Science.gov

Sample records for ferrite nanoparticles prepared

  1. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Jain, Hardik; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2016-05-01

    A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  2. The preparation of MnZn-ferrite nanoparticles in water CTAB hexanol microemulsions

    NASA Astrophysics Data System (ADS)

    Makovec, D.; Kosak, A.; Drofenik, M.

    2004-04-01

    Magnetic MnZn-ferrite nanoparticles with a narrow size distribution were prepared in water-CTAB-hexanol microemulsions. The region of microemulsion stability in the system was determined, using the titration method, as a function of the temperature and of the type and concentration of solutes in the aqueous phase. The nanoparticles were prepared in a two-step process: the precipitation of the corresponding hydroxides, followed by oxidation of the Fe2+. The particle size was controlled by the composition of the microemulsion and the concentration of the reactants (the corresponding sulfates and a precipitation agent, tetramethyl ammonium hydroxide) in the aqueous solution of the microemulsion. The specific magnetization of the nanoparticles (measured at 13 kOe) was found to depend mainly on particle size: ranging from 1.3 emu g-1 for particles of approximately 2 nm in size to 7.3 emu g-1 for particles of approximately 5 nm in size.

  3. Magnetic studies of magnesium ferrite nanoparticles prepared by sol-gel technique

    SciTech Connect

    Argish, V.; Chithra, M.; Anumol, C. N.; Sahoo, S. C.; Sahu, B. N.

    2015-06-24

    Mg-ferrite nanoparticles were prepared by sol-gel technique and were annealed at different temperatures in air for 4 hours. Structural studies by X-ray diffraction confirmed the Mg-ferrite phasein all the samples annealed up to 600°C. Traces of α-Fe{sub 2}O{sub 3} were found for the sample annealed at higher temperature of 750°C.Grain size was found to be increasedfrom 13nm to 37nm with the increase in the annealing temperature. These samples showed super-paramagentic behavior at 300K where as at 60K they showed ferrimagnetic behavior.For the as prepared sample the magnetization value of 21emu/g was observed at 300K. The highest magnetization value of 24 emu/g which is ∼ 90% of the bulk value of Mg-ferrite, was observed at 300K for the sample annealed at 750°C.The observed magnetic behavior of these nanoparticles may be understood on the basis of nanosize grains, increase inrandom anisotropy and reduced thermal effects at low temperature.

  4. Magnetic Properties of Cobalt-Ferrite Nanoparticles Prepared by a Sol-Gel Synthesis Technique

    NASA Astrophysics Data System (ADS)

    Ekiert, Thomas; Unruh, Karl; Carpenter, E.; Pettigrew, K.; Long, J.; Rolison, D.

    2007-03-01

    Cobalt-ferrite nanoparticles have been prepared as highly porous aerogels using a sol-gel technique and characterized by XRD, TEM, and nitrogen-sorption porosimetry measurements. The XRD patterns for calcined Co-ferrite aerogels corresponded to a cubic structure with a lattice parameter near that of bulk Co-ferrite and a particle size of about 6 nm. TEM images indicated a similar particle size and a morphology similar to that of silica aerogels. The magnetic properties of these materials have been studied from 5 K to 340 K. Hysteresis loop measurements indicated that the coercivity and saturation magnetization of these materials evolves from nearly 19 kOe and 56 emu/g at 5 K to less than 10 Oe and 40 emu/g at 340 K. ZFC magnetization curves displayed a broad maximum that smoothly varied between about 300 K in an applied field of 100 Oe to about 180 K in a 10 kOe field. These measurements have been interpreted in terms of a distribution of effective particle sizes arising from a distribution in interparticle interactions.

  5. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  6. Magnetocaloric effect in ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Gass, J.; Rebar, D. J.; Srinath, S.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2006-12-01

    A comparative study of the magnetocaloric effect (MCE) is reported in two different types of chemically synthesized magnetic nanoparticle systems—cobalt ferrite and manganese zinc ferrite with mean size around 5 and 15 nm, respectively. While CoFe 2O 4 nanoparticles were synthesized using co-precipitation, the Mn 0.68Zn 0.25Fe 2.07O 4 (MZFO) nanoparticles were prepared by reverse micelle technique using AOT as surfactant. Our results indicate that the change in entropy with the change in applied magnetic field (d S/d H) is reasonably large for this class of nanoparticles and has a wide distribution over a broad temperature range covering the region above and below the blocking temperature. The maximum entropy change is influenced by the particle size, overall distribution in anisotropy and magnetic moments.

  7. Magnetic studies of nickel ferrite nanoparticles prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Anumol, C. N.; Chithra, M.; Sahoo, Subasa C.

    2016-05-01

    Ni-ferrite nanoparticles were synthesized by sol-gel technique by varying the solvent concentration. X-ray diffraction studies confirmed the phase purity in the samples. The lattice constant and grain size were found to be in the range of 0.833-0.834 nm and 14-26 nm respectively. There was no systematic variation in magnetization value with the solvent concentration and grain size. The highest magnetization, remanence and coercivity values of 60 emu/g, 12 emu/g and 180 Oe respectively were observed at 300K in the present study for the sample prepared in 75ml of solvent. The observed magnetization value is 20% higher than the bulk value of 50 emu/g. The magnetization, coercivity and remanence values were enhanced at 60K compared to those at 300K. The observed high magnetization value in the nanoparticles can be explained on the basis of modified cation distribution in the lattice sites. The enhanced magnetic properties at 60K may be understood due to the reduced thermal fluctuation and increased anisotropy at low temperature.

  8. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. PMID:27514793

  9. Preparation of cobalt ferrite nanoparticles via a novel solvothermal approach using divalent iron salt as precursors

    SciTech Connect

    Ma, Jie; Green Bio- and Eco-Chem. Eng. Lab, University of Shanghai for Science and Technology ; Zhao, Jiantao; Li, Wenlie; Zhang, Shuping; Green Bio- and Eco-Chem. Eng. Lab, University of Shanghai for Science and Technology ; Tian, Zhenran; Basov, Sergey

    2013-02-15

    Graphical abstract: CoFe{sub 2}O{sub 4} nanoparticles are obtained via solvothermal approach using Fe{sup 2+} salt as iron resource. The magnetic properties can be modified by some additives. Display Omitted Highlights: ► CoFe{sub 2}O{sub 4} nanoparticles are synthesized by a facile one-step novel solvothermal method. ► The system is firstly performed in water–glycol mixture solvent with an ordinary air surrounding. ► The ferrous ions are used as iron source without adding oxidant. ► It is firstly found the low-coercivity CoFe{sub 2}O{sub 4} nanoparticles can be obtained with the help of some additives in the synthesis system. -- Abstract: Cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles are synthesized by a facile novel solvothermal method. The reactions are firstly performed in water–glycol system and Fe{sup 2+} salt is used as iron source without oxidant help. Some factors influenced the reactions, including temperature, reaction time, additives, are investigated. The samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), respectively. The magnetic properties of some samples are detected by vibrating sample magnetometry techniques (VSM). It is firstly found that the magnetism of cobalt ferrites nanomaterials can be modified by some additives. The coercivity of CoFe{sub 2}O{sub 4} nanoparticles evidently decreases from 600 to 50 Oe in the presence of PEG-4000 in the system.

  10. Preparation and characterization of MnZn-ferrite nanoparticles using reverse micelles

    NASA Astrophysics Data System (ADS)

    Morrison, S. A.; Cahill, C. L.; Carpenter, E. E.; Calvin, S.; Harris, V. G.

    2003-05-01

    Research on manganese zinc ferrites (MZFO) has undergone a renewal in recent years as advances in synthetic techniques promise smaller grain sizes and corresponding changes in material properties. Current techniques for nanoscale synthesis of ferrites, however, produce a broad distribution of particle sizes, thus limiting the density of compacted materials, and consequently altering coercivity [C. Rath et al., J. Appl. Phys. 91, 2211 (2002)]. To minimize porosity, bulk materials need to be pressed from uniform particles. Wet chemical synthesis performed in reverse micelles, in which pools of water are encased by surfactant molecules in an excess volume of oil, provides the greatest control over size and morphology. During synthesis, surfactant molecules keep particles separated and restrict particle growth. This affords greater control over the size and shape of the particles grown in the micelles and commonly results in highly uniform morphologies [J. P. Chen et al., J. Appl. Phys. 76, 6316 (1994); C. Liu et al., J. Phys. Chem. B. 104, 1141 (2000)]. As a first step, it is necessary to produce pure phase, nanosized ferrite particles, therefore in this study, analysis of the powder of a sample prepared by a reverse micelle technique is compared to a sample prepared by a traditional ceramic method. Future studies will focus on the porosity and subsequent material properties of compacted forms of the pure phase samples.

  11. Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling.

    PubMed

    Chen, Ding; Li, Dian-yi; Zhang, Ying-zhe; Kang, Zhi-tao

    2013-11-01

    Magnesium ferrite, MgFe2O4 nanoparticles with high saturation magnetization were successfully synthesized using ultrasonic wave-assisted ball milling. In this study, the raw materials were 4MgCO3·Mg(OH)2·5H2O and Fe2O3 powders and the grinding media was stainless steel ball. The average particle diameter of the product MgFe2O4 powders was 20 nm and the saturation magnetization of them reached 54.8 emu/g. The different results of aqueous solution ball milling with and without ultrasonic wave revealed that it was the coupling effect of ultrasonic wave and mechanical force that played an important role during the synthesis of MgFe2O4. In addition, the effect of the frequency of the ultrasonic wave on the ball milling process was investigated. PMID:23622867

  12. Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol-gel reaction

    NASA Astrophysics Data System (ADS)

    Hussein, Shaban I.; Elkady, Ashraf S.; Rashad, M. M.; Mostafa, A. G.; Megahid, R. M.

    2015-04-01

    Magnesium ferrite (MgFe2O4) nanoparticles have been prepared, for the first time, by ethylene diamine tetraacetic acid (EDTA)-based sol-gel combustion method. The prepared ferrite system is calcined at 400, 500 and 600 °C. Thermo-gravimetric and differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometry (VSM) were applied for elucidating the structural and magnetic properties of the prepared system. XRD patterns revealed that the prepared system have two spinel MgFe2O4 structures, namely cubic and tetragonal phases that are dependent on calcination temperature (Tc). The crystallite sizes varied from 8.933 to 41.583 nm, and from 1.379 to 292.565 nm for the cubic and tetragonal phases respectively depending on Tc. The deduced lattice parameters for the cubic and (tetragonal) systems are a=8.368, 8.365 and 8.377 and (a=7.011, 5.922, 5.908 and c=6.622, 8.456, 8.364) Å at Tc=400, 500 and 600 °C respectively. While the cation distribution of the cubic phase is found to be mixed spinel and Tc-dependent, it is an inverse spinel in the tetragonal phase where the Fe3+ ions occupy both the tetrahedral A- and octahedral B-sites in almost equal amount; the Mg2+ ions are found to occupy only the B-sites. The HRTEM and selected-area electron diffraction (SAED) revealed the detailed morphology of the nanoparticles, and confirmed their crystalline spinel structure. VSM indicated the existence of an appreciable fraction of superparamagnetic particles at room temperature, with pure superparamagnetic behavior observed for samples calcined at 400 °C. Besides, the magnetic properties are found to change by thermal treatment as a result of the varied phase concentration, cation distribution and lattice parameters. Thus, the new synthesis route used in this study by applying EDTA as an organic precursor for preparing MgFe2O4 nanoparticles at

  13. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles - Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    SciTech Connect

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-02

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10{sup -14}-10{sup -15}/cm{sup 3}) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  14. 4 °C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Hasegawa, M.; Ogura, Y.; Nishi, T.; Kataoka, K.; Handa, H.; Abe, M.

    2002-05-01

    Trypsin, a proteolytic enzyme or a protein, was immobilized onto the surfaces of ferrite (a Fe3O4-γFe2O3 mixed solution) fine particles, ˜8 nm in size, during the process in which the particles were synthesized from an aqueous solution. The process was performed in the open air at a temperature as low as 4 °C and on near-neutral condition of pH⩽9, which is compatible with most of the bioactive molecules as well as trypsin. Therefore this technique is advantageous for preparing magnetite particles having biomolecules immobilized on their surfaces, which will be used for biomedical applications utilizing magnetic separation technique.

  15. Preparation of single-crystal copper ferrite nanorods and nanodisks

    SciTech Connect

    Du Jimin; Liu Zhimin . E-mail: liuzm@iccas.ac.cn; Wu Weize; Li Zhonghao; Han Buxing . E-mail: hanbx@iccas.ac.cn; Huang Ying

    2005-06-15

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  16. Lithium ferrite nanoparticles for ferrofluid applications

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, V. K.; Prakash, Om; Pant, R. P.; Islam, Mohammad

    2002-11-01

    Nanoparticles of Lithium ferrite in the particle size range of 10 nm have been prepared by a citrate precursor method at a relatively low temperature of 200°C. The particles show characteristic infra red (IR) spectrum of lithium ferrite and broadened X-ray diffraction (XRD) patterns typical of the nanoparticle nature. The sample decomposed at 200°C has the β-LiFe 5O 8 type (a disordered type of spinel) structure which on annealing at 350°C transforms to the α-LiFe 5O 8 type (an ordered type spinel) structure as shown by both IR spectra and XRD studies. Magnetization curves indicate a particle size distribution consisting of both ferromagnetic particles and a superparamagnetic fraction. With 4 ΠMs values of 2000 G these particles could be useful for applications in certain low magnetization ferrofluids.

  17. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    NASA Astrophysics Data System (ADS)

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  18. Magnetocaloric effect in ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rebar, D.

    2005-03-01

    Miniaturization of the electronic devices for space, military and consumer applications requires cooling devices to be fabricated on a chip for power efficient, noise-free operations. Refrigeration based on the adiabatic-demagnetization has been used for several decades for cooling down to sub-kelvin temperatures. Superparamagnetic particles also hold tremendous potential towards this application. We have studied magnetocaloric effect (MCE) properties in chemically synthesized ferrite nanoparticles over a broad range in temperature and magnetic fields. Nanoparticles investigated include Fe3O4 (average size = 8 nm, synthesized using co-precipitation method), MnZnFe2O4 (average size = 15 nm, synthesized using reverse-micelle technique) and CoFe2O4 (average size 8 nm, synthesized using pyrolectic technique). The magnetic entropy change was calculated by applying Maxwell's relations to magnetization vs magnetic field curves at various temperatures. Our results indicate that the single-domain particles in their superparamagnetic state show a considerable entropy change near the blocking temperature. The influence of interactions on MCE effect will also be discussed. Work supported by NSF through Grant No. CTS-0408933

  19. Study of DNA interaction with cobalt ferrite nanoparticles.

    PubMed

    Pershina, A G; Sazonov, A E; Novikov, D V; Knyazev, A S; Izaak, T I; Itin, V I; Naiden, E P; Magaeva, A A; Terechova, O G

    2011-03-01

    Interaction of cobalt ferrite nanopowder and nucleic acid was investigated. Superparamagnetic cobalt ferrite nanoparticles (6-12 nm) were prepared by mechanochemical synthesis. Structure of the nanopowder was characterized using X-ray diffraction. It was shown that cobalt ferrite nanoparticles were associated with ssDNA and dsDNA in Tris-buffer resulting in bionanocomposite formation with mass weight relation nanoparticles: DNA 1:(0.083 +/- 0.003) and 1:(0.075 +/- 0.003) respectively. The mechanism of interaction between a DNA and cobalt ferrite nanoparticles was considered basing on the whole set of obtained data: FTIR-spectroscopy, analyzing desorption of DNA from the surface of the particles while changing the chemical content of the medium, and on the modeling interaction of specific biomolecule fragments with surface of a inorganic material. It was supposed that the linkage was based on coordination interaction of the phosphate groups and oxygen atoms heterocyclic bases of DNA with metal ions on the particle surface. These data can be used to design specific magnetic DNA-nanoparticles hybrid structures. PMID:21449452

  20. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    PubMed

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers. PMID:25331121

  1. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    PubMed

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content. PMID:27398508

  2. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  3. Ferrite nanoparticles for future heart diagnostics

    NASA Astrophysics Data System (ADS)

    Hong, Nguyen Hoa; Raghavender, A. T.; Ciftja, O.; Phan, M.-H.; Stojak, K.; Srikanth, H.; Zhang, Yin Hua

    2013-08-01

    Normally, CoFe2O4 has been known as ferromagnetic ferrite with a quite large magnetic moment. However, since we aim to inject the particles into the human body, we are also interested in ZnFe2O4 because in the human body, Fe and Zn exist, so that adding ZnFe2O4 is safer. In both cases, the nanoparticles are coated by silica in order to get rid of toxicity. Our main purpose is to test whether these nanoparticles affect the contractile function of heart cells. Our results on rat's heart cells have shown that both Zn and Co ferrites improved the contractility of heart cells. Notably, although both nanoparticles increased contraction and delayed relaxation, Co ferrites induced a greater contraction but with a slower relaxation. We can theoretically argue that the magnetization effects of the quantum dots have a considerable effect on the pulsating properties of the heart cells. Through this effect, the locally applied magnetic field is able to induce as well as turn on/off various regular beating patterns, thus, resetting the heart beatings.

  4. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Carpenter, Gopal; Sen, Ravindra; Malviya, Nitin; Gupta, Nitish

    2015-08-01

    Nickel ferrite nanoparticles (NiFe2O4) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe2O4 nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe2O4 nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400-600cm-1 which strongly favor the formation of NiFe2O4 nanoparticles. The optical band gap is determined by UV Visible method and found to be 5.4 eV.

  5. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    SciTech Connect

    Carpenter, Gopal; Sen, Ravindra; Gupta, Nitish; Malviya, Nitin

    2015-08-28

    Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe{sub 2}O{sub 4} nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe{sub 2}O{sub 4} nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400–600cm{sup −1} which strongly favor the formation of NiFe{sub 2}O{sub 4} nanoparticles. The optical band gap is determined by UV Visible method and found to be 5.4 eV.

  6. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  7. Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization

    NASA Astrophysics Data System (ADS)

    Parekh, Kinnari; Upadhyay, Ramesh V.; Belova, Lyubov; Rao, K. V.

    2006-12-01

    A ternary system of Mn0.5Zn0.5Fe2O4 has been synthesized for the first time using thermal decomposition of metal acetylacetonate in the presence of a high temperature boiling point solvent and fatty acids. Unlike the results of synthesis of this material by other techniques, we obtain nearly monodispersed nanoparticles, rendering them ideal for applications like in hyperthermia. The crystal structure and morphology of the particles obtained using x-ray diffraction (XRD) and transmission electron microscopy (TEM) are those of a single phase spinel structure with no other impurity phases. The particles are of 7 nm average diameter, with a very narrow (<10%) size distribution. The oleic acid surfactant on the particles shows a 28% weight loss in thermo-gravimetric analyses (TGAs), which corresponds to a monolayer thickness of the coating. Magnetic measurements show the particles to be superparamagnetic with a characteristic blocking temperature of around 50 K.

  8. Low temperature synthesis of zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bardhan, A.; Ghosh, C. K.; Mitra, M. K.; Das, G. C.; Mukherjee, S.; Chattopadhyay, K. K.

    2010-05-01

    Zinc ferrite (ZnFe 2O 4) nanocrystalline powder materials with various particle sizes were prepared by a unique solid-state combustion method. Phase purity of ZnFe 2O 4 was confirmed by X-ray diffraction studies. High resolution transmission electron microscopic analysis and selected area diffraction pattern also confirmed the correct crystalline phase formation. Particle size was determined from both the transmission electron microscopic images and also from the XRD peak broadening analysis. Oxidation states of different elements present in ZnFe 2O 4 were determined by X-ray photoelectron spectroscopy. Frequency dependent dielectric constant and a.c. conductivity were measured as a function of particle size and both of them were found to decrease with decreasing particle size. These studies indicated that good quality zinc ferrite nanocrystalline powdered materials can be synthesized at low temperature.

  9. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Hemaunt; Srivastava, R. C.; Pal Singh, Jitendra; Negi, P.; Agrawal, H. M.; Das, D.; Hwa Chae, Keun

    2016-03-01

    The present work investigates the magnetic behavior of Dy3+ substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy3+concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy3+ substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution.

  10. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  11. Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery.

    PubMed

    Sulaiman, N H; Ghazali, M J; Majlis, B Y; Yunas, J; Razali, M

    2015-01-01

    The calcium ferrite nano-particles (CaFe2O4 NPs) were synthesized using a sol-gel method for targeted drug delivery application. The proposed nano-particles were initially prepared by mixing calcium and iron nitrates that were added with citric acid in order to prevent agglomeration and subsequently calcined at a temperature of 550°C to obtain small particle size. The prepared nanoparticles were characterized by using an XRD (X-ray diffraction), which revealed the configuration of orthorhombic structures of the CaFe2O4 nano-particles. A crystallite size of ~13.59 nm was obtained using a Scherer's formula. Magnetic analysis using a VSM (Vibrating Sample Magnetometer analysis), revealed that the synthesized particles exhibited super-paramagnetic behavior having magnetization saturation of approximately 88.3emu/g. Detailed observation via the scanning electron microscopy (SEM) showed the calcium ferrite nano-particles were spherical in shape. PMID:26405858

  12. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

    PubMed

    Makridis, A; Chatzitheodorou, I; Topouridou, K; Yavropoulou, M P; Angelakeris, M; Dendrinou-Samara, C

    2016-06-01

    The application of ferrite magnetic nanoparticles (MNPs) in medicine finds its rapidly developing emphasis on heating mediators for magnetic hyperthermia, the ever-promising "fourth leg" of cancer treatment. Usage of MNPs depends largely on the preparation processes to select optimal conditions and effective routes to finely tailor MNPs. Microwave heating, instead of conventional heating offers nanocrystals at significantly enhanced rate and yield. In this work, a facile mass-production microwave hydrothermal synthetic approach was used to synthesize stable ferromagnetic manganese and cobalt ferrite nanoparticles with sizes smaller than 14nm from metal acetylacetonates in the presence of octadecylamine. Prolonging the reaction time from 15 to 60min, led to ferrites with improved crystallinity while the sizes are slight increased. The high crystallinity magnetic nanoparticles showed exceptional magnetic heating parameters. In vitro application was performed using the human osteosarcoma cell line Saos-2 incubated with manganese ferrite nanoparticles. Hyperthermia applied in a two cycle process, while AC magnetic field remained on until the upper limit of 45°C was achieved. The comparative results of the AC hyperthermia efficiency of ferrite nanoparticles in combination with the in vitro study coincide with the magnetic features and their tunability may be further exploited for AC magnetic hyperthermia driven applications. PMID:27040263

  13. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine. PMID:26925725

  14. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  15. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    PubMed

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26918645

  16. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. PMID:23137676

  17. Exchange spring like magnetic behavior in cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chithra, M.; Anumol, C. N.; Sahu, Baidyanath; Sahoo, Subasa C.

    2016-03-01

    Cobalt ferrite nanoparticles were prepared by sol-gel technique and were annealed at 900 °C in air for 2 h. Structural properties were studied by X-ray diffraction, Raman spectroscopy and Fourier transformed infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy studies show presence of mostly two different sizes of grains in these samples. Magnetization value of 58.36 emu/g was observed at 300 K for the as prepared sample and an enhanced magnetization close to the bulk value of 80.59 emu/g was observed for the annealed sample. At 10 K a two stepped hysteresis loop showing exchange spring magnetic behavior was observed accompanied by very high values of coercivity and remanence. Two clear peaks were observed in the derivative of demagnetization curve in the as prepared sample where as two partially overlapped peaks were observed in the annealed sample. The observed magnetic properties can be understood on the basis of the grain size and their distribution leading to the different types of intergranular interactions in these nanoparticles.

  18. An Approach for Enhancement of Saturation Magnetization in Cobalt Ferrite Nanoparticles by Incorporation of Terbium Cation

    NASA Astrophysics Data System (ADS)

    Sodaee, Tahmineh; Ghasemi, Ali; Paimozd, Ebrahim; Paesano, Andrea; Morisako, Akimitsu

    2013-09-01

    Cobalt ferrite nanoparticles were synthesized by a reverse micelle process. The optimum processing conditions required to fabricate nanocrystalline cobalt ferrite using a reverse micelle technique, especially the effect of water-to-surfactant molar ratios including w = 8, 10, 12, and 14, pH values in the range of 8 to 11, and annealing temperatures in the range of 400°C to 800°C, were evaluated. x-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), vibrating-sample magnetometry, and superconducting quantum interference device analysis were employed to evaluate the structural and magnetic properties of synthesized nanoparticles. XRD analysis confirms that the nanoparticles have a single-phase cubic spinel structure. The average particle size increases with increasing pH value and annealing temperature. Magnetization study reveals that the cobalt ferrite nanoparticles exhibit a superparamagnetic trend. The zero-field-cooled magnetization curves of cobalt ferrite nanoparticles indicated that, with an increase in pH value, the blocking temperature increases. Based on the obtained optimum parameters, terbium-substituted cobalt ferrite nanoparticles with composition CoFe2- x Tb x O4 ( x = 0.1 to 0.5) were prepared by a reverse micelle process. XRD and field-emission scanning electron microscopy evaluation demonstrated that single-phase spinel ferrites with narrow size distribution were obtained. Mössbauer spectroscopy was used to determine the site preference of terbium cation. The results confirm that terbium cations were distributed at tetrahedral and octahedral sites, but with a preference for the former. It was observed that, with an increase in terbium content, the saturation magnetization increases.

  19. Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Fonseca, Fernando J; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2013-12-01

    Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan δ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle-polyelectrolyte interfaces. PMID:24145704

  20. The role of cobalt ferrite magnetic nanoparticles in medical science.

    PubMed

    Amiri, S; Shokrollahi, H

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. PMID:25428034

  1. Preparation and electromagnetic properties of zinc ferrite/expanded graphite composites

    NASA Astrophysics Data System (ADS)

    Shen, Guozhu; Yu, Songtao; Cao, Yuan

    2014-09-01

    An effective process for the synthesis of nano spinel zinc ferrite/expanded graphite composites was developed in order to get an electromagnetic interference shielding material. Firstly, expandable graphite was prepared using sulfuric and nitric acid solutions. Then, the precursor of the composites was produced by chemical co-precipitation method, followed by heating treatment. The obtained composites were characterized by X-ray diffraction and scanning electron microscopy. The dielectric and magnetic properties were determined using vector network analyzer and vibrating sample magnetometry. The results showed that ferrite nanoparticles with the sizes of about 50-150 nm were uniformly dispersed on the surface and interspace of EG. The magnetic properties of the composites changed by adjusting the ferrite/EG ratio and the composites had high dielectric constant in the range of 2-18 GHz. These properties of the prepared composites suggest that they can be used as a promising electromagnetic interference shielding material.

  2. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    SciTech Connect

    Liu, Yi; Wei, Shicheng Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  3. High-Performance Ferrite Nanoparticles through Nonaqueous Redox Phase Tuning.

    PubMed

    Chen, Ritchie; Christiansen, Michael G; Sourakov, Alexandra; Mohr, Alan; Matsumoto, Yuri; Okada, Satoshi; Jasanoff, Alan; Anikeeva, Polina

    2016-02-10

    From magnetic resonance imaging to cancer hyperthermia and wireless control of cell signaling, ferrite nanoparticles produced by thermal decomposition methods are ubiquitous across biomedical applications. While well-established synthetic protocols allow for precise control over the size and shape of the magnetic nanoparticles, structural defects within seemingly single-crystalline materials contribute to variability in the reported magnetic properties. We found that stabilization of metastable wüstite in commonly used hydrocarbon solvents contributed to significant cation disorder, leading to nanoparticles with poor hyperthermic efficiencies and transverse relaxivities. By introducing aromatic ethers that undergo radical decomposition upon thermolysis, the electrochemical potential of the solvent environment was tuned to favor the ferrimagnetic phase. Structural and magnetic characterization identified hallmark features of nearly defect-free ferrite nanoparticles that could not be demonstrated through postsynthesis oxidation with nearly 500% increase in the specific loss powers and transverse relaxivity times compared to similarly sized nanoparticles containing defects. The improved crystallinity of the nanoparticles enabled rapid wireless control of intracellular calcium. Our work demonstrates that redox tuning during solvent thermolysis can generate potent theranostic agents through selective phase control in ferrites and can be extended to other transition metal oxides relevant to memory and electrochemical storage devices. PMID:26756463

  4. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    NASA Astrophysics Data System (ADS)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  5. Microwave Assisted Synthesis of Ferrite Nanoparticles: Effect of Reaction Temperature on Particle Size and Magnetic Properties.

    PubMed

    Kalyani, S; Sangeetha, J; Philip, John

    2015-08-01

    The preparation of ferrite magnetic nanoparticles of different particle sizes by controlling the reaction temperature using microwave assisted synthesis is reported. The iron oxide nanoparticles synthesized at two different temperatures viz., 45 and 85 °C were characterized using techniques such as X-ray diffraction (XRD), small angle X-ray scattering (SAXS), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The average size of iron oxide nanoparticles synthesized at 45 and 85 °C is found to be 10 and 13.8 nm, respectively, and the nanoparticles exhibited superparamagantic behavior at room temperature. The saturation magnetization values of nanoparticles synthesized at 45 and 85 °C were found to be 67 and 72 emu/g, respectively. The increase in particle size and saturation magnetization values with increase in incubation temperature is attributed to a decrease in supersaturation at elevated temperature. The Curie temperature was found to be 561 and 566 0C for the iron oxide nanoparticles synthesized at 45 and 85 °C, respectively. The FTIR spectrum of the iron oxide nanoparticles synthesized at different temperatures exhibited the characteristic peaks that corresponded to the stretching of bonds between octahedral and tetrahedral metal ions to oxide ions. Our results showed that the ferrite nanoparticle size can be varied by controlling the reaction temperature inside a microwave reactor. PMID:26369150

  6. In situ synthesis of magnetic MnZn-ferrite nanoparticles using reverse microemulsions

    NASA Astrophysics Data System (ADS)

    Košak, A.; Makovec, D.; Drofenik, M.; Žnidaršič, A.

    2004-05-01

    Superparamagnetic MnZn-ferrite nanoparticles with a narrow size distribution were prepared at various pH values using precipitation in a reverse microemulsion consisting of hexanol, as an oil phase; surfactant CTAB; and an aqueous solution of metal sulfates. Tetramethyl ammonium hydroxide was used as the precipitating agent and hydrogen peroxide as the oxidizing reagent. The synthesized materials were characterized using X-ray diffractometry, transmission electron microscopy, BET surface analysis and magnetometry.

  7. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  8. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Khan, Shakeel; Asokan, K.; Ahmed, Hilal; Khan, Imran

    2012-10-01

    Nanoparticles of CoFe2O4 and CoIn0.15Fe1.85O4 ferrites were prepared by citrate gel route and characterized to understand their structural, electrical, and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase cubic spinel structure. The average grain sizes from the Scherrer formula were below 50 nm. Microstructural features were obtained by scanning electron microscope and compositional analysis by energy dispersive spectroscopy. The hysteresis curve shows enhancement in coercivity while reduction in saturation magnetization with the substitution of In3+ ions. Enhancement of coercivity is attributed to the transition from multidomain to single domain nature. Electrical properties, such as dc resistivity as a function of temperature and ac conductivity as a function of frequency and temperature were studied for both the samples. The activation energy derived from the Arrhenius equation was found to increase in the doped sample. The dielectric constant (ɛ') and dielectric loss (tan δ) are also studied as a function of frequency and temperature. The variation of dielectric properties ɛ', tan δ, and ac conductivity (σac) with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Co2+ and Co3+ ions at B-sites. Magnetization and electrical property study showed its dominant dependence on the grain size.

  9. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.

    PubMed

    Wolff, Annalena; Hetaba, Walid; Wißbrock, Marco; Löffler, Stefan; Mill, Nadine; Eckstädt, Katrin; Dreyer, Axel; Ennen, Inga; Sewald, Norbert; Schattschneider, Peter; Hütten, Andreas

    2014-01-01

    Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment. PMID:24605288

  10. Dye removal using modified copper ferrite nanoparticle and RSM analysis.

    PubMed

    Mahmoodi, Niyaz Mohammad; Soltani-Gordefaramarzi, Sajjad; Sadeghi-Kiakhani, Moosa

    2013-12-01

    In this paper, copper ferrite nanoparticle (CFN) was synthesized, modified by cetyl trimethylammonium bromide, and characterized. Dye removal ability of the surface modified copper ferrite nanoparticle (SMCFN) from single system was investigated. The physical characteristics of SMCFN were studied using Fourier transform infrared, scanning electron microscopy, and X-ray diffraction. Acid Blue 92, Direct Green 6, Direct Red 23, and Direct Red 80 were used as model compounds. The effect of operational parameters (surfactant concentration, adsorbent dosage, dye concentration, and pH) on dye removal was evaluated. Response surface methodology (RSM) was used for the analysis of the dye removal data. The experimental checking in these optimal conditions confirms good agreements with RSM results. The results showed that the SMCFN being a magnetic adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions. PMID:23852534

  11. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn

    NASA Astrophysics Data System (ADS)

    Thota, Suneetha; Kashyap, Subhash C.; Sharma, Shiv K.; Reddy, V. R.

    2016-04-01

    A series of Mn-Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1-xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (M-T) and magnetization (M-H) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.

  12. Preparation of highly anisotropic cobalt ferrite/silica microellipsoids using an external magnetic field.

    PubMed

    Abramson, Sébastien; Dupuis, Vincent; Neveu, Sophie; Beaunier, Patricia; Montero, David

    2014-08-01

    Magnetic cobalt ferrite/silica microparticles having both an original morphology and an anisotropic nanostructure are synthesized through the use of an external magnetic field and nanoparticles characterized by a high magnetic anisotropy. The association of these two factors implies that the ESE (emulsion and solvent evaporation) sol-gel method employed here allows the preparation of silica microellipsoids containing magnetic nanoparticles aggregated in large chains. It is clearly shown that without this combination, microspheres characterized by an isotropic distribution of the magnetic nanoparticles are obtained. While the chaining of the cobalt ferrite nanoparticles inside the silica matrix is related to the increase of their magnetic dipolar interactions, the ellipsoidal shape of the microparticles may be explained by the elongation of the sol droplets in the direction of the external magnetic field during the synthesis. Because of their highly anisotropic structure, these microparticles exhibit permanent magnetic moments, which are responsible, at a larger scale, for the existence of strong magnetic dipolar interactions. Therefore, when they are dispersed in water, the microellipsoids self-assemble into large and irregular chains. These interactions can be reinforced by the use of external magnetic field, allowing the preparation of very large permanent chains. This research illustrates how nanostructured particles exhibiting complex architectures can be elaborated through simple, fast, and low-cost methods, such as the use of external fields in combination with soft chemistry. PMID:25029515

  13. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  14. Chemisorption of cyanogen chloride by spinel ferrite magnetic nanoparticles.

    PubMed

    Glover, T Grant; DeCoste, Jared B; Sabo, Daniel; Zhang, Z John

    2013-05-01

    Spinel ferrite magnetic nanoparticles, MnFe2O4, NiFe2O4, and CoFe2O4, were synthesized and used as gas-phase adsorbents for the removal of cyanogen chloride from dry air. Fixed-bed adsorption breakthrough experiments show adsorption wave behavior at the leading edge of the breakthrough curve that is not typical of physically adsorbed species. Fourier transform infrared spectroscopy (FTIR) results indicate that CK is reacting with the spinel ferrite surface and forming a carbamate species. The reaction is shown to be a function of the hydroxyl groups and adsorbed water on the surface of the particles as well as the metallic composition of the particles. The surface reaction decreases the remnant and saturation magnetism of the MnFe2O4 and CoFe2O4 particles by approximately 25%. PMID:23540752

  15. Cr3+ substituted spinel ferrite nanoparticles with high coercivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S. Ravi P.

    2016-06-01

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr3+, in this article we describe how magnetic CoCr x Fe2‑x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation.

  16. Cr(3+) substituted spinel ferrite nanoparticles with high coercivity.

    PubMed

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S Ravi P

    2016-06-17

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr(3+), in this article we describe how magnetic CoCr x Fe2-x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation. PMID:27159283

  17. Effect of surface coating on magnetic properties of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chithra, M.; Anumol, C. N.; Sahoo, Subasa C.

    2016-05-01

    Cobalt ferrite nanoparticles were synthesized by coprecipitation method with and without surface coating. Oleic acid and citric acid were used as the surfactant during synthesis of nanoparticles. The sample prepared without coating and with (1M) oleic acid as surfactant showed crystalline nature whereas the sample prepared with (1M) citric acid was X-ray amorphous. The grain size was decreased with the addition of surfactant during synthesis. It was also observed that with the decrease in concentration of citric acid, grain size was increased. The sample prepared with (1M) citric acid was superparamagnetic and the other samples were ferrimagnetic in nature with magnetization value less than the bulk value of 80emu/g at 300K. Magnetization, remanence and coercivity values were decreased in the samples prepared with coating in comparison to the sample prepared without coating. As the temperature decreased from 300K to 60K all the magnetic properties mentioned above were enhanced. The observed magnetic properties of these nanoparticles can be attributed to the grain size, effect of surface coating and magnetic interactions in these nanoparticles.

  18. Microwave characterization of magnetically hard and soft ferrite nanoparticles in K-band

    NASA Astrophysics Data System (ADS)

    Della Pina, C.; Falletta, E.; Ferretti, A. M.; Ponti, A.; Gentili, G. G.; Verri, V.; Nesti, R.

    2014-10-01

    Nano-sized magnetic particles show great promise in improving the performance of microwave absorbers with respect to the corresponding bulk materials. In this paper, magnetically hard and soft ferrite nanoparticles (CoFe2O4 and Fe3O4) having an average size of 14 and 11 nm were prepared by co-precipitation method and characterized in terms of morphology, structure, and magnetic properties. Their permeability and permittivity were measured by a waveguide technique, embedding each sample in a host medium. Their parameters at microwave frequencies were retrieved by comparing different effective medium equations.

  19. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.

    PubMed

    Chatterjee, Biplab K; Bhattacharjee, Kaustav; Dey, Abhishek; Ghosh, Chandan K; Chattopadhyay, Kalyan K

    2014-06-01

    The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (M(R)/M(S) ~ 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (M(R)/M(S) ~ 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (K(E)) of the system. A high-temperature enhancement of H(C) and K(E) for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies. PMID:24714977

  20. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    PubMed Central

    2012-01-01

    Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate) on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and inductively coupled plasma atomic emission spectrometer (ICP-AES) techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of NiFe2O4 nanoparticles

  1. Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite

    NASA Astrophysics Data System (ADS)

    Zahraei, Maryam; Monshi, Ahmad; Morales, Maria del Puerto; Shahbazi-Gahrouei, Daryoush; Amirnasr, Mehdi; Behdadfar, Behshid

    2015-11-01

    Superparamagnetic Zn2+ substituted manganese ferrite Mn1-xZnxFe2O4 (x=0.3, 0.35, 0.4 and 0.45) nanoparticles (NPs) were synthesized via a direct, efficient and environmental friendly hydrothermal method. The synthesized NPs were characterized by X-ray powder diffractometry (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and vibrating sample magnetometry (VSM). The effects of various parameters such as the pH of reaction mixture, time and temperature of hydrothermal treatment and Zn substitution on the spinel phase formation, the magnetization, and the size of resulting NPs are discussed. The Zn2+ substituted manganese ferrite NPs obtained from hydrothermal process crystallized mainly in the spinel phase. Nevertheless, without citrate ions, the hematite phase appeared in the product. The monophase Zn2+ substituted manganese ferrite NPs hydrothermally prepared in the presence of citric acid had mean particle size of 7 nm and a narrow size distribution. Furthermore, the synthesized NPs can be used to prepare ferrofluids for biomedical applications due to their small size, good stability in aqueous medium (pH 7) and also high magnetization value.

  2. Magnetic heating of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.

  3. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    SciTech Connect

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M.; Bhandari, J. M.; Waghule, N. N.; Bhagwat, V. R.

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEG coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.

  4. Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hyun; Heo, Dan; Park, Jinsung; Na, Sungsoo; Suh, Jin-Suck; Haam, Seungjoo; Park, Sahng Wook; Huh, Yong-Min; Yang, Jaemoon

    2012-12-01

    Amphiphilic surfactants have been used to disperse magnetic nanoparticles in biological media, because they exhibit a dual hydrophobic/hydrophilic affinity that facilitates the formation of a nanoemulsion, within which nanoparticle surfaces can be modified to achieve different physicochemical properties. For the investigation of the interactions of cells with charged magnetic nanoparticles in a biological medium, we selected the nanoemulsion method to prepare water-soluble magnetic nanoparticles using amphiphilic surfactant (polysorbate 80). The hydroxyl groups of polysorbate 80 were modified to carboxyl or amine groups. The chemical structures of carboxylated and aminated polysorbate 80 were confirmed, and water-soluble manganese ferrite nanoparticles (MFNPs) were synthesized with three types of polysorbate 80. Colloidal size, morphology, monodispersity, solubility and T2 relaxivity were found to be similar between the three types of MFNP. However, cationic MFNPs exhibited greater cytotoxicity in macrophages (RAW264.7 cells) and lower cellular membrane effective stiffness than anionic and non-ionic MFNPs. Moreover, cationic MFNPs exhibited large uptake efficiency for RAW264.7 cells compared with anionic or non-ionic MFNPs under the same conditions. Therefore, we propose that surface charge should be a key consideration factor in the design of magnetic nanoparticles for theragnostic applications.

  5. Study of Zn-Cu Ferrite Nanoparticles for LPG Sensing

    PubMed Central

    Jain, Anuj; Baranwal, Ravi Kant; Bharti, Ajaya; Vakil, Z.; Prajapati, C. S.

    2013-01-01

    Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. XRD patterns of different compositions of zinc-copper ferrite, Zn(1−x)CuxFe2O4 (x = 0.0, 0.25, 0.50, 0.75), revealed single phase inverse spinel ferrite in all the samples synthesized. With increasing copper concentration, the crystallite size was found to be increased from 28 nm to 47 nm. The surface morphology of all the samples studied by the Scanning Electron Microscopy there exhibits porous structure of particles throughout the samples. The pellets of the samples are prepared for LPG sensing characteristics. The sensing is carried out at different operating temperatures (200, 225, and 250°C) with the variation of LPG concentrations (0.2, 0.4, and 0.6 vol%). The maximum sensitivity of 55.33% is observed at 250°C operating for the 0.6 vol% LPG. PMID:23864833

  6. Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method

    NASA Astrophysics Data System (ADS)

    Afzal, A. M.; Umair, M.; Dastgeer, G.; Rizwan, M.; Yaqoob, M. Z.; Rashid, R.; Munir, H. S.

    2016-02-01

    Bismuth ferrite is a multiferroic material which shows high magnetization and polarization at room temperature. In present work, the effect of Oxygen (O) vacancies on magnetic properties of bismuth ferrite nanoparticles is studied. Bismuth ferrite nanoparticles (BiFeO3) were synthesized by solution evaporation method (SEM) at room temperature. The sample was annealed under two different atmospheres such as in air and oxygen, to check the effect of O-vacancies on magnetic properties. The average crystallite size of Bismuth ferrite nanoparticles (NPs) as calculated by X-ray diffraction (XRD) falls in the range of 23-32 nm and 26-39 nm for the case of air and oxygen respectively. The crystallite size of bismuth ferrite nanoparticles increases as the temperature was varied from 450 °C to 650 °C. Further the influence of annealing temperature on the magnetic properties of the bismuth ferrite nanoparticles was also observed. It was concluded that the magnetic properties of Bismuth ferrite nanoparticles are directly interconnected to annealing atmosphere and annealing temperature. The magnetic properties were increased in the case of oxygen annealing, which actually leads in our case to an improvement of the crystallinity.

  7. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    SciTech Connect

    Naseem, Swaleha; Khan, Wasi Singh, B. R.; Naqvi, A. H.

    2015-06-24

    Strontium and nickel doped lanthanum ferrite (LaFeO{sub 3}) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ε’) decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner’s two layer model in studied nanoparticles.

  8. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Wasi; Singh, B. R.; Naqvi, A. H.

    2015-06-01

    Strontium and nickel doped lanthanum ferrite (LaFeO3) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ɛ') decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop's theory based on Maxwell-Wagner's two layer model in studied nanoparticles.

  9. Mössbauer studies of nanosized ferrites prepared by the combustion of metal nitrates oxalyl dihydrazide solutions

    NASA Astrophysics Data System (ADS)

    Gandotra, Karun; Randhawa, B. S.

    2008-07-01

    Alkaline earth metal ferrites have been prepared by combustion of redox mixtures containing metal nitrates and oxalyl dihydrazide (ODH) at 673 K. On rapid heating, ODH metal nitrate mixture undergoes an abrupt exothermic redox chemical reaction that facilitates atomic scale mixing of cations. This leads to the formation of stoichiometrically pure and single-phase nanoparticle ferrites at comparatively reduced temperature (400°C) and in less time than possible by the conventional ceramic method. Because of their different cationic size, polarizability etc., alkaline earth metal cations yield different type of ferrites i.e. MFe2O4 (M = Mg, Ba), Ca2Fe2O5 and SrFe12O19.

  10. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles

    SciTech Connect

    Biasotto, G.; Simoes, A.Z.; Foschini, C.R.; Zaghete, M.A.; Varela, J.A.; Longo, E.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer BiFeO{sub 3} (BFO) nanoparticles were grown by hydrothermal microwave method (HTMW). Black-Right-Pointing-Pointer The soaking time is effective in improving phase formation. Black-Right-Pointing-Pointer Rietveld refinement reveals an orthorhombic structure. Black-Right-Pointing-Pointer The observed magnetism of the BFO crystallites is a consequence of particle size. Black-Right-Pointing-Pointer The HTMW is a genuine technique for low temperatures and short times of synthesis. -- Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline bismuth ferrite (BiFeO{sub 3}) nanoparticles (BFO) in the temperature of 180 Degree-Sign C with times ranging from 5 min to 1 h. BFO nanoparticles were characterized by means of X-ray analyses, FT-IR, Raman spectroscopy, TG-DTA and FE-SEM. X-ray diffraction results indicated that longer soaking time was benefit to refraining the formation of any impurity phases and growing BFO crystallites into almost single-phase perovskites. Typical FT-IR spectra for BFO nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH{sup -} groups, commonly found in materials obtained by HTMW process. Compared with the conventional solid-state reaction process, submicron BFO crystallites with better homogeneity could be produced at the temperature as low as 180 Degree-Sign C. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain BFO nanoparticles in the temperature of 180 Degree-Sign C for 1 h.

  11. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    NASA Astrophysics Data System (ADS)

    Kelly, Stefan J.; Wen, Xiao; Arnold, David P.; Andrew, Jennifer S.

    2016-05-01

    Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanoparticles (Dh =16.6 ± 3.6 nm) are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe). Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc.) are demonstrated with feature sizes down to 5 μm.

  12. One-pot production of copper ferrite nanoparticles using a chemical method

    NASA Astrophysics Data System (ADS)

    Nishida, Naoki; Amagasa, Shota; Kobayashi, Yoshio; Yamada, Yasuhiro

    2016-12-01

    Copper ferrite nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl2, CuSO4 and N2H4 in the presence of gelatin. These copper ferrite particles were subsequently examined using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The average size of the copper ferrite nanoparticles was less than 5 nm, and they exhibited superparamagnetic behavior as a result of their small size. The low temperature Mössbauer spectrum exhibited three sets of sextets, two corresponding to the tetrahedral and octahedral sites of the copper spinel structure and one with small hyperfine magnetic field corresponding to the surface or defects of the nanoparticles. When the ratio of copper salt was increased, the tetrahedral site became preferable for copper, and metallic copper and copper ferrite were both present in a single nanoparticle.

  13. Radiation induced structural and magnetic transformations in nanoparticle MnxZn(1-x)Fe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2015-07-01

    Nanoparticle magnetic materials are suitable for multiple modern high end medical applications like targeted drug delivery, gene therapy, hyperthermia and MR thermometry imaging. Majority of these applications are confined to use of Mn-Zn ferrite nanoparticles. These nanoparticles are normally left in the body after their requisite application. Preparing these nanoparticles is usually a much involved job. However with the development of the simple technique MnxZn1-xFe2O4 nanoparticles could be prepared with much ease. The nanoparticles of MnxZn1-xFe2O4 with (x=1.0, 0.7, 0.5, 0.3, 0.0) were prepared and irradiated with gamma radiation of various intensities ranging between 500 R to 10,000 R, after appropriate structural and magnetic characterization. Irradiated samples were investigated for structural and magnetic properties, as well as for structural stability and cation distribution. The irradiated nanoparticles exhibited structural stability with varied cation distribution and magnetic properties, dependent on gamma radiation dose. Surprisingly samples also exhibited quenching of lattice parameter and particle size. The changes introduced in the cation distribution, lattice constant, particle size and magnetic properties were found to be irreversible with time lapse and were of permanent nature exhibiting good stability even after several months. Thus the useful properties of nanoparticles could be enhanced on modifying the cation distribution inside the nanoparticles by application of gamma radiation.

  14. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    SciTech Connect

    Raut, Anil V.; Kurmude, D.V.; Shengule, D.R.; Jadhav, K.M.

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  15. Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites

    SciTech Connect

    Parsons, P.; Duncan, K.; Giri, A. K.; Xiao, J. Q.; Karna, S. P.

    2014-05-07

    The magnetic properties of polycrystalline NiZn ferrite nanoparticles synthesized using a polyol-reduction and coprecipitation reaction methods have been investigated. The effects on magnetization of synthesis approach, chemical composition, processing conditions, and on the size of nanoparticles on magnetization have been investigated. The measured room-temperature magnetization for the as-prepared magnetic nanoparticles (MNP) synthesized via polyol-reduction and coprecipitation is 69 Am{sup 2} kg{sup −1} and 14 Am{sup 2} kg{sup −1}, respectively. X-ray diffraction measurements confirm spinel structure of the particles with an estimated grain size of ∼80 nm obtained from the polyol-reduction and 28 nm obtained from these coprecipitation techniques. Upon calcination under atmospheric conditions at different temperatures between 800 °C and 1000 °C, the magnetization, M, of the coprecipitated MNP increases to 76 Am{sup 2} kg{sup −1} with an estimated grain size of 90 nm. The MNP-polymer nanocomposites made from the synthesized MNP in various loading fraction and high density polyethylene exhibit interesting electromagnetic properties. The measured permeability and permittivity of the magnetic nanoparticle-polymer nanocomposites increases with the loading fractions of the magnetic nanoparticles, suggesting control for impedance matching for antenna applications.

  16. Influence of Ce-Substitution on Structural, Magnetic and Electrical Properties of Cobalt Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hashhash, A.; Kaiser, M.

    2016-01-01

    Nano-crystalline samples of cerium substituted cobalt ferrites with chemical formula CoCe x Fe2- x O4 (0.0 ≤ x ≤ 0.1) were prepared using the citrate auto-combustion method. The prepared ferrites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The XRD patterns and FTIR spectra confirm that the prepared samples reveal the formation of a single-phase spinel structure. TEM micrographs showed that the particles are made up of spherical and elongated nano-metric shapes. A limitation of the size of nanoparticles is observed as the Ce3+ concentration increases. VSM measurements showed that the coercivity H c and magnetization values M s are strongly dependent on Ce3+ content and particle size. The values of H c lie in the range of (411-1600 G), which suggest that these samples are convenient for different applications. The alternating current electrical conductivity ( σ), dielectric permittivities ( ɛ', ɛ″), and dielectric loss tangent (tan δ) were studied at different ranges of frequency and temperature. The relation of conductivity with temperature revealed a semiconductor to semi-metallic behavior as cerium concentration increases. The variation in (tan δ) with frequency at different temperature shows abnormal behavior with more than one relaxation peak. The conduction mechanism used in the present study has been discussed in the light of cation-anion-cation interactions over the octahedral B-site.

  17. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe2O4) nanoparticles as both T1 and T2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T1 and T2 relaxivities were 0.858±0.04 and 1.71±0.03 mM-1 s-1, respectively. In animal experimentation, both a 25% signal enhancement in the T1-weighted mage and a 71% signal loss in the T2-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T1 and T2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T1 and T2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles.

  18. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. PMID:26838832

  19. Experimental studies of cobalt ferrite nanoparticles doped silica matrix 3D magneto-photonic crystals

    NASA Astrophysics Data System (ADS)

    Abou Diwan, E.; Royer, F.; Kekesi, R.; Jamon, D.; Blanc-Mignon, M. F.; Neveu, S.; Rousseau, J. J.

    2013-05-01

    In this paper, we present the synthesis and the optical properties of 3D magneto-photonic structures. The elaboration process consists in firstly preparing then infiltrating polystyrene direct opals with a homogeneous solution of sol-gel silica precursors doped by cobalt ferrite nanoparticles, and finally dissolving the polystyrene spheres. Scanning Electron Microscopy (SEM) images of the prepared samples clearly evidence a periodic arrangement. Using a home-made polarimetric optical bench, the transmittance as a function of the wavelength, the Faraday rotation as a function of the applied magnetic field, and the Faraday ellipticity as a function of the wavelength and as a function of the applied magnetic field were measured. The existence of deep photonic band gaps (PBG), the unambiguous magnetic character of the samples and the qualitative modification of the Faraday ellipticity in the area of the PBG are evidenced.

  20. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, Raghu Nath; Ginley, David S.

    1998-01-01

    A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  1. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1998-07-28

    A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  2. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

    PubMed

    Rodrigues, Ana Rita O; Gomes, I T; Almeida, Bernardo G; Araújo, J P; Castanheira, Elisabete M S; Coutinho, Paulo J G

    2015-07-21

    Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of the lipid bilayer in DMLs was confirmed by FRET (Förster Resonance Energy Transfer) measurements between the fluorescent-labeled lipids NBD-C12-HPC (NBD acting as a donor) included in the second lipid layer and rhodamine B-DOPE (acceptor) in the first lipid layer. An average donor-acceptor distance of 3 nm was estimated. Assays of the non-specific interactions of magnetoliposomes with biological membranes (modeled using giant unilamellar vesicles, GUVs) were performed. Membrane fusion between both aqueous and dry magnetoliposomes and GUVs was confirmed by FRET, which is an important result regarding applications of these systems both as hyperthermia agents and antitumor drug nanocarriers. PMID:26095537

  3. Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    PubMed Central

    2011-01-01

    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions. PMID:21851597

  4. Magnetic properties of cobalt-ferrite nanoparticles embedded in polystyrene resin

    SciTech Connect

    Vaishnava, P. P.; Senaratne, U.; Buc, E.; Naik, R.; Naik, V. M.; Tsoi, G.; Wenger, L. E.; Boolchand, P.

    2006-04-15

    Samples of maghemite and cobalt-ferrite nanoparticles (sizes, 3-10 nm) were prepared by cross-linking sulfonated polystyrene resin with aqueous solutions of (1) FeCl{sub 2}, (2) 80%FeCl{sub 2}+20%CoCl{sub 2}, (3) FeCl{sub 3}, and (4) 80%FeCl{sub 3}+20%CoCl{sub 2} by volume. Chemical analysis, x-ray powder-diffraction, and {sup 57}Fe Moessbauer spectroscopic measurements show that samples 1 and 3 consist of {gamma}-Fe{sub 2}O{sub 3} nanoparticles (sizes, {approx}10 and 3 nm) and sample 2 and 4 consist of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles (sizes, {approx}10 and 4 nm). The temperature dependence of the zero-field-cooled and field-cooled magnetizations at low temperatures, together with a magnetic hysteresis in the M versus H data below blocking temperatures, demonstrate superparamagnetic behavior. The introduction of Co in the iron oxide-resin matrix results in an increase in the blocking temperature of nanoparticles.

  5. Synthesis and Characterization of Cobalt Substituted Zinc Ferrite Nanoparticles by Microwave Combustion Method.

    PubMed

    Sundararajan, M; Kennedy, L John; Vijaya, J Judith

    2015-09-01

    Pure and cobalt doped zinc ferrites were prepared by microwave combustion method using L-arginine as a fuel. The prepared samples were characterized by various instrumental techniques such as X-ray powder diffractometry, high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, Fourier transformed infrared (FT-IR) spectroscopy, photoluminescence spectroscopy and UV-Visible diffuse reflectance spectroscopy. Vibrating sample magnetometry at room temperature was recorded to study the magnetic behavior of the samples. X-ray analysis confirmed the formation of zinc ferrites normal spinel-type structure with an average crystallite sizes in the range, 25.69 nm to 35.68 nm. The lattice parameters decreased as cobalt fraction was increased. The HR-SEM images showed nanoparticles are agglomerated. The estimated band gap energy value was found to decrease with an increase in cobalt content (1.87 to 1.62 eV). Broad visible emissions are observed in the photoluminescence spectra. A gradual increase in the coercivity and saturation magnetization (M(s)) were noted at relatively higher cobalt doping fractions. PMID:26716235

  6. Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Murugesan, C.; Sathyamoorthy, B.; Chandrasekaran, G.

    2015-08-01

    Gd3+ ion-substituted manganese ferrite nanoparticles with the chemical formula MnGdxFe2-xO4 (x = 0.0, 0.05, and 0.1) were synthesized by sol-gel auto combustion method. Thermal stability of the as-prepared sample was analyzed using thermo gravimetric and differential thermal analysis (TG-DTA) and the result reveals that the prepared sample is thermally stable above 300 °C. Structural and morphology studies were performed using powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Indexed PXRD patterns confirm the formation of pure cubic spinel structure. The average crystallite sizes calculated using Sherrer’s formula decreased from 47 nm to 32 nm and lattice constant was enhanced from 8.407 Å to 8.432 Å. The FTIR spectrum of manganese ferrite shows a high frequency vibrational band at 564 cm-1 assigned to tetrahedral site and a low frequency vibrational band at 450 cm-1 assigned to octahedral site which are shifted to 556 cm-1 and 439 cm-1 for Gd3+ substitution and confirm the incorporation of Gd3+ into manganese ferrite. SEM analysis shows the presence of agglomerated spherical shaped particles at the surface. Room temperature dielectric and magnetic properties were studied using broadband dielectric spectroscopy (BDS) and vibrating sample magnetometry (VSM). Frequency dependent dielectric constant, ac conductivity and tan delta were found to increase with Gd3+ ion substitution. The measured values of saturation magnetization decrease from 46.6 emu g-1 to 41 emu g-1 with increase in Gd3+ concentration and coercivity decreases from 179.5 Oe to 143 Oe.

  7. High-frequency electromagnetic properties of the manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Min; Liu, Jue; Yue, Ming; Yang, Haozhe; Dong, Hangrong; Tang, Wukui; Jiang, He; Liu, Xiaofang; Yu, Ronghai

    2015-05-01

    Manganese (MnFe2O4) nanoparticles are prepared via a facile solvothermal method. The electromagnetic properties are investigated in 1-18 GHz, indicating the MnFe2O4 nanoparticles are the promising materials to be applied as microwave absorbers. The wave absorbing mechanism can be attributed to the dielectric loss, magnetic loss, and the synergetic effect. The permittivity dispersion behavior is explained by Debye dipolar relation expression. The complex permeability is analyzed using Landau-Lifshitz-Gilbert equation. Natural resonance, exchange resonance, and eddy current loss arise at different frequencies.

  8. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    PubMed

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. PMID:24858357

  9. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni0.7Mg0.3Fe2-xAlxO4 (0.0≤x≤0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivity (σac), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Ni2+ and Ni3+ ions at B-sites. The dielectric loss tangent (tan δ) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  10. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Salunkhe, A. B.; Khot, V. M.; Thorat, N. D.; Phadatare, M. R.; Sathish, C. I.; Dhawale, D. S.; Pawar, S. H.

    2013-01-01

    In the present work, cobalt ferrite nanoparticles (CoFe2O4 NPs) have been synthesized by combustion method. The surface of the CoFe2O4 NPs was modified with biocompatible polyvinyl alcohol (PVA). To investigate effect and nature of coating on the surface of CoFe2O4 NPs, the NPs were characterized X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The transmission electron microscopy (TEM) and dynamic light scattering (DLS) results demonstrate the monodispersed characteristics of CoFe2O4 NPs after surface modification with PVA. The decrease in contact angle from 162° to 50° with PVA coating on NPs indicates the transition from hydrophobic nature to hydrophilic. The Magnetic properties measurement system (MPMS) results show that the NPs have ferromagnetic behavior with high magnetization of 75.04 and 71.02 emu/g of uncoated and coated CoFe2O4 NPs respectively. These PVA coated NPs exhibit less toxicity over uncoated CoFe2O4 NPs up to 1.8 mg mL-1 when tested with mouse fibroblast L929 cell line.

  11. Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach.

    PubMed

    Di Guglielmo, Claudia; López, David Ramos; De Lapuente, Joaquín; Mallafre, Joan Maria Llobet; Suàrez, Miquel Borràs

    2010-09-01

    Nanoparticles (NPs) are emerging as promising biomedical tools thanks to their peculiar characteristics. Our purpose was to investigate the embryotoxicity of cobalt ferrite and gold NPs through the Embryonic Stem Cell Test (EST). The EST is an in vitro standard assay, which permits to classify substances as strongly, weakly or non-embryotoxic. Due to the particular physical-chemical nature of nanoparticles, we introduced a modification to the standard protocol exposing the Embryonic Stem Cells (ES-D3) to nanoparticles only during the first 5 days of the assay. Moreover, we proposed a method to discriminate and compare the embryotoxicity of the substances within the weakly embryotoxic range. Our ID(50) results permit to classify cobalt ferrite nanoparticles coated with gold and silanes as non-embryotoxic. The remaining nanoparticles have been classified as weakly embryotoxic in this decreasing order: gold salt (HAuCl(4).3H(2)O)>cobalt ferrite salt (CoFe(2)O(4))>cobalt ferrite nanoparticles coated with silanes (Si-CoFe)>gold nanoparticles coated with hyaluronic acid (HA-Au). PMID:20566333

  12. Spin-flop transition, magnetic and microwave absorption properties of α-Fe2O4 spinel type ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yalçın, Orhan; Bayrakdar, Harun; Özüm, Songül

    2013-10-01

    We have prepared NiFe2O4, CoFe2O4, Ni0.6Zn0.4Fe2O4 and ZnFe2O4 spinel type ferrite nanoparticles by surfactant-assisted hydrothermal process using cetyltrimethylammonium bromide (CTAB). The spin-flop transition, magnetic, dielectric and permittivity characterizations have been investigated. The spin-flop transition occurs from antiferromagnetic state to mixed state and then ferromagnetic state for Zn doped samples. The spin-flop transition occurs in the temperature range of 50-250 K. The ionic conduction, dipolar relaxation, atomic polarization and electronic polarization are the main mechanisms that contribute to the permittivity of a dielectric material. The permittivity increases with increasing frequency. This suggests a resonance behavior, which is expected when the ferrite samples are highly conductive and skin effect become significant. These samples will provide great benefits for electromagnetic applications and electromagnetic interference shielding characteristics.

  13. The superspin glass transition in zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaman, O.; Kořínková, T.; Jirák, Z.; Maryško, M.; Veverka, M.

    2015-05-01

    Nanoparticles of the ZnxFe3-xO4 (x = 0.3-0.4) spinel phase having 5 and 15 nm size were synthesized by thermal decomposition of the respective acetylacetonates in a high boiling-point solvent employing surfactants. The collective behaviour of the nanoparticles was probed by dc and ac magnetic measurements of tightly compressed pellets of the particles and silica coated products which were prepared by reverse microemulsion technique. The assembly of bare 5 nm particles remains in the superparamagnetic state with Curie-Weiss characteristics down to 35 K when a rather sharp freezing of superspins is detected. The larger particles show a similar but more diffusive transition at 250 K. The cores encapsulated into the diamagnetic silica do not exhibit glassy freezing.

  14. Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-02-01

    Polyethylene-glycol (PEG)-coated nickel-ferrite nanoparticles were prepared for magnetic hyperthermia applications by using the co-precipitation method. The PEG coating occurred during the synthesis of the nanoparticles. The coated nanoparticles were rod-shaped with an average length of 16 nm and an average diameter of 4.5 nm, as observed using transmission electron microscopy. The PEG coating on the surfaces of the nanoparticles was confirmed from the Fourier-transform infrared spectra. The nanoparticles exhibited superparamagnetic characteristics with negligible coercive force. Further, magnetic heating effects were observed in aqueous solutions of the coated nanoparticles. The saturation temperature could be controlled at 42 ℃ by changing the concentration of the nanoparticles in the aqueous solution. Alternately, the saturation temperature could be controlled for a given concentration of nanoparticles by changing the intensity of the magnetic field. The Curie temperature of the nanoparticles was estimated to be 495 ℃. These results for the PEG-coated nickel-ferrite nanoparticles showed the possibility of utilizing them for controlled magnetic hyperthermia at 42 ℃.

  15. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha; Sarkar, Indranil; Shirolkar, Mandar M.; Jeng, U-Ser; Yeh, Yi-Qi

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  16. Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation

    SciTech Connect

    Mahmoodi, Niyaz Mohammad

    2013-10-15

    Graphical abstract: Photocatalytic degradation of Reactive Red 198 and Reactive Red 120 by the synthesized zinc ferrite nanoparticle. - Highlights: • Magnetic zinc ferrite nanoparticle was synthesized and characterized. • Photocatalytic dye degradation by magnetic nanoparticle was studied. • Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. • Nitrate and sulfate ions were detected as mineralization products of dyes. • Zinc ferrite nanoparticle was an effective magnetic photocatalyst to degrade dyes. - Abstract: In this paper, magnetic zinc ferrite (ZnFe{sub 2}O{sub 4}) nanoparticle was synthesized and its photocatalytic dye degradation ability from colored wastewater was studied. Reactive Red 198 (RR198) and Reactive Red 120 (RR120) were used as model dyes. The characteristics of ZnFe{sub 2}O{sub 4} were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Photocatalytic dye degradation by ZnFe{sub 2}O{sub 4} was studied by UV–vis spectrophotometer and ion chromatography (IC). The effects of ZnFe{sub 2}O{sub 4} dosage, initial dye concentration and salt on dye degradation were evaluated. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediate. Inorganic anions (nitrate and sulfate anions) were detected as dye mineralization products. The results indicated that ZnFe{sub 2}O{sub 4} could be used as a magnetic photocatalyst to degrade dyes from colored wastewater.

  17. Preparation and investigation of dc conductivity and relative permeability of epoxy/Li-Ni-Zn ferrite composites

    NASA Astrophysics Data System (ADS)

    Darwish, M. A.; Saafan, S. A.; El-Kony, D.; Salahuddin, N. A.

    2015-07-01

    Ferrite nanoparticles - having the compositions Li(x/2)(Ni0.5Zn0.5)(1-x)Fe(2+x/2)O4 (x=0, 0.2, 0.3) - have been prepared by the co-precipitation method. The prepared powders have been divided into groups and sintered at different temperatures (373 K, 1074 K and 1473 K). X-Ray diffraction analysis (XRD) for all samples has confirmed the formation of the desired ferrites with crystallite sizes within the nanoscale (<100 nm). The dc conductivity, the relative permeability and the magnetization of the ferrite samples have been investigated and according to the results, the sample Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 sintered at 1473 K has been chosen to prepare the composites. The particle size of this sample has been recalculated by using JEOL JEM-100SX transmission electron microscope and it has been found about 64.7 nm. Then, a pure epoxy sample and four pristine epoxy resin /Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 composites have been prepared using different ferrite contents (20%, 30%, 40%, and 50%) wt.%. These samples have been characterized by Fourier transform infrared (FTIR) spectroscopy and their dc conductivity, relative permeability and magnetization have also been investigated. The obtained results indicate that the investigated composites may be promising candidates for practical applications such as EMI suppressor and high frequency applications.

  18. Magnetic properties of conducting polymer doped with manganese zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Wilson, J. L.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2004-10-01

    The magnetic properties of superparamagnetic particles are influenced by the supporting matrix. We have systematically studied the DC magnetic properties of loosely packed manganese-zinc ferrite (Mn0.68Zn0.25Fe2.07O3) nanoparticles synthesized using a reverse micelle technique. The results have been compared with those for particles suspended in paraffin wax and embedded in a polypyrrole matrix. The polypyrrole-doped particles were prepared using an in situ ultraviolet irradiation method and spin-coated into thin films. The loosely packed particles showed no resolvable coercivity even well below the blocking temperature. On the other hand, the same particles in wax showed the opening up of a large coercivity below the blocking temperature. However, both the samples showed characteristic superparamagnetic transition peaks in the temperature-dependent susceptibility nearly at the same temperature. The particles in the polypyrrole matrix showed a remarkable increase in the blocking temperature and large hysteresis at 300 K. The structural characterization of the polymer-doped sample showed clustering of the nanoparticles.

  19. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jin, Yun-Ho; Seo, Seung-Deok; Shim, Hyun-Woo; Park, Kyung-Soo; Kim, Dong-Wan

    2012-03-01

    Monodispersed core/shell spinel ferrite/carbon nanoparticles are formed by thermolysis of metal (Fe3+, Co2+) oleates followed by carbon coating. The phase and morphology of nanoparticles are characterized by x-ray diffraction and transmission electron microscopy. Pure Fe3O4 and CoFe2O4 nanoparticles are initially prepared through thermal decomposition of metal-oleate precursors at 310 °C and they are found to exhibit poor electrochemical performance because of the easy aggregation of nanoparticles and the resulting increase in the interparticle contact resistance. In contrast, uniform carbon coating of Fe3O4 and CoFe2O4 nanoparticles by low-temperature (180 °C) decomposition of malic acid allowed each nanoparticle to be electrically wired to a current collector through a conducting percolative path. Core/shell Fe3O4/C and CoFe2O4/C nanocomposite electrodes show a high specific capacity that can exceed 700 mAh g-1 after 200 cycles, along with enhanced cycling stability.

  20. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I; Khashab, Niveen M

    2015-07-28

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. A Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, a spin glass-like state is observed with the decrease in magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs are prepared by seeded growth. The structure of the core is cubic spinel (Fd3¯m), and the shell is composed of iron-manganese oxide (Mn(x)Fe(1-x)O) with a rock salt structure (Fm3¯m). Moiré fringes appear perpendicular to the 〈110〉 directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in the lattice spacings between MnFe2O4 and Mn(x)Fe(1-x)O. Exchange bias is observed in these MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs with an enhanced coercivity, as well as the shift of hysteresis along the field direction. PMID:26123580

  1. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  2. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    PubMed

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  3. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  4. The anti-microbial activity of titania-nickel ferrite composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rana, S.; Misra, R. D. K.

    2005-12-01

    A novel approach to synthesize a new generation of composite nanoparticles consisting of a photocatalytic shell of anatase-titania and a magnetic core of nickel ferrite has been adopted combining reverse micelle and chemical hydrolysis techniques. Titania is an effective anti-microbial agent that can be directly sprayed on infected areas of the human body or environment. Unfortunately, titania is an electrical insulator and is difficult to extract from the sprayed surface after treatment. The titania photocatalytic shell provides good antimicrobial capability that renders the bacteria inactive and removes the organic pollutants, while the nickel ferrite magnetic core enables controlled delivery of composite nanoparticles through the application of a small magnetic field, encouraging their application as removable anti-microbial photocatalyst nanoparticles.

  5. Structural and FMR lineshape analysis of Mn Zn-ferrite nanoparticles

    SciTech Connect

    Thirupathi, G.; Singh, R.

    2015-06-24

    The Mn{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} (MZF) nanoparticles of 3 to 5 nm size were synthesized by chemical coprecipitation method. The X-ray diffraction (XRD) patterns were well fitted with single phase spinel ferrite structure using Rietveld analysis as Fd-3m space group. The ferromagnetic resonance (FMR) spectra of MZF nanoparticles becomes more asymmetric with increase in particle size from 3 to 5 nm. The change in FMR line shape is attributed to the increase in ferromagnetic interactions and anisotropy in the system with increase in nanoparticles size. The decrease in total absorption of the FMR line with decreasing temperature at low temperatures indicates weak antiferromagnetic coupling between the octahedral and tetrahedral sublattices of the spinel ferrite system.

  6. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeary, Lucas W.; Moon, Ji-Won; Rawn, Claudia J.; Love, Lonnie J.; Rondinone, Adam J.; Thompson, James R.; Chakoumakos, Bryan C.; Phelps, Tommy J.

    2011-12-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, ZnyFe1-yFe2O4) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with ZnxFe1-xOOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (Ms) reported in the literature. The averaged Ms values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  7. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  8. Chemical methodologies for preparation of micron and nanometer scale ferrites--a mini review of patents.

    PubMed

    Pant, Prita; Bhuvaneswari, Sundararaman; Ghosh, Narendra Nath

    2008-01-01

    Ferrites, with wide range of chemical compositions, have been studied extensively over the years as they have a plethora of applications such as magnetic read/write heads, transformer cores, antennas, microwave absorbers, deflecting yoke, high frequency transformers, catalysis, pigments etc. Particles of submicron size have attracted the attention of scientists and technologists in different fields because they exhibit many unique physical properties as compared to those of bulk materials and are in great demand. Traditional high temperature solid-state method for preparation of ferrites is associated with several limitations. The quest for synthesis of ultrafine ferrite materials has led to the development of various preparative methods. Several patents disclose different wet chemical techniques namely sol-gel, coprecipitation, hydrothermal, combustion, spray pyrolysis etc for preparation of variety of ferrites for wide range of applications. In this mini-review, several patented chemical methods have been discussed critically with specific examples along with the effect of synthetic routes on particle size formation. Applications of ferrite powders with different compositions prepared by the above mentioned patented methods have also been discussed in this review. PMID:19076039

  9. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  10. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    PubMed Central

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  11. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles—Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-01

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10-14-10-15/cm3) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  12. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    SciTech Connect

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni{sub 0.7}Mg{sub 0.3}Fe{sub 2-x}Al{sub x}O{sub 4}(0.0{<=}x{<=}0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivity ({sigma}{sub ac}), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe{sup 2+} and Fe{sup 3+} as well as between Ni{sup 2+} and Ni{sup 3+} ions at B-sites. The dielectric loss tangent (tan {delta}) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  13. Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sakar, M.; Balakumar, S.; Saravanan, P.; Jaisankar, S. N.

    2013-02-01

    Bismuth ferrite (BFO) nanoparticles were synthesized by auto-ignition technique with and without adding ignition fuel such as citric acid. The presence of citric acid in the reaction mixture yielded highly-magnetic BFO/γ-Fe2O3 nanocomposite. When this composite was annealed to 650°C, a single phase BFO was formed with average crystallite size of 50 nm and showed weak ferromagnetic behavior. Conversely, the phase pure BFO prepared without adding citric acid exhibited antiferromagnetism because of its larger crystallite size of around 70 nm. The visible-light driven photocatalytic activity of both the pure BFO and BFO/γ-Fe2O3 nanocomposite were examined by degrading methyl orange dye. The pure BFO showed a moderate photocatalytic activity; while BFO/γ-Fe2O3 nanocomposite showed enhanced activity. This could be probably due to the optimal band gap ratio between BFO and γ-Fe2O3 phases reduced the recombination of electron-hole pairs which aided in the enhancement of photocatalytic activity.

  14. Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles

    SciTech Connect

    Sakar, M.; Balakumar, S.; Saravanan, P.; Jaisankar, S. N.

    2013-02-05

    Bismuth ferrite (BFO) nanoparticles were synthesized by auto-ignition technique with and without adding ignition fuel such as citric acid. The presence of citric acid in the reaction mixture yielded highly-magnetic BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite. When this composite was annealed to 650 Degree-Sign C, a single phase BFO was formed with average crystallite size of 50 nm and showed weak ferromagnetic behavior. Conversely, the phase pure BFO prepared without adding citric acid exhibited antiferromagnetism because of its larger crystallite size of around 70 nm. The visible-light driven photocatalytic activity of both the pure BFO and BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite were examined by degrading methyl orange dye. The pure BFO showed a moderate photocatalytic activity; while BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite showed enhanced activity. This could be probably due to the optimal band gap ratio between BFO and {gamma}-Fe{sub 2}O{sub 3} phases reduced the recombination of electron-hole pairs which aided in the enhancement of photocatalytic activity.

  15. Galactosylated manganese ferrite nanoparticles for targeted MR imaging of asialoglycoprotein receptor

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hyun; Heo, Dan; Lee, Eugene; Kim, Eunjung; Lim, Eun-Kyung; Lee, Young Han; Haam, Seungjoo; Suh, Jin-Suck; Huh, Yong-Min; Yang, Jaemoon; Park, Sahng Wook

    2013-11-01

    Cancer cells can express specific biomarkers, such as cell membrane proteins and signaling factors. Thus, finding biomarkers and delivering diagnostic agents are important in the diagnosis of cancer. In this study, we investigated a biomarker imaging agent for the diagnosis of hepatic cancers. The asialoglycoprotein receptor (ASGPr) was selected as a biomarker for hepatoma cells and the ASGPr-targetable imaging agent bearing a galactosyl group was prepared using manganese ferrite nanoparticles (MFNP) and galactosylgluconic acid. The utility of the ASGPr-targetable imaging agent, galactosylated MFNP (G-MFNP) was assessed by several methods in ASGPr-expressing HepG2 cells as target cells and ASGPr-deficient MCF7 cells. Physical and chemical properties of G-MFNP were examined using Fourier-transform infrared spectroscopy, dynamic light scattering, zeta potential analysis, and transmission electron microscopy. No significant cytotoxicity was observed in either cell line. Targeting ability was assessed using flow cytometry, magnetic resonance imaging, inductively coupled plasma atomic emission spectroscopy, absorbance analysis, dark-field microscopy, Prussian blue staining, and transmission electron microscopy. We demonstrated that G-MFNP target successfully and bind to ASGPr-expressing HepG2 cells specifically. We suggest that these results will be useful in strategies for cancer diagnoses based on magnetic resonance imaging.

  16. Spherical barium ferrite nanoparticles and hexaferrite single crystals for information data storage and RF devices

    NASA Astrophysics Data System (ADS)

    Jalli, Jeevan Prasad

    Since their discovery in the early 1950's hexagonal ferrites or hexaferrites have been studied for a long time because of their technological applications, such as microwave devices and high density magnetic recording media. In this dissertation efforts have been made to address these two applications by developing nanosized spherical barium ferrite particles for advanced magnetic recording media, and hexaferrite single crystals for low loss RF devices. Accordingly, this dissertation consists of two parts; part one spherical barium ferrite nanoparticles for information data storage media, and part two hexaferrite single crystals for RF devices. Part I. Spherical Barium Ferrite Nanoparticles Hexagonal barium ferrite (H-BaFe) nanoparticles are good candidates for particulate recording media due to their high uniaxial magnetocrystalline anisotropy, excellent chemical stability, and narrow switching field distribution. One major disadvantage of using H-BaFe particles for particulate recording media is their poor dispersion and a high degree of stacking that deteriorate the recording capability by creating large media noise and surface roughness. One way to solve and improve the recording performance of H-BaFe media is employing substantially nanosized spherical barium ferrite (S­BaFe) particles. Spherical shaped particles have low aspect ratio and only form a point-to-point contact, unlike the H-BaFe particles. Therefore, using S-BaFe particles not only decrease the degree of magnetic interaction between the particles but also can substantially increases the recording performance by improving the dispersion and SNR of the particles in the magnetic media. In this dissertation, two different approaches were employed successfully to synthesize S-BaFe nanoparticles in the range of 20-45 nm. Part II. Hexaferrite Single Crystals As wireless communication systems are flourishing, and the operating frequencies are increasing, there is a great demand for RF devices such as

  17. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    PubMed

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  18. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    PubMed Central

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  19. Structural and magnetic studies of the nickel doped CoFe2O4 ferrite nanoparticles synthesized by the chemical co-precipitation method

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Yadav, Nisha; Rana, Dinesh S.; Kumar, Parmod; Arora, Manju; Pant, R. P.

    2015-11-01

    The physical properties of nickel doped cobalt ferrite nanoparticles NixCo1-xFe2O4 (x=0.5, 0.75, 0.9) derived by the chemical co-precipitation route are characterized by XRD, FTIR, TEM, EPR, search coil and ac susceptibility techniques to develop stable kerosene based ferrofluid. XRD patterns and TEM images confirm the single phase formation of NixCo1-xFe2O4 nanoparticles whose crystallite size increases and lattice parameters decreases with the increase in Ni content. EPR resonance signal peak-to-peak line width and resonance field value decreases with the increase in Ni concentration in these samples. The broad nature of resonance signal is attributed to the ferromagnetic nature of the as-prepared nanoparticles and the increase in super exchange interaction among Ni2+-O-Co2+ facilitate the shifting of resonance value to lower field. The hysteresis loops of these nickel doped cobalt ferrite analogs exhibits highly magnetic nature of these nanoparticles at ambient temperature whose saturation magnetization, coerecivity and remanence magnetization decreases linearly with the increase in Ni-concentration in cobalt ferrite. The magnetic susceptibility with temperature curve shows increasing trend of blocking temperature with rise in nickel ion concentration.

  20. Rod-shaped polyaniline barium ferrite nanocomposite: preparation, characterization and properties

    NASA Astrophysics Data System (ADS)

    Li, Yuanxun; Zhang, Huaiwu; Liu, Yingli; Wen, Qiye; Li, Jie

    2008-03-01

    Rod-shaped polyaniline (PANI)-barium ferrite nanocomposite was synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The structure, morphology and properties of the nanocomposite were measured using powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. Different ferrite/PANI ratios were selected in order to study magnetic and conductive properties. The results indicated that there were some interactions between PANI chains and ferrite particles. The saturation magnetization and the coercivity varied with the ferrite content. The conductivity at room temperature decreased from 43.35 to 6.9 × 10-2 S cm-1 when the ferrite content changed from 0 to 50 wt%. The composite has excellent electromagnetic parameters which indicates potential application in high performance adsorbing materials in broadband and high frequency ranges. The polymerization mechanism and interactions in the nanocomposites were also studied.

  1. Inter-particle interactions and magnetism in manganese-zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2005-03-01

    Manganese-zinc ferrite (Mn xZn 1-xFe 2O 4) nanoparticles were synthesized by reverse micelle technique using two different surfactant media—(1) bis-(2-ethylhexl) sodium sulfosuccinate (AOT) and (2) mix of nonylphenol poly(oxyethylene) 5 and nonylphenol poly(oxyethylene) 9 (NP) followed by annealing of precursors to remove the surfactant coating and to obtain better crystalline phase. A comparison of the magnetic properties showed distinct differences in blocking temperature, coercivity and saturation magnetization. Radio-frequency (RF) transverse susceptibility (TS) measurements were in agreement with the static magnetization data. Our precise TS measurements further revealed features associated with anisotropy fields that were dependent on the grain size, crystallinity and inter-particle interactions. Overall, we have demonstrated that RF TS is an excellent probe of the dynamic magnetization and influence of effects such as crystallinity and inter-particle interactions in soft ferrite nanoparticles.

  2. Faraday rotation of cobalt ferrite nanoparticle polymer composite films at cryogenic temperatures.

    PubMed

    Demir, Veysi; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, Nasser

    2014-04-01

    This paper investigates the behavior of the Verdet constant for cobalt ferrite (CoFe₂O₄) nanoparticles polymer composite films at low temperatures using a 532 nm laser source. An experimental setup for Faraday rotation (FR) at low temperatures is introduced and FRs were measured at various temperatures. Verdet constants were deduced from the paramagnetic model for terbium gallium garnet glass where ~4× improvement was observed at 40° K for CoFe₂O₄ composite film. PMID:24787165

  3. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    PubMed

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided. PMID:27328722

  4. Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study

    PubMed Central

    Ghasemian, Zeinab; Shahbazi-Gahrouei, Daryoush; Manouchehri, Sohrab

    2015-01-01

    Background: Magnetic Nanoparticles (MNP) have been used for contrast enhancement in Magnetic Resonance Imaging (MRI). In recent years, research on the use of ferrite nanoparticles in T2 contrast agents has shown a great potential application in MR imaging. In this work, Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4-DMSA magnetic nanoparticles, CZF-MNPs and CZF-MNPs-DMSA, were investigated as MR imaging contrast agents. Methods: Cobalt zinc ferrite nanoparticles and their suitable coating, DMSA, were investigated under in vitro condition. Human prostate cancer cell lines (DU145 and PC3) with bare (uncoated) and coated magnetic nanoparticles were investigated as nano-contrast MR imaging agents. Results: Using T2-weighted MR images identified that signal intensity of bare and coated MNPs was enhanced with increasing concentration of MNPs in water. The values of 1/T2 relaxivity (r2) for bare and coated MNPs were found to be 88.46 and 28.80 (mM−1 s−1), respectively. Conclusion: The results show that bare and coated MNPs are suitable as T2-weighted MR imaging contrast agents. Also, the obtained r2/r1 values (59.3 and 50) for bare and coated MNPs were in agreement with the results of other previous relevant works. PMID:26140183

  5. Preparation and Characterization of Zinc-Containing Nickel Gallate Ferrite

    NASA Astrophysics Data System (ADS)

    Hashhash, A.; Imam, N. G.; Ismail, S. M.; Yehia, M.

    2015-10-01

    Polycrystalline Ni1- x Zn x FeGaO4 samples containing different amounts of zinc ( x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) were synthesized by solid-state reaction. Study of the crystal structure by x-ray diffraction (XRD) revealed peaks typical of a single-phase polycrystalline face-centered cubic structure (FCC). Elemental composition was determined by x-ray fluorescence (XRF) analysis. Fourier-transform infrared (FTIR) spectra contained two absorption bands related to the tetrahedral A and octahedral B sites of the spinel ferrite. Magnetization loops obtained by vibrating sample magnetometry (VSM) indicated that the saturation magnetization, M s, decreased gradually with increasing in Zn content ( x), and that coercivity H c was related to the microstructure of the Zn-doped samples. Mössbauer effect (ME) spectra of the samples were broad and magnetically split for x = 0.0 and 0.1 and quadruple doublets for the other Zn2+ concentrations. The dielectric constant ( ɛ') and dielectric loss tangent (tan δ) were also measured over wide ranges of frequency and temperature by use of the two probe method. The results were explained on the basis of cation-anion-cation and cation-cation interactions through the metal sites in the Ni-Zn-Ga ferrites.

  6. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy. PMID:25232657

  7. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Céspedes, Eva; Byrne, James M.; Farrow, Neil; Moise, Sandhya; Coker, Victoria S.; Bencsik, Martin; Lloyd, Jonathan R.; Telling, Neil D.

    2014-10-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are

  8. Preparation and electrical properties of dense micro-cermets made of nickel ferrite and metallic copper

    NASA Astrophysics Data System (ADS)

    Baco-Carles, Valérie; Pasquet, Isabelle; Laurent, Véronique; Gabriel, Armand; Tailhades, Philippe

    2009-08-01

    Dense micro-cermets made of nickel ferrites and copper micrometric particles were obtained from partial reduction under hydrogenated atmosphere at 350 °C of mixed copper nickel ferrites, and sintering in nitrogen at 980 °C. The small copper particles are homogeneous in size and well dispersed in the spinel oxide matrix. No exudation of copper metal was observed after sintering. The micro-cermets prepared are semi-conducting materials with electrical conductivity lying from 44 to 130 S/cm at 980 °C. Their overall characteristics make them interesting for inert anodes dedicated to aluminium electrolysis in melted cryolite.

  9. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Han; Wang, Sea-Fue; Tsai, An-Pang; Kameoka, Satoshi

    2015-05-01

    In this study, Fe3O4-supported Cu and Ni catalysts are prepared through reduction of Cu-Ni (Ni1-xCuxFe2O4) ferrites. The Cu-Ni ferrites, synthesized using a solid-state reaction method, are reduced at temperatures from 240 °C to 500 °C in a H2 atmosphere. All ferrites are characterized with granular morphology and a smooth particle surface before reduction. For the CuFe2O4, Ni0.5Cu0.5Fe2O4 and NiFe2O4 ferrites reduced at 240, 300, and 400 °C, respectively, nanosized Cu and/or Ni particles (5-32 nm) and mesopores (5-30 nm) are distributed and adhered on the surfaces of Fe3O4 supports. After increasing the reduction temperature of NiFe2O4 ferrite to 500 °C, the Ni particles and mesopores disappear from the Fe3O4 surfaces, which is due to the formation of a Fe-Ni alloy covering on the Fe3O4 surfaces. The CuFe2O4 ferrite after H2 reduction at 240 °C exhibits the highest H2 production rate of 149 ml STP/min g-cat at 360 °C. The existence of Ni content in the Cu-Ni ferrites enhances the reverse water gas shift reaction, and raises the CO selectivity while reducing the CO2 selectivity. Formation of a Fe-Ni alloy exaggerates the trend and poisons the H2 production rate.

  10. Influence of the morphology of ferrite nanoparticles on the directed assembly into magnetically anisotropic hierarchical structures.

    PubMed

    Lisjak, Darja; Jenuš, Petra; Mertelj, Alenka

    2014-06-10

    The effect of the morphology of ferrite nanoparticles on their assembly in a magnetic field was studied. Thin BaFe12O19 nanoplatelets were compared with isotropic, spherical or octahedral, CoFe2O4 nanoparticles, all of which were synthesized hydrothermally. The nanoplatelets and nanoparticles assembled into a variety of hierarchical structures from stable suspensions during the "drop deposition" and drying in a magnetic field. The alignment of the nanoparticles in the magnetic field was observed in situ with an optical microscope. The morphologies of the nanoparticles and the subsequent assemblies were observed with transmission and scanning electron microscopes, respectively. The magnetic properties of the nanoparticles and the assemblies were measured with a vibrating-sample magnetometer. The BaFe12O19 nanoplatelets aligned in the plane of the substrate and formed several-micrometers-thick, ordered films with a magnetic alignment of approximately 90%. The CoFe2O4 nanoparticles assembled into thick, dense columns with a height of several hundreds of micrometers and showed a magnetic alignment of up to 60%. The differences in the morphologies and the magnetic alignments between the BaFe12O19 and CoFe2O4 hierarchical structures could be explained in terms of the differences in the shape and magnetocrystalline structure of the specific nanoparticles. PMID:24841592

  11. Ni-Cu-Zn Ferrite Powder Prepared from Steel Pickled Liquor and Electroplating Waste Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Chung-Wen; Fu, Yen-Pei; Lin, Cheng-Hsiung

    2007-03-01

    In this study, we propose a new method of synthesizing Ni-Cu-Zn ferrite powder using steel pickled liquor and electroplating waste solutions as starting materials. It was found that the Ni-Cu-Zn ferrite powder prepared by a hydrothermal process from the waste solutions shows the formation of cubic ferrite with a saturation magnetization (Ms) of 31.5 emu/g and an intrinsic coercive force (Hci) of 19.3 Oe. Upon annealing at 750 °C for 2 h, the saturation magnetization increases to 52.6 emu/g and the intrinsic coercive force reaches 42.8 Oe. This useful method can promote the recycling of industrial waste solution and contribute to the preservation of the earth. Moreover, this method decreases the manufacturing cost in the treatment of the industrial waste solution for electroplating and steel industries.

  12. Adsorption of Pb(2+) from aqueous solution using spinel ferrite prepared from steel pickling sludge.

    PubMed

    Fang, Binbin; Yan, Yubo; Yang, Yang; Wang, Fenglian; Chu, Zhen; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2016-01-01

    In this paper, spinel ferrite with high crystallinity and high saturation magnetization was successfully prepared from steel pickling sludge by adding iron source and precipitator in the hydrothermal condition. The obtained spinel ferrite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), and Zeta potential methods and investigated as an adsorbent for removal of Pb(2+) from aqueous solution. Batch experiments were performed by varying the pH values, contact time, temperature and initial metal concentration. The result of pH impact showed that the adsorption of Pb(2+) was a pH dependent process, and the pH 5.8 ± 0.2 was found to be the optimum condition. The achieved experimental data were analyzed with various kinetic and isotherm models. The kinetic studies revealed that Pb(2+) adsorption onto spinel ferrite followed a pseudo-second order model, and the Langmuir isotherm model provided the perfect fit to the equilibrium experimental data. At different temperatures, the maximum Pb(2+) adsorption capacities calculated from the Langmuir equation were in the range of 126.5-175.4 mg/g, which can be in competition with other adsorbents. The thermodynamic results showed that the spinel ferrite could spontaneously and endothermically adsorb Pb(2+) from aqueous solution. The regeneration studies showed that spinel ferrite could be used five times (removal efficiency (%) >90%) by desorption with HNO3 reagent. PMID:26942534

  13. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    PubMed Central

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  14. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  15. Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Gautam, Nisha; Thirupathi, Gadipelly; Singh, Rajender

    2016-05-01

    The nanoparticles of CuFe2O4 (CF) and Cu0.8Zn0.2Fe2O4 (CZF) were synthesized using co-precipitation method to study the effect of Zn doping in Cu-ferrite. The X-ray diffraction (XRD) patterns were well fitted with two-phase structure using Rietveld analysis as Fd-3 m space group (spinel system) and C12/c1 space group (monoclinic system CuO-phase). The average crystallite size of the CF and CZF nanoparticles for spinel structure are 6 and 7 nm respectively. The spinel phase fraction is increased from 56% to 71% with Zn-doping of 20% in CF. The transmission electron micrograph analysis showed the narrow size distribution for CZF nanoparticles. The magnetization plots as a function of magnetic field (M (H)) of CF and CZF nanoparticles indicate superparamagnetic behavior. The magnetization is increased with Zn-doping in CF. The stable spinel Cu-ferrite can be obtained with Zn-doping in CF.

  16. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mameli, V.; Musinu, A.; Ardu, A.; Ennas, G.; Peddis, D.; Niznansky, D.; Sangregorio, C.; Innocenti, C.; Thanh, Nguyen T. K.; Cannas, C.

    2016-05-01

    The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 < x < 0.6), specifically prepared with similar particle sizes (~7 nm) and size distributions having the crystallite size (~6 nm) and capping agent amount of 15%. All samples have high saturation magnetisation (Ms) values at 5 K (>100 emu g-1). The increase in the zinc content up to x = 0.46 in the structure has resulted in an increase of the saturation magnetisation (Ms) at 5 K. High Ms values have also been revealed at room temperature (~90 emu g-1) for both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples and their heating ability has been tested. Despite a similar saturation magnetisation, the specific absorption rate value for the cobalt ferrite is three times higher than the Zn-substituted one. DC magnetometry results were not sufficient to justify these data, the experimental conditions of SAR and static measurements being quite different. The synergic combination of DC with AC magnetometry and 57Fe Mössbauer spectroscopy represents a powerful tool to get new insights into the design of suitable heat mediators for magnetic fluid hyperthermia.The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict

  17. Preparation of DPPE-Stabilized Gold Nanoparticles

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Muller, David P.; Gunter, Tammy

    2005-01-01

    An experiment is presented that introduces students to nanotechnology through the preparation of nanoparticles and their visualization using transmission electron microscopy (TEM). The experiment familiarizes the students with nonaqueous solvents, biphasic reactions, phase-transfer agents, ligands to stabilize growing nanoparticles, and bidentate…

  18. Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Mozaffari, M.; Amighian, J.; Darsheshdar, E.

    2014-01-01

    In this study Ni substituted cobalt ferrite nanoparticles (NixCo1-xFe2O4 where x=0.1, 0.3, 0.5, 0.7 and 0.9) were prepared by the sol-gel method. Phase identification of the samples was performed by the X-ray diffraction (XRD) method and the mean crystallite sizes of the samples were obtained using Scherrer's formula. The results show that a minimum calcining temperature of 500 °C is required to obtain single phase spinel structures for all the samples. It was observed that the lattice parameter of the samples decreases from 8.350 to 8.300 Å with increasing Ni content. Morphology of the samples was investigated by a field emission scanning electron microscope (FESEM). Also mean particle sizes of the samples were obtained from FESEM images and there no relation between particle size and Ni content was found. Magnetic measurements were carried out on the cold pressed samples and the results show that saturation magnetization decreases as x increases. Curie temperatures of the samples were determined and the results show that by increasing x values their Curie temperatures increase. This increase was explained based on the change in superexchange interactions between magnetic ions by substitution of Ni ions in Co ferrite. Also the coercive forces of the samples decreased with increasing x values which was explained by the changes in magnetocrystalline anisotropy.

  19. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles.

    PubMed

    Mameli, V; Musinu, A; Ardu, A; Ennas, G; Peddis, D; Niznansky, D; Sangregorio, C; Innocenti, C; Thanh, Nguyen T K; Cannas, C

    2016-05-21

    The possibility to finely control nanostructured cubic ferrites (M(II)Fe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 < x < 0.6), specifically prepared with similar particle sizes (∼7 nm) and size distributions having the crystallite size (∼6 nm) and capping agent amount of 15%. All samples have high saturation magnetisation (Ms) values at 5 K (>100 emu g(-1)). The increase in the zinc content up to x = 0.46 in the structure has resulted in an increase of the saturation magnetisation (Ms) at 5 K. High Ms values have also been revealed at room temperature (∼90 emu g(-1)) for both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples and their heating ability has been tested. Despite a similar saturation magnetisation, the specific absorption rate value for the cobalt ferrite is three times higher than the Zn-substituted one. DC magnetometry results were not sufficient to justify these data, the experimental conditions of SAR and static measurements being quite different. The synergic combination of DC with AC magnetometry and (57)Fe Mössbauer spectroscopy represents a powerful tool to get new insights into the design of suitable heat mediators for magnetic fluid hyperthermia. PMID:27121263

  20. Investigations of cations distributions and morphology of cobalt ferrite magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chandekar, Kamlesh V.; Kant, K. Mohan

    2016-05-01

    Cobalt ferrite nanoparticles were synthesized by co-precipitation method and structural properties was investigated by X-ray diffraction (XRD) at room temperature. X-ray diffraction data was used to determine lattice parameter, X-ray density, distributions of cations among tetrahedral and octahedral sites, site radii, ionic radii and bond length of inverse spinel cobalt ferrite. XRD analysis revealed crystallinity and high intense peak correspond to cubic inverse spinel structure with average crystalline size measured by X-ray line profile fitting was found to be 13nm for most intense peak (311). The surface morphology and microstructural feature was investigated by TEM analysis which revealed that particle size varying from 12-22 nm with selected electron diffraction pattern (SAED).

  1. Online monitoring of cell metabolism to assess the toxicity of nanoparticles: the case of cobalt ferrite.

    PubMed

    Mariani, Valentina; Ponti, Jessica; Giudetti, Guido; Broggi, Francesca; Marmorato, Patrick; Gioria, Sabrina; Franchini, Fabio; Rauscher, Hubert; Rossi, François

    2012-05-01

    Different in vitro assays are successfully used to determine the relative cytotoxicity of a broad range of compounds. Nevertheless, different research groups have pointed out the difficulty in using the same tests to assess the toxicity of nanoparticles (NPs). In this study, we evaluated the possible use of a microphysiometer, Bionas 2500 analyzing system Bionas GmbH®, to detect in real time changes in cell metabolisms linked to NPs exposure. We focused our work on response changes of fibroblast cultures linked to exposure by cobalt ferrite NPs and compared the results to conventional in vitro assays. The measurements with the microphysiometer showed a cobalt ferrite cytotoxic effect, confirmed by the Colony Forming Efficiency assay. In conclusion, this work demonstrated that the measurement of metabolic parameters with a microphysiometer is a promising method to assess the toxicity of NPs and offers the advantage to follow on-line the cell metabolic changes. PMID:21495878

  2. Method for preparing spherical ferrite beads and use thereof

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.

    2002-01-01

    The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.

  3. Large Tunability of Néel Temperature by Growth-Rate-Induced Cation Inversion in Mn-ferrite Nanoparticles

    SciTech Connect

    Yang, A.; Chinnasamy, C; Greneche, J; Chen, Y; Yoon, S; Hsu, K; Vittoria, C; Harris, V

    2009-01-01

    The tuning of Neel temperature by greater than 100 K in nanoparticle Mn-ferrite was demonstrated by a growth-rate-induced cation inversion. Mn-ferrite nanoparticles, having diameters from 4 to 50 nm, were synthesized via coprecipitation synthesis. The Neel temperature (TN) increased inversely to the cation inversion parameter, {delta} (i.e., defined as (Mn1-{delta}Fe{delta})tet[Mn{delta}Fe2-{delta}]octO4). Concomitantly, TN increased with increased particle growth rate and particle size. These results unambiguously establish cation inversion as the dominant mechanism in modifying the superexchange leading to enhanced TN. The ability to tailor TN enables greater flexibility in applying nanoparticle ferrites in emerging technologies.

  4. New methods for lipid nanoparticles preparation.

    PubMed

    Corrias, Francesco; Lai, Francesco

    2011-09-01

    Lipid nanoparticles have attracted many researchers during recent years due to the excellent tolerability and advantages compared to liposomes and polymeric nanoparticles. High pressure homogenization is the main technique used to prepare solid lipid nanoparticles (SLN) encapsulating different type of drugs, however this method involves some critical process parameters. For this reason and in order to overcome patented methods, different production techniques for lipid nanoparticles have been widely investigated in recent years (last decade). The paper reviews new methods for lipid nanoparticles preparation, and their recent applications in pharmaceutical field, especially focusing on coacervation, microemulsions templates, supercritical fluid technology, phase-inversion temperature (PIT) techniques. References of the most relevant literature and patents published by various research groups on these fields are provided. PMID:21834772

  5. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE PAGESBeta

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  6. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  7. Synthesis, Structural, Electrical and Magnetic Studies of Ni- Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Godbole, Bhavana; Badera, Nitu; Shrivastava, S. B.; Jain, Deepti; Chandra, L. S. Sharath; Ganesan, V.

    Mono-dispersed NiFe2O4 nanoparticles have been synthesized using a stable ferric salt of FeCl3 with co-precipitation technique, for study of their structural, morphological and magnetic properties. The XRD pattern conforms the formation of FCC structure with the lattice constant 8.31Ao. The crystallite size was found to increase with the bath temperature ranging from 33 nm to 55 nm. The AFM results revealed that uniform disc shaped particles were obtained. The resistivity measurements show a metal like to semiconductor transition, which depends on the size of the grains. The magnetic study reveals that saturation magnetization increases with the grain thickness.

  8. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  9. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    SciTech Connect

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  10. [Superparamagnetic Cobalt Ferrite Nanoparticles "Blow up" Spatial Ordering of Double-stranded DNA Molecules].

    PubMed

    Yevdokimov, Yu M; Pershina, A G; Salyanov, V I; Magaeva, A A; Popenko, V I; Shtykova, E V; Dadinova, L A; Skuridin, S G

    2015-01-01

    The formation of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules, handled by positively charged superparamagnetic cobalt ferrite nanoparticles, as well as action of these nanoparticles on DNA dispersion, are considered. The binding of magnetic nanoparticles to the linear double-stranded DNA in solution of high ionic strength (0.3 M NaCl) and subsequent phase exclusion of these complexes from polyethylene glycol-containing solutions lead to their inability to form dispersions, whose particles do possess the spatially twisted arrangement of neighboring double-stranded DNA molecules. The action of magnetic nanoparticles on DNA dispersion (one magnetic nanoparticle per one double-stranded DNA molecule) results in such "perturbation" of DNA structure at sites of magnetic nanoparticles binding that the regular spatial structure of DNA dispersion particles "blows up"; this process is accompanied by disappearance of both abnormal optical activity and characteristic Bragg maximum on the small-angle X-ray scattering curve. Allowing with the fact that the physicochemical properties of the DNA liquid-crystalline dispersion particles reflect features of spatial organization of these molecules in chromosomes of primitive organisms, it is possible, that the found effect can have the relevant biological consequences. PMID:26349206

  11. Study of the preparation of NI-Mn-Zn ferrite using spent NI-MH and alkaline Zn-Mn batteries

    NASA Astrophysics Data System (ADS)

    Xi, Guoxi; Xi, Yuebin; Xu, Huidao; Wang, Lu

    2016-01-01

    Magnetic nanoparticles of Ni-Mn-Zn ferrite have been prepared by a sol-gel method making use of spent Ni-MH and Zn-Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The Ms values increase and the Hc values decrease as the size of the Ni-Mn-Zn ferrite particles increases.

  12. Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz

    NASA Astrophysics Data System (ADS)

    Ohlan, Anil; Singh, Kuldeep; Chandra, Amita; Dhawan, S. K.

    2008-08-01

    Conducting polymer nanocomposites of polyphenyl amine with barium ferrite nanoparticles (50-70nm) have been synthesized via emulsion polymerization. The complex permittivity, permeability, and microwave absorption properties of the composite were studied in the 12.4-18GHz (Ku band) frequency range. The composite has shown high shielding effectiveness due to absorption (SEA) of 28.9dB (˜99.9%), which strongly depends on dielectric loss, magnetic permeability, and volume fraction of barium ferrite nanoparticles. The high value of SEA suggests that these composites can be used as a promising radar absorbing materials.

  13. Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration

    SciTech Connect

    Velhal, Ninad B.; Patil, Narayan D.; Puri, Vijaya R.; Shelke, Abhijeet R.; Deshpande, Nishad G.

    2015-09-15

    Nickel substituted cobalt ferrite nanoparticles with composition Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) was synthesized using simple, low temperature auto combustion method. The X-ray diffraction patterns reveal the formation of cubic phase spinel structure. The crystallite size varies from 30-44 nm with the nickel content. Porous and agglomerated morphology of the bulk sample was displayed in the scanning electron microscopy. Micro Raman spectroscopy reveals continuous shift of E{sub g} and E{sub g}(2) stokes line up to 0.8 Ni substitution. The dispersion behavior of the dielectric constant with frequency and the semicircle nature of the impedance spectra show the cobalt nickel ferrite to have high resistance. The ferromagnetic nature is observed in all the samples, however, the maximum saturation magnetization was achieved by the 0.4 Ni substituted cobalt ferrite, which is up to the 92.87 emu/gm at 30K.

  14. Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Sarwer, W.; Nadeem, K.; Kamran, M.; Mumtaz, M.; Krenn, H.; Letofsky-Papst, I.

    2016-06-01

    Surface effects in cobalt ferrite (CoFe2O4) nanoparticles dispersed in a silica (SiO2) matrix were studied by using AC and DC magnetization. Nanoparticles with different concentration of SiO2 were synthesized by using sol-gel method. Average crystallite size lies in the range 25-34 nm for different SiO2 concentration. TEM image showed that particles are spherical and elongated in shape. Nanoparticles with higher concentration of SiO2 exhibit two peaks in the out-of-phase ac-susceptibility. First peak lies in the high temperature regime and corresponds to average blocking temperature of the nanoparticles. Second peak lies in the low temperature regime and is attributed to surface spin-glass freezing in these nanoparticles. Low temperature peak showed SiO2 concentration dependence and was vanished for large uncoated nanoparticles. The frequency dependence of the AC-susceptibility of low temperature peak was fitted with dynamic scaling law which ensures the presence of spin-glass behavior. With increasing applied DC field, the low temperature peak showed less shift as compared to blocking peak, broaden, and decreased in magnitude which also signifies its identity as spin-glass peak for smaller nanoparticles. M-H loops showed the presence of more surface disorder in nanoparticles dispersed in 60% SiO2 matrix. All these measurements revealed that surface effects become strengthen with increasing SiO2 matrix concentration and surface spins freeze in to spin-glass state at low temperatures.

  15. Highly coercive cobalt ferrite nanoparticles-CuTl-1223 superconductor composites

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Qasim, Irfan; Khan, Shahid A.; Nadeem, K.; Waqee-ur-Rehman, M.; Mumtaz, M.; Zeb, F.

    2015-03-01

    We explored the effects of highly coercive cobalt ferrite (CoFe2O4) nanoparticles addition on structural, morphological, and superconducting properties of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223} matrix. Series of (CoFe2O4)x/CuTl-1223 (x=0 2.0 wt%) composites samples were synthesized and were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) absorption spectroscopy, and dc-resistivity versus temperature measurements. The magnetic behavior of CoFe2O4 nanoparticles was determined by MH-loops with the help of superconducting quantum interference device (SQUID). MH-loops analysis showed that these nanoparticles exhibit high saturation magnetization (86 emu/g) and high coercivity (3350 Oe) at 50 K. The tetragonal structure of host CuTl-1223 superconducting matrix was not altered after the addition of CoFe2O4 nanoparticles, which gave us a clue that these nanoparticles had occupied the inter-granular sites (grain-boundaries) and had filled the pores. The increase of mass density with increasing content of these nanoparticles in composites can also be an evidence of filling up the voids in the matrix. The resistivity versus temperature measurements showed an increase in zero resistivity critical {Tc(0)}, which could be most probably due to improvement of weak-links by the addition of these nanoparticles. But the addition of these nanoparticles beyond an optimum level caused the agglomeration and produced additional stresses in material and suppressed the superconductivity.

  16. Screen-printing of ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Dannangoda, Chamath; Galstyan, Eduard; Litvinov, Dmitri

    2012-05-01

    The feasibility of screen-printing process of hard ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides (CCSO) is investigated. In CCSO, the exothermic oxidation of carbon generates a smolder thermal reaction wave that propagates through the solid reactant mixture converting it to the desired oxides. The complete conversion of hexaferrites occurs using reactant mixtures containing 11 wt. % of carbon. The BaFe12O19 and SrFe12O19 hexaferrites had hard magnetic properties with coercivity of 3 and 4.5 kOe, respectively. It was shown that the synthesized nanoparticles could be used to fabricate permanent magnet structures by consolidating them using screen-printing techniques.

  17. Dielectric properties of polymer composites with the addition of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kisiel, A.; Konieczny, M.; Zabska, M.

    2016-02-01

    The aim of the work was examination of the dielectric properties of a new type of polymer nanocomposites based on PVDF (polyvinylidene fluoride), or a copolymer P(VDF-HFP) with addition of ferrite nanoparticles. The addition of nanofillers leads not only to the formation of polar ß-phase of PVDF, which shows unique piro-, piezo- and ferroelectric properties used in many applications, but also affects the dielectric and magnetoelectric properties of these nanocomposites. In the work the dielectric properties of polymer composites, such as volume resistivity, permittivity and dielectric loss were investigated Measurements of dielectric parameters were performed in a climate chamber at temperature range of 25-100°C, at selected frequencies in the range 20-200 kHz. The results obtained are valuable not only for an application of this type of nanocomposites in various types of transducers, but also for analysis of the physical phenomena occurring in the polymer composites doped with nanoparticles.

  18. An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn-ferrite nanoparticles.

    PubMed

    Antic, Bratislav; Perovic, Marija; Kremenovic, Aleksandar; Blanusa, Jovan; Spasojevic, Vojislav; Vulic, Predrag; Bessais, Lotfi; Bozin, Emil S

    2013-02-27

    The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc-ferrite, tuned by thermal annealing of ∼4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mössbauer spectroscopy experiments indicated a superparamagnetic relaxation in ∼4 nm nanoparticles, albeit with different freezing temperatures T(f) of 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles ('superspins'). Additional confirmation for the presence of interparticle interactions was found from the fit of the T(f)(H) dependence to the AT line, from which a value of the anisotropy constant of K(eff) = 5.6 × 10(5) erg cm(-3) was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature T(f)(f) was satisfactory described by both Vogel-Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at T(f). PMID:23343510

  19. An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn-ferrite nanoparticles

    SciTech Connect

    Antic, Bratislav; Perovic, Marija; Kremenovic, Aleksandar; Blanusa, Jovan; Spasojevic, Vojislav; Vulic, Predrag; Bessais, Lotfi; Bozin, Emil S

    2015-09-30

    The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc–ferrite, tuned by thermal annealing of ~4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mossbauer spectroscopy experiments indicated a superparamagnetic relaxation in ~4 nm nanoparticles, albeit with different freezing temperatures Tf of 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles (‘superspins’). Additional confirmation for the presence of interparticle interactions was found from the fit of the Tf(H) dependence to the AT line, from which a value of the anisotropy constant of Keff = 5.6 × 105 erg cm-3 was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature Tf(ƒ) was satisfactory described by both Vogel–Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at Tf .

  20. Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects

    PubMed Central

    Nunes, Allancer DC; Ramalho, Laylla S; Souza, Álvaro PS; Mendes, Elizabeth P; Colugnati, Diego B; Zufelato, Nícholas; Sousa, Marcelo H; Bakuzis, Andris F; Castro, Carlos H

    2014-01-01

    Magnetic nanoparticles (MNPs) have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs); tripolyphosphate-coated (PhMNPs); and bare magnetic nanoparticles (BaMNPs). The samples were characterized by vibrating sample magnetometer, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. The direct effects of the MNPs on cardiac contractility were evaluated in isolated perfused rat hearts. The CiMNPs, but not PhMNPs and BaMNPs, induced a transient decrease in the left ventricular end-systolic pressure. The PhMNPs and BaMNPs, but not CiMNPs, induced an increase in left ventricular end-diastolic pressure, which resulted in a decrease in a left ventricular end developed pressure. Indeed, PhMNPs and BaMNPs also caused a decrease in the maximal rate of left ventricular pressure rise (+dP/dt) and maximal rate of left ventricular pressure decline (−dP/dt). The three MNPs studied induced an increase in the perfusion pressure of isolated hearts. BaMNPs, but not PhMNPs or CiMNPs, induced a slight vasorelaxant effect in the isolated aortic rings. None of the MNPs were able to change heart rate or arterial blood pressure in conscious rats. In summary, although the MNPs were able to induce effects ex vivo, no significant changes were observed in vivo. Thus, given the proper dosages, these MNPs should be considered for possible therapeutic applications. PMID:25031535

  1. Synthesis, structural and magnetic behavior studies of Zn-Al substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zare, Samad; Ati, Ali A.; Dabagh, Shadab; Rosnan, R. M.; Othaman, Zulkafli

    2015-06-01

    A series of nano-sized Zn-Al substituted cobalt ferrite Co(1-x)Zn(x)Fe2-xAlxO4 with 0.0 ⩽ x ⩽ 1.0 have been synthesized by chemical co-precipitation technique. The XRD spectra revealed the single phase spinel structure of Co(1-x)Zn(x)Fe2-xAlxO4 with average size of nanoparticles are estimated to be 17-30 nm. These are small enough to achieve the suitable signal to noise ratio, which is important in the high-density recording media. The FTIR spectra show the characteristic of two strong absorption bands at 560-600 cm-1 corresponds to the intrinsic stretching vibrations of the metal at the tetrahedral site and lowest band is observed at 370-410 cm-1 corresponds to octahedral site. The crystalline structures of nanoparticles composite were characterized by Field Emission Scanning Electron Microscopy (FE-SEM). The magnetic properties such as saturation magnetization, remanence magnetization, and coercivity were calculated from the hysteresis loops. Saturation magnetization were found to increase up to x = 0.4 while remanence magnetization and coercivity continuously decrease with increasing Zn-Al concentration. The stability in coercivity while increase in saturation magnetization confirms that the Co0.6Zn0.4Fe1.6Al0.4O4 ferrite sample is suitable for applications in high-density recording media.

  2. Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Bashiri, Marziyeh; Moeen, Shirin Jebeli

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Nickel–zinc ferrite magnetic nanoparticle (NZFMN) was synthesized and characterized. ► Dye degradation by photocatalytic ozonation using NZFMN was studied. ► Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. ► Nitrate, sulfate and chloride ions were detected as mineralization products of dyes. ► NZFMN was an effective magnetic nanocatalyst to degrade dyes. -- Abstract: In this paper, nickel–zinc ferrite magnetic nanoparticle (NZFMN) was synthesized and its dye degradation ability using photocatalytic ozonation was investigated. The NZFMN was characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), Fourier transforms infrared (FTIR) and alternative gradient force magnetometer (AGFM). Reactive Red 198 (RR198) and Direct Green 6 (DG6) were used as dye models. UV–vis and ion chromatography (IC) analyses were employed to study dye degradation. The effects of operational parameters on decolorization such as NZFMN dosage, dye concentration, salt and pH were studied. RR198 and DG6 were completely decolorized (100%) by photocatalytic ozonation using NZFMN. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates. Nitrate, sulfate and chloride ions were detected as mineralization products of dyes. Results showed that the photocatalytic ozonation using NZFMN was a very effective method for dye degradation.

  3. Influence of size/crystallinity effects on the cation ordering and magnetism of α-lithium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jović, N.; Prekajski, M.; Kremenović, A.; Jančar, B.; Kahlenberg, V.; Antić, B.

    2012-02-01

    α-lithium ferrite (Li0.5Fe2.5O4) nanoparticles have been prepared using two synthesis routes: citrate gel decomposition as well as the Pechini method. Analysis of HRTEM images of the particles showed that they have a core/shell structure, an average size of ˜10 nm and stacking faults parallel to the (110) planes. In both samples, the distribution of the Li and Fe cations was found to be partially ordered on the octahedral sites (Wyckoff positions 4b and 12d of space group P4332). According to literature data, Li0.5Fe2.5O4 should adopt a disordered spinel structure (so called β-phase, space group Fd3¯m) for crystallites of 10 nm or less in size. In this study it is shown that (a) the symmetry of the Li0.5Fe2.5O4 nanoparticles depends on the degree of their crystallinity and (b) the ordered crystal structures can be formed even for crystallites of 5-6 nm in size. By fitting the room temperature Mössbauer spectra it was obtained that the hyperfine field values are lower in the sample synthesized by the Pechini method. The Pechini process probably resulted in larger distortions of the cation environments than the citrate gel decomposition method. The saturation magnetization in turn was higher for the material obtained by the gel decomposition approach.

  4. Method to prepare nanoparticles on porous mediums

    DOEpatents

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  5. Study of Ni-Zn Ferrite Prepared From Citrate Precursor

    NASA Astrophysics Data System (ADS)

    Sudheesh, V. D.; Vinesh, A.; Lakshmi, N.; Venugopalan, K.

    2011-07-01

    Ni0.5Zn0.5Fe2O4 prepared using citrate precursor method and calcined at different temperatures is studied using X-ray diffraction (XRD), Mössbauer spectroscopy and DC magnetization. Magnetization study shows that critical size of the sample is around 50 nm. Mössbauer studies confirm that there is no change in the cation distribution with calcining and also that a particle size distribution exists in samples calcined at higher temperatures. Thus the change in magnetic properties can be entirely attributed to structural parameters due to variation in size leading to different core-spin ratio, grain boundary effects etc.

  6. Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications

    SciTech Connect

    Giri, Jyotsnendu; Pradhan, Pallab; Sriharsha, T.; Bahadur, D.

    2005-05-15

    Water-based ferrofluids of substituted ferrites Fe{sub 1-x}Mn{sub x}Fe{sub 2}O{sub 4} (0{<=}x{<=}1) have been prepared by the co-precipitation method and characterized. Particles are superparamagnetic with an average particle size of about 10-12 nm. The specific absorption rate (SAR) was measured by calorimetric measurement at a frequency of 300 kHz and a field of 10-45 kA/m. The variation of SAR and magnetization of Fe{sub 1-x}Mn{sub x}Fe{sub 2}O{sub 4} with Mn concentration shows similar dependence. Innocuousness studies of MnFe{sub 2}O{sub 4} ferrofluids to the living cells have been carried out with BHK-21 cells. In vitro studies showed that threshold biocompatible concentration is dependent on the nature of ferrites and coating.

  7. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer

    NASA Astrophysics Data System (ADS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-04-01

    Comparative evaluation of two different methods of magnetic liposomes preparation, namely thin film hydration (TFH) and double emulsion (DE) with different molar ratios of egg-phosphatidyl choline (egg-PC) and cholesterol using lauric acid coated manganese ferrite-based aqueous magnetic fluid, is reported. TFH was found to be a better method of encapsulation and TFH 2:1 (egg-PC: cholesterol) magnetic liposomes showed the highest encapsulation efficiency and comparable heating ability to that of magnetic fluids. Stealth TFH 2:1 magnetic liposomes containing DSPE-PEG 2000 were three-fold more cytocompatible as compared to the magnetic fluid. Stealth TFH 2:1 manganese ferrite-based magnetic liposomes might be useful for hyperthermia treatment of cancer.

  8. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Kumar, R. S.; Grinblat, F.; Aphesteguy, J. C.; Saccone, F. D.; Errandonea, D.

    2016-06-01

    We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. This indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.

  9. Synthesis of cobalt ferrite nanoparticles from thermolysis of prospective metal-nitrosonaphthol complexes and their photochemical application in removing methylene blue

    NASA Astrophysics Data System (ADS)

    Tavana, Jalal; Edrisi, Mohammad

    2016-03-01

    In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by two novel methods. The first method is based on the thermolysis of metal-NN complexes. In the second method, a template free sonochemical treatment of mixed cobalt and iron chelates of α-nitroso-β-naphthol (NN) was applied. Products prepared through method 1 were spherical, with high specific surface area (54.39 m2 g-1) and small average crystalline size of 13 nm. However, CoFe2O4 nanoparticles prepared by method 2 were in random shapes, a broad range of crystalline sizes and a low specific surface area of 25.46 m2 g-1 though highly pure. A Taguchi experimental design was implemented in method 1 to determine and obtain the optimum catalyst. The structural and morphological properties of products were investigated by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller and dynamic laser light scattering. The crystalline size calculations were performed using Williamson-Hall method on XRD spectrum. The photocatalytic activity of the optimum nanocrystalline cobalt ferrite was investigated for degradation of a representative pollutant, methylene blue (MB), and visible light as energy source. The results showed that some 92% degradation of MB could be achieved for 7 h of visible light irradiation.

  10. Nanocrystalline magnesium ferrite prepared for photocatalytic applications by using the polymerized complex method

    NASA Astrophysics Data System (ADS)

    Dom, Rekha; Borse, Pramod H.; Hong, Kyong-Soo; Choi, Seyong; Lee, Byeong Seob; Ha, Myoung Gyu; Kim, Jong Pil; Jeong, Euh Duck; Kim, Hyun Gyu

    2015-11-01

    Magnesium ferrite (MgFe2O4) exhibiting a spinel phase was synthesized by using the polymerized complex and the solid-state reaction methods, and its physico-chemical properties were studied to explore the water-splitting under visible light photons. The study revealed the potential for using MgFe2O4 particles for photo-catalytic application. The structural study provided information on ferrite nano-crystallites fabricated by using the polymer complex method. The morphological studies demonstrated that, in contrast to the solid-state reaction method, a homogenous, monodispersed ferrite photocatalyst could be formed by using the polymerized complex method. The optical study revealed a larger visible-light absorption capability for the nanosized MgFe2O4 photocatalysts prepared by using the polymer complex methods, and indicated a red-shift of the bandgap by 0.06 eV as compared to the bandgap of the bulk. These nanocrystallites were highly photoactive with respect to the photodegradation and photocatalytic hydrogen evolution applications. The electrochemical analysis showed that they exhibited favorable bandedge positions suitable for photocatalytic H2 evolution. Thus, nanocrystalline MgFe2O4 is an active visible-light photocatalyst, that might be useful for the decomposition of water.

  11. Preparation of Hydrochlorothiazide Nanoparticles for Solubility Enhancement.

    PubMed

    Vaculikova, Eliska; Cernikova, Aneta; Placha, Daniela; Pisarcik, Martin; Peikertova, Pavlina; Dedkova, Katerina; Devinsky, Ferdinand; Jampilek, Josef

    2016-01-01

    Nanoparticles can be considered as a useful tool for improving properties of poorly soluble active ingredients. Hydrochlorothiazide (Class IV of the Biopharmaceutical Classification System) was chosen as a model compound. Antisolvent precipitation-solvent evaporation and emulsion solvent evaporation methods were used for preparation of 18 samples containing hydrochlorothiazide nanoparticles. Water solutions of surfactants sodium dodecyl sulfate, Tween 80 and carboxymethyl dextran were used in mass concentrations of 1%, 3% and 5%. Acetone and dichloromethane were used as solvents of the model compound. The particle size of the prepared samples was measured by dynamic light scattering. The selected sample of hydrochlorothiazide nanoparticles stabilized with carboxymethyl dextran sodium salt with particle size 2.6 nm was characterized additionally by Fourier transform mid-infrared spectroscopy and scanning electron microscopy. It was found that the solubility of this sample was 6.5-fold higher than that of bulk hydrochlorothiazide. PMID:27490530

  12. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  13. Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method.

    PubMed

    Mazarío, E; Herrasti, P; Morales, M P; Menéndez, N

    2012-09-01

    Uniform size cobalt ferrite nanoparticles have been synthesized in one step using an electrochemical technique. Synthesis parameters such as the current density, temperature and stirring were optimized to produce pure cobalt ferrite. The nanoparticles have been investigated by means of magnetic measurements, Mössbauer spectroscopy, x-ray powder diffraction and transmission electron microscopy. The average size of the electrosynthesized samples was controlled by the synthesis parameters and this showed a rather narrow size distribution. The x-ray analysis shows that the CoFe(2)O(4) obtained presents a totally inverse spinel structure. The magnetic properties of the stoichiometric nanoparticles show ferromagnetic behavior at room temperature with a coercivity up to 6386 Oe and a saturation magnetization of 85 emu g(-1). PMID:22894928

  14. Amperometric ascorbic acid sensor based on doped ferrites nanoparticles modified glassy carbon paste electrode.

    PubMed

    Dimitrijević, Teodora; Vulić, Predrag; Manojlović, Dragan; Nikolić, Aleksandar S; Stanković, Dalibor M

    2016-07-01

    In this study, a novel electrochemical sensor for quantification of ascorbic acid with amperometric detection in physiological conditions was constructed. For this purpose, cobalt and nickel ferrites were synthesized using microwave and ultrasound assistance, characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD), and used for modification of glassy carbon paste electrode (GCPE). It was shown that introducing these nanoparticles to the structure of GCPE led to increasing analytical performance. Co ferrite modified GCPE (CoFeGCPE) showed better characteristics toward ascorbic acid sensing. The limit of detection (LOD) obtained by sensor was calculated to be 0.0270 mg/L, with linear range from 0.1758 to 2.6010 mg/L. This sensor was successfully applied for practical analysis, and the obtained results demonstrated that the proposed procedure could be a promising replacement for the conventional electrode materials and time-consuming and expensive separation methods. PMID:27059753

  15. Effect of Ni2+ substitution on structural and magnetic properties of Ni-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Satish, A.; Seshubai, V.; Sastry, D. L.; Caltun, O. F.

    2015-05-01

    A series of co-precipitated NixZn1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles heat treated at 200 °C were produced in order to understand the influence of substitution level on structural and magnetic properties including magnetocrystalline anisotropy. The XRD, FE-SEM, VSM and FC-ZFC techniques were used to characterize the samples. It is observed that as Ni2+ concentration increases crystallite size (D), saturation magnetization (Ms) and blocking temperature (TB) and decreases coercive field (Hc). All particles exhibit superparamagnetism at room temperature and hence lie in the single domain range. The magnetic anisotropy constant (K) is estimated to be maximum for Ni0.5Zn0.5Fe2O4 sample, whose particle size is the smallest. The results are interpreted presuming the presence of core shell interactions and/or cation redistribution that influence the magnetic properties of these ferrite nano particles.

  16. Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit.

    PubMed

    Hanini, Amel; Massoudi, Mohamed El; Gavard, Julie; Kacem, Kamel; Ammar, Souad; Souilem, Ouajdi

    2016-07-01

    The increasing use of engineered nanomaterials in commercial manufacturing and consumer products presents an important toxicological concern. Superparamagnetic zinc-cobalt ferrite nanoparticles (SFN) emerge as a promising tool for early cancer diagnostics and targeted therapy. However, toxicity and biological activities of SFN should be evaluated in vitro and in vivo in animal before any clinical application. In this study we aim to synthesize and characterize such objects using polyol process in order to assess its nanotoxicological profile in vitro as well as in vivo. The produced particles consist of a cobalt-zinc ferrite phase corresponding to the Zn0.8Co0.2Fe2O4 composition. They are isotropic in shape single crystals of 8nm in size. The thermal variation of their dc-magnetization confirms their superparamagnetic behavior. In vitro, acute exposure (4h) to them (100μgmL(-1)) induced an important decrease of healthy Human Umbilical Vein Endothelial Cells (HUVECs) viability. In vivo investigation in New-Zealand rabbits revealed that they lead to tissue toxicities; in lungs, liver and kidneys. Our investigations report, for the first time as far as we know, that SFN exhibit harmful properties in human cells and mammals. PMID:27375215

  17. Structural characterization of microwave-synthesized zinc-substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Parmar, Harshida; Desai, Rucha; Upadhyay, R. V.

    2011-07-01

    Microwave combustion technique modified by post treatment procedure is used to synthesize single-phase spinel ferrites of cobalt, zinc, and substituted magnetic nanoparticles of typical size 390 Å. The post treatment does not alter the crystal structure but increases the crystallinity. This is confirmed by powder x-ray diffraction and Fourier Transform Infrared (FTIR) studies. Citric acid is used as a fuel. The fresh synthesized sample shows an impurity phase in x-ray and in FTIR. This is due to the unreacted citrate molecule adsorbed on the particle surface. It is shown that by treating the sample with 0.1 M HCl, we can eliminate the impurity phase, and one can obtain a pure single phase. The magnetization at 8 kOe increases by nearly 8% after the removal of impurity. In order to remove surface adsorbed OH- ion, samples are treated with NaCl and heated to 200°C for four hours. The XRD result indicates that after the treatment neither the crystallite size nor the distribution changes, but it removes OH- ion. This is also confirmed by FTIR analysis. Thus, this modified technique can be used to synthesize pure nanocrystalline samples of spinel ferrites.

  18. Synergetic effect of size and morphology of cobalt ferrite nanoparticles on proton relaxivity.

    PubMed

    N, Venkatesha; Srivastava, Chandan; Hegde, Veena

    2014-12-01

    Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion. PMID:25429495

  19. Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles.

    PubMed

    Krishna, Rahul; Titus, Elby; Chandra, Sudeshna; Bardhan, Neel Kanth; Krishna, Rohit; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    A novel and practical glucose biosensor was fabricated with immobilization of Glucose oxidase (GOx) enzyme on the surface of citric acid (CA) assisted cobalt ferrite (CF) magnetic nanoparticles (MNPs). This innovative sensor was constructed with glassy carbon electrode which is represented as (GOx)/CA-CF/(GCE). An explicit high negative zeta potential value (-22.4 mV at pH 7.0) was observed on the surface of CA-CF MNPs. Our sensor works on the principle of detection of H2O2 which is produced by the enzymatic oxidation of glucose to gluconic acid. This sensor has tremendous potential for application in glucose biosensing due to the higher sensitivity 2.5 microA/cm2-mM and substantial increment of the anodic peak current from 0.2 microA to 10.5 microA. PMID:22962799

  20. Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts.

    PubMed

    Marmorato, Patrick; Ceccone, Giacomo; Gianoncelli, Alessandra; Pascolo, Lorella; Ponti, Jessica; Rossi, François; Salomé, Murielle; Kaulich, Burkhard; Kiskinova, Maya

    2011-11-30

    The effect of the concentration of cobalt ferrite (CoFe(2)O(4)) nanoparticles (NPs) on their intracellular location and distribution has been explored by synchrotron radiation X-ray and fluorescence microscopy (SR-XRF) monitoring the evolution of NPs elemental composition as well. In cells exposed to low concentrations of CoFe(2)O(4) NPs, the NPs preferentially segregate in the perinuclear region preserving their initial chemical content. At concentrations exceeding 500 μM the XRF spectra indicate the presence of Co and Fe also in the nuclear region, accompanied by sensible changes in the cellular morphology. The increase of the Co/Fe ratio measured in the nuclear compartment indicates that above certain concentrations the CoFe(2)O(4) NPs intracellular distribution could be accompanied by biodegradation resulting in Co accumulation in the nucleus. PMID:21925252

  1. Study of the magnetic behavior of Mn1-xZnx Ferrite nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Marin, O.; Reyes, D.; Almanza, O.; Prieto, P.; Mendoza, A.

    2008-03-01

    We report on magnetic spin resonance and magnetization hysteresis loops of Mn1-xZnx Ferrite nanoparticles with sizes ranging from 20nm to 50nm obtained via microemulsions. The samples were evaluated by VSM technique ranging from 10K<300K at ZFC and FC. EPR measurements at T=180K were carried out in the 0 <= x <= 0.75 range. Experimental results for the peak-to-peak linewidth, δHpp, have been discussed by the existence of monodomain ferrimagnetic particles. The results indicate an increase of δHpp by increasing the Zn concentration. The EPR signal shows a second EPR pick for x>0.5 at g=4.10 associated at local magnetic fields produced for Mn chains. The anisotropy constant was calculated by means of a genetic algorithm for parameter optimization of the Jiles-Atherton model.

  2. The synthesis of spinel ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications

    NASA Astrophysics Data System (ADS)

    Makovec, Darko; Košak, Aljoša; Žnidaršič, Andrej; Drofenik, Miha

    2005-03-01

    Magnetic maghemite nanoparticles with a narrow size distribution were prepared in water-CTAB-hexanol-butanol microemulsions. The particle size was controlled with the composition of the microemulsion (water-to-CTAB ratio) and the temperature during synthesis. The saturation magnetization of the nanoparticles depended mainly on their size, ranging from 22 emu/g for a particle size of 3.4 nm to 64 emu/g for a size of 15.3 nm.

  3. Preparation of medical magnetic nanobeads with ferrite particles encapsulated in a polyglycidyl methacrylate (GMA) for bioscreening

    SciTech Connect

    Nishibiraki, H.; Kuroda, C.S.; Maeda, M.; Matsushita, N.; Abe, M.; Handa, H.

    2005-05-15

    Ferrite nanoparticles (an intermediate between Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3}), {approx}7 nm in diameter, were embedded in beads of a mixed polymer of styrene (St) and glycidyl methacrylate (GMA) by emulsifier-free emulsion polymerization method. The beads were coated with GMA by a seeded polymerization method in order to suppress nonspecific protein binding on the surfaces; GMA exhibits very low nonspecific protein binding, which is required for carriers used for bioscreening. The beads have diameters of 180{+-}50 nm and saturation magnetizations of 28 emu/g, exceeding commercially available polymer-coated beads of micron size having a weaker saturation magnetization ({approx}12 emu/g)

  4. Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Huang, Ying; Qi, Shuhua; Niu, Lei; Zhang, Yinling; Wu, Yanfei

    2012-02-01

    Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.

  5. Effects of surface coordination chemistry on the magnetic properties of MnFe(2)O(4) spinel ferrite nanoparticles.

    PubMed

    Vestal, Christy R; Zhang, Z John

    2003-08-13

    To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe(2)O(4), nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C(6)H(4)-R; R = H, CH(3), Cl, NO(2), OH) and substituted benzene ligands (Y-C(6)H(5), Y = COOH, SH, NH(2), OH, SO(3)H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) Delta evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles. PMID:12904049

  6. Janus nanoparticles: preparation, characterization, and applications.

    PubMed

    Song, Yang; Chen, Shaowei

    2014-02-01

    In chemical functionalization of colloidal particles, the functional moieties are generally distributed rather homogeneously on the particle surface. Recently, a variety of synthetic protocols have been developed in which particle functionalization may be carried out in a spatially controlled fashion, leading to the production of structurally asymmetrical particles. Janus particles represent the first example in which the two hemispheres exhibit distinctly different chemical and physical properties, which is analogous to the dual-faced Roman god, Janus. Whereas a variety of methods have been reported for the preparation of (sub)micron-sized polymeric Janus particles, it has remained challenging for the synthesis and (unambiguous) structural characterization of much smaller nanometer-sized Janus particles. Herein, several leading methods for the preparation of nanometer-sized Janus particles are discussed and the important properties and applications of these Janus nanoparticles in electrochemistry, sensing, and catalysis are highlighted. Some perspectives on research into functional patchy nanoparticles are also given. PMID:24376180

  7. Preparation and characterization of monodisperse Fe nanoparticles.

    SciTech Connect

    Majetich, Sara A.; Farrell, Dorothy; Wilcoxon, Jess Patrick

    2003-06-01

    Fe nanoparticles prepared by iron carbonyl decomposition using different methods are compared structurally, chemically, and magnetically. The specific magnetization of the particles was determined from the magnetic moment, the particle size observed by transmission electron microscopy, and the total iron concentration found from calibrated X-ray fluorescence. The volume fraction of oxide is reported for particles of different sizes and for particles made by slightly different techniques.

  8. Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface.

    PubMed

    Wen, Tianlong; Zhang, Dainan; Wen, Qiye; Zhang, Huaiwu; Liao, Yulong; Li, Qiang; Yang, Qinghui; Bai, Feiming; Zhong, Zhiyong

    2015-03-21

    Inverted pyramid hole arrays were fabricated by photolithography and used as templates to direct the growth of colloidal nanoparticle assemblies. Cobalt ferrite nanoparticles deposit in the holes to yield high quality pyramid magnetic nanoparticle assembly arrays by carefully controlling the evaporation of the carrier fluid. Magnetic measurements indicate that the pyramid magnetic nanoparticle assembly arrays preferentially magnetize perpendicular to the substrate. PMID:25712606

  9. Structural, electrical and dielectric properties of spinel nickel ferrite prepared by soft mechanochemical synthesis

    SciTech Connect

    Lazarević, Zorica Ž.; Jovalekić, Čedomir; Sekulić, Dalibor L.; Milutinović, Aleksandra; Baloš, Sebastian; Slankamenac, Miloš; Romčević, Nebojša Ž.

    2013-10-15

    Graphical abstract: - Highlights: • Sintered NiFe{sub 2}O{sub 4} was prepared by a soft mechanochemical route from mixture powders. • XRD and Raman measurements indicate that the prepared samples have spinel structure. • The activation energy ΔE are 0.653 and 0.452 eV for NiFe{sub 2}O{sub 4} samples. • Ferrite from Ni(OH){sub 2}/Fe{sub 2}O{sub 3} has lower DC conductivity than from Ni(OH){sub 2}/Fe(OH){sub 3} powders. • The values of dielectric constant of samples NiFe{sub 2}O{sub 4} are 70 and 200, respectively. - Abstract: Nickel ferrite, NiFe{sub 2}O{sub 4} was prepared by a soft mechanochemical route from a mixture of (1) Ni(OH){sub 2} and α-Fe{sub 2}O{sub 3} and (2) Ni(OH){sub 2} and Fe(OH){sub 3} powders in a planetary ball mill for 25 h. The powder samples were sintered at 1100 °C for 2 h and were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). Impedance spectroscopy techniques were used to study the effect of grain and grain boundary on the electrical properties of the prepared samples. A difference in dielectric constant (ε) and dielectric loss tangent (tan δ) of NiFe{sub 2}O{sub 4} samples obtained by the same methods but starting from different initial components was observed.

  10. Bimetallic nanoparticles: Preparation, properties, and biomedical applications.

    PubMed

    Nasrabadi, Hamid Tayefi; Abbasi, Elham; Davaran, Soodabeh; Kouhi, Mohammad; Akbarzadeh, Abolfazl

    2016-01-01

    Many studies of non-supported bimetallic nanoparticle (BMNP) dispersions, stabilized by ligands or polymers, and copolymers, were started only about 10 years ago. Several preparative procedures have been proposed, and full characterizations on BMNPs have been approved. Studies on BMNPs received huge attention from both scientific and technological communities because most of the NPs' catalytic activity depends on their structural aspects. In this study, we focus on the preparation, properties, and bio-application of BMNPs and introduction of the recent advance in these NPs. PMID:25203939

  11. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device.

    PubMed

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 V(rms). This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  12. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  13. Millimeter-wave magneto-dielectric effects in self-assembled ferrite-ferroelectric core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Popov, M.; Sreenivasulu, G.; Petrov, V. M.; Chavez, F.

    2015-05-01

    The magneto-dielectric effect (MDE) involves studies on the influence of an applied magnetic field on the dielectric constant of a material. MDEs in self-assembled core-shell nanoparticles of nickel ferrite and barium titanate have been investigated in the millimeter wave frequencies. The core-shell nanocomposites were synthesized by coating 15 nm nickel ferrite and 100 nm barium titanate nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst forming heterogeneous nanocomposites. Studies on MDE in as-assembled particles have been carried out by measurements of the relative permittivity as a function of frequency f under an applied static magnetic field H over 16-24 GHz. Measurements show an H-induced decrease in permittivity by 0.8% for H = 4 kOe and is much stronger than MDE in single phase multiferroics. A model for the high frequency MDE has been discussed here.

  14. Dielectric and electro-optical studies of a nickel-ferrite-nanoparticle- doped ferroelectric liquid crystal mixture

    NASA Astrophysics Data System (ADS)

    Khushboo; Sharma, Puneet; Malik, Praveen; Raina, K. K.

    2016-02-01

    Effect of magnetic nanoparticles (nickel ferrite) doping on the dielectric and electro-optical properties of a ferroelectric liquid crystal mixture has been studied. In a doped ferroelectric liquid crystal mixture, dispersion of a small amount (0.25 wt.%) of nickel ferrite nanoparticles decreases the polarization and improves the response time compared to an undoped mixture. The significant changes in the polarization and response time are explained on the basis of dipole-dipole interaction and anchoring phenomena. Dielectric permittivity also increases with increasing the temperature of the SmC* phase and shows a reduction in dielectric loss in a doped sample. A Goldstone mode is clearly observed at ∼200 and ∼500 Hz in an undoped and a doped sample, respectively.

  15. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali; Paesano, Andrea; Cerqueira Machado, Carla Fabiana; Shirsath, Sagar E.; Liu, Xiaoxi; Morisako, Akimitsu

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x = 0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  16. Incorporation of cobalt-ferrite nanoparticles into a conducting polymer in aqueous micellar medium: strategy to get photocatalytic composites.

    PubMed

    Endrődi, Balázs; Hursán, Dorottya; Petrilla, Liliána; Bencsik, Gábor; Visy, Csaba; Chams, Amani; Maslah, Nabiha; Perruchot, Christian; Jouini, Mohamed

    2014-01-01

    In this study an easy strategy for conducting polymer based nanocomposite formation is presented through the deposition of cobalt-ferrite (CoFe(2)O(4)) containing poly(3,4-ethylenedioxythiophene) (PEDOT) thin layers. The electrochemical polymerization has been performed galvanostatically in an aqueous micellar medium in the presence of the nanoparticles and the surface active Triton X-100. The nanoparticles have been characterized by Transmission electron microscopy (TEM), the thin layers has been studied by applying Scanning electron microscopy (SEM), and X-ray diffraction (XRD), and the basic electrochemical properties have been also determined. Moreover, electrocatalytic activity of the composite was demonstrated in the electrooxidation reaction of dopamine (DA). The enhanced sensitivity - related to the cobalt-ferrite content - and the experienced photocatalyitic activity are promising for future application. PMID:25125121

  17. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (Tc). We prepared aluminum doped barium ferrite ceramics (BaAlxFe12-xO19, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate Tc and magnetic properties of BaFe12-xAlxO19. It is found that Tc decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πMs) decreases with increasing x, while the coercivity (Hc) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement.

  18. Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route

    SciTech Connect

    Singhal, Sonal Chandra, Kailash

    2007-01-15

    Cation distribution have been investigated using X-ray diffraction, magnetic and Moessbauer spectral studies in chromium-substituted nickel ferrites prepared by aerosol route. Cation distribution indicates that the chromium atom occupy octahedral site upto x=0.8, and then also enters into tetrahedral site. The saturation magnetization decreases linearly with the increase of chromium concentration due to the diamagnetic nature of the Cr{sup 3+}. However, interesting behaviour is observed in the coercivity. Initially it increases slowly with the chromium concentration but when x>0.8 a very large increase has been observed. This was attributed to the specific cation distribution of Cr{sup 3+} which results an unquenched orbital angular momentum and a large anisotropy. Room temperature Moessbauer spectra of as obtained samples exhibited a broad doublet resolved into two doublets corresponding to the surface and internal region atoms. The samples annealed at 1200 deg. C show broad sextets, which were fitted with different sextets, indicating different local environment of both tetrahedral and octahedral coordinated iron cation. - Graphical abstract: Hysterisis loop of chromium-substituted nickel ferrites after annealing at 1200 deg. C.

  19. Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles

    SciTech Connect

    Jovic, Natasa G.; Masadeh, Ahmad S.; Kremenovic, Aleksandar S.; Antic, Bratislav V.; Blanusa, Jovan L.; Cvjeticanin, Nikola D.; Goya, Gerardo F.; Antisari, Marco Vittori; Bozin, Emil S.

    2010-01-12

    Pure, crystalline, {approx}10 nm lithium ferrite phase (Li{sub 0.5}Fe{sub 2.5}O{sub 4}), was successfully synthesized at very low temperature using a modified combustion method. The crystal structure and microstructure evolution of this system upon annealing were monitored by a careful investigation of X-ray diffractograms collected on a synchrotron source. Comparative analysis of the results obtained from the full profile Rietveld method (in reciprocal space) and the pair distribution function method (in direct space) was carried out. Nanocrystalline samples exhibit similar crystal structure, on average, with a partial ordering of Li{sup +} and Fe{sup 3+} ions between octahedral 4b and 12d sites on the spinel crystal lattice (space group P4{sub 3}32). After annealing at 973 K, cation distribution changes to a completely ordered, resembling that which is seen in the bulk lithium ferrite. The PDF analysis reveals abnormally high values of oxygen atomic displacement parameters in tetrahedral 8c sites (O1) indicating a significant disordering of the O1 network and suggests migration of lithium ions from 4b sites to the outer layers of nanoparticles. Analysis of room temperature Moessbauer spectra has shown that the hyperfine field for Fe{sup 3+} ions in tetrahedral 8c sites is the most sensitive on increasing the particle size and improving the crystallinity. From the differential thermal analysis, it was found that a lower driving force is required to induce an order-disorder phase transition in nanocrystalline samples, compared to the bulk-like sample, presumably due to the higher crystal disordering in these samples.

  20. Magnetic Nanoparticles: Synthesis, Characterization and Magnetic Properties of Cobalt Aluminum Ferrite.

    PubMed

    Zaki, H M; Al-Heniti, Saleh H; Al-Hadeethi, Y; Alsanoosi, A M

    2016-05-01

    Nanoparticles of the ferrite system CoFe(2-x)Al(x)O4 (x = 0.0, 0.3, 0.7 and 1.0) were synthesized through the co-precipitation technique. Thermal decomposition process and formation of a single crystalline phase were followed using thermal differential analysis technique (DTA). X-ray powder diffraction patterns of the samples confirmed the formation of a nano-size single spinel phase. The average crystallite size was found to be in the range 20-63 nm for all samples. This was further confirmed by TEM of one of the samples, with concentration x = 1.0 which was found statistically to be 27 nm. This agrees well with the value of 24 nm deduced by means of X-ray diffraction method for the same sample. A considerable decrease in the intensity of the octahedral bands is observed as the aluminum concentration increases, and even vanishes completely at x = 1.0 indicating the migration of cations between the octahedral and tetrahedral sites. The magnetic hysteresis loops at room temperature showed decrease in both, coercivity and saturation magnetization as the non-magnetic Al3+ ions content increases. The relative values of M(r0/M(s) were found to be between 0.44 and 0.31 for the samples with a remarkable change in the squareness of the loops. This is highly beneficial for the microwave and memory devices applications of these nano sized ferrite system. PMID:27483815

  1. Magnetic studies of Li-Zn ferrites prepared by citrate precursor method

    NASA Astrophysics Data System (ADS)

    Soibam, Ibetombi; Phanjoubam, Sumitra; Sharma, H. B.; Sarma, H. N. K.; Prakash, C.

    2009-11-01

    Ferrites having the general formula Li 0.5-0.5xZn xFe 2.5-0.5xO 4 where 0≤ x≤0.6 in steps of 0.2 were prepared by the citrate precursor method. The Curie temperature measured shows a decrease with increasing Zn concentration. Experimental results show that the room temperature initial permeability increases with the increase in the concentration of zinc. The initial permeability has also been studied as a function of frequency in the range of 100 Hz-1 MHz. The real part of initial permeability referred as initial permeability and the imaginary part of initial permeability better known as permeability loss show dispersion with frequency. Possible mechanism contributing to the above processes is discussed.

  2. Preparation and characterization of spinel nickel ferrite obtained by the soft mechanochemically assisted synthesis

    SciTech Connect

    Lazarević, Z.Ž.; Jovalekić, Č.; Rečnik, A.; Ivanovski, V.N.; Milutinović, A.; Romčević, M.; Pavlović, M.B.; Cekić, B.; Romčević, N.Ž.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► NiFe{sub 2}O{sub 4} has been prepared by a soft mechanochemical route from mixture of powders. ► The spinel phase formation was completed after 25 h. ► The synthesized ferrites have a crystallite size of about 25 and 15 nm. ► Based on Raman research is observed five first-order Raman active modes. ► We were able to estimate the degree of inversion at most 0.82 and 0.66. -- Abstract: Nickel ferrite, NiFe{sub 2}O{sub 4} has been prepared by a soft mechanochemical route from mixture of (1) Ni(OH){sub 2} and α-Fe{sub 2}O{sub 3} and (2) Ni(OH){sub 2} and Fe(OH){sub 3} powders in a planetary ball mill for varying duration. Soft mechanochemical reaction leading to formation of the NiFe{sub 2}O{sub 4} spinel phase was followed by X-ray diffraction, Raman and infrared spectroscopy, TGA, scanning and transmission microscopy. The spinel phase formation was first observed after 4 h of milling and its formation was completed after 25 h in the both cases. The synthesized NiFe{sub 2}O{sub 4} ferrite has a nanocrystalline structure with a crystallite size of about 20 and 10 nm respectively for the cases (1) and (2). The final grain size in the system (1) is about twice as large as that in the system (2), what is a consequence of different reaction paths in these two processing routes. There are five Raman and four IR active modes. Mössbauer spectroscopy studies implied on the possible cation distribution between the tetrahedral and octahedral sites in formed NiFe{sub 2}O{sub 4} spinel structure. We were able to estimate the degree of inversion at most 0.82 in the case (1) and 0.66 in the case (2).

  3. Photodynamic Anticancer Activities of Multifunctional Cobalt Ferrite Nanoparticles in Various Cancer Cells.

    PubMed

    Park, Bong Joo; Choi, Kyong-Hoon; Nam, Ki Chang; Ali, Anser; Min, Joe Eun; Son, Hyungbin; Uhm, Han S; Kim, Ho-Joong; Jung, Jin-Seung; Choi, Eun Ha

    2015-02-01

    To develop novel multifunctional magnetic nanoparticles (MNPs) with good magnetic properties, biocompatibility, and anticancer activities by photodynamic therapy (PDT), we synthesized multifunctional cobalt ferrite (CoFe2O4) nanoparticles (CoFe2O4-HPs-FAs) functionalized by coating them with hematoporphyrin (HP) for introducing photo-functionality and by conjugating with folic acid (FA) for targeting cancer cells. We evaluated the activities of the CoFe2O4-HPs-FAs by checking magnetic resonance imaging (MRI) in vitro, its biocompatibility, and photodynamic anticancer activities on FA receptor (FR)-positive and FR-negative cancer cell lines, Hela, KB, MCF-7, and PC-3 cells, to use for clinical applications. In this study, we have demonstrated that the CoFe2O4-HPs-FAs have good MRI and biocompatibility with non-cytotoxicity, and remarkable photodynamic anticancer activities at very low concentrations regardless of cell types. Particularly, the photo-killing abilities in 3.13 μg/mL of CoFe2O4-HPs-FAs were measured to be 91.8% (p < 0.002) for Hela, 94.5% (p < 0.007) for KB, 79.1% (p < 0.003) for MCF-7, and 71.3% (p < 0.006) for PC-3. The photodynamic anticancer activities in 6.25 and 12.5 μg/mL of CoFe2O4-HPs-FAs were measured to be over 95% (p < 0.004) to almost 100% regardless of cell types. The newly developed multifunctional CoFe2O4-HPs-FAs are effective for PDT and have potential as therapeutic agents for MRI-based PDT, because they have a high saturation value of magnetization and superparamagnetism. PMID:26349298

  4. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    NASA Astrophysics Data System (ADS)

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; khan Niazi, Muhammad Bilal; Khan, Azim

    2016-05-01

    Cadmium substituted cobalt ferrites with formula CdxCo1-xFe2O4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye-Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15-19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd2+concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner's model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system CdxCo1-xFe2O4 the impedance analysis were performed.

  5. Assessment of Immunotoxicity of Dextran Coated Ferrite Nanoparticles in Albino Mice

    PubMed Central

    Syama, Santhakumar; Gayathri, Viswanathan; Mohanan, Parayanthala Valappil

    2015-01-01

    In this study, dextran coated ferrite nanoparticles (DFNPs) of size <25 nm were synthesized, characterized, and evaluated for cytotoxicity, immunotoxicity, and oxidative stress by in vitro and in vivo methods. Cytotoxicity was performed in vitro using splenocytes with different concentrations of DFNPs. Gene expression of selected cytokines (IL-1, IL-10, and TNF β) secretion by splenocytes was evaluated. Also, 100 mg of DFNPs was injected intraperitoneally to 18 albino mice for immunological stimulations. Six animals each were sacrificed at the end of 7, 14, and 21 days. Spleen was subjected to immunotoxic response and liver was analyzed for antioxidant parameters (lipid peroxidation, reduced glutathione, glutathione peroxidase, superoxide dismutase, and glutathione reductase). The results indicated that DFNPs failed to induce any immunological reactions and no significant alternation in antioxidant defense mechanism. Also, mRNA expression of the cytokines revealed an increase in IL-10 expression and subsequent decreased expression of IL-1 and TNF β. Eventually, DNA sequencing of liver actin gene revealed base alteration in nonconserved regions (10–20 bases) of all the treated groups when compared to control samples. Hence, it can be concluded that the DFNPs were nontoxic at the cellular level and nonimmunotoxic when exposed intraperitoneally to mice. PMID:26576301

  6. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    SciTech Connect

    Flores-Arias, Yesica Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul; Ammar, Souad

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  7. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    PubMed

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-01

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. PMID:26153227

  8. Dielectric study of Al3+ substituted Fe3O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, N.; Kumar, Vinod; Singh, S. K.

    2014-07-01

    Al3+ substituted nanoparticles i.e., FeAlxFe2-xO4(x = 0.2, 0.4, 0.6) have been synthesized by the chemical co precipitation method. Crystalline phase of synthesized particles was confirmed by XRD pattern. Particle size of as obtained samples was found in the range of 24-34 nm. Dielectric loss (tan δ, dielectric permittivity (ɛ‧) and ac conductivity (σac) were evaluated as a function of frequency, composition and temperature using impedance analyzer in the frequency range of (1000 Hz-5 MHz) and temperature range of (300-473 K). AC conductivity (σac) was found to decrease with increase in Al3+ doping which has been explained on the basis of hopping mechanism. The variation of dielectric loss (tan δ, dielectric permittivity (ɛ‧), ac conductivity (σac) with temperature and frequency can be explained on the basis of Maxwell-Wagner type of interfacial polarization and hopping mechanism between ferrous and ferric ions at the octahedral site. DC electrical resistivity was found to decrease with increasing temperature indicating that the substituted ferrites have semiconductor like behavior. Activation energy was found to increase with increasing Al3+ ion content.

  9. Preliminary evaluation of a 99mTc labeled hybrid nanoparticle bearing a cobalt ferrite core: in vivo biodistribution.

    PubMed

    Psimadas, Dimitrios; Baldi, Giovanni; Ravagli, Costanza; Bouziotis, Penelope; Xanthopoulos, Stavros; Franchini, Mauro Comes; Georgoulias, Panagiotis; Loudos, George

    2012-08-01

    Magnetic nanoparticles have become important tools for imaging a wide range of diseases, improving drug delivery and applying hyperthermic treatment. Iron oxide based nanoparticles have been widely examined, unlike cobalt ferrite based ones. Herein, monodisperse and stable CoFe2O4 nanoparticles have been produced, coated and further stabilized using ethyl 12-(hydroxyamino)-12-oxododecanoate, poly(lactic-co-glycolic acid) and bovine serum albumin. The final product, NBRh1, was fully characterized and has been directly radiolabeled with 99mTc using SnCl1 as the reducing agent in high yields. In vitro stability and hyperthermic properties of 99mTC-NBRh1 were encouraging for further application in low frequencies hyperthermia and biomagnetic applications. In vivo evaluation followed after injection in healthy mice. The planar and SPECT imaging data as well as the biodistribution results were in accordance, showing high liver and spleen uptake as expected starting almost immediately after administration. In conclusion the preliminary results for nanoparticles bearing a cobalt ferrite core justify further investigations towards potential hyperthermic applications, drug transportation and liver or spleen imaging. PMID:22852467

  10. Preparation and thermal stability of silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Wang, H.; Ong, P. P.

    2001-02-01

    Silicon nanoparticles were prepared in a homemade apparatus by means of a dc sputtering method in which the condensates were collected directly from the cold surface of a liquid nitrogen trap. They were dispersed in 2-propanol under ultrasonic agitation, and dried in the atmosphere. The particles were found to compose of tiny silicon crystals and were only mildly oxidized. Various samples were prepared with different annealing times and temperatures in ultrahigh vacuum. XPS results show that, in the particles, the Si-O bonds of the Si 4+ state are the most stable, followed next by the unoxidised state Si 0. The intermediate oxidation states are the least stable; they exist only at sufficiently low temperatures (300°C or lower) and are converted to either Si 0 or Si 4+ at higher temperatures.

  11. Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method.

    PubMed

    Yaseneva, Polina; Bowker, Michael; Hutchings, Graham

    2011-11-01

    Zn substituted cobalt ferrite spinels with the general formula Zn(x)Co(1-x)Fe(2)O(4) (with x varying from 0 to 0.5) were synthesized by a co-precipitation method and calcined at 500 °C and 800 °C. It was found that Zn substitution has a big effect in decreasing the Curie temperature (T(c)), from around 440 °C for the undoped sample to ~180 °C with x = 0.5. However, these values were also strongly affected by the pre-calcination temperature of the samples, thus T(C) shifts from ~275 °C for the x = 0.3 sample to ~296 °C after calcination at 500 °C and 800 °C respectively. These effects are due to facilitation of demagnetisation by substitution of the non-magnetic Zn ions and by production of very small nanoparticles. The latter are removed by higher temperature calcinations and so T(C) increases. PMID:21952718

  12. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  13. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  14. Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion.

    PubMed

    Yang, Aria; Chinnasamy, C N; Greneche, J M; Chen, Yajie; Yoon, Soack D; Chen, Zhaohui; Hsu, Kailin; Cai, Zhuhua; Ziemer, Kate; Vittoria, C; Harris, V G

    2009-05-01

    Mn ferrite (MnFe(2)O(4)) nanoparticles, having diameters from 4 to 50 nm, were synthesized using a modified co-precipitation technique in which mixed metal chloride solutions were added to different concentrations of boiling NaOH solutions to control particle growth rate. Thermomagnetization measurements indicated an increase in Néel temperature corresponding to increased particle growth rate and particle size. The Néel temperature is also found to increase inversely proportionally to the cation inversion parameter, delta, appearing in the formula (Mn(1-delta)Fe(delta))(tet)[Mn(delta)Fe(2-delta)](oct)O(4). These results contradict previously published reports of trends between Néel temperature and particle size, and demonstrate the dominance of cation inversion in determining the strength of superexchange interactions and subsequently Néel temperature in ferrite systems. The particle surface chemistry, structure, and magnetic spin configuration play secondary roles. PMID:19420627

  15. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch; Kuřitka, Ivo; Kožáková, Zuzana

    2016-02-01

    Nd3+ doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol-gel auto-combustion method. The significant role played by Nd3+ added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd3+ substitution, particle size and cation redistribution. The impact of Nd3+ on cation distribution of Co2+ and Fe3+ at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd3+ substitution in cobalt ferrite.

  16. Nanoparticles of Molybdenum Chlorophyllin Photosensitizer and Magnetic Citrate-Coated Cobalt Ferrite Complex Available to Hyperthermia and Photodynamic Therapy Clinical Trials

    NASA Astrophysics Data System (ADS)

    Primo, Fernando L.; Cordo, Paloma L. A. G.; Neto, Alberto F.; Morais, Paulo C.; Tedesco, Antonio C.

    2010-12-01

    This study report on the synthesis and characterization of molybdenum chlorophyllin (Mo-Chl) compounds associated in a complex with magnetic nanoparticles (citrate-coated cobalt ferrite), the latter prepared as a biocompatible magnetic fluid (MF). The complex material was developed for application as a synergic drug for cancer treatment using Photodynamic Therapy (PDT) and Hyperthermia (HPT). Chlorophyllin was obtained from alkaline extraction of Ilex paraguariensis following molybdenum insertion from hydrolysis with molybdate sodium. Fluorescence quantum yield (Φf) of Mo-Chl/dimethyl-sulphoxide (DMSO) was lower than 0.1, with a lifetime of 5.0 ns, as obtained from time-correlated single-photon counting technique. The oxygen quantum yield of Mo-Chl was carried out using laser flash-photolysis studies in homogeneous medium saturated with O2(g) (ΦΔ = 0.50). Cellular viability was also evaluated via the classical MTT assay using gingival fibroblasts cells as a biological model. Studies performed with the complex Mo-Chl (5.0 μmol.L-1)/MF at different magnetic nanoparticle concentrations (ranging from 1012 to 1015 particle.mL-1) revealed a cellular viability of approximately 95% for the ideal magnetic material concentration of 1×10 particle.mL-1. The present study shows that natural photosensitizers molecules Mo-Chl used in association with magnetic nanoparticles represent a promising generation of drug developed to work synergistically in the treatment of neoplastic tissues using PDT and HPT.

  17. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. PMID:27290656

  18. Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kargar, Z.; Asgarian, S. M.; Mozaffari, M.

    2016-05-01

    Single phase copper substituted nickel ferrite Ni1-xCuxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles were synthesized by the sol-gel method. TEM images of the samples confirm formation of nano-sized particles. The Rietveld refinement of the X-ray diffraction patterns showed that lattice constant increase with increase in copper content from 8.331 for x = 0.0 to 8.355 Å in x = 0.5. Cation distribution of samples has been determined by the occupancy factor, using Rietveld refinement. The positron lifetime spectra of the samples were convoluted into three lifetime components. The shortest lifetime is due to the positrons that do not get trapped by the vacancy defects. The second lifetime is ascribed to annihilation of positrons in tetrahedral (A) and octahedral (B) sites in spinel structure. It is seen that for x = 0.1 and 0.3 samples, positron trapped within vacancies in A sites, but for x = 0.0 and 0.5, the positrons trapped and annihilated within occupied B sites. The longest lifetime component attributed to annihilation of positrons in the free volume between nanoparticles. The obtained results from coincidence Doppler broadening spectroscopy (CDBS) confirmed the results of positron annihilation lifetime spectroscopy (PALS) and also showed that the vacancy clusters concentration for x = 0.3 is more than those in other samples. Average defect density in the samples, determined from mean lifetime of annihilated positrons reflects that the vacancy concentration for x = 0.3 is maximum. The magnetic measurements showed that the saturation magnetization for x = 0.3 is maximum that can be explained by Néel's theory. The coercivity in nanoparticles increased with increase in copper content. This increase is ascribed to the change in anisotropy constant because of increase of the average defect density due to the substitution of Cu2+ cations and magnetocrystalline anisotropy of Cu2+ cations. Curie temperature of the samples reduces with increase in copper content which

  19. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    SciTech Connect

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; Sun, Shouheng; Pham, Viet Hung

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  20. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  1. Structural and magnetic characterization of co-precipitated NixZn1-xFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Meena, S. S.; Yusuf, S. M.; Babu, Ch. Seshu; Ramakrishna, K. S.; Potukuchi, D. M.; Sastry, D. L.

    2016-06-01

    A series of NixZn1-xFe2O4 (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni2+ ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core-shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe3+ ions and absence of Fe2+ ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core-shell interactions.

  2. Comparison of structural and electrical properties of Co{sup 2+}doped Mn-Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods

    SciTech Connect

    Anwar, Humaira; Maqsood, Asghari

    2014-01-01

    Graphical abstract: - Highlights: • Coprecipitation and hydrothermal synthesis of Co{sup 2+} doped Mn-Zn ferrites. • Dielectric measurements at 3 MHz and 1 GHz frequencies. • Enhanced DC electrical resistivity for samples prepared from hydrothermal technique. • Impedance studies for the prepared samples showing major contribution due to grains. - Abstract: A series of Co doped Mn-Zn ferrites compounds with the formula Mn{sub 0.5}Zn{sub 0.5−x}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.15, 0.25, 0.35 and 0.50) were successfully synthesized by polyethylene glycol-assisted coprecipitation and hydrothermal methods. The structural characterization of the samples was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). All the samples found to have cubic spinel structure. The average crystallite size of all nanoparticles were estimated using Scherrer's formula and found to lie between 10 and 25 ± 3 nm with small size distribution of particles prepared by hydrothermal method. The FTIR spectrum showed two absorption bands of tetrahedral and octahedral metal-oxygen sites. DC electrical resistivity varied from 4.12 × 10{sup 7} to 8.32 × 10{sup 10} ohm cm with cobalt doping. The dielectric measurements were performed from 20 Hz to 3 MHz and from 1 MHz to 1 GHz frequency ranges. The value of dielectric constant (ε′) varies from 15.54 to 106.25 (1 MHz) and 6.73–16.48 (1 GHz) for all the samples at room temperature. Impedance spectroscopy was carried out from 20 Hz to 3 MHz, at room temperature to study the grains and grain boundaries effect.

  3. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Datt, Gopal; Sen Bishwas, Mousumi; Manivel Raja, M.; Abhyankar, A. C.

    2016-02-01

    Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations confirm a single phase spinel structure and the surface morphology of the as-synthesized NPs changes from spherical to octahedral upon annealing. Rietveld analysis reveals that the Ni2+ ions migrate from tetrahedral (A) to octahedral (B) sites upon annealing. The Mössbauer results show canted spins in both the NPs and the strength of superexchange is stronger in Co-O-Fe than Ni-O-Fe. Magnetic force images show that the as-synthesised NPs are single-domain whereas the annealed NPs are multi-domain octahedral particles. The FMR study reveals that both the NPs have a broad FMR line-width; and resonance properties are consistent with the random anisotropy model. The broad inhomogeneous FMR line-width, observation of the Verwey transition, tuning of the magnetic domain structure as well as the magnetic properties suggest that the NiCoFe2O4 ferrite NPs may be promising for future generation spintronics, magneto-electronics, and ultra-high-density recording media as well as for radar absorbing applications.Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations

  4. On the synthesis of copper-nickel binary alloy nanoparticles and binding silane coupling agents to magnetic ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pritchett, Jeremy Scott

    This dissertation addresses the creation of a multifunctional nanoplatform for cancer targeting, imaging, and therapy. Magnetic oxide nanoparticles were labeled with silane coupling agents that could be used for targeting. The magnetic oxides have application as contrast enhancing agents for magnetic resonance imaging. Copper-nickel binary alloy nanoparticles were prepared for possible use in Curie temperature limited hyperthermia therapy. Spherical, single crystal iron oxide nanoparticles with average diameters of 4 nm, 6 nm, 8 nm, 11 nm, or 16 nm were prepared using published procedures. The iron oxide particle chemistry was extended to synthesize 13 nm diameter CoFe2O4, 9 nm diameter MnFe2O4, and 12 nm diameter NiFe2O4. The particles had a coating of oleic acid and oleylamine ligands. Silane coupling chemistry was used to displace these ligands with either beta-aminoethyl-gamma-aminopropyl-trimethoxysilane, triethoxysilane-PEG, or triethoxysilane-biotin. The silane ligands would allow the particles to be conjugated with a targeting group. New chemistry was developed to synthesize fcc CuNi nanoparticles with the objective of finding methods that give particles with an average size less than 50 nm, a narrow distribution of particle sizes, and control of particle composition. The particle synthesis involves the reduction of a mixture of copper(II) and nickel(II) and the reduction conditions included diol reduction, polyol synthesis, seeding by diol reduction, and oleate reduction. One of the main issues is the formation of hcp nickel particles as a containment in the method. The factors that avoided the formation of hcp nickel particles and allow only fcc particles to form were the choice of reducing agent, ratio of surfactants, and heating time. Both the oleate reduction and diol reduction gave a mixture of the hcp and fcc phases. By controlling certain reaction conditions, such as keeping the ratio of oleic acid to oleylamine 1:1 and slowly heating to reflux for

  5. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles.

    PubMed

    Datt, Gopal; Sen Bishwas, Mousumi; Manivel Raja, M; Abhyankar, A C

    2016-03-01

    Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations confirm a single phase spinel structure and the surface morphology of the as-synthesized NPs changes from spherical to octahedral upon annealing. Rietveld analysis reveals that the Ni(2+) ions migrate from tetrahedral (A) to octahedral (B) sites upon annealing. The Mössbauer results show canted spins in both the NPs and the strength of superexchange is stronger in Co-O-Fe than Ni-O-Fe. Magnetic force images show that the as-synthesised NPs are single-domain whereas the annealed NPs are multi-domain octahedral particles. The FMR study reveals that both the NPs have a broad FMR line-width; and resonance properties are consistent with the random anisotropy model. The broad inhomogeneous FMR line-width, observation of the Verwey transition, tuning of the magnetic domain structure as well as the magnetic properties suggest that the NiCoFe2O4 ferrite NPs may be promising for future generation spintronics, magneto-electronics, and ultra-high-density recording media as well as for radar absorbing applications. PMID:26880070

  6. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging.

    PubMed

    Pernia Leal, Manuel; Rivera-Fernández, Sara; Franco, Jaime M; Pozo, David; de la Fuente, Jesús M; García-Martín, María Luisa

    2015-02-01

    Magnetic resonance based molecular imaging has emerged as a very promising technique for early detection and treatment of a wide variety of diseases, including cancer, neurodegenerative disorders, and vascular diseases. The limited sensitivity and specificity of conventional MRI are being overcome by the development of a new generation of contrast agents, using nanotechnology approaches, with improved magnetic and biological properties. In particular, for molecular imaging, high specificity, high sensitivity, and long blood circulation times are required. Furthermore, the lack of toxicity and immunogenicity together with low-cost scalable production are also necessary to get them into the clinics. In this work, we describe a facile, robust and cost-effective ligand-exchange method to synthesize dual T1 and T2 MRI contrast agents with long circulation times. These contrast agents are based on manganese ferrite nanoparticles (MNPs) between 6 and 14 nm in size covered by a 3 kDa polyethylene glycol (PEG) shell that leads to a great stability in aqueous media with high crystallinity and magnetization values, thus retaining the magnetic properties of the uncovered MNPs. Moreover, the PEGylated MNPs have shown different relaxivities depending on their size and the magnetic field applied. Thus, the 6 nm PEGylated MNPs are characterized by a low r2/r1 ratio of 4.9 at 1.5 T, hence resulting in good dual T1 and T2 contrast agents under low magnetic fields, whereas the 14 nm MNPs behave as excellent T2 contrast agents under high magnetic fields (r2 = 335.6 mM(-1) s(-1)). The polymer core shell of the PEGylated MNPs minimizes their cytotoxicity, and allows long blood circulation times. This combination of cellular compatibility and excellent T2 and r2/r1 values under low magnetic fields, together with long circulation times, make these nanomaterials very promising contrast agents for molecular imaging. PMID:25554363

  7. Electrospinning preparation, characterization and magnetic properties of cobalt-nickel ferrite (Co(1-x)Ni(x)Fe2)O4) nanofibers.

    PubMed

    Xiang, Jun; Chu, Yanqiu; Shen, Xiangqian; Zhou, Guangzhen; Guo, Yintao

    2012-06-15

    Uniform Co(1-)(x)Ni(x)Fe(2)O(4) (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanofibers with average diameter of 110 nm and length up to several millimeters were prepared by calcination of electrospun precursor nanofibers containing polymer and inorganic salts. The as-spun and calcined nanofibers were characterized in detail by TG-DTA, XRD, FE-SEM, TEM, SAED and VSM, respectively. The effect of composition of the nanofibers on the structure and magnetic properties were investigated. The nanofibers are formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) as the structure-directing template. The structural characteristics and magnetic properties of the resultant nanofibers vary with chemical composition and can be tuned by adjusting the Co/Ni ratio. Both lattice parameter and particle size decrease gradually with increasing nickel concentration. The saturation magnetization and coercivity lie in the range 29.3-56.4 emu/g and 210-1255 Oe, respectively, and both show a monotonously decreasing behavior with the increase in nickel concentration. Such changes in magnetic properties can mainly be attributed to the lower magnetocrystalline anisotropy and the smaller magnetic moment of Ni(2+) ions compared to Co(2+) ions. Furthermore, the coercivity of Co-Ni ferrite nanofibers is found to be superior to that of the corresponding nanoparticle counterparts, presumably due to their large shape anisotropy. These novel one-dimensional Co-Ni ferrite magnetic nanofibers can potentially be used in micro-/nanoelectronic devices, microwave absorbers and sensing devices. PMID:22456275

  8. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  9. The structure, morphology and magnetic properties of Sr-ferrite powder prepared by the molten-salt method

    NASA Astrophysics Data System (ADS)

    He, Xuemin; Zhong, Wei; Yan, Shiming; Au, Chak-Tong; Lü, Liya; Du, Youwei

    2014-06-01

    Sub-micrometre high-performance Sr-ferrite powder was prepared by a molten-salt method using Na2SO4 as the fluxing agent. In the reaction process, a mixture of superfine powder was pre-sintered at 1150 °C for 3 h and then annealed at 850 °C for 2 h. The as-obtained Sr-ferrite powder is SrFe12O19 with a hexagonal magnetoplumbite structure. We observe that with raising the pre-sintering temperature as well as increasing the annealing temperature and time, there is an enlargement of particle size. We regulated the reaction parameters to optimize the magnetic properties of the Sr-ferrite powder. The structure with the best magnetic properties is quasi-cubic in shape and relatively uniform in size, showing a coercivity of 471.89 kA m-1, a saturation magnetization of 91.51 µWb m kg-1, a remanence ratio of 0.50 and a maximum magnetic energy product of 7.89 kJ m-3. We then studied the effects of particle size, demagnetization factor and magnetocrystalline anisotropy on coercivity. Compared with the conventional ceramic process, the one presented here is more convenient and economical for the production of homogeneous hexagonal ferrite powders of high magnetic performance.

  10. Magnetic studies of CuFe2O4 nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Subha, A.; Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-05-01

    Cu-ferrite nanoparticles were synthesized by co-precipitation method and were annealed at different temperatures ranging from 400 to l000°C in air for 4 hours. The as-prepared sample and the sample annealed at 400°C showed small peaks of cubic Cu-ferrite in X-ray diffraction studies. For the intermediate temperature 600°C, some additional peaks of α-Fe2O3 were observed. As the annealing temperature increased further only tetragonal Cu-ferrite peaks were observed. In all the samples some traces of CuO was noted. Grain size was increased from 2lnm for the as prepared sample to 42nm for the sample annealed at l000°C. Spontaneous magnetization value was found to be very small for the as prepared sample and it was increased monotonically with the increase in annealing temperature. Maximum magnetization of 29.7emu/g was observed at 300K for the sample annealed at l000°C. The remanent magnetization was increased with the increase in annealing temperature up to 900°C and then decreased whereas for the coercivity a peak was observed for the sample annealed at 800°C. The highest coercivity of l402 Oe was observed at 300K for the sample annealed at 800°C. As the measurement temperature decreased from 300K to 60K, magnetization and coercivity values were increased. The observed magnetic behaviour may be understood on the basis of phase transformation, grain growth with the increase in annealing temperature and reduced thermal energy at low measurement temperature.

  11. Electrochemical preparation of carbon chains and nanoparticles

    NASA Astrophysics Data System (ADS)

    Kavan, Ladislav

    1999-09-01

    The composite of carbon with alkali metal fluoride, C-MF(M=Li, Na) was prepared by cathodic defluorination of perfluorinated hydrocarbons at room temperature. Raman spectra of C-MF from PTFE indicate carbon chains (oligoynes, 1974-2024 cm-1) in addition to graphite-like carbon (1300-1500 cm-1). The oligoyne-containing carbon is partly selforganized by cross linking towards graphene. Highly-organized carbons were prepared from friction-deposited PTFE films. AFM confirms perfect ordering of the precursor molecules (up to atomic resolution), but the corresponding carbonization product is rapidly reconstructed upon contact to air. Raman spectra of oriented carbons display high conjugation lengths (up to 18 sp-bonded carbon atoms). Cyclic perfluorinated precursors are also smoothly defluorinated to elemental carbon. TEM indicates that these carbons contain about 1% of carbonaceous nanoparticles, i.e. nanotubes and onions. Also small quantity of fullerene C60(≈0.01%) was detected in the toluene extract.

  12. Preparation of drug nanoparticles by emulsion evaporation method

    NASA Astrophysics Data System (ADS)

    Hoa, Le Thi Mai; Chi, Nguyen Tai; Triet, Nguyen Minh; Thanh Nhan, Le Ngoc; Mau Chien, Dang

    2009-09-01

    Polymeric drug nanoparticles were prepared by emulsion solvent evaporation method. In this study, prepared the polymeric drug nanoparticles consist of ketoprofen and Eudragit E 100. The morphology structure was investigated by scanning electron microscopy (SEM). The interactions between the drug and polymer were investigated by Fourier transform infrared spectroscopy (FTIR). The size distribution was measured by means of Dynamic Light Scattering. The nanoparticles have an average size of about 150 nm. The incorporation ability of drugs in the polymeric nanoparticles depended on the integration between polymer and drug as well as the glass transition temperature of the polymer.

  13. Volume-labeled nanoparticles and methods of preparation

    DOEpatents

    Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J

    2015-04-21

    Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.

  14. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    SciTech Connect

    Buršík, J.; Kužel, R.; Knížek, K.; Drbohlav, I.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.

  15. Optical emission spectroscopy as a tool for the biodistribution investigation of cobalt-ferrite nanoparticles in mice

    NASA Astrophysics Data System (ADS)

    Kückelhaus, S.; Tedesco, A. C.; Oliveira, D. M.; Morais, P. C.; Boaventura, G. R.; Lacava, Z. G. M.

    2005-05-01

    This study reports on the biodistribution investigation of two magnetic samples both based on cobalt-ferrite nanoparticles, a magnetic fluid sample (CoMF) and a stealth magnetoliposome polyethylene glycol-monolaurate (PEG-ML). Morphology observations and iron and cobalt concentrations were evaluated after treatment of mice upon intravenous injection. Both magnetic samples had an extended distribution throughout all investigated organs. CoMF was quickly eliminated mainly by the fecal via whereas PEG-ML was retained longer in the circulation and slowly eliminated. These differences are probably due to the presence of polyethylene glycol on the PEG-ML surface, recognized to be responsible for the internalization delay of nanoparticles.

  16. Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method

    SciTech Connect

    Ghosh, Sushmita; Dasgupta, Subrata . E-mail: sdasgupta@cgcri.res.in; Sen, Amarnath; Maiti, Himadri Sekhar

    2005-12-08

    The synthesis of bismuth ferrite by solid-state reaction of Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} results in the formation of multiphase products. Even coprecipitation followed by calcination leads to the formation of impurity phases. Here, we report the synthesis of magnetoelectric bismuth ferrite by a ferrioxalate precursor method. In this process, bismuth ferrite, synthesized through solutions of some specific salts led to the formation of phase pure (perovskite) nanocrystalline powder (11-22 nm as evident from X-ray diffraction analysis) at a temperature of 600 deg. C. The synthesized powders were characterized by X-ray diffractometry, thermogravimetry and differential thermal analysis, Fourier transformation infrared spectroscopy and scanning electron microscopy. The synthesis route is simple, energy saving and cost-effective. Such nanosized bismuth ferrite powder may have a potential application in making lead free piezoelectric materials for actuators as well as magnetoelectric sensors.

  17. Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples.

    PubMed

    Pirouz, Mojgan Jafari; Beyki, Mostafa Hossein; Shemirani, Farzaneh

    2015-03-01

    In this research a sonochemistry route for manufacture of uniform nanocrystalline CaFe2O4 and its anhydride functionalisation were reported. The potential of raw and modified material as a magnetically separable sorbent in selective enrichment of lead ions from water and food samples is outlined. This material was characterised using FT-IR, XRD, SEM and VSM techniques. The SEM and VSM results indicated that the calcium ferrite nanoparticles are sphere-like particles possessing superparamagnetic properties with an average diameter of 40 nm. Various analytical parameters, including pH, contact time, type and concentration of eluent, adsorption capacity, sample volume and interference of ions, were optimised. Following a modification by anhydride, calcium ferrite selectivity toward lead ions was raised more than twofold compared to the unmodified nanoparticles. Finally a pre-concentration procedure was applied for determination of trace Pb(II) in canned tuna fish, canned tomato paste, parsley, milk and well-water samples with satisfactory results. PMID:25306327

  18. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Ansari, Mohammad Shahnawaze

    2012-02-01

    Ferrite nanoparticles of basic composition Ni0.7- x Zn x Cu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands ( v 1 and v 2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters ( ɛ', ɛ″, tan δ, and σ ac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm.

  19. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    PubMed Central

    2012-01-01

    Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm. PMID:22316055

  20. A novel sonication route to prepare anthracene nanoparticles

    SciTech Connect

    Kang Peng; Chen Chunnian; Hao Lingyun; Zhu Chunling; Hu Yuan; Chen Zuyao

    2004-04-02

    A novel sonication method has been successfully developed for the preparation of anthracene nanoparticles. The as-prepared nanoparticles are characterized using transmission electron microscopy, ultraviolet-visible absorption spectroscopy, fluorescence excitation and emission spectroscopy. Nanoparticles prepared with sonication are smaller and better dispersed than with magnetic stirring. Surfactants cetyltrimethylammonium bromide, bis(2-ethylhexyl)sodium sulfosuccinate, sodium dodecyl sulfonate and polyvinylpyrrolidone are used to control the size and morphology. Excimer band is found at 445 and 472 nm and possible mechanism is discussed.

  1. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-08-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  2. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-05-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  3. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Saiahi, S.; Motamedi, H.

    2013-05-01

    A new silver coated cobalt ferrite nanocomposite, Ag@CoFe2O4, was prepared by a two-step procedure. In the first step, cobalt ferrite nanoparticles were synthesized by a combustion method using glycine as a fuel. This ferrite was then coated with nanosilver via chemical reduction of Ag+ solution. The as-synthesized Ag@CoFe2O4 was characterized by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The antibacterial activity of this composite was investigated against some Gram-positive and Gram-negative bacteria and compared with those of silver nanoparticles and some standard antibacterial drugs.

  4. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis

    NASA Astrophysics Data System (ADS)

    Pulišová, P.; Kováč, J.; Voigt, A.; Raschman, P.

    2013-09-01

    Nano-particles of CoFe2O4, NiFe2O4 and Co0.5Ni0.5Fe2O4 were synthesized by a two step microemulsion precipitation where inverse micelles of water in hexanol were stabilized using cetyltrimethylammonium bromide. Powder X-ray diffraction analysis and Transmission electron microscopy measurements provided data to clarify the crystal structure and size of the produced nano-particles. Different measurements of magnetic properties at low temperatures of 2 K revealed that nano-particles of NiFe2O4 represent magnetically soft ferrite with a coercivity ∼40 kA/m, whereas nano-particles of CoFe2O4 and Co0.5Ni0.5Fe2O4 were magnetically harder with a coercivity of 815 and 947 kA/m, respectively. Additionally zero field cooling and field cooling measurements provided data for estimating the blocking temperature of the materials produced. For NiFe2O4 this temperature is lower, 23 K. The blocking temperature of CoFe2O4 of 238 K and Co0.5Ni0.5Fe2O4 of 268 K are higher in comparison with NiFe2O4.

  5. Magnetoelectric behavior of carbonyl iron mixed Mn oxide-coated ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahad, Faris B. Abdul; Lee, Shang-Fan; Hung, Dung-Shing; Yao, Yeong-Der; Yang, Ruey-Bin; Lin, Chung-Kwei; Tsay, Chien-Yie

    2010-05-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the cavity perturbation method at x-band microwave frequencies ranging from 7-12.5 GHz with controlled external magnetic field up to 2.2 kOe at room temperature. Different ratios (5%, 10%, and 20% by weight) of coated NPs were prepared by sol-gel method then mixed with carbonyl iron powder in epoxy matrix. The saturation magnetization is inversely proportional to the NPs ratio in the mixture between 150 and 180 emu/g. The real part of the permittivity decreased with increasing NPs concentration, but the permittivity change by magnetic field increased. The tunability behavior is explained by insulator-ferromagnetic interface magnetoelectricity and the large surface volume ratio for the NPs.

  6. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging

    NASA Astrophysics Data System (ADS)

    Pernia Leal, Manuel; Rivera-Fernández, Sara; Franco, Jaime M.; Pozo, David; de La Fuente, Jesús M.; García-Martín, María Luisa

    2015-01-01

    Magnetic resonance based molecular imaging has emerged as a very promising technique for early detection and treatment of a wide variety of diseases, including cancer, neurodegenerative disorders, and vascular diseases. The limited sensitivity and specificity of conventional MRI are being overcome by the development of a new generation of contrast agents, using nanotechnology approaches, with improved magnetic and biological properties. In particular, for molecular imaging, high specificity, high sensitivity, and long blood circulation times are required. Furthermore, the lack of toxicity and immunogenicity together with low-cost scalable production are also necessary to get them into the clinics. In this work, we describe a facile, robust and cost-effective ligand-exchange method to synthesize dual T1 and T2 MRI contrast agents with long circulation times. These contrast agents are based on manganese ferrite nanoparticles (MNPs) between 6 and 14 nm in size covered by a 3 kDa polyethylene glycol (PEG) shell that leads to a great stability in aqueous media with high crystallinity and magnetization values, thus retaining the magnetic properties of the uncovered MNPs. Moreover, the PEGylated MNPs have shown different relaxivities depending on their size and the magnetic field applied. Thus, the 6 nm PEGylated MNPs are characterized by a low r2/r1 ratio of 4.9 at 1.5 T, hence resulting in good dual T1 and T2 contrast agents under low magnetic fields, whereas the 14 nm MNPs behave as excellent T2 contrast agents under high magnetic fields (r2 = 335.6 mM-1 s-1). The polymer core shell of the PEGylated MNPs minimizes their cytotoxicity, and allows long blood circulation times. This combination of cellular compatibility and excellent T2 and r2/r1 values under low magnetic fields, together with long circulation times, make these nanomaterials very promising contrast agents for molecular imaging.Magnetic resonance based molecular imaging has emerged as a very promising

  7. Structure, morphology and magnetic properties of Mg(x) Zn(1 - x)Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: a low-toxicity alternative to Ni(x)Zn(1 - x)Fe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Daigle, A.; Modest, J.; Geiler, A. L.; Gillette, S.; Chen, Y.; Geiler, M.; Hu, B.; Kim, S.; Stopher, K.; Vittoria, C.; Harris, V. G.

    2011-07-01

    The synthesis and properties of Mg(x)Zn(1 - x)Fe2O4 spinel ferrites as a low-toxicity alternative to the technologically significant Ni(x)Zn(1 - x)Fe2O4 ferrites are reported. Ferrite nanoparticles have been formed through both the polyol and aqueous co-precipitation methods that can be readily adapted to industrial scale synthesis to satisfy the demand of a variety of commercial applications. The structure, morphology and magnetic properties of Mg(x)Zn(1 - x)Fe2O4 were studied as a function of composition and particle size. Scanning electron microscopy images show particles synthesised by the aqueous co-precipitation method possess a broad size distribution (i.e. ~ 80-120 nm) with an average diameter of the order of 100 nm ± 20 nm and could be produced in high process yields of up to 25 g l - 1. In contrast, particles synthesised by the polyol-based co-precipitation method possess a narrower size distribution with an average diameter in the 30 nm ± 5 nm range but are limited to smaller yields of ~ 6 g l - 1. Furthermore, the polyol synthesis method was shown to control average particle size by varying the length of the glycol surfactant chain. Particles prepared by both methods are compared with respect to their phase purity, crystal structure, morphology, magnetic properties and microwave properties.

  8. Properties of Cr-substituted M-type barium ferrites prepared by nitrate citrate gel-autocombustion process

    NASA Astrophysics Data System (ADS)

    Ounnunkad, S.; Winotai, P.

    2006-06-01

    The Cr-substituted M-type barium hexaferrites, BaFe 12-xCr xO 19, with x=0.0-0.8 have been successfully prepared by nitrate-citrate auto-combustion process using citric acid as a fuel/reductant and nitrates as oxidants. The resulting precursors were calcined at 1100 °C for 1 h and followed by sintering at 1200 °C for 12 h in oxygen atmosphere. The ferrites were systematically investigated by using powder X-ray diffractometer (XRD), magnetic hysteresis recorder, Mössbauer spectrometer, and scanning electron microscope (SEM). The XRD data show the formation of pure magnetoplumbite phase without any other impurity phases. Both a and c lattice parameters calculated by the Rietveld method systematically decrease with increasing Cr content. The effects of Cr 3+ ions on the barium ferrites were reported and discussed in detail. The site preference of Cr 3+ and magnetic properties of the ferrites have been studied using Mössbauer spectra and hystereses. The results show that the magnetic properties are closely related to the distributions of Cr 3+ ions on the five crystallographic sites. The saturation magnetization systematically decreases, however, the coercivity increases with Cr concentration. The magnetization and Mössbauer results indicate that the Cr 3+ ions preferentially occupy the 2a, 12k, and 4f VI sites. The average size of hexagonal platelets obtained by SEM photographs tends to decrease with respect to Cr content.

  9. Recent advances in the preparation of hybrid nanoparticles in miniemulsions.

    PubMed

    Qi, Dongming; Cao, Zhihai; Ziener, Ulrich

    2014-09-01

    In this review, we summarize recent advances in the synthesis of hybrid nanoparticles in miniemulsions since 2009. These hybrid nanoparticles include organic-inorganic, polymeric, and natural macromolecule/synthetic polymer hybrid nanoparticles. They may be prepared through encapsulation of inorganic components or natural macromolecules by miniemulsion (co)polymerization, simultaneous polymerization of vinyl monomers and vinyl-containing inorganic precursors, precipitation of preformed polymers in the presence of inorganic constituents through solvent displacement techniques, and grafting polymerization onto, from or through natural macromolecules. Characterization, properties, and applications of hybrid nanoparticles are also discussed. PMID:24951391

  10. Influence of various surfactants on magnetic property of cobalt ferrite prepared by Co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Khatri, Hemal; Jotania, R. B.

    2016-05-01

    Cobalt Ferrite (CoFe2O4) particles were synthesised using a Co-precipitation method. Influence of three different surfactants i.e. (1) Cationic - CTAB (Cetyl Tri-Methyl Ammonium Bromide), (2) Anionic - SDBS (Sodium Dodecyl Benzene Sulphonate) and (3) Nonionic - Triton X-100, on magnetic property of Cobalt Ferrite were investigated. Magnetic property of Cobalt ferrite powder was studied at room temperature using Vibrating Sample Measurements (VSM) technique under an applied magnetic field of 15kOe. The results show maximum value of saturation magnetization - Ms (81.87 emu/g) for the sample synthesised without surfactant and Coercivity value found maximum (2086 kOe) for the sample synthesized in presence of surfactant SDBS.

  11. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shofiah, Siti; Muflihatun, Suharyadi, Edi

    2016-04-01

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.

  12. Novel Methods of Lipidic Nanoparticle Preparation and Drug Loading

    NASA Astrophysics Data System (ADS)

    Maitani, Y.

    2013-09-01

    In improving cancer chemotherapy, lipidic nanoparticle systems for drug delivery, such as liposomes and emulsions, have received much attention because they are capable of delivering their drug payload selectively to cancer cells and of circulating for a long period in the bloodstream. In addition, lipidic nanoparticles have been examined for use in gene delivery as a non-viral vector. Preparation methods of particles and drug loading methods are crucial for the physicochemical properties of nanoparticles, which are the key aspects for pharmaceutical applications. This review describes new preparation methods for nanoparticles and a loading method for drugs using nanotechnology, including an evaluation of nanoparticles from the point of drug release for applications in cancer therapy and gene delivery.

  13. Preparation of nanoparticles in reverse microemulsions

    NASA Astrophysics Data System (ADS)

    Tovstun, Sergey A.; Razumov, Vladimir F.

    2011-10-01

    Experimental data and results of theoretical studies dealing with the synthesis of nanoparticles by the condensation of products of chemical reactions in reverse microemulsions are generalized. Attention is focused on the analysis of mechanisms of nanoparticle nucleation and growth. The bibliography includes 252 references.

  14. Zero-valent iron nanoparticles preparation

    SciTech Connect

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  15. Self-Assembly of an Optically-Responsive Polydiacetylene-Coating on Iron Ferrite Magnetic Nanoparticles for Tumor Detection and Targeting

    NASA Astrophysics Data System (ADS)

    Le, Vivian

    Nanoparticles are a promising diagnostic agent with applications in tumor imaging and targeted cancer treatment. They can offer multifunctional properties by combining imaging methods to improve cancer diagnosis, treatment, and disease monitoring. Two such complementary tools are magnetic resonance imaging (MRI) and fluorescence imaging. In this thesis, a dual solvent exchange approach was chosen to facilitate the self-assembly of amphiphilic diacetylene monomers onto hydrophobic iron ferrite magnetic nanoparticles (MNPs). Various concentrations of the diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA) and 10,12-heptacosadiynoic acid (HCDA), were coated onto ˜14 nm iron ferrite MNPs. The diacetylene monomer coating were cross-linked to a stable blue colored polydiacetylene (PDA) coating after applying UV light. The resulting PDA-MNP hybrid displayed characteristic chromogenic and fluorogenic in response to thermal stress. This novel multifunctional nanoparticle system holds exciting potential for dual-modality diagnostics applications.

  16. Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method

    NASA Astrophysics Data System (ADS)

    Ben Ali, M.; El Maalam, K.; El Moussaoui, H.; Mounkachi, O.; Hamedoun, M.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-01-01

    Synthesization of zinc-substituted cobalt ferrites nano-particles Co1-xZnxFe2O4 (x=0.0-0.3) has been achieved by the sol/gel method. The characterization of the synthesized nano-particles has been done by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FITR). The relation between the composition and magnetic properties has been investigated by Magnetic Properties Measurement System (MPMS). The results revealed that the nanoparticles size is in the range of 11-28 nm. It was found that the zinc substitution in cobalt ferrite increases saturation magnetization from 60.92 emu/g (x=0) to 74.67 emu/g (x=0.3). Nevertheless, zinc concentrations cause a significant decrease in coercivity.

  17. Synthesis and magnetic properties of CoFe{sub 2}O{sub 4} spinel ferrite nanoparticles doped with lanthanide ions

    SciTech Connect

    Kahn, Myrtil L.; Zhang, Z. John

    2001-06-04

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn{sub 0.12}Fe{sub 1.88}O{sub 4} nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln{sup III}) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd{sup 3+} or Dy{sup 3+} ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd{sup 3+} ions increases the blocking temperature {similar_to}100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln{sup III} ions is interesting but very complex. {copyright} 2001 American Institute of Physics.

  18. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  19. Preparation and characterization of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles using urea as precipitator via coprecipitation method

    SciTech Connect

    Pang Xiaofen; Fu Wuyou; Yang Haibin Zhu Hongyang; Xu Jing; Li Xiang; Zou Guangtian

    2009-02-04

    The composite of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles has been successfully prepared using urea as precipitator via coprecipitation method. The resultant composites were characterized by X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometer. The results showed that the slow decomposition of urea could be beneficial to form uniform and entire cobalt ferrite coating layer on the surface of hollow glass microspheres. The smoothest morphology was obtained for the sample prepared from 0.7 M urea, while the sample prepared from 1.0 M urea had the thickest shell. This indicated that there was a competition between the morphology and thickness of the coated microspheres. A possible formation mechanism of hollow glass microspheres coated with cobalt ferrite was proposed. The magnetic properties of the samples were also investigated.

  20. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method

    NASA Astrophysics Data System (ADS)

    Huang, Xiaogu; Zhang, Jing; Wang, Wei; Sang, Tianyi; Song, Bo; Zhu, Hongli; Rao, Weifeng; Wong, Chingping

    2016-05-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9-11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9-11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02-0.07 and magnetic loss factor was 0.2-0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials.

  1. Preparation of nanocrystalline Fe 3-x LaxO4 ferrite and their adsorption capability for Congo red.

    PubMed

    Wang, Lixia; Li, Jianchen; Wang, Yingqi; Zhao, Lijun

    2011-11-30

    This investigation was to increase the adsorption capacity of magnetite for Congo red (CR) by adulterating a small quantity of La(3+) ions into it. The adsorption capability of nanocrystalline Fe(3-x)La(x)O(4) (x=0, 0.01, 0.05, 0.10) ferrite to remove CR from aqueous solution was evaluated carefully. Compared with undoped magnetite, the adsorption values were increased from 37.4 to 79.1 mg g(-1). The experimental results prove that it is effectual to increase the adsorption capacity of magnetite by doped La(3+) ions. Among the La(3+)-doped magnetite, Fe(2.95)La(0.05)O(4) nanoparticles exhibit the highest saturation magnetization and the maximum adsorption capability. The desorption ability of La(3+)-doped magnetite nanoparticles loaded by CR can reach 92% after the treatment of acetone. Furthermore, the Fe(3-x)La(x)O(4) nanoparticles exhibited a clearly ferromagnetic behavior under applied magnetic field, which allowed their high-efficient magnetic separation from wastewater. It is found that high magnetism facilitates to improve their adsorption capacity for the similar products. PMID:21944701

  2. Environmentally friendly preparation of metal nanoparticles

    EPA Science Inventory

    The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.

  3. Hemoglobin loaded polymeric nanoparticles: preparation and characterizations.

    PubMed

    Dessy, Alberto; Piras, Anna M; Schirò, Giorgio; Levantino, Matteo; Cupane, Antonio; Chiellini, Federica

    2011-05-18

    In the present work polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with m-PEG (2000) and 95% grafted with 2-methoxyethanol (VAM41-PEG) were loaded with human hemoglobin (Hb) and characterized from a physicochemical point of view. The assessment of structural and functional features of the loaded Hb was performed and the effect of the introduction of different reducing agents as aimed at minimizing Hb oxidation during the nanoparticles formulation process, was also investigated. Nanoparticles possessing an average diameter of 138±10 nm and physicochemical features suitable for this kind of application were successfully obtained. Although the oxidation of the protein was not avoided during its loading into nanoparticles, the presence of acidic moieties in the polymeric structure is proposed to be directly involved in the protein inactivation mechanism. PMID:21443949

  4. Preparation of silver nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Mishra, Mini; Chauhan, Pratima

    2016-04-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  5. Hybrid polymer/nanoparticle solar cells: preparation, principles and challenges.

    PubMed

    Saunders, Brian R

    2012-03-01

    Hybrid polymer/nanoparticle solar cells have a light harvesting layer composed of semiconducting inorganic nanoparticles and a semiconducting conjugated polymer. They have potential to give high power conversion efficiencies (PCE). However, the PCE values reported for these solar cells are not currently as high as anticipated. This article reviews the main methods currently used for preparing hybrid polymer/nanoparticle solar cells from the colloid perspective. PCE data for the period of 2005-2011 are presented for hybrid polymer/nanoparticle solar cells and compared to those from polymer/fullerene cells. The key reasons for the relatively low PCE values for hybrid polymer/nanoparticle solar cells are uncontrolled aggregation and residual insulating ligands at the nanoparticle surface. Two hybrid polymer/nanoparticle systems studied at Manchester are considered in which the onset of aggregation and its affect on composite film morphology were studied from the colloidal perspective. It is concluded that step-change approaches are required to increase the PCEs of hybrid polymer/nanoparticle solar cells and move them toward the 10% value required for widespread commercialisation. A range of nanoparticles that have potential for application in possible longer term terawatt solar energy production are discussed. PMID:22209577

  6. Magnetic and dielectric behavior of chromium substituted Co-Mg ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jadoun, Priya; Jyoti, Prashant, B. L.; Dolia, S. N.; Bhatnagar, D.; Saxena, V. K.

    2016-05-01

    The chromium doped Co-Mg ferrite with composition Co0.5Mg0.5Cr0.2Fe1.8O4 has been synthesized using sol-gel auto combustion method. The crystal structure has been analyzed by X-ray diffraction (XRD) technique. XRD pattern reveals the formation of single phase cubic spinel structure. The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observed on cooling down the temperature to 20 K. Dielectric constant (ɛ') and dielectric loss tangent (tan δ) have been determined at room temperature as a function of frequency in the frequency range 75 kHz to 80 MHz. The decrease in dielectric constant with increasing frequency attributes to Maxwell Wagner model and conduction mechanism in ferrites.

  7. Preparation and characterization of biopolymeric nanoparticles used in drug delivery.

    PubMed

    Ramachandran, Radhika; Shanmughavel, Piramanayagam

    2010-02-01

    Nanotechnology plays an important role in advanced biology and medicine research particularly in the development of potential site-specific delivery systems with lower drug toxicity and greater efficiency. These include microcapsules, liposomes, polymeric microspheres, microemulsions, polymer micelles, hydrogels, solid nanoparticles etc. In the present study, preparation and characterization of biopolymeric gelatin nanoparticles for encapsulating the antimicrobial drug sulfadiazine and its in vivo drug release in phosphate buffer saline (PBS) have been investigated. The nanoparticles prepared by second desolvation process varied in a size range 200 nm and 600 nm with a drug entrapment efficiency of 50% characterized by atomic force microscopy and dynamic light scattering. The drug release from the nanoparticles occurred up to 30% in a controlled manner. PMID:21086757

  8. Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles

    PubMed Central

    2011-01-01

    The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications. PMID:21774807

  9. Synthesis, magnetic and optical properties of core/shell Co1- x Zn x Fe2O4/SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Girgis, Emad; Wahsh, Mohamed Ms; Othman, Atef Gm; Bandhu, Lokeshwar; Rao, Kv

    2011-07-01

    The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.

  10. Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate.

    PubMed

    Bregar, Vladimir B; Lojk, Jasna; Suštar, Vid; Veranič, Peter; Pavlin, Mojca

    2013-01-01

    In recent years, nanoparticles (NPs) and related applications have become an intensive area of research, especially in the biotechnological and biomedical fields, with magnetic NPs being one of the promising tools for tumor treatment and as MRI-contrast enhancers. Several internalization and cytotoxicity studies have been performed, but there are still many unanswered questions concerning NP interactions with cells and NP stability. In this study, we prepared functionalized magnetic NPs coated with polyacrylic acid, which were stable in physiological conditions and which were also nontoxic short-term. Using fluorescence, scanning, and transmission electron microscopy, we were able to observe and determine the internalization pathways of polyacrylic acid-coated NPs in Chinese hamster ovary cells. With scanning electron microscopy we captured what might be the first step of NPs internalization - an endocytic vesicle in the process of formation enclosing NPs bound to the membrane. With fluorescence microscopy we observed that NP aggregates were rapidly internalized, in a time-dependent manner, via macropinocytosis and clathrin-mediated endocytosis. Inside the cytoplasm, aggregated NPs were found enclosed in acidified vesicles accumulated in the perinuclear region 1 hour after exposure, where they stayed for up to 24 hours. High intracellular loading of NPs in the Chinese hamster ovary cells was obtained after 24 hours, with no observable toxic effects. Thus polyacrylic acid-coated NPs have potential for use in biotechnological and biomedical applications. PMID:23486857

  11. Magnetic properties of MnZn ferrites prepared by soft chemical routes

    NASA Astrophysics Data System (ADS)

    Razzitte, A. C.; Jacobo, S. E.; Fano, W. G.

    2000-05-01

    MnZn ferrites with different composition have been synthesized by soft chemistry routes using oxalate precursors with the partial replacement of water by acetone as the solvent. Toroids were sintered at 1250 °C for 3 h in O2/N2 atmosphere. Sintering conditions significantly changed macroscopic characteristics as density and initial permeability for different composition. Variation of the complex permeability with frequency have been measured over a wide range of frequency, up to 1.8 GHz where dispersion is attributed to spin resonance. No additives for increasing densification were employed. Samples exhibit the highest permeability values for Mn0.8Zn0.2Fe2O4. An anomalous effect is observed when copper is added to MnZn ferrites. The initial permeability (μi) values do not exhibit much variation with temperature, except near Tc where it falls sharply. Curie point and magnetic losses are related with composition.

  12. Preparation and characterization of positively charged ruthenium nanoparticles.

    PubMed

    Yang, Jun; Lee, Jim Yang; Deivaraj, T C; Too, Heng-Phon

    2004-03-15

    Positively charged ruthenium nanoparticles were prepared by NaBH(4) reduction at room temperature and at pH values lower than 4.9. The ruthenium nanoparticles were characterized by zeta potential measurement, TEM, XPS, and XRD. Particles with a mean diameter of 1.8 nm and a standard deviation of 0.40 nm could be obtained under the experimental conditions. The surface charge on the particles is believed to originate from hydrated proton adsorption. The positively charged ruthenium nanoparticles could be used as the starting material for further functionalization by PVP, ethylenediamine, and dodecylamine. PMID:14972606

  13. Preparation of size-controlled nanoparticles of magnetite

    NASA Astrophysics Data System (ADS)

    Andrade, Ângela L.; Valente, Manuel A.; Ferreira, José M. F.; Fabris, José D.

    2012-05-01

    Samples of ferrofluids containing chemically stabilized nanoparticles of magnetite (Fe3O4) with tetramethylammonium hydroxide (TMAOH) were prepared by a direct reduction-precipitation method. The influences of aging time and temperature on the size and monodispersion characteristics of the produced nanoparticles were investigated. Transmission electron microscopy, powder X-ray diffraction, Fourier-transform infrared, and magnetization measurements with applied magnetic field up to 2 T were used to characterize the synthesized iron oxides. Raising the temperature of the synthesized material in autoclave affects positively the monodispersion of the nanoparticles, but it was not found to significantly influence the size itself of individual particles.

  14. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    NASA Astrophysics Data System (ADS)

    Munjal, Sandeep; Khare, Neeraj

    2016-04-01

    We have synthesized CoFe2O4 (CFO) nanoparticles of size ˜ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  15. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance.

    PubMed

    Kaya, Murat; Zahmakiran, Mehmet; Ozkar, Saim; Volkan, Mürvet

    2012-08-01

    Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH(3)BH(3)), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO(2)/CoFe(2)O(4) particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO(2)/CoFe(2)O(4) followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH(3)BH(3) and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N(2) adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO(2)/CoFe(2)O(4) (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst. PMID:22856878

  16. On the Structure and Some Properties of LaCo Co-substituted NiZn Ferrites Prepared Using the Standard Ceramic Technique

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofei; Liu, Xiansong; Huang, Xin; Huang, Kai; Ma, Yuqi; Huang, Feng; Lv, Farui

    2016-04-01

    Zn0.5Ni0.5-xCoxFe2-yLayO4 ferrites (with x=0, 0.02 and y=0, 0.02) were prepared by an industrial method using the standard ceramic technique and sintered at 1,250°C in air. X-ray diffraction (XRD) was used to obtain the phase formation of the NiZn ferrites. The microstructure of ferrites was investigated by scanning electron microscopy (SEM). The XRD reveals that lattice parameter (a) is decreased and a secondary phase (LaFeO3) is formed in the La-Co co-substituted NiZn ferrite sample, meanwhile, the grain size (D) of this sample decreased obviously by observing SEM photographs. Vibrating sample magnetometry (VSM), B-H analyzer, impedance analyzer and electrometer were carried out in order to characterize some properties of the ferrites. This investigation indicates that, La-Co co-substituted NiZn ferrite sample has higher power loss (Pcv) than other samples at low frequency with an increase in coercive field (Hc) and magnetocrystalline anisotropy (K1), a decrease in initial permeability (μi) and saturation magnetization (Ms). However, at high frequency, the power loss of La-Co co-substituted sample is low, which is attributed to high resistivity (ρ), small grain size (D), less number of Fe2+ ions and low porosity (P).

  17. Multiferroic bismuth ferrite material core based inductive displacement sensor

    NASA Astrophysics Data System (ADS)

    Rajeswari, R.; Biswal, M. R.; Nanda, J.; Mishra, N. C.

    2012-07-01

    In this research, an inductive displacement sensor with multiferroic bismuth ferrite core has been realized. The bismuth ferrite sample is synthesized and its structural and dielectric properties are studied. A rod-shaped bismuth ferrite core is prepared and displaced through the inductor of a RLC circuit. The performance of the prepared bismuth ferrite core has been compared with a commercially available ferrite core.

  18. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects. PMID:26230052

  19. Preparation of Chitosan Nanoparticles: A Study of Influencing Factors

    NASA Astrophysics Data System (ADS)

    Thakur, Anupama; Taranjit

    2011-12-01

    Chitosan (CS), a cationic polysaccharide, offers great advantages for ionic interactions with negatively charged species such as sodium tripolyphosphate (STPP) leading to the formation of biocompatible crosslinked chitosan nanoparticles In the present work, an attempt has been made to systematically study the following factors influencing the ionotropic gelation of chitosan with STPP to produce CS nanoparticles: effect of pH of solution, CS concentration, STPP concentration and CS/STPP ratio. The results show that with the increase in CS concentration, the yield of the nanoparticle decreases whereas size increases. The mean size of the prepared nanoparticles varied between 120 to 720 nm and zeta potential between +14 mV to +53 mV . Nanoparticle size and yield was found to be strongly dependent on solution pH. Nanoparticle size decreased with increase in solution pH from 4 to 5 and yield was found to be maximum at pH = 5. With increase in STPP concentration, the size and yield of the nanoparticle increased. The potential of CS nanoparticles to trap amoxicillin trihydrate, taken as the model drug, was also studied. The maximum drug loading capacity was found to be 35% at a solution pH = 5 for 0.2% CS and 0.086% STPP.

  20. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Mazlan, Saiful Amri

    2016-07-01

    Soft magnetic materials have been used in many applications, i.e., electrical and electronic industries, due to their desirable electromagnetic characteristics. The performance of these materials in bulk form, where the size of grains is in micrometer scale, is only limited to a few megahertz frequencies due to their higher conductivity and domain wall resonance. Synthesizing the ferrite particles in nanometer scales before compacting them for sintering would be one way to solve using these materials at higher frequencies. The properties of ferrite depend mainly on the technique and conditions of preparation, which, in turn, affect the cation distribution over the tetrahedral and octahedral sites. Thus, the aim of this study was to introduce some methods used for synthesizing nanocrystalline soft magnetic ferrites. Furthermore, the microstructure features, i.e., grain sizes and porosities, which are influenced by the types of method used for preparation, playing key role on the magnetic properties of the sample, are also highlighted.

  1. Effect of filler loading of nickel zinc ferrite on the tensile properties of PLA nanocomposites

    NASA Astrophysics Data System (ADS)

    Shahdan, Dalila; Ahmad, Sahrim Hj

    2013-05-01

    The mechanical strength of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90:10. The MPNC were prepared at constant mixing temperature at 180°C, mixing time of 15 min. and mixing speed of 100 rpm. In order to achieve a good dispersion of NiZn ferrite in the matrix, firstly an ultrasonic treatment had been employed to mix the LNR and NiZn ferrite for 1 hour. The MPNC of PLA/LNR/NiZn ferrite then were prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1-5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases the tensile strength also increases until an optimum value of filler loading was reached. The Young's modulus, tensile strength and elongation at break have also increased. The study proves that NiZn ferrite is excellent reinforcement filler in PLA matrix. Scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDX) were meant to show the homogeneity dispersion of nanoparticles within the matrix and to confirm the elemental composition of NiZn ferrites-PLA/LNR nanocomposites respectively.

  2. Absorption and Decomposition of CO2 by Active Ferrites Prepared by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; He, Zhida; Zheng, Yanjun; Chen, Changfeng

    2015-12-01

    Active ferrites, which play an important role in the catalytic decomposition of CO2, have been fabricated by atmospheric plasma spraying to incorporate FeO and anoxic iron oxide [Fe3O4-δ (0 < δ < 1)]. The complexity of phase composition, especially the presence of FeO, gives the resulting powder a greater ability to decompose CO2 when compared to hydrogen-reduced Fe3O4 or Fe2O3 particles. Spraying distance is found to play an important role in modulating the decomposition ability of the powders, while elevated temperatures can also enhance the catalytic decomposition of CO2.

  3. Preparation, characterization and optimization of glipizide controlled release nanoparticles.

    PubMed

    Emami, J; Boushehri, M S Shetab; Varshosaz, J

    2014-01-01

    The purpose of the present study was to develop glipizide controlled release nanoparticles using alginate and chitosan thorough ionotropic controlled gelation method. Glipizide is a frequently prescribed second generation sulfonylurea which lowers the blood glucose in type-two diabetics. Quick absorption of the drug from the gastrointestinal tract along with short half- life of elimination makes it a good candidate for controlled release formulations. Alginate-chitosan nanoparticles (ACNP) are convenient controlled delivery systems for glipizide, due to both the release limiting properties of the system, and the bioadhesive nature of the polymers. In the present study, glipizide loaded alginate-chitosan nanoparticles (GlACNP) were prepared, and the particle characteristics including particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), loading percent (LP), and mean release time (MRT), as well as the morphology of the nanoparticles, the drug-excipient compatibility, and the release kinetics along with the drug diffusion mechanism were evaluated. The results suggested that ionotropic controlled gelation method offers the possibility of preparing the nanoparticles in mild conditions in an aqueous environment, and can lead to the preparation of particles with favorable size, controlled release characteristics, and high entrapment efficiency, serving as a convenient delivery system for glipizide. The particle and release characteristics can be efficiently optimized using the Box-Behnken design. Based on the findings of the present study, it is expected that this novel formulation be a superior therapeutic alternative to the currently available glipizide delivery systems. PMID:25657802

  4. Preparation, characterization and optimization of glipizide controlled release nanoparticles

    PubMed Central

    Emami, J.; Boushehri, M.S. Shetab; Varshosaz, J.

    2014-01-01

    The purpose of the present study was to develop glipizide controlled release nanoparticles using alginate and chitosan thorough ionotropic controlled gelation method. Glipizide is a frequently prescribed second generation sulfonylurea which lowers the blood glucose in type-two diabetics. Quick absorption of the drug from the gastrointestinal tract along with short half- life of elimination makes it a good candidate for controlled release formulations. Alginate-chitosan nanoparticles (ACNP) are convenient controlled delivery systems for glipizide, due to both the release limiting properties of the system, and the bioadhesive nature of the polymers. In the present study, glipizide loaded alginate-chitosan nanoparticles (GlACNP) were prepared, and the particle characteristics including particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), loading percent (LP), and mean release time (MRT), as well as the morphology of the nanoparticles, the drug-excipient compatibility, and the release kinetics along with the drug diffusion mechanism were evaluated. The results suggested that ionotropic controlled gelation method offers the possibility of preparing the nanoparticles in mild conditions in an aqueous environment, and can lead to the preparation of particles with favorable size, controlled release characteristics, and high entrapment efficiency, serving as a convenient delivery system for glipizide. The particle and release characteristics can be efficiently optimized using the Box-Behnken design. Based on the findings of the present study, it is expected that this novel formulation be a superior therapeutic alternative to the currently available glipizide delivery systems. PMID:25657802

  5. Preparation of platinum nanoparticle catalyst for propane dehydrogenation.

    PubMed

    Li, Jun; Wang, Jun; Ma, Zhanhua; Sun, Lanyi; Hu, Yangdong

    2014-09-01

    Supported Pt nanoparticle catalysts were prepared by combing a chemical reduction method with an ultrasonic sonication loading method. Several techniques including transmission electron microscopy (TEM), nitrogen sorption technique and pyridine adsorption Fourier-transform infrared (Py-IR) were applied to characterize the physicochemical properties of these catalysts. The catalytic performance of catalysts was evaluated in the dehydrogenation of propane. The influence of the preparation method of Pt nanoparticles, the ratio of Polyvinyl Pyrrolidone (PVP) to Pt, loading method and different supports on the catalytic performance was investigated. PVP is useful for controlling the size of Pt nanoparticles and a PVP/Pt ratio of 15 is favorable to achieve a good catalytic performance. NaBH4 reduction is better than ethanol refluxing in preparing Pt nanoparticles. The ultrasonic sonication is effective to load the Pt nanoparticles onto the support channels. The mesoporous alumina proved to be a good catalyst support due to its high surface area and unique pore structure. PMID:25924358

  6. Preparation of cobalt-zinc ferrite (Co{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) nanopowder via combustion method and investigation of its magnetic properties

    SciTech Connect

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-12-15

    Research highlights: {yields} Cobalt-zinc ferrite was prepared by combustion method. {yields} Properties of the sample were characterized by several techniques. {yields} Curie temperature was determined to be 350 {sup o}C. -- Abstract: Cobalt-zinc ferrite (Co{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 {sup o}C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 {sup o}C using AC-susceptibility technique.

  7. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    DOEpatents

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  8. Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam

    2011-12-01

    Nanoparticles of polycrystalline NiFe2-xCuxO4 (0.0≤x≤0.05) ferrites were prepared through the modified citrate-gel method. The samples were obtained as dried gel after the successful chemical reaction of their respective metal nitrate solutions in the midst of citric acid as catalyst. X-ray diffraction (XRD) and selective area electron diffraction (SAED) confirmed the single phase nature of all the samples with an average particle size of 19.8 (±1). Fourier transformation infrared spectroscopy (FTIR) shows the presence of two broad vibrational bands between 400 and 1000 cm-1 corresponding to the tetrahedral and the octahedral sites. The variation of dielectric properties (ɛ‧, ɛ″, tan δ) and ac conductivity (σac), with frequency reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization in general and due to hopping of charges between Fe+2 and Fe+3 as well as between Ni+2 and Ni+3 ions at B-sites. The complex impedance spectroscopy has been used to study the effect of grain and grain boundary on the electrical properties of all the ferrite nanoparticles.

  9. Preparation of mesoporous cadmium sulfide nanoparticles with moderate pore size

    SciTech Connect

    Han Zhaohui Zhu, Huaiyong; Shi, Jeffrey; Parkinson, Gordon; Lu, G.Q.

    2007-03-15

    The preparation of cadmium sulfide nanoparticles that have a moderate pore size is reported. This preparation method involves a hydrothermal process that produces a precursor mixture and a following acid treatment of the precursor to get the porous material. The majority of the particles have a pore size close to 20nm, which complements and fills in the gap between the existing cadmium sulfide materials, which usually have a pore size either less than 10nm or are well above 100nm.

  10. Development of cobalt ferrite powder preparation employing the sol-gel technique and its structural characterisation

    NASA Astrophysics Data System (ADS)

    Sajjia, M.; Oubaha, M.; Prescott, T.; Olabi, A. G.

    2010-06-01

    This work focuses on the development of a method to make nano cobalt ferrite powder using a solgel process. A particular emphasis is devoted to the understanding of the role of the chemical parameters involved in the solgel technique, and of the heat treatment on the structures and morphologies of the materials obtained. Several samples of cobalt ferrite powder were obtained by varying the initial parameters of the process in addition to the heat treatment temperature. Xray diffraction and scanning electron microscopy were used to identify the structure and morphology of samples demonstrating the influence of the initial parameters. DTA/TGA was carried out on one sample to identify important reaction temperatures during the heat treatment. The average particle size, as estimated for one sample by the full width at half maximum (FWHM) of the strongest Xray diffraction (XRD) peak, was found to be about 45 nm. It has been found that the chelating agent and the crosslinker have a critical influence on the resultant structure, the particle size and the particle size distribution.

  11. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach.

    PubMed

    Yu, Byong Yong; Kwak, Seung-Yeop

    2011-10-21

    Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic. PMID:21904731

  12. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.

    PubMed

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-07-21

    This study deals with the exploration of NixCo₁-xFe₂O₄ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co₀.₄Ni₀.₆Fe₂O₄ (154.02 m(2) g(-1)). Co₀.₄Ni₀.₆Fe₂O₄ showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe₂O₄ was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH₄ on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni(2+) in to the cobalt ferrite lattice due to octahedral site preference of Ni(2+). Almost 99% degradation was achieved in 20 min using NiFe₂O₄ nanoparticles as catalyst. PMID:24902783

  13. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes

    NASA Astrophysics Data System (ADS)

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-06-01

    This study deals with the exploration of NixCo1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co0.4Ni0.6Fe2O4 (154.02 m2 g-1). Co0.4Ni0.6Fe2O4 showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe2O4 was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH4 on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni2+ in to the cobalt ferrite lattice due to octahedral site preference of Ni2+. Almost 99% degradation was achieved in 20 min using NiFe2O4 nanoparticles as catalyst.

  14. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    SciTech Connect

    Nemţanu, Monica R. Braşoveanu, Mirela Iacob, Nicuşor

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  15. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  16. Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen

    2012-09-01

    Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol-gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.

  17. Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators

    NASA Astrophysics Data System (ADS)

    Peng, Long; Hu, Yue-Bin; Guo, Cheng; Li, Le-Zhong; Wang, Rui; Hu, Yun; Tu, Xiao-Qiang

    2015-01-01

    Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a strong effect on the sintering density, crystal structure, and magnetic properties of the ferrites. As to the ferrites with 3 wt% Bi2O3, the relatively high sintering density ρs, saturation magnetization Ms, and intrinsic coercivity Hci can be obtained at a low sintering temperature of 900°C even much lower. Furthermore, the effective magnetic anisotropy constant Keff and magnetic anisotropy field Ha of the ferrites are calculated from the magnetization curve by the law of approach to saturation. It is suggested that the low-temperature sintered SrFe12O19 ferrites with Ms of 285.6 kA/m and Ha of 1564.6 kA/m possess a significant potentiality for applying in the self-biased low-temperature co-fired ceramics circulators from 34 to 40 GHz.

  18. The optical nonlinearity of gold nanoparticles prepared by bioreduction method

    NASA Astrophysics Data System (ADS)

    Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon

    2013-11-01

    Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.

  19. Colossal resistivity with diminished tangent loss in Zn-Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Younas, M.; Atif, M.; Nadeem, M.; Siddique, M.; Idrees, M.; Grossinger, R.

    2011-08-01

    We have investigated the electrical and magnetic response of the sol-gel synthesized ZnxNi1-xFe2O4 (x = 0.0, 0.5 and 1) nanoparticles. The ratio of A-site sextet intensity to that of B-site sextet is featured in terms of divergence in coordination of Fe3+ ions from four-fold (A-site) to six-fold (B-site). Canted spin structure and weakening of Fe3+(A)-Fe3+(B) interactions at the surface of the nanoparticles assign the reduced value of room temperature magnetization in these nanoparticles. Shift of the blocking temperature with Zn content is ascribed to the change in the magnetic anisotropy. Colossal resistivity and reduced dielectric constant are discussed on the basis of dangling bond, superparamagnetic character, canted spin structure and polarizability of the cations. Diminished tangent loss is stipulated in terms of decrease in magnetocrystalline anisotropy and collapse of long-range magnetic order. We report colossal resistivity (i.e. 3.15 × 109 Ω cm), reduced dielectric constant (3.97) and diminished tangent loss (0.07) for Ni0.5Zn0.5Fe2O4 nanoparticles.

  20. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery.

    PubMed

    Barbi, Mariana Da Silva; Carvalho, Flávia Chiva; Kiill, Charlene Priscila; Barud, Hernane Da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Gremião, Maria Palmira Daflon

    2015-01-01

    Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT

  1. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    NASA Astrophysics Data System (ADS)

    Verde, E. L.; Landi, G. T.; Carrião, M. S.; Drummond, A. L.; Gomes, J. A.; Vieira, E. D.; Sousa, M. H.; Bakuzis, A. F.

    2012-09-01

    Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected

  2. Luminol-silver nitrate chemiluminescence enhancement induced by cobalt ferrite nanoparticles.

    PubMed

    Shi, Wenbing; Wang, Hui; Huang, Yuming

    2011-01-01

    CoFe(2)O(4) nanoparticles (NPs) could stimulate the weak chemiluminescence (CL) system of luminol and AgNO(3), resulting in a strong CL emission. The UV-visible spectra, X-ray photoelectron spectra and TEM images of the investigated system revealed that AgNO(3) was reduced by luminol to Ag in the presence of CoFe(2)O(4) NPs and the formed Ag covered the surface of CoFe(2)O(4) NPs, resulting in CoFe(2)O(4)-Ag core-shell nanoparticles. Investigation of the CL reaction kinetics demonstrated that the reaction among luminol, AgNO(3) and CoFe(2)O(4) NPs was fast at the beginning and slowed down later. The CL spectra of the luminol - AgNO(3) - CoFe(2)O(4) NPs system indicated that the luminophor was still an electronically excited 3-aminophthalate anion. A CL mechanism has been postulated. When the CoFe(2)O(4) NPs were injected into the mixture of luminol and AgNO(3), they catalyzed the reduction of AgNO(3) by luminol to produce luminol radicals and Ag, which immediately covered the CoFe(2)O(4) NPs to form CoFe(2)O(4)-Ag core-shell nanoparticles, and the luminol radicals reacted with the dissolved oxygen, leading to a strong CL emission. With the continuous deposition of Ag on the surface of CoFe(2)O(4) NPs, the catalytic activity of the core-shell nanoparticles was inhibited and a decrease in CL intensity was observed and also a slow growth of shell on the nanoparticles. PMID:21400653

  3. The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells.

    PubMed

    Novotna, Bozena; Turnovcova, Karolina; Veverka, Pavel; Rössner, Pavel; Bagryantseva, Yana; Herynek, Vit; Zvatora, Pavel; Vosmanska, Magda; Klementova, Mariana; Sykova, Eva; Jendelova, Pavla

    2016-08-01

    Nanomaterials are currently the subject of intense research due to their wide variety of potential applications in the biomedical, optical and electronic fields. We prepared and tested cobalt zinc ferrite nanoparticles (Co0.5Zn0.5Fe2O4+γ [CZF-NPs]) encapsulated by amorphous silica in order to find a safe contrast agent and magnetic label for tracking transplanted cells within an organism using magnetic resonance imaging (MRI). Rat mesenchymal stem cells (rMSCs) were labeled for 48 h with a low, medium or high dose of CZF-NPs (0.05; 0.11 or 0.55 mM); silica NPs (Si-NPs; 0.11 mM) served as a positive control. The internalization of NPs into cells was verified by transmission electron microscopy. Biological effects were analyzed at the end of exposure and after an additional 72 h of cell growth without NPs. Compared to untreated cells, Annexin V/Propidium Iodide labeling revealed no significant cytotoxicity for any group of treated cells and only a high dose of CZF-NPs slowed down cell proliferation and induced DNA damage, manifested as a significant increase of DNA-strand breaks and oxidized DNA bases. This was accompanied by high concentrations of 15-F2t-isoprostane and carbonyl groups, demonstrating oxidative injury to lipids and proteins, respectively. No harmful effects were detected in cells exposed to the low dose of CZF-NPs. Nevertheless, the labeled cells still exhibited an adequate relaxation rate for MRI in repeated experiments and ICP-MS confirmed sufficient magnetic label concentrations inside the cells. The results suggest that the silica-coated CZF-NPs, when applied at a non-toxic dose, represent a promising contrast agent for cell labeling. PMID:26581309

  4. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5‑x Mg x Fe2O4 nanoparticle ferrites

    NASA Astrophysics Data System (ADS)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co–Ni–Mg ferrite powders with composition Co0.5Ni0.5‑x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co–Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ∼ 32 nm to ∼ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ∼ 57.35 emu/g to ∼ 61.49 emu/g and ∼ 603.26 Oe to ∼ 684.11 Oe (1 Oe = 79.5775 A·m‑1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  5. Effect of annealing in a reductive environment on the magnetic properties of barium ferrite nanoparticles doped with Ti4+ and Co2+

    NASA Astrophysics Data System (ADS)

    Petinov, V. I.

    2011-10-01

    It was found experimentally that the annealing of BaFe10.6Co0.7Ti0.7O19 and BaFe10.2Co0.9Ti0.9O19 complex magnetic oxide nanoparticles in paraffin vapor irreversibly increases their coercive force H c and saturation magnetization M s to the H c and M s values for barium ferrite BaFe12O19. The annealing of these nanoparticles, and of particles of magnetic oxides CrO2, γ-Fe2O3, and BaFe12O19 in air and in paraffin vapor, has not been shown to affect their H c and M s values. An explanation in terms of diffusion self-purification of nanoparticles from ion impurities activated by chemical processes on their surface is offered.

  6. Effect of Mo substitution on structural and magnetic properties of Zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher

    2016-03-01

    Nano ferrite ZnFe2-xMoxO4 (x = 0.0, 0.1, 0.2, and 0.3) samples were synthesized by using citrate method. The phase purity and the structure parameters were studied using X-ray diffraction, FT-IR spectroscopy, and magnetic measurements. Rietveld analysis of X-ray diffraction data revealed that Mo doping ZnFe2O4 changes the degree of inversion of Zn2+ cations. The oxidation state of Mo was studied by using FTIR analysis. Mo doped ZnFe2O4 has a ferromagnetic properties. The magnetization decreases by the replacement of Fe3+ ions by non-magnetic Mo3+ ions. Mo doped ZnFe2O4 samples have a very small coercive field (Hc), which changes depending on the amount of Mo in the sample and reach its maximum value for ZnFe1.7Mo0.3O4. Cation distribution is proposed in an attempt to explain the experimental results of XRD, IR, and VSM data. The direct proportion between the coercive field and the Fe2+ content in the samples was studied in detailed.

  7. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  8. Preparation of platinum nanoparticles in liquids by laser ablation method

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, The; Dinh Nguyen, Thanh; Nguyen, Quang Dong; Trinh Nguyen, Thi

    2014-09-01

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7-9 nm and 10-12 nm, respectively. The results showed advantages of the laser ablation method.

  9. Preparation and Characterization of Mg Substituted NiCuZn Nano Ferrites for Multilayer Chip Inductors

    NASA Astrophysics Data System (ADS)

    Ch, Sujatha; Reddy K, Venugopal; Babu K, Sowri; Reddy A, R. C.; K, H. Rao

    2012-02-01

    The present paper examines the effect of magnesium substitution on structural and magnetic properties of NiCuZn nano ferrites synthesized by sol - gel method. Formation of single phase spinel structure was confirmed both from XRD and FTIR. The initial permeability shows decreasing trend with increasing Mg concentration due to reduced magnetization, grain size and increased magneto - crystalline anisotropy constant. At the same time, the cut off frequency increases with increasing Mg content. This is attributed to domain wall pinning arising due to the presence of non magnetic magnesium ions. Also the permeability is observed to be constant up to 10MHz frequency range showing compositional stability and quality of the material. The magnetic loss factor shows very low values at higher frequencies. It is concluded that even though both zinc and magnesium are non magnetic ions, substitution of one cation by another prone to influence the magnetic properties due to their change in dimension and cation distribution among the two available sites of a spinel system. These samples have advantages of low sintering temperature find applications in multilayer chip inductors due to their high and constant permeability even at higher frequencies.

  10. Development of oxide dispersion strengthened ferritic steel prepared by chemical reduction and mechanical milling

    NASA Astrophysics Data System (ADS)

    Sun, Q. X.; Fang, Q. F.; Zhou, Y.; Xia, Y. P.; Zhang, T.; Wang, X. P.; Liu, C. S.

    2013-08-01

    The oxide dispersion strengthened ferritic steel with a nominal composition of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 (14Cr-ODS) was fabricated by sol-gel method in combination with hydrogen reduction, mechanical alloying (MA) and hot isostatic pressing (HIP) techniques. Pure Fe-1.5Y2O3 precursor was obtained by a sol-gel process and a reduction process at 650 °C for 3 h and pure 14Cr-ODS alloy powders were obtained from this precursor and the alloying metallic powders by mechanical alloying. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) reveal that Y-Ti-O complexes and V-Ti-O complexes with a main particle size of 8 nm are formed in the 14Cr-ODS steel matrix. After HIP sintering the weight and the relative density of the compacted ingots are about 0.8 kg and 99.7%. The uniform elongation and ultimate tensile strength of the ODS steel obtained by HIP after annealing at 1100 °C for 5 h are about 13% and 840 MPa, respectively.

  11. Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene

    SciTech Connect

    Shen, Yu; Wu, Yanbo; Xu, Hongfeng; Fu, Jie; Li, Xinyong; Zhao, Qidong; Hou, Yang

    2013-10-15

    Graphical abstract: - Highlights: • Spinel CuFe{sub 2}O{sub 4} nanospheres were successfully synthesized via a facile method. • CuFe{sub 2}O{sub 4} nanospheres showed high photocatalytic activity toward benzene. • Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. - Abstract: Spinel copper ferrite nanospheres with diameters of about 116 nm were synthesized in high yield via a facile solvothermal route. The prepared nanospheres had cubic spinel structure and exhibited good size uniformity and regularity. The band-gap energy of CuFe{sub 2}O{sub 4} nanospheres was calculated to be about 1.69 eV, indicating their potential visible-light-induced photocatalytic activity. The dramatically enhanced photocatalytic activity of the CuFe{sub 2}O{sub 4} nanospheres was evaluated via the photocatalytic conversion of benzene under Xe lamp irradiation. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} was produced as the final product during the reaction process. This study provided new insight into the design and preparation of functional nanomaterials with sphere structure in high yield, and the as-grown architectures demonstrated an excellent ability to remove organic pollutants in the atmosphere.

  12. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine

    PubMed Central

    2012-01-01

    Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered. PMID:22348683

  13. Surface study of fine MgFe 2O 4 ferrite powder prepared by chemical methods

    NASA Astrophysics Data System (ADS)

    Aono, Hiromichi; Hirazawa, Hideyuki; Naohara, Takashi; Maehara, Tsunehiro

    2008-02-01

    To study surface behaviors, MgFe 2O 4 ferrite materials having different grain sizes were synthesized by two different chemical methods, i.e., a polymerization method and a reverse coprecipitation method. The single phase of the cubic MgFe 2O 4 was confirmed by the X-ray diffraction method for both the precursors decomposed at 600-1000 °C except for a very small peak of Fe 2O 3 was detected for the samples calcined at 600 and 700 °C by the polymerization method. The crystal size and particle size increased with an increase in the sintering temperature using both methods. The conductance of the MgFe 2O 4 decreased when the atmosphere was changed from ambient air to air containing 10.0 ppm NO 2. The conductance change, C = G(air)/ G(10 ppm NO 2), was reduced with an increase in the operating temperature. For the polymerization method, the maximum C-value was ca. 40 at 300 °C for the samples sintered at 900 °C. However, the samples sintered at 1000 °C showed a low conductance change in the 10 ppm NO 2 gas, because the ratio of the O 2 gas adsorption sites on the particle surface is smaller than those of the samples having a high C-value. The low Mg content on the surface affects the low ratio of the gas adsorption sites. For the reverse coprecipitation method, the particle size was smaller than that of the polymerization method. Although a stable conductance was obtained for the sample sintered at 900 and 1000 °C, its conductance change was less than that of the polymerization method.

  14. Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Da-Ming, Chen; Yuan-Xun, Li; Li-Kun, Han; Chao, Long; Huai-Wu, Zhang

    2016-06-01

    Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910 °C and oxygen pressure is 300 mTorr (1 Torr = 1.3332 × 102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (M r/M s) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs = 104 T), and the anisotropy field is 16.5 kOe (1 Oe = 79.5775 A·m‑1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices. Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).

  15. Surfactant-free small Ni nanoparticles trapped on silica nanoparticles prepared by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Mafuné, Fumitaka; Okamoto, Takumi; Ito, Miho

    2014-01-01

    Small Ni nanoparticles supported on silica nanoparticles were formed by pulsed laser ablation in liquid. Water dispersing surfactant-free silica particles was used here as a solvent, and a bulk Ni metal plate as a target. The nanoparticles formed by laser ablation in water were readily stabilized by the silica particles, whereas Ni nanoparticles prepared in water without silica were found to be precipitated a few hours after aggregation into 5-30 nm particles. The nanoparticles were characterized by TEM, dark-field STEM and optical absorption spectroscopy, which indicated that small 1-3 nm Ni nanoparticles were adsorbed on the surface of silica.

  16. Preparation of nanoparticles and organometallic compounds via the SMAD technique

    NASA Astrophysics Data System (ADS)

    Ponce, Audaldo A.

    The SMAD method is a versatile synthetic technique for preparation of organometallic compounds, colloids and nanostructured materials from metals and semiconductors. In this work we use this technique to prepare beta-diketonate complexes of Ba and Cu, nanoparticles of Fe-SiO and copper, and for first time nanoparticles of ionic salt-like compounds. The evaporation and cocondensation of Fe, SiO, and an organic solvent, produces nanoparticles of Fe-SiO that when heat treated and passivated, acquire a core-shell structure that protects the iron core from oxidation, preserving its magnetic properties. beta-Diketonate complexes of Ba and Cu have been prepared free of water and with a considerable purity. Moreover, a striking finding was the dependence of the reactivity of the copper particles with their size toward the formation of the beta-diketonate complex. Nanocrystalline particles of copper have been prepared, and their chemical and catalytic reactivity have been tested in the Ullman reaction and the hydrogenation of CO2 to form CH3OH. Their chemical reactivity in the Ullman reaction is proportional to their surface area, and more reactive that those found in literature, with a maximum yield of 90% biphenyl at 150°C after 6 h. for the Cu*/toluene sample. Their catalytic activity tested using nanocrystalline ZnO as a support, resulted in a maximum conversion of 80% from CO2 to CH3OH. Nanocrystalline LiF particles have been successfully prepared with surface areas of 230--520 m2/g and with crystallite size of 5--10 nm. These particles present resistance to sintering when heated from room temperature up to 200°C. These samples can be densified without crystallite growth.

  17. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml‑1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  18. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    PubMed

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  19. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g‑1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  20. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    PubMed Central

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g−1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  1. Preparation and applications of ZnSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Shekhawat, M. S.; Rao, M. C.

    2013-06-01

    Semiconductor nanoparticles have been attracting widespread scientific and technological interest due to their unique size-tunable optical and electronic properties. The ZnSe nanoparticles have wide-ranging applications in laser, optical instruments, etc. because it has a wide band gap and transmittance range, high luminescence efficiency, low absorption coefficient, and excellent transparency to infrared. ZnSe nanoparticles have been prepared at room temperature. Zinc chloride 99 mM of 4 mL is added to 2.2g PVA. Volume of the solution is made up to 50 mL by bidistilled water. The Solution is left for 24 h at room temperature to swell. After that the solution is warmed up to 60°C and stirred for 4 h until viscous transparent solution was obtained. One milliliter of Sodium Hydrogen Selenide was dropped into the solution with gentle stirring. Solution is casted on flat glass plate dishes. After the solvent evaporation, a thin film containing ZnSe nanoparticles are obtained. The film is washed with de-ionized water to remove other soluble salts before measurements.

  2. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  3. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals.

    PubMed

    Fattahi, M; Nabhani, N; Hosseini, M; Arabian, N; Rahimi, E

    2013-02-01

    In the present study, the influence of Ti-containing inclusions on the development of acicular ferrite microstructure and mechanical properties in the multipass weld metals has been studied. Shielded metal arc weld deposits were prepared by varying titanium content in the range of 0.003-0.021%. The variation in the titanium content was obtained by the addition of different amounts of titanium oxide nanoparticles to the electrode coating. The dispersion of titanium oxide nanoparticles, composition of inclusions, microstructural analysis, tensile properties and Charpy impact toughness were evaluated. As the amount of Ti-containing inclusions in the weld metal was increased, the microstructure of the weld metal was changed from the grain boundary allotriomorphic ferrite structure to acicular ferrite with the intragranular nucleation of ferrite on the Ti-containing inclusions, and the mechanical properties were improved. This improvement is attributable to the increased percentage of acicular ferrite due to the uniform dispersion of Ti-containing inclusions and the pinning force of oxide nanoparticles against the growth of allotriomorphic ferrite and Widmanstätten ferrite from the austenite grain boundaries. PMID:23238108

  4. Nanoparticle preparation of Mefenamic acid by electrospray drying

    SciTech Connect

    Zolkepali, Nurul Karimah Bakar, Noor Fitrah Abu Anuar, Nornizar; Naim, M. Nazli; Bakar, Mohd Rushdi Abu

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h. By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.

  5. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    PubMed

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution. PMID:25491969

  6. Ligand-induced evolution of intrinsic fluorescence and catalytic activity from cobalt ferrite nanoparticles.

    PubMed

    Pal, Monalisa; Kundu, Anirban; Rakshit, Rupali; Mandal, Kalyan

    2015-06-01

    To develop CoFe(2)O(4) as magneto-fluorescent nanoparticles (NPs) for biomedical applications, it would be advantageous to identify any intrinsic fluorescence of this important magnetic material by simply adjusting the surface chemistry of the NPs themselves. Herein, we demonstrate that intrinsic multicolor fluorescence, covering the whole visible region, can be induced by facile functionalization of CoFe(2)O(4) NPs with Na-tartrate. Moreover, the functionalized CoFe(2)O(4) NPs also show unprecedented catalytic efficiency in the degradation of both biologically and environmentally harmful dyes, pioneering the potential application of these NPs in therapeutics and wastewater treatment. Detailed investigation through various spectroscopic tools unveils the story behind the emergence of this unique optical property of CoFe(2)O(4) NPs upon functionalization with tartrate ligands. We believe our developed multifunctional CoFe(2)O(4) NPs hold great promise for advanced biomedical and technological applications. PMID:25867626

  7. Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Qing-Wei; Xu, Xiao-Wen; He, Mang; Zhang, Hong-Wang

    2015-06-01

    MnFe2O4 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution-phase method. The as-synthesized NPs were coated with a silica shell of 4 nm-5 nm in thickness, enabling the water-solubility and biocompatibility of the NPs. The MnFe2O4 NPs with a size of less than 18 nm exhibit superparamagnetic behavior with high saturated magnetization. The capacity of the heat production was enhanced by increasing particle sizes and radio frequency (RF) field strengths. MnFe2O4/SiO2 NPs with 18-nm magnetic cores showed the highest heat-generation ability under an RF field. These MnFe2O4/SiO2 NPs have great potentiality to cancer treatments, controlled drug releases, and remote controls of single cell functions.

  8. Magnetic properties of Sr-La system M-type ferrite fine particles prepared by controlling the chemical coprecipitation method

    SciTech Connect

    Yamamoto, Hiroshi; Seki, Hirota

    1999-09-01

    Single phase Sr-La M-type ferrite fine particles were prepared by the chemical coprecipitation and subsequent heat-treatment methods. Optimum magnetic properties were achieved with materials of composition Sr{sub 0.794}{sup 2+}La{sub 0.172}{sup 3+}Fe{sub 0.335}{sup 2+}Fe{sub 11.74}{sup 3+}O{sub 19}, and heat-treatment of 950 C x 2h in air. The magnetic and physical properties are {sigma}{sub s} = 90.5 x 10{sup {minus}6} Wb {center{underscore}dot} m/kg (72.0emu/g), H{sub cJ} = 505.3 kA/m (6.35 kOe), Tc = 454.4 C, the lattice constants a = 0.5882nm, c = 2.303nm, the activation energy = 230.9kJ/mol(55.2kcal/mol), and the average particle size = 0.3{micro}m.

  9. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers.

    PubMed

    Zahraei, M; Marciello, M; Lazaro-Carrillo, A; Villanueva, A; Herranz, F; Talelli, M; Costo, R; Monshi, A; Shahbazi-Gahrouei, D; Amirnasr, M; Behdadfar, B; Morales, M P

    2016-06-24

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml(-1) after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications. PMID:27184442

  10. Enrichment of magnetic alignment stimulated by {gamma}-radiation in core-shell type nanoparticle Mn-Zn ferrite

    SciTech Connect

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2013-02-05

    Core shell type nanoparticle Mn{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} systems with x=0.55, 0.65 and 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the {gamma}-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co{sup 60} source for different time intervals.

  11. Preparation and Properties of FeCo Nanoparticles

    SciTech Connect

    Zabransky, K.; David, B.; Pizurova, N.; Schneeweiss, O.; Zboril, R.; Maslan, M.

    2010-07-13

    Fe-Co nanoparticles were prepared from the binary Fe-Co oxalate. The formation of FeCo metallic phase begun at 290 deg. C as determined from the X-ray diffraction patterns recorded during heating of the oxalate sample in hydrogen atmosphere. The reduction finished at 500 deg. C by formation of bcc FeCo phase with a mean particle size of about 50 nm. Analysis of the Moessbauer spectra shows that the ferromagnetic FeCo phase is represented by two sextets corresponding to interiors and surfaces of the nanoparticles. In addition, a weak paramagnetic component, represented by the doublet, was observed which was ascribed to fine particles in a superparamagnetic state. TEM images have shown conglomerates of particles with the composition of about 50 at. % Fe and 50 at. % Co.

  12. Structural and Magnetic Characterizations of Nano Sized Grain Zinc Ferrite/Hydroxyapatite Ceramic Prepared by Solid State Reaction Route.

    PubMed

    Pankaew, Piyapong; Klumdoung, Pattarinee

    2015-11-01

    A promising composite of bioactive hydroxyapatite (HAp) and zinc ferrite (ZnFe2O4) has potentials for future bone reinforcing formation. In present study, HAp and ZnFe2O4 composite ceramic was prepared by solid state reaction route for easier control of structural and magnetic characteristics and with low cost. HAp powder was synthesized by precipitation method from chicken eggshell. Mixed powders with varying ZnFe2O4/HAp weight ratios from 2-10 wt% were milled together and uniaxially pressed and then sintered at 1200 degrees C for 3 hours. The XRD results showing no other phases of composite ceramics with only HAp and ZnFe2O4 phases were identified, indicating high stability of HAp property. Phase fractions of ZnFe2O4 were found to increase from 10.8 to 18.73 wt% with increasing content of ZnFe2O4. FT-IR results were only revealed vibration bands of standard HAp phase. SEM results revealed primary grains sizes of the prepared ceramics in nano scale. The BET surface area and pore volume increased with increasing content of ZnFe2O4 in composite ceramics. The VSM results of composites with increasing ZnFe2O4 content had been shown with increasing magnetization from 0.05 to 1.85 emu/g while their coercivities were decreased from 44 to 24 Oe. Higher magnetization as well as higher super paramagnetic behavior could be achieved with increasing the studied ZnFe2O4 weight ratios in ZnFe2O4/HAp composite ceramics, which can be tailored for specific applications. PMID:26726683

  13. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    NASA Astrophysics Data System (ADS)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  14. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  15. Superparamagnetic behavior of heat treated Mg0.5Zn0.5Fe2O4 ferrite nanoparticles studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Singh, S. B.; Tirupanyam, B. V.; Meena, S. S.; Yusuf, S. M.; Prasad, S. A. V.; Krishna, K. S. Rama; Sastry, D. L.

    2016-05-01

    Nanoparticles of Mg0.5Zn0.5Fe2O4 ferrite have been synthesized by co-precipitation method. XRD and Mössbauer spectroscopic results of Mg0.5Zn0.5Fe2O4 annealed at 200 °C, 500 °C and 800 °C are reported. It was observed that the crystallite size increases and the lattice parameter decreases with increase in annealing temperature. The observed decrease in lattice strain supports the increase in crystallite size. The Mössbauer spectra of the samples annealed at 200 °C and 500 °C exhibits superparamagnetic doublets whereas the Mössbauer spectrum of the sample annealed at 800 °C exhibits paramagnetic doublet along with weak sextet of hyperfine interaction. The values of isomer shift resemble the presence of high spin iron ions. The studied ferrite nanoparticles are suitable for biomedical applications. The results are incorporated employing core-shell model and cation redistribution.

  16. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    SciTech Connect

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj; Barman, P. B.

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  17. A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: Structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Li, Yang; Wu, Ruonan; Zhou, Han; Fang, Xiaochen; Su, Shubing; Xia, Ailin; Jin, Chuangui; Liu, Xianguo

    2015-11-01

    A new sol-gel route using egg-white as the binder of metal ions, is developed to prepare hexagonal M-type SrFe12O19 ferrite in this study, and the effects of different atomic ratio of Sr and Fe (Sr/Fe), sintering temperature (Ts) and usage of egg-white (Mew) on the phase formation, morphology and magnetic properties of specimens are studied. It is found that the single-phase SrFe12O19 ferrite only can be obtained under a Sr/Fe of 1:8 and a Ts between 1000 °C and 1300 °C. The magnetic properties of specimens are also obviously affected by the different Sr/Fe and Ts, primarily due to the emergency of impurities. The Mew has an obvious impact on the crystallinity of specimens, which consequently affects their magnetic properties. In our study, the optimum conditions to prepare the single-phase SrFe12O19 ferrite are Sr/Fe=1:8, Mew= 3 g and Ts =1200 °C.

  18. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Buršík, J.; Kužel, R.; Knížek, K.; Drbohlav, I.

    2013-07-01

    Thin films of Ba2Zn2Fe12O22 (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO3(1 1 1) (ST) single crystal substrates using epitaxial SrFe12O19 (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO3 substrate and both hexaferrite phases.

  19. Enzymatic polymerizations using surfactant microstructures and the preparation of polymer-ferrite composites

    SciTech Connect

    Kommareddi, N.S.; Tata, M.; Karayigitoglu, C.

    1995-12-31

    Horseradish peroxidase has been used as a biocatalyst to synthesize a polymeric material from alkyl-substituted phenols. The synthesis is carried out in a surfactant-based microemulsion environment, with the monomer partitioned at the oil/water interface. The spherical nature of the microemulsion nanodroplets may be acting as a template for the polymer synthesis. The resultant polymer particles are spherical and typically in the submicron size range. The characteristics of the morphology development are described. The templating effect of the surfactant environment becomes more evident when the polymer particles are fully dissolved in a suitable solvent and refolded in the presence of surfactant. Interestingly, submicron-sized spherical particles are obtained only in the presence of surfactant, and particles of arbitrary morphology are seen in the absence of surfactant. Aspects of morphology development leading to the preparation of polymer-iron oxide composites are described.

  20. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions.

    PubMed

    Lu, Le T; Dung, Ngo T; Tung, Le D; Thanh, Cao T; Quy, Ong K; Chuc, Nguyen V; Maenosono, Shinya; Thanh, Nguyen T K

    2015-12-14

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(III) and Co(II) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. PMID:26542630

  1. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi.

    PubMed

    Sathiyabama, M; Parthasarathy, R

    2016-10-20

    The aim of the present study was to prepare Chitosan nanoparticles through biological method with high antifungal activities. Chitosan nanoparticles were prepared by the addition of anionic proteins isolated from Penicillium oxalicum culture to chitosan solutions. The formation of chitosan nanoparticles was preliminary confirmed by UV-vis spectrophotometric analysis. The physico-chemical properties of the chitosan nanoparticles were determined by size and zeta potential analysis, FTIR analysis, HRTEM and XRD pattern. The chitosan nanoparticles were evaluated for its potential to inhibit the growth of phytopathogens viz., Pyricularia grisea, Alternaria solani, Fusarium oxysporum. It is evident from our results that chitosan nanoparticles inhibit the growth of phytopathogens tested. Chitosan nanoparticle treated chickpea seeds showed positive morphological effects such as enhanced germination%, seed vigor index and vegetative biomass of seedlings. All these results indicate that chitosan nanoparticle can be used further under field condition to protect various crops from the devastating fungal pathogens as well as growth promoters. PMID:27474573

  2. Characterization and Magnetic Properties of Nano-ferrite ZnFe2-x LaxO4 prepared by Co-precipitation method

    NASA Astrophysics Data System (ADS)

    Abou-Aly, Aly; Bakeer, Doaa; Mohammed, Nayera; Awad, Ramadan; Hasebbo, Marwa

    Nano size spinel ferrite with nominal compositions ZnFe2-xLaxO4, 0.0 <= x <= 0.3 were prepared using stoichiometric amounts of ZnCl2, FeCl3.6H2O and LaCl3.7H2O by Co-precipitation method. The structures, optical and magnetic properties of the prepared samples were investigated, and compared with similar compositions prepared by different methods. The X-ray powder diffraction analysis shows single-phase cubic spinal structure up to x = 0.2. The lattice parameter ``a'' significantly increases with increasing x, which confirms the substitution of La at Fe sites. The crystallite size, estimated by different methods, has been found in the range of 7-14 nm. This crystallite size is found to be less than that prepared by sol gel combustion method. The FTIR spectra indicate the presence of absorption bands in the range of 390- 561cm-1. The magnetic hysteresis was studied using vibrating sample magnetometer (VSM). The saturation magnetization, coericivity and remnants magnetization have nonsystematic change as the La-substitution increases. This is because the magnetic properties of Nano- ferrites are strongly dependent on the cation distribution among tetrahedral and octahedral sites in the cubic spinel structure.

  3. Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures

    SciTech Connect

    Tejabhiram, Y.; Pradeep, R.; Helen, A.T.; Gopalakrishnan, C.; Ramasamy, C.

    2014-12-15

    Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitation and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.

  4. Preparation and electromagnetic properties of Polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen; He, Qian; Chen, Lin

    2012-10-01

    The nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2 Fe2O4) was prepared by the sol-gel process, and then the polyaniline(PANI)/polypyrrole(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 was produced by in situ polymerization method. The structures, morphology and electromagnetic properties of the samples were characterized by various instruments. XRD, TEM, and FTIR analysis indicated that BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite were homogenously enwrapped by PANI(PPY) coating. The VSM and SDY-4 measurement show that the magnetic properties of the composites decreased with the increase in PANI(PPY) amount, However, the electrical conductivity is on the contrary. The electromagnetic properties of the composites were much better than BaFe12O19/Ni0.8Zn0.2Fe2O4 in the frequency range of 2-15 GHz, which mainly depends on the dielectric loss of PANI(PPY). A minimum reflection loss of the PANI(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposite is -19.7 dB(-21.5 dB) at the frequency of 7.3 GHz (10.7 GHz).

  5. Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Liu, Mingquan; Xiang, Jun

    2011-02-01

    The nanocomposite SrFe(12)O(19)/Ni(0.5)Zn(0.5)Fe(2)O(4) ferrite aligned hollow microfibers with the hollow diameter to the fiber diameter estimated about 3/5 have been prepared by the gel precursor transformation process. The nanocomposite binary ferrites with different mass ratios are formed after the precursor calcined at 900°C for 2h, fabricating from SrFe(12)O(19) nanoparticles and Ni(0.5)Zn(0.5)Fe(2)O(4) nanoparticles with a uniform phase distribution. These nanocomposite ferrite microfibers show a combination of magnetic characteristics for the hard (SrFe(12)O(19)) and soft (Ni(0.5)Zn(0.5)Fe(2)O(4)) phase with an enhanced remanence owing to the exchange-coupling interactions. The aligned microfibers exhibit a shape anisotropy. PMID:21144534

  6. Control of Particle Size and Morphology of Cobalt-Ferrite Nanoparticles by Salt-Matrix during Annealing

    NASA Astrophysics Data System (ADS)

    Azizi, A.; Sadrnezhaad, S. K.; Mostafavi, M.

    Salt-matrix annealing of mechanically alloyed Co-ferrite nanopowder was used to modify its particle size and morphology. Efficiency improvement due to suppression of sintering and growth resulted in reduction of average particle size from 100nm for salt-less to 40nm for salt-full annealing procedure. Nanosized single-phase cobalt-ferrite particles were observed after 2h annealing at 750°C in the samples milled for 20 hours both with and without NaCl. NaCl:CoFe2O4 ratio of 10:1 resulted in cabbage-like clusters containing particles smaller than 50 nm.

  7. Nanocrystalline spinel ferrite (MFe{sub 2}O{sub 4}, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    SciTech Connect

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-06-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the

  8. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  9. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  10. Sol-Gel-Prepared Nanoparticles of Mixed Praseodymium Cobaltites-Ferrites.

    PubMed

    Pekinchak, Olga; Vasylechko, Leonid; Lutsyuk, Iryna; Vakhula, Yaroslav; Prots, Yuri; Carrillo-Cabrera, Wilder

    2016-12-01

    Two series of nanocrystalline powders of PrCo1 - x Fe x O3 (x = 0.1, 0.3, 0.5, 0.7 and 0.9) of high purity were obtained by sol-gel citrate method at 700 and 800 °C. The formation of continuous solid solution with an orthorhombic perovskite structure (sp. group Pbnm) was observed. A peculiarity of the PrCo1 - x Fe x O3 solid solution is the lattice parameter crossovers, which occurred at certain compositions and revealed in the pseudo-tetragonal or pseudo-cubic metric. An average crystallite size of the PrCo1 - x Fe x O3 samples estimated from the analysis of the angular dependence of the X-ray diffraction (XRD) line broadening varies between 30 and 155 nm, depending on the composition and synthesis temperature. PMID:26858157

  11. Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling

    NASA Astrophysics Data System (ADS)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Hnatko, Miroslav; Šajgalík, Pavol; Alexander, Cigáň; Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch

    2015-03-01

    In this article, Co1-xZnxFe2O4 (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol-gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co1-xZnxFe2O4 (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co2+, Zn2+ and Fe3+ exist in octahedral and tetrahedral sites. The cationic redistribution of Zn2+ and consequently Fe3+ occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (Ms) and coercivity (Hc) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed.

  12. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract (Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  13. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  14. Polyelectrolyte/magnetite nanoparticle multilayers: preparation and structure characterization.

    PubMed

    Grigoriev, D; Gorin, D; Sukhorukov, G B; Yashchenok, A; Maltseva, E; Möhwald, H

    2007-11-20

    Polyelectrolyte composite planar films containing a different number of iron oxide (Fe3O4) nanoparticle layers have been prepared using the layer-by-layer adsorption technique. The nanocomposite assemblies were characterized by ellipsometry, UV-vis spectroscopy, and AFM. Linear growth of the multilayer thickness with the increase of the layer number, N, up to 12 reflects an extensive character of this parameter in this range. A more complicated behavior of the refractive index is caused by changes in the multilayer structure, especially for the thicker nanocomposites. A quantitative analysis of the nanocomposite structure is provided comparing a classical and a modified effective medium approach taking into account the influence of light absorption by the Fe3O4 nanoparticles on the complex refractive index of the nanocomposite and contributions of all components to film thickness. Dominant influence of co-adsorbed water on their properties was found to be another interesting peculiarity of the nanocomposite film. This effect, as well as possible film property modulation by light, is discussed. PMID:17958452

  15. Preparation and adsorption of refined polyelectrolyte complex nanoparticles.

    PubMed

    Reihs, T; Müller, M; Lunkwitz, K

    2004-03-01

    We report on bulk and surface properties of centrifuged nonstoichiometric polyelectrolyte complex (PEC) dispersions. PECs were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of 0.6 and polymer concentration >/=1 mmol/l. Centrifugation of initial PEC dispersions revealed three phases: supernatant (SUP), coacervate (COAC), and an insoluble precipitate. Mass, turbidity, particle hydrodynamic radii (R(h)), and the titratable charge amount were determined for those phases. The turbid COAC phase consisted of 200-nm nanoparticles and carried 60% of the polymer mass and 20% of the titratable charge amount of the initial PEC dispersion. The SUP phase showed no turbidity and no such nanoparticles, but carried 80% of the initial titratable charge amount, presumably caused by excess polycations. Furthermore, linear dependences of turbidity and R(h) on COAC concentration was observed. COAC adsorption was studied at polyelectrolyte multilayer (PEM) modified silicon surfaces in dependence on both adsorption time and concentration using attenuated total-reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The adsorption data were fitted by the simple Langmuir model. Comparison of COAC particles and polystyrene latices revealed similar adsorption features. SEM and AFM measurements resulted in hemispherically shaped adsorbed COAC particles with coverages >/=25%, whose calculated volumes correlated well with those in dispersion obtained by PCS. PMID:14757079

  16. Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells

    NASA Astrophysics Data System (ADS)

    Hanini, Amel; Lartigue, Lenaic; Gavard, Julie; Kacem, Kamel; Wilhelm, Claire; Gazeau, Florence; Chau, François; Ammar, Souad

    2016-10-01

    In this paper we investigate the ability of zinc rich ferrite nanoparticles to induce hyperthermia on cancer cells using an alternating magnetic field (AMF). First, we synthesized ferrites and then we analyzed their physico-chemical properties by transmission electron microscopy, X-ray diffraction and magnetic and magnetocalorimetric measurements. We found that the polyol-made magnetically diluted particles are of 11 nm in size. They are superparamagnetic at body temperature (310 K) with a low but non-negligible magnetization. Interestingly, as nano-ferrimagnets they exhibit a Curie temperature of 366 K, close to the therapeutic temperature range. Their effect on human healthy endothelial (HUVEC) and malignant glioma (U87-MG) cells was also evaluated using MTT viability assays. Incubated with the two cell lines, at doses ≤100 μg mL-1 and contact times ≤4 h, they exhibit a mild in vitro toxicity. In these same operating biological conditions and coupled to AMF (700 kHz and 34.4 Oe) for 1 h, they rapidly induce a net temperature increase. In the case of tumor cells it reaches 4 K, making the produced particles particularly promising for self-regulated magnetically-induced heating in local glioma therapy.

  17. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  18. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite.

    PubMed

    Abdel-Mohsen, A M; Abdel-Rahman, Rasha M; Fouda, Moustafa M G; Vojtova, L; Uhrova, L; Hassan, A F; Al-Deyab, Salem S; El-Shamy, Ibrahim E; Jancar, J

    2014-02-15

    Silver nanoparticles (Ag-NPs) have been successfully prepared with a simple and "green" chemical reduction method. Triple helical schizophyllan (SPG) was used for the first time as reducing and stabilizing agents. The effect of temperature, silver nitrate/schizophyllan concentrations, pH of the reactions medium and the reaction time were investigated. The obtained schizophyllan/Ag-NP was characterized by UV-vis spectroscopy, TEM, DLS, X-ray diffraction, TGA, and ATR-FTIR. The results revealed that, Ag-NPs attached to SPG through a strong non-covalent interaction, leading to good dispersion of Ag-NPs with a diameter of 6 nm within the biopolymer matrix. By increasing the pH of the reaction medium, the triple helical structure of SPG was partially broken. The SPG/AgNP nanocomposite was non-toxic for mouse fibroblast line (NIH-3T3) and human keratinocyte cell line (HaCaT). PMID:24507278

  19. Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.

    PubMed

    Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian

    2012-05-01

    The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo. PMID:22852346

  20. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments. PMID:26193403

  1. Preparation and Characterization of PEG-albumin-curcumin Nanoparticles Intended to Treat Breast Cancer

    PubMed Central

    Thadakapally, R.; Aafreen, Arshiya; Aukunuru, J.; Habibuddin, M.; Jogala, S.

    2016-01-01

    The aim of present research was to prepare novel serum stable long circulating polymeric nanoparticles for curcumin with a modification to the well known and novel nanoparticle albumin bound technology. polyethylene glycol-albumin-curcumin nanoparticles were prepared using serum albumin and poly ethylene glycol using desolvation technique. Nanoparticles were characterized for encapsulation efficiency, particle size and surface morphology. Drug excipient compatibility was determined using fourier transform infrared spectroscopy. Physical state of the drug in the formulations was known by differential scanning colorimetry. In vitro release and solubility of the drug from nanoparticles were determined. In vivo Drug release, tissue uptake and kupffer cell uptake was determined with optimized nanoformulation in rats after intravenous administration. Cell viability assay was determined using breast cancer cell line MD-MB-231. Entrapment efficiency for prepared nanoparticle was above 95%. The polyethylene glycol-albumin-curcumin nanoparticles exhibited an interesting release profile with small initial burst followed by slower and controlled release. Solubility of the drug from the formulation was increased. A sustained release of drug from nanoparticles was observed for 35 days in both in vitro and in vivo studies with the optimized formulation. Polyethylene glycol-albumin-curcumin nanoparticles showed lesser liver and kupffer cell uptake as compared to that of curcumin-albumin nanoparticles suggesting the bestowment of stealthness to nanoparticles with pegylation. Also, the antiproliferative activity of polyethylene glycol-albumin-curcumin nanoparticle formulation was more as compared to native curcumin. Polyethylene glycol-albumin-curcumin nanoparticles thus developed can be conveniently used in breast cancer with improved efficacy compared to conventional therapies and as an alternate to nanoparticle albumin bound technology which is used in producing Abraxane, albumin

  2. Magnetic and Structural Properties of Nanosized Magnesium Doped Zinc Ferrite Synthesized by Citrate Precursor Method

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Bansal, Shweta Dikshu; Singh, Simranjit

    2011-12-01

    Nanoparticles of MgxZn1-xFe2O4 ferrite (where x = 0.2, 0.4, 0.5,) are synthesized via citrate precursor method and then all the samples are sintered at 600 °C for 1 hour. The prepared samples are characterized through XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), TEM (transmission electron microscope) and VSM (vibrating sample magnetometer). The M-H curves show evidence of a superparamagnetic (SPM) regime in the synthesized ferrites.

  3. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-01-01

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities. PMID:27104514

  4. In situ preparation of monodispersed Ag/polyaniline/Fe3O4 nanoparticles via heterogeneous nucleation

    PubMed Central

    2013-01-01

    Acrylic acid and styrene were polymerized onto monodispersed Fe3O4 nanoparticles using a grafting copolymerization method. Aniline molecules were then bonded onto the Fe3O4 nanoparticles by electrostatic self-assembly and further polymerized to obtain uniform polyaniline/Fe3O4 (PANI/Fe3O4) nanoparticles (approximately 35 nm). Finally, monodispersed Ag/PANI/Fe3O4 nanoparticles were prepared by an in situ reduction reaction between emeraldine PANI and silver nitrate. Fourier transform infrared and UV-visible spectrometers and a transmission electron microscope were used to characterize both the chemical structure and the morphology of the resulting nanoparticles. PMID:23819820

  5. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    PubMed

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. PMID:26686185

  6. Magnetic properties of ZnFe2O4 ferrite nanoparticles embedded in ZnO matrix

    NASA Astrophysics Data System (ADS)

    Guskos, N.; Glenis, S.; Zolnierkiewicz, G.; Typek, J.; Berczynski, P.; Guskos, A.; Sibera, D.; Narkiewicz, U.

    2012-03-01

    Two magnetic nanocomposites were prepared from nanocrystalline zinc oxide doped with different concentrations of iron oxide (5 and 10 wt. %). X-ray diffraction and scanning electron microscopy have shown the growth of ZnFe2O4 nanocrystallites with size below 10 nm within the ZnO matrix in a highly agglomerated structure. Ferromagnetic resonance (FMR) measurements have shown line arising from the ZnFe2O4 nanoparticles. Temperature dependence of the FMR spectra parameters (amplitude, resonance field, linewidth, integrated intensity) has been investigated in the 4-300 K range. Zero-field cooled and field-cooled dc magnetic magnetization study in the same temperature range allowed to determine the blocking temperature TB and compare the results of two applied magnetic methods. Temperature dependence of FMR integrated intensity curve displays a peak at TB ˜ 23 K while FMR amplitude curve peaks at TC ˜ 170 K, the Curie-Weiss temperature of the high temperature susceptibility.

  7. Preparation of pure iron/Ni-Zn ferrite high strength soft magnetic composite by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Wang, Minggang; Zan, Zhao; Deng, Na; Zhao, Zhankui

    2014-06-01

    A dense microcellular structure is fabricated using micron-sized pure iron powder cladded with 10 wt% Zn0.5Ni0.5Fe2O4 nanopowder by filling the pure iron with Ni-Zn-ferrites composite and subjecting the mixture to a temperature of 600 °C. The SEM image shows that the thickness of cell wall is in the range of 1.0-2.0 μm, and the inner dimension of the alloy is in the range of 15-40 μm. By coating Ni-Zn-ferrites, the electrical resistivity is increased. The composite exhibits not only good soft magnetic properties but also good mechanical strength.

  8. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles.

    PubMed

    Du, Bin; Yan, Ying; Li, Ying; Wang, Shuyu; Zhang, ZhenZhong

    2010-01-01

    This work studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with 5-fluorouracil (5-FU). The goal was to design longer drug residence in vivo and passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects. Based on the optimized results of uniform design experiment, 5-FU-SLNs were prepared by multiple emulsion-ultrasonication (w/o/w). The SLNs were found to be relatively uniform in size (182.1 +/- 25.8 nm) with a negative zeta potential (-27.89 +/- 5.1 mV). The average drug entrapment efficiency and loading were 74% and 10%, respectively. Compared with the 5-FU solution (t(1/2beta), 0.593h; MRT, 0.358h) after intravenous injection to rats, the pharmacokinetic parameters of 5-FU-SLNs exhibited a longer retention time. (t(1/2beta), 4.0628h; MRT, 3.5321h). The area under curve of plasma concentration-time (AUC) of 5-FU-SLNs was 1.48 times greater than that of free drugs. The overall targeting efficiency (TE(C)) of the 5-FU-SLNs was enhanced from 13.25-20.45% in the lung and from 11.48-23.16% in kidney while the spleen distribution of 5-FU was significantly reduced as compared with that of the 5-FU solution. These results indicated that 5-FU-SLNs were promising passive targeting therapeutic agents for curing primary lung carcinoma. PMID:19769532

  9. Preparation and characterization of PEG-Mentha oil nanoparticles for housefly control.

    PubMed

    Kumar, Peeyush; Mishra, Sapna; Malik, Anushree; Satya, Santosh

    2014-04-01

    Nanoparticles of Mentha × piperita essential oil were prepared by melt-dispersion method. The nanoparticles prepared at varying oil doses (5-10%, w/v) showed an encapsulation efficiency of 78.2-83.4%, while the oil load was observed to range between 3.64 and 7.46%. The average particle size of the nanoparticles varied between 226 and 331 nm, while polydispersity index showed variation between 0.547 and 1.000. DSC analysis indicated endothermic reaction during formation of nanoparticles, while a 2-term exponential kinetic model was followed during oil release. Nanoparticles showed considerable mortality against housefly larvae in lab (100%) as well as simulated field condition after first week (93%) and 6th week (57%) of application. This was the first study utilizing controlled release property of nanoparticles to formulate a cost effective product for breeding site application against housefly. PMID:24287110

  10. Composition controlled synthesis of PCL-PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction.

    PubMed

    Khoee, S; Bagheri, Y; Hashemi, A

    2015-03-01

    The aim of this study is to investigate the effect of polymer nature on the morphology of synthesized nanoparticles. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared by co-precipitation method and then reacted with (3-mercaptopropyl) trimethoxysilane to obtain thiol-decorated SPIONs. Acrylated poly(caprolactone) and methoxy poly(ethylene glycol) were prepared, and then "thiol-ene click" reaction was performed under UV irradiation to attach two types of polymers on the surface of magnetite nanoparticles via the "photo-click" reaction method. Computational modelling was used for the prediction of the self-assembly of polymers on the surface of SPIONs, which determines the morphology of polymer coated nanoparticles. PMID:25666985

  11. Composition controlled synthesis of PCL-PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction

    NASA Astrophysics Data System (ADS)

    Khoee, S.; Bagheri, Y.; Hashemi, A.

    2015-02-01

    The aim of this study is to investigate the effect of polymer nature on the morphology of synthesized nanoparticles. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared by co-precipitation method and then reacted with (3-mercaptopropyl) trimethoxysilane to obtain thiol-decorated SPIONs. Acrylated poly(caprolactone) and methoxy poly(ethylene glycol) were prepared, and then ``thiol-ene click'' reaction was performed under UV irradiation to attach two types of polymers on the surface of magnetite nanoparticles via the ``photo-click'' reaction method. Computational modelling was used for the prediction of the self-assembly of polymers on the surface of SPIONs, which determines the morphology of polymer coated nanoparticles.

  12. Synthesis and Optical Properties of Sulfide Nanoparticles Prepared in Dimethylsulfoxide

    SciTech Connect

    Li, Yuebin; Ma, Lun; Zhang, Xing; Joly, Alan G.; Liu, Zuli; Chen, Wei

    2008-11-01

    Many methods have been reported for the formation of sulfide nanoparticles by the reaction of metallic salts with sulfide chemical sources in aqueous solutions or organic solvents. Here, we report the formation of sulfide nanoparticles in dimethylsulfoxide (DMSO) by boiling metallic salts without sulfide sources. The sulfide sources are generated from the boiling of DMSO and react with metallic salts to form sulfide nanoparticles. In this method DMSO functions as a solvent and a sulfide source as well as a stabilizer for the formation of the nanoparticles. The recipe is simple and economical making sulfide nanoparticles formed in this way readily available for many potential applications.

  13. Doping of inorganic materials in microreactors - preparation of Zn doped Fe3O4 nanoparticles.

    PubMed

    Simmons, M D; Jones, N; Evans, D J; Wiles, C; Watts, P; Salamon, S; Escobar Castillo, M; Wende, H; Lupascu, D C; Francesconi, M G

    2015-08-01

    Microreactor systems are now used more and more for the continuous production of metal nanoparticles and metal oxide nanoparticles owing to the controllability of the particle size, an important property in many applications. Here, for the first time, we used microreactors to prepare metal oxide nanoparticles with controlled and varying metal stoichiometry. We prepared and characterised Zn-substituted Fe3O4 nanoparticles with linear increase of Zn content (ZnxFe3-xO4 with 0 ≤ x ≤ 0.48), which causes linear increases in properties such as the saturation magnetization, relative to pure Fe3O4. The methodology is simple and low cost and has great potential to be adapted to the targeted doping of a vast array of other inorganic materials, allowing greater control on the chemical stoichiometry for nanoparticles prepared in microreactors. PMID:26099495

  14. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent

    NASA Astrophysics Data System (ADS)

    Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh

    2015-12-01

    Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.

  15. Polymerized-complex method for preparation of supported bimetallic alloy and monometallic nanoparticles.

    PubMed

    Li, Pingyun; Li, Fengsheng; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Wang, Tianhe

    2016-02-18

    Herein, we report a novel polymerized-complex method for the preparation of Ni-Pd, Ni-Pt, and Cu-Pt alloys and Pt, Pd, Ag, Ni, and Cu nanoparticles. The grain sizes and crystalline phases of these nanoparticles can be controlled. These nanoparticles are obtained via the formation of a polymerized complex and release of reducing gases during N2-protected calcination. PMID:26784920

  16. Preparation and characterization of nitrendipine solid lipid nanoparticles.

    PubMed

    Manjunath, K; Venkateswarlu, V; Hussain, A

    2011-03-01

    Nitrendipine, a dihydropyridine calcium channel blocker, has very poor oral bioavailability (10-20%) due to first pass effect. Solid lipid nanoparticle (SLN) delivery systems of nitrendipine have been developed using various triglycerides (trimyristin, tripalmitin and tristearin), soy phosphatidylcholine 95%, poloxamer 188 and charge modifiers stearylamine and dicetyl phosphate. SLNs were prepared by hot homogenization of melted lipids and aqueous phase followed by ultrasonication at temperatures above the melting point of lipids. Optimization studies of process and formulation variables were carried out. Particle size and zeta potential were measured by photon correlation spectroscopy (PCS) using Malvern zetasizer. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies were performed to characterize state of drug and lipid modification. In vitro release studies were performed in phosphate buffer pH 6.8 using modified Franz diffusion cell. Stable nitrendipine SLNs of mean size range 79 to 213 nm and zeta potential -38.2 to +34.6 mV were developed. About 99% nitrendipine was entrapped in SLNs and were stable on storage at 4 and 25 degrees C. DSC and PXRD analyses revealed that nitrendipine is dispersed in SLNs in an amorphous state. The release pattern of drug is analyzed and found to follow Weibull distribution rather than first order and Higuchi equation. PMID:21553647

  17. Preparation of gold nanoparticle aggregates and their photothermal heating property.

    PubMed

    Kim, Jun-Hyun; Lavin, Brian W

    2011-01-01

    This report describes simple synthetic strategies to prepare partially aggregated gold nanoparticles (GNPs) and their ability to produce photothermally-induced heating of an aqueous medium upon exposure to broadband light. The formation of various GNPs and their aggregates were accomplished in the absence of surfactants at room temperature. The morphologies, structures, and absorption properties of these GNPs were carefully characterized. Given that the resulting GNPs possessing strong and wide absorption bands fall in the most intense solar radiation spectrum, the photothermally-induced heating of water was examined in the presence of the GNPs via irradiation with a solar simulator (i.e., 100 mW/cm2; 1-sun condition). Our GNPs exhibited a slightly greater increase in the water temperature (3-4 degrees C) than that of conventional citrate-stabilized GNPs. This superior photothermal heating property of our GNPs directly indicated that the intense and broad absorption band effectively improved the conversion of highly absorbed photon energy into heat. PMID:21446405

  18. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    SciTech Connect

    Liu, Chunyang Sui, Xin; Yang, Fang; Ma, Wei; Li, Jishun; Xue, Yujun; Fu, Xing

    2014-03-15

    A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of the microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.

  19. Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles.

    PubMed

    Abu Tarboush, Belal J; Husein, Maen M

    2012-07-15

    Removal of asphaltenes from heavy oil improves the quality of oil and makes it easier to process. To this end, Nassar et al. [1] recently showed that NiO nanoparticles have high affinity toward asphaltene adsorption. This investigation, however, involved toluene model solutions and commercially available nanoparticles. In the current work, we show that NiO nanoparticles prepared in situ within heavy oil display much higher affinity toward asphaltenes adsorption, and uptake in the order of 2.8 g asphaltene/g nanoparticles is reported. This uptake way exceeds asphaltene adsorption onto conventional porous adsorbents and commercial nanoparticles from toluene model solutions. Nanoparticle preparation followed a method developed by our group [2], and XRD, EDX, and TEM analyses confirmed the formation of NiO nanoparticles of 12±5 nm mean diameter. Kinetic experiments showed that, while equilibrium could be achieved in less than 2 h for both in situ prepared and commercial NiO particles, much higher adsorption took place onto the in situ prepared ones, owing to their better dispersion. Contrary to literature findings on adsorption from model solutions onto nanoparticles, surface coverage calculations revealed multilayer adsorption. PMID:22560489

  20. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    DOEpatents

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  1. Preparation and in vitro evaluation of hydrophilic fenretinide nanoparticles.

    PubMed

    Ledet, Grace A; Graves, Richard A; Glotser, Elena Y; Mandal, Tarun K; Bostanian, Levon A

    2015-02-20

    Fenretinide is an effective anti-cancer drug with high in vitro cytotoxicity and low in vivo systemic toxicity. In clinical trials, fenretinide has shown poor therapeutic efficacy following oral administration - attributed to its low bioavailability and solubility. The long term goal of this project is to develop a formulation for the oral delivery of fenretinide. The purpose of this part of the study was to prepare and characterize hydrophilic nanoparticle formulations of fenretinide. Three different ratios of polyvinyl pyrrolidone (PVP) to fenretinide were used, namely, 3:1, 4:1, and 5:1. Both drug and polymer were dissolved in a mixture of methanol and dichloromethane (2:23 v/v). Rotary evaporation was used to remove the solvents, and, following reconstitution with water, a high pressure homogenizer was used to form nanoparticles. The particle size and polydispersity index were measured before and after lyophilization. The formulations were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD). The effectiveness of the formulations was assessed by release studies and Caco-2 cell permeability assays. As the PVP content increased, the recovered particle size following lyophilization became more consistent with the pre-lyophilization particle size, especially for those formulations with less lactose. The DSC scans of the formulations did not show any fenretinide melting endotherms, indicating that the drug was either present in an amorphous form in the formulation or that a solid solution of the drug in PVP had formed. For the release studies, the highest drug release among the formulations was 249.2±35.5ng/mL for the formulation with 4:1 polymer-to-drug. When the permeability of the formulations was evaluated in a Caco-2 cell model, the mean normalized flux for each treatment group was significantly higher (p<0.05) from the fenretinide control. The formulation containing 4:1 polymer

  2. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts

    PubMed Central

    Wang, Dingsheng; Zhao, Peng; Li, Yadong

    2011-01-01

    Although Raney nickel made by dealloying has been used as a heterogeneous catalyst in a variety of organic syntheses for more than 80 years, only recently scientists have begun to realize that dealloying can generate nanoporous alloys with extraordinary structural characteristics. Herein, we achieved successful synthesis of a variety of monodisperse alloy nanoporous nanoparticles via a facile chemical dealloying process using nanocrystalline alloys as precursors. The as-prepared alloy nanoporous nanoparticles with large surface area and small pores show superior catalytic properties compared with alloyed nanoparticles. It is believed that these novel alloy nanoporous nanoparticles would open up new opportunities for catalytic applications. PMID:22355556

  3. Preparation and luminescent properties of GdOF:Ce, Tb nanoparticles and their transparent PMMA nanocomposites

    NASA Astrophysics Data System (ADS)

    Cai, Wen; Wang, Aiwu; Fu, Li; Hu, Jie; Rao, Tingke; Wang, Junqing; Zhong, Jiasong; Xiang, Weidong

    2015-05-01

    GdOF:Ce, Tb nanoparticles and their poly (methyl methacrylate) (PMMA) nanocomposites have been successfully prepared by a thermolysis route and thermal polymerization of methyl methacrylate (MMA) monomer, respectively. The obtained nanoparticles and nanocomposites are characterized by XRD, EDS, TEM, FTIR, TGA, UV-Vis and PL spectrum. The as-synthesized transparent GdOF:Ce, Tb/PMMA nanocomposites exhibit green photoluminescence under the irradiation of 254 nm UV lamp due to the incorporation of luminescent GdOF:Ce, Tb nanoparticles into the PMMA matrix. The present route would provide a general strategy to prepare other functional nanocomposites.

  4. Noncrystalline structure of Ni-P nanoparticles prepared by liquid pulse discharge.

    PubMed

    Tan, Yuanyuan; Yu, Hongying; Wu, Zhonghua; Yang, Bin; Gong, Yu; Yan, Shi; Du, Rong; Chen, Zhongjun; Sun, Dongbai

    2015-03-01

    Noncrystalline nickel phosphide (Ni-P) nanoparticles have drawn great attention due to their high potential as catalysts. However, the structure of noncrystalline Ni-P nanoparticles is still unknown, which may shed light on explaining the catalysis mechanism of the Ni-P nanoparticles. In this paper, noncrystalline Ni-P nanoparticles were synthesized. Their morphology, particle size, element contents, local atomic structures, as well as the catalysis in the thermal decomposition of ammonium perchlorate were studied. The results demonstrate that the as-prepared Ni-P nanoparticles are spherical with an average diameter of about 13.5 nm. The Ni and P contents are, respectively, 78.15% and 21.85%. The noncrystalline nature of the as-prepared Ni-P nanoparticles can be attributed to cross-linkage between P-doping f.c.c.-like Ni centers and Ni3P-like P centers. The locally ordered Ni centers and P centers are the nuclei sites, which can explain well the origin of initial nuclei to form the crystalline phases after high-temperature annealing. The starting temperature of high-temperature decomposition of ammonium perchlorate was found having a significant decrease in the presence of the noncrystalline Ni-P nanoparticles. Therefore, the as-prepared noncrystalline Ni-P nanoparticles can be used as a potential catalyst in the thermal decomposition of ammonium perchlorate. PMID:25723939

  5. Optical investigations on indium oxide nano-particles prepared through precipitation method

    SciTech Connect

    Seetha, M.; Bharathi, S.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.

    2009-12-15

    Visible light emitting indium oxide nanoparticles were synthesized by precipitation method. Sodium hydroxide dissolved in ethanol was used as a precipitating agent to obtain indium hydroxide precipitates. Precipitates, thus formed were calcined at 600 deg. C for 1 h to obtain indium oxide nanoparticles. The structure of the particles as determined from the X-Ray diffraction pattern was found to be body centered cubic. The phase transformation of the prepared nanoparticles was analyzed using thermogravimetry. Surface morphology of the prepared nanoparticles was analyzed using high resolution-scanning electron microscopy and transmission electron microscopy. The results of the analysis show cube-like aggregates of size around 50 nm. It was found that the nanoparticles have a strong emission at 427 nm and a weak emission at 530 nm. These emissions were due to the presence of singly ionized oxygen vacancies and the nature of the defect was confirmed through Electron paramagnetic resonance analysis.

  6. Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation

    SciTech Connect

    Zhang Xin . E-mail: xzhang@stu.edu.cn; Zhang Feng; Guan Renfeng; Chan, K.-Y.

    2007-02-15

    Ternary platinum-ruthenium-nickel nanoparticles are prepared by water-in-oil reverse microemulsions of water/Triton X-100/propanol-2/cyclohexane. Nanoparticles formed in the microemulsions are characterized by transmission electron microscopy (TEM), electron diffraction (ED), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX). These resulting materials showed a homogenous alloy structure, the mono-dispersion and an average diameter of 2.6 {+-} 0.3 nm with a narrow particle size distribution. The composition and particle size of ternary Pt-Ru-Ni nanoparticles can be controlled by adjusting the initial metal salt solution and preparation conditions. Pt-Ru-Ni ternary metallic nanoparticles showed an enhanced catalytic activity towards methanol oxidation compared to Pt-Ru bimetallic nanoparticles.

  7. Anomalous magnetic behaviour of zinc and chromium ferrites without any hyperfine splitting

    NASA Astrophysics Data System (ADS)

    Pandey, B.; Verma, H. C.

    2008-04-01

    Two groups of ferrite namely zinc ferrite and chromium ferrite were synthesized by citrate precursor route in the size range of 8 to 35 nm. We have studied the structural and magnetic behaviour of these ferrites using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Our studies show that the nanocrystalline ferrites interact with the hand magnet strongly and give large magnetization in the VSM measurement. The maximum magnetization in the samples sensitively depends on the particle size of synthesized ferrites. We observed as large as 28 Am2/kg of magnetization in the zinc ferrite nanoparticles while that in chromium ferrite is around 11 Am2/kg. In spite of the large magnetization in the zinc ferrite nanoparticles we did not observe any hyperfine splitting even down to 12 K of temperature. Similar behaviour is also observed for chromium ferrite down to 16 K.

  8. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    NASA Astrophysics Data System (ADS)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  9. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies.

    PubMed

    Chadha, Renu; Gupta, Sushma; Pathak, Natasha

    2012-12-01

    Artesunate (AST), the most widely used artemisnin derivative, has poor aqueous solubility and suffers from low oral bioavailability (~40%). Under these conditions, nanoparticles with controlled and sustained released properties can be a suitable solution for improving its biopharmaceuticals properties. This work reports the preparation and characterization of auto-assembled chitosan/lecithin nanoparticles loaded with AST and AST complexed with β-cyclodextrin (β-CD) to boost its antimalarial activity. The nanoparticles prepared by direct injection of lecithin alcoholic solution into chitosan/water solution have shown the particle size distribution below 300 nm. Drug entrapment efficiency was found to be maximum (90%) for nanoparticles containing 100 mg of AST. Transmission electron microscopy images show spherical shape with contrasted corona (chitosan) surrounded by a lipidic core (lecithin + isopropyl myristate). Differential scanning calorimeter thermograms demonstrated the presence of drug in drug-loaded nanoparticles along with the disappearance of decomposition exotherm suggesting the increased physical stability of drug in prepared formulations. Negligible changes in the characteristic peaks of drug in Fourier-transform infrared spectra indicated the absence of any interaction among the various components entrapped in the nanoparticle formulation. In vitro drug release behavior was found to be influenced by pH value. Increased in vivo antimalarial activity in terms of less mean percent parasitemia was observed in infected Plasmodium berghei mice after the oral administration of all the prepared nanoparticle formulations. PMID:22348223

  10. Preparation and in-vitro evaluation of indomethacin nanoparticles

    PubMed Central

    Rezaei Mokarram, A.; Kebriaee zadeh, A.; Keshavarz, M.; Ahmadi, A.; Mohtat, B.

    2010-01-01

    Background and the purpose of the study During the last two decades one of the most important problems in drug formulations has been low aqueous solubility of new molecules. However, numerous techniques, such as milling, co-solvent solubilization and solid dispersion have been used conventionally for aqueous solubility enhancement and the rate of solubility. Recently, nanoparticle engineering processes have been developed and reported for pharmaceutical applications to increase the dissolution rate of low-soluble drugs which in turn may leads to substantial increases in bioavailability. In this study, a controlled precipitation method was used to produce indomethacin nano-solid suspension in a polymeric matrix (as a model), in order to increase the solubility and rate of the dissolution of poorly soluble model drug. Methods Nano-solid suspension of indomethacin in polyvinyl pyrrolidine (PVP) was prepared by controlled precipitation technique, characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and evaluated for in vitro solubility and dissolution rate. Results and major conclusion Absence of thermal and diffractional peaks in DSC and XRD studies indicated that indomethacin interacts with PVP in solid phase. The solubility of indomethacin in nano-solid suspension compared to crystalline form was increased to about four-fold. It was found that particle size distribution depend to the polymer MW and drug: polymer ratios. Spectroscopy methods and Transmission Electron Microscopy (TEM) images showed that indomethacin dispersed as amorphous nanosize particles in freeze dried powder. Enhanced solubility and dissolution rate of indomethacin compared to physical mixtures and crystalline form of indomethacin (polymorph I), demonstrated that it interacts with PVP via hydrogen bond and probably forming eutectic mixture. PMID:22615616

  11. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    NASA Astrophysics Data System (ADS)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  12. Preparation and characterization of novel quaternized cellulose nanoparticles as protein carriers.

    PubMed

    Song, Yongbo; Zhou, Jinping; Li, Qian; Guo, Yi; Zhang, Lina

    2009-09-01

    Quaternized cellulose (QC) nanoparticles were prepared in distilled water by ionic crosslinking of QC with sodium tripolyphosphate (TPP) for the first time. BSA as a model protein drug was used to investigate the loading and release features of the nanoparticles. The results indicated that QC nanoparticles had high loading efficiency and capacity for BSA. The in vitro BSA release of the QC nanoparticles displayed a burst effect in the first 2 h and then a slow continuous release. Nanoparticles with a higher DS of QC showed a decrease in particle size, an increase in zeta potential, a higher loading efficiency and a slower drug-release profile. These studies demonstrated that QC nanoparticles are potential protein carriers, and that their physicochemical properties and release profile could be easily adjusted. PMID:19370752

  13. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    PubMed

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side. PMID:16608315

  14. Preparation, characterization, and manipulation of iron platinum, barium titanate, and vanadium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Morris, William Homer, III

    2008-12-01

    New synthesis strategies for preparation of FePt, BaTiO 3, VO2, V2O3, V2O5 , and V6O13 nanoparticles are presented in this thesis. Electron microscopy, diffraction, elemental analysis, and physical property measurement studies confirm the composition and structure of the synthesized material. Also reported is size-selection of ferromagnetic nanoparticles by binding PEG (2000 MW) ligand to particle surfaces and fractionally precipitating more narrowed size cuts. Large (30--100 nm) ferromagnetic nanoparticles are prepared by employing vesicle templates. Barium titanate nanoparticles with an average diameter of 3.8 nm have been synthesized within inverse micelles. A variety of vanadium oxide compositions within the nanometer size regime have been prepared using sol-gel chemistry.

  15. A simple improved desolvation method for the rapid preparation of albumin nanoparticles.

    PubMed

    Jahanban-Esfahlan, Ali; Dastmalchi, Siavoush; Davaran, Soodabeh

    2016-10-01

    The current study tried to establish a simple and fast method for the preparation of BSA and HSA nanoparticles, based on an improved desolvation procedure under the aspect of a controllable particle size around 100nm for drug delivery applications. The Procedure used for the nanoparticles preparation was simplified by using a designed apparatus for controlling the addition of ethanol and it was used instead of conventional tubing pump which enabled the preparation of nanoparticles under defined conditions. By using EDC as cross-linker instead of glutharaldehyde, the time of nanoparticles preparation procedure was reduced to 3h. Several factors of the preparation process, such as the volume of the albumin solution, desolvating agent volume, the amount of cross-linker, the presence of salts and protein concentration were evaluated. Nanoparticles with smaller size were obtained under experimental conditions without the presence of salts or the use of buffers, 250mg of protein/4ml water, 5mg cross-linker, the addition of 4 and 8ml ethanol by using the designed apparatus to the HSA and BSA solution, respectively. By using this improved method, BSA and HSA nanoparticles of the size around 100nm and polydispersity below 0.2 were obtained. PMID:27177461

  16. Catalytic oxidation of carbon monoxide over radiolytically prepared Pt nanoparticles supported on glass

    SciTech Connect

    Kapoor, S. . E-mail: sudhirk@apsara.barc.ernet.in; Belapurkar, A.D.; Mittal, J.P.; Mukherjee, T. . E-mail: mukherji@magnum.barc.ernet.in

    2005-10-06

    Platinum nanoparticles have been prepared by radiolytic and chemical methods in the presence of stabilizer gelatin and SiO{sub 2} nanoparticles. The formation of Pt nanoparticles was confirmed using UV-vis absorption spectroscopy and transmission electron microscopy (TEM). The prepared particles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at {>=}150 deg. C giving CO{sub 2}. Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave {approx}7% CO conversion per hour. However, radiolytically prepared Pt nanoparticles stabilized by gelatin gave {approx}10% conversion per hour. Catalytic activity of radiolytically prepared platinum catalyst, coated on the inner walls of the reactor, was evaluated as a function of CO concentration and reaction temperature. The rate of reaction increased with increase in reaction temperature and the activation energy for the reaction was found to be {approx}108.8 kJ mol{sup -1}. The rate of CO{sub 2} formation was almost constant ({approx}1.5 x 10{sup -4} mol dm{sup -3} h{sup -1}) at constant O{sub 2} concentration (6.5 x 10{sup -3} mol dm{sup -3}) with increase in CO concentration from 2 x 10{sup -4} mol dm{sup -3} to 3.25 x 10{sup -3} mol dm{sup -3}. The data indicate that catalytic oxidation of CO takes place by Eley-Rideal mechanism.

  17. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Chen, Fanglin; Xia, Changrong

    2015-03-01

    BaCO3 nanoparticles are demonstrated as outstanding catalysts for high-temperature oxygen reduction reaction (ORR) on the La0.8Sr0.2FeO3-δ (LSF) cathode for solid oxide fuel cells (SOFCs) based on ytrria-stabilized zirconia (YSZ) electrolytes. Thermal gravitational and X-ray diffraction measurements show that BaCO3 is stable and chemically compatible with LSF under the fabrication and operation conditions of intermediate-temperature SOFCs. The BaCO3 nanoparticles can greatly reduce the interfacial polarization resistance; from 2.96 to 0.84 Ω cm2 at 700 °C when 12.9wt% BaCO3 is infiltrated to the porous LSF electrode on the YSZ electrolyte. Electrochemical impedance spectroscopy shows that there is about one order of magnitude decrease in the low-frequency resistance, indicating that BaCO3 nanoparticles can greatly enhance the surface steps for ORR. Electrical conductivity relaxation investigation indicates about one order of magnitude increase in the chemical oxygen surface exchange coefficient when BaCO3 is applied, directly demonstrating significant increase in the kinetics for ORR. In addition, LSF cathodes with infiltrated BaCO3 nanoparticles have shown excellent stability and substantially enhanced cell performance as demonstrated with single cells, suggesting BaCO3 nanoparticles are very effective in enhancing ORR on LSF.

  18. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-05-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3O 4 and SrFe 12O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  19. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    SciTech Connect

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-24

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ∼30nm and ∼48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  20. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    NASA Astrophysics Data System (ADS)

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-01

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ˜30nm and ˜48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  1. Electromagnetic properties of samarium-substituted NiCuZn ferrite prepared by auto-combustion method

    NASA Astrophysics Data System (ADS)

    Roy, P. K.; Bera, J.

    2009-02-01

    Ni 0.25Cu 0.2Zn 0.55Sm xFe 2-xO 4 ferrite with x=0.00, 0.025, 0.05 and 0.075 compositions were synthesized through the nitrate-citrate auto-combustion method. These powders were calcined, compacted and sintered at 900 °C for 4 h. Effect of Sm substitution on phase composition, microstructure and relative density were studied. Permeability, magnetic loss and AC resistivity were measured in the frequency range of 1 kHz-10 MHz. Permeability and AC resistivity were found to increase and loss decreased with Sm substitution up to x=0.05. Saturation magnetization also increased up to that substitution limit. Observed variations in electromagnetic properties have been explained.

  2. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  3. Preparation and anti-bacterial properties of a temperature sensitive gel containing silver nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to prepare a novel temperature-sensitive spray gel containing silver nanoparticles and investigate its anti-bacterial properties in vitro. Methods: The aqueous complex gel was prepared by Pluronic F127 (18-22%) and Pluronic F68 (3-9%) through a cold method to obtain a p...

  4. Characterization of soy protein nanoparticles prepared by high shear microfluidization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein nanoparticles were produced with a microfluidizer and characterized in terms of particle size, size distribution, morphology, rheological properties, and aggregate structure. Three stages of structure breakdown were observed when the soy protein dispersion was passed through the microflu...

  5. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Kim, Jeong-Soo; Park, Hee Jun; Cho, Won Kyung; Cha, Kwang-Ho; Hwang, Sung-Joo

    2011-01-01

    Background The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS) process. Methods First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP) K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS), tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats. Results X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively. Conclusion The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus. PMID:22162657

  6. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies.

    PubMed

    Sattarahmady, N; Zare, T; Mehdizadeh, A R; Azarpira, N; Heidari, M; Lotfi, M; Heli, H

    2015-05-01

    Application of superparamagnetic iron oxide nanoparticles (NPs) as a negative contrast agent in magnetic resonance imaging (MRI) has been of widespread interest. These particles can enhance contrast of images by altering the relaxation times of the water protons. In this study, dextrin-coated zinc substituted cobalt-ferrite (Zn0.5Co0.5Fe2O4) NPs were synthesized by a co-precipitation method, and the morphology, size, structure and magnetic properties of the NPs were investigated. These NPs had superparamagnetic behavior with an average size of 3.9 (±0.9, n=200)nm measured by transmission electron microscopy. Measurements on the relaxivities (r2 and r2(*)) of the NPs were performed in vitro by agarose phantom. In addition, after subcutaneous injection of the NPs into C540 cell line in C-57 inbred mice, the relaxivities were measured in vivo by a 1.5T MRI system. These NPs could effectively increase the image contrast in both T2-and T2(*)-weighted samples. PMID:25819361

  7. Investigation of structural and magnetic properties of co-precipitated Mn-Ni ferrite nanoparticles in the presence of α-Fe2O3 phase

    NASA Astrophysics Data System (ADS)

    Tirupanyam, B. V.; Srinivas, Ch.; Meena, S. S.; Yusuf, S. M.; Satish Kumar, A.; Sastry, D. L.; Seshubai, V.

    2015-10-01

    A systematic study on structural and magnetic properties of co-precipitated MnxNi1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles annealed at 800 °C was carried out using XRD, FE-SEM, VSM and MÖSSBAUER techniques. Anti-ferromagnetic α-Fe2O3 phase was observed along with the magnetic spinel phase in the XRD patterns. It is observed that both lattice parameter and crystallite size of spinel phase increase with increase in concentration of Mn2+ along with the amount of α-Fe2O3 phase. The saturation magnetization (Ms) decreases while coercivity (Hc) increases with increase of Mn2+ ion concentration. Mössbauer spectra indicate that iron ions present in A and B sites are in the Fe3+ state and Fe2+ is absent. The results are interpreted in terms of observed anti-ferromagnetic α-Fe2O3 phase, core-shell interactions and cation redistribution.

  8. 2-Amino-2-deoxy-glucose conjugated cobalt ferrite magnetic nanoparticle (2DG-MNP) as a targeting agent for breast cancer cells.

    PubMed

    Aşık, Elif; Aslan, Tuğba Nur; Volkan, Mürvet; Güray, N Tülin

    2016-01-01

    In this study, 2-amino-2-deoxy-glucose (2DG) was conjugated to COOH modified cobalt ferrite magnetic nanoparticles (COOH-MNPs), which were designed to target tumor cells as a potential targetable drug/gene delivery agent for cancer treatment. According to our results, it is apparent that, 2DG labeled MNPs were internalized more efficiently than COOH-MNPs under the same conditions in all cell types (MDA-MB-231 and MCF-7 cancer and MCF-10A normal breast cells) (p<0.001). Moreover, the highest amount of uptake was observed in MDA-MB-231, followed by MCF-7 and normal MCF-10A cells for both MNPs. The apoptotic effects of 2DG-MNPs were further evaluated, and it was found that apoptosis was not induced at low concentrations of 2DG-MNPs in all cell types, whereas dramatic cell death was observed at higher concentrations. In addition, the gene expression levels of four drug-metabolizing enzymes, two Phase I (CYP1A1, CYP1B1) and two Phase II (GSTM3, GSTZ1) were also increased with the high concentrations of 2DG-MNPs. PMID:26761626

  9. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    PubMed

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  10. Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid

    NASA Astrophysics Data System (ADS)

    Qin, H.; Wang, C. M.; Dong, Q. Q.; Zhang, L.; Zhang, X.; Ma, Z. Y.; Han, Q. R.

    2015-05-01

    A novel and simple method has been proposed to prepare magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system.

  11. Preparation of compact nanoparticle clusters from polyethylene glycol-coated gold nanoparticles by fine-tuning colloidal interactions.

    PubMed

    Zámbó, Dániel; Radnóczi, György Z; Deák, András

    2015-03-10

    Low-molecular weight polyethylene glycol (PEG) has a lower critical solution temperature well outside the boiling point of water at ambient pressure, but it can be reduced at high ionic strengths. We extend this concept to trigger the clustering of gold nanoparticles through the control of colloidal interactions. At high ionic strengths, low-molecular weight (<2000 Da) mPEG-SH-modified gold nanoparticles show clustering with an increase in the solution temperature. The clustering temperature decreases with an increasing ionic strength. The clustering is attributed to the delicate interplay between the high ionic strength and elevated temperature and is interpreted in terms of chain collapse of the surface-grafted PEG molecules. The chain collapse results in a change in the steric interaction term, whereas the high ionic strength eliminates the double-layer repulsion between the particles. The observations are backed by nanoparticle interaction model calculations. We found that the intermediate attractive potential on the order of a few kT allows the experimental fabrication of compact nanoparticle clusters in agreement with theoretical predictions. The approach presented here has the potential to be extended on the externally triggered preparation of nanoparticle clusters with different types of nanoparticles. PMID:25686160

  12. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching.

    PubMed

    Chen, Limei; Deming, Christopher P; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-08-14

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. PMID:27417026

  13. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible

    NASA Astrophysics Data System (ADS)

    Jiang, Wanquan; Yang, H. C.; Yang, S. Y.; Horng, H. E.; Hung, J. C.; Chen, Y. C.; Hong, Chin-Yih

    2004-12-01

    A chemical co-precipitation method capable of controlling the average size and size distribution of magnetic Fe3O4 nano-particles was developed. It was found that the homogeneous variation of the pH value in the solution plays a role in the size distribution of the synthesized Fe3O4 particles. In this work, we added urea to the ferrite solution, followed by heating the solution to decompose the urea before titrating a base solution into the ferrite solution. Thus, the variation in pH value in the solution can become uniform, and the uniformity in the particles size can be greatly enhanced. In addition, the average particle size is adjustable via control of the amount of urea decomposing at one time. To be biocompatible, dextran is selected as the surfactant for the Fe3O4 particles, because of its non-toxicity and high bio-affinity. The desired bio-probes can be coated on the dextran layer through adequate chemical reactions.

  14. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles

    SciTech Connect

    Srinivas, Ch.; Babu, Ch. Seshu; Tirupanyam, B. V.; Meena, S. S.; Sastry, D. L.

    2015-06-24

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm – 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  15. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    PubMed Central

    Hu, Daode; Liu, Liang; Chen, Wenjuan; Li, Sining; Zhao, Yaping

    2012-01-01

    In this study, solution enhanced dispersion by supercritical fluids (SEDS) technique was applied for the preparation of 5-aminosalicylic acid (5-ASA) loaded Eudragit S100 (EU S100) nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spherical shape and small particle size with narrow particle size distribution. In addition, the nanoparticles prepared were characterized by X-ray diffraction, Differential scanning calorimetry and Fourier transform infrared spectroscopy analyses. The results showed that 5-ASA was imbedded into EU S100 in an amorphous state after SEDS processing and the SEDS process did not induce degradation of 5-ASA. PMID:22754377

  16. Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine

    2009-05-01

    Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).

  17. Preparation of cobalt nanoparticles from polymorphic bacterial templates: A novel platform for biocatalysis.

    PubMed

    Jang, Eunjin; Shim, Hyun-Woo; Ryu, Bum Han; An, Deu Rae; Yoo, Wan Ki; Kim, Kyeong Kyu; Kim, Dong-Wan; Kim, T Doohun

    2015-11-01

    Nanoparticles have gathered significant research attention as materials for enzyme immobilization due to their advantageous properties such as low diffusion rates, ease of manipulation, and large surface areas. Here, polymorphic cobalt nanoparticles of varied sizes and shapes were prepared using Micrococcus lylae, Bacillus subtilis, Escherichia coli, Paracoccus sp., and Haloarcula vallismortis as bacterial templates. Furthermore, nine lipases/carboxylesterases were successfully immobilized on these cobalt nanoparticles. Especially, immobilized forms of Est-Y29, LmH, and Sm23 were characterized in more detail for potential industrial applications. Immobilization of enzymes onto cobalt oxide nanoparticles prepared from polymorphic bacterial templates may have potential for efficient hydrolysis on an industrial-scale, with several advantages such as high retention of enzymatic activity, increased stability, and strong reusability. PMID:26358553

  18. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    NASA Astrophysics Data System (ADS)

    Lari, L.; Dudkiewicz, A.

    2014-06-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility.

  19. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    NASA Astrophysics Data System (ADS)

    Anh, Nguyen Tuan; Chi, Nguyen T.; Khai Tran, T.; Tuyen Dao, T. P.; Nhan Le, N. T.; Mau Chien, Dang; Hoai, Nguyen To

    2012-12-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid.

  20. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    PubMed Central

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  1. Phase Transition of Iron-Platinum Nanoparticles Prepared in Water-In-Oil Microemulsions

    NASA Astrophysics Data System (ADS)

    Hyie, Koay Mei; Yaacob, Iskandar Idris

    2009-06-01

    FePt nanoparticles were successfully prepared in water-in-oil microemulsions. Two different atmospheric conditions were used during annealing—argon and forming gas (95% argon+5% hydrogen). X-ray diffraction (XRD) result showed that fcc FePt nanoparticles annealed in forming gas atmosphere transformed into Pt3Fe phase. However, the as-synthesized fcc FePt could not be transformed to other phase in argon gas atmosphere. Variation of water/surfactant (w) ratio of 0.3, 0.5 and 0.65 were also investigated in order to produce fct FePt nanoparticles. After annealing at 700° C in forming gas atmosphere, FePt nanoparticles produced using w of 0.5 transformed into the ordered face centered tetragonal (fct) FePt structure while the nanoparticles formed using w of 0.3 and 0.65 turned into Pt3Fe phase.

  2. The preparation of magnetic molecularly imprinted nanoparticles for the recognition of bovine hemoglobin.

    PubMed

    Zhang, Min; Wang, Yuzhi; Jia, Xiaoping; He, Meizhi; Xu, Minli; Yang, Shan; Zhang, Cenjin

    2014-03-01

    The protein imprinted technique combining surface imprinting and nano-sized supports materials is an attractive strategy for protein recognition and rapid separation. In this work, we imprinted bovine hemoglobin (BHb) on magnetic nanoparticles. With itaconic acid (IA) and acrylamide (AAm) as the monomers, the experiment was carried out in aqueous media via surface-imprinting technique. The effects of initial concentration and adsorption time over the adsorption capacity of both imprinted and non-imprinted nanoparticles were analyzed. The maximum adsorption capability of imprinted nanoparticles was found to be 77.6 mg g(-1), which was 3.1-4.3 times higher than that of the non-imprinted nanoparticles prepared at the same conditions. This resulted in the successful formation of imprinting cavities. Moreover, in selective adsorption experiment and competitive batch rebinding test, imprinted nanoparticles exhibited a high specific recognition of the template protein over the non-imprinted protein. PMID:24468385

  3. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    PubMed

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results. PMID:26706531

  4. Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Salah, Dina; Kumar, Gagan; Kumar, Arun; Singh, Mahavir; Abd El-sadek, M.; Mir, Feroz Ahmad; Imran, Ahamad; Jameel, Daler Adil

    2016-08-01

    Ferrimagnetic oxides may contain single or multi domain particles which get converted into superparamagnetic state near a critical size. To explore the existence of these particles, we have made Mössbauer and magnetic studies of Cu2+ substitution effect in CoFe2-xO4 Ferrites (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5). All the samples have a cubic spinel structure with lattice parameters increasing linearly with increase in Cu content. The hysteresis loops yield a saturation magnetization, coercive field, and remanent magnetization that vary significantly with Cu content. The magnetic hysteresis curves shows a reduction in saturation magnetization and an increase in coercitivity with Cu2+ ion substitution. The anisotropy constant, K1, is found strongly dependent on the composition of Cu2+ ions. The variation of saturation magnetization with increasing Cu2+ ion content has been explained in the light of Neel's molecular field theory. Mössbauer spectra at room temperature shows two ferrimagnetically relaxed Zeeman sextets. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, line width and hyperfine magnetic field on Cu2+ ion concentration have been discussed.

  5. Preparation and thermal behavior of aerosol-derived BaFe 12O 19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu; Lin, Hsin-Yi

    2004-12-01

    Pure BaFe12O19 nanoparticles, having single magnetic domain sizes, were obtained at 700 °C using a process combining the citrate precursor method and spray technique. A neutralized aqueous solution, containing Ba2+ and Fe3+ chelated by citric acid, was nebulized to undergo thermal decomposition in a flowing air with a maximum temperature of 250 °C. The dried solid precursor so obtained was calcined at different temperatures and was then chemically and physically characterized. Crystalline barium hexaferrites were formed at temperatures as low as 650 °C, but calcination temperatures higher than 680 °C were required to produce pure barium ferrite powder. Based on the obtained experimental results, the reaction mechanism for the aerosol-derived precursor to form BaFe12O19 was proposed and discussed in this study.

  6. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Bobadilla, L. F.; García, C.; Delgado, J. J.; Sanz, O.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A.

    2012-11-01

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution.

  7. Effects of Microemulsion Preparation Conditions on Drug Encapsulation Efficiency of PLGA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ng, Set Hui; Ooi, Ing Hong

    2011-12-01

    Emulsion solvent evaporation technique is widely used to prepare nanoparticles of many organic polymer drug carriers. The mechanism of nanoparticle generation by this technique involves oil-in-water (O/W) microemulsion formation followed by solvent evaporation. Various microemulsion preparation conditions can affect the encapsulation efficiency of drug in the nanoparticulate carrier. In this study, emulsifying speed, emulsifying temperature, and organic-to-aqueous phase ratio were varied and the resulting encapsulation efficiency of a model drug in Poly(Lactide-co-Glycolide) (PLGA) nanoparticles was determined. The organic phase containing PLGA and a model drug dissolved in chloroform was first dispersed in an aqueous solution containing 0.5 %(w/v) Poly(vinyl alcohol) (PVA), which was then homogenized at high speeds. The resulting O/W microemulsion was subsequently subjected to stirring at room temperature for four hours during which the solvent diffused and evaporated gradually. The fine white suspension was centrifuged and freeze-dried. The model drug loading in the PLGA nanoparticles was determined using UV spectrophotometry. Results showed that the encapsulation efficiency of a model drug, salicylic acid, ranged from 8.5% to 17% depending on the microemulsion preparation conditions. Under the same temperature (15 °C) and homogenization speed (19000 rpm) conditions studied, a relatively high organic-to-aqueous phase ratio (1:5) provided salicylic acid loaded PLGA nanoparticles with significantly higher drug encapsulation efficiency. In addition, under all microemulsion preparation conditions, PLGA nanoparticles obtained after solvent evaporation and freeze drying were spherical and aggregation between the nanoparticles was not observed under a high power microscope. This indicates that PLGA nanoparticles with desirable amount of drug and with anticipated size and shape can be realized by controlling emulsification process conditions.

  8. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    PubMed

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. PMID:26803683

  9. Preparation and characterization of polymeric nanoparticles from Gadong starch

    NASA Astrophysics Data System (ADS)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  10. Preparation and characterization of polymeric nanoparticles from Gadong starch

    SciTech Connect

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat; Fazry, Shazrul

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  11. Magnetic properties of isolated Co nanoparticles in SiO 2 capsule prepared with reversed micelle

    NASA Astrophysics Data System (ADS)

    Haeiwa, Tetsuji; Segawa, Kazuhiro; Konishi, Kenji

    Magnetic properties and thermal stability of cobalt nanoparticles encapsulated in SiO 2 prepared with the reversed micelle technique with various w were investigated. The average diameters of the Co nanoparticles and SiO 2 capsules were about 2.9 and about 5.2 nm. The magnetization curves of Co nanoparticles exhibit superparamagnetic nature. After annealing up to 673 K in vacuum, the magnetization increases by a factor of 2.4 and the average diameter of the Co particles increases by a factor of 1.3, although shape and size of the SiO 2 capsules were kept.

  12. Spectroscopic study of Eu3+ doped LaF, nanoparticles prepared with different PH values.

    PubMed

    Tian, Yu; Zheng, Hairong; Cui, Min; Fu, Zhengxing; Gao, Dangli; Gao, Wei

    2011-11-01

    Europium doped lanthanide fluoride (LaF3) nanoparticles were prepared through a hydrothermal method with different PH values of precursor complex solution. The influence of PH value on the luminescence properties is investigated. It was found that the local symmetry of doped ions reduced with the increase of PH value, leading to the increase of the inversion symmetry ratio. The fluorescence quenching was observed for small nanoparticles, which was attributed to the large amount of OH groups absorbed to the surface of the nanoparticles. PMID:22413299

  13. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    NASA Astrophysics Data System (ADS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  14. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

    SciTech Connect

    Catalini, David; Kaoumi, Djamel; Reynolds, Anthony; Grant, Glenn J.

    2015-07-09

    INCOLOY® MA956 is a ferritic Oxide Dispersion Strengthened (ODS) alloy. Three different oxides, Y4Al2O9, YAlO3 and Y3Al5O12, have been observed in this alloy. The oxide particle sizes range from just a few up to hundreds of nm and these particles are responsible of the high temperature mechanical strength of this alloy. Mechanically alloyed MA956 powder was consolidated via Friction Consolidation using three different processing conditions. As a result, three small compacts of low porosity were produced. The compacts exhibited a refined equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion.YAlO3 and Y3Al5O12 were identified in the compacts by Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS showing an aluminum enrichment trend as precipitates grow in size.

  15. Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles.

    PubMed

    Mulligan, Sėan K; Speir, Jeffrey A; Razinkov, Ivan; Cheng, Anchi; Crum, John; Jain, Tilak; Duggan, Erika; Liu, Er; Nolan, John P; Carragher, Bridget; Potter, Clinton S

    2015-08-01

    We describe a system for rapidly screening hundreds of nanoparticle samples using transmission electron microscopy (TEM). The system uses a liquid handling robot to place up to 96 individual samples onto a single standard TEM grid at separate locations. The grid is then transferred into the TEM and automated software is used to acquire multiscale images of each sample. The images are then analyzed to extract metrics on the size, shape, and morphology of the nanoparticles. The system has been used to characterize plasmonically active nanomaterials. PMID:26223550

  16. Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles

    PubMed Central

    Cheng, Anchi; Crum, John; Jain, Tilak; Duggan, Erika; Liu, Er; Nolan, John P.; Carragher, Bridget; Potter, Clinton S.

    2015-01-01

    We describe a system for rapidly screening hundreds of nanoparticle samples using transmission electron microscopy (TEM). The system uses a liquid handling robot to place up to 96 individual samples onto a single standard TEM grid at separate locations. The grid is then transferred into the TEM and automated software is used to acquire multi-scale images of each sample. The images are then analyzed to extract metrics on the size, shape, and morphology of the nanoparticles. The system has been used to characterize plasmonically-active nanomaterials. PMID:26223550

  17. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  18. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    PubMed Central

    Kamiar, Ali; Ghotalou, Reza; Valizadeh, Hadi

    2013-01-01

    Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs) in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical characterization. Polymer gel dosimetry was used for evaluation of the enhancement of absorbed dose. Diffusion method in agar media was used for investigation of anti-bacterial effect. Results: Gold nanoparticles synthesized in size range from 57 nm to 346 nm by planning different formulation. Gold nanoparticle in 57 nm size increased radiation dose effectiveness with the magnitude of about 21 %. At the concentration of 400 ppm, Nano gold exhibited significant anti-bacterial effect against E. coli clinical strains. Conclusion: It is concluded that gold nanoparticles can be applied as dose enhancer in radiotherapy. The Investigation of anti-bacterial efficacy showed that gold nanoparticle had significant effect against E. coli clinical strains. PMID:24312871

  19. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies.

    PubMed

    Gupta, Ajay Kumar; Wells, Stephen

    2004-03-01

    Superparamagnetic iron oxide nanoparticles have been used for many years as magnetic resonance imaging (MRI) contrast agents or in drug delivery applications. In this study, a novel approach to prepare magnetic polymeric nanoparticles with magnetic core and polymeric shell using inverse microemulsion polymerization process is reported. Poly(ethyleneglycol) (PEG)-modified superparamagnetic iron oxide nanoparticles with specific shape and size have been prepared inside the aqueous cores of AOT/n-Hexane reverse micelles and characterized by various physicochemical means such as transmission electron microscopy (TEM), infrared spectroscopy, atomic force microscopy (AFM), vibrating sample magnetometry (VSM), and ultraviolet/visible spectroscopy. The inverse microemulsion polymerization of a polymerizable derivative of PEG and a cross-linking agent resulted in a stable hydrophilic polymeric shell of the nanoparticles. The results taken together from TEM and AFM studies showed that the particles are spherical in shape with core-shell structure. The average size of the PEG-modified nanoparticles was found to be around 40-50 nm with narrow size distribution. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles with saturation magnetization values between 45-50 electromagnetic units per gram. The cytotoxicity profile of the nanoparticles on human dermal fibroblasts as measured by standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the particles are nontoxic and may be useful for various in vivo and in vitro biomedical applications. PMID:15382647

  20. Study on fluorouracil-chitosan nanoparticle preparation and its antitumor effect.

    PubMed

    Chen, Gaimin; Gong, Rudong

    2016-05-01

    To successfully prepare fluorouracil-chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil-chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU-CS-mPEG prodrugs, and infrared, (1)H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad prospects for development. PMID

  1. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment

    ERIC Educational Resources Information Center

    Sharma, R. K.; Gulati, Shikha; Mehta, Shilpa

    2012-01-01

    Assimilating green chemistry principles in nanotechnology is a developing area of nanoscience research nowadays. Thus, there is a growing demand to develop environmentally friendly and sustainable methods for the synthesis of nanoparticles that utilize nontoxic chemicals, environmentally benign solvents, and renewable materials to avoid their…

  2. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology

    PubMed Central

    Yeh, Yi-Cheun; Creran, Brian; Rotello, Vincent M.

    2014-01-01

    Gold nanoparticles (AuNPs) are important components for biomedical applications. AuNPs have been widely employed for diagnostics, and have seen increasing use in the area of therapeutics. In this mini-review, we present fabrication strategies for AuNPs and highlight a selection of recent applications of these materials in bionanotechnology. PMID:22076024

  3. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  4. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2013-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  5. Preparation and in vitro anticancer activity of oxymatrine mixed micellar nanoparticles.

    PubMed

    Jin, Nan; Zhao, Yong-Xing; Deng, Shu-Hua; Sun, Qian

    2011-07-01

    The aim of this study was to prepare oxymatrine (OMT) mixed micellar nanoparticles to delay release of the drug and enhance its cytotoxicity against cancer cells. A co-solvent evaporation method using lipoid E80, lipoid S75, MPEG-PLA and Poloxamer 188 was chosen to prepare the OMT formulation, and its release characteristics, cytotoxic activity in vitro and physical characteristics were evaluated. The results showed that OMT mixed micellar nanoparticles have sustained release and cytotoxic activity in vitro to the SMMC-7721 cell line. PMID:21812325

  6. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

    NASA Astrophysics Data System (ADS)

    Catalini, David; Kaoumi, Djamel; Reynolds, Anthony P.; Grant, Glenn J.

    2015-10-01

    INCOLOY® MA956 is a ferritic oxide dispersion-strengthened alloy manufactured by mechanical alloying followed by hot extrusion in vacuum-sealed cans or by degassing and hot isostatic pressing. This could be followed by a tailored heat treatment sequence in order to obtain a desired microstructure and to allow the oxide dispersion to precipitate. Three different oxides, responsible for the high-temperature mechanical strength, have been observed in this alloy: Y4Al2O9, YAlO3, and Y3Al5O12. Their sizes range from just a few to hundreds of nanometers. In this work, mechanically alloyed MA956 powder was consolidated via friction consolidation, a single-step and potentially cheaper processing alternative. Three fully dense compacts were produced. The compacts exhibited a refined, equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion. YAlO3 and Y3Al5O12 were identified by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction. The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS, showing an aluminum enrichment trend as precipitates grew in size.

  7. Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles

    PubMed Central

    Moorthi, C; Krishnan, Kiran; Manavalan, R; Kathiresan, K

    2012-01-01

    Objective To prepare curcumin-piperine (Cu-Pi) nanoparticles by various methods and to study the effect of various manufacturing parameters on Cu-Pi nanoparticles and to identify a suitable method for the preparation of Cu-Pi nanoparticles to overcome oral bioavailability and cancer cell targeting limitations in the treatment of cancer. Methods Cu-Pi nanoparticles were prepared by thin film hydration method, solid dispersion method, emulsion polymerization method and Fessi method. Optimization was carried out to study the effect of various manufacturing parameter on the Cu-Pi nanoparticles. Results Out of four methods, Fessi method produced a minimum average particle size of 85.43 nm with a polydispersity index of 0.183 and zeta potential of 29.7 mV. Change of organic solvent (acetone or ethanol) did not have any significant effect on Cu-Pi nanoparticles. However, increase in sonication time, stirring speed, viscosity, use of 1:10:10 ratio of drug/polymer/surfactant, and use of anionic surfactant or combination of anionic surfactant with cationic polymer or combination of non-ionic surfactant with cationic polymer had a significant effect on Cu-Pi nanoparticles. Conclusions Cu-Pi nanoparticles coated with PEG containing copolymer produced by Fessi method had a minimum average particle size, excellent polydispersity index and optimal zeta potential which fall within the acceptable limits of the study. This dual nanoparticulate drug delivery system appears to be promising to overcome oral bioavailability and cancer cell targeting limitations in the treatment of cancer. PMID:23569859

  8. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    PubMed Central

    Keum, Chang-Gu; Noh, Young-Wook; Baek, Jong-Suep; Lim, Ji-Ho; Hwang, Chan-Ju; Na, Young-Guk; Shin, Sang-Chul; Cho, Cheong-Weon

    2011-01-01

    Background Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA), are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20.83%, 40.07%, and 51.5% of the docetaxel was released in 28 days from nanoparticles containing Poloxamer 188, TPGS, or polyvinyl alcohol, respectively. TPGS and Poloxamer 188 had slower release kinetics than polyvinyl alcohol. It was predicted that there was residual drug remaining on the surface from x-ray photoelectron spectroscopy. Conclusion Our research shows that the choice of surfactant is important for controlled release of

  9. Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hamid Reza; Parish, Mohammad; Amiri, Gholam Reza; Bahraminejad, Behzad; Fatahian, Soheil

    2016-09-01

    Nickel zinc ferrite nanoparticles with diameters less than 20 nm were synthesized by co-precipitation method. The synthesized nanoparticles were annealed at 500 °C. Two types of samples (powder and disk) were prepared. The disk sample was prepared by pressing the powder sample. Magnetic and structural properties of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and alternating gradient-force magnetometer (AGFM). The X-ray analysis shows that the formation of the synthesized nickel zinc ferrite is spinell. The average crystalline size for nickel zinc ferrite powder was found around 19 nm (calculated by Debye-Scherer formula).The formation, size and the uniformity of the samples were determined by TEM. It was found that the size of nanoparticles should be around 18 nm from the SEM image. AGFM diagrams shows that the magnetization of the powder sample at the 9 kOe is 21.5 emu/g that of disk sample is 33 emu/g. Therefore, the magnetization was increased by pressing the nickel zinc ferrite nanoparticles. Sensor sensitivity of this disk ferrite is investigated in an isolated box. For this purpose, the samples are injected to this box and six gases (ethanol, methanol, chloroform, acetonitrile, acetone and methane) are exposed to the ferrite by a mechanical gate. The acetonitrile had the best sensitivity performance.

  10. Preparation and Characterization of Stimuli-Responsive Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Shixing; Zhou, Yang; Guan, Wen; Ding, Bingjun

    2008-08-01

    In this work, the main attention was focused on the synthesis of stimuli-responsive magnetic nanoparticles (SR-MNPs) and the influence of glutathione concentration on its cleavage efficiency. Magnetic nanoparticles (MNPs) were first modified with activated pyridyldithio. Then, MNPs modified with activated pyridyldithio (MNPs-PDT) were conjugated with 2, 4-diamino-6-mercaptopyrimidine (DMP) to form SR-MNPs via stimuli-responsive disulfide linkage. Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize MNPs-PDT. The disulfide linkage can be cleaved by reduced glutathione (GHS). The concentration of glutathione plays an important role in controlling the cleaved efficiency. The optimum concentration of GHS to release DMP is in the millimolar range. These results had provided an important insight into the design of new MNPs for biomedicine applications, such as drug delivery and bio-separation.

  11. Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery.

    PubMed

    Nasr, Farzaneh Hashemi; Khoee, Sepideh; Dehghan, Mohammad Mehdi; Chaleshtori, Sirous Sadeghian; Shafiee, Abbas

    2016-02-01

    To improve the efficiency of topical ocular drug administration, we focused on development of a nanoparticles loaded contact lens to deliver the hydrophobic drug over a prolonged period of time. The cross-linked nanoparticles based on PCL (poly ε-caprolactone), 2-hydroxy ethyl methacrylate (HEMA), and poly ethylene glycol diacrylate (PEG-DA) were prepared by surfactant-free miniemulsion polymerization. The lens material was prepared through photopolymerization of HEMA and N-vinylpyrrolidone (NVP) using PEG-DA as the cross-linker. Effects of nanoparticles loading on critical contact lens properties such as transparency, water content, modulus and ion and oxygen permeabilities were studied. Nanoparticles and hydrogel showed high viability, indicating the absence of cytotoxicity and stimulatory effect. Drug release studies revealed that the hydrogel embedded with nanoparticles released the drug for a period of 12 days. The results of this study provide evidence that nanoparticles loaded hydrogels could be used for extended delivery of loteprednol etabonate and perhaps other drugs. PMID:26652301

  12. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    PubMed

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. PMID:22707097

  13. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-09-01

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  14. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation.

    PubMed

    Sun, Qingjie; Li, Guanghua; Dai, Lei; Ji, Na; Xiong, Liu

    2014-11-01

    Waxy maize starch was treated by a facile and green enzymolysis procedure to fabricate starch nanoparticles (StNPs). The yield of StNPs was raised to 85% by pullulanase treatment, and the preparation duration was two days. Morphology (SEM, TEM), crystalline structure (XRD), thermal gravimetry analysis (TGA), and the group changing (FTIR) of StNPs prepared with different starch concentrations (10%, 15%, 20% and 25%,w/v) were investigated. Compared with native starch, the topography of all StNPs exhibited irregularly-shaped fragments, the particle diameters decreased from several μm to about 60-120 nm, and the crystal pattern changed from A-type to B+V-type. The StNPs prepared with 15% starch slurry had the highest degree of crystallinity at 55.41%. The eco-friendly prepared nanoparticles could be widely used in biomedical applications and development of new materials. PMID:24874379

  15. Preparation of tourmaline nano-particles through a hydrothermal process and its infrared emission properties.

    PubMed

    Xue, Gang; Han, Chao; Liang, Jinsheng; Wang, Saifei; Zhao, Chaoyue

    2014-05-01

    Tourmaline nano-particles were successfully prepared via a hydrothermal process using HCl as an additive. The reaction temperature (T) and the concentration of HCI (C(HCl)) had effects on the size and morphology of the tourmaline nano-particles. The optimum reaction condition was that: T = 180 degrees C and C(HCl) = 0.1 mol/l. The obtained nano-particles were spherical with the diameter of 48 nm. The far-infrared emissivity of the product was 0.923. The formation mechnism of the tourmaline nano-particles might come from the corrosion of grain boundary between the tourmaline crystals in acidic hydrothermal conditions and then the asymmetric contraction of the crystals. PMID:24734669

  16. pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang

    2016-07-01

    We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 °C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO2 nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO2. These nanoparticles also exhibit a thermal stability of up to 800 °C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl2 concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed.

  17. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids

    NASA Astrophysics Data System (ADS)

    Rodil, Eva; Aldous, Leigh; Hardacre, Christopher; Lagunas, M. Cristina

    2008-03-01

    Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

  18. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    PubMed Central

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983

  19. Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling

    NASA Astrophysics Data System (ADS)

    Chu, Xuan T. A.; Ta, Bach N.; Ngo, Le T. H.; Do, Manh H.; Nguyen, Phuc X.; Nam, Dao N. H.

    2016-05-01

    A nanopowder of iron was prepared using a high-energy ball milling method, which is capable of producing nanoparticles at a reasonably larger scale compared to conventional chemical methods. Analyses using x-ray diffraction and magnetic measurements indicate that the iron nanoparticles are a single phase of a body-centered cubic structure and have quite stable magnetic characteristics in the air. The iron nanoparticles were then mixed with paraffin and pressed into flat square plates for free-space microwave transmission and reflection measurements in the 4-8 GHz range. Without an Al backing plate, the Fe nanoparticles seem to only weakly absorb microwave radiation. The reflected signal S 11 drops to zero and a very large negative value of reflection loss ( RL) are observed for Al-backed samples, suggesting the existence of a phase matching resonance near frequency f ˜ 6 GHz.

  20. Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles.

    PubMed

    Tikhomirov, V K; Mortier, M; Gredin, P; Patriarche, G; Görller-Walrand, C; Moshchalkov, V V

    2008-09-15

    Free-standing, 8 nm diameter, rare-earth doped nanoparticles Re(10)Pb(25)F(65) have been prepared, where Re stands for either single rare-earth ion, such as Er(3+), Yb(3+), Eu(3+), Dy(3+), Ho(3+), Tm(3+) or combinations of those ions. The nanoparticles have been extracted by chemical etching from the oxyfluoride nano-glass-ceramics template and analyzed by transmission electron microscope with energy dispersion spectroscopy. The nanoparticles show durable up-conversion photoluminescence, which is neither concentration nor impurity quenched after 6 months ageing in ambient atmosphere. High doping levels in these nanoparticles ensure high, up to 15%, quantum yield of up-conversion luminescence. PMID:18794989

  1. Preparation and characterization of poly (ethylene glycol)-coated Stoeber silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul; Xu, Hao; Yan, Fei; Monson, Eric E.; Tang, Wei; Schneider, Randy; Philbert, Martin A.

    2002-06-01

    Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared in the size range of 50-350 nm, and their size distribution were characterized by SEM and multi-angle static light scattering experiments. The chemical binding of PEG to the silica nanoparticles was confirmed by IR spectroscopy. The biocompatibility of these PEGylated nanoparticles was also studied by non-specific protein binding tests and in-vivo toxicology studies in live animals. These silica nanoparticles, as a matrix for encapsulation of certain reagents, have been used for the fabrication of intracellular sensors and have potential for applications to in vivo diagnosis, analysis and measurements, due to their small physical size and their biocompatibility, both stemming from the specialized PEG coating.

  2. Preparation and characterization of surface-coated ZnS nanoparticles

    SciTech Connect

    Chen, S.; Liu, W.

    1999-11-09

    ZnS nanoparticles coated with di-n-hexadecyldithiophosphate (DDP) were chemically synthesized. The structure of the prepared ZnS nanoparticles was investigated by means of transmission electron microscopy, electron diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The thermal stability of DDP coated on nanoparticles was compared with that of pyridinium di-n-hexadecyldithiophosphate (PyDDP) using a thermogravimetric analyzer. The tribiological properties of ZnS nanoparticles as an additive in tetradecane were investigated by a SRV tester in a ball-on-disk configuration. DDP-coated ZnS nanoparticles, with an average diameter of about 4 nm, are able to prevent water adsorption, and oxidation and are capable of being dispersed stably in organic solvents or mineral oil. Thermal stability of DDP coating on ZnS nanoparticles was superior to that of PyDDP. Wear tests show that DDP-coated ZnS nanoparticles as additive in tetradecane are capable of reducing friction and wear of steel.

  3. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  4. In situ synthesis of cobalt ferrite nanoparticle/polymer hybrid from a mixed Fe-Co methacrylate for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Hayashi, Koichiro; Maeda, Kazuki; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu

    2012-09-01

    Hyperthermic CoFe2O4 nanoparticle (CFO NP)/polymer hybrids were synthesized by hydrolysis-condensation from a complex of Co and Fe possessing methacrylate ligands. Single-crystal analysis revealed that the complex consisted of two Co and four Fe metal atoms coordinated by methacrylate and 2-methoxyethoxy groups. The complex was copolymerized with 2-hydroxyethyl methacrylate (HEMA) and the resulting copolymer was then hydrolyzed to form a CFO NP/copolymer of poly(methacrylate) and poly(2-hydroxyethyl methacrylate) hybrid. Copolymerization with HEMA enhanced the stability of the hybrid in water. The size and magnetic properties of CFO in the hybrid were controlled by adjusting the hydrolysis conditions. Moreover, the hybrid generated heat under an alternating current magnetic field; its exothermal properties depended on the magnetic properties of the hybrid, the strength of the applied field, and the CFO NP content in the agar phantom matrix.

  5. Preparation and Surface Layer Modification of Silicon Nanoparticles Dispersed in 2-Propanol

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; S, Iwasaki; K, Kimura; Zhang, Li-de

    1998-12-01

    Silicon nanoparticles dispersed in 2-propanol were prepared by using an arc plasma with gas flow method in a new designed home-made apparatus. The particles are composed of silicon crystal core covered by oxidized amorphous silicon shell. The composition of the particle surface layer can be modified by preparing the sample in different atmosphere. The particles can be also obtained with different core composition and different size which we need.

  6. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions

    NASA Astrophysics Data System (ADS)

    Nassar, Nashaat; Husein, Maen

    2006-05-01

    Nanoparticles of iron oxide were prepared by subjecting iron chloride powder to (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), isooctane and water. FeCl3 was first dissolved in the water pools of the microemulsion, and then reacted with NaOH added as an aqueous solution to form iron oxide. The amount of NaOH solution was limited so that single microemulsion phase is obtained. This technique serves as an in-situ nanoparticle preparation technique aimed at minimizing particle aggregation associated with particle transportation to required sites. In this study, the effects of AOT concentration and water to AOT mole ratio on the nanoparticle size were investigated. UV/Vis spectrophotometry and transmission electron microscopy (TEM) were used to measure the particle size distribution.

  7. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light

    PubMed Central

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  8. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light.

    PubMed

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  9. Green preparation of Au nanoparticles for electrochemical detection of H2O2

    NASA Astrophysics Data System (ADS)

    Wenchao, Wang; Ye, Ji; Yong, Zhang; Ziying, Wang; Tong, Zhang

    2016-01-01

    A simple and green method for preparation of Au nanoparticles by reduction of HAuCl4 using carbon nanodots as the reducing agent is reported. The carbon nanodots were prepared by a green method as well, using hydrothermal treatment of grass. It is observed that Au nanoparticles show obvious electrochemical catalytic ability for reduction of hydrogen peroxide, leading to its application of a high-performance non-enzymatic hydrogen peroxide sensor. The hydrogen peroxide sensor based on Au nanoparticles was made, with the detection limit at 23 μM and linear range between 0.1-160 mM. Project supported by the National Natural Science Foundation of China (No. 51202085), and the Open Project from State Key Laboratory of Transducer Technology (No. SKT1402).

  10. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  11. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Background Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Conclusion Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and

  12. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  13. Preparation of nanoparticles bearing high density carbohydrate chains using carbohydrate-carrying polymers as emulsifier.

    PubMed

    Maruyama, A; Ishihara, T; Adachi, N; Akaike, T

    1994-10-01

    A novel method of preparing nanoparticles bearing high density carbohydrate chains on their surface is described. Carbohydrate-bearing nanoparticles of poly(lactic acid) or polystyrene were prepared by the solvent evaporation method using a carbohydrate-carrying polystyrene derivative which served as both an emulsifier and a surface coating. The diameter of the obtained nanoparticles ranged from 80 to 300 nm depending on the concentration of the polystyrene derivative. As the concentration of the polystyrene derivatives increased the nanoparticle diameter decreased, indicating that the polystyrene derivatives worked as an emulsifier. The obtained particles were specifically aggregated by carbohydrate-specific lectin, showing that the polystyrene derivative was retained on the particle surfaces and expressed carbohydrate residues. The density of carbohydrates on the particle surfaces was determined to be 3-5 molecules per square nanometre. The particles prepared by the present method were stably dispersed and hardly aggregated in aqueous media during storage and centrifugal treatment compared with the post-coated particles that were prepared by adsorbing polystyrene particles with the polystyrene derivative. In vitro study with isolated rat hepatocytes revealed that surface carbohydrate chains were recognized by hepatocytes. PMID:7888573

  14. Magnetic and microwave absorbing properties of Co2+ substituted nickel-zinc ferrites with the emphasis on initial permeability studies

    NASA Astrophysics Data System (ADS)

    Ghodake, J. S.; Kambale, Rahul C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S.

    2016-03-01

    Nanocrystalline Co2+ substituted Zn0.35Ni0.60-xCoxFe2.05O4 (Where x=0.0, 0.1, 0.2, 0.3 and 0.4) system have been synthesized by citrate-nitrate combustion route. X-ray diffraction study shows the formation of single phase cubic spinel structure without any impurity phases. Morphological observation shows agglomerated grains with different shapes and sizes which is the typical characteristics of magnetic nanoparticles prepared by combustion route. The saturation magnetization of cobalt substituted Ni-Zn ferrites is found to be higher than that of pure Ni-Zn ferrite. The coercivity and retentivity of cobalt substituted Ni-Zn ferrite increases with the increasing cobalt content. Initial permeability and loss factor have been studied as the function of composition and frequency. The real (μ‧) and imaginary (μ‧‧) part of initial permeability of cobalt substituted Ni-Zn ferrites decreases while its loss factor increases with the increasing cobalt content. In the lower frequency region the imaginary part of initial permeability (μ‧‧) of all samples is found to be decreasing rapidly with increasing frequency. The microwave absorption properties of cobalt substituted Ni-Zn ferrites were also investigated; all samples exhibit the absorption in the frequency range 2.3-2.5 GHz. Thus, the prepared materials can be used as a rubber composite microwave absorber and may be useful in RADAR application.

  15. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    PubMed

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle. PMID:21051044

  16. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    SciTech Connect

    Li Siheng; Wang Enbo Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-07-15

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe{sub 2}O{sub 4}) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe{sup 3+} and M{sup 2+} on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe{sub 2}O{sub 4} (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters.

  17. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite.

    PubMed

    Khairy, M; Gouda, M E

    2015-07-01

    Polyaniline-NiFe2O4 nanocomposites (PANI-NiFe2O4) with different contents of NiFe2O4 (2.5, 5 and 50 wt%) were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol-gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI) and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI-NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg  = 1.0 for PANI-NiFe2O4 nanocomposite. PMID:26199745

  18. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    PubMed Central

    Khairy, M.; Gouda, M.E.

    2014-01-01

    Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4) with different contents of NiFe2O4 (2.5, 5 and 50 wt%) were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI) and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite. PMID:26199745

  19. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent

    NASA Astrophysics Data System (ADS)

    Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.

    2015-04-01

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

  20. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent.

    PubMed

    Fahrländer, E; Schelhaas, S; Jacobs, A H; Langer, K

    2015-04-10

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a 'brush' conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life. PMID:25789544

  1. Preparation of curcumin-loaded poly(ester amine) nanoparticles for the treatment of anti-angiogenesis.

    PubMed

    Ding, Qiuxia; Niu, Ting; Yang, Yi; Guo, Qingfa; Luo, Feng; Qian, Zhiyong

    2014-04-01

    The aim of this study was to prepare curcumin loaded poly(ester amine) nanoparticles and enhance their hydrophilicity and treatment efficacy on anti-angiogenesis zebra fish model. Poly(ester amine) (PEA) copolymer was synthesized in this study. The curcumin-loaded PEA nanoparticles were prepared through double emulsion-solvent evaporation technique. The average particle size of obtained nanoparticles was about 100 nm. The zeta potential of prepared nanoparticles was about 35.8+/-2.4 mV. Transmission electron microscopy demonstrated a narrow size distribution with in vitro release profile demonstrating in vitro slow release of curcumin from the PEA nanoparticles. The in vitro cytotoxicity of the curcumin encapsulated PEA nanoparticles nearly had the same tendency of cytotoxic activity in vitro with free curcumin on tumor cells. In vitro cellular uptake of the curcumin-loaded nanoparticles demonstrated in Hela cells demonstrated that this kind of nanoparticles can be a promising candidate as a drug delivery system to cancer cells. The Cur/PEA nanoparticles more efficiently inhibited angiogenesis (in vivo) in transgenic zebra fish model and Alginate-encapsulated tumor cells than free curcumin. No mortality or significant lesions were observed from histopathological study of the major organs. From our results, we can conclude that the prepared PEA nanoparticles are an efficient curcumin drug delivery system for anti-angiogenesis therapy. PMID:24734515

  2. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

    PubMed

    Fantechi, Elvira; Innocenti, Claudia; Zanardelli, Matteo; Fittipaldi, Maria; Falvo, Elisabetta; Carbo, Miriam; Shullani, Valbona; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Ferretti, Anna Maria; Ponti, Alessandro; Sangregorio, Claudio; Ceci, Pierpaolo

    2014-05-27

    Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform. PMID:24689973

  3. Influence of initial particle size on the magnetostriction of sintered cobalt ferrite derived from nanocrystalline powders

    NASA Astrophysics Data System (ADS)

    Khaja Mohaideen, K.; Joy, P. A.

    2013-11-01

    The role of initial particle size on the magnetostriction coefficient of sintered cobalt ferrite derived from nanocrystalline powders is studied. Nanoparticles of cobalt ferrite with different sizes in the range 3-80 nm are synthesized by an autocombustion method using metal nitrates and glycine. It has been observed that the initial particle size of the starting powders has a strong influence on the magnetostrictive behavior of sintered cobalt ferrite. Highest magnetostrictive strain and strain derivative are obtained for sintered ferrite derived from nanoparticles of size < 5 nm. The results show that higher magnetostriction coefficient for sintered cobalt ferrite can be achieved by compacting nanocrystalline particles of very small size.

  4. [Preparation of Biological Functional Magnetic Nanoparticles and Study on the Effect of Guiding Endothelial Progenitor Cells In Vitro].

    PubMed

    Ma, Baolong; Yan, Wei; Chen, Jialong; Qi, Pengkai; Li, Jianhui; Huang, Nan

    2016-02-01

    Coprecipitation method was used to prepare triiron tetroxide magnetic nanoparticles enclosed in L-DOPA, and then EDC was used to activate the carboxyl group of L-DOPA after the nanoparticles were synthesized. The carboxyl group of L-DOPA formed amide bond with specific amino on the aptamer by dehydration condensation reaction. The surfaces of magnetic nanoparticles were modified with aptamer and L-DOPA. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nanoparticle size analysis (SEM), magnetic measurement (VSM) and other testing methods were used to detect the magnetic nanoparticles in different stages. The endothelial progeni-tor cells (EPCs) were cocultured with the surface modified magnetic nanoparticles to evaluate cell compatibility and the combination effect of nanoparticles on EPCs in a short period of time. Directional guide of the surface-modified magnetic nanoparticles to endothelial progenitor cells (EPCs) was evaluated under an applied magnetic field and simulated dynamic blood flow condition. The results showed that the prepared magnetic nanoparticles had good magnetic response, good cell compatibility within a certain range of the nanoparticle concentrations. The surface modified nanoparticles could combine with EPCs effectively in a short time, and those nanoparticles combined EPCs can be directionally guided on to a stent surface under the magnetic field in the dynamic flow environment. PMID:27382754

  5. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  6. Enhanced Oral Delivery of Docetaxel Using Thiolated Chitosan Nanoparticles: Preparation, In Vitro and In Vivo Studies

    PubMed Central

    Saremi, Shahrooz; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2013-01-01

    The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (Papp) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs. PMID:23971023

  7. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity.

    PubMed

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In light of the significance of glycoprotein biomarkers for early clinical diagnostics and treatments of diseases, it is essential to develop efficient and selective enrichment platforms for glycoproteins. In this study, we present a facile and general strategy to prepare the boronate affinity-based magnetic imprinted nanoparticles. Boronic acid ligands were first grafted on the directly aldehyde-functionalized magnetic nanoparticles through amidation reaction. Then, template glycoproteins were immobilized on the boronic acid-modified magnetic nanoparticles via boronate affinity binding. Subsequently, a thin layer of dopamine was formed to coat the surface of magnetic nanoparticles through self-polymerization. After the template glycoproteins were removed, the cavities that can specific bind the template glycoproteins were fabricated. Adopting horseradish peroxidase as model template, the effects of imprinting conditions as well as the properties and performance of the obtained products were investigated. The resultant imprinted materials exhibit highly favorable features, including uniform surface morphology with thin imprinted shell of about 8nm, super-paramagnetic property, fast kinetics of 40min, high adsorption capacity of 60.3mgg(-1), and satisfactory reusability for at least five cycles of adsorption-desorption without obvious deterioration. Meanwhile, the obtained magnetic imprinted nanoparticles could capture target glycoprotein from nonglycoproteins, but also from other glycoproteins because the synergistic selectivity of boronate affinity and imprinting effect. In addition, the facile preparation method shows feasibility in the imprinting of different glycoproteins. PMID:27130111

  8. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  9. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery.

    PubMed

    Cui, Fu-de; Tao, An-jin; Cun, Dong-mei; Zhang, Li-qiang; Shi, Kai

    2007-02-01

    The aim of the present work was to investigate the preparation of PLGA nanoparticles (PNP) and PLGA-Hp55 nanoparticles (PHNP) as potential drug carriers for oral insulin delivery. The nanoparticles were prepared by a modified emulsion solvent diffusion method in water, and their physicochemical characteristics, drug release in vitro and hypoglycemic effects in diabetic rats were evaluated. The particle sizes of the PNP and PHNP were 150+/-17 and 169+/-16 nm, respectively, and the drug recoveries of the nanoparticles were 50.30+/-3.1 and 65.41+/-2.3%, respectively. The initial release of insulin from the nanoparticles in simulated gastric fluid over 1 h was 50.46+/-6.31 and 19.77+/-3.15%, respectively. The relative bioavailability of PNP and PHNP compared with subcutaneous (s.c.) injection (1 IU/kg) in diabetic rats was 3.68+/-0.29 and 6.27+/-0.42%, respectively. The results show that the use of insulin-loaded PHNP is an effective method of reducing serum glucose levels. PMID:17051590

  10. Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity

    SciTech Connect

    Jegatha Christy, A.; Umadevi, M.

    2013-10-15

    Graphical abstract: - Highlights: • NiO nanoparticles were synthesized by solution combustion method. • Prepared NiO nanoparticles are fcc structure. • Synthesized NiO nanoparticles are octahedral shape. • Shows good photocatalytic activity. - Abstract: Nickel oxide nanoparticles (NiO NPs) were synthesized by solution combustion method using glycine and citric acid as fuels. The X-ray diffraction (XRD) result confirms the face centered cubic (fcc) structure of NiO. The octahedral shape of NiO NPs was confirmed by field emission scanning electron microscope (FESEM) and high resolution transmission electron microscopy (HRTEM). It is possible to suggest that the organic fuel (citric acid/glycine) is responsible for the formation of the octahedral shape due to the easier complex formation. Photocatalytic activity of NiO NPs also evaluated and found that the prepared NiO NPs have high photocatalytic degradation. In the present study, the crystalline nature and shape of the NiO nanoparticles plays a vital role in determining the photocatalytic activity.

  11. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    PubMed

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-01

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications. PMID:22578053

  12. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies.

    PubMed

    Silva, Mariana dos Santos; Cocenza, Daniela Sgarbi; Grillo, Renato; de Melo, Nathalie Ferreira Silva; Tonello, Paulo Sérgio; de Oliveira, Luciana Camargo; Cassimiro, Douglas Lopes; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 ± 12 nm, polydispersion of 0.518, zeta potential of -22.8 ± 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. PMID:21493003

  13. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.

    PubMed

    Wang, Xinge; Chen, Haiming; Luo, Zhigang; Fu, Xiong

    2016-03-15

    In this research, 1-hexadecyl-3-methylimidazolium bromide C16mimBr/butan-1-ol/cyclohexane/water ionic liquid microemulsion was prepared. The effects of n-alkyl alcohols, alkanes, water content and temperature on the properties of microemulsion were studied by dilution experiment. The microregion of microemulsion was identified by pseudo-ternary phase diagram and conductivity measurement. Then starch nanoparticles were prepared by water in oil (W/O) microemulsion-cross-linking methods with C16mimBr as surfactant. Starch nanoparticles with a mean diameter of 94.3nm and narrow size distribution (SD=3.3) were confirmed by dynamic light scattering (DLS). Scanning electron microscope (SEM) data revealed that starch nanoparticles were spherical granules with the size about 60nm. Moreover the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) demonstrated the formation of cross-linking bonds in starch molecules. Finally, the drug loading and releasing properties of starch nanoparticles were investigated with methylene blue (MB) as drug model. This work may provide an efficient pathway to synthesis starch nanoparticles. PMID:26794752

  14. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    PubMed

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. PMID:21704525

  15. Synthesis, characterization, in vitro and in vivo studies of dextrin-coated zinc-iron ferrite nanoparticles (Zn0.5Fe0.5Fe2O4) as contrast agent in MRI

    NASA Astrophysics Data System (ADS)

    Zare, T.; Lotfi, M.; Heli, H.; Azarpira, N.; Mehdizadeh, A. R.; Sattarahmady, N.; Abdollah-dizavandi, M. R.; Heidari, M.

    2015-09-01

    Iron oxide nanoparticles, such as ferrites, offer some attractive possibilities in biomedicine, especially in MRI applications. The objective of this study is to investigate the effectiveness of dextrin-coated zinc-iron ferrite nanoparticles (IFNPs) as an MRI contrast agent in in vivo and in vitro media. IFNPs were synthesized by an aqueous precipitation method in the presence of dextrin. An agarose phantom with different concentrations of dextrin-coated IFNPs was performed on a 1.5-T MRI. For in vivo MRI studies, implanted melanoma tumors in mice were immediately scanned after intra-tumoral injection of dextrin-coated IFNPs. Microscopic studies showed that the average diameter of dextrin-coated IFNPs was 12 ± 2.4 nm and the saturation magnetization for IFNPs was 31.5 emu g-1; r 1 and r 2 relaxivities of these ultrasmall superparamagnetic IFNPs in agarose phantom were obtained as 0.99 and 17.4 mmol L-1 s-1, respectively. The relaxivity measurements revealed that the dextrin-coated IFNPs can serve as a negative contrast agent. In vivo MRI showed that the dextrin-coated IFNPs can be used for tumor detection. The dextrin-coated IFNPs were suggested to be applied for lymph node and targeted imaging.

  16. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    NASA Astrophysics Data System (ADS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-07-01

    This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe2O4-SiO2) on the corrosion protection properties of steel substrate. NiFe2O4 and NiFe2O4-SiO2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe2O4-SiO2) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe2O4-SiO2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  17. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique.

    PubMed

    Trotta, Michele; Debernardi, Francesca; Caputo, Otto

    2003-05-12

    A preparation method for nanoparticles based on the emulsification of a butyl lactate or benzyl alcohol solution of a solid lipid in an aqueous solution of different emulsifiers, followed by dilution of the emulsion with water, was used to prepare glyceryl monostearate nanodispersions with narrow size distribution. To increase the lipid load the process was conducted at 47+/-2 degrees C and in order to reach submicron size a high-shear homogenizer was used. Particle size of the solid lipid nanoparticles (SLN) was affected by using different emulsifiers and different lipid loads. By using lecithin and taurodeoxycholic acid sodium salt, on increasing the GMS percentage from 2.5 to 10% an increase of the mean diameter from 205 to 695 nm and from 320 to 368nm was observed for the SLN prepared using benzyl alcohol and butyl lactate, respectively. Transmission electron micrographs of SLN reveal nanospheres with a smooth surface. PMID:12711170

  18. Preparation of Iron Nanoparticles from Iron Pentacarbonyl Using an Atmospheric Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Boya; Wang, Qiang; Zhang, Guixin; Liao, Shanshan; Wang, Zhong; Li, Guobin

    2015-10-01

    A novel method is introduced for preparing iron nanoparticles from iron pentacarbonyl using an atmospheric microwave plasma. The prepared iron nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. The results show that the size of the particles can be controlled by adjusting the microwave power and the flow rate of the carrier gas. The magnetic properties of the synthesized iron particles were studied and a saturation magnetization of ∼95 emu/g was obtained. The convenient preparation process and considerable production rate were also found to be satisfactory for industrial applications. supported by National Natural Science Foundation of China (No. 51177085), the State Key Laboratory Foundation of Power System of China (No. SKLD10M07) and China Postdoctoral Science Foundation (No. 2013M540942)

  19. Preparation of BaZrO3 nanoparticles using a solvothermal reaction

    NASA Astrophysics Data System (ADS)

    Nakashima, Kouichi; Goto, Takayuki; Iwatsuki, Shougo; Kera, Masatoshi; Fujii, Ichiro; Wada, Satoshi

    2011-10-01

    Barium zirconate (BaZrO3) nanoparticles were successfully prepared by a solvothermal reaction. These were synthesized by a solvothermal method at 230°C -240°C for 18 h using a mixture solution of ethanol and 2-metoxy-thanol as the reaction medium. The prepared particles were collected using a centrifugal separator. The X-ray diffraction (XRD) measurement confirmed the presence of perovskite BaZrO3 particles. The scanning electron microscopy (SEM) observations revealed that the particles were composed of highly dispersed nanoparticles. The results of our study indicate that the addition of water to the reaction medium is an important for the preparation of a perovskite structure and control of the size of the BaZrO3.

  20. Preparation and Characterization of Large Area Monolayer Films of Pt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kelly, Brian; Cichocki, Ronald; Ren, Jie; Schmidt, Robert; Theopold, Klaus; Unruh, Karl

    Highly uniform monolayer thick coatings of Pt nanoparticles with areas as large as 20 cm2 have been prepared by first self-assembling the desired Pt film at the interface between two immiscible liquids and then transferring the film to a glass substrate. The controlled addition of ethyl alcohol to a phase separated mixture of an aqueous colloidal solution of Pt nanoparticles and hexane allowed both monolayer and multilayer films to be prepared. Optical microscopy and UV-vis spectrophotometry measurements have been used to verify the large scale uniformity of the coatings while transmission electron and atomic force microscopy measurements confirmed that single and multilayer films can be prepared. This material is based upon work supported by the National Science Foundation under Grant No. 1410076.