experiments, animals were sacrificed 7 d after TNBS instillation. Severity of the inflammation was assessed by scoring macroscopic lesions and quantifying colonic myeloperoxidase (MPO) activity. Alteration of the microflora profile was estimated using quantitative polymerase chain reaction (qPCR) by measuring the evolution of total caecal microflora, Bacteroidetes, Firmicutes and enterobacteria. RESULTS: Neither ferrous nor ferric iron daily exposures at the juvenile period result in any effect in control animals at adulthood although ferrous iron repeated administration in infancy limited weight gain. Ferrous iron was unable to limit the experimental colitis (1.71 ± 0.27 MPO U/mg protein vs 2.47 ± 0.22 MPO U/mg protein in colitic mice). In contrast, ferric iron significantly prevented the increase of MPO activity (1.64 ± 0.14 MPO U/mg protein) in TNBS-induced colitis. Moreover, this positive effect was observed at both the doses of ferric iron used (75 and 150 mg/kg per day po - 6 wk). In the study we also compared, in both rats and mice, the consequences of chronic repeated low level exposure to ferric iron (75 mg/kg per day po - 6 wk) on TNBS-induced colitis and its related dysbiosis. We confirmed that ferric iron limited the TNBS-induced increase of MPO activity in both the rodent species. Furthermore, we assessed the ferric iron incidence on TNBS-induced intestinal microbiota dysbiosis

  2. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.

    PubMed

    Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R

    2013-06-01

    The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants. PMID:23411339

  3. In vivo NMR study of yeast fermentative metabolism in the presence of ferric irons.

    PubMed

    Ricci, Maso; Martini, Silvia; Bonechi, Claudia; Braconi, Daniela; Santucci, Annalisa; Rossi, Claudio

    2011-03-01

    Mathematical modelling analysis of experimental data, obtained with in vivo NMR spectroscopy and 13C-labelled substrates, allowed us to describe how the fermentative metabolism in Saccharomyces cerevisiae, taken as eukaryotic cell model, is influenced by stress factors. Experiments on cellular cultures subject to increasing concentrations of ferric ions were conducted in order to study the effect of oxidative stress on the dynamics of the fermentative process. The developed mathematical model was able to simulate the cellular activity, the metabolic yield and the main metabolic fluxes occurring during fermentation and to describe how these are modulated by the presence of ferric ions. PMID:21451251

  4. Elasticity of Single-Crystal Phase D across the Spin Transitions of Ferrous and Ferric Iron in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Wu, X.; Lin, J. F.; Liu, J.; Mao, Z.; Guo, X.; Yoshino, T.; McCammon, C. A.; Xiao, Y.; Prakapenka, V.

    2014-12-01

    Phase D, the densest hydrous magnesium silicate synthesized at the Earth's mantle P-T conditions thus far, has been proposed to be a potential candidate for transportation of H2O into the lower mantle by subduction of the hydrated oceanic lithosphere. A certain amount of iron, the most abundant transition metal element in the Earth's interior, is expected to be incorporated into the phase D. Here we synthesized high-quality single-crystal Fe,Al-bearing Phase D (Mg0.89Fe0.11Al0.37Si1.55H2.65O6, ~13.3wt% H2O) with grain sizes of ~200 micron using the Kawai multianvil apparatus at 21 GPa and 1200 °C at the Institute for Study of the Earth's Interior, University of Oakayama, Japan. Conventional Mössbauer results indicate that the sample contains both ferrous and ferric iron that occupy the octahedral sites of the hexagonal structure. In situ high-pressure single crystal XRD and NFS experiments were performed up to megabar pressures at 13IDD beamline (GSECARS) and 16IDD beamline (HPCAT) of the Advanced Photon Source, respectively. Both experimental results clearly show that both Fe2+ and Fe3+ undergo a HS-LS transition at high pressures. High-resolution XRD results further indicate an abnormal compression behavior at approximately 37 GPa that can be linked with the previously proposed hydrogen bond symmetrization. Elasticity of phase D has a marked influence by the two-step spin transitions of both Fe2+ and Fe3+ and the hydrogen bond symmetrization, presenting in the seismic wave model, which is of implication for our understanding of the deep-Earth geophysics and geochemistry especially along the subducted slabs.

  5. TRANSFORMATION AND MOBILIZATION OF ARSENIC ADSORBED ON GRANULAR FERRIC HYDROXIDE UNDER BIO-REDUCTIVE CONDITIONS

    EPA Science Inventory

    Biotic and abiotic reduction of arsenic (V) and iron (III) influences the partioning of arsenic (As) between the solid and aqueous phases in soils, sediments and wastes. In this study, laboratory experiments on arsenic adsorbed on granular ferric hydroxide (GFH) was performed to ...

  6. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...

  7. Complexation of ferric oxide particles with pectins of ordered and random distribution of charged units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complexation between ferric oxide particles and pectins with degree of methylation 50%, but having blockwise (ordered) or random arrangement of free carboxyl groups, are investigated by electric light scattering and electrophoresis. The influence of charge distribution in pectin chain on the electri...

  8. A Ferric-Peroxo Intermediate in the Oxidation of Heme by IsdI.

    PubMed

    Takayama, Shin-Ichi J; Loutet, Slade A; Mauk, A Grant; Murphy, Michael E P

    2015-04-28

    The canonical heme oxygenases (HOs) catalyze heme oxidation via a heme-bound hydroperoxo intermediate that is stabilized by a water cluster at the active site of the enzyme. In contrast, the hydrophobic active site of IsdI, a heme-degrading enzyme from Staphylococcus aureus, lacks a water cluster and is expected to oxidize heme by an alternative mechanism. Reaction of the IsdI-heme complex with either H2O2 or m-chloroperoxybenzoic acid fails to produce a specific oxidized heme iron intermediate, suggesting that ferric-hydroperoxo or ferryl derivatives of IsdI are not involved in the catalytic mechanism of this enzyme. IsdI lacks a proton-donating group in the distal heme pocket, so the possible involvement of a ferric-peroxo intermediate has been evaluated. Density functional theory (DFT) calculations indicate that heme oxidation involving a ferric-peroxo intermediate is energetically accessible, whereas the energy barrier for a reaction involving a ferric-hydroperoxo intermediate is too great in the absence of a proton donor. We propose that IsdI catalyzes heme oxidation through nucleophilic attack by the heme-bound peroxo species. This proposal is consistent with our previous demonstration by nuclear magnetic resonance spectroscopy that heme ruffling increases the susceptibility of the meso-carbon of heme to nucleophilic attack. PMID:25853501

  9. Ferric reductase activity and PsFRO1 sequence variation in pisum sps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological studies in pea (Pisum sativum) suggest that the reduction of iron (Fe) is the rate-limiting physiological process in Fe acquisition by dicotyledonous plants. Previous molecular work suggests that ferric reductase activity is regulated at both the transcriptional and post-translational ...

  10. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    EPA Science Inventory

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...