Science.gov

Sample records for ferroelectric materials

  1. Losses in Ferroelectric Materials

    PubMed Central

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu

    2015-01-01

    Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy

  2. Calligraphic Poling of Ferroelectric Material

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Strekalov, Dmitry; Savchenkov, Anatoliy; Matsko, Adrey; Maleki, Lute; Iltchenko, Vladimir

    2007-01-01

    Calligraphic poling is a technique for generating an arbitrary, possibly complex pattern of localized reversal in the direction of permanent polarization in a wafer of LiNbO3 or other ferroelectric material. The technique is so named because it involves a writing process in which a sharp electrode tip is moved across a surface of the wafer to expose the wafer to a polarizing electric field in the desired pattern. The technique is implemented by use of an apparatus, denoted a calligraphic poling machine (CPM), that includes the electrode and other components as described in more detail below.

  3. Ferroelectric translational antiphase boundaries in nonpolar materials

    PubMed Central

    Wei, Xian-Kui; Tagantsev, Alexander K.; Kvasov, Alexander; Roleder, Krystian; Jia, Chun-Lin; Setter, Nava

    2014-01-01

    Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner. PMID:24398704

  4. Fast Switching Ferroelectric Materials for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Kanareykin, A.; Nenasheva, E.; Yakovlev, V.; Dedyk, A.; Karmanenko, S.; Kozyrev, A.; Osadchy, V.; Kosmin, D.; Schoessow, P.; Semenov, A.

    2006-11-01

    Fast switching (<10 nsec) measurement results on the recently developed BST(M) (barium strontium titanium oxide composition with magnesium-based additions) ferroelectric materials are presented. These materials can be used as the basis for new advanced technology components suitable for high-gradient accelerators. A ferroelectric ceramic has an electric field-dependent dielectric permittivity that can be altered by applying a bias voltage. Ferroelectric materials offer significant benefits for linear collider applications, in particular, for switching and control elements where a very short response time of <10 nsec is required. The measurement results presented here show that the new BST(M) ceramic exhibits a high tunability factor: a bias field of 40-50 kV/cm reduces the permittivity by a factor of 1.3-1.5. The recently developed technology of gold biasing contact deposition on large diameter (110 cm) thin wall ferroelectric rings allowed ˜few nsec switching times in witness sample experiments. The ferroelectric rings can be used at high pulsed power (tens of megawatts) for X-band components as well as at high average power in the range of a few kilowatts for the L-band phase-shifter, under development for optimization of the ILC rf coupling. Accelerator applications include fast active X-band and Ka-band high-power ferroelectric switches, high-power X-band and L-band phase shifters, and tunable dielectric-loaded accelerating structures.

  5. Enhanced energy harvesting in commercial ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2014-04-01

    Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.

  6. Advances in Processing of Bulk Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  7. Local polarization dynamics in ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Morozovska, Anna N.; Qing Chen, Long; Rodriguez, Brian J.

    2010-05-01

    Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway toward ultrahigh (>10 TBit inch-2) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize the recent progress in applications of piezoresponse force microscopy (PFM) for imaging, manipulation and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments and spectroscopic studies of polarization switching, are discussed in detail. Finally, we review the recent progress on understanding and exploiting photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells and supercapacitor applications.

  8. Local Polarization Dynamics in Ferroelectric Materials

    SciTech Connect

    Kalinin, Sergei V; Morozovska, A. N.; Chen, L. Q.; Rodriguez, Brian J

    2010-01-01

    Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway towards ultrahigh (>10 TBit/in2) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize recent progress in applications of Piezoresponse Force Microscopy (PFM) for imaging, manipulation, and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments, and spectroscopic studies of polarization switching, are discussed in detail. Finally, we briefly review the recent progress on photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells, and supercapacitor applications.

  9. Ferroelectric HfO2-based materials for next-generation ferroelectric memories

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Chen, Jingsheng; Wang, John

    2016-05-01

    Ferroelectric random access memory (FeRAM) based on conventional ferroelectric perovskites, such as Pb(Zr,Ti)O3 and SrBi2Ta2O9, has encountered bottlenecks on memory density and cost, because those conventional perovskites suffer from various issues mainly including poor complementary metal-oxide-semiconductor (CMOS)-compatibility and limited scalability. Next-generation cost-efficient, high-density FeRAM shall therefore rely on a material revolution. Since the discovery of ferroelectricity in Si:HfO2 thin films in 2011, HfO2-based materials have aroused widespread interest in the field of FeRAM, because they are CMOS-compatible and can exhibit robust ferroelectricity even when the film thickness is scaled down to below 10 nm. A review on this new class of ferroelectric materials is therefore of great interest. In this paper, the most appealing topics about ferroelectric HfO2-based materials including origins of ferroelectricity, advantageous material properties, and current and potential applications in FeRAM, are briefly reviewed.

  10. The interface between ferroelectric and 2D material for a Ferroelectric Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    We have studied electrical property of ferroelectric field-effect transistor which consists of graphene on hexagonal Boron-Nitride (h-BN) gated by a ferroelectric, PMN-PT (i.e. (1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) single-crystal substrate. The PMN-PT was expected to have an effect on polarization field into the graphene channel and to induce a giant amount of surface charge. The hexagonal Boron-Nitride (h-BN) flake was directly exfoliated on the PMN-PT substrate for preventing graphene from directly contacting on the PMN-PT substrate. It can make us to observe the effect of the interface between ferroelectric and 2D material on the device operation. Monolayer graphene as 2D channel material, which was confirmed by Raman spectroscopy, was transferred on top of the hexagonal Boron-Nitride (h-BN) by using the conventional dry-transfer method. Here, we can demonstrate that the structure of graphene/hexagonal-BN/ferroelectric field-effect transistor makes us to clearly understand the device operation as well as the interface between ferroelectric and 2D materials by inserting h-BN between them. The phenomena such as anti-hysteresis, current saturation behavior, and hump-like increase of channel current, will be discussed by in terms of ferroelectric switching, polarization-assisted charge trapping.

  11. Structural studies on ferroelectric and ferrodistortive materials

    NASA Astrophysics Data System (ADS)

    Zou, Mingqin

    The structure of the piezoelectric material 0.68PbMg1/3Nb 2/3O3-0.32PbTiO3 have been studied by single crystal, powder x-ray diffraction techniques over the temperature range from 25°C to 200°C. The existence of twinned structures or coexistence of rhombohedral and tetragonal phases has been shown by the peak distortion of Bragg reflections. Superlattice structure was observed for all experimental PMN-PT crystals. Refinement results showed that the 2 x 2 x 2 superlattice resulted from anti-parallel displacement of oxygen in the adjacent conventional perovskite unit cells. No cation displacement in the paraelectric phase and little in the ferroelectric phase were shown by the refinement results. This unique feature associated with the ferroelectric mechanism of the material was explained by comparison with PbMg1/3Nb2/3O3. The crystals were extensively characterized by using powder x-ray diffraction, Laue back-reflection and electron backscatter diffraction (EBSD) techniques. The detailed orientation information such as misorientation of grains, location of grain boundaries and the orientation distribution was obtained from the automatic orientation mapping with the EBSD technique. The uniform orientation was confirmed for crystals with a "cellular-like" structure. A crystal growth model, the two-dimensional layer mechanism, was proposed by orientation analysis. Based on the model, some important comments were made on orientation problems under general growth conditions. The ferrodistortive phase transitions of tertramethylphosphonium tetrabromozincate [P(CH3)4]2ZnBr4 and tertramethylphosphonium tetraiodonzincate [P(CH3)4]2ZnI4 were thoroughly studied by a single crystal x-ray diffraction technique. An order parameter analysis by application of Landau theory showed that the two compounds undergo first-order phase transitions near a tricritical Lifshitz point. Transitions for both compounds appear to be first order, but with the iodo salt the transition is nearly

  12. Application of the ferroelectric materials to ULSI memories

    NASA Astrophysics Data System (ADS)

    Tarui, Yasuo; Hirai, Tadahiko; Teramoto, Kazuhiro; Koike, Hiroshi; Nagashima, Kazuhito

    1997-04-01

    Memory is essential to electronic data processing and continuous efforts are being made to develop improved memory devices. In the era of VLSI, difficulties have arisen with respect to storage capacitance, which must be kept to a certain value while the device dimensions are reduced. This has prompted the adoption of complicated structures like the trench or stack, causing the number of process steps to be increased. The use of high dielectric constant materials has been researched for the extension of DRAM development. Recently, the development of the memories which use the polarization reversal current of the ferroelectric material is rapidly progressing because it enables high speed nonvolatile memory action which generally needed in recent electronic systems. These memories will replace a large portion of the existing memory systems in the near future. However, this is not a perfect solution to the problem, because they are not in accordance with the scaling rule. In this paper, it is shown that ferroelectric memories using the field effect current of a semiconductor by the remanent polarization of the ferroelectric material are in accordance with the scaling rule. The first experimental verification of the non-volatile memory action was reported by Moll and Tarui in 1963 [1]. This basic memory action has been successively used in MFS (metal-ferroelectric-semiconductor) transistors. The ferroelectric memories are nonvolatile and are expected to be high-speed devices, making them suitable for universal applications. However, it is necessary to optimize the interface between the semiconductor and ferroelectric material. Experiments for the prospective devices using CeO 2 or Ce xZr (1- x) O 2 as the buffer insulator layers of the MFIS (metal-ferroelectric-insulator-semiconductor) transistors are described.

  13. New Low-Loss Ferroelectric Materials for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Kanareykin, A.; Nenasheva, E.; Karmanenko, S.; Yakovlev, V.

    2004-12-01

    We present results on a new ferroelectric material based on bulk low-loss BST (Barium-Strontium Titanium oxides) compounds especially developed for accelerator applications. We have demonstrated suitable nonlinear dielectric properties of this material that make it useful for switching and tuning RF accelerator components. The material exhibits a dielectric constant of 400-500 and tunability factor of 1.2. The best sample of those studied demonstrated a loss factor <4×10-3 at 35 GHz. Ferroelectric rings and substrates are key components required for electrically controlled switches and phase shifters for active pulse compressors for future linear colliders. A thin ferroelectric layer incorporated into a dielectric loaded accelerating structure allows compensation of any frequency shift caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity. A tuning range of 1.1% has been demonstrated for an X-Band (11-13 GHz) dielectric accelerating structure.

  14. Voltage tunability of thermal conductivity in ferroelectric materials

    DOEpatents

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  15. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  16. Molecular Designs for Enhancement of Polarity in Ferroelectric Soft Materials

    NASA Astrophysics Data System (ADS)

    Ohtani, Ryo; Nakaya, Manabu; Ohmagari, Hitomi; Nakamura, Masaaki; Ohta, Kazuchika; Lindoy, Leonard F.; Hayami, Shinya

    2015-11-01

    The racemic oxovanadium(IV) salmmen complexes, [VO((rac)-(4-X-salmmen))] (X = C12C10C5 (1), C16 (2), and C18 (3); salmmen = N,N‧-monomethylenebis-salicylideneimine) with “banana shaped” molecular structures were synthesized, and their ferroelectric properties were investigated. These complexes exhibit well-defined hysteresis loops in their viscous phases, moreover, 1 also displays liquid crystal behaviour. We observed a synergetic effect influenced by three structural aspects; the methyl substituents on the ethylene backbone, the banana shaped structure and the square pyramidal metal cores all play an important role in generating the observed ferroelectricity, pointing the way to a useful strategy for the creation of advanced ferroelectric soft materials.

  17. Molecular Designs for Enhancement of Polarity in Ferroelectric Soft Materials

    PubMed Central

    Ohtani, Ryo; Nakaya, Manabu; Ohmagari, Hitomi; Nakamura, Masaaki; Ohta, Kazuchika; Lindoy, Leonard F.; Hayami, Shinya

    2015-01-01

    The racemic oxovanadium(IV) salmmen complexes, [VO((rac)-(4-X-salmmen))] (X = C12C10C5 (1), C16 (2), and C18 (3); salmmen = N,N′-monomethylenebis-salicylideneimine) with “banana shaped” molecular structures were synthesized, and their ferroelectric properties were investigated. These complexes exhibit well-defined hysteresis loops in their viscous phases, moreover, 1 also displays liquid crystal behaviour. We observed a synergetic effect influenced by three structural aspects; the methyl substituents on the ethylene backbone, the banana shaped structure and the square pyramidal metal cores all play an important role in generating the observed ferroelectricity, pointing the way to a useful strategy for the creation of advanced ferroelectric soft materials. PMID:26568045

  18. Nanocomposite Materials - Ferroelectric Nanoparticles Incorporated into Porous Matrix

    NASA Astrophysics Data System (ADS)

    Rysiakiewicz-Pasek, E.; Poprawski, R.; Ciżman, A.; Sieradzki, A.

    The aim of this work is to develop a technique of introducing selected ferroelectric materials (TGS, NaNO2, NaNO3, KNO3, ADP and KDP) into porous glasses with various average pore dimensions. The major efforts have been focused on the investigations of the influence of the pore size on physical properties and phase transition of nanocrystals embedded into porous matrix with different methods. The ferroelectrics have been introduced into porous glasses from the melt and a water solution. The results of electrical (dielectric, pyroelectric) and thermal (dilatometric and calorimetric) measurements have shown that the observed sequences of phase transitions in ferroelectric materials embedded into the porous glasses are similar to that in bulk crystals. The relationship between phase transition and melt temperatures versus average values of pore dimensions has been determined. The experimentally observed shift of phase transition temperatures is the superposition of the size effect and pressure effect created by the difference of thermal expansion coefficients of ferroelectrics nanoparticles and glass matrix.

  19. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    SciTech Connect

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs' group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme's Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory. The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.

  20. Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials.

    PubMed

    Xu, Beibei; Ren, Shenqiang

    2016-09-01

    The ultimate or end point of functional materials development is the realization of strong coupling between all energy regimes (optical, electronic, magnetic, and elastic), enabling the same material to be utilized for multifunctionalities. However, the integration of multifunctionalities in soft materials with the existence of various coupling is still in its early stage. Here, the coupling between ferroelectricity and charge transfer by combining bis(ethylenedithio)tetrathiafulvalene-C60 charge-transfer crystals with ferroelectric polyvinylidene fluoride polymer matrix is reported, which enables external stimuli-controlled polarization, optoelectronic and magnetic field sensing properties. Such flexible composite films also display a superior strain-dependent capacitance and resistance change with a giant piezoresistance coefficient of 7.89 × 10(-6) Pa(-1) . This mutual coupled material with the realization of enhanced couplings across these energy domains opens up the potential for multisensing applications. PMID:27378088

  1. Nanocharacterization of the negative stiffness of ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Alipour Skandani, A.; Ctvrtlik, R.; Al-Haik, M.

    2014-08-01

    Phase changing materials such as ferroelectric materials could exhibit negative stiffness under certain thermomechanical environments. This negative stiffness is embodied by a deflection along the opposite direction of the applied load. So far negative stiffness materials were investigated with the specific morphology of embedded inclusions in stiff matrices then the resulting composite is studied to measure the behavior of each constituent indirectly. In this study, a modified nonisothermal nanoindentation method is developed to measure the negative stiffness of triglycine sulfate single crystal directly. This in-situ method is intended to first demonstrate the feasibility of detecting the negative stiffness via nanoindentation and nanocreep of a ferroelectric material at its Curie point and then to quantify the negative stiffness without the need for embedding the crystal within a stiffer matrix.

  2. New Techniques in Characterization of Ferroelectric Materials

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp

    2008-01-01

    Two new techniques have been developed to characterize Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) based ferroelectric single crystals: (i) electro-thermal imaging, and (ii) single crystal x-ray diffraction in the transmission mode. (i) Electro-thermal imaging is a remote sensing technique that can detect the polarization direction and poling state of a whole crystal slice. This imaging technique utilizes an IR camera to determine the field induced temperature change and does not require any special or destructive sample preparation. In the resulting images it is possible to distinguish regions of 180 deg domains. This powerful technique can be used remotely during poling to determine the poling state of the crystal to avoid over-poling that can result in inferior properties and/or cracking of the crystals. Electro-thermal imaging produced the first direct observations of polarization rotation. Under bipolar field, the domains near the corners were the first to switch direction. As the field increased above the coercive field, domains at the center part of the crystals switched direction. (ii) X-ray diffraction in the transmission mode has long been used in structure determination of organic crystals and proteins; however, it is not used much to characterize inorganic systems. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were examined by this XRD technique for the first time, and a never-before-seen super-lattice was revealed with a doubling of the unit cell in all three directions, giving a cell volume eight times that of a traditional perovskite unit cell. The significance of the super-lattice peaks increased with poling, indicating a structural contribution to ordering. Lack of such observations by electron diffraction in the transmission electron microscope examinations suggests the presence of a bulk effect.

  3. Ferroelectric Material Application: Modeling Ferroelectric Field Effect Transistor Characteristics from Micro to Nano

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd, C.; Ho, Fat Duen

    2006-01-01

    All present ferroelectric transistors have been made on the micrometer scale. Existing models of these devices do not take into account effects of nanoscale ferroelectric transistors. Understanding the characteristics of these nanoscale devices is important in developing a strategy for building and using future devices. This paper takes an existing microscale ferroelectric field effect transistor (FFET) model and adds effects that become important at a nanoscale level, including electron velocity saturation and direct tunneling. The new model analyzed FFETs ranging in length from 40,000 nanometers to 4 nanometers and ferroelectric thickness form 200 nanometers to 1 nanometer. The results show that FFETs can operate on the nanoscale but have some undesirable characteristics at very small dimensions.

  4. Analysis of polarization offsets observed for temperature-graded ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Cheng, Taimin; Zheng, Hanlei; Zhang, Xinxin

    2016-04-01

    A transverse Ising model in the framework of the mean field approximation is developed to analyze the polarization offsets phenomena in temperature-graded ferroelectric materials. A function of two-spin exchange interaction strength has been introduced to describe the ferroelectric distortion due to the distribution of temperature gradients in materials. Comparisons of the computational results with the experimental data reveal some fundamental factors in the formation of polarization offsets. It is shown that ferroelectric distortion has influenced much on polarization offsets in temperature-graded ferroelectric materials. When quantum fluctuation effect as well as ferroelectric distortion is considered, we have successfully reproduced the experimental observations qualitatively, especially for the indistinguishable polarization offsets from the background at small temperature gradients, which were not successfully reproduced in prior theoretical studies.

  5. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, Raghu Nath; Ginley, David S.

    1998-01-01

    A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  6. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1998-07-28

    A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  7. Observation and Theory of Intrinsic Ferromagnetism in Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Lashley, J.; Gofryk, K.; Safarik, D. J.; Smith, J. L.; Dzyaloshinskii, I. E.

    2012-02-01

    Quantized waves obeying Bose-Einstein statistics will contribute a T^3/2 term to the specific heat if the dispersion relation goes as q2. We measure the magnetic and electric field dependence of the specific heat on the ferroelectric material tri-glycine sulphate (TGS) over the temperature range 0.05 K < T < 350 K. We detect a T^3/2 term in the specific heat in the low-temperature limit, which is taken to be the dielectric analog to magnetic spin wave. Near the Curie temperature (TC = 320 K), the shape of the specific-heat anomaly is thermally broadened. However, the anomaly changes to the characteristic sharp lambda-shape expected for a continuous transition with the application of either a magnetic field or electric field, giving the expected entropy change at TC of Rln2. These results are explained on the basis that the frequencies of optical dipole oscillations are split by the magnetic field, and the resulting gas of excitations are paramagnetic. Consequently they contribute to the specific heat near TC, which increases with magnetic field.

  8. An extended molecular statics algorithm simulating the electromechanical continuum response of ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Endres, F.; Steinmann, P.

    2014-12-01

    Molecular dynamics (MD) simulations of ferroelectric materials have improved tremendously over the last few decades. Specifically, the core-shell model has been commonly used for the simulation of ferroelectric materials such as barium titanate. However, due to the computational costs of MD, the calculation of ferroelectric hysteresis behaviour, and especially the stress-strain relation, has been a computationally intense task. In this work a molecular statics algorithm, similar to a finite element method for nonlinear trusses, has been implemented. From this, an algorithm to calculate the stress dependent continuum deformation of a discrete particle system, such as a ferroelectric crystal, has been devised. Molecular statics algorithms for the atomistic simulation of ferroelectric materials have been previously described. However, in contrast to the prior literature the algorithm proposed in this work is also capable of effectively computing the macroscopic ferroelectric butterfly hysteresis behaviour. Therefore the advocated algorithm is able to calculate the piezoelectric effect as well as the converse piezoelectric effect simultaneously on atomistic and continuum length scales. Barium titanate has been simulated using the core-shell model to validate the developed algorithm.

  9. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Katsouras, Ilias; Asadi, Kamal; Groen, Wilhelm A.; Blom, Paul W. M.; de Leeuw, Dago M.

    2016-06-01

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O3. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  10. Supramolecular ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tayi, Alok S.; Kaeser, Adrien; Matsumoto, Michio; Aida, Takuzo; Stupp, Samuel I.

    2015-04-01

    Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics -- materials with a spontaneous and electrically reversible polarization -- are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

  11. Non-traditional solution routes to ferroelectric materials

    SciTech Connect

    Boyle, T.J.; Buchheit, C.D.; Al-Shareef, H.N.

    1997-04-01

    Non-traditional precursor solutions for production of ferroelectric thin films have been developed for PXZT (X = L, N, S), SBT, and PMN systems. For PXZT and SBT, pyridine is a key solvent, wherein, it both solubilizes and reduces the reactivity of the individual components of the solution. Further control of the final films has been obtained using novel tailor-made precursors to dictate their properties.

  12. Characterization, Modeling, and Energy Harvesting of Phase Transformations in Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Dong, Wenda

    Solid state phase transformations can be induced through mechanical, electrical, and thermal loading in ferroelectric materials that are compositionally close to morphotropic phase boundaries. Large changes in strain, polarization, compliance, permittivity, and coupling properties are typically observed across the phase transformation regions and are phenomena of interest for energy harvesting and transduction applications where increased coupling behavior is desired. This work characterized and modeled solid state phase transformations in ferroelectric materials and assessed the potential of phase transforming materials for energy harvesting applications. Two types of phase transformations were studied. The first type was ferroelectric rhombohedral to ferroelectric orthorhombic observed in lead indium niobate lead magnesium niobate lead titanate (PIN-PMN-PT) and driven by deviatoric stress, temperature, and electric field. The second type of phase transformation is ferroelectric to antiferroelectric observed in lead zirconate titanate (PZT) and driven by pressure, temperature, and electric field. Experimental characterizations of the phase transformations were conducted in both PIN-PMN-PT and PZT in order to understand the thermodynamic characteristics of the phase transformations and map out the phase stability of both materials. The ferroelectric materials were characterized under combinations of stress, electric field, and temperature. Material models of phase transforming materials were developed using a thermodynamic based variant switching technique and thermodynamic observations of the phase transformations. These models replicate the phase transformation behavior of PIN-PMN-PT and PZT under mechanical and electrical loading conditions. The switching model worked in conjunction with linear piezoelectric equations as ferroelectric/ferroelastic constitutive equations within a finite element framework that solved the mechanical and electrical field equations

  13. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    SciTech Connect

    Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2014-12-15

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical devices, such as capacitors and memory devices; however, their tunable properties have not yet been examined for heat transfer applications. We show via simulations that radiative heat transfer between two ferroelectric materials can be enhanced by over two orders of magnitude over the blackbody limit in the near field, and can be tuned as much as 16.5% by modulating the coupling between surface phonon polariton modes at the two surfaces via varying external electric fields. We then discuss how to maximize the modulation contrast for tunable thermal devices using the studied mechanism.

  14. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations

    NASA Astrophysics Data System (ADS)

    Hong, Xia

    2016-03-01

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.

  15. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations.

    PubMed

    Hong, Xia

    2016-03-16

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling. PMID:26881391

  16. Dielectric properties of material with random off-center defects: Monte Carlo simulation of relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Su, C.-C.; Vugmeister, B.; Khachaturyan, A. G.

    2001-12-01

    A Ginzburg-Landau type theory of interaction of randomly distributed local dipoles in a paraelectric crystal is developed. The interaction is caused by the polarization of the host lattice generated by these dipoles. The obtained effective Hamiltonian of the dipole-dipole interaction is employed for the Monte Carlo simulation of ferroelectric properties of a system with off-center dopant ions producing local dipoles. The computer simulation shows that at low dopant ion concentration the paraelectric state transforms into a macroscopically paraelectric state consisting of randomly oriented polar clusters. These clusters amplify the effective dipole moment and dramatically increase the dielectric constant. The interaction between the clusters results in a spectrum of relaxation time and transition to the relaxor state. The real and imaginary parts of the susceptibility of this state are calculated. At intermediate dopant concentration, the material undergoes a diffuse phase transition into a ferroelectric state smeared within a temperature range. A further increase in the dopant concentration makes the transition sharper and closer to the conventional ferroelectric transition. The results obtained are compared with the behavior of the K1-xLixTaO3 relaxor ferroelectric.

  17. High Resolution Electromechanical Imaging of Ferroelectric Materials in a Liquid Environment by Piezoresponse Force Microscopy

    SciTech Connect

    Rodriguez, Brian J; Jesse, Stephen; Baddorf, Arthur P; Kalinin, Sergei V

    2006-01-01

    High-resolution imaging of ferroelectric materials using piezoresponse force microscopy (PFM) is demonstrated in an aqueous environment. The elimination of both long-range electrostatic forces and capillary interactions results in a localization of the ac field to the tip-surface junction and allows the tip-surface contact area to be controlled. This approach results in spatial resolutions approaching the limit of the intrinsic domain-wall width. Imaging at frequencies corresponding to high-order cantilever resonances minimizes the viscous damping and added mass effects on cantilever dynamics and allows sensitivities comparable to ambient conditions. PFM in liquids will provide novel opportunities for high-resolution studies of ferroelectric materials, imaging of soft polymer materials, and imaging of biological systems in physiological environments on, ultimately, the molecular level.

  18. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  19. Hydroxyl-decorated Graphene Systems: Organic metal-free Ferroelectrics, Multiferroics, and Proton battery Cathode Materials

    NASA Astrophysics Data System (ADS)

    Wu, Menghao; Burton, J. D.; Tsymbal, Evgeny; Zeng, Xiao; Jena, Puru; Jena's Group Team, Prof.; Burton's Group Team, Prof.; Tsymbal's Group Team, Prof.; Zeng's Group Team, Prof.

    2013-03-01

    Through density-functional-theory calculations we show that hydroxylized graphene systems are ideal candidates for light-weight organic ferroelectric materials with giant polarizations. For example, the polarization of semi-hydroxylized graphane and graphone as well as fully hydroxylized graphane are, respectively, 41.1, 43.7, 67.7 μC/cm2, much higher than any organic ferroelectric materials known to date. In addition, hydroxylized graphone is multiferroic due to the coexistence of ferroeletricity and ferromagnetism. Zigzag graphene nanoribbons decorated by hydroxyl groups also exhibit ferroelectric properties with a large polarization of 27.0 μC/cm2. Moreover, proton vacancies at the end of ribbons can induce large dipole moments that can be reversed by both hopping of protons and rotation of O-H bonds under an electric field. These materials have the potential as high-capacity cathode materials with specific capacity six times larger than lead-acid batteries and five times that of lithium-ion batteries.

  20. Targeted basic studies of ferroelectric and ferroelastic materials for piezoelectric transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1983-03-01

    The work reported covers the fifth and final year of the program of targeted basic studies of ferroelectric and ferroelastic materials for piezoelectric transducer applications. Major achievements include: the development of a physical approach to understanding active composites, leading to the development of several new families of PZT, polymer piezoelectric composites for hydrophone application. These are new advances in the phenomenology and microscopic theory of electrostriction, and the evolution of a new family of high strain ferroelectric relaxor materials for practical application. New basic understanding of the polarization mechanisms in ferroelectric relaxors has been aided by the study of order disorder of the cation arrangement in lead scandium tantalate, and the results correlate well with studies of relaxor behavior, and of shape memory effects in PLZT ceramics. Low temperature studies on pure and doped PZTs have given the first clear indication of the intrinsic (averaged) single domain in response and correlate exceedingly well with earlier phenomenological theory. Crystal growth and ceramic processing studies have developed hand in hand with program needs providing new forms of conventional materials, new grain oriented structures and single crystals.

  1. Thin-film perovskites-ferroelectric materials for integrated optics

    SciTech Connect

    Walker, F.J. |; McKee, R.A.

    1995-12-31

    Optical guided wave (OGW) devices, based on LiNbO{sub 3} or GaAs. are commercially available products with established markets and applications. While LiNbO{sub 3} presently dominates the commercial applications, there are several drivers for the development of improved electro-optic (EO) materials. If the appropriate crystal quality could be obtained for thin-film BaTiO{sub 3} supported on MgO for example, or for an integrated BaTiO{sub 3}/Mg0 structure on silicon or GaAs, then the optimum OGW device structure might be realized. We report on our results for the growth of optical quality, epitaxial BaTiO{sub 3} and SrTiO{sub 3} on single-crystal MgO substrates using source shuttering molecular beam epitaxy (MBE) techniques. We also discuss how these materials can be integrated onto silicon. Our MBE studies show that, for this important class of perovskite oxides, heteroepitaxy between the perovskites and alkaline earth oxides is dominated by interfacial electrostatics at the first atomic layers. We have been able to demonstrate that a layer-by-layer energy minimization associated with interfacial electrostatics leads to the growth of high quality thin films of these materials. We have fabricated waveguides from these materials, and the optical clarity and loss coefficients have been characterized and found to be comparable to in-diffused waveguide structures typically represented by Ti drifted LiNbO{sub 3}.

  2. Correlation Between Material Properties of Ferroelectric Thin Films and Design Parameters for Microwave Device Applications: Modeling Examples and Experimental Verification

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo

    2000-01-01

    The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.

  3. Theoretical model of the tunneling current between a metallic tip and a ferroelectric material.

    NASA Astrophysics Data System (ADS)

    Neupane, Ravi; Yost, Andrew; Chien, Teyu

    We present a model to calculate the tunneling current for a ferroelectric (FE) material in a metal/vacuum/Ferroelectric tunneling junction. Using this model, we try to explore the effect of the FE dipole orientation's direction on I - V spectrum using scanning tunneling spectroscopy (STS). The STM tunneling current for non-FE materials depends upon various factors such as tip -sample distance (vacuum gap), temperature, density of states (DOS) of tip and of sample, and tip-sample bias. FE materials have internal electric dipoles giving rise to internal and external electric fields. The electric field induced by these dipoles will distort the fermi level as a function of depth in the material. In our model, the Fermi level is assumed to be inclined with a slope as a function of the depth. The slope depends upon the orientation and the strength of the electric dipole moment. In this model we use the WKB method accounting for the slope of the fermi level to calculate the tunneling probability from tip to different depths then summing all contributions to obtain the total current as a function of tip-sample bias, i.e. I - V curves. School of Energy Resources, University of Wyoming.

  4. Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices.

    PubMed

    Krowne, C M; Kirchoefer, S W; Chang, W; Pond, J M; Alldredge, L M B

    2011-03-01

    We show here, using fundamental energy storage relationships for capacitors, that there are severe constraints upon what can be realized utilizing ferroelectric materials as FET dielectrics. A basic equation governing all small signal behavior is derived, a negative capacitance quality factor is defined based upon it, and thousands of carefully measured devices are evaluated. We show that no instance of negative capacitance occurs within our huge database. Furthermore, we demonstrate that highly nonlinear biasing behavior in a series stack could be misinterpreted as giving a negative capacitance. PMID:21280668

  5. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    NASA Astrophysics Data System (ADS)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  6. Targeted basic studies of ferroelectric and ferroelastic materials for piezoelectric transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1983-03-01

    The report delineates the new progress made in the fifth and final year and discusses the major accomplishments of the full five year program both in the basic science and in the spin off to practical transducer applications. Possible new areas of study which are suggested by the present studies are briefly reported. Major achievements include the development of a physical approach to understanding active composites, leading to the development of several new families of PZT:polymer piezoelectric composites for hydrophone application. New advances in the phenomenology and microscopic theory of electrostriction, and the evolution of a new family of high strain ferroelectric relaxor materials for practical application. New basic understanding of the polarization mechanisms in ferroelectric relaxors has been aided by the study of order-disorder of the cation arrangement in lead scandium tantalate, and the results correlate well with studies of relaxor behavior, and of shape memory effects in PLZT ceramics. Low temperature studies on pure and doped PZTs have given the first clear indication of the intrinsic (averaged) single domain response and correlate exceedingly well with earlier phenomenological theory. Crystal growth and ceramic processing studies have developed hand-in-hand with program needs providing new forms of conventional materials, new grain oriented structures and single crystals.

  7. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    NASA Astrophysics Data System (ADS)

    Brewer, Steven J.; Deng, Carmen Z.; Callaway, Connor P.; Paul, McKinley K.; Fisher, Kenzie J.; Guerrier, Jonathon E.; Rudy, Ryan Q.; Polcawich, Ronald G.; Jones, Jacob L.; Glaser, Evan R.; Cress, Cory D.; Bassiri-Gharb, Nazanin

    2016-07-01

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr0.52Ti0.48]O3 (PZT) thin film stacks were investigated for structures with conductive oxide (IrO2) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) 60Co gamma radiation. However, the low-field, relative dielectric permittivity, ɛr, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric-electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO2 electrodes).

  8. A Versatile Method for the Preparation of Ferroelectric Supramolecular Materials via Radical End-Functionalization of Vinylidene Fluoride Oligomers.

    PubMed

    García-Iglesias, Miguel; de Waal, Bas F M; Gorbunov, Andrey V; Palmans, Anja R A; Kemerink, Martijn; Meijer, E W

    2016-05-18

    A synthetic method for the end-functionalization of vinylidene fluoride oligomers (OVDF) via a radical reaction between terminal olefins and I-OVDF is described. The method shows a wide substrate scope and excellent conversions, and permits the preparation of different disc-shaped cores such as benzene-1,3,5-tricarboxamides (BTAs), perylenes bisimide (PBI), and phthalocyanines (Pc) bearing three to eight ferroelectric oligomers at their periphery. The formation, purity, OVDF conformation, and morphology of the final adducts has been assessed by a combination of techniques, such as NMR, size exclusion chromatography, differential scanning calorimetry, polarized optical microscopy, and atomic force microscopy. Finally, PBI-OVDF and Pc-OVDF materials show ferroelectric hysteresis behavior together with high remnant polarizations, with values as high as Pr ≈ 37 mC/m(2) for Pc-OVDF. This work demonstrates the potential of preparing a new set of ferroelectric materials simply by attaching OVDF oligomers to different small molecules. The use of carefully chosen small molecules paves the way to new functional materials in which ferroelectricity and electrical conductivity or light-harvesting properties coexist in a single compound. PMID:27119732

  9. Millimeter-Wave Dielectric Properties of Single Crystal Ferroelectric and Dielectric Materials

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Li, Zijing; Afsar, Mohammed N.; Sundaram, S. K.

    2011-01-03

    Transmittance measurements on various single crystal ferroelectric materials over a broad millimeter-wave frequency range have been performed. Frequency dependence of the complex dielectric permittivity has been determined in the millimeter wave region for the first time. The measurements have been employed using a free-space quasi-optical millimeter-wave spectrometer equipped with a set of high power backward wave oscillators (BWOs) as sources of coherent radiation, tunable in the range from 30 - 120 GHz. The uncertainties and possible sources of instrumentation and measurement errors related to the free-space millimeter-wave technique are discussed. This work has demonstrated that precise MMW permittivities can be obtained even on small thin crystals using the BWO quasi-optical approach.

  10. Phase-field model simulation of ferroelectric/antiferroelectric materials microstructure evolution under multiphysics loading

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi

    Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the

  11. Doubling the electrocaloric cooling of poled ferroelectric materials by bipolar cycling

    NASA Astrophysics Data System (ADS)

    Basso, Vittorio; Gerard, Jean-François; Pruvost, Sébastien

    2014-08-01

    We have investigated the entropy change in the ferroelectric phase of poly(vinylidene fluoride-trifluoroethylene) 70/30 films by direct heat flux calorimetry using Peltier cell heat flux sensors. We find that by applying a negative electric field to a positively poled state, the entropy can be further increased without any significantly change of the remanent polarization or the domain structure. By cycling between positive and negative values of the electric field, the electrocaloric effect (ECE) can be then improved by a factor of 2. As an example, we measured, around the positive remanence Pr = 60 × 10-3 C m-2, a fully reversible entropy change |Δs| = 1 J kg-1K-1 for a field change from 40 × 106 to -40 × 106 V m-1 and a maximum of |Δs| = 3.2 J kg-1K-1 for an asymmetric field change from 200 × 106 to -40 × 106 V m-1. This effect can be exploited to significantly increase the range of operating temperature for ECE materials below their Curie temperature.

  12. James C. McGroddy Prize for New Materials Talk: What is new in multiferroicity?: Mott ferroelectrics!

    NASA Astrophysics Data System (ADS)

    Cheong, Sang-Wook

    2010-03-01

    Multiferroicity is an old topic. For example, linear magnetoelectric effect in materials such as Cr2O3 with broken time reversal and space inversion symmetry has been known since 1960's. However, giant cross-coupling effects such as flipping polarization or enormous change of dielectric constant by applied magnetic fields have been recently observed in systems such as Tb(Dy)MnO3 and Tb(Dy)Mn2O5 [1-3]. The important ingredient for these giant magnetoelectric effects turns out to be associated with the presence of non-zero d electrons and their mutual interactions, leading to the Mott-insulator-type charge gap, magnetism, and collective phase transitions. Particularly, the collective nature of simultaneous magnetic-ferroelectric phase transitions results in the giant magnetoelectric effects. In addition, fascinating charge transport properties such as a switchable photovoltaic effect and characteristic conduction properties at domain walls stem from the (carrier-doped) Mott insulating nature of compounds such as BiFeO3 and hexagonal YMnO3 [4,5]. [4pt] [1] Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55--58 (2003).[0pt] [2] Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392--395 (2004).[0pt] [3] Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nature Mater. 6, 13--20 (2007).[0pt] [4] Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229--234 (2009).[0pt] [5] Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63--66 (2009)

  13. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  14. Impact of the electrode material and shape on performance of intrinsically tunable ferroelectric FBARs.

    PubMed

    Vorobiev, Andrei; Gevorgian, Spartak

    2014-05-01

    Experiment-based analysis of losses in tunable ferroelectric xBiFeO3-(1-x)BaTiO3 (BF-BT) film bulk acoustic wave resonators (FBARs) is reported. The Q-factors, effective coupling coefficients, and tunabilities are considered as functions of surface roughness of the ferroelectric film, the acoustic impedance and shape of the electrodes/interconnecting strips, leakage of acoustic waves into the substrate via Bragg reflector, and the relative thicknesses of the electrodes and ferroelectric film. Compared with Al, the high acoustic impedance of Pt electrodes provides higher Q-factor, coupling coefficient, and tunability. However, using Pt in the interconnecting strips results in reduction of the Q-factor. PMID:24800981

  15. Heterostructure of ferromagnetic and ferroelectric materials with magneto-optic and electro-optic effects

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)

    2012-01-01

    A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.

  16. Electro-optical properties in relaxor ferroelectric materials and the device applications

    NASA Astrophysics Data System (ADS)

    Jeong, Daeyong

    The electro-optic (E-O) effects of the relaxor ferroelectric materials, Lead Magnesium Niobate-Lead Titanate Pb(Mg 1/3Nb2/3)O3- PbTiO3 (PMN-PT) single crystals and poly(vinylidene fluoride-trifluoroethylene) [P( VDF-TrFE)] based polymers, are investigated here. The tetragonal 0.62PMN-0.38PT single crystals poled along the <001> direction (the spontaneous polarization direction) have a stable single domain and show high transparency from the visible to Near-IR range. Using the Mach-Zender interferometry method, large linear E-O coefficients r 33 = 70 pm/V, r 31 = 25 pm/V, and r 15 = 558 pm/V were characterized. P(VDF-TrFE) based terpolymers shows a large Kerr effect where a refractive index change of -2.6% can be induced under an electric field of 80 V/mu m. When combined with the electrostrictive strain, the terpolymer film exhibits a total -5.6% optical pathlength change under a field of 80 V/mum. Calculations based on density functional theory suggest that such a large E-O effect was caused mainly by the reorientation of the C-F dipoles in the crystalline regions under external field. With the large strain and E-O effect, the tunable graing and Fabry-Perot interferometers (FPIs) were fabricated. By changing the structure of comb-shape electrode for the bottom electrode and the polymer thickness, it was calculated that we could control the electric field distribution leading the different level of strain for grating. This new tunable grating has the advantage of simple fabrication and easy integration. In our first experimental demonstration, 24% of the first order diffraction efficiency was observed with 100 V/mum. For the strain tunable FPI, which for the terpolymer films under mechanically clamped condition is 1.3% under 100 V/mum field, we show that a tunable range of 22.5 nm can be obtained at wavelengths near 1.5 mum. On the other hand, the FPI using a terpolymer film directly as the cavity of the etalon shows a smaller tunability (0.78% under 100 V/mum) due

  17. Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials

    NASA Astrophysics Data System (ADS)

    Wu, Menghao; Burton, J. D.; Tsymbal, Evgeny Y.; Zeng, Xiao Cheng; Jena, Puru

    2013-02-01

    Using a first-principles method we show that graphene based materials, functionalized with hydroxyl groups, constitute a class of multifunctional, lightweight, and nontoxic organic materials with functional properties such as ferroelectricity, multiferroicity, and can be used as proton battery cathode materials. For example, the polarizations of semihydroxylized graphane and graphone, as well as fully hydroxylized graphane, are much higher than any organic ferroelectric materials known to date. Further, hydroxylized graphene nanoribbons with proton vacancies at the end can have much larger dipole moments. They may also be applied as high-capacity cathode materials with a specific capacity that is six times larger than lead-acid batteries and five times that of lithium-ion batteries.

  18. Ferroelectric optical image comparator

    SciTech Connect

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1989-08-30

    The property of ferroelectric ceramics such as lead lanthanum zirconate titanate (PLZT) to store information has been known for many years. This relates to the property of ferroelectric ceramic materials to become permanently polarized when an electric signal is applied to the material. A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 5 figs.

  19. Extension of thickness-dependent dielectric breakdown law on adiabatically compressed ferroelectric materials

    SciTech Connect

    Shkuratov, Sergey I.; Baird, Jason; Talantsev, Evgueni F.

    2013-02-04

    It is experimentally found that the E{sub b}(d) = {gamma} {center_dot} d{sup -{xi}} law describing the thickness-dependent breakdown electric field for solid dielectrics at ambient conditions can be extended for dielectrics in other thermodynamic states. It follows from the experimental results reported herein that the breakdown field, E{sub b}(d), of Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) and Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT 52/48) ferroelectrics subjected to explosive adiabatic compression obeys the above-mentioned law in a wide range of voltages, up to 150 kV.

  20. Broadband phonon scattering in PbTe-based materials driven near ferroelectric phase transition by strain or alloying

    NASA Astrophysics Data System (ADS)

    Murphy, Ronan M.; Murray, Éamonn D.; Fahy, Stephen; Savić, Ivana

    2016-03-01

    The major obstacle in the design of materials with low lattice thermal conductivity is the difficulty in efficiently scattering phonons across the entire frequency spectrum. Using first-principles calculations, we show that driving PbTe materials to the brink of the ferroelectric phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying biaxial tensile (001) strain to PbTe and its alloys with another rocksalt IV-VI material, PbSe; and by alloying PbTe with a rhombohedral IV-VI material, GeTe. This induces extremely soft optical modes at the zone center, which increase anharmonic acoustic-optical coupling and decrease phonon lifetimes at all frequencies. We predict that PbTe, Pb(Se,Te), and (Pb,Ge)Te alloys driven close to the phase transition in the described manner will have considerably lower lattice thermal conductivity than that of PbTe (by a factor of 2 -3 ). The proposed concept may open new opportunities for the development of more efficient thermoelectric materials.

  1. Thin Layer Composite Unimorph Ferroelectric Driver and Sensor

    NASA Technical Reports Server (NTRS)

    Helbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Jalink, Antony, Jr. (Inventor); Rohrbach, Wayne W. (Inventor); Simpson, Joycelyn O. (Inventor)

    1995-01-01

    A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.

  2. Thin layer composite unimorph ferroelectric driver and sensor

    NASA Technical Reports Server (NTRS)

    Hellbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Jalink, Jr., Antony (Inventor); Rohrbach, Wayne W. (Inventor); Simpson, Joycelyn O. (Inventor)

    2004-01-01

    A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.

  3. Thin Layer Composite Unimorph Ferroelectric Driver and Sensor

    NASA Technical Reports Server (NTRS)

    Hellbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor)

    1997-01-01

    A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.

  4. Ferroelectric Based Technologies for Accelerators

    SciTech Connect

    Kanareykin, A.; Jing, C.; Nenasheva, E.; Kazakov, S.; Tagantsev, A.; Yakovlev, V.

    2009-01-22

    Ferroelectrics have unique intrinsic properties that make them extremely attractive for high-energy accelerator applications. Low loss ferroelectric materials can be used as key elements in RF tuning and phase shifting components to provide fast, electronic control. These devices are under development for different accelerator applications for the X, Ka and L-frequency bands. The exact design of these devices depends on the electrical parameters of the particular ferroelectric material to be used--its dielectric constant, loss tangent and tunability. BST based ferroelectric-oxide compounds have been found to be suitable materials for a fast electrically-controlled tuners. We present recent results on the development of BST based ferroelectric compositions synthesized for use in high power technology components. The BST(M) ferroelectrics have been tested using both transverse and parallel dc bias fields to control the permittivity. Fast switching of a newly developed material has been shown and the feasibility of using of ferroelectric-based accelerator components in vacuum and in air has been demonstrated.

  5. Ferroelectric random access memories.

    PubMed

    Ishiwara, Hiroshi

    2012-10-01

    Ferroelectric random access memory (FeRAM) is a nonvolatile memory, in which data are stored using hysteretic P-E (polarization vs. electric field) characteristics in a ferroelectric film. In this review, history and characteristics of FeRAMs are first introduced. It is described that there are two types of FeRAMs, capacitor-type and FET-type, and that only the capacitor-type FeRAM is now commercially available. In chapter 2, properties of ferroelectric films are discussed from a viewpoint of FeRAM application, in which particular attention is paid to those of Pb(Zr,Ti)O3, SrBi2Ta2O9, and BiFeO3. Then, cell structures and operation principle of the capacitor-type FeRAMs are discussed in chapter 3. It is described that the stacked technology of ferroelectric capacitors and development of new materials with large remanent polarization are important for fabricating high-density memories. Finally, in chapter 4, the optimized gate structure in ferroelectric-gate field-effect transistors is discussed and experimental results showing excellent data retention characteristics are presented. PMID:23421123

  6. Ferroelectric infrared detector and method

    DOEpatents

    Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  7. PREFACE: 12th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity and 9th International Conference on Functional Materials and Nanotechnologies (RCBJSF-2014-FM&NT)

    NASA Astrophysics Data System (ADS)

    Sternberg, Andris; Grinberga, Liga; Sarakovskis, Anatolijs; Rutkis, Martins

    2015-03-01

    The joint International Symposium RCBJSF-2014-FM&NT successfully has united two international events - 12th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity (RCBJSF-12) and 9th International Conference Functional Materials and Nanotechnologies (FM&NT-2014). The RCBJSF symposium is a continuation of series of meetings on ferroelectricity, the first of which took place in Novosibirsk (USSR) in 1976. FM&NT conferences started in 2006 and have been organized by Institute of Solid State Physics, University of Latvia in Riga. In 2012 the International program committee decided to transform this conference into a traveling Baltic State conference and the FM&NT-2013 was organized by the Institute of Physics, University of Tartu, Estonia. In 2014 the joint international symposium RCBJSF-2014-FM&NT was organized by the Institute of Solid State Physics, University of Latvia and was part of Riga - 2014, the European Capital of Culture event. The purpose of the joint Symposium was to bring together scientists, students and high-level experts in solid state physics, materials science, engineering and related disciplines. The number of the registered participants from 26 countries was over 350. During the Symposium 128 high quality scientific talks (5 plenary, 42 invited, 81 oral) and over 215 posters were presented. All presentations were divided into 4 parallel sessions according to 4 main topics of the Symposium: Ferroelectricity, including ferroelectrics and multiferroics, pyroelectrics, piezoelectrics and actuators, integrated ferroelectrics, relaxors, phase transitions and critical phenomena. Multifunctional Materials, including theory, multiscale and multiphenomenal material modeling and simulation, advanced inorganic, organic and hybrid materials. Nanotechnologies, including progressive methods, technologies and design for production, investigation of nano- particles, composites, structures, thin films and coatings. Energy, including perspective materials and

  8. Ferroelectric memory

    NASA Astrophysics Data System (ADS)

    Vorotilov, K. A.; Sigov, A. S.

    2012-05-01

    The current status of developments in the field of ferroelectric memory devices has been considered. The rapidly growing market of non-volatile memory devices has been analyzed, and the current state of the art and prospects for the scaling of parameters of non-volatile memory devices of different types have been considered. The basic constructive and technological solutions in the field of the design of ferroelectric memory devices, as well as the "roadmaps" of the development of this technology, have been discussed.

  9. Static and Dynamical Properties of Ferroelectrics and Related Materials in Bulk and Nanostructure Forms

    NASA Astrophysics Data System (ADS)

    Gui, Zhigang

    Ferroelectrics (FE) and multiferroics (MFE) have attracted a lot of attentions due to their rich and novel properties. Studies towards FE and MFE are of both fundamental and technological importance. We use a first-principles-based effective Hamiltonian method, conventional ab-initio packages and linear-scale three-dimension fragment method to investigate several important issues about FE and MFE. Tuning the properties of FE and MFE films are essential for miniaturized device applications, which can be realized through epitaxial strain and growth direction. In this dissertation, we use the effective Hamiltonian method to study (i) BaTiO3 films grown along the (110) pseudocubic direction on various substrates, (ii) BaTiO3 films grown on a single substrate along directions varying from [001] to [110] via [111] pseudocubic direction. Optimized physical responses or curie temperatures are found along some special directions or under epitaxial strain of certain range. FE and MFE nanostructures are shown to possess electrical vortices (known as one type topological defect), which have the potential to be used in new memory devices. However, the dynamic mechanism behind them is barely known. We use the effective Hamiltonian method to reveal that there exists a distinct mode which is shown to be responsible for the formation of the electrical vortices and in the THz region. Spin-canted magnetic structures are commonly seen in MFE, which results in the coexistence of two or more magnetic order parameters in the same structure. Understanding the physics behind such coupled magnetic order parameters is of obvious benefit for the sake of control of the magnetic properties of such systems. We employ both the effective Hamiltonian and ab-initio methods to derive and prove there is a universal law that explicitly correlates various magnetic order parameters with the different types of oxygen octahedra rotations. FE or MFE possessing electrical vortices are experimentally shown to

  10. Ferroelectric HfO2 for Emerging Ferroelectric Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Florent, Karine

    The spontaneous polarization in ferroelectrics (FE) makes them particularly attractive for non-volatile memory and logic applications. Non-volatile FRAM memories using perovskite structure materials, such as Lead Zirconate Titanate (PZT) and Strontium Bismuth Tantalate (SBT) have been studied for many years. However, because of their scaling limit and incompatibility with CMOS beyond 130 nm node, floating gate Flash memory technology has been preferred for manufacturing. The recent discovery of ferroelectricity in doped HfO2 in 2011 has opened the door for new ferroelectric based devices compatible with CMOS technology, such as Ferroelectric Field Effect Transistor (FeFET) and Ferroelectric Tunnel Junctions (FTJ). This work began with developing ferroelectric hysteresis characterization capabilities at RIT. Initially reactively sputtered aluminum doped HfO 2 films were investigated. It was observed that the composition control using co-sputtering was not achievable within the existing capabilities. During the course of this study, collaboration was established with the NaMLab group in Germany to investigate Si doped HfO2 deposited by Atomic Layer Deposition (ALD). Metal Ferroelectric Metal (MFM) devices were fabricated using TiN as the top and bottom electrode with Si:HfO2 thickness ranging from 6.4 nm to 22.9 nm. The devices were electrically tested for P-E, C-V and I-V characteristics. Structural characterizations included TEM, EELS, XRR, XRD and XPS/Auger spectroscopy. Higher remanant polarization (Pr) was observed for films of 9.3 nm and 13.1 nm thickness. Thicker film (22.9 nm) showed smaller Pr. Devices with 6.4 nm thick films exhibit tunneling behavior showing a memristor like I-V characteristics. The tunnel current and ferroelectricity showed decrease with cycling indicating a possible change in either the structure or the domain configurations. Theoretical simulations using the improved FE model were carried out to model the ferroelectric behavior of

  11. Domains in Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device

  12. Dielectric properties of film materials based on polyethylene terephthalate and polycarbonate with ferroelectric inclusions

    NASA Astrophysics Data System (ADS)

    Golitsyna, O. M.; Drozhdin, S. N.

    2012-08-01

    The dielectric properties of film materials based on polyethylene terephthalate and polycarbonate with inclusions of triglycine sulfate (TGS) and TGS with admixture of L, α-alanine (ATGS) have been studied. An increase in the temperature of the phase transition in these materials as compared to in bulk TGS and ATGS has been revealed.

  13. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy.

    PubMed

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Herklotz, Andreas; Tselev, Alexander; Eom, Chang-Beom; Kravchenko, Ivan I; Yu, Pu; Kalinin, Sergei V

    2015-06-23

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through charge injection and electrostatic forces on the tip. We will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In the end, we apply the developed measurement protocols to an unknown ferroelectric material. PMID:26035634

  14. Ferroelectricity in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2016-04-01

    The search for new ferroelectric (FE) materials holds promise for broadening our understanding of FE mechanisms and extending the range of application of FE materials. Here we investigate a class of A B O3 and A2B B'O6 materials that can be derived from the X2O3 corundum structure by mixing two or three ordered cations on the X site. Most such corundum derivatives have a polar structure, but it is unclear whether the polarization is reversible, which is a requirement for a FE material. In this paper, we propose a method to study the FE reversal path of materials in the corundum derivative family. We first categorize the corundum derivatives into four classes and show that only two of these allow for the possibility of FE reversal. We then calculate the energy profile and energy barrier of the FE reversal path using first-principles density functional methods with a structural constraint. Furthermore, we identify several empirical measures that can provide a rule of thumb for estimating the energy barriers. Finally, the conditions under which the magnetic ordering is compatible with ferroelectricity are determined. These results lead us to predict several potentially new FE materials.

  15. Ferroelectricity in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    The search for new ferroelectric (FE) materials holds promise for broadening our understanding of FE mechanisms and extending the range of application of FE materials. The known FE materials LiNbO3 can be regarded as derived from the A2O3 corundum structure with cation ordering. Here we consider more general binary (AB O3) and ternary (A2 BB' O6) corundum derivatives as an extended class of potential FE materials, motivated by the fact that some members of this class have recently been synthesized. There are four structure types for these corundum derivatives, and the number of cation combinations is enormous, but in many cases the energy barriers for polarization reversal may be too large to allow FE behavior. Here we present a first-principles study of the polar structure, coherent FE barrier, and domain-wall switching barrier for a representative set of polar corundum derivatives, allowing us to identify several potentially new FE materials. We also discuss the conditions under which ferroelectricity is compatible with magnetic ordering. Finally, we identify several empirical measures that can provide a rule of thumb for estimating the barrier energies. Our results should assist in the experimental search for new FE materials in the corundum derivative family. This work is supported by ONR Grant No. N-00014-12-1-1035.

  16. Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Völker, Benjamin; Landis, Chad M.; Kamlah, Marc

    2012-03-01

    Within a knowledge-based multiscale simulation approach for ferroelectric materials, the atomic level can be linked to the mesoscale by transferring results from first-principles calculations into a phase-field model. A recently presented routine (Völker et al 2011 Contin. Mech. Thermodyn. 23 435-51) for adjusting the Helmholtz free energy coefficients to intrinsic and extrinsic ferroelectric material properties obtained by DFT calculations and atomistic simulations was subject to certain limitations: caused by too small available degrees of freedom, an independent adjustment of the spontaneous strains and piezoelectric coefficients was not possible, and the elastic properties could only be considered in cubic instead of tetragonal symmetry. In this work we overcome such restrictions by expanding the formulation of the free energy function, i.e. by motivating and introducing new higher-order terms that have not appeared in the literature before. Subsequently we present an improved version of the adjustment procedure for the free energy coefficients that is solely based on input parameters from first-principles calculations performed by Marton and Elsässer, as documented in Völker et al (2011 Contin. Mech. Thermodyn. 23 435-51). Full sets of adjusted free energy coefficients for PbTiO3 and tetragonal Pb(Zr,Ti)O3 are presented, and the benefits of the newly introduced higher-order free energy terms are discussed.

  17. Ferroelectric memory based on nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xingqiang; Liu, Yueli; Chen, Wen; Li, Jinchai; Liao, Lei

    2012-06-01

    In the past decades, ferroelectric materials have attracted wide attention due to their applications in nonvolatile memory devices (NVMDs) rendered by the electrically switchable spontaneous polarizations. Furthermore, the combination of ferroelectric and nanomaterials opens a new route to fabricating a nanoscale memory device with ultrahigh memory integration, which greatly eases the ever increasing scaling and economic challenges encountered in the traditional semiconductor industry. In this review, we summarize the recent development of the nonvolatile ferroelectric field effect transistor (FeFET) memory devices based on nanostructures. The operating principles of FeFET are introduced first, followed by the discussion of the real FeFET memory nanodevices based on oxide nanowires, nanoparticles, semiconductor nanotetrapods, carbon nanotubes, and graphene. Finally, we present the opportunities and challenges in nanomemory devices and our views on the future prospects of NVMDs.

  18. Ferroelectric memory based on nanostructures

    PubMed Central

    2012-01-01

    In the past decades, ferroelectric materials have attracted wide attention due to their applications in nonvolatile memory devices (NVMDs) rendered by the electrically switchable spontaneous polarizations. Furthermore, the combination of ferroelectric and nanomaterials opens a new route to fabricating a nanoscale memory device with ultrahigh memory integration, which greatly eases the ever increasing scaling and economic challenges encountered in the traditional semiconductor industry. In this review, we summarize the recent development of the nonvolatile ferroelectric field effect transistor (FeFET) memory devices based on nanostructures. The operating principles of FeFET are introduced first, followed by the discussion of the real FeFET memory nanodevices based on oxide nanowires, nanoparticles, semiconductor nanotetrapods, carbon nanotubes, and graphene. Finally, we present the opportunities and challenges in nanomemory devices and our views on the future prospects of NVMDs. PMID:22655750

  19. New perspectives for ferroelectric LC-polymers

    SciTech Connect

    Brehmer, M.; Gebhard, E.; Wittig, T.

    1996-10-01

    LC-Elastomers prepared from ferroelectric LC-polymers are interesting materials for two reasons. From a materials point of view they are interesting because of their ferroelectric, piezoelectric and pyrroelectric properties. From a scientific point of view they are fascinating because they allow us to study the interplay of electric and mechanical forces in a rubbery material The coupling between the director reorientation and the network can be modified by crosslinking at the end of the mesogens or in the range of the polymer chains . In the last case the coupling is minimal. Besides the planar orientation in SSFLC-cells, free standing films offer the possibility of a homeotropic alignment of smectic liquid crystals ferroelectric LC elastomers of a different topology can be obtained by mixing a low molar mass or an oligomeric ferroelectric LC with a bifunctional crosslinkable: liquid crystal and performing photochemically a crosslinking reaction in one switching state of the smectic C* phase. As a result non crosslinkable ferroelectric LC will form micro-droplets surrounded by a densely crosslinked network, which is formed by the crosslinked non-ferroelectric liquid crystals. This gives a two phasic Volume or Network Stabilized Ferroelectric Liquid Crystal.

  20. Ferroelectric Field Effect Transistor Model Using Partitioned Ferroelectric Layer and Partial Polarization

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat D.

    2004-01-01

    A model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. The model is based on an existing model that incorporates partitioning of the ferroelectric layer to calculate the polarization within the ferroelectric material. The model incorporates several new aspects that are useful to the user. It takes into account the effect of a non-saturating gate voltage only partially polarizing the ferroelectric material based on the existing remnant polarization. The model also incorporates the decay of the remnant polarization based on the time history of the FFET. A gate pulse of a specific voltage; will not put the ferroelectric material into a single amount of polarization for that voltage, but instead vary with previous state of the material and the time since the last change to the gate voltage. The model also utilizes data from FFETs made from different types of ferroelectric materials to allow the user just to input the material being used and not recreate the entire model. The model also allows the user to input the quality of the ferroelectric material being used. The ferroelectric material quality can go from a theoretical perfect material with little loss and no decay to a less than perfect material with remnant losses and decay. This model is designed to be used by people who need to predict the external characteristics of a FFET before the time and expense of design and fabrication. It also allows the parametric evaluation of quality of the ferroelectric film on the overall performance of the transistor.

  1. Strong ultrasonic microwaves in ferroelectric ceramics.

    PubMed

    Arlt, G

    1998-01-01

    It is well known that ferroelectric materials have piezoelectric properties which allow the transformation of electrical signals into mechanical signals and vice versa. The transducer action normally is restricted to frequencies up to the mechanical resonance frequency of the sample. There are, however, two mechanisms which allow transducer action in ferroelectric ceramics at much higher frequencies: one is the normal piezoelectric effect in a ferroelectric ceramic in which the crystallites have periodic domain structures, the other is a domain wall effect in which ferroelastic domain walls in a periodic domain structure are powerful shear wave emitters. Both mechanisms give rise to extensive dielectric losses in ceramics at microwave frequencies. PMID:18244152

  2. Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides.

    PubMed

    Fei, Ruixiang; Kang, Wei; Yang, Li

    2016-08-26

    Ferroelectricity usually fades away as materials are thinned down below a critical value. We reveal that the unique ionic-potential anharmonicity can induce spontaneous in-plane electrical polarization and ferroelectricity in monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se). An effective Hamiltonian has been successfully extracted from the parametrized energy space, making it possible to study the ferroelectric phase transitions in a single-atom layer. The ferroelectricity in these materials is found to be robust and the corresponding Curie temperatures are higher than room temperature, making them promising for realizing ultrathin ferroelectric devices of broad interest. We further provide the phase diagram and predict other potentially two-dimensional ferroelectric materials. PMID:27610884

  3. SISGR -- Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect

    Wang, Yu U.

    2013-12-06

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  4. A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    NASA Technical Reports Server (NTRS)

    Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor); Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor)

    2004-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  5. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    NASA Astrophysics Data System (ADS)

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  6. Interface control of bulk ferroelectric polarization

    PubMed Central

    Yu, P.; Luo, W.; Yi, D.; Zhang, J. X.; Rossell, M. D.; Yang, C.-H.; You, L.; Singh-Bhalla, G.; Yang, S. Y.; He, Q.; Ramasse, Q. M.; Erni, R.; Martin, L. W.; Chu, Y. H.; Pantelides, S. T.; Pennycook, S. J.; Ramesh, R.

    2012-01-01

    The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon. PMID:22647612

  7. Negative Capacitance transients in a ferroelectric capacitor

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-03-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here we demonstrate the negative differential capacitance in a thin, single crystalline ferroelectric film, by constructing a simple R-C network and monitoring the voltage dynamics across the ferroelectric capacitor6. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time-in exactly the opposite direction to which voltage for a regular capacitor should change. The results are analyzed on the basis of the Landau-Khalatnikov equation, which shows that as the ferroelectric polarization switches its direction, it passes through the unstable negative capacitance region resulting in the characteristic ``negative capacitance transients.'' Analysis of this ``inductance''-like behavior from a capacitor allows us to calculate the value of the negative capacitance directly and presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material.

  8. Negative Capacitance in a Ferroelectric Capacitor

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur; Ramesh, Ramamoorthy; Salahuddin, Sayeef; UC Berkeley Team

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here we demonstrate the negative differential capacitance in an epitaxial ferroelectric film, by constructing a simple R-C network and monitoring the voltage dynamics across the ferroelectric capacitor. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time-in exactly the opposite direction to which voltage for a regular capacitor should change. The results are analyzed on the basis of the Landau-Khalatnikov equation, which shows that as the ferroelectric polarization switches its direction, it passes through the unstable negative capacitance region. Analysis of this behavior from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material.

  9. Phonon localization drives polar nanoregions in a relaxor ferroelectric.

    PubMed

    Manley, M E; Lynn, J W; Abernathy, D L; Specht, E D; Delaire, O; Bishop, A R; Sahul, R; Budai, J D

    2014-01-01

    Relaxor ferroelectrics exemplify a class of functional materials where interplay between disorder and phase instability results in inhomogeneous nanoregions. Although known for about 30 years, there is no definitive explanation for polar nanoregions (PNRs). Here we show that ferroelectric phonon localization drives PNRs in relaxor ferroelectric PMN-30%PT using neutron scattering. At the frequency of a preexisting resonance mode, nanoregions of standing ferroelectric phonons develop with a coherence length equal to one wavelength and the PNR size. Anderson localization of ferroelectric phonons by resonance modes explains our observations and, with nonlinear slowing, the PNRs and relaxor properties. Phonon localization at additional resonances near the zone edges explains competing antiferroelectric distortions known to occur at the zone edges. Our results indicate the size and shape of PNRs that are not dictated by complex structural details, as commonly assumed, but by phonon resonance wave vectors. This discovery could guide the design of next generation relaxor ferroelectrics. PMID:24718289

  10. Ferroelectric domain wall motion induced by polarized light.

    PubMed

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO₃ single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO₃ at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  11. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage.

    PubMed

    Cai, Ronggang; Kassa, Hailu G; Haouari, Rachid; Marrani, Alessio; Geerts, Yves H; Ruzié, Christian; van Breemen, Albert J J M; Gelinck, Gerwin H; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M

    2016-03-21

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction intrinsic to the nanostructured hybrid layer offers opportunities for the development of strongly miniaturized ferroelectric and piezoelectric devices. PMID:26927694

  12. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  13. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOEpatents

    Naumov, Ivan I.; Bellaiche, Laurent M.; Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  14. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage

    NASA Astrophysics Data System (ADS)

    Cai, Ronggang; Kassa, Hailu G.; Haouari, Rachid; Marrani, Alessio; Geerts, Yves H.; Ruzié, Christian; van Breemen, Albert J. J. M.; Gelinck, Gerwin H.; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M.

    2016-03-01

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction intrinsic to the nanostructured hybrid layer offers opportunities for the development of strongly miniaturized ferroelectric and piezoelectric devices.Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction

  15. Electron emission from ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhang, Weiming

    Ferroelectric emission (FE) was discovered at CERN in 1988. However, a diverse array of results and explanations concerning FE have appeared. This dissertation focused on understanding the influence of material properties and external parameters on this complex process. The sample preparation, pulse generator and other experimental techniques are described. Plasma emission (PE), FE and mixed PE and FE were observed and described. The field enhancement at the electrode-dielectric-vacuum triple point was suggested to be the basis for PE. An apparent delay time, instability, visible light generation and strong electrode erosion are features of PE. Comparatively, FE does not require an extraction field, exhibits no apparent delay time and a relatively stable emission, and generates either no or a very weak light signal. A direct relationship between the switching current and emission current exists for the FE. Different FE characteristics of antiferroelectric PLZT 2/95/5, "normal" ferroelectric PLZT 8/65/35 and nonferroelectric PLZT 15/65/35 were described. The strong relationship between the emission and switching current was demonstrated. Repeatable emission is exhibited by 2/95/5, which can also be pulsed at high frequency due to its fast antiferroelectric <=> ferroelectric phase transition. The strong degradation of FE from 8/65/35 was attributed to decrease in the remanent polarization. While no emission signal was detected from 15/65/35, which can be interpreted as an additional evidence that electron emission from the above two PLZT was indeed FE process. Based on the field and domain switching distribution model, sample geometry effect on FE was predicted, and verified using the results from different groups. Electron emission energy distribution of PLZT 8/65/35 showed a very narrow energy distribution (FWHM ≈ 10 eV to 20 eV), and the emission energy was on the order of the applied pulse potential. The possible application of FE for emissive flat panel

  16. Super Stable Ferroelectrics with High Curie Point

    NASA Astrophysics Data System (ADS)

    Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang

    2016-04-01

    Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie – Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C.

  17. Super Stable Ferroelectrics with High Curie Point

    PubMed Central

    Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang

    2016-01-01

    Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie – Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C. PMID:27053338

  18. Super Stable Ferroelectrics with High Curie Point.

    PubMed

    Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang

    2016-01-01

    Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie - Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C. PMID:27053338

  19. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  20. Ferroelectric switching of elastin

    PubMed Central

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  1. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. PMID:26487348

  2. Ultrahigh density ferroelectric storage and lithography by high order ferroic switching

    DOEpatents

    Kalinin, Sergei V.; Baddorf, Arthur P.; Lee, Ho Nyung; Shin, Junsoo; Gruverman, Alexei L.; Karapetian, Edgar; Kachanov, Mark

    2007-11-06

    A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.

  3. Geometric shape control of thin film ferroelectrics and resulting structures

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  4. Giant electrocaloric effect in ferroelectric nanotubes near room temperature.

    PubMed

    Liu, Man; Wang, Jie

    2015-01-01

    Ferroelectric perovskite oxides possess large electrocaloric effect, but only at high temperature, which limits their potential as next generation solid state cooling devices. Here, we demonstrate from phase field simulations that a giant adiabatic temperature change exhibits near room temperature in the strained ferroelectric PbTiO₃ nanotubes, which is several times in magnitude larger than that of PbTiO₃ thin films. Such giant adiabatic temperature change is attributed to the extrinsic contribution of unusual domain transition, which involves a dedicated interplay among the electric field, strain, temperature and polarization. Careful selection of external strain allows one to harness the extrinsic contribution to obtain large adiabatic temperature change in ferroelectric nanotubes near room temperature. Our finding provides a novel insight into the electrocaloric response of ferroelectric nanostructures and leads to a new strategy to tailor and improve the electrocaloric properties of ferroelectric materials through domain engineering. PMID:25578434

  5. Giant electrocaloric effect in ferroelectric nanotubes near room temperature

    PubMed Central

    Liu, Man; Wang, Jie

    2015-01-01

    Ferroelectric perovskite oxides possess large electrocaloric effect, but only at high temperature, which limits their potential as next generation solid state cooling devices. Here, we demonstrate from phase field simulations that a giant adiabatic temperature change exhibits near room temperature in the strained ferroelectric PbTiO3 nanotubes, which is several times in magnitude larger than that of PbTiO3 thin films. Such giant adiabatic temperature change is attributed to the extrinsic contribution of unusual domain transition, which involves a dedicated interplay among the electric field, strain, temperature and polarization. Careful selection of external strain allows one to harness the extrinsic contribution to obtain large adiabatic temperature change in ferroelectric nanotubes near room temperature. Our finding provides a novel insight into the electrocaloric response of ferroelectric nanostructures and leads to a new strategy to tailor and improve the electrocaloric properties of ferroelectric materials through domain engineering. PMID:25578434

  6. Ferroelectricity in spiral magnets.

    PubMed

    Mostovoy, Maxim

    2006-02-17

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric susceptibility anomalies at magnetic transitions and sudden flops of electric polarization in an applied magnetic field. We show that electric polarization can also be induced at domain walls and that magnetic vortices carry electric charge. PMID:16606047

  7. Strain-Induced Ferroelectric Topological Insulator.

    PubMed

    Liu, Shi; Kim, Youngkuk; Tan, Liang Z; Rappe, Andrew M

    2016-03-01

    Ferroelectricity and band topology are two extensively studied yet distinct properties of insulators. Nonetheless, their coexistence has never been observed in a single material. Using first-principles calculations, we demonstrate that a noncentrosymmetric perovskite structure of CsPbI3 allows for the simultaneous presence of ferroelectric and topological orders with appropriate strain engineering. Metallic topological surface states create an intrinsic short-circuit condition, helping stabilize bulk polarization. Exploring diverse structural phases of CsPbI3 under pressure, we identify that the key structural feature for achieving a ferroelectric topological insulator is to suppress PbI6 cage rotation in the perovskite structure, which could be obtained via strain engineering. Ferroelectric control over the density of topological surface states provides a new paradigm for device engineering, such as perfect-focusing Veselago lens and spin-selective electron collimator. Our results suggest that CsPbI3 is a simple model system for ferroelectric topological insulators, enabling future studies exploring the interplay between conventional symmetry-breaking and topological orders and their novel applications in electronics and spintronics. PMID:26814668

  8. Short range magnetic exchange interaction favors ferroelectricity

    PubMed Central

    Wan, Xiangang; Ding, Hang-Chen; Savrasov, Sergey Y.; Duan, Chun-Gang

    2016-01-01

    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science. To search multiferroics, currently most researches are focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic insulator like MnO, could display a magnetically induced ferroelectricity under a biaxial strain. In addition, we show that such mechanism also exists in the most important single phase multiferroics, i.e. BiFeO3, suggesting that this mechanism is ubiquitous in systems with superexchange interaction. PMID:26956480

  9. Short range magnetic exchange interaction favors ferroelectricity

    NASA Astrophysics Data System (ADS)

    Wan, Xiangang; Ding, Hang-Chen; Savrasov, Sergey Y.; Duan, Chun-Gang

    2016-03-01

    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science. To search multiferroics, currently most researches are focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic insulator like MnO, could display a magnetically induced ferroelectricity under a biaxial strain. In addition, we show that such mechanism also exists in the most important single phase multiferroics, i.e. BiFeO3, suggesting that this mechanism is ubiquitous in systems with superexchange interaction.

  10. Short range magnetic exchange interaction favors ferroelectricity.

    PubMed

    Wan, Xiangang; Ding, Hang-Chen; Savrasov, Sergey Y; Duan, Chun-Gang

    2016-01-01

    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science. To search multiferroics, currently most researches are focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic insulator like MnO, could display a magnetically induced ferroelectricity under a biaxial strain. In addition, we show that such mechanism also exists in the most important single phase multiferroics, i.e. BiFeO3, suggesting that this mechanism is ubiquitous in systems with superexchange interaction. PMID:26956480

  11. Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions

    SciTech Connect

    Cao, Ye; Ievlev, Anton V.; Morozovska, Anna N.; Chen, Long-Qing; Kalinin, Sergei V.; Maksymovych, Petro

    2015-07-13

    The conducting characteristics of topological defects in the ferroelectric materials, such as charged domain walls in ferroelectric materials, engendered broad interest and extensive study on their scientific merit and the possibility of novel applications utilizing domain engineering. At the same time, the problem of electron transport in ferroelectrics themselves still remains full of unanswered questions, and becomes still more relevant over the impending revival of interest in ferroelectric semiconductors and new improper ferroelectric materials. We have employed self-consistent phase-field modeling to investigate the physical properties of a local metal-ferroelectric (Pb(Zr0.2Ti0.8)O3) junction in applied electric field. We revealed an up to 10-fold local field enhancement realized by large polarization gradient and over-polarization effects once the inherent non-linear dielectric properties of PZT are considered. The effect is independent of bias polarity and maintains its strength prior, during and after ferroelectric switching. The local field enhancement can be considered equivalent to increase of doping level, which will give rise to reduction of the switching bias and significantly smaller voltages to charge injection and electronic injection, electrochemical and photoelectrochemical processes.

  12. Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions

    DOE PAGESBeta

    Cao, Ye; Ievlev, Anton V.; Morozovska, Anna N.; Chen, Long-Qing; Kalinin, Sergei V.; Maksymovych, Petro

    2015-07-13

    The conducting characteristics of topological defects in the ferroelectric materials, such as charged domain walls in ferroelectric materials, engendered broad interest and extensive study on their scientific merit and the possibility of novel applications utilizing domain engineering. At the same time, the problem of electron transport in ferroelectrics themselves still remains full of unanswered questions, and becomes still more relevant over the impending revival of interest in ferroelectric semiconductors and new improper ferroelectric materials. We have employed self-consistent phase-field modeling to investigate the physical properties of a local metal-ferroelectric (Pb(Zr0.2Ti0.8)O3) junction in applied electric field. We revealed an up tomore » 10-fold local field enhancement realized by large polarization gradient and over-polarization effects once the inherent non-linear dielectric properties of PZT are considered. The effect is independent of bias polarity and maintains its strength prior, during and after ferroelectric switching. The local field enhancement can be considered equivalent to increase of doping level, which will give rise to reduction of the switching bias and significantly smaller voltages to charge injection and electronic injection, electrochemical and photoelectrochemical processes.« less

  13. Intrinsic ferroelectric switching from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Grinberg, Ilya; Rappe, Andrew M.

    2016-06-01

    The existence of domain walls, which separate regions of different polarization, can influence the dielectric, piezoelectric, pyroelectric and electronic properties of ferroelectric materials. In particular, domain-wall motion is crucial for polarization switching, which is characterized by the hysteresis loop that is a signature feature of ferroelectric materials. Experimentally, the observed dynamics of polarization switching and domain-wall motion are usually explained as the behaviour of an elastic interface pinned by a random potential that is generated by defects, which appear to be strongly sample-dependent and affected by various elastic, microstructural and other extrinsic effects. Theoretically, connecting the zero-kelvin, first-principles-based, microscopic quantities of a sample with finite-temperature, macroscopic properties such as the coercive field is critical for material design and device performance; and the lack of such a connection has prevented the use of techniques based on ab initio calculations for high-throughput computational materials discovery. Here we use molecular dynamics simulations of 90° domain walls (separating domains with orthogonal polarization directions) in the ferroelectric material PbTiO3 to provide microscopic insights that enable the construction of a simple, universal, nucleation-and-growth-based analytical model that quantifies the dynamics of many types of domain walls in various ferroelectrics. We then predict the temperature and frequency dependence of hysteresis loops and coercive fields at finite temperatures from first principles. We find that, even in the absence of defects, the intrinsic temperature and field dependence of the domain-wall velocity can be described with a nonlinear creep-like region and a depinning-like region. Our model enables quantitative estimation of coercive fields, which agree well with experimental results for ceramics and thin films. This agreement between model and experiment suggests

  14. Intrinsic ferroelectric switching from first principles.

    PubMed

    Liu, Shi; Grinberg, Ilya; Rappe, Andrew M

    2016-06-16

    The existence of domain walls, which separate regions of different polarization, can influence the dielectric, piezoelectric, pyroelectric and electronic properties of ferroelectric materials. In particular, domain-wall motion is crucial for polarization switching, which is characterized by the hysteresis loop that is a signature feature of ferroelectric materials. Experimentally, the observed dynamics of polarization switching and domain-wall motion are usually explained as the behaviour of an elastic interface pinned by a random potential that is generated by defects, which appear to be strongly sample-dependent and affected by various elastic, microstructural and other extrinsic effects. Theoretically, connecting the zero-kelvin, first-principles-based, microscopic quantities of a sample with finite-temperature, macroscopic properties such as the coercive field is critical for material design and device performance; and the lack of such a connection has prevented the use of techniques based on ab initio calculations for high-throughput computational materials discovery. Here we use molecular dynamics simulations of 90° domain walls (separating domains with orthogonal polarization directions) in the ferroelectric material PbTiO3 to provide microscopic insights that enable the construction of a simple, universal, nucleation-and-growth-based analytical model that quantifies the dynamics of many types of domain walls in various ferroelectrics. We then predict the temperature and frequency dependence of hysteresis loops and coercive fields at finite temperatures from first principles. We find that, even in the absence of defects, the intrinsic temperature and field dependence of the domain-wall velocity can be described with a nonlinear creep-like region and a depinning-like region. Our model enables quantitative estimation of coercive fields, which agree well with experimental results for ceramics and thin films. This agreement between model and experiment suggests

  15. Ferroelectric control of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen

    2016-03-01

    We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.

  16. Applications of modern ferroelectrics.

    PubMed

    Scott, J F

    2007-02-16

    Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources. PMID:17303745

  17. Ferroelectric Devices Emit Charged Particles and Radiation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Felsteiner, Joshua; Karsik, Yakov

    2005-01-01

    Devices called solid-state ferroelectric- based sources (SSFBSs) are under development as sources of electrons, ions, ultraviolet light, and x-rays for diverse applications in characterization and processing of materials. Whereas heretofore it has been necessary to use a different device to generate each of the aforementioned species of charged particles or radiation, a single SSFBS can be configured and operated to selectively generate any of the species as needed using a single source. Relative to comparable prior sources based, variously, on field emission, thermionic emission, and gaseous discharge plasmas, SSFBSs demand less power, and are compact and lightweight. An SSFBS exploits the unique physical characteristics of a ferroelectric material in the presence of a high-frequency pulsed electric field. The basic building block of an SSFBS is a ferroelectric cathode -- a ferroelectric wafer with a solid electrode covering its rear face and a grid electrode on its front face (see figure). The application of a voltage pulse -- typically having amplitude of several kilovolts and duration of several nanoseconds -- causes dense surface plasma to form near the grid wires on the front surface.

  18. Photovoltaics with Ferroelectrics: Current Status and Beyond.

    PubMed

    Paillard, Charles; Bai, Xiaofei; Infante, Ingrid C; Guennou, Maël; Geneste, Grégory; Alexe, Marin; Kreisel, Jens; Dkhil, Brahim

    2016-07-01

    Ferroelectrics carry a switchable spontaneous electric polarization. This polarization is usually coupled to strain, making ferroelectrics good piezoelectrics. When coupled to magnetism, they become so-called multiferroic systems, a field that has been widely investigated since 2003. While ferroelectrics are birefringent and non-linear optically transparent materials, the coupling of polarization with optical properties has received, since 2009, renewed attention, triggered notably by low-bandgap ferroelectrics suitable for sunlight spectrum absorption and original photovoltaic effects. Consequently, power conversion efficiencies up to 8.1% were recently achieved and values of 19.5% were predicted, making photoferroelectrics promising photovoltaic alternatives. This article aims at providing an up-to-date review on this emerging and rapidly progressing field by highlighting several important issues and parameters, such as the role of domain walls, ways to tune the bandgap, consequences arising from the polarization switchability, and the role of defects and contact electrodes, as well as the downscaling effects. Beyond photovoltaicity, other polarization-related processes are also described, like light-induced deformation (photostriction) or light-assisted chemical reaction (photostriction). It is hoped that this overview will encourage further avenues to be explored and challenged and, as a byproduct, will inspire other research communities in material science, e.g., so-called hybrid halide perovskites. PMID:27135419

  19. Symmetry breaking in molecular ferroelectrics.

    PubMed

    Shi, Ping-Ping; Tang, Yuan-Yuan; Li, Peng-Fei; Liao, Wei-Qiang; Wang, Zhong-Xia; Ye, Qiong; Xiong, Ren-Gen

    2016-07-11

    Ferroelectrics are inseparable from symmetry breaking. Accompanying the paraelectric-to-ferroelectric phase transition, the paraelectric phase adopting one of the 32 crystallographic point groups is broken into subgroups belonging to one of the 10 ferroelectric point groups, i.e. C1, C2, C1h, C2v, C4, C4v, C3, C3v, C6 and C6v. The symmetry breaking is captured by the order parameter known as spontaneous polarization, whose switching under an external electric field results in a typical ferroelectric hysteresis loop. In addition, the responses of spontaneous polarization to other external excitations are related to a number of physical effects such as second-harmonic generation, piezoelectricity, pyroelectricity and dielectric properties. Based on these, this review summarizes recent developments in molecular ferroelectrics since 2011 and focuses on the relationship between symmetry breaking and ferroelectricity, offering ideas for exploring high-performance molecular ferroelectrics. PMID:27051889

  20. Emergence of room-temperature ferroelectricity at reduced dimensions.

    PubMed

    Lee, D; Lu, H; Gu, Y; Choi, S-Y; Li, S-D; Ryu, S; Paudel, T R; Song, K; Mikheev, E; Lee, S; Stemmer, S; Tenne, D A; Oh, S H; Tsymbal, E Y; Wu, X; Chen, L-Q; Gruverman, A; Eom, C B

    2015-09-18

    The enhancement of the functional properties of materials at reduced dimensions is crucial for continuous advancements in nanoelectronic applications. Here, we report that the scale reduction leads to the emergence of an important functional property, ferroelectricity, challenging the long-standing notion that ferroelectricity is inevitably suppressed at the scale of a few nanometers. A combination of theoretical calculations, electrical measurements, and structural analyses provides evidence of room-temperature ferroelectricity in strain-free epitaxial nanometer-thick films of otherwise nonferroelectric strontium titanate (SrTiO3). We show that electrically induced alignment of naturally existing polar nanoregions is responsible for the appearance of a stable net ferroelectric polarization in these films. This finding can be useful for the development of low-dimensional material systems with enhanced functional properties relevant to emerging nanoelectronic devices. PMID:26383947

  1. Unravelling and controlling hidden imprint fields in ferroelectric capacitors

    PubMed Central

    Liu, Fanmao; Fina, Ignasi; Bertacco, Riccardo; Fontcuberta, Josep

    2016-01-01

    Ferroelectric materials have a spontaneous polarization that can point along energetically equivalent, opposite directions. However, when ferroelectric layers are sandwiched between different metallic electrodes, asymmetric electrostatic boundary conditions may induce the appearance of an electric field (imprint field, Eimp) that breaks the degeneracy of the polarization directions, favouring one of them. This has dramatic consequences on functionality of ferroelectric-based devices such as ferroelectric memories or photodetectors. Therefore, to cancel out the Eimp, ferroelectric components are commonly built using symmetric contact configuration. Indeed, in this symmetric contact configuration, when measurements are done under time-varying electric fields of relatively low frequency, an archetypical symmetric single-step switching process is observed, indicating Eimp ≈ 0. However, we report here on the discovery that when measurements are performed at high frequency, a well-defined double-step switching is observed, indicating the presence of Eimp. We argue that this frequency dependence originates from short-living head-to-head or tail-to-tail ferroelectric capacitors in the device. We demonstrate that we can modulate Eimp and the life-time of head-to-head or tail-to-tail polarization configurations by adjusting the polarization screening charges by suitable illumination. These findings are of relevance to understand the effects of internal electric fields on pivotal ferroelectric properties, such as memory retention and photoresponse. PMID:27122309

  2. Unravelling and controlling hidden imprint fields in ferroelectric capacitors

    NASA Astrophysics Data System (ADS)

    Liu, Fanmao; Fina, Ignasi; Bertacco, Riccardo; Fontcuberta, Josep

    2016-04-01

    Ferroelectric materials have a spontaneous polarization that can point along energetically equivalent, opposite directions. However, when ferroelectric layers are sandwiched between different metallic electrodes, asymmetric electrostatic boundary conditions may induce the appearance of an electric field (imprint field, Eimp) that breaks the degeneracy of the polarization directions, favouring one of them. This has dramatic consequences on functionality of ferroelectric-based devices such as ferroelectric memories or photodetectors. Therefore, to cancel out the Eimp, ferroelectric components are commonly built using symmetric contact configuration. Indeed, in this symmetric contact configuration, when measurements are done under time-varying electric fields of relatively low frequency, an archetypical symmetric single-step switching process is observed, indicating Eimp ≈ 0. However, we report here on the discovery that when measurements are performed at high frequency, a well-defined double-step switching is observed, indicating the presence of Eimp. We argue that this frequency dependence originates from short-living head-to-head or tail-to-tail ferroelectric capacitors in the device. We demonstrate that we can modulate Eimp and the life-time of head-to-head or tail-to-tail polarization configurations by adjusting the polarization screening charges by suitable illumination. These findings are of relevance to understand the effects of internal electric fields on pivotal ferroelectric properties, such as memory retention and photoresponse.

  3. Unravelling and controlling hidden imprint fields in ferroelectric capacitors.

    PubMed

    Liu, Fanmao; Fina, Ignasi; Bertacco, Riccardo; Fontcuberta, Josep

    2016-01-01

    Ferroelectric materials have a spontaneous polarization that can point along energetically equivalent, opposite directions. However, when ferroelectric layers are sandwiched between different metallic electrodes, asymmetric electrostatic boundary conditions may induce the appearance of an electric field (imprint field, Eimp) that breaks the degeneracy of the polarization directions, favouring one of them. This has dramatic consequences on functionality of ferroelectric-based devices such as ferroelectric memories or photodetectors. Therefore, to cancel out the Eimp, ferroelectric components are commonly built using symmetric contact configuration. Indeed, in this symmetric contact configuration, when measurements are done under time-varying electric fields of relatively low frequency, an archetypical symmetric single-step switching process is observed, indicating Eimp ≈ 0. However, we report here on the discovery that when measurements are performed at high frequency, a well-defined double-step switching is observed, indicating the presence of Eimp. We argue that this frequency dependence originates from short-living head-to-head or tail-to-tail ferroelectric capacitors in the device. We demonstrate that we can modulate Eimp and the life-time of head-to-head or tail-to-tail polarization configurations by adjusting the polarization screening charges by suitable illumination. These findings are of relevance to understand the effects of internal electric fields on pivotal ferroelectric properties, such as memory retention and photoresponse. PMID:27122309

  4. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  5. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    SciTech Connect

    Gelinck, G. H.; Breemen, A. J. J. M. van; Cobb, B.

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  6. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    DOEpatents

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  7. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes.

    PubMed

    Liu, Fucai; You, Lu; Seyler, Kyle L; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M; Wang, Junling; Liu, Zheng

    2016-01-01

    Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity. PMID:27510418

  8. Spontaneous Ferroelectric Order in a Bent-Core Smectic Liquid Crystal of Fluid Orthorhombic Layers

    SciTech Connect

    R Reddy; C Zhu; R Shao; E Korblova; T Gong; Y Shen; M Glaser; J Maclennan; D Walba; N Clark

    2011-12-31

    Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP{sub F}, the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.

  9. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes

    PubMed Central

    Liu, Fucai; You, Lu; Seyler, Kyle L.; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T.; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M.; Wang, Junling; Liu, Zheng

    2016-01-01

    Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity. PMID:27510418

  10. Strain Tuning of Ferroelectric Thin Films *

    NASA Astrophysics Data System (ADS)

    Schlom, Darrell G.; Chen, Long-Qing; Eom, Chang-Beom; Rabe, Karin M.; Streiffer, Stephen K.; Triscone, Jean-Marc

    2007-08-01

    Predictions and measurements of the effect of biaxial strain on the properties of epitaxial ferroelectric thin films and superlattices are reviewed. Results for single-layer ferroelectric films of biaxially strained SrTiO3, BaTiO3, and PbTiO3 as well as PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices are described. Theoretical approaches, including first principles, thermodynamic analysis, and phase-field models, are applied to these biaxially strained materials, the assumptions and limitations of each technique are explained, and the predictions are compared. Measurements of the effect of biaxial strain on the paraelectric-to-ferroelectric transition temperature (TC) are shown, demonstrating the ability of percent-level strains to shift TC by hundreds of degrees in agreement with the predictions that predated such experiments. Along the way, important experimental techniques for characterizing the properties of strained ferroelectric thin films and superlattices, as well as appropriate substrates on which to grow them, are mentioned.

  11. Quantum criticality in a uniaxial organic ferroelectric

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Hadjimichael, M.; Ali, M. N.; Durmaz, Y. C.; Lashley, J. C.; Cava, R. J.; Scott, J. F.

    2015-10-01

    Tris-sarcosine calcium chloride (TSCC) is a highly uniaxial ferroelectric with a Curie temperature of approximately 130 K. By suppressing ferroelectricity with bromine substitution on the chlorine sites, pure single crystals were tuned through a ferroelectric quantum phase transition. The resulting quantum critical regime was investigated in detail and was found to persist up to temperatures of at least 30-40 K. The nature of long-range dipole interactions in uniaxial materials, which lead to non-analytical terms in the free-energy expansion in the polarization, predict a dielectric susceptibility varying as 1/T 3close to the quantum critical point. Rather than this, we find that the dielectric susceptibility varies as 1/T 2 as expected and observed in better known multi-axial systems. We explain this result by identifying the ultra-weak nature of the dipole moments in the TSCC family of crystals. Interestingly, we observe a shallow minimum in the inverse dielectric function at low temperatures close to the quantum critical point in paraelectric samples that may be attributed to the coupling of quantum polarization and strain fields. Finally, we present results of the heat capacity and electro-caloric effect and explain how the time dependence of the polarization in ferroelectrics and paraelectrics should be considered when making quantitative estimates of temperature changes induced by applied electric fields.

  12. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  13. Design of a Multi-Level/Analog Ferroelectric Memory Device

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2006-01-01

    Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  14. Nanostructured ferroelectrics: fabrication and structure-property relations.

    PubMed

    Han, Hee; Kim, Yunseok; Alexe, Marin; Hesse, Dietrich; Lee, Woo

    2011-10-25

    With the continued demand for ultrahigh density ferroelectric data storage applications, it is becoming increasingly important to scale the dimension of ferroelectrics down to the nanometer-scale region and to thoroughly understand the effects of miniaturization on the materials properties. Upon reduction of the physical dimension of the material, the change in physical properties associated with size reduction becomes extremely difficult to characterize and to understand because of a complicated interplay between structures, surface properties, strain effects from substrates, domain nucleation, and wall motions. In this Review, the recent progress in fabrication and structure-property relations of nanostructured ferroelectric oxides is summarized. Various fabrication approaches are reviewed, with special emphasis on a newly developed stencil-based method for fabricating ferroelectric nanocapacitors, and advantages and limitations of the processes are discussed. Stress-induced evolutions of domain structures upon reduction of the dimension of the material and their implications on the electrical properties are discussed in detail. Distinct domain nucleation, growth, and propagation behaviors in nanometer-scale ferroelectric capacitors are discussed and compared to those of micrometer-scale counterparts. The structural effect of ferroelectric nanocapacitors on the domain switching behavior and cross-talk between neighboring capacitors under external electric field is reviewed. PMID:21919083

  15. Ferroelectric and ferromagnetic properties of Gd substituted nickel ferrite

    NASA Astrophysics Data System (ADS)

    Kamala Bharathi, K.; Markandeyulu, G.

    2008-04-01

    Ferromagnetic and ferroelectric characteristics of Gd substituted nickel ferrite (NiOṡFe1.925Gd0.075O3) were investigated. The material formed in the cubic inverse spinel phase and in addition, a small amount of GdFeO3 phase was identified. A small distortion of the cubic lattice was observed upon the substitution of Fe by Gd in the B site. Substitution of Gd for Fe lowered the saturation magnetization. However, the saturation magnetostriction is seen not to change significantly by the substitution of Gd. From the temperature variation of dielectric constant measurement, the ferroelectric transition temperature was found to be 512K. The existence of the ferroelectricity was confirmed from the ferroelectric loop. The (high) dielectric constant with frequency is seen to reveal a dispersion of relaxation times.

  16. Fast Ferroelectric L-Band Tuner for ILC Cavities

    SciTech Connect

    Hirshfield, Jay L

    2010-03-15

    Design, analysis, and low-power tests are described on a 1.3 GHz ferroelectric tuner that could find application in the International Linear Collider or in Project X at Fermi National Accelerator Laboratory. The tuner configuration utilizes a three-deck sandwich imbedded in a WR-650 waveguide, in which ferroelectric bars are clamped between conducting plates that allow the tuning bias voltage to be applied. Use of a reduced one-third structure allowed tests of critical parameters of the configuration, including phase shift, loss, and switching speed. Issues that were revealed that require improvement include reducing loss tangent in the ferroelectric material, development of a reliable means of brazing ferroelectric elements to copper parts of the tuner, and simplification of the mechanical design of the configuration.

  17. Switching dynamics of ferroelectric Langmuir-Blodgett copolymer films

    NASA Astrophysics Data System (ADS)

    Othon, Christina M.

    Ferroelectric switching dynamics in ferroelectric copolymer films of poly(vinylidene fluoride-trifluoroethylene) can vary over nine orders of magnitude; 100 seconds for the slowest ultrathin (1-50 nm) Langmuir-Blodgett films to 100 ns for the fastest polymorphous spin-coat films (˜50 mum thick). These ultra-thin films share many of the same ferroelectric properties of bulk films such as polarization, phase transition temperatures, crystalline structure, and high electrical resistance (>10 MO). The slow nature of switching in ultrathin films is believed to be caused by the intrinsic nature of the switching. The polarization is no longer switching by nucleation and domain wall growth enabled by defects and nanostructures in the polymorphous samples. We investigate this hypothesis by the introduction of defects in the form of nucleation sites and/or grain boundaries by electron irradiation, production of individual ferroelectric nano-crystals, and the introduction of domain wall boundaries through Direct Laser Interference Patterning (DLIP). Electron-irradiation was performed for a large range of doses from 16 to 110 Mrad, on ultra thin films 36 nm thick. It was thought that the defects introduced by electron irradiation could act as nucleation sites, promoting faster switching. However, the primary effect of electron irradiation was the decrease in crystallinity and therefore the fraction of ferroelectric material. Even for lower doses the increase in switching speed was negligible in comparison to the loss of ferroelectricity. The introduction of false domain walls through laser annealing was used to produce more complex and controlled shapes than given by the nanomesas. We investigated patterning by continuous-wave direct write, and by pulsed laser irradiation DLIP. We have demonstrated the ability to pattern films reversibly into films of ferroelectric regions surrounded by paraelectric phase, as well as irreversibly ferroelectric regions surrounded by melted

  18. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture

    PubMed Central

    Zhao, Hai-Xia; Kong, Xiang-Jian; Li, Hui; Jin, Yi-Chang; Long, La-Sheng; Zeng, Xiao Cheng; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-01-01

    Ferroelectric materials are characterized by spontaneous electric polarization that can be reversed by inverting an external electric field. Owing to their unique properties, ferroelectric materials have found broad applications in microelectronics, computers, and transducers. Water molecules are dipolar and thus ferroelectric alignment of water molecules is conceivable when water freezes into special forms of ice. Although the ferroelectric ice XI has been proposed to exist on Uranus, Neptune, or Pluto, evidence of a fully proton-ordered ferroelectric ice is still elusive. To date, existence of ferroelectric ice with partial ferroelectric alignment has been demonstrated only in thin films of ice grown on platinum surfaces or within microdomains of alkali-hydroxide doped ice I. Here we report a unique structure of quasi-one-dimensional (H2O)12n wire confined to a 3D supramolecular architecture of H4CDTA, trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid; 4,4′-bpy, 4,4′-bipyridine). In stark contrast to the bulk, this 1D water wire not only exhibits enormous dielectric anomalies at approximately 175 and 277 K, respectively, but also undergoes a spontaneous transition between “1D liquid” and “1D ferroelectric ice” at approximately 277 K. Hitherto unrevealed properties of the 1D water wire will be valuable to the understanding of anomalous properties of water and synthesis of novel ferroelectric materials. PMID:21321232

  19. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture.

    PubMed

    Zhao, Hai-Xia; Kong, Xiang-Jian; Li, Hui; Jin, Yi-Chang; Long, La-Sheng; Zeng, Xiao Cheng; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-03-01

    Ferroelectric materials are characterized by spontaneous electric polarization that can be reversed by inverting an external electric field. Owing to their unique properties, ferroelectric materials have found broad applications in microelectronics, computers, and transducers. Water molecules are dipolar and thus ferroelectric alignment of water molecules is conceivable when water freezes into special forms of ice. Although the ferroelectric ice XI has been proposed to exist on Uranus, Neptune, or Pluto, evidence of a fully proton-ordered ferroelectric ice is still elusive. To date, existence of ferroelectric ice with partial ferroelectric alignment has been demonstrated only in thin films of ice grown on platinum surfaces or within microdomains of alkali-hydroxide doped ice I. Here we report a unique structure of quasi-one-dimensional (H(2)O)(12n) wire confined to a 3D supramolecular architecture of H(4)CDTA, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid; 4,4'-bpy, 4,4'-bipyridine). In stark contrast to the bulk, this 1D water wire not only exhibits enormous dielectric anomalies at approximately 175 and 277 K, respectively, but also undergoes a spontaneous transition between "1D liquid" and "1D ferroelectric ice" at approximately 277 K. Hitherto unrevealed properties of the 1D water wire will be valuable to the understanding of anomalous properties of water and synthesis of novel ferroelectric materials. PMID:21321232

  20. Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions

    SciTech Connect

    Cao, Ye; Ievlev, Anton V.; Kalinin, Sergei V.; Maksymovych, Petro; Morozovska, Anna N.; Chen, Long-Qing

    2015-07-13

    Conducting characteristics of topological defects in ferroelectric materials, such as charged domain walls, engendered a broad interest on their scientific merit and the possibility of novel applications utilizing domain engineering. At the same time, the problem of electron transport in ferroelectrics still remains full of unanswered questions and becomes yet more relevant over the growing interest in ferroelectric semiconductors and new improper ferroelectric materials. We have employed self-consistent phase-field modeling to investigate the physical properties of a local metal-ferroelectric (Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}) junction in applied electric field. We revealed an up to 10-fold local enhancement of electric field realized by large polarization gradient and over-polarization effects due to inherent non-linear dielectric properties of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}. The effect is independent of bias polarity and maintains its strength prior, during and after ferroelectric switching. The observed field enhancement can be considered on similar grounds as increased doping level, giving rise to reduced switching bias and threshold voltages for charge injection, electrochemical and photoelectrochemical processes.

  1. Molecular ferroelectrics: where electronics meet biology

    PubMed Central

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also noted. PMID:24018952

  2. Porous ferroelectrics for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Roscow, J.; Zhang, Y.; Taylor, J.; Bowen, C. R.

    2015-11-01

    This paper provides an overview of energy harvesting using ferroelectric materials, with a particular focus on the energy harvesting capabilities of porous ferroelectric ceramics for both piezo- and pyroelectric harvesting. The benefits of introducing porosity into ferro- electrics such as lead zirconate titanate (PZT) has been known for over 30 years, but the potential advantages for energy harvesting from both ambient vibrations and temperature fluctuations have not been studied in depth. The article briefly discusses piezoelectric and pyro- electric energy harvesting, before evaluating the potential benefits of porous materials for increasing energy harvesting figures of merits and electromechanical/electrothermal coupling factors. Established processing routes are evaluated in terms of the final porous structure and the resulting effects on the electrical, thermal and mechanical properties.

  3. Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor

    SciTech Connect

    Aggarwal, Leena; Sekhon, Jagmeet S.; Arora, Ashima; Sheet, Goutam; Guin, Satya N.; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka

    2014-09-15

    It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe{sub 2} has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe{sub 2} crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm–3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe{sub 2} and gives rise to the observed ferroelectricity. Stereochemically active 5S{sup 2} lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe{sub 2}.

  4. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  5. Anharmonic lattice interactions in improper ferroelectrics for multiferroic design.

    PubMed

    Young, Joshua; Stroppa, Alessandro; Picozzi, Silvia; Rondinelli, James M

    2015-07-22

    The design and discovery of new multiferroics, or materials that display both ferroelectricity and long-range magnetic order, is of fundamental importance for new electronic technologies based on low-power consumption. Far too often, however, the mechanisms causing these properties to arise are incompatible or occur at ordering temperatures below room temperature. One design strategy which has gained considerable interest is to begin with a magnetic material, and find novel ways to induce a spontaneous electric polarization within the structure. To this end, anharmonic interactions coupling multiple lattice modes have been used to lift inversion symmetry in magnetic dielectrics. Here we provide an overview of the microscopic mechanisms by which various types of cooperative atomic displacements result in ferroelectricity through anharmonic multi-mode coupling, as well as the types of materials most conducive to these lattice instabilities. The review includes a description of the origins of the displacive modes, a classification of possible non-polar lattice modes, as well as how their coupling can produce spontaneous polarizations. We then survey the recent improper ferroelectric literature, and describe how the materials discussed fall within a proposed classification scheme, offering new directions for the theoretical design of magnetic ferroelectrics. Finally, we offer prospects for the future discovery of new magnetic improper ferroelectrics, as well as detail remaining challenges and open questions facing this exciting new field. PMID:26125654

  6. Automated System Tests Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Lakata, Mark; Thakoor, Sarita

    1994-01-01

    Polarization-switching parameters measured under computer control. Ferroelectric-capacitor-testing system applies voltage pulses and measures responses of ferroelectric capacitor to determine write; "time dependence of polarization," polarization-retention and fatigue characteristics of capacitor. Highly integrated setup quite flexible, versatile, and interactive, and allows convenient computer storage and analysis of data.

  7. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor); Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  8. Conduction at a ferroelectric interface

    DOE PAGESBeta

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  9. Conduction at a ferroelectric interface

    SciTech Connect

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  10. Why is the electrocaloric effect so small in ferroelectrics?

    NASA Astrophysics Data System (ADS)

    Guzmán-Verri, G. G.; Littlewood, P. B.

    2016-06-01

    Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we derive from well-known microscopic models of ferroelectricity meaningful figures of merit for a wide class of ferroelectric materials. Such figures of merit provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipolar forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization. In addition, we bring into question other widely used but empirical figures of merit and facilitate understanding of the recently observed secondary broad peak in the electrocalorics of relaxor ferroelectrics.

  11. Ferroelectric optical image comparator

    DOEpatents

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  12. Ferroelectric optical image comparator

    DOEpatents

    Butler, Michael A.; Land, Cecil E.; Martin, Stephen J.; Pfeifer, Kent B.

    1993-01-01

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image.

  13. Some strategies for improving caloric responses with ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Scott, James F.; Dkhil, Brahim

    2016-06-01

    Many important breakthroughs and significant engineering developments have been achieved during the past two decades in the field of caloric materials. In this review, we address ferroelectrics emerging as ideal materials which permit both giant elastocaloric and/or electrocaloric responses near room temperature. We summarize recent strategies for improving caloric responses using geometrical optimization, maximizing the number of coexisting phases, combining positive and negative caloric responses, introducing extra degree of freedom like mechanical stress/pressure, and multicaloric effect driven by either single stimulus or multiple stimuli. This review highlights the promising perspective of ferroelectrics for developing next-generation solid-state refrigeration.

  14. Nanoscopic Study of the Polarization-Strain Coupling in Relaxor Ferroelectric and the Search for New Relaxor Materials for Transducer and Optical Applications

    SciTech Connect

    J. Toulouse

    2007-05-31

    SUMMARY Relaxor ferroelectrics exhibit a very unusual polarization behavior from which derive unique electrostrictive, piezoelectric and other properties. This behavior and these properties are due to the presence of nanoscale structural and polar order, the polar nanoregions (PNR), which can easily reorient under very modest external electric field, in stark contrast with conventional ferroelectrics. Moreover, when these nanoregions are aligned, their local distortions add up coherently to a macroscopic strain, hence their remarkable electrostrictive and piezoelectric properties. Initially, we demonstrated this effect in KTa1-xNbxO3 (KTN) and were able to identify the local internal symmetry of the PNR in KTN and explain their behavior under an applied electric field. We then extended the study to the more complicated lead relaxors, PbMg1/3Nb2/3O3 (PMN), PbZn1/3Nb2/3O3 (PZN) and (1-x)(PbZn1/3Nb2/3)O3-(x)PbTiO3 (PZN-PT). In particular, following the evolution of the diffuse intensity in neutron scattering and X-ray measurements, we were able to determine the evolution of the polar order from the pure PZN system to the mixed system, PZN-PT. This evolution with addition of PT, provides a physical basis for the remarkably easy polarization rotation that gives PZN-PT its unique properties for composition near the so-called morphotropic boundary (MPB). Through quasi-elastic and inelastic neutron and Raman scattering, we also obtained information about the local (nano)dynamics of these PNR’s. We thus identified three ranges in the evolution of the polarization with temperature: a purely dynamic range, a quasi-dynamic range when the PNR’s appear but can still reorient as “giant dipoles”, a quasi-static range when the system undergoes a series of “underlying” or partial transitions (on a mesoscopic scale) and, finally a frozen range below the last one of these transitions”. This work has provided a useful framework to describe the structural and temperature

  15. Prediction of a native ferroelectric metal

    NASA Astrophysics Data System (ADS)

    Filippetti, Alessio; Fiorentini, Vincenzo; Ricci, Francesco; Delugas, Pietro; Íñiguez, Jorge

    2016-04-01

    Over 50 years ago, Anderson and Blount discussed symmetry-allowed polar distortions in metals, spawning the idea that a material might be simultaneously metallic and ferroelectric. While many studies have ever since considered such or similar situations, actual ferroelectricity--that is, the existence of a switchable intrinsic electric polarization--has not yet been attained in a metal, and is in fact generally deemed incompatible with the screening by mobile conduction charges. Here we refute this common wisdom and show, by means of first-principles simulations, that native metallicity and ferroelectricity coexist in the layered perovskite Bi5Ti5O17. We show that, despite being a metal, Bi5Ti5O17 can sustain a sizable potential drop along the polar direction, as needed to reverse its polarization by an external bias. We also reveal striking behaviours, as the self-screening mechanism at work in thin Bi5Ti5O17 layers, emerging from the interplay between polar distortions and carriers in this compound.

  16. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    NASA Astrophysics Data System (ADS)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  17. Ferroelectric transistors with improved characteristics at high temperature

    NASA Astrophysics Data System (ADS)

    Salvatore, Giovanni A.; Lattanzio, Livio; Bouvet, Didier; Stolichnov, Igor; Setter, Nava; Ionescu, Adrian M.

    2010-08-01

    We report on the temperature dependence of ferroelectric metal-oxide-semiconductor (MOS) transistors and explain the observed improved characteristics based on the dielectric response of ferroelectric materials close to the Curie temperature. The hysteretic current-voltage static characteristics of a fully depleted silicon-on-insulator transistor, with 40 nm vinylidene fluoride trifluorethylene, and 10 nm SiO2 gate stack, are measured from 300 to 400 K. In contrast with conventional MOS field effect transistors (MOSFETs), the subthreshold swing and the transconductance show, respectively, a minimum and a maximum near the Curie temperature (355 K) of the ferroelectric material. A phenomenological model is proposed based on the Landau-Ginzburg theory. This work demonstrates that a MOSFET with a ferroelectric layer integrated in the gate stack could have nondegraded or even improved subthreshold swing and transconductance at high temperature even though the hysteresis window is reduced. As a consequence, we suggest that for ferroelectric transistors with appropriately designed Curie temperatures, the performance degradation of logic or analog circuits, nowadays operating near 100 °C, could be avoided.

  18. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    NASA Astrophysics Data System (ADS)

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-10-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research.

  19. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials.

    PubMed

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-01-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484

  20. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    PubMed Central

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-01-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484

  1. Performing spectroscopic and specific heat studies of improper ferroelectrics

    NASA Technical Reports Server (NTRS)

    Coleman, L. B.

    1982-01-01

    The results of infrared measurements on Ni-Br, Cu-Cl, and Fe-I boracite improper ferroelectrics and far infrared measurements of Ni-Br boracite are presented. The boracites have the general formula X3B7O3Y, where X = divalent metal and Y = halogen. They undergo a first order phase transition from a high temperature paraelectric phase with cubic symmetry to a ferroelectric phase with orthorhombic symmetry. The boracites are "improper ferroelectrics" since the spontaneous polarization is not the primary order parameter in the cubic-orthorhombic phase transition. Current understanding of these materials is that the primary order parameter is associated with a doubly degenerate zone-boundary phonon in the cubic phase. The degenerate critical modes become homogeneous and split into the A sub 1 and A sub 2 modes in the orthorhombic phase, doubling the volume of the primitive cell. An harmonic coupling between the softing A sub 1 and a low frequency A sub 1 optic mode induces a spontaneous polarization as a secondary effect in the ferroelectric phase. This secondary non-critical nature of the ferroelectric mode earns these materials the "improper" title and is responsible for their unique properties and high figure of merit in detector use.

  2. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon.

    PubMed

    Lang, S B; Tofail, S A M; Kholkin, A L; Wojtaś, M; Gregor, M; Gandhi, A A; Wang, Y; Bauer, S; Krause, M; Plecenik, A

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  3. I-V Characteristics of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    1999-01-01

    There are many possible uses for ferroelectric field effect transistors.To understand their application, a fundamental knowledge of their basic characteristics must first be found. In this research, the current and voltage characteristics of a field effect transistor are described. The effective gate capacitance and charge are derived from experimental data on an actual FFET. The general equation for a MOSFET is used to derive the internal characteristics of the transistor: This equation is modified slightly to describe the FFET characteristics. Experimental data derived from a Radiant Technologies FFET is used to calculate the internal transistor characteristics using fundamental MOSFET equations. The drain current was measured under several different gate and drain voltages and with different initial polarizations on the ferroelectric material in the transistor. Two different polarization conditions were used. One with the gate ferroelectric material polarized with a +9.0 volt write pulse and one with a -9.0 volt pulse.

  4. Negative-pressure-induced enhancement in a freestanding ferroelectric

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava

    2015-10-01

    Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.

  5. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  6. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    PubMed Central

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  7. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.

    PubMed

    Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Müller, Johannes; Kersch, Alfred; Schroeder, Uwe; Mikolajick, Thomas; Hwang, Cheol Seong

    2015-03-18

    The recent progress in ferroelectricity and antiferroelectricity in HfO2-based thin films is reported. Most ferroelectric thin film research focuses on perovskite structure materials, such as Pb(Zr,Ti)O3, BaTiO3, and SrBi2Ta2O9, which are considered to be feasible candidate materials for non-volatile semiconductor memory devices. However, these conventional ferroelectrics suffer from various problems including poor Si-compatibility, environmental issues related to Pb, large physical thickness, low resistance to hydrogen, and small bandgap. In 2011, ferroelectricity in Si-doped HfO2 thin films was first reported. Various dopants, such as Si, Zr, Al, Y, Gd, Sr, and La can induce ferro-electricity or antiferroelectricity in thin HfO2 films. They have large remanent polarization of up to 45 μC cm(-2), and their coercive field (≈1-2 MV cm(-1)) is larger than conventional ferroelectric films by approximately one order of magnitude. Furthermore, they can be extremely thin (<10 nm) and have a large bandgap (>5 eV). These differences are believed to overcome the barriers of conventional ferroelectrics in memory applications, including ferroelectric field-effect-transistors and three-dimensional capacitors. Moreover, the coupling of electric and thermal properties of the antiferroelectric thin films is expected to be useful for various applications, including energy harvesting/storage, solid-state-cooling, and infrared sensors. PMID:25677113

  8. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  9. Ferroelectricity and tunneling electroresistance effect in asymmetric ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tao, L. L.; Wang, J.

    2016-06-01

    We report the investigation on the ferroelectricity and tunneling electroresistance (TER) effect in PbTiO3 (PTO)-based ferroelectric tunnel junctions (FTJs) using first-principles calculations. For symmetric FTJs, we have calculated the average polarizations of PTO film and effective screening lengths of different metal electrodes for a number of FTJs, which is useful for experimental research. For asymmetric FTJs, significant asymmetric ferroelectric displacements in PTO film are observed, which is attributed to the intrinsic field generated by the two dissimilar electrodes. Moreover, by performing quantum transport calculations on those asymmetric FTJs, a sizable TER effect is observed. It is found that the asymmetry of ferroelectric displacements in PTO barrier, which is determined by the difference of work functions of the electrodes, controls the observed TER effect. Our results will help unravel the TER mechanism of asymmetric FTJs in most experiments and will be useful for the designing of FTJ-based devices.

  10. Polarization and polarization fatigue in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng

    This thesis addresses some fundamental issues in ferroelectricity and its applications through a computational and experimental effort. It focuses on a variety of perovskite-type ferroelectric oxides and investigates the physical basis for spontaneous polarization, domain wall dynamics, and texture development in thin film applications. The dipole-dipole interactions between ionic species in perovskite-type materials have been calculated to determine the local field and the lattice instability. Different ferroelectric and anti-ferroelectric polarization transitions can be realized by taking into account the structure distortion of the parent perovskites. We find the local field is enhanced by short range disorder and its nature varies from disorder to disorder, causing polarization transitions in non-(100) directions. The molecular field theory has also been extended to layered perovskites, which favors in-plane polarization over c-polarization. These theoretical predictions are in agreement with the experimental observations of various perovskites and layered perovskites in both single crystal and thin film forms. Domain switching in PZT has been studied by probing the frequency dependency of polarization hysteresis. A picture of thermally activated domain wall movement is established from the frequency spectra of coercive field. The field dependence of domain wall bulging and the nature of the binding between pinning obstacles and the walls are inferred from such a study. Consistent with this picture, polarization fatigue can be defined as a process of increasing the resistance from pinning defects to domain wall motion. The chemical species that act as pinning defects have been identified through model experiments that control carrier injection, electrode interfaces, and film compositions. Based on these observations, a methodology is proposed to evaluate and predict the fatigue damage of both PZT and layered perovskite thin films. Processing of layered

  11. Current and surface charge modified hysteresis loops in ferroelectric thin films

    DOE PAGESBeta

    Balke Wisinger, Nina; Jesse, Stephen; Maksymovych, Petro; Okatan, Mahmut Baris; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei

    2015-08-19

    Polarization domains in ferroelectric materials and the ability to orient them with an external electric field lead to the development of a variety of applications from information storage to actuation. The development of piezoresponse force microscopy (PFM) has enabled researchers to investigate ferroelectric domains and ferroelectric domain switching on the nanoscale, which offers a pathway to study structure-function relationships in this important material class. Due to its commercial availability and ease of use, PFM has become a widely used research tool. However, measurement artifacts, i.e., alternative signal origins besides the piezoelectric effect are barely discussed or considered. This becomes especiallymore » important for materials with a small piezoelectric coefficient or materials with unknown ferroelectric properties, including non-ferroelectric materials. Here, the role of surface charges and current flow during PFM measurements on classical ferroelectrics are discussed and it will be shown how they alter the PFM hysteresis loop shape. This will help to better address alternative signal origins in PFM-type experiments and offer a pathway to study additional phenomena besides ferroelectricity.« less

  12. Current and surface charge modified hysteresis loops in ferroelectric thin films

    SciTech Connect

    Balke Wisinger, Nina; Jesse, Stephen; Maksymovych, Petro; Okatan, Mahmut Baris; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei

    2015-08-19

    Polarization domains in ferroelectric materials and the ability to orient them with an external electric field lead to the development of a variety of applications from information storage to actuation. The development of piezoresponse force microscopy (PFM) has enabled researchers to investigate ferroelectric domains and ferroelectric domain switching on the nanoscale, which offers a pathway to study structure-function relationships in this important material class. Due to its commercial availability and ease of use, PFM has become a widely used research tool. However, measurement artifacts, i.e., alternative signal origins besides the piezoelectric effect are barely discussed or considered. This becomes especially important for materials with a small piezoelectric coefficient or materials with unknown ferroelectric properties, including non-ferroelectric materials. Here, the role of surface charges and current flow during PFM measurements on classical ferroelectrics are discussed and it will be shown how they alter the PFM hysteresis loop shape. This will help to better address alternative signal origins in PFM-type experiments and offer a pathway to study additional phenomena besides ferroelectricity.

  13. Stress effects in ferroelectric perovskite thin-films

    NASA Astrophysics Data System (ADS)

    Zednik, Ricardo Johann

    The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution

  14. Tunnel electroresistance through organic ferroelectrics

    PubMed Central

    Tian, B. B.; Wang, J. L.; Fusil, S.; Liu, Y.; Zhao, X. L.; Sun, S.; Shen, H.; Lin, T.; Sun, J. L.; Duan, C. G.; Bibes, M.; Barthélémy, A.; Dkhil, B.; Garcia, V.; Meng, X. J.; Chu, J. H.

    2016-01-01

    Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates. PMID:27143121

  15. Ferroelectric capacitor with reduced imprint

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  16. Tunnel electroresistance through organic ferroelectrics.

    PubMed

    Tian, B B; Wang, J L; Fusil, S; Liu, Y; Zhao, X L; Sun, S; Shen, H; Lin, T; Sun, J L; Duan, C G; Bibes, M; Barthélémy, A; Dkhil, B; Garcia, V; Meng, X J; Chu, J H

    2016-01-01

    Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates. PMID:27143121

  17. Tunnel electroresistance through organic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tian, B. B.; Wang, J. L.; Fusil, S.; Liu, Y.; Zhao, X. L.; Sun, S.; Shen, H.; Lin, T.; Sun, J. L.; Duan, C. G.; Bibes, M.; Barthélémy, A.; Dkhil, B.; Garcia, V.; Meng, X. J.; Chu, J. H.

    2016-05-01

    Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates.

  18. Athermal domain-wall creep near a ferroelectric quantum critical point

    PubMed Central

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-01-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041

  19. Interlayer Coupling and Dielectric Anomaly in Ferroelectric Bilayers and Multilayer Heterostructures

    NASA Astrophysics Data System (ADS)

    Pamir Alpay, S.; Zhong, Shan; Roytburd, Alexander L.; Mantese, Joseph V.

    2006-03-01

    Ferroelectric multilayers and superlattices have gained interest for dynamic random access memory (DRAM) applications and as active elements in tunable microwave devices in the telecommunications industry. There have been a number of experimental studies that show that these materials have many peculiar properties that cannot be described by a simple series connection of the individual layers that make up the heterostructures. A thermodynamic analysis is presented to demonstrate that ferroelectric multilayers interact through internal elastic, electrical, and electromechanical fields and the ``strength'' of the coupling can be quantitatively described using Landau theory of phase transformations, theory of elasticity, and principles of electrostatics. The thermodynamic modeling indicates that the electrostatic coupling between the layers leads to the suppression of ferroelectricity at a critical paraelectric layer thickness for ferroelectric-paraelectric bilayers. This bilayer is expected to have a gigantic dielectric response similar to the dielectric anomaly near Curie-Weiss temperature in homogeneous ferroelectrics at this critical thickness.

  20. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    PubMed

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors. PMID:24276519

  1. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe.

    PubMed

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Wang, Na; Zhao, Kun; Zhang, Anmin; Jin, Feng; Zhong, Yong; Hu, Xiaopeng; Duan, Wenhui; Zhang, Qingming; Fu, Liang; Xue, Qi-Kun; Chen, Xi; Ji, Shuai-Hua

    2016-07-15

    Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1-unit cell (UC) limit. The ferroelectric transition temperature T(c) of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics. PMID:27418506

  2. Athermal domain-wall creep near a ferroelectric quantum critical point.

    PubMed

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-01-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041

  3. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Wang, Na; Zhao, Kun; Zhang, Anmin; Jin, Feng; Zhong, Yong; Hu, Xiaopeng; Duan, Wenhui; Zhang, Qingming; Fu, Liang; Xue, Qi-Kun; Chen, Xi; Ji, Shuai-Hua

    2016-07-01

    Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1–unit cell (UC) limit. The ferroelectric transition temperature Tc of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics.

  4. Hierarchical dielectric orders in layered ferroelectrics Bi2SiO5

    PubMed Central

    Kim, Younghun; Kim, Jungeun; Fujiwara, Akihiko; Taniguchi, Hiroki; Kim, Sungwng; Tanaka, Hiroshi; Sugimoto, Kunihisa; Kato, Kenichi; Itoh, Mitsuru; Hosono, Hideo; Takata, Masaki

    2014-01-01

    Electric dipole engineering is now an emerging technology for high electron-mobility transistors, ferroelectric random access memory and multiferroic devices etc. Although various studies to provide insight into dipole moment behaviour, such as phase transition, order and disorder states, have been reported, macroscopic spontaneous polarization has been mainly discussed so far. Here, visualization of the electric dipole arrangement in layered ferroelectrics Bi2SiO5 by means of combined analysis of maximum entropy charge density and electrostatic potential distribution analysis based on synchrotron radiation X-ray powder diffraction data is reported. It was found that the hierarchical dipole orders, the weak-ferroelectric and ferroelectric configurations, were observed in the Bi2O2 and the SiO3 layers, respectively, and the ferrielectric configuration was realised by the interlayer interaction. This discovery provides a new method to visualize the local polarization in ferroelectric materials. PMID:25075334

  5. Athermal domain-wall creep near a ferroelectric quantum critical point

    NASA Astrophysics Data System (ADS)

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-02-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

  6. K-Band Reflectarray Antenna Based on Ferroelectric Thin Films: What Have We Learned so Far

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Fred

    2002-01-01

    The Applied RF Technology Branch of the NASA Glenn Research Center, Cleveland, Ohio, has an on-going effort in the area of thin film ferroelectric technology for microwave applications. Particular attention has been given to developing ferroelectric phase shifters for the implementation and experimental demonstration of an electronically steerable reflectarray antenna. In the process of optimizing these material to fit the implementation requirements of the aforementioned antenna, we have accumulated a great deal of information and knowledge in areas such as the effect of the composition of the ferroelectric thin films on phase shifter performance, self assembled monolayers (SAMs) in the metallic/ferroelectric interface and their impact on phase shifter performance, correlation between microstructure and microwave properties, and the effect of selective etching on the overall performance of a thin film-ferroelectric based microwave component, amongst others. We will discuss these issues and will provide an up-dade of the current development status of the reflect-array antenna.

  7. Hierarchical dielectric orders in layered ferroelectrics Bi2SiO5.

    PubMed

    Kim, Younghun; Kim, Jungeun; Fujiwara, Akihiko; Taniguchi, Hiroki; Kim, Sungwng; Tanaka, Hiroshi; Sugimoto, Kunihisa; Kato, Kenichi; Itoh, Mitsuru; Hosono, Hideo; Takata, Masaki

    2014-05-01

    Electric dipole engineering is now an emerging technology for high electron-mobility transistors, ferroelectric random access memory and multiferroic devices etc. Although various studies to provide insight into dipole moment behaviour, such as phase transition, order and disorder states, have been reported, macroscopic spontaneous polarization has been mainly discussed so far. Here, visualization of the electric dipole arrangement in layered ferroelectrics Bi2SiO5 by means of combined analysis of maximum entropy charge density and electrostatic potential distribution analysis based on synchrotron radiation X-ray powder diffraction data is reported. It was found that the hierarchical dipole orders, the weak-ferroelectric and ferroelectric configurations, were observed in the Bi2O2 and the SiO3 layers, respectively, and the ferrielectric configuration was realised by the interlayer interaction. This discovery provides a new method to visualize the local polarization in ferroelectric materials. PMID:25075334

  8. Response of TGS ferroelectric samples to rapid temperature impulses

    NASA Astrophysics Data System (ADS)

    Trybus, M.; Proszak, W.; Woś, B.

    2013-11-01

    Tryglicine sulphate (TGS) is one of the most extensively studied ferroelectric materials, which undergoes second order phase transition and shows the pyroelectric effect. In our present experiments we study the electric properties of TGS, in relation to domain switching, observing the samples' response to controlled temperature pulses. The charge released in the processes of domain switching was previously studied under constant temperature growth. Our method allows us to observe the released pyroelectric charge in both the ferroelectric and paraelectric phases. To perform our experiment we designed new measurement software and constructed a novel thermostatic sample holder containing Peltier's cells as heating/cooling elements.

  9. Ferroelectric-semiconductor photovoltaics: Non-PN junction solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Fude; Wang, Wentao; Wang, Lei; Yang, Guandong

    2014-03-01

    Traditional positive-negative (PN) junction based solar cells have many limitations. Herein, we introduce ferroelectric-semiconductor solar cells that use the bound surface charges of the ferroelectric for achieving charge separation in the semiconductor. The feasibility of the new concept cells was verified both experimentally and theoretically in detail. The new cells are unique in that free charge carriers and fixed charge carriers are physically separated from each other. The feature allows us to go beyond traditional junction-based structures and have more freedom in material selection, device design, and fabrication.

  10. Engineering ferroelectric tunnel junctions through potential profile shaping

    SciTech Connect

    Boyn, S.; Garcia, V. Fusil, S.; Carrétéro, C.; Garcia, K.; Collin, S.; Deranlot, C.; Bibes, M.; Barthélémy, A.

    2015-06-01

    We explore the influence of the top electrode materials (W, Co, Ni, Ir) on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO{sub 3}. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

  11. Ferroelectric Smectic Phase Formed by Achiral Straight Core Mesogens

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Li, Jianjun; Weissflog, Wolfgang

    2003-01-01

    We report electro-optic experiments in liquid crystalline freestanding films of achiral hockey stick shaped mesogens with a straight aromatic core. The material forms two smectic mesophases. In the higher temperature phase, a spontaneous polarization exists in the smectic layer plane and the films show polar switching in electric fields. It is the first example of a ferroelectric phase formed by nearly rodlike achiral mesogens. Mirror symmetry of the phase is spontaneously broken. We propose a molecular configuration similar to a synclinic ferroelectric (CSPF) high temperature phase and an anticlinic, probably antiferroelectric (CAPA) low temperature phase.

  12. Ferroelectricity in molecular solids: a review of electrodynamic properties.

    PubMed

    Tomić, S; Dressel, M

    2015-09-01

    In conventional ferroelectrics the polarization is induced either by the relative displacement of positive and negative ions due to a lattice distortion or by the collective alignment of permanent electric dipoles. Strongly correlated materials with the inversion-symmetry-broken ground states feature electronic ferroelectricity, a phenomenon which has recently caught the attention of condensed matter physicists due to its great fundamental and technological importance. The discovery of electronic ferroelectricity in one and two-dimensional molecular solids is an exciting development because they show a rich variety of nonlinear properties and complex electrodynamics, including nontrivial emergent excitations. We summarize key experimental results, sketch the current theoretical understanding and outline promising prospects of this phenomenon which have great potential for future electronic devices. PMID:26214019

  13. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    SciTech Connect

    Palto, S. P. Draginda, Yu. A.

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  14. Proposal for ultrafast switching of ferroelectrics using midinfrared pulses

    NASA Astrophysics Data System (ADS)

    Subedi, Alaska

    2015-12-01

    I propose a method for ultrafast switching of ferroelectric polarization using midinfrared pulses. This involves selectively exciting the highest frequency A1 phonon mode of a ferroelectric material with an intense midinfrared pulse. Large amplitude oscillations of this mode provides a unidirectional force to the lattice such that it displaces along the lowest frequency A1 phonon mode coordinate because of a nonlinear coupling of the type g QPQIR2 between the two modes. First-principles calculations show that this coupling is large in perovskite transition-metal oxide ferroelectrics, and the sign of the coupling is such that the lattice displaces in the switching direction. Furthermore, I find that the lowest frequency A1 mode has a large QP3 order anharmonicity, which causes a discontinuous switch of electric polarization as the pump amplitude is continuously increased.

  15. Atomistic simulations of caloric effects in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lisenkov, Sergey; Ponomareva, Inna

    2013-03-01

    The materials that exhibit large caloric effects have emerged as promising candidates for solid-state refrigeration which is an energy-efficient and environmentally friendly alternative to the conventional refrigeration technology. However, despite recent ground breaking discoveries of giant caloric effects in some materials they appear to remain one of nature's rarities. Here we use atomistic simulations to study electrocaloric and elastocaloric effects in Ba0.5Sr0.5TiO3 and PbTiO3 ferroelectrics. Our study reveals the intrinsic features of such caloric effects in ferroelectrics and their potential to exhibit giant caloric effects. Some of the findings include the coexistence of negative and positive electrocaloric effects in one material and an unusual field-driven transition between them as well as the coexistence of multiple giant caloric effects in Ba0.5Sr0.5TiO3 alloys. These findings could potentially lead to new paradigms for cooling devices. This work is partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0005245.

  16. The Modification of Ferroelectric Surfaces for Catalysis

    NASA Astrophysics Data System (ADS)

    Herdiech, Matthew William

    Ferroelectrics are a class of materials in which a net dipole can be associated with each repeat unit, resulting in a potentially large electric field through the material. The ability to reversibly switch the polarization direction by applying an external electric field distinguishes ferroelectrics from polar orientations of ordinary materials. Recent studies exploring the reactivity of ferroelectric surfaces toward polar molecules have shown that the heats of adsorption for these molecules are polarization dependent, but the surfaces tend to be unreactive. Despite the inertness of ferroelectric surfaces, their use as supports for catalytically active materials could yield novel reactivity. As even metal oxides that are generally considered inert can influence the catalytic properties of supported layers, a ferroelectric support may offer the opportunity to modulate catalytic activity since charge compensation of the polar surfaces might include chemical and electronic reconstructions of the active layer. In this thesis, the fabrication of active layers with polarization dependent properties was investigated by coating ferroelectric substrates with catalytically active oxides that are likely to grow in a layer-by-layer manner. Two systems in particular were explored: chromium oxide on ferroelectric lithium niobate (Cr2O3/LiNbO3), and ruthenium oxide on ferroelectric lead zirconate titanate (RuO2/Pb(Zr0.2Ti0.8)O 3). The chromium oxide and ruthenium oxide films were characterized with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and reflection high energy electron diffraction (RHEED). Additionally, the chromium oxide films were characterized with X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements, and the ruthenium oxide films were characterized with ion scattering spectroscopy (ISS) measurements. The reactivity of the films was investigated using temperature programmed desorption (TPD) measurements. In particular

  17. First-principles theory, coarse-grained models, and simulations of ferroelectrics.

    PubMed

    Waghmare, Umesh V

    2014-11-18

    CONSPECTUS: A ferroelectric crystal exhibits macroscopic electric dipole or polarization arising from spontaneous ordering of its atomic-scale dipoles that breaks inversion symmetry. Changes in applied pressure or electric field generate changes in electric polarization in a ferroelectric, defining its piezoelectric and dielectric properties, respectively, which make it useful as an electromechanical sensor and actuator in a number of applications. In addition, a characteristic of a ferroelectric is the presence of domains or states with different symmetry equivalent orientations of spontaneous polarization that are switchable with large enough applied electric field, a nonlinear property that makes it useful for applications in nonvolatile memory devices. Central to these properties of a ferroelectric are the phase transitions it undergoes as a function of temperature that involve lowering of the symmetry of its high temperature centrosymmetric paraelectric phase. Ferroelectricity arises from a delicate balance between short and long-range interatomic interactions, and hence the resulting properties are quite sensitive to chemistry, strains, and electric charges associated with its interface with substrate and electrodes. First-principles density functional theoretical (DFT) calculations have been very effective in capturing this and predicting material and environment specific properties of ferroelectrics, leading to fundamental insights into origins of ferroelectricity in oxides and chalcogenides uncovering a precise picture of electronic hybridization, topology, and mechanisms. However, use of DFT in molecular dynamics for detailed prediction of ferroelectric phase transitions and associated temperature dependent properties has been limited due to large length and time scales of the processes involved. To this end, it is quite appealing to start with input from DFT calculations and construct material-specific models that are realistic yet simple for use in

  18. Piezoelectric activity in Perovskite ferroelectric crystals.

    PubMed

    Li, Fei; Wang, Linghang; Jin, Li; Lin, Dabin; Li, Jinglei; Li, Zhenrong; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    Perovskite ferroelectrics (PFs) have been the dominant piezoelectric materials for various electromechanical applications, such as ultrasonic transducers, sensors, and actuators, to name a few. In this review article, the development of PF crystals is introduced, focusing on the crystal growth and piezoelectric activity. The critical factors responsible for the high piezoelectric activity of PFs (i.e., phase transition, monoclinic phase, domain size, relaxor component, dopants, and piezoelectric anisotropy) are surveyed and discussed. A general picture of the present understanding on the high piezoelectricity of PFs is described. At the end of this review, potential approaches to further improve the piezoelectricity of PFs are proposed. PMID:25585387

  19. A study of the temperature dependence of the local ferroelectric properties of c-axis oriented Bi6Ti3Fe2O18 Aurivillius phase thin films: Illustrating the potential of a novel lead-free perovskite material for high density memory applications

    NASA Astrophysics Data System (ADS)

    Faraz, Ahmad; Deepak, Nitin; Schmidt, Michael; Pemble, Martyn E.; Keeney, Lynette

    2015-08-01

    The ability to control the growth, texture and orientation of self-nanostructured lead-free Aurivillius phase thin films can in principle, greatly improve their ferroelectric properties, since in these materials the polarization direction is dependent on crystallite orientation. Here, we report the growth of c-plane oriented Bi6Ti3Fe2O18 (B6TFO) functional oxide Aurivillius phase thin films on c-plane sapphire substrates by liquid injection chemical vapour deposition (LI-CVD). Microstructural analysis reveals that B6TFO thin films annealed at 850°C are highly crystalline, well textured (Lotgering factor of 0.962) and single phase. Typical Aurivillius plate-like morphology with an average film thickness of 110nm and roughness 24nm was observed. The potential of B6TFO for use as a material in lead-free piezoelectric and ferroelectric data storage applications was explored by investigating local electromechanical (piezoelectric) and ferroelectric properties at the nano-scale. Vertical and lateral piezoresponse force microscopy (PFM) reveals stronger in-plane polarization due to the controlled growth of the a-axis oriented grains lying in the plane of the B6TFO films. Switching spectroscopy PFM (SS-PFM) hysteresis loops obtained at higher temperatures (up to 200°C) and at room temperature reveal a clear ferroelectric signature with only minor changes in piezoresponse observed with increasing temperature. Ferroelectric domain patterns were written at 200°C using PFM lithography. Hysteresis loops generated inside the poled regions at room and higher temperatures show a significant increase in piezoresponse due to alignment of the c-axis polarization components under the external electric field. No observable change in written domain patterns was observed after 20hrs of PFM scanning at 200°C, confirming that B6TFO retains polarization over this finite period of time. These studies demonstrate the potential of B6TFO thin films for use in piezoelectric applications at

  20. High-optical-quality ferroelectric film wet-processed from a ferroelectric columnar liquid crystal as observed by non-linear-optical microscopy.

    PubMed

    Araoka, Fumito; Masuko, Shiori; Kogure, Akinori; Miyajima, Daigo; Aida, Takuzo; Takezoe, Hideo

    2013-08-01

    The self-organization of ferroelectric columnar liquid crystals (FCLCs) is demonstrated. Columnar order is spontaneously formed in thin films made by the wet-process due to its liquid crystallinity. Electric-field application results in high optical quality and uniform spontaneous polarization. Such good processability and controllability of the wet-processed FCLC films provide us with potential organic ferroelectric materials for device applications. PMID:23740767

  1. First-principles prediction of a native ferroelectric metal

    NASA Astrophysics Data System (ADS)

    Iniguez, Jorge; Filippetti, Alessio; Fiorentini, Vincenzo; Ricci, Francesco; Delugas, Pietro

    The possibility that metals may support ferroelectricity is an intriguing open issue. Over the years, various compounds have been referred to as ferroelectric metals, including non-centrosymmetric metals as well as ferroelectrics whose polar distortion survives moderate metallicity induced by doping or proximity. Yet, we think none of these systems embodies a truly ferroelectric metal with native switchable polarization and native metallicity coexisting in a single phase. Here we report a first-principles prediction of such a material. We show that the layered perovskite Bi5Ti5O17 has a non-zero density of states at the Fermi level and metal-like conductivity, as well as a spontaneous polarization in zero field. Further, we predict that the polarization of Bi5Ti5O17 is switchable both in principle (the material complies with the sufficient symmetry requirements) and in practice (in spite of being a metal, Bi5Ti5O17 can sustain a sizable potential drop along the polar direction, as needed to revert its polarization by application of an electric bias). Our results also reveal striking behaviors - such as the self screening mechanism at work in thin Bi5Ti5O17 layers - emerging from the intimate interplay between polar distortions and free carriers in such an exotic material. Supported by MIUR-PRIN, Fondazione Banco di Sardegna, FNR Luxembourg, MINECO-Spain, CINECA-ISCRA and CESGA.

  2. Ferroelectricity and Self-Polarization in Ultrathin Relaxor Ferroelectric Films

    NASA Astrophysics Data System (ADS)

    Miao, Peixian; Zhao, Yonggang; Luo, Nengneng; Zhao, Diyang; Chen, Aitian; Sun, Zhong; Guo, Meiqi; Zhu, Meihong; Zhang, Huiyun; Li, Qiang

    2016-01-01

    We report ferroelectricity and self-polarization in the (001) oriented ultrathin relaxor ferroelectric PMN-PT films grown on Nb-SrTiO3, SrRuO3 and La0.7Sr0.3MnO3, respectively. Resistance-voltage measurements and AC impedance analysis suggest that at high temperatures Schottky depletion width in a 4 nm thick PMN-PT film deposited on Nb-SrTiO3 is smaller than the film thickness. We propose that Schottky interfacial dipoles make the dipoles of the nanometer-sized polar nanoregions (PNRs) in PMN-PT films grown on Nb-SrTiO3 point downward at high temperatures and lead to the self-polarization at room temperature with the assistance of in-plane compressive strain. This work sheds light on the understanding of epitaxial strain effects on relaxor ferroelectric films and self-polarization mechanism.

  3. Ferroelectricity and Self-Polarization in Ultrathin Relaxor Ferroelectric Films

    PubMed Central

    Miao, Peixian; Zhao, Yonggang; Luo, Nengneng; Zhao, Diyang; Chen, Aitian; Sun, Zhong; Guo, Meiqi; Zhu, Meihong; Zhang, Huiyun; Li, Qiang

    2016-01-01

    We report ferroelectricity and self-polarization in the (001) oriented ultrathin relaxor ferroelectric PMN-PT films grown on Nb-SrTiO3, SrRuO3 and La0.7Sr0.3MnO3, respectively. Resistance-voltage measurements and AC impedance analysis suggest that at high temperatures Schottky depletion width in a 4 nm thick PMN-PT film deposited on Nb-SrTiO3 is smaller than the film thickness. We propose that Schottky interfacial dipoles make the dipoles of the nanometer-sized polar nanoregions (PNRs) in PMN-PT films grown on Nb-SrTiO3 point downward at high temperatures and lead to the self-polarization at room temperature with the assistance of in-plane compressive strain. This work sheds light on the understanding of epitaxial strain effects on relaxor ferroelectric films and self-polarization mechanism. PMID:26817516

  4. Ferroelectricity and Self-Polarization in Ultrathin Relaxor Ferroelectric Films.

    PubMed

    Miao, Peixian; Zhao, Yonggang; Luo, Nengneng; Zhao, Diyang; Chen, Aitian; Sun, Zhong; Guo, Meiqi; Zhu, Meihong; Zhang, Huiyun; Li, Qiang

    2016-01-01

    We report ferroelectricity and self-polarization in the (001) oriented ultrathin relaxor ferroelectric PMN-PT films grown on Nb-SrTiO3, SrRuO3 and La0.7Sr0.3MnO3, respectively. Resistance-voltage measurements and AC impedance analysis suggest that at high temperatures Schottky depletion width in a 4 nm thick PMN-PT film deposited on Nb-SrTiO3 is smaller than the film thickness. We propose that Schottky interfacial dipoles make the dipoles of the nanometer-sized polar nanoregions (PNRs) in PMN-PT films grown on Nb-SrTiO3 point downward at high temperatures and lead to the self-polarization at room temperature with the assistance of in-plane compressive strain. This work sheds light on the understanding of epitaxial strain effects on relaxor ferroelectric films and self-polarization mechanism. PMID:26817516

  5. Conducting Ferroelectric Walls, Domain Topology, and Domain Switching Kinetics in a Hybrid Improper Ferroelectric

    NASA Astrophysics Data System (ADS)

    Cheong, Sang-Wook; Rutgers Center For Emergent Materials Team

    Charged polar interfaces such as charged ferroelectric domain walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO 3 /SrTiO 3 , across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric domain walls can be highly conducting but energetically unfavored; however, they were found to be mysteriously abundant in hybrid improper ferroelectric (Ca,Sr) 3 Ti 2 O 7 single crystals. From the exploration of antiphase domain boundaries, which are hidden in piezoresponse force microscopy, using dark-field electron microscopy, we have explored the macroscopic topology of polarization domains and antiphase domains. We found that the macroscopic domain topology is directly responsible for the presence of charged domain walls, and is closely related with the polarization domain switching mechanism in (Ca,Sr) 3 Ti 2 O 7 . Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.

  6. Ferroelectricity in undoped hafnium oxide

    NASA Astrophysics Data System (ADS)

    Polakowski, Patrick; Müller, Johannes

    2015-06-01

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 4-20 nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization Pr of up to 10 μC cm-2 as well as a read/write endurance of 1.6 × 105 cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems.

  7. Ferroelectricity in undoped hafnium oxide

    SciTech Connect

    Polakowski, Patrick; Müller, Johannes

    2015-06-08

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 4–20 nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization P{sub r} of up to 10 μC cm{sup −2} as well as a read/write endurance of 1.6 × 10{sup 5} cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems.

  8. Emission from ferroelectric cathodes

    SciTech Connect

    Sampayan, S.E.; Caporaso, G.J.; Holmes, C.L.; Lauer, E.J.; Prosnitz, D.; Trimble, D.O.; Westenskow, G.A.

    1993-05-17

    We have recently initiated an investigation of electron emission from ferroelectric cathodes. Our experimental apparatus consisted of an electron diode and a 250 kV, 12 ohm, 70 ns pulsed high voltage power source. A planar triode modulator driven by a synthesized waveform generator initiates the polarization inversion and allows inversion pulse tailoring. The pulsed high voltage power source is capable of delivering two high voltage pulses within 50 ns of each other and is capable of operating at a sustained repetition rate of 5 Hz. Our initial measurements indicate that emission current densities above the Child-Langmuir Space Charge Limit are possible. We explain this effect to be based on a non-zero initial energy of the emitted electrons. We also determined that this effect is strongly coupled to relative timing between the inversion pulse and application of the main anode-cathode pulse. We also have initiated brightness measurements of the emitted beam. As in our previous measurements at this Laboratory, we performed the measurement using a pepper pot technique. Beam-let profiles are recorded with a fast phosphor and gated cameras. We describe our apparatus and preliminary measurements.

  9. Elastic softening and polarization memory in PZN-PT relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Farnsworth, S. M.; Kisi, E. H.; Carpenter, M. A.

    2011-11-01

    Substantial elastic softening in the cubic phase of PZN-PT relaxor ferroelectric crystals is observed as a large hysteresis between the RUS frequencies from poled and depoled crystals. This is due to static switchable polar nanoregions (PNR) at T*, well below the conventional Burns temperature but ˜50 K above the ferroelectric transition. Elastic softening due to polarization of the PNR shows polarization memory through two phase transitions and is greater than the softening associated with polarization of the ferroelectric phases. This emphasizes that PNR dominate the material properties at all temperatures below T*.

  10. A strong ferroelectric ferromagnet created by means of spin-lattice coupling.

    SciTech Connect

    Lee, J. H.; Fang, L.; Vlahos, E.; Ke, X.; Jung, Y.W.; Fitting Kourkaoutis, L.; Kim, J. W.; Ryan, P.; Heeg, T.; Roeckerath, M.; Goian, V.; Bernhagen, M.; Uecker, R.; Hammel, P.C.; Rabe, K. M.; Kamba, S.; Schubert, J.; Freeland, J.W.; Muller, D.A.; Fennie, C.J.; Schiffer, P.; Gopalan, V.; Johnston-Halperin, E.; Schlom, D. G.

    2010-08-19

    Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today. Recently, however, a new route to ferroelectric ferromagnets was proposed by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO{sub 3}, was predicted to exhibit strong ferromagnetism (spontaneous magnetization, {approx}7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, {approx}10 {micro}C cm{sup -2}) simultaneously under large biaxial compressive strain. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high

  11. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  12. Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory.

    PubMed

    Lue, Hang-Ting; Wu, Chien-Jang; Tseng, Tseung-Yuen

    2003-01-01

    An improved theoretical analysis on the electrical characteristics of ferroelectric memory field-effect transistor (FeMFET) is given. First, we propose a new analytical expression for the polarization versus electric field (P-E) for the ferroelectric material. It is determined by one parameter and explicitly includes both the saturated and nonsaturated hysteresis loops. Using this expression, we then examine the operational properties for two practical devices such as the metal-ferroelectric-insulator-semiconductor field-effect transistor (MFIS-FET) and metal-ferroelectric-metal-insulator-semiconductor field-effect transistor (MFMIS-FET) as well. A double integral also has been used, in order to include the possible effects due to the nonuniform field and charge distribution along the channel of the device, to calculate the drain current of FeMFET. By using the relevant material parameters close to the (Bi, La)4Ti3O12 (BLT) system, accurate analyses on the capacitors and FeMFET's at various applied biases are made. We also address the issues of depolarization field and retention time about such a device. PMID:12578132

  13. Vacuum-evaporated ferroelectric films and heterostructures of vinylidene fluoride/trifluoroethylene copolymer

    SciTech Connect

    Draginda, Yu. A. Yudin, S. G.; Lazarev, V. V.; Yablonskii, S. V.; Palto, S. P.

    2012-05-15

    The potential of the vacuum method for preparing ferroelectric films and photonic heterostructures from organic materials is studied. Vacuum-evaporated films of fluoropolymers and heterostructures on their basis are obtained and their ferroelectric and spectral properties are studied. In particular, homogeneous films of the well-known piezoelectric polymer polyvinylidene fluoride and ferroelectric material vinylidene fluoride/trifluoroethylene copolymer (P(VDF/TFE)) are produced. Experimental studies of vacuum-evaporated P(VDF/TFE) films confirmed their ferroelectric properties. The heterostructures composed of alternating layers of P(VDF/TFE) copolymer molecules and azodye molecules are fabricated by vacuum evaporation. Owing to the controlled layer thickness and a significant difference in the refractive indices of the P(VDF/TFE) copolymer and azodyes, these heterostructures exhibit properties of photonic crystals. This finding is confirmed by the occurrence of a photonic band in the absorption spectra of the heterostructures.

  14. Multiferroic BaCoF4 in Thin Film Form: Ferroelectricity, Magnetic Ordering, and Strain.

    PubMed

    Borisov, Pavel; Johnson, Trent A; García-Castro, Andrés Camilo; KC, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo H; Lederman, David

    2016-02-01

    Multiferroic materials have simultaneous magnetic and ferroelectric long-range orders and can be potentially useful for a wide range of applications. Conventional ferroelectricity in oxide perovskites favors nonmagnetic electronic configurations of transition metal ions, thus limiting the number of intrinsic multiferroic materials. On the other hand, this is not necessarily true for multiferroic fluorides. Using molecular beam epitaxy, we demonstrate for the first time that the multiferroic orthorhombic fluoride BaCoF4 can be synthesized in thin film form. Ferroelectric hysteresis measurements and piezoresponse force microscopy show that the films are indeed ferroelectric. From structural information, magnetic measurements, and first-principles calculations, a modified magnetic ground state is identified which can be represented as a combination of bulk collinear antiferromagnetism with two additional canted spin orders oriented along orthogonal axes of the BaCoF4 unit cell. The calculations indicate that an anisotropic epitaxial strain is responsible for this unusual magnetic ground state. PMID:26745210

  15. Metallic-like to nonmetallic transitions in a variety of heavily oxygen deficient ferroelectrics

    SciTech Connect

    Bock, Jonathan A.; Trolier-McKinstry, Susan; Randall, Clive A.; Lee, Soonil

    2015-08-31

    The coupling between ferroelectric distortions and electron transport is an important factor in understanding ferroelectric/noncentrosymmetric materials with metallic conductivities and ferroelectric-based thermoelectrics. Here, multiple d{sup 0} ferroelectrics with a variety of crystal structures are doped via oxygen deficiency, resulting in metallic-like conduction in the paraelectric state. It is found that most of the studied systems show a metallic-like to nonmetallic transition near the paraelectric-ferroelectric transition. The metallic-like to nonmetallic transition temperature can be shifted using mechanisms that shift the paraelectric-ferroelectric transition temperature. It was found that the metallic-like to nonmetallic transition temperature could be shifted from 373 K to 273 K by varying (Ba{sub 1−x}Sr{sub x})TiO{sub 3−δ} from x = 0 to x = 0.3 and x = 1. The most probable mechanism for ferroelectric-electron transport coupling was determined to be Anderson localization associated with polarization with short-range order.

  16. Development of ferroelectric electron beam diodes

    SciTech Connect

    Flechtner, D.; Ivers, J.D.; Kerslick, G.A.; Nation, J.A.; Schaechter, L.; Zhang, G.

    1995-12-31

    The authors are currently investigating the use of ferroelectric ceramics for electron beam generation. These materials exhibit a spontaneous (saturation) polarization, P{sub s}, of up to 100{mu}C/cm{sup 2}. Emission occurs when the polarization state of the ferroelectric is changed rapidly by an applied electric field, and a fraction of the surface screening charge is released at a gridded electrode. Using a Lead-Zirconate-Titanate (PZT) ceramic as the electron source in a planar 14kV diode geometry they have measured diode current densities of up to 40A/cm{sup 2} with a 5cm gap. The normalized rms emittance of this beam has been measured to be 12{pi} mm-mrad at 8A. Recent results from experiments to extend operation of this diode up to 70 kV, 300 ns pulses will be reported. They are also designing a 20--30 kV, 1 {micro}s system that will be operated in a repetition rate mode. They are planning to use such a system as part of their program to develop compact X-band sources with average power levels in the hundreds of watts range. Using simulation codes, such as EGUN, together with results from analytical work TWT structures are being designed for use with these sources. The advantages of using PPM focusing in both cylindrical or sheet beam configurations are also under investigation.

  17. Functional ferroelectric tunnel junctions on silicon

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando; Chen, Jingsheng

    2015-07-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories.

  18. Functional ferroelectric tunnel junctions on silicon

    PubMed Central

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando, A; Chen, Jingsheng

    2015-01-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories. PMID:26215429

  19. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  20. Improper ferroelectricity: A theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Hardy, J. R.; Ullman, F. G.

    1984-02-01

    A combined theoretical and experimental study has been made of the origins and properties of the improper ferroelectricity associated with structural modulations of non-zero wavelengths. Two classes of materials have been studied: rare earth molybdates (specifically, gadolinium molybdate: GMO), and potassium selenate and its isomorphs. In the former, the modulation is produced by a zone boundary phonon instability, and in the latter by the instability of a phonon of wave vector approximately two-thirds of the way to the zone-boundary. In the second case the initial result is a modulated structure whose repeat distance is not a rational multiple of the basic lattice repeat distance. This result is a modulated polarization which, when the basic modulation locks in to a rational multiple of the lattice spacing, becomes uniform, and improper ferroelectricity results. The origins of these effects have been elucidated by theoretical studies, initially semi-empirical, but subsequently from first-principles. These complemented the experimental work, which primarily used inelastic light scattering, uniaxial stress, and hydrostatic pressure, to probe the balance between the interionic forces through the effects on the phonons and dielectric properties.

  1. Prediction of a native ferroelectric metal

    PubMed Central

    Filippetti, Alessio; Fiorentini, Vincenzo; Ricci, Francesco; Delugas, Pietro; Íñiguez, Jorge

    2016-01-01

    Over 50 years ago, Anderson and Blount discussed symmetry-allowed polar distortions in metals, spawning the idea that a material might be simultaneously metallic and ferroelectric. While many studies have ever since considered such or similar situations, actual ferroelectricity—that is, the existence of a switchable intrinsic electric polarization—has not yet been attained in a metal, and is in fact generally deemed incompatible with the screening by mobile conduction charges. Here we refute this common wisdom and show, by means of first-principles simulations, that native metallicity and ferroelectricity coexist in the layered perovskite Bi5Ti5O17. We show that, despite being a metal, Bi5Ti5O17 can sustain a sizable potential drop along the polar direction, as needed to reverse its polarization by an external bias. We also reveal striking behaviours, as the self-screening mechanism at work in thin Bi5Ti5O17 layers, emerging from the interplay between polar distortions and carriers in this compound. PMID:27040076

  2. Raman spectroscopic studies of disordered ferroelectric oxides

    NASA Astrophysics Data System (ADS)

    Savvinov, Alexey A.

    Relaxational properties of compositionally disordered AB03 perovskite oxides were studied. These oxides are the prototypical soft ferroelectric (FE) mode systems, and their interesting dipolar relaxational properties are determined by their long, strongly temperature-dependent correlation lengths for the dipolar interactions. The simple cases involve dilute chemical substitutions in the incipient ferroelectrics KTaO3 and SrTiO3, which exhibit relatively weak, low-temperature Debye-type relaxations. More complicated dipolar interactions are seen in B-site disordered Nb-doped KTaO3, which exhibits glass-like relaxor and relaxor-to-ferroelectric crossover behaviors at low temperatures. Finally, there is a class of more complex perovskites represented by PMN, PZN-PT and the PLT that exhibit strong, high-temperature relaxor and/or ferroelectric properties. The renewed interest in the KTa1-xNbxO (KTN) mixed perovskite materials, especially in high quality thin films, is connected with their remarkable dielectric properties in the dilute compositions. Off-center Nb ions in the highly polarizable KTaO3 lattice provide a drastic increase in the dielectric peak, up to 20 times in comparison with the pure KTaO3 and KNbO3. The effects of the substrate and the symmetry-breaking defects on their vibration spectra were studied by micro-Raman spectroscopy. An anomalous residual intensity of the forbidden first-order scattering modes in the cubic paraelectric phase of the KTN films was connected with the formation of polar microregions even far above the bulk Tc. On the whole, the KTN film behavior shows the existence of specific defects enhancing the perovskite unit cell in the film so that the activity of off-center Nb ions increases in producing larger electric dipoles and extending the precursor phase above Tc. In diluted compositions with low Nb concentrations KTN materials exhibit formation of polar nano regions and relaxor like behavior. This behavior is analogous with

  3. Coherent coupling in ferroelectric superlattices

    SciTech Connect

    Li, S.; Eastman, J.A.; Vetrone, J.; Newnham, R.E.; Cross, L.E.

    1996-07-01

    The phase transition and dielectric behavior of ferroelectric multilayers have been discussed. The coherent interaction between ultra-thin layers can be significantly strong, resulting in a broad diffuse phase transition. The thicknesses of layers and their spatial distributions hold the keys of enhancing dielectric properties in a broad temperature range.

  4. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  5. Quantum ferroelectricity in charge-transfer complex crystals

    PubMed Central

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4–n bromine substituents (QBr4–nIn, n=0–4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF–QBr2I2 exhibits a ferroelectric neutral–ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral–ionic transition compounds, such as well-known ferroelectric complex of TTF–QCl4 and quantum antiferroelectric of dimethyl–TTF–QBr4. By contrast, TTF–QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  6. Thermal-to-electric energy conversion using ferroelectric film capacitors

    NASA Astrophysics Data System (ADS)

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I.

    2014-10-01

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5 μm) Ba0.3Sr0.7TiO3 film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100 K to 350 K under different electric fields up to 80 V/μm, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15 K around room temperature and electric field about 40 V/μm, the harvested energy was estimated as 30 mJ/cm3. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  7. Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics.

    PubMed

    Bintachitt, P; Jesse, S; Damjanovic, D; Han, Y; Reaney, I M; Trolier-McKinstry, S; Kalinin, S V

    2010-04-20

    Nanoscale and mesoscopic disorder and associated local hysteretic responses underpin the unique properties of spin and cluster glasses, phase-separated oxides, polycrystalline ferroelectrics, and ferromagnets alike. Despite the rich history of the field, the relationship between the statistical descriptors of hysteresis behavior such as Preisach density, and micro and nanostructure has remained elusive. By using polycrystalline ferroelectric capacitors as a model system, we now report quantitative nonlinearity measurements in 0.025-1 microm(3) volumes, approximately 10(6) times smaller than previously possible. We discover that the onset of nonlinear behavior with thickness proceeds through formation and increase of areal density of micron-scale regions with large nonlinear response embedded in a more weakly nonlinear matrix. This observation indicates that large-scale collective domain wall dynamics, as opposed to motion of noninteracting walls, underpins Rayleigh behavior in disordered ferroelectrics. The measurements provide evidence for the existence and extent of the domain avalanches in ferroelectric materials, forcing us to rethink 100-year old paradigms. PMID:20368462

  8. Phonon localization drives polar nanoregions in a relaxor ferroelectric

    SciTech Connect

    Manley, Michael E; Lynn, Jeffrey; Specht, Eliot D; Delaire, Olivier A; Bishop, Alan; Sahul, Raffi; Budai, John D

    2014-01-01

    Relaxor ferroelectrics1, which are utilized as actuators and sensors2-4, exemplify a class of poorly understood materials where interplay between disorder and phase instability results in inhomogeneous nanoregions. There is no definitive explanation for the onset of relaxor behavior (Burns temperature5, Td) or the origin of polar nanoregions (PNRs). Here we show a vibrational mode that localizes on cooling to Td, remains localized as PNRs form, and then delocalizes as PNRs grow using neutron scattering on relaxor (Pb(Mg1/3Nb2/3)O3)0.69-(PbTiO3)0.31 (PMN-31%PT). Although initially appearing like intrinsic local modes (ILMs)6-10, these modes differ below Td as they form a resonance with the ferroelectric phonon. At the resonance, nanoregions of standing ferroelectric phonons develop with a coherence length matching the PNRs. The size, shape, distribution, and temporal fluctuations of PNRs, and our observations, are explained by ferroelectric phonons trapped by disordered resonance modes via Anderson localization11-13. Our results show the size and shape of PNRs are not dictated by complex structural details, as always assumed, but by a phonon resonance wavevector. This simplification could guide the design of next generation relaxors.

  9. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2004-03-08

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  10. Quantum ferroelectricity in charge-transfer complex crystals.

    PubMed

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  11. Thermal-to-electric energy conversion using ferroelectric film capacitors

    SciTech Connect

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I.

    2014-10-28

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5 μm) Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100 K to 350 K under different electric fields up to 80 V/μm, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15 K around room temperature and electric field about 40 V/μm, the harvested energy was estimated as 30 mJ/cm{sup 3}. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  12. Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics

    PubMed Central

    Bintachitt, P.; Jesse, S.; Damjanovic, D.; Han, Y.; Reaney, I. M.; Trolier-McKinstry, S.; Kalinin, S. V.

    2010-01-01

    Nanoscale and mesoscopic disorder and associated local hysteretic responses underpin the unique properties of spin and cluster glasses, phase-separated oxides, polycrystalline ferroelectrics, and ferromagnets alike. Despite the rich history of the field, the relationship between the statistical descriptors of hysteresis behavior such as Preisach density, and micro and nanostructure has remained elusive. By using polycrystalline ferroelectric capacitors as a model system, we now report quantitative nonlinearity measurements in 0.025–1 μm3 volumes, approximately 106 times smaller than previously possible. We discover that the onset of nonlinear behavior with thickness proceeds through formation and increase of areal density of micron-scale regions with large nonlinear response embedded in a more weakly nonlinear matrix. This observation indicates that large-scale collective domain wall dynamics, as opposed to motion of noninteracting walls, underpins Rayleigh behavior in disordered ferroelectrics. The measurements provide evidence for the existence and extent of the domain avalanches in ferroelectric materials, forcing us to rethink 100-year old paradigms. PMID:20368462

  13. Stabilizing the ferroelectric phase in doped hafnium oxide

    SciTech Connect

    Hoffmann, M.; Schroeder, U.; Schenk, T.; Shimizu, T.; Funakubo, H.; Sakata, O.; Pohl, D.; Drescher, M.; Adelmann, C.; Materlik, R.; Kersch, A.; Mikolajick, T.

    2015-08-21

    The ferroelectric properties and crystal structure of doped HfO{sub 2} thin films were investigated for different thicknesses, electrode materials, and annealing conditions. Metal-ferroelectric-metal capacitors containing Gd:HfO{sub 2} showed no reduction of the polarization within the studied thickness range, in contrast to hafnia films with other dopants. A qualitative model describing the influence of basic process parameters on the crystal structure of HfO{sub 2} was proposed. The influence of different structural parameters on the field cycling behavior was examined. This revealed the wake-up effect in doped HfO{sub 2} to be dominated by interface induced effects, rather than a field induced phase transition. TaN electrodes were shown to considerably enhance the stabilization of the ferroelectric phase in HfO{sub 2} compared to TiN electrodes, yielding a P{sub r} of up to 35 μC/cm{sup 2}. This effect was attributed to the interface oxidation of the electrodes during annealing, resulting in a different density of oxygen vacancies in the Gd:HfO{sub 2} films. Ab initio simulations confirmed the influence of oxygen vacancies on the phase stability of ferroelectric HfO{sub 2}.

  14. Ferroelectrically driven spatial carrier density modulation in graphene

    NASA Astrophysics Data System (ADS)

    Baeumer, Christoph; Saldana-Greco, Diomedes; Martirez, John Mark P.; Rappe, Andrew M.; Shim, Moonsub; Martin, Lane W.

    2015-01-01

    The next technological leap forward will be enabled by new materials and inventive means of manipulating them. Among the array of candidate materials, graphene has garnered much attention; however, due to the absence of a semiconducting gap, the realization of graphene-based devices often requires complex processing and design. Spatially controlled local potentials, for example, achieved through lithographically defined split-gate configurations, present a possible route to take advantage of this exciting two-dimensional material. Here we demonstrate carrier density modulation in graphene through coupling to an adjacent ferroelectric polarization to create spatially defined potential steps at 180°-domain walls rather than fabrication of local gate electrodes. Periodic arrays of p-i junctions are demonstrated in air (gate tunable to p-n junctions) and density functional theory reveals that the origin of the potential steps is a complex interplay between polarization, chemistry, and defect structures in the graphene/ferroelectric couple.

  15. Ferroelectrically driven spatial carrier density modulation in graphene.

    PubMed

    Baeumer, Christoph; Saldana-Greco, Diomedes; Martirez, John Mark P; Rappe, Andrew M; Shim, Moonsub; Martin, Lane W

    2015-01-01

    The next technological leap forward will be enabled by new materials and inventive means of manipulating them. Among the array of candidate materials, graphene has garnered much attention; however, due to the absence of a semiconducting gap, the realization of graphene-based devices often requires complex processing and design. Spatially controlled local potentials, for example, achieved through lithographically defined split-gate configurations, present a possible route to take advantage of this exciting two-dimensional material. Here we demonstrate carrier density modulation in graphene through coupling to an adjacent ferroelectric polarization to create spatially defined potential steps at 180°-domain walls rather than fabrication of local gate electrodes. Periodic arrays of p-i junctions are demonstrated in air (gate tunable to p-n junctions) and density functional theory reveals that the origin of the potential steps is a complex interplay between polarization, chemistry, and defect structures in the graphene/ferroelectric couple. PMID:25609217

  16. Origin of ferroelectricity in high-T(c) magnetic ferroelectric CuO.

    PubMed

    Jin, Guangxi; Cao, Kun; Guo, Guang-Can; He, Lixin

    2012-05-01

    Cupric oxide is a unique magnetic ferroelectric material with a transition temperature significantly higher than the boiling point of liquid nitrogen. However, the mechanism of high-T(c) multiferroicity in CuO remains puzzling. In this Letter, we clarify the mechanism of high-T(c) multiferroicity in CuO by using combined first-principles calculations and an effective hamiltonian model. We find that CuO contains two magnetic sublattices, with strong intrasublattice interactions and weakly frustrated intersublattice interactions. The weak spin frustration leads to incommensurate spin excitations that dramatically enhance the entropy of the multiferroic phase and eventually stabilize that phase in CuO. PMID:22681113

  17. Electrostatic engineering of strained ferroelectric perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Stengel, Massimiliano

    2015-12-01

    Design of novel artificial materials based on ferroelectric perovskites relies on the basic principles of electrostatic coupling and in-plane lattice matching. These rules state that the out-of-plane component of the electric displacement field and the in-plane components of the strain are preserved across a layered superlattice, provided that certain growth conditions are respected. Intense research is currently directed at optimizing materials functionalities based on these guidelines, often with remarkable success. Such principles, however, are of limited practical use unless one disposes of reliable data on how a given material behaves under arbitrary electrical and mechanical boundary conditions. Here we demonstrate, by focusing on the prototypical ferroelectrics PbTiO3 and BiFeO3 as test cases, how such information can be calculated from first principles in a systematic and efficient way. In particular, we construct a series of two-dimensional maps that describe the behavior of either compound (e.g., concerning the ferroelectric polarization and antiferrodistortive instabilities) at any conceivable choice of the in-plane lattice parameter, a , and out-of-plane electric displacement, D . In addition to being of immediate practical applicability to superlattice design, our results bring new insight into the complex interplay of competing degrees of freedom in perovskite materials and reveal some notable instances where the behavior of these materials depart from what naively is expected.

  18. The road towards the ferroelectric-FET - Carrier density modulation by ferroelectric switching in BaTiO3/Ge

    NASA Astrophysics Data System (ADS)

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham; Ren, Yuan; Wu, Xiaoyu; Vasudevan, Rama; Okatan, Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David; Kalinin, Sergei; Lai, Keji; Demkov, Alex; Ponath, Fredrickson, Posadas, Demkov Team; Ren, Wu, Lai Collaboration; Vasudevan, Okatan, Jesse, Kalinin Collaboration; Aoki, McCartney, Smith Collaboration

    2015-03-01

    Germanium, with its higher hole and electron mobility is a potential candidate to replace silicon as a channel material in a field effect transistor in the future. The ferroelectric high-k dielectric barium titanate (BTO) can be integrated on germanium (001) due to the small lattice mismatch between BTO and Ge and could therefore be a potential candidate for a ferroelectric memory. We report the epitaxial growth of BTO on a germanium (001) substrate with a thin STO buffer layer, which imposes compressive strain on BTO and causes it to be out of plane polarized. The BTO film crystallizes as-deposited which is monitored by RHEED. XRD measurements of the BTO film indicate an out-of-plane ferroelectric polarization which can be confirmed by piezoresponse force microscopy. Using microwave impedance microscopy we could show that we can effectively modulate the charge in germanium; this charge modulation constitutes the field effect, which is an important step towards the development of a ferroelectric-FET.

  19. The relationship between ferroelectric domain pattern and properties of PLT21 ceramics

    NASA Astrophysics Data System (ADS)

    Londoño, F. A.; Eiras, J. A.; Garcia, D.

    2016-02-01

    The light passing through a ferroelectric crystal tends to split into several separate beams due to refraction and reflection at the domain walls. This interaction of light with ferroelectric domains becomes one of the most important features of modern optoelectronic and nonlinear optics materials. Recently, lanthanum modified lead titanate, Pb(1-x)LaxTiO3, (PLT) has become popular because it possesses interesting properties such as a lower Curie temperature, a lower coercive field, and smaller remanent polarizations than PZT and has great potential for nonlinear optical and electro optical applications. In this work, we propose a simple model taking into account the optical transmission and rearrangement of the ferroelectrics domains structure on the PLT21 ceramic in temperature function. The variation of dielectrical and optical measurements in function of temperature were observed and correlated with the optical visualization of ferroelectric domains.

  20. FAST TRACK COMMUNICATION: Ferroelectricity in low-symmetry biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Osipov, Mikhail A.; Gorkunov, Maxim V.

    2010-09-01

    Order parameters and phenomenological theory for both high- and low-symmetry biaxial nematic phases are presented and it is predicted that the chiral low-symmetry biaxial phase must be ferroelectric. This conclusion is based on general symmetry arguments and on the results of the Landau-de Gennes theory. The microscopic mechanism of the ferroelectric ordering in this chiral biaxial phase is illustrated using a simple molecular model based on dispersion interactions between biaxial molecules of low symmetry. Similar to the chiral smectic C* phase, the ferroelectricity in the chiral biaxial nematic phase is improper, i.e., polarization is not a primary order parameter and is not determined by dipolar interactions. Ferroelectric ordering in biaxial nematics may be found, in principle, in materials composed of chiral analogues of the tetrapod molecules which are known to exhibit biaxial phases.

  1. True ferroelectric switching in thin films of trialkylbenzene-1,3,5-tricarboxamide (BTA).

    PubMed

    Gorbunov, A V; Putzeys, T; Urbanavičiūtė, I; Janssen, R A J; Wübbenhorst, M; Sijbesma, R P; Kemerink, M

    2016-08-24

    We have investigated the ferroelectric polarization switching properties of trialkylbenzene-1,3,5-tricarboxamide (BTA), which is a model system for a large class of novel organic ferroelectric materials. In the solid state BTAs form a liquid crystalline columnar hexagonal phase that provides long range order that was previously shown to give rise to hysteretic dipolar switching. In this work the nature of the polar switching process is investigated by a combination of dielectric relaxation spectroscopy, depth-resolved pyroelectric response measurements, and classical frequency- and time-dependent electrical switching. We show that BTAs, when brought in a homeotropically aligned hexagonal liquid crystalline phase, are truly ferroelectric. Analysis of the transient switching behavior suggests that the ferroelectric switching is limited by a highly dispersive nucleation process, giving rise to a wide distribution of switching times. PMID:27510767

  2. Characterization and engineering of ferroelectric microstructures by interferometric methods

    NASA Astrophysics Data System (ADS)

    Grilli, S.; Ferraro, P.; Paturzo, M.; Alfieri, D.; De Natale, P.; de Angelis, M.; De Nicola, S.; Finizio, A.; Pierattini, G.

    2005-08-01

    In the last years lithium niobate (LN) has become one of the most important optical material in optoelectronics and nonlinear optics for its large electro-optics and nonlinear optical coefficients. Ferroelectric materials are employed in several electrooptic, acousto-optic, and nonlinear optical devices, as modulator of light, beam deflector, optical frequency converters, or tuneable sources of coherent light for spectroscopic applications. Manipulation of ferroelectric domains into gratings, matrices, or other shapes is possible. Fabrication of new ordered microstructures in LN samples through domain engineering followed by differential etching has been developed recently for applications in the fields of optics and optoelectronics. These microstructures have a range of applications in optical ridge waveguides, alignment structures, V-grooves, micro-tips and micro-cantilever beams and precise control of the surface quality and topography is required of for photonic band-gap structures. Moreover engineering ferroelectric domains by an electrical poling technique represent a key process for the construction of a wide range of photonic devices. Therefore, a thorough understanding of material properties and of the poling process are crucial issues. We will show that interferometric approach based on Digital Holography can provide a very useful tool for investigation and characterization of materials and of the engineered structures.

  3. Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy.

    PubMed

    Kuffer, Olivier; Maggio-Aprile, Ivan; Fischer, Øystein

    2005-05-01

    Control of the density of mobile charge carriers using electric fields is widely used in a variety of metal-insulator-semiconductor structures and is the governing principle behind the operation of field-effect transistors. Ferroelectric materials possessing a switchable and non-volatile polarization field can be used as insulating layers, revealing new opportunities for device applications. Advances in material processing and in particular complex oxide thin-film growth mean that high-quality field-effect devices can be based on ferroelectric/metallic oxide heterostructures. In addition, advances in local probe techniques such as atomic force microscopy allow them to be used in the imaging and study of small ferroelectric domain structures in bulk crystals and thin films. Meanwhile, scanning tunnelling microscopy and spectroscopy have established themselves as powerful techniques for atomic manipulation and nanometre-resolution electron tunnelling spectroscopy. Here, a scanning tunnelling microscope is used to investigate the ferroelectric field effect in all-perovskite heterostructures. Scanning tunnelling spectroscopy allows us to probe the local electronic properties of the polarized channel of a ferroelectric field-effect device as a function of the field orientation. This technique can be used to read and write ferroelectric field-induced regions with a size as low as 20 nm. PMID:15834416

  4. Non-volatile memory based on the ferroelectric photovoltaic effect

    PubMed Central

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  5. Domain switching mechanisms in polycrystalline ferroelectrics with asymmetric hysteretic behavior

    NASA Astrophysics Data System (ADS)

    Anton, Eva-Maria; García, R. Edwin; Key, Thomas S.; Blendell, John E.; Bowman, Keith J.

    2009-01-01

    A numerical method is presented to predict the effect of microstructure on the local polarization switching of bulk ferroelectric ceramics. The model shows that a built-in electromechanical field develops in a ferroelectric material as a result of the spatial coupling of the grains and the direct physical coupling between the thermomechanical and electromechanical properties of a bulk ceramic material. The built-in fields that result from the thermomechanically induced grain-grain electromechanical interactions result in the appearance of four microstructural switching mechanisms: (1) simple switching, where the c-axes of ferroelectric domains will align with the direction of the applied macroscopic electric field by starting from the core of each grain; (2) grain boundary induced switching, where the domain's switching response will initiate at grain corners and boundaries as a result of the polarization and stress that is locally generated from the strong anisotropy of the dielectric permittivity and the local piezoelectric contributions to polarization from the surrounding material; (3) negative poling, where abutting ferroelectric domains of opposite polarity actively oppose domain switching by increasing their degree of tetragonality by interacting with the surrounding domains that have already switched to align with the applied electrostatic field. Finally, (4) domain reswitching mechanism is observed at very large applied electric fields, and is characterized by the appearance of polarization domain reversals events in the direction of their originally unswitched state. This mechanism is a consequence of the competition between the macroscopic applied electric field, and the induced electric field that results from the neighboring domains (or grains) interactions. The model shows that these built-in electromechanical fields and mesoscale mechanisms contribute to the asymmetry of the macroscopic hysteretic behavior in poled samples. Furthermore, below a

  6. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7)O3 for multi-bit storage application

    PubMed Central

    2011-01-01

    In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156

  7. Ferroelectric Stirling-Cycle Refrigerator

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    A Stirling-cycle refrigerator has a three-pump configuration and pumping sequence, in which one pump serves as a compressor. one pump serves as an expander, and one pump serves as a displacer. The pumps are ferroelectrically actuated diaphragm pumps which are coordinated by synchronizing the ferroelectric-actuator voltages in such a way that the net effect of the displacer is to reduce the deleterious effect of dead space; that is, to circulate a greater fraction of the working fluid through the heat exchangers than would be possible by use of the compressor and expander alone. In addition. the displacer can be controlled separately to make the flow of working fluid in the heat exchangers turbulent (to increase the rate of transfer of heat at the cost of greater resistance to flow) or laminar (to decrease the resistance to flow at the cost of a lower heat-transfer rate).

  8. Ferroelectric, Thermal, and Magnetic Characteristics of Praseodymium Malonate Hexahydrate Crystals

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2016-04-01

    Gel-grown single crystals of [Pr2(C3H2O4)3(H2O)6] exhibit remarkably flat habit faces, the most predominant being {110}. High-resolution x-ray diffraction analysis showed that the crystals are free from structural grain boundaries, which is the key requirement for single crystals for use in the microelectronics industry to serve as low-dielectric-constant ferroelectric material. The dielectric behavior recorded on {110} planes of single crystals shows that the crystal is ferroelectric with transition temperature T c = 135°C, which differs from the Curie-Weiss temperature T 0 by 2°C (T 0 < T c). Material in pellet form is shown to exhibit slightly different dielectric behavior. Polarization versus electric field confirms the ferroelectric behavior of the material. The dielectric behavior is also supported by the results of thermal studies, viz. thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The magnetic susceptibility and magnetic moment are calculated to be 30.045 × 10-6 emu and 3.092 BM, respectively.

  9. Crack instability of ferroelectric solids under alternative electric loading

    NASA Astrophysics Data System (ADS)

    Chen, Hao-Sen; Wang, He-Ling; Pei, Yong-Mao; Wei, Yu-Jie; Liu, Bin; Fang, Dai-Ning

    2015-08-01

    The low fracture toughness of the widely used piezoelectric and ferroelectric materials in technological applications raises a big concern about their durability and safety. Up to now, the mechanisms of electric-field induced fatigue crack growth in those materials are not fully understood. Here we report experimental observations that alternative electric loading at high frequency or large amplitude gives rise to dramatic temperature rise at the crack tip of a ferroelectric solid. The temperature rise subsequently lowers the energy barrier of materials for domain switch in the vicinity of the crack tip, increases the stress intensity factor and leads to unstable crack propagation finally. In contrast, at low frequency or small amplitude, crack tip temperature increases mildly and saturates quickly, no crack growth is observed. Together with our theoretical analysis on the non-linear heat transfer at the crack tip, we constructed a safe operating area curve with respect to the frequency and amplitude of the electric field, and validated the safety map by experiments. The revealed mechanisms about how electro-thermal-mechanical coupling influences fracture can be directly used to guide the design and safety assessment of piezoelectric and ferroelectric devices.

  10. Ferroelectric-dielectric tunable composites

    NASA Astrophysics Data System (ADS)

    Sherman, Vladimir O.; Tagantsev, Alexander K.; Setter, Nava; Iddles, David; Price, Tim

    2006-04-01

    The dielectric response of ferroelectric-dielectric composites is theoretically addressed. Dielectric permittivity, tunability (relative change of the permittivity driven by dc electric field), and loss tangent are evaluated for various composite models. The analytical results for small dielectric concentration and relative tunability are obtained in terms of the traditional electrostatic consideration. The results for large tunability are obtained numerically. A method is proposed for the evaluation of the tunability and loss at large concentrations of the dielectric. The basic idea of the method is to reformulate the effective medium approach in terms of electrical energies stored and dissipated in the composite. The important practical conclusion of the paper is that, for random ferroelectric-dielectric composite, the addition of small amounts of a linear dielectric into the tunable ferroelectric results in an increase of the tunability of the mixture. The loss tangent of such composites is shown to be virtually unaffected by the addition of moderate amounts of the low-loss dielectric. The experimental data for (Ba,Sr)TiO3 based composites are analyzed in terms of the theory developed and shown to be in a reasonable agreement with the theoretical results.

  11. Electrocaloric effect in relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pirc, R.; Kutnjak, Z.; Blinc, R.; Zhang, Q. M.

    2011-10-01

    A theoretical model for the electrocaloric effect (ECE) in relaxor ferroelectrics is presented. By solving a self-consistent relation for the ECE temperature change ΔT and minimizing numerically the mean field free energy for relaxors, the field and temperature dependence of ΔT is calculated. The corresponding harmonic Landau coefficient a =a(T), which differs from the ferroelectric case by always being positive, is derived from the spherical random bond-random field model, and the fourth-order coefficient b is treated as a phenomenological parameter, which can be either positive or negative. For b <0, a line of field-induced first-order relaxor-to-ferroelectric phase transitions exists in relaxors, which terminates at a liquid-vapor type critical point ECP,TCP. The critical behavior close to ECP,TCP is analyzed. It is shown that near the first-order phase transition a temperature or field interval or gap formally appears, where ΔT cannot be found. However, domain formation in the coexistence range should restore the continuous behavior of the ECE observed in real systems. Finally, it is shown that the ECE responsivity R1=ΔT /E reaches a maximum near the critical point, in agreement with recent experiments.

  12. Relationship between ferroelectric properties and local structure of Pb1-xBaxZr0.40Ti0.60O3 ceramic materials studied by X-ray absorption and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Mesquita, Alexandre; Michalowicz, Alain; Moscovici, Jacques; Pizani, Paulo Sergio; Mastelaro, Valmor Roberto

    2016-08-01

    This paper reports on the structural characterization of Pb1-xBaxZr0.40Ti0.60O3 (PBZT) ferroelectric ceramic compositions prepared by the conventional solid state reaction method. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used in the probing of the local structure of PBZT samples that exhibit a normal or relaxor ferroelectric behavior. They showed a considerable local disorder around Zr and Pb atoms in the samples of tetragonal or cubic long-range order symmetry. The intensity of the E(TO3) mode in the Raman spectra of PBZT relaxor samples remains constant at temperatures lower than Tm, which has proven the stabilization of the correlation process between nanodomains.

  13. Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2007-01-01

    Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  14. Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT

    SciTech Connect

    Mclachlan, Martyn A.; McComb, D W; Ryan, Mary P.; Morozovska, Anna N; Eliseev, E. A.; Payzant, E Andrew; Jesse, Stephen; Seal, Katyayani; Kalinin, Sergei V

    2011-01-01

    We describe the characterization, ferroelectric phase stability and polarization switching in strain-free macroscopic assemblies of 50-100 nm wide PbZr0.3Ti0.7O3 (PZT) nanostructures (ferroelectric nanosponges). The structures present uniquely large areas and volumes of PZT where the microstructure is spatially modulated and the composition is homogeneous. Variable temperature powder X-ray diffraction (XRD) studies show that the global structure is tetragonal at room temperature and undergoes a reversible tetragonal to cubic phase transition on heating/cooling. Our studies indicate that this transition temperature is 30-50 C lower than unstructured PZT of the same composition. To characterize and confirm that the structures are ferroelectric we have utilized piezoresponse force spectroscopy and we demonstrate that the switching polarization can be spatially mapped within the structures. Corresponding polarization distributions have been calculated for the bulk and nanostructured materials using a two-parameter direct variational method based on Landau-Ginzburg-Devonshire equation. Our studies correlate global and local characterization of ferroelectric nanostructures revealing that in the nanosponges tetragonal and ferroelectric PZT is stabilized and open a pathway for effective studies of nanoscale ferroelectrics in large volumes.

  15. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites.

    PubMed

    Stroppa, Alessandro; Di Sante, Domenico; Barone, Paolo; Bokdam, Menno; Kresse, Georg; Franchini, Cesare; Whangbo, Myung-Hwan; Picozzi, Silvia

    2014-01-01

    Ferroelectricity is a potentially crucial issue in halide perovskites, breakthrough materials in photovoltaic research. Using density functional theory simulations and symmetry analysis, we show that the lead-free perovskite iodide (FA)SnI3, containing the planar formamidinium cation FA, (NH2CHNH2)(+), is ferroelectric. In fact, the perpendicular arrangement of FA planes, leading to a 'weak' polarization, is energetically more stable than parallel arrangements of FA planes, being either antiferroelectric or 'strong' ferroelectric. Moreover, we show that the 'weak' and 'strong' ferroelectric states with the polar axis along different crystallographic directions are energetically competing. Therefore, at least at low temperatures, an electric field could stabilize different states with the polarization rotated by π/4, resulting in a highly tunable ferroelectricity appealing for multistate logic. Intriguingly, the relatively strong spin-orbit coupling in noncentrosymmetric (FA)SnI3 gives rise to a co-existence of Rashba and Dresselhaus effects and to a spin texture that can be induced, tuned and switched by an electric field controlling the ferroelectric state. PMID:25533044

  16. Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Ievlev, Anton V.; Obukhovskii, Vyacheslav V.; Fomichov, Yevhen; Varenyk, Oleksandr V.; Shur, Vladimir Ya.; Kalinin, Sergei V.; Eliseev, Eugene A.

    2016-04-01

    We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy along the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNb O3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.

  17. Impact of symmetry on the ferroelectric properties of CaTiO{sub 3} thin films

    SciTech Connect

    Biegalski, Michael D.; Qiao, Liang; Gu, Yijia; Chen, Long-Qing; Mehta, Apurva; He, Qian; Borisevich, Albina; Takamura, Yayoi

    2015-04-20

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO{sub 3}, through the careful control of the biaxial strain state and TiO{sub 6} octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO{sub 3} films grown on La{sub 0.18}Sr{sub 0.82}Al{sub 0.59}Ta{sub 0.41}O{sub 3} (LSAT) and NdGaO{sub 3} (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO{sub 6} octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ∼5 μC/cm{sup 2} at 10 K and T{sub c} near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and T{sub c}. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  18. Impact of symmetry on the ferroelectric properties of CaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Biegalski, Michael D.; Qiao, Liang; Gu, Yijia; Mehta, Apurva; He, Qian; Takamura, Yayoi; Borisevich, Albina; Chen, Long-Qing

    2015-04-01

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO3, through the careful control of the biaxial strain state and TiO6 octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO3 films grown on La0.18Sr0.82Al0.59Ta0.41O3 (LSAT) and NdGaO3 (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO6 octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ˜5 μC/cm2 at 10 K and Tc near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and Tc. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  19. Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics

    DOE PAGESBeta

    Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen; Varenyk, O. V.; Shur, Vladimir Ya.; Kalinin, Sergei V.; Eliseev, E. A.

    2016-04-28

    We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less

  20. Unusual ferroelectricity induced by the Jahn-Teller effect: A case study on lacunar spinel compounds

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Xiang, Hongjun

    The Jahn-Teller effect refers to the symmetry-lowering geometrical distortion in a crystal (or nonlinear molecule) due to the presence of a degenerate electronic state. Usually, the Jahn-Teller distortion is not polar. Recently, GaV4S8 with a lacunar spinel structure was found to undergo a Jahn-Teller distortion from a cubic to ferroelectric rhombohedral structure at TJT = 38 K. Here, we carry out a general group theory analysis to show how and when the Jahn-Teller effect gives rise to ferroelectricity. On the basis of this theory, we ?nd that the ferroelectric Jahn-Teller distortion in GaV4S8 is due to the noncentrosymmetric nature of the parent phase and a strong electron-phonon interaction related to two low-energy T2 phonon modes. Interestingly, GaV4S8 is not only ferroelectric, but also ferromagnetic with a magnetic easy axis along the ferroelectric direction. This suggests that GaV4S8 is a multiferroic material in which an external electric ?eld may control its magnetization direction. Our study not only explains the Jahn-Teller physics in GaV4S8, but also paves a way for searching and designing different ferroelectrics and multiferroics.

  1. Study of the microscopic ferroelectric properties of copolymer P(VDF-TrFe) films

    NASA Astrophysics Data System (ADS)

    Baur, Li-Jie C.; Koslowski, B.; Dransfeld, K.

    1995-02-01

    By using a scanning tunneling microscope (STM) we investigated the local ferroelectric behaviour of copolymer P(VDF-TrFE) films of various compositions and crystallinity. By means of the STM we examined locally the variation of the film thickness as a function of the poling voltage (a newly developed microscopic adaptation of the so-called “butterfly” technique), achieving an accuracy of better than 1 Å in height and a lateral resolution in the nanometer range. We could clearly distinguish the different ferroelectric switching behaviour of the amorphous and crystalline domains. In addition, we were able to detect the switching of individual crystallites, the analogue to the Barkhausen-effect in ferromagnetic materials, which has not been seen so far in ferroelectric systems. Finally, our observation of a spread-out but strong ferroelectric switching also in the amorphous regions of sample is not compatible with the current theoretical structural model of a strictly non-ferroelectric amorphous phase enclosing the ferroelectric crystallites.

  2. Study of vanadium doped strontium bismuth niobate tantalate ferroelectric ceramics and thin films

    NASA Astrophysics Data System (ADS)

    Wu, Yun

    First part of the dissertation is the research on the material system strontium bismuth niobate vanadates, SrBi2(Nb,V)2O 9, (SBNV) ferroelectrics. Present research includes two parts: (1) enhancement of ferroelectric and dielectric properties through partial vanadium substitution and (2) thin films of SBNV ferroelectrics by sol-gel processing. The experimental results demonstrated that the partial incorporation of vanadium into the crystal structure resulted in a significantly enhanced ferroelectric and dielectric properties, which include approximately 300% increase in remanent polarization and 100% reduction in coercive field. Such a significant property enhancement was attributed to the fact that the incorporation of V 5+ with smaller radius (58 pm), in comparison with that of Nb 5+ (69 pm), resulted in an increased "rattling space" for spontaneous polarization. It was also found that the incorporation of vanadium improved other properties of the ferroelectrics including reduced DC conductivity and tangent loss. In addition, some preliminary work has been done on the sol-gel processing and film deposition of SBNV ferroelectrics. A sol-gel process has been successfully developed and single phase SBNV ferroelectrics have been obtained after heat treatment at 600--800°C. Smooth dense thin films of SBNV ferroelectrics with an average grain size of ˜100 nm were obtained through sol-gel coating. Second part of the dissertation is the study on the influence of the vanadium doping on the strontium bismuth tantalate, SrBi2Ta2O9, (SBT) system. Partial substitution (10 at%) of pentavalent tantalum ions by pentavalent vanadium ions with a relatively smaller ionic radius in the SBT layered perovskite ferroelectrics leads to an enhanced dielectric constants, a broadened peak, and a reduced stability of layered tetragonal perovskite structure, as evidenced by an increased para-ferroelectric transition temperature. It was found that the frequency dependence of para-ferroelectric

  3. Domain engineered ferroelectric energy harvesters on a substrate

    NASA Astrophysics Data System (ADS)

    Münch, I.; Krauß, M.; Landis, C. M.; Huber, J. E.

    2011-05-01

    Phase-field modeling is used to study the domain evolution of nano-scaled ferroelectric devices influenced by the mechanical strain of an underlying substrate. The investigations focus on the design of the energy harvesting systems to convert mechanical into electrical energy. Mechanical energy is provided by an alternating in-plane strain in the substrate through bending or unidirectional stretching. Additionally, lattice mismatch between the substrate and the ferroelectric material induces epitaxial strain and controls the polarization behavior within the system. Further, electrical boundary conditions are used to stabilize the domain topology. Finite element simulations are employed to explore the performance of the engineered domain topologies in delivering electrical charge from mechanical deformation.

  4. A finite element model of ferroelectric/ferroelastic polycrystals

    SciTech Connect

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  5. Optimization of Thin Film Ferroelectrics for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2004-01-01

    The application of thin film ferroelectrics for the development of tunable microwave components have been a very active field of investigation thraughout the last decade. This presentation will provide an overview of some of the activities in the aforementioned area by other research groups and the current status of the field. In particular, we will discuss the efforts currently underway at the NASA Glenn Research Center in the area of phase shifter development using Ba2Sr(1-x)TiO3 ferroelectric thin films. Emphasis will be given to the approaches that have been investigated in order to improve the performance (i.e., figure of merit) of these devices. Some of these approaches deal with the details of circuit design parameters, while others are related to Experimental results and discussions on the aforementioned topics will be presented the optimization of material properties through different deposition techniques.

  6. A diode for ferroelectric domain-wall motion

    PubMed Central

    Whyte, J.R.; Gregg, J.M.

    2015-01-01

    For over a decade, controlling domain-wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like racetrack memory and domain-wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed ‘domain-wall electronics'. Here we report the creation of a ferroelectric domain-wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode's sawtooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the sawtooth edge. PMID:26059779

  7. Characterization of an Autonomous Non-Volatile Ferroelectric Memory Latch

    NASA Technical Reports Server (NTRS)

    John, Caroline S.; MacLeod, Todd C.; Evans, Joe; Ho, Fat D.

    2011-01-01

    We present the electrical characterization of an autonomous non-volatile ferroelectric memory latch using the principle that when an electric field is applied to a ferroelectriccapacitor,the positive and negative remnant polarization charge states of the capacitor are denoted as either data 0 or data 1. The properties of the ferroelectric material to store an electric polarization in the absence of an electric field make the device non-volatile. Further the memory latch is autonomous as it operates with the ground, power and output node connections, without any externally clocked control line. The unique quality of this latch circuit is that it can be written when powered off. The advantages of this latch over flash memories are: a) It offers unlimited reads/writes b) works on symmetrical read/write cycles. c) The latch is asynchronous. The circuit was initially developed by Radiant Technologies Inc., Albuquerque, New Mexico.

  8. Modeling of Metal-Ferroelectric-Semiconductor Field Effect Transistors

    NASA Technical Reports Server (NTRS)

    Duen Ho, Fat; Macleod, Todd C.

    1998-01-01

    The characteristics for a MFSFET (metal-ferroelectric-semiconductor field effect transistor) is very different than a conventional MOSFET and must be modeled differently. The drain current has a hysteresis shape with respect to the gate voltage. The position along the hysteresis curve is dependent on the last positive or negative polling of the ferroelectric material. The drain current also has a logarithmic decay after the last polling. A model has been developed to describe the MFSFET drain current for both gate voltage on and gate voltage off conditions. This model takes into account the hysteresis nature of the MFSFET and the time dependent decay. The model is based on the shape of the Fermi-Dirac function which has been modified to describe the MFSFET's drain current. This is different from the model proposed by Chen et. al. and that by Wu.

  9. Fatigue effect on polarization switching dynamics in polycrystalline bulk ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhukov, S.; Glaum, J.; Kungl, H.; Sapper, E.; Dittmer, R.; Genenko, Y. A.; von Seggern, H.

    2016-08-01

    Statistical distribution of switching times is a key information necessary to describe the dynamic response of a polycrystalline bulk ferroelectric to an applied electric field. The Inhomogeneous Field Mechanism (IFM) model offers a useful tool which allows extraction of this information from polarization switching measurements over a large time window. In this paper, the model was further developed to account for the presence of non-switchable regions in fatigued materials. Application of the IFM-analysis to bipolar electric cycling induced fatigue process of various lead-based and lead-free ferroelectric ceramics reveals different scenarios of property degradation. Insight is gained into different underlying fatigue mechanisms inherent to the investigated systems.

  10. Ferroelectric nanomesa formation from polymer Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Bai, Mengjun; Ducharme, Stephen

    2004-10-01

    We report the fabrication and characterization of nanoscale ferroelectric structures consisting of disk-shaped nanomesas averaging 8.7±0.4nm in height and 95±22nm in diameter, and nanowells 9.8±3.3nm in depth and 128±37nm in diameter, formed from Langmuir-Blodgett films of vinylidene fluoride copolymers after annealing in the paraelectric phase. The nanomesas retain the ferroelectric properties of the bulk material and so may be suitable for use in high-density nonvolatile random-access memories, acoustic transducer arrays, or infrared imaging arrays. The nanomesa and nanowell patterns may provide useful templates for nanoscale molding or contact-printing.

  11. Anomalous Lattice Dynamics near Ferroelectric Instability in PbTe

    SciTech Connect

    Zhang, Yi; Ke, Xuezhi; Kent, Paul R; Chen, Changfeng; Yang, Jihui

    2011-01-01

    A recent report of highly unusual ferroelectric fluctuations in PbTe by E.S. Bozin et al. [ Science 330 1660 (2010)] raises fundamental questions about the nature of underlying lattice dynamics. We show by first-principles calculations that the reported results can be attributed to abnormally large-amplitude thermal vibrations that stem from a delicate competition of dual ionicity and covalency, which puts PbTe near ferroelectric instability. It produces anomalous properties such as partially localized low-frequency phonon modes, a soft transverse optical phonon mode, and a positive temperature coefficient for the band gap. These results account for experimental findings and resolve the underlying atomistic mechanisms, which have broad implications for materials near dynamic instabilities.

  12. Complex permittivity measurements of ferroelectrics employing composite dielectric resonator technique.

    PubMed

    Krupka, Jerzy; Zychowicz, Tomasz; Bovtun, Viktor; Veljko, Sergiy

    2006-10-01

    Composite cylindrical TE(0n1) mode dielectric resonator has been used for the complex permittivity measurements of ferroelectrics at frequency about 8.8 GHz. Rigorous equations have been derived that allowed us to find a relationship between measured resonance frequency and Q-factor and the complex permittivity. It has been shown that the choice of appropriate diameter of a sample together with rigorous complex angular frequency analysis allows precise measurements of various ferroelectric. Proposed technique can be used for materials having both real and imaginary part of permittivity as large as a few thousand. Variable temperature measurements were performed on a PbMg(1/3)Nb(2/3)O3 (PMN) ceramic sample, and the measured complex permittivity have shown good agreement with the results of measurements obtained on the same sample at lower frequencies (0.1-1.8 GHz). PMID:17036796

  13. Polyimide thin-film dielectrics on ferroelectrics

    NASA Technical Reports Server (NTRS)

    Galiardi, R. V.

    1977-01-01

    Conducting layers of multi-layered thin-film ferroelectric device, such as is used in liquid crystal/ferroelectric display, can be electrically isolated using thin-film layer of polyimide. Ease of application and high electrical-breakdown strength allow dependable and economical means of providing dielectric for other thin-film microelectronic devices.

  14. A concept of ferroelectric microparticle propulsion thruster

    SciTech Connect

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-02-25

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches {approx}9x10{sup -4} N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster.

  15. Polarization-driven catalysis via ferroelectric oxide surfaces.

    PubMed

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2016-07-20

    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields (e.g., temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NOx direct decomposition and SO2 oxidation into SO3. The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations. PMID:27381676

  16. Ambient energy harvesting using ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Guyomar, Daniel; Sebald, Gaël; Pruvost, Sébastien; Lallart, Mickaël

    2008-03-01

    Recent progresses in electronics allow powering complex systems using either batteries or environmental energy harvesting. However using batteries raises the problems of limited lifespan and recycling process, leading to the research of other energy sources for mobile electronics. Recent work on Synchronized Switch Harvesting (SSH) shows a significant improvement of energy harvesting from vibrations compared to standard techniques. Nevertheless, harvesting energy from vibrations necessitates that the electromechanical structure has to be driven by mechanical solicitations, which generally have a limited amount of energy. Therefore, for the design of efficient and truly applicable self-powered devices, combining several sources for energy harvesting would be greatly beneficial. Thermal energy is rarely considered due to the difficulty of getting efficient devices. However, the potential of such a source is one of the most important. This paper deals with energy harvesting using either piezoelectric or pyroelectric effect. Theoretical and experimental validations of thermal energy harvesting are presented and discussed. Standard thermodynamic cycles may be adapted in order to improve conversion effectiveness. Experimental converted energy as high as 160 mJ.cm -3.cycle -1 has been measured with a 35°C temperature variation, corresponding to 2.15% of Carnot efficiency.

  17. Shear mode properties of single crystal ferroelectrics

    NASA Astrophysics Data System (ADS)

    McLaughlin, E. A.; Robinson, H. C.

    2003-10-01

    Single crystal ferroelectrics or piezocrystals were recently introduced into the electroactive materials community. The 33-mode electromechanical coupling factor of piezocrystals is typically greater than 0.90, which is significantly larger than typical values for piezoelectric ceramics (0.62-0.74). For sonar projector applications this large k33 has been responsible for more than doubling the bandwidth of active sonar arrays over what is currently achievable with ceramics. Last year a crystal grower produced a cut of lead magnesium niobate-lead titanate (PMN-PT) single crystal with piezoelectric shear coefficient values of 7000 pm/V and shear coupling factors of 0.97. (For PZT5H, d15 is 730 pm/V.) This piezocrystal d15 coefficient implies significantly improved sensitivity and signal-to-noise ratio for accelerometers and hydrophones, while the high coupling promises bandwidth increases greater than those realized in 33-mode projectors using piezocrystals. This research studies the shear-mode behavior of PMN-PT piezocrystals for use in sensors and projectors. By measuring the response of the materials to high and low level electrical bias and excitation fields, frequency, and temperature, the materials' effective material properties as a function of these operational variables were determined. [Work sponsored by ONR and NUWC ILIR.

  18. Charge ordering and ferroelectricity in magnetite

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel

    2007-03-01

    Magnetite Fe3O4 is one of the most fascinating material in solid state physics. Besides being the first magnetic material known to the mankind, it is also the first example of an insulator-metal transition in transition metal oxides -- the famous Verwey transition [1]. One usually connects this transition with the charge ordering of Fe^2+ and Fe^3+. However the detailed pattern of CO in Fe3O4 is still a matter of debate. Another aspect, which is not so widely known and which did not yet receive sufficient attention, is that below TV, besides being completely spin polarised, magnetite apparently is also ferroelectric (FE) [2]. Thus it seems that magnetite, besides being the first magnetic material and the first transition metal oxide with an insulator-metal transition, is also the first multiferroic material. Using the idea of a coexistence of site-centred and bond-centred charge ordering [3], I suggest a novel type of ordering in magnetite which explains the observed FE in Fe3O4 and which agrees with the structural data. [1] Verwey E.J.W., Nature 144, 327 (1939) [2] Rado G.T. and Ferrari J.M., Phys.Rev.B 12, 5166 (1975); Kato K. and Iida S., J.Phys.Soc.Japan 50, 2844 (1981) [3] Efremov D.V., van den Brink J. and Khomskii D.I., Nature Mater. 3, 853 (2004)

  19. Stress dependence of thermally driven pyroelectric charge release during FER-FEO phase transformations in [011] cut relaxor ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Dong, Wen D.; Finkel, Peter; Amin, Ahmed; Lynch, Christopher S.

    2012-06-01

    The stress dependence of thermally driven polarization change is reported for a ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation in [011] cut and poled Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT). A jump in polarization and strain is associated with a phase transformation of the ferroelectric material. The phase transformation temperature can be tuned, over a broad temperature range, through the application of bias stress. This phenomenon has applications in the field of energy harvesting and thermal sensing.

  20. Evaluation of field enforced antiferroelectric to ferroelectric phase transition dielectrics and relaxor ferroelectrics for pulse discharge capacitors

    SciTech Connect

    Hoover, B.D.; Tuttle, B.A.; Olson, W.R.; Goy, D.M.; Brooks, R.A.; King, C.F.

    1997-09-01

    Discharge capacitors were designed based on materials with antiferroelectric (AFE) to ferroelectric (FE) field enforced transitions that had 10 times the capacitance of relaxor ferroelectric or state of the art BaTiO{sub 3} materials in the voltage range of interest. Nonlinear RLC circuit analysis was used to show that the AFE to FE materials have potentially more than 2 times the peak discharge current density capability of the BaTiO{sub 3} or lead magnesium niobate (PMN) based relaxor materials. Both lead lanthanum zirconium tin titanate (PLZST) AFE to FE field enforced phase transition materials and PMN based relaxor materials were fabricated and characterized for Sandia`s pulse discharge capacitor applications. An outstanding feature of the PLZST materials is that there are high field regimes where the dielectric constant increases substantially, by a factor of 20 or more, with applied field. Specifically, these materials have a low field dielectric constant of 1,000, but an effective dielectric constant of 23,000 in the electric field range corresponding to the FE to AFE transition during discharge. Lead magnesium niobate (PMN) based relaxor materials were also investigated in this project because of their high dielectric constants. While the PMN based ceramics had a low field dielectric constant of 25,000, at a field corresponding to half the charging voltage, approximately 13 kV/cm, the dielectric constant decreases to approximately 7,500.

  1. Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

    SciTech Connect

    Ievlev, Anton; Morozovska, A. N.; Eliseev, E. A.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    Electric field induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science, and optoelectronics. In the last 20 years, much attention has been focused on the switching of individual domains using scanning probe microscopy, both as model of ferroelectric data storage and approach to explore fundamental physics of ferroelectric switching. The classical picture of tip induced switching includes formation of cylindrical domain oriented along the tip field, with the domain size is largely determined by the tip-induced field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behavior. Here, we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviors are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). The implications of these behaviors for ferroelectric materials and devices are discussed.

  2. Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates.

    PubMed

    Zhang, Guangzu; Zhang, Xiaoshan; Yang, Tiannan; Li, Qi; Chen, Long-Qing; Jiang, Shenglin; Wang, Qing

    2015-07-28

    The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications. PMID:26132841

  3. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    SciTech Connect

    Bennett, Joseph W.; Rabe, Karin M.

    2012-11-15

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb{sub 1/2}Mn{sub 1/2})O{sub 3} as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb{sub 2}O{sub 4}; and (3) ferroelectric semiconductors with formula M{sub 2}P{sub 2}(S,Se){sub 6}. A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: Black-Right-Pointing-Pointer Integration of first-principles methods and database mining. Black-Right-Pointing-Pointer Minor structural families with desirable functional properties. Black-Right-Pointing-Pointer Survey of polar entries in the Inorganic Crystal Structural Database.

  4. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites

    PubMed Central

    Kim, Minsung; Im, Jino; Freeman, Arthur J.; Ihm, Jisoon; Jin, Hosub

    2014-01-01

    The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that and Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. PMID:24785294

  5. High photovoltages in ferroelectric ceramics

    NASA Technical Reports Server (NTRS)

    Brody, P. S.

    1976-01-01

    The short-circuit currents and photo-emfs were measured for various ceramics including barium titanate, lead metaniobate, and lead titanate. It is suggested that the emfs and currents arise from the presence of photoconductor-insulator sandwiches in the presence of space-charge-produced internal fields. Results are in agreement with the proposed theory and indicate that the ferroelectric ceramics are not only producers of high-voltage photoelectricity but a photo-battery, the polarity and magnitude of which can be switched by application of an electrical signal.

  6. Cooperative behavior during ferroelectric transitions in KNO3 powder

    NASA Astrophysics Data System (ADS)

    Westphal, M. J.

    1993-09-01

    Experimental evidence of cooperative behavior during the ferroelectric phase transitions in granular and powder KNO3 at atmospheric pressure is presented. Three different experimental studies were performed in which phase transitions were detected and characterized by heat flow calorimetry: (1) the distribution of SiC powder in granular KNO3 was varied; (2) the volume fraction of SiC in powdered KNO3 was varied; and (3) pure KNO3 powder was thermally cycled. All three studies provided evidence of cooperative behavior between the KNO3 particles during the III-II phase transition. The cooperative behavior reduced the temperature range of phase III stability from ˜97-124 °C to that characteristic of bulk material (˜110-124 °C). Separate KNO3 particles behaved as individual ferroelectric domains, with each particle making the phase transition independently near the expected Curie temperature. Particles of KNO3 in intimate physical contact tended to behave cooperatively as a single large ferroelectric domain leading to sharper phase transitions more characteristic of single crystals. The degree of cooperative behavior was dependent upon the extent to which the individual particles were in physical contact. The absence of the III-II phase transition in KNO3 powder that has been reported in the literature can be understood from the results obtained using SiC powder to separate KNO3 particles during heat flow calorimetry measurements.

  7. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  8. Coupling of electrical and mechanical switching in nanoscale ferroelectrics

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Li, Qian; Chen, Long-Qing; Kalinin, Sergei V.

    2015-11-01

    While electric field induced ferroelectric switching has been extensively studied and broadly utilized, pure mechanical switching via flexoelectric effect has recently opened up an alternative method for domain writing due to their highly localized, electrically erasable and electric damage free characteristics. Thus far, few studies have been made on the coupling effect of electro-mechanical switching in ferroelectric materials, likely due to the experimental difficulty in the accurate definition of the tip-surface contact area and in the identification of mechanical contribution from electrical effect. Here, we employed self-consistent phase-field modeling to investigate the bi-polar switching behavior of (001) oriented Pb(Zr0.2Ti0.8)O3 thin film under concurrent electric and strain field created via a piezoresponse force microscope probe. By separating the effects from electric field, homogeneous strain and strain gradient, we revealed that the homogeneous strain suppresses the spontaneous polarization and accordingly increases the coercive field, and the strain gradient favors unipolar switching and inhibit it in the reverse direction, thus causing lateral offset of the hysteresis loop. The uncertainty of flexoelectric coefficients and the influence of flexocoupling coefficients on switching have also been discussed. Our study could necessitate further understanding of the electric, piezoelectric, and flexoelectric contribution to the switching behavior in nanoscale ferroelectric oxides.

  9. Microstructure tuning and magnetism switching of ferroelectric barium titanate

    SciTech Connect

    Zhou, Wenliang; Deng, Hongmei; Ding, Nuofan; Yu, Lu; Yue, Fangyu; Yang, Pingxiong; Chu, Junhao

    2015-09-15

    Single-crystal and polycrystal BaTiO{sub 3} (BTO) materials synthesized by the physical and chemical methods, respectively, have been studied based on microstructural characterizations and magnetic measurements. The results of X-ray diffraction and Raman scatting spectra show that a single crystal tetragonal to polycrystalline pseudo-cubic structure transformation occurs in BTO ferroelectrics, dependent of growth conditions and interface effects. High-resolution transmission electron microscope data indicate that the as-prepared BTO/SrTiO{sub 3} (001) and BTO/SrRuO{sub 3}/SrTiO{sub 3} (001) heterostructures are highly c-axis oriented with atomic sharp interfaces. Lattice defects (i.e., edge-type misfit dislocations and stacking faults) in the heterostructures could be identified clearly and showed tunable with the variations of interface strain. Furthermore, the effects of vacancy defects on magnetic properties of BTO are discussed, which shows a diamagnetism–ferromagnetism switching as intrinsic vacancies increase. This work opens up a possible avenue to prepare magnetic BTO ferroelectrics. - Highlights: • Structure of BTO is tunable, depending on growth conditions and interface strain. • STEM–EDX data indicate the presence of lattice defects in BTO ferroelectrics. • BTO magnetism could be controlled by defects showing dia-ferromagnetism switching. • BTO with more vacancies shows RTFM, as evidence of vacancy magnetism effects.

  10. Polarization of ferroelectric films through electrolyte

    NASA Astrophysics Data System (ADS)

    Toss, Henrik; Sani, Negar; Fabiano, Simone; Simon, Daniel T.; Forchheimer, Robert; Berggren, Magnus

    2016-03-01

    A simplified model is developed to understand the field and potential distribution through devices based on a ferroelectric film in direct contact with an electrolyte. Devices based on the ferroelectric polymer polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) were produced—in metal-ferroelectric-metal, metal-ferroelectric-dielectric-metal, and metal-ferroelectric-electrolyte-metal architectures—and used to test the model, and simulations based on the model and these fabricated devices were performed. From these simulations we find indication of progressive polarization of the films. Furthermore, the model implies that there is a relation between the separation of charge within the devices and the observed open circuit voltage. This relation is confirmed experimentally. The ability to polarize ferroelectric polymer films through aqueous electrolytes, combined with the strong correlation between the properties of the electrolyte double layer and the device potential, opens the door to a variety of new applications for ferroelectric technologies, e.g. regulation of cell culture growth and release, steering molecular self-assembly, or other large area applications requiring aqueous environments.

  11. Negative capacitance in multidomain ferroelectric superlattices.

    PubMed

    Zubko, Pavlo; Wojdeł, Jacek C; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-23

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation. PMID:27296225

  12. Polarization of ferroelectric films through electrolyte.

    PubMed

    Toss, Henrik; Sani, Negar; Fabiano, Simone; Simon, Daniel T; Forchheimer, Robert; Berggren, Magnus

    2016-03-16

    A simplified model is developed to understand the field and potential distribution through devices based on a ferroelectric film in direct contact with an electrolyte. Devices based on the ferroelectric polymer polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) were produced--in metal-ferroelectric-metal, metal-ferroelectric-dielectric-metal, and metal-ferroelectric-electrolyte-metal architectures--and used to test the model, and simulations based on the model and these fabricated devices were performed. From these simulations we find indication of progressive polarization of the films. Furthermore, the model implies that there is a relation between the separation of charge within the devices and the observed open circuit voltage. This relation is confirmed experimentally. The ability to polarize ferroelectric polymer films through aqueous electrolytes, combined with the strong correlation between the properties of the electrolyte double layer and the device potential, opens the door to a variety of new applications for ferroelectric technologies, e.g. regulation of cell culture growth and release, steering molecular self-assembly, or other large area applications requiring aqueous environments. PMID:26885704

  13. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film

    PubMed Central

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Sakata, Osami; Funakubo, Hiroshi

    2016-01-01

    Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed – electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm2. Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm2. This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes. PMID:27608815

  14. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-02-01

    Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

  15. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film.

    PubMed

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J; Sakata, Osami; Funakubo, Hiroshi

    2016-01-01

    Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed - electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm(2). Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm(2). This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes. PMID:27608815

  16. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    PubMed Central

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622

  17. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-12-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined.

  18. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate.

    PubMed

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622

  19. Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Jain, H.; Williams, D. B.; Kalinin, Sergei V.; Shin, J.; Jesse, S.; Baddorf, A. P.

    2005-10-01

    LaBGeO5 is a model transparent ferroelectric glass-ceramic (TFGC) material, developed as an inexpensive alternative to single-crystal nonlinear optical materials. The optical activity of the TFGC originates from the ferroelectric phase which remains under a hydrostatic pressure exerted by the surrounding glass matrix. A combination of two techniques, electron-backscattered diffraction (EBSD) and piezoresponse force microscopy (PFM), is employed to monitor the development of the ferroelectric phase. A method is proposed to theoretically construct PFM amplitude maps from EBSD orientation maps. The theoretical vertical piezoresponse map is compared with the experimental piezoresponse map from PFM. A good correlation between the theoretical and experimental maps is observed.

  20. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT

    PubMed Central

    Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.

    2013-01-01

    Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562

  1. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Karapetian, Edgar; Mirman, B; Eliseev, E. A.; Morozovska, A. N.

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  2. Antiferroelectric-to-Ferroelectric Switching in CH3NH3PbI3 Perovskite and Its Potential Role in Effective Charge Separation in Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sewvandi, Galhenage A.; Hu, Dengwei; Chen, Changdong; Ma, Hao; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Feng, Qi

    2016-08-01

    Perovskite solar cells (PSCs) often suffer from large performance variations which impede to define a clear charge-transfer mechanism. Ferroelectric polarization is measured numerically using CH3NH3PbI3 (M A PbI3 ) pellets to overcome the measurement issues such as pinholes and low uniformity of thickness, etc., with M A PbI3 thin films. M A PbI3 perovskite is an antiferroelectric semiconductor which is different from typical semiconducting materials and ferroelectric materials. The effect of polarization carrier separation on the charge-transfer mechanism in the PSCs is elucidated by using the results of ferroelectric and structural studies on the perovskite. The ferroelectric polarization contributes to an inherent carrier-separation effect and the I - V hysteresis. The ferroelectric and semiconducting synergistic charge-separation effect gives an alternative category of solar cells, ferroelectric semiconductor solar cells. Our findings identify the ferroelectric semiconducting behavior of the perovskite absorber as being significant to the improvement of the ferroelectric PSCs performances in future developments.

  3. Implementation of Ferroelectric Memories for Space Applications

    NASA Technical Reports Server (NTRS)

    Philpy, Stephen C.; Derbenwick, Gary F.; Kamp, David A.; Isaacson, Alan F.

    2000-01-01

    Ferroelectric random access semiconductor memories (FeRAMs) are an ideal nonvolatile solution for space applications. These memories have low power performance, high endurance and fast write times. By combining commercial ferroelectric memory technology with radiation hardened CMOS technology, nonvolatile semiconductor memories for space applications can be attained. Of the few radiation hardened semiconductor manufacturers, none have embraced the development of radiation hardened FeRAMs, due a limited commercial space market and funding limitations. Government funding may be necessary to assure the development of radiation hardened ferroelectric memories for space applications.

  4. Static Characteristics of the Ferroelectric Transistor Inverter

    NASA Technical Reports Server (NTRS)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  5. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    SciTech Connect

    Daranciang, Dan

    2012-02-15

    We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

  6. Ferroelectric ceramics in a pyroelectric accelerator

    SciTech Connect

    Shchagin, A. V.; Miroshnik, V. S.; Volkov, V. I.; Oleinik, A. N.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  7. Switching dynamics of thin film ferroelectric devices - a massively parallel phase field study

    NASA Astrophysics Data System (ADS)

    Ashraf, Md. Khalid

    In this thesis, we investigate the switching dynamics in thin film ferroelectrics. Ferroelectric materials are of inherent interest for low power and multi-functional devices. However, possible device applications of these materials have been limited due to the poorly understood electromagnetic and mechanical response at the nanoscale in arbitrary device structures. The difficulty in understanding switching dynamics mainly arises from the presence of features at multiple length scales and the nonlinearity associated with the strongly coupled states. For example, in a ferroelectric material, the domain walls are of nm size whereas the domain pattern forms at micron scale. The switching is determined by coupled chemical, electrostatic, mechanical and thermal interactions. Thus computational understanding of switching dynamics in thin film ferroelectrics and a direct comparison with experiment poses a significant numerical challenge. We have developed a phase field model that describes the physics of polarization dynamics at the microscopic scale. A number of efficient numerical methods have been applied for achieving massive parallelization of all the calculation steps. Conformally mapped elements, node wise assembly and prevention of dynamic loading minimized the communication between processors and increased the parallelization efficiency. With these improvements, we have reached the experimental scale - a significant step forward compared to the state of the art thin film ferroelectric switching dynamics models. Using this model, we elucidated the switching dynamics on multiple surfaces of the multiferroic material BFO. We also calculated the switching energy of scaled BFO islands. Finally, we studied the interaction of domain wall propagation with misfit dislocations in the thin film. We believe that the model will be useful in understanding the switching dynamics in many different experimental setups incorporating thin film ferroelectrics.

  8. Accessing intermediate ferroelectric switching regimes with time-resolved transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Winkler, Christopher R.; Jablonski, Michael L.; Damodaran, Anoop R.; Jambunathan, Karthik; Martin, Lane W.; Taheri, Mitra L.

    2012-09-01

    BiFeO3 (BFO) is one of the most widely studied magneto-electric multiferroics. The magneto-electric coupling in BiFeO3, which allows for the control of the ferroelectric and magnetic domain structures via applied electric fields, can be used to incorporate BiFeO3 into novel spintronics devices and sensors. Before BiFeO3 can be integrated into such devices, however, a better understanding of the dynamics of ferroelectric switching, particularly in the vicinity of extended defects, is needed. We use in situ transmission electron microscopy (TEM) to investigate the response of ferroelectric domains within BiFeO3 thin films to applied electric fields at high temporal and spatial resolution. This technique is well suited to imaging the observed intermediate ferroelectric switching regimes, which occur on a time- and length-scale that are too fine to study via conventional scanning-probe techniques. Additionally, the spatial resolution of transmission electron microscopy allows for the direct study of the dynamics of domain nucleation and propagation in the presence of structural defects. In this article, we show how this high resolution technique captures transient ferroelectric structures forming during biasing, and how defects can both pin domains and act as a nucleation source. The observation of continuing domain coalescence over a range of times qualitatively agrees with the nucleation-limited-switching model proposed by Tagantsev et al. We demonstrate that our in situ transmission electron microscopy technique is well-suited to studying the dynamics of ferroelectric domains in BiFeO3 and other ferroelectric materials. These biasing experiments provide a real-time view of the complex dynamics of domain switching and complement scanning-probe techniques.

  9. Theoretical analysis of shock induced depolarization and current generation in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    Ferroelectric generators are used to generate large magnitude current pulse by impacting a polarized ferroelectric material. The impact causes depolarization of the material and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. In this study, we explore the large deformation dynamic response of a ferroelectric material. Using the Maxwell's equations, conservation laws and the second law of thermodynamics, we derive the governing equations for the phase boundary propagation as well as the driving force acting on it. We allow for the phase boundary to contain surface charges which introduces the contribution of curvature of phase boundary in the governing equations and the driving force. This type of analysis accounts for the dielectric breakdown and resulting conduction in the material. Next, we implement the equations derived to solve a one dimensional impact problem on a ferroelectric material under different electrical boundary conditions. The constitutive law is chosen to be piecewise quadratic in polarization and quadratic in the strain. We solve for the current profile generated in short circuit case and for voltage profile in open circuited case. This work was made possible by the financial support of the US Air Force Office of Scientific Research through the Center of Excellence in High Rate Deformation Physics of Heterogeneous Materials (Grant: FA 9550-12-1-0091).

  10. Analysis of shock induced depolarization and current generation in ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    2015-06-01

    Ferroelectric generators are used to generate large magnitude current pulse by impacting a polarized ferroelectric material. The impact causes depolarization of the material and at high impact speeds, dielectric breakdown. The current or voltage profiles obtained vary depending on the loading conditions. In this study, we explore the large deformation dynamic response of a ferroelectric material. Using the Maxwell's equations, conservation laws and the second law of thermodynamics, we derive the governing equations for the phase boundary propagation as well as the driving force acting on it. We allow for the phase boundary to contain surface charges which introduces the contribution of curvature of phase boundary in the governing equations and the driving force. This type of analysis accounts for the dielectric breakdown and resulting conduction in the material. Next, we implement the equations derived to solve a one dimensional impact problem on a ferroelectric material under different electrical boundary conditions. The constitutive law is chosen to be piecewise quadratic in polarization and quadratic in the strain. We solve for the current profile generated in short circuit case and for voltage profile in open circuited case. This work was made possible by the financial support of the US Air Force Office of Scientific Research through the Center of Excellence in High Rate Deformation Physics of Heterogeneous Materials (Grant: FA 9550-12-1-0091).

  11. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers

    NASA Astrophysics Data System (ADS)

    Lehmann, W.; Skupin, H.; Tolksdorf, C.; Gebhard, E.; Zentel, R.; Krüger, P.; Lösche, M.; Kremer, F.

    2001-03-01

    Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and `smart' ceramics such as lead zirconate titanate. But the strains achievable in these materials are small-less than 0.1 per cent-so several alternative materials and approaches have been considered. These include grafted polyglutamates (which have a performance comparable to quartz), silicone elastomers (passive material-the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes (which are slow). High and fast strains of up to 4 per cent within an electric field of 150MVm-1 have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MVm-1. This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications.

  12. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces.

    PubMed

    Nelson, Christopher T; Winchester, Benjamin; Zhang, Yi; Kim, Sung-Joo; Melville, Alexander; Adamo, Carolina; Folkman, Chad M; Baek, Seung-Hyub; Eom, Chang-Beom; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing

    2011-02-01

    The polarization of the ferroelectric BiFeO(3) sub-jected to different electrical boundary conditions by heterointerfaces is imaged with atomic resolution using a spherical aberration-corrected transmission electron microscope. Unusual triangular-shaped nanodomains are seen, and their role in providing polarization closure is understood through phase-field simulations. Heterointerfaces are key to the performance of ferroelectric devices, and this first observation of spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces reveals properties unlike the surrounding film including mixed Ising-Néel domain walls, which will affect switching behavior, and a drastic increase of in-plane polarization. The importance of magnetization closure has long been appreciated in multidomain ferromagnetic systems; imaging this analogous effect with atomic resolution at ferroelectric heterointerfaces provides the ability to see device-relevant interface issues. Extension of this technique to visualize domain dynamics is envisioned. PMID:21247184

  13. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  14. An epitaxial ferroelectric tunnel junction on silicon.

    PubMed

    Li, Zhipeng; Guo, Xiao; Lu, Hui-Bin; Zhang, Zaoli; Song, Dongsheng; Cheng, Shaobo; Bosman, Michel; Zhu, Jing; Dong, Zhili; Zhu, Weiguang

    2014-11-12

    Epitaxially grown functional perovskites on silicon (001) and the ferroelectricity of a 3.2 nm thick BaTiO3 barrier layer are demonstrated. The polarization-switching-induced change in tunneling resistance is measured to be two orders of magnitude. The obtained results suggest the possibility of integrating ferroelectric tunnel junctions as binary data storage media in non-volatile memory cells on a silicon platform. PMID:25200550

  15. Bond- versus site-centred ordering and possible ferroelectricity in manganites.

    PubMed

    Efremov, Dmitry V; van den Brink, Jeroen; Khomskii, Daniel I

    2004-12-01

    Transition metal oxides with a perovskite-type structure constitute a large group of compounds with interesting properties. Among them are materials such as the prototypical ferroelectric system BaTiO(3), colossal magnetoresistance manganites and the high-T(c) superconductors. Hundreds of these compounds are magnetic, and hundreds of others are ferroelectric, but these properties very seldom coexist. Compounds with an interdependence of magnetism and ferroelectricity could be very useful: they would open up a plethora of new applications, such as switching of magnetic memory elements by electric fields. Here, we report on a possible way to avoid this incompatibility, and show that in charge-ordered and orbitally ordered perovskites it is possible to make use of the coupling between magnetic and charge ordering to obtain ferroelectric magnets. In particular, in manganites that are less than half doped there is a type of charge ordering that is intermediate between site-centred and bond-centred. Such a state breaks inversion symmetry and is predicted to be magnetic and ferroelectric. PMID:15558036

  16. Suppression of creep-regime dynamics in epitaxial ferroelectric BiFeO3 films

    PubMed Central

    Shin, Y. J.; Jeon, B. C.; Yang, S. M.; Hwang, I.; Cho, M. R.; Sando, D.; Lee, S. R.; Yoon, J.-G.; Noh, T. W.

    2015-01-01

    Switching dynamics of ferroelectric materials are governed by the response of domain walls to applied electric field. In epitaxial ferroelectric films, thermally-activated ‘creep’ motion plays a significant role in domain wall dynamics, and accordingly, detailed understanding of the system’s switching properties requires that this creep motion be taken into account. Despite this importance, few studies have investigated creep motion in ferroelectric films under ac-driven force. Here, we explore ac hysteretic dynamics in epitaxial BiFeO3 thin films, through ferroelectric hysteresis measurements, and stroboscopic piezoresponse force microscopy. We reveal that identically-fabricated BiFeO3 films on SrRuO3 or La0.67Sr0.33MnO3 bottom electrodes exhibit markedly different switching behaviour, with BiFeO3/SrRuO3 presenting essentially creep-free dynamics. This unprecedented result arises from the distinctive spatial inhomogeneities of the internal fields, these being influenced by the bottom electrode’s surface morphology. Our findings further highlight the importance of controlling interface and defect characteristics, to engineer ferroelectric devices with optimised performance. PMID:26014521

  17. A new class of in-plane Ferroelectric Mott insulators via oxide hetorostructuring

    NASA Astrophysics Data System (ADS)

    Kim, Chanul; Park, Hyowon; Marianetti, Chris

    2015-03-01

    We propose simple design rules based on charge transfer, cation ordering, and size mismatch to design a new class of in-plane ferroelectric Mott insulators in perovskite-based transition metal oxides. Ab Initio DFT+U calculations are then used to selectively scan phase space based on these rules. We begin by exploring pairs of A-type ions (A, A') and pairs of B-type ions (B, B') in AA' BB'O6 which will have nominal charge transfer consistent with valencies that are conducive to a low Mott gap insulator. Additionally, the A-type ions are chosen to have a large size mismatch and stereochemical effect. The ordering of A/A' and B/B' still retains C4v symmetry which may be spontaneously broken to yield an in-plane ferroelectric. We uncover a number of materials which are strong candidates to be in-plane ferroelectric Mott insulators in experiment, including BaBiVCuO6, BaBiVNiO6, PbLaVCuO6. Finally, we will discuss potential applications of in-plane ferroelectric Mott insulators such as ferroelectric photovoltaics, Mott FET, and optoelectronic devices. Semiconductor Research Corporation (FAME).

  18. Controlled creation and displacement of charged domain walls in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Feigl, L.; Sluka, T.; McGilly, L. J.; Crassous, A.; Sandu, C. S.; Setter, N.

    2016-08-01

    Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes. We demonstrate that ferroelectric switching is accompanied - without exception - by the appearance of charged domain walls and that these walls can be displaced and erased reliably. We ascertain from a combination of scanning probe microscopy, transmission electron microscopy and phase field simulations that creation of charged domain walls is a by-product of, and as such is always coupled to, ferroelectric switching. This is due to the (110) orientation of the tetragonal (Pb,Sr)TiO3 thin films and the crucial role played by the limited conduction of the LSMO bottom electrode layer used in this study. This work highlights that charged domain walls, far from being exotic, unstable structures, as might have been assumed previously, can be robust, stable easily-controlled features in ferroelectric thin films.

  19. Suppression of creep-regime dynamics in epitaxial ferroelectric BiFeO3 films.

    PubMed

    Shin, Y J; Jeon, B C; Yang, S M; Hwang, I; Cho, M R; Sando, D; Lee, S R; Yoon, J-G; Noh, T W

    2015-01-01

    Switching dynamics of ferroelectric materials are governed by the response of domain walls to applied electric field. In epitaxial ferroelectric films, thermally-activated 'creep' motion plays a significant role in domain wall dynamics, and accordingly, detailed understanding of the system's switching properties requires that this creep motion be taken into account. Despite this importance, few studies have investigated creep motion in ferroelectric films under ac-driven force. Here, we explore ac hysteretic dynamics in epitaxial BiFeO3 thin films, through ferroelectric hysteresis measurements, and stroboscopic piezoresponse force microscopy. We reveal that identically-fabricated BiFeO3 films on SrRuO3 or La0.67Sr0.33MnO3 bottom electrodes exhibit markedly different switching behaviour, with BiFeO3/SrRuO3 presenting essentially creep-free dynamics. This unprecedented result arises from the distinctive spatial inhomogeneities of the internal fields, these being influenced by the bottom electrode's surface morphology. Our findings further highlight the importance of controlling interface and defect characteristics, to engineer ferroelectric devices with optimised performance. PMID:26014521

  20. Controlled creation and displacement of charged domain walls in ferroelectric thin films

    PubMed Central

    Feigl, L.; Sluka, T.; McGilly, L. J.; Crassous, A.; Sandu, C. S.; Setter, N.

    2016-01-01

    Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes. We demonstrate that ferroelectric switching is accompanied - without exception - by the appearance of charged domain walls and that these walls can be displaced and erased reliably. We ascertain from a combination of scanning probe microscopy, transmission electron microscopy and phase field simulations that creation of charged domain walls is a by-product of, and as such is always coupled to, ferroelectric switching. This is due to the (110) orientation of the tetragonal (Pb,Sr)TiO3 thin films and the crucial role played by the limited conduction of the LSMO bottom electrode layer used in this study. This work highlights that charged domain walls, far from being exotic, unstable structures, as might have been assumed previously, can be robust, stable easily-controlled features in ferroelectric thin films. PMID:27507433

  1. INSTRUMENTS AND METHODS OF INVESTIGATION: Electron emission from ferroelectric plasma cathodes

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.

    2008-01-01

    Recent and not so recent experimental data are analyzed to show that the reason for strong electron emission from dielectric cathodes is the incomplete discharge occurring on the dielectric surface due to the electric field there being tangentially nonzero. The places of origin of such discharges are the metal-dielectric-vacuum triple junctions (TJs). As the discharge plasma moves over the surface of the dielectric electrode, the bias current arises, and an electric microexplosion occurs at a TJ. If the number of TJs is large, as it is for a metal grid held tightly to a ferroelectric, electron currents of up to 104 A with densities of more than 102 A cm-2 can be achieved. A surface discharge is initiated by applying a triggering pulse to the metal substrate deposited beforehand onto the opposite side of the ferroelectric. If this pulse leads the accelerating voltage pulse, the electron current is many times the Child-Langmuir current. The reason for the ferroelectric effect is the large permittivity (ɛ > 103) of the materials used (BaTiO3, PLZT, PZT). Although these devices have come to be known as ferroelectric cathodes, we believe ferroelectric plasma cathodes would be a better term to use to emphasize the key role of plasma effects.

  2. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals.

    PubMed

    Wei, Xian-Kui; Jia, Chun-Lin; Sluka, Tomas; Wang, Bi-Xia; Ye, Zuo-Guang; Setter, Nava

    2016-01-01

    In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was treated only at the theoretical level and its real appearance is still a mystery. Here we report a Néel-like domain wall imaged by atom-resolved transmission electron microscopy in Ti-rich ferroelectric Pb(Zr1-xTix)O3 crystals, where nanometre-scale monoclinic order coexists with the tetragonal order. The formation of such domain walls is interpreted in the light of polarization discontinuity and clamping effects at phase boundaries between the nesting domains. Phase-field simulation confirms that the coexistence of both phases as encountered near the morphotropic phase boundary promotes the polarization to rotate in a continuous manner. Our results provide a further insight into the complex domain configuration in ferroelectrics, and establish a foundation towards exploring chiral domain walls in ferroelectrics. PMID:27539075

  3. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals

    PubMed Central

    Wei, Xian-Kui; Jia, Chun-Lin; Sluka, Tomas; Wang, Bi-Xia; Ye, Zuo-Guang; Setter, Nava

    2016-01-01

    In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was treated only at the theoretical level and its real appearance is still a mystery. Here we report a Néel-like domain wall imaged by atom-resolved transmission electron microscopy in Ti-rich ferroelectric Pb(Zr1−xTix)O3 crystals, where nanometre-scale monoclinic order coexists with the tetragonal order. The formation of such domain walls is interpreted in the light of polarization discontinuity and clamping effects at phase boundaries between the nesting domains. Phase-field simulation confirms that the coexistence of both phases as encountered near the morphotropic phase boundary promotes the polarization to rotate in a continuous manner. Our results provide a further insight into the complex domain configuration in ferroelectrics, and establish a foundation towards exploring chiral domain walls in ferroelectrics. PMID:27539075

  4. Controlled creation and displacement of charged domain walls in ferroelectric thin films.

    PubMed

    Feigl, L; Sluka, T; McGilly, L J; Crassous, A; Sandu, C S; Setter, N

    2016-01-01

    Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes. We demonstrate that ferroelectric switching is accompanied - without exception - by the appearance of charged domain walls and that these walls can be displaced and erased reliably. We ascertain from a combination of scanning probe microscopy, transmission electron microscopy and phase field simulations that creation of charged domain walls is a by-product of, and as such is always coupled to, ferroelectric switching. This is due to the (110) orientation of the tetragonal (Pb,Sr)TiO3 thin films and the crucial role played by the limited conduction of the LSMO bottom electrode layer used in this study. This work highlights that charged domain walls, far from being exotic, unstable structures, as might have been assumed previously, can be robust, stable easily-controlled features in ferroelectric thin films. PMID:27507433

  5. Strain tunable ferroelectric and dielectric properties of BaZrO{sub 3}

    SciTech Connect

    Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2014-06-14

    The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO{sub 3} (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO{sub 3}, while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.

  6. Multiscale dynamics in relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Toulouse, Jean; Cai, L.; Pattnaik, R. K.; Boatner, L. A.

    2014-01-01

    The multiscale dynamics of complex oxides is illustrated by pairs of mechanical resonances that are excited in the relaxor ferroelectric K1-xLixTaO3 (KLT). These macroscopic resonances are shown to originate in the collective dynamics of piezoelectric polar nanodomains (PNDs) interacting with the surrounding lattice. Their characteristic Fano lineshapes and rapid evolution with temperature reveal the coherent interplay between the piezoelectric oscillations and orientational relaxations of the PNDs at higher temperature and the contribution of heterophase oscillations near the phase transition. A theoretical model is presented, that describes the evolution of the resonances over the entire temperature range. Similar resonances are observed in other relaxors and must therefore be a common characteristics of these systems.

  7. Negative capacitance in multidomain ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Zubko, Pavlo; Wojdeł, Jacek C.; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk’Yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-01

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric–dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  8. Radiation damage and its recovery in focused ion beam fabricated ferroelectric capacitors

    NASA Astrophysics Data System (ADS)

    Stanishevsky, A.; Nagaraj, B.; Melngailis, J.; Ramesh, R.; Khriachtchev, L.; McDaniel, E.

    2002-09-01

    We studied the effect of ion damage on the properties of 50 keV Ga+ focused ion beam fabricated lead-zirconate-titanate capacitors as a function of the ion dose. We observed significant modification in the chemical composition of the damaged layer due to loss of lead and oxygen, and gallium impurity accumulation. The 5-10 nm thick damaged layer becomes dielectric after annealing and does not recover its ferroelectric properties. This dielectric layer substantially reduces the actual volume of the ferroelectric material in sub-100 nm structures, and can affect their performance.

  9. Nanopatterned ferroelectrics for ultrahigh density rad-hard nonvolatile memories.

    SciTech Connect

    Brennecka, Geoffrey L.; Stevens, Jeffrey; Scrymgeour, David; Gin, Aaron V.; Tuttle, Bruce Andrew

    2010-09-01

    Radiation hard nonvolatile random access memory (NVRAM) is a crucial component for DOE and DOD surveillance and defense applications. NVRAMs based upon ferroelectric materials (also known as FERAMs) are proven to work in radiation-rich environments and inherently require less power than many other NVRAM technologies. However, fabrication and integration challenges have led to state-of-the-art FERAMs still being fabricated using a 130nm process while competing phase-change memory (PRAM) has been demonstrated with a 20nm process. Use of block copolymer lithography is a promising approach to patterning at the sub-32nm scale, but is currently limited to self-assembly directly on Si or SiO{sub 2} layers. Successful integration of ferroelectrics with discrete and addressable features of {approx}15-20nm would represent a 100-fold improvement in areal memory density and would enable more highly integrated electronic devices required for systems advances. Towards this end, we have developed a technique that allows us to carry out block copolymer self-assembly directly on a huge variety of different materials and have investigated the fabrication, integration, and characterization of electroceramic materials - primarily focused on solution-derived ferroelectrics - with discrete features of {approx}20nm and below. Significant challenges remain before such techniques will be capable of fabricating fully integrated NVRAM devices, but the tools developed for this effort are already finding broader use. This report introduces the nanopatterned NVRAM device concept as a mechanism for motivating the subsequent studies, but the bulk of the document will focus on the platform and technology development.

  10. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, Z. K.; Li, Xinyu; Zhang, Q. M.

    2012-08-01

    Ferroelectric materials directly convert electrical energy to mechanical or thermal work and are critical to applications such as sensors, transducers, actuators, and cooling devices. Numerous efforts have been undertaken to develop materials with high electrocaloric (EC) and electromechanical (EM) responses. Here, we present a theoretical analysis, based on thermodynamic fundamentals, for developing ferroelectric materials with high EC and EM responses, i.e., searching for and operating the material near an invariant critical point (ICP). We show that by tailoring the constraints to maximize the number of coexisting phases near ICPs, large EC and EM responses may be realized.

  11. Tunable band gap in epitaxial ferroelectric Ho(Mn,Ga)O3 films

    NASA Astrophysics Data System (ADS)

    Lee, Daesu; Choi, Woo Seok; Noh, Tae Won

    2016-05-01

    Ferroelectrics have recently attracted attention as a new class of materials for use in optical and photovoltaic devices. We studied the electronic properties in epitaxially stabilized ferroelectric hexagonal Ho(Mn1-xGax)O3 (x = 0, 0.33, 0.67, and 1) thin films. Our films exhibited systematic changes in electronic structures, such as bandgap and optical transitions, according to the Ga concentration. In particular, the bandgap increased systematically from 1.4 to 3.2 eV, including the visible light region, with increasing Ga concentration from x = 0 to 1. These systematic changes, attributed to lattice parameter variations in epitaxial Ho(Mn1-xGax)O3 films, should prove useful for the design of optoelectronic devices based on ferroelectrics.

  12. A phase-field study of the scaling law in free-standing ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Yin, Binglun; Mao, Huina; Qu, Shaoxing

    2015-12-01

    The scaling law for ferroelectric stripe domains is investigated in free-standing BaTiO3 and PbTiO3 thin films via phase-field simulations. The results agree with the Kittel law, where the square of the domain width is found to be proportional to the thin film thickness. After being rescaled by the corresponding domain wall thickness, the generalized scaling law is also demonstrated, with the dimensionless scaling constant M estimated to be ˜3.3 in two ferroelectric materials. Moreover, we predict the effect of the exchange constant which is incorporated in Ginzburg-Landau theory on the equilibrium domain width and the critical thickness of the ferroelectric thin films.

  13. A phase-field study of the scaling law in free-standing ferroelectric thin films.

    PubMed

    Yin, Binglun; Mao, Huina; Qu, Shaoxing

    2015-12-18

    The scaling law for ferroelectric stripe domains is investigated in free-standing BaTiO3 and PbTiO3 thin films via phase-field simulations. The results agree with the Kittel law, where the square of the domain width is found to be proportional to the thin film thickness. After being rescaled by the corresponding domain wall thickness, the generalized scaling law is also demonstrated, with the dimensionless scaling constant M estimated to be ∼3.3 in two ferroelectric materials. Moreover, we predict the effect of the exchange constant which is incorporated in Ginzburg-Landau theory on the equilibrium domain width and the critical thickness of the ferroelectric thin films. PMID:26580133

  14. Ferroelectricity in Strain-Free SrTiO3 Thin Films

    SciTech Connect

    Jang, J H; Kumar, Amit; Denev, Sava; Biegalski, Michael D; Maksymovych, Petro; Bark, C; Nelson, Craig T; Folkman, C H; Baek, Seung Hyub; Balke, Nina; Brooks, Charles M.; Tenne, Demetri A.; Schlom, Darrell; Chen, Long-Qing; Pan, X Q; Kalinin, Sergei V; Gopalan, Venkatraman; Eom, Professor Chang-Beom

    2010-01-01

    Biaxial strain is known to induce ferroelectricity in thin films of nominally nonferroelectric materials such as SrTiO3. However, even strain-free SrTiO3 films and the paraelectric phase of strained films exhibit bulk frequency-dependent polarization hysteresis loops on the nanoscale at room temperature, and stable switchable domains at 50 K. By a direct comparison of the strained and strain-free SrTiO3 films using dielectric, ferroelectric, Raman, nonlinear optical and nanoscale piezoelectric property measurements, we conclude that SrTiO3 films and bulk crystals are relaxor ferroelectrics, and the role of strain is to stabilize longer-range correlation of preexisting nanopolar regions, likely originating from minute amounts of unintentional Sr-deficiency in nominally stoichiometric samples. These findings highlight the sensitive role of stoichiometry when exploring strain and epitaxy-induced electronic phenomena in oxidefilms, heterostructures and interfaces.

  15. Universal Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films

    PubMed Central

    Hu, Wei Jin; Juo, Deng-Ming; You, Lu; Wang, Junling; Chen, Yi-Chun; Chu, Ying-Hao; Wu, Tom

    2014-01-01

    In this work, switching dynamics of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 MV/m and 180° domain wall energy of 60 mJ/m2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications. PMID:24759786

  16. High-density ferroelectric recording using a hard disk drive-type data storage system

    NASA Astrophysics Data System (ADS)

    Aoki, Tomonori; Hiranaga, Yoshiomi; Cho, Yasuo

    2016-05-01

    Ferroelectric probe data storage has been proposed as a novel data storage method in which bits are recorded based on the polarization directions of individual domains. These bits are subsequently read by scanning nonlinear dielectric microscopy. The domain walls of typical ferroelectric materials are quite thin: often only several times the lattice constant, which is advantageous for high-density data storage. In this work, high-density read/write (R/W) demonstrations were conducted using a hard disk drive-type test system, and the writing of bit arrays with a recording density of 3.4 Tbit/in.2 was achieved. Additionally, a series of writing and reading operations was successfully demonstrated at a density of 1 Tbit/in.2. Favorable characteristics of ferroelectric recording media for use with the proposed method are discussed in the latter part of this paper.

  17. The origin of incipient ferroelectricity in lead telluride

    PubMed Central

    Jiang, M. P.; Trigo, M.; Savić, I.; Fahy, S.; Murray, É. D.; Bray, C.; Clark, J.; Henighan, T.; Kozina, M.; Chollet, M.; Glownia, J. M.; Hoffmann, M. C.; Zhu, D.; Delaire, O.; May, A. F.; Sales, B. C.; Lindenberg, A. M.; Zalden, P.; Sato, T.; Merlin, R.; Reis, D. A.

    2016-01-01

    The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV–VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties. PMID:27447688

  18. The origin of incipient ferroelectricity in lead telluride.

    PubMed

    Jiang, M P; Trigo, M; Savić, I; Fahy, S; Murray, É D; Bray, C; Clark, J; Henighan, T; Kozina, M; Chollet, M; Glownia, J M; Hoffmann, M C; Zhu, D; Delaire, O; May, A F; Sales, B C; Lindenberg, A M; Zalden, P; Sato, T; Merlin, R; Reis, D A

    2016-01-01

    The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV-VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties. PMID:27447688

  19. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  20. Photostriction in Ferroelectrics from Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Xu, Bin; Dkhil, Brahim; Geneste, Grégory; Bellaiche, L.

    2016-06-01

    An ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed ne concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of ne. This method is applied to bulk multiferroic BiFeO3 and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect.

  1. Photostriction in Ferroelectrics from Density Functional Theory.

    PubMed

    Paillard, Charles; Xu, Bin; Dkhil, Brahim; Geneste, Grégory; Bellaiche, L

    2016-06-17

    An ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed n_{e} concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of n_{e}. This method is applied to bulk multiferroic BiFeO_{3} and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect. PMID:27367406

  2. The Shock Induced Equation of State of Two Ferroelectric Ceramics

    SciTech Connect

    Deas, D.; Millett, J. C. F.; Bourne, N. K.

    2006-07-28

    Manganin stress gauges have been used to determine the Hugoniots of two ferroelectric ceramics, lead zirconium titanate (PZT) and a similar material modified with tin (PSZT). Comparison with previously published data shows close agreement between our results for PZT and earlier work. The Hugoniot Elastic Limit has been determined, and also agrees with previous data. In the case of PSZT, the Hugoniot in terms of stress and particle velocity is similar to PZT. In terms of elastic wave velocity - particle velocity, results show an overall increase, in contrast to PZT, where wave speed was observed to decrease with increasing particle velocity.

  3. Ferroelectric fluoride compositions and methods of making and using same

    SciTech Connect

    Halasyamani, P Shiv; Chang, Hong-Young

    2015-04-07

    A method for synthesis of a ferroelectric material characterized by the general formula A.sub.xB.sub.yF.sub.z where A is an alkaline earth metal, B is transition metal or a main group metal, x and y each range from about 1 to about 5, and z ranges from about 1 to about 20 comprising contacting an alkaline earth metal fluoride, a difluorometal compound and a fluoroorganic acid in a medium to form a reaction mixture; and subjecting the reaction mixture to conditions suitable for hydrothermal crystal growth.

  4. Ferroelectricity and Rashba-type band splittings in metal halides

    NASA Astrophysics Data System (ADS)

    Kim, Minsung; Im, Jino; Freeman, Arthur; Ihm, Jisoon; Jin, Hosub

    2014-03-01

    In this study, we investigate Rashba-type band splittings in metal halides. We use a minimal tight-binding model and first principles calculations based on density functional theory to understand the electronic structures of the materials. We find that different types of Rashba bands occur in the conduction and valence band edges in terms of the angular momentum textures. Also, the characteristics of the band splittings will be discussed in connection with the ferroelectric property. Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea.

  5. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-08-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  6. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    PubMed Central

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238

  7. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    NASA Astrophysics Data System (ADS)

    Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A.

    2014-09-01

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr0.5Ti0.5)O3-FeGaB and BaTiO3-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

  8. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    SciTech Connect

    Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A.

    2014-09-21

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

  9. Development and characterization of a ferroelectric non-volatile memory for flexible electronics

    NASA Astrophysics Data System (ADS)

    Mao, Duo

    Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P

  10. Magnetoferroelectrics, divertable ferroelectrics and pyroelectric glass-ceramics

    NASA Astrophysics Data System (ADS)

    Halliyal, A. G.; Newnham, R. E.; Cross, L. E.; Bhalla, A. S.

    1983-02-01

    During the past three years the major topics on which work was carried out under the above contract are (1) grain oriented glass-ceramics for piezoelectric and pyroelectric devices, (2) shape memory in PLZT ceramics, and (3) magnetoferroelectric effect. Several glass-ceramic compositions were developed which showed a high figure of merit for application in pyroelectric devices. They are also good candidate materials for piezoelectric resonators, and surface acoustic wave devices. In the report, the compositions, processing methods and advantages of glass-ceramics over single crystals for use in devices are classified at length. A connectivity model was developed for the prediction of piezoelectric and pyroelectric properties of multicomponent glass-ceramics. Shape-memory effect in metals and alloys is a well known phenomenon. It is the recovery of a plastically deformed material to its original shape by heating. Under the above program, shape-memory effect in PLZT ceramics was investigated. Another highlight of the past three years was the discovery of a new class of ferroelectric materials possessing a magnetically induced ferroelectricity called 'magnetoferroelectricity'. A magnetoferroelectric develops a reversible spontaneous electric polarization on passing through a magnetic phase transition. The effect was demonstrated in chromium chrysoberyl Cr2BeO4.

  11. Unusual Relaxor Ferroelectric Behavior in Stairlike Aurivillius Phases.

    PubMed

    Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; Barrier, Nicolas; Caignaert, Vincent; Palatinus, Lukas

    2016-09-01

    New ferroelectric layered materials were found in the pseudobinary system Bi5Nb3O15-ABi2Nb2O9 (A= Ba, Sr and Pb). Preliminary observations made by transmission electron microscopy indicate that these compounds exhibit a complex incommensurately modulated structure. A (3 + 1)D structural model is obtained using ab initio phasing by charge flipping based on the analysis of precession electron diffraction tomography data. The (3 + 1)D structure is further validated by a refinement against neutron powder diffraction. These materials possess a layered structure with discontinuous [Bi2O2] slabs and perovskite blocks. While these structural units are characteristics of Aurivillius phases, the existence of periodic crystallographic shear planes offers strong similarities with collapsed or stairlike structures known in high-Tc superconductors and related compounds. Using dielectric spectroscopy, we study the phase transitions of these new layered materials. For A = Ba and Sr, a Vögel-Fulcher-like behavior characteristic of the so-called relaxor ferroelectrics is observed and compared to "canonical" relaxors. For A = Sr, the absence of a Burns temperature separated from the freezing temperature appears as a rather unusual behavior. PMID:27525499

  12. High throughput screening of ferroelectric thin film libraries

    NASA Astrophysics Data System (ADS)

    Schroeter, Christian; Wessler, Berit; Schoenecker, Andreas; Keitel, Uwe; Eng, Lukas M.

    2006-12-01

    High throughput methods can significantly speed up the search for advanced materials in a multidimensional configuration space, hence keeping innovation cycles short. In the search for improved materials, high throughput methods are wanted to optimize composition and processing of promising systems, and to find candidate compounds. Such a method is described here which is applicable to the development of ferroelectric thin films. Libraries with samples of varying chemical composition were produced via the sol-gel route on structured and metallized silicon wafers. To determine the permittivity of the films, automated measurements of film thickness and capacity were established. Furthermore, ferroelectric hysterisis measurements were performed on samples with a particularly high permittivity. This high throughput route, which allows for synthesis and characterization of over hundred samples per day, was proved and tested by means of lead zirconate titanate as a standard material. It was possible to obtain films with remarkable high permittivity and low coercive field at optimal lead zirconate/lead titanate ratio and by compensating for lead loss during processing by finding the optimal lead excess added to the precursor solutions.

  13. Influence of interfacial dislocations on hysteresis loops of ferroelectric films

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Hu, S. Y.; Choudhury, S.; Baskes, M. I.; Saxena, A.; Lookman, T.; Jia, Q. X.; Schlom, D. G.; Chen, L. Q.

    2008-11-01

    We investigated the influence of dislocations, located at the interface of a ferroelectric film and its underlying substrate, on the ferroelectric hysteresis loop including the remanent polarization and coercive field using phase-field simulations. We considered epitaxial ferroelectric BaTiO3 films and found that the hysteresis loop is strongly dependent on the type and density of interfacial dislocations. The dislocations that stabilize multiple ferroelectric variants and domains reduce the coercive field, and consequently, the corresponding remanent polarization also decreases.

  14. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-12-01

    In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.

  15. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3). PMID:27185343

  16. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-05-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3.

  17. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices.

    PubMed

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J; Sinsheimer, John; Chinta, Priya V; Headrick, Randall L; Dawber, Matthew

    2015-01-01

    In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process. PMID:26634894

  18. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    SciTech Connect

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-12-04

    In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.

  19. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    PubMed Central

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-01-01

    In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process. PMID:26634894

  20. Phase-field modeling of ferroelectric to paraelectric phase boundary structures in single-crystal barium titanate

    NASA Astrophysics Data System (ADS)

    Woldman, Alexandra Y.; Landis, Chad M.

    2016-03-01

    Ferroelectric perovskite materials have been shown to exhibit a large electrocaloric effect near phase transitions. We develop a computational model based on a phase-field approach to characterize the structure of ferroelectric to paraelectric phase boundaries for planar configurations under generalized plane strain with temperatures near the Curie temperature. A nonlinear finite element method is used to solve for the phase boundary structure of a representative unit cell with a 180° ferroelectric laminate for a range of domain widths. The temperature at which the phase boundary can be found increases with domain width, approaching the Curie temperature asymptotically. The excess free energy density per unit area of the boundary increases with domain width. As expected, closure domains form between the ferroelectric and paraelectric phase, and the shape of the closure domains evolves from triangular to needle-shaped as the domain width increases. The entropy jump across the phase boundary is quantified and is shown to increase with domain width as well. A planar configuration with a 90° ferroelectric laminate is investigated, but shown to be physically unlikely due to the high stress levels required to achieve strain compatibility between the phases. Possible three-dimensional structures of the ferroelectric-paraelectric phase boundary are also discussed.

  1. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    PubMed Central

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3. PMID:27185343

  2. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    DOE PAGESBeta

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-12-04

    In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundarymore » conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.« less

  3. Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites

    SciTech Connect

    Elena Ciomaga, Cristina; Maria Neagu, Alexandra; Valentin Pop, Mihai; Mitoseriu, Liliana; Airimioaei, Mirela; Tascu, Sorin; Schileo, Giorgio; Galassi, Carmen

    2013-02-21

    Particulate composites of ferrite and ferroelectric phases with xNiFe{sub 2}O{sub 4} (NF) and (1 - x)Pb{sub 0.988}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.976}Nb{sub 0.024}O{sub 3} (where x = 2, 10, 20, 30, 50, 70, and 100 wt. %) were prepared in situ by sol-gel method. The presence of a diphase composition was confirmed by X-ray diffraction while the microstructure of the composites was studied by scanning electron microscopy revealing a good mixing of the two phases and a good densification of the bulk ceramics. The dielectric permittivity shows usual dielectric dispersion behavior with increasing frequency due to Maxwell-Wagner interfacial polarization. AC conductivity measurements made in frequency range 1 Hz-1 MHz suggest that the conduction process is due to mixed polaron hopping. The effect of NF phase concentration on the P-E and M-H hysteresis behavior and dielectric properties of the composites was investigated. At low NF concentration a sharp ferro-paraelectric transition peak can be observed at around 360 Degree-Sign C while for higher NF concentrations a trend to a diffuse phase transition occurs. All the composite samples exhibit typical ferromagnetic hysteresis loops, indicating the presence of ordered magnetic structure.

  4. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Nadeem, M. A.; Idriss, H.

    2016-03-01

    The current efficiency of various photocatalytic processes is limited by the recombination of photogenerated electron-hole pairs in the photocatalyst as well as the back-reaction of intermediate species. This review concentrates on the use of ferroelectric polarization to mitigate electron-hole recombination and back-reactions and therefore improve photochemical reactivity. Ferroelectric materials are considered as wide band gap polarizable semiconductors. Depending on the surface polarization, different regions of the surface experience different extents of band bending and promote different carriers to move to spatially different locations. This can lead to some interesting interactions at the surface such as spatially selective adsorption and surface redox reactions. This introductory review covers the fundamental properties of ferroelectric materials, effect of an internal electric field/polarization on charge carrier separation, effect of the polarization on the surface photochemistry and reviews the work done on the use of these ferroelectric materials for photocatalytic applications such as dye degradation and water splitting. The manipulation of photogenerated charge carriers through an internal electric field/surface polarization is a promising strategy for the design of improved photocatalysts.

  5. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  6. CuInP2S6 Room Temperature Layered Ferroelectric

    DOE PAGESBeta

    Belianinov, Alex; He, Qian; Dziaugys, Andrius; Maksymovych, Petro; Eliseev, Eugene; Borisevich, Albina Y.; Morozovska, Anna N.; Banys, Juras; Vysochanskii, Yulian; Kalinin, Sergei V.

    2015-05-01

    In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces,more » whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.« less

  7. CuInP2S6 Room Temperature Layered Ferroelectric

    SciTech Connect

    Belianinov, Alex; He, Qian; Dziaugys, Andrius; Maksymovych, Petro; Eliseev, Eugene; Borisevich, Albina Y.; Morozovska, Anna N.; Banys, Juras; Vysochanskii, Yulian; Kalinin, Sergei V.

    2015-05-01

    In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.

  8. Ferroelectric Thin-Film Capacitors As Ultraviolet Detectors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1995-01-01

    Advantages include rapid response, solar blindness, and relative invulnerability to ionizing radiation. Ferroelectric capacitor made to function as photovoltaic detector of ultraviolet photons by making one of its electrodes semitransparent. Photovoltaic effect exploited more fully by making Schottky barrier at illuminated semitransparent-electrode/ferroelectric interface taller than Schottky barrier at other electrode/ferroelectric interface.

  9. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory

    NASA Astrophysics Data System (ADS)

    Fang, Huajing; Li, Qiang; He, Wenhui; Li, Jing; Xue, Qingtang; Xu, Chao; Zhang, Lijing; Ren, Tianling; Dong, Guifang; Chan, H. L. W.; Dai, Jiyan; Yan, Qingfeng

    2015-10-01

    We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 103. More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems.We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 103. More importantly, we demonstrate the

  10. First-principles study of the effect of oxygen vacancies around the 180∘ ferroelectric domain walls of tetragonal PbTiO3

    NASA Astrophysics Data System (ADS)

    Song, Hoe-Cheol; Kim, Hye Jung; Shin*, Young-Han

    2015-03-01

    People have extensively studied the dynamics of ferroelectric materials to apply them to nonvolatile memory devices. One of the issues in ferroelectric random access memory is the fatigue effect, which results from the presence of oxygen vacancy. Many cycles of polarization switching increase the density of oxygen vacancy around ferroelectric domain walls, and it makes the ferroelectric energy barrier higher to slow down the switching rate. In this presentation, we examine the domain dynamics around the 180° ferroelectric domain walls of tetragonal PbTiO3 with and without the oxygen vacancy by using the first-principles calculations. We estimate the energy barriers of several possible reaction paths with the nudged elastic band method. Compared to the oxygen vacancy far away from domain walls, the oxygen vacancy around ferroelectric domain walls tends to be thermodynamically stable with lower energy barriers.Finally, we expect that by controling of oxygen vacancy density around the ferroelectric domain wall could be the solution for solving fatigue problem in ferroeletric materials.

  11. Scaling Effects in Perovskite Ferroelectrics: Fundamental Limits and Process-Structure-Property Relations

    DOE PAGESBeta

    Ihlefeld, Jon F.; Harris, David T.; Keech, Ryan; Jones, Jacob L.; Maria, Jon-Paul; Trolier-McKinstry, Susan

    2016-07-05

    Ferroelectric materials are well-suited for a variety of applications because they can offer a combination of high performance and scaled integration. Examples of note include piezoelectrics to transform between electrical and mechanical energies, capacitors used to store charge, electro-optic devices, and non-volatile memory storage. Accordingly, they are widely used as sensors, actuators, energy storage, and memory components, ultrasonic devices, and in consumer electronics products. Because these functional properties arise from a non-centrosymmetric crystal structure with spontaneous strain and a permanent electric dipole, the properties depend upon physical and electrical boundary conditions, and consequently, physical dimension. The change of properties withmore » decreasing physical dimension is commonly referred to as a size effect. In thin films, size effects are widely observed, while in bulk ceramics, changes in properties from the values of large-grained specimens is most notable in samples with grain sizes below several microns. It is important to note that ferroelectricity typically persists to length scales of about 10 nm, but below this point is often absent. Despite the stability of ferroelectricity for dimensions greater than ~10 nm, the dielectric and piezoelectric coefficients of scaled ferroelectrics are suppressed relative to their bulk counterparts, in some cases by changes up to 80%. The loss of extrinsic contributions (domain and phase boundary motion) to the electromechanical response accounts for much of this suppression. In this article the current understanding of the underlying mechanisms for this behavior in perovskite ferroelectrics are reviewed. We focus on the intrinsic limits of ferroelectric response, the roles of electrical and mechanical boundary conditions, grain size and thickness effects, and extraneous effects related to processing. Ultimately, in many cases, multiple mechanisms combine to produce the observed scaling

  12. Simulation studies of nucleation of ferroelectric polarization reversal.

    SciTech Connect

    Brennecka, Geoffrey L.; Winchester, Benjamin Michael

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but also ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.

  13. Ferroelectric properties of niobium-doped strontium bismuth tantalate films

    NASA Astrophysics Data System (ADS)

    Golosov, D. A.; Zavadski, S. M.; Kolos, V. V.; Turtsevich, A. S.

    2016-01-01

    The characteristics of ferroelectric thin films of strontium bismuth tantalate (SBT) and niobium-doped strontium bismuth tantalate (SBTN) deposited by radio-frequency (RF) magnetron sputtering on Pt/TiO2/SiO2/Si substrates were investigated. For the formation of the structure of the ferroelectric material, the deposited films were subjected to a subsequent annealing at temperatures of 970-1070 K in an O2 atmosphere. The results of the X-ray diffraction analysis demonstrated that, in contrast to SBT films, in which the Aurivillius phase is formed only at annealing temperatures of 1050-1070 K, the formation of this phase in SBTN films is observed already at a temperature of 970 K. The dependences of the dielectric permittivity, remanent polarization, and coercive force of the SBT and SBTN films on the subsequent annealing conditions were determined. It was found that, upon doping of the SBT films with niobium, the remanent polarization increases by a factor of approximately three, the Curie temperature increases by 50 K, and the dielectric permittivity also increases. It was revealed that, in contrast to the SBT films, the polarization of the SBTN films is observed already at an annealing temperature of approximately 970 K. It was shown that the replacement of SBT films by SBTN films in the manufacture of high-density nonvolatile ferroelectric randomaccess memory (FeRAM) capacitor modules makes it possible to decrease the synthesis temperature from 1070 to 990-1000 K, which improves the compatibility with the planar technology of semiconductor devices. However, it turned out that an increase in the coercive field makes niobium-doped SBT films less attractive for the use in FeRAM.

  14. A Ferroelectric Oxide Made Directly on Silicon

    SciTech Connect

    Warusawithana, M.; Cen, C; Sleasman, C; Woicik, J; Li, Y; Fitting Kourkoutis, L; Klug, J; Li, H; Ryan, P; et. al.

    2009-01-01

    Metal oxide semiconductor field-effect transistors, formed using silicon dioxide and silicon, have undergone four decades of staggering technological advancement. With fundamental limits to this technology close at hand, alternatives to silicon dioxide are being pursued to enable new functionality and device architectures. We achieved ferroelectric functionality in intimate contact with silicon by growing coherently strained strontium titanate (SrTiO{sub 3}) films via oxide molecular beam epitaxy in direct contact with silicon, with no interfacial silicon dioxide. We observed ferroelectricity in these ultrathin SrTiO{sub 3} layers by means of piezoresponse force microscopy. Stable ferroelectric nanodomains created in SrTiO{sub 3} were observed at temperatures as high as 400 kelvin.

  15. The electric field induced ferroelectric phase transition of AgNbO3

    NASA Astrophysics Data System (ADS)

    Moriwake, Hiroki; Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Fu, Desheng

    2016-02-01

    Coexistence of two phases of AgNbO3 is shown to explain the experimentally observed polarization-electric field hysteresis loop better than either phase in isolation, based on detailed first-principles calculations of the structural changes and stabilities of different phases of this compound. Calculations confirm a ferroelectric phase transition, whereby the symmetry of the AgNbO3 crystal switches from antiferroelectric Pbcm to ferroelectric Pmc21, under an electric field of 9 MV/cm. The calculated spontaneous polarization (0.61 C/m2) under this field compares well with the experimental value of 0.52 C/m2. After transforming, the structure remains in the ferroelectric state even after the electric field is removed, despite the structure being energetically metastable. As the energy difference between the antiferroelectric and ferroelectric phases is only +0.5 meV/f.u. and the potential energy barrier between them (˜40 meV/f.u.) is comparable to thermal fluctuation energies, it is possible for these two phases to coexist at temperatures well below the paraelectric-antiferroelectric transition temperature (˜626 K). The exploitation of this phenomenon in AgNbO3 and related materials may provide a useful strategy for developing high-performance piezoelectric materials.

  16. Ab initio study of the ferroelectric strain dependence and 180∘ domain walls in the barium metal fluorides BaMgF4 and BaZnF4

    NASA Astrophysics Data System (ADS)

    Núñez Valdez, Maribel; Spanke, Hendrik Th.; Spaldin, Nicola A.

    2016-02-01

    We investigate the strain dependence of the ferroelectric polarization and the structure of the ferroelectric domain walls in the layered perovskite-related barium fluorides, Ba M F4 (M =Mg , Zn). The unusual "geometric ferroelectricity" in these materials is driven by the softening of a single polar phonon mode consisting of rotations of the M F6 octahedra accompanied by polar displacements of the Ba cations, and in contrast to conventional ferroelectrics involves minimal electronic rehybridization. We therefore anticipate a different strain dependence of the polarization, and alternative domain wall structures compared with those found in conventional ferroelectric materials. Using first-principles calculations based on density functional theory (DFT) within the general gradient approximation (GGA), we calculate the variation of the crystal structure and the ferroelectric polarization under both compressive and tensile strain. We perform structural relaxations of neutral domain walls between oppositely oriented directions of the ferroelectric polarization and calculate their corresponding energies to determine which are most likely to form. We compare our results to literature values for conventional perovskite oxides to provide a source of comparison for understanding the ferroelectric properties of alternative nonoxide materials such as the barium fluorides.

  17. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  18. Switching Characteristics of Ferroelectric Transistor Inverters

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  19. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tenne, Dmitri

    2007-03-01

    Conventional vibrational spectroscopies operating in visible and infrared range fail to measure the phonon spectra of nanoscale ferroelectric structures because of extremely weak signals and the overwhelming substrate contribution. In this talk, application of ultraviolet (UV) Raman spectroscopy for studies of lattice dynamics and ferroelectric phase transitions in nanoscale ferroelectrics will be presented. We demonstrate that UV Raman spectroscopy is an effective technique allowing the observation of phonons and determination of the ferroelectric phase transition temperature (Tc) in nanoscale ferroelectrics, specifically, BaTiO3/SrTiO3 superlattices having the ferroelectric BaTiO3 layers as thin as 1 unit cell, and single BaTiO3 layers as thin as 4 nm. BaTiO3/SrTiO3 superlattices and ultrathin BaTiO3 films studied were grown by molecular beam epitaxy on SrTiO3 as well as GdScO3 and DyScO3 substrates. Excellent epitaxial quality and atomically abrupt interfaces are evidenced by X-ray diffraction and high resolution transmission electron microscopy. UV Raman results show that one-unit-cell thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are ferroelectric with the Tc as high as 250 K, and induce the polarization in much thicker SrTiO3 layers adjacent to them. The Tc in superlattices was tuned by hundreds of degrees from ˜170 to 650 K by varying the thicknesses of BaTiO3 and SrTiO3 layers. Using scandate substrates enables growth of superlattices with systematically changed coherent strain, thus allowing studying the stress effect on the ferroelectric phase transitions. UV Raman data are supported by the thermodynamic calculations of polarization in superlattices as a function of temperature. The work was done in collaboration with A. Soukiassian, W. Tian, D.G. Schlom, Y.L. Li, L.-Q. Chen, X.X. Xi (Pennsylvania State University), A. Bruchhausen, A. Fainstein (Centro Atomico Bariloche & Instituto Balseiro, Argentina), R. S. Katiyar (University of Puerto Rico), A

  20. Ferroelectric plasma thruster for microspacecraft propulsion

    SciTech Connect

    Kemp, Mark A.; Kovaleski, Scott D.

    2006-12-01

    This paper presents a technology in microthruster design: the ferroelectric plasma thruster (FEPT). The FEPT utilizes an applied rf electric field to create plasma on the surface of a ferroelectric dielectric. Acceleration of ions from this plasma provides thrust. Advantages of the FEPT include emission of both electrons and ions leading to self-neutralization, creation of plasma, and acceleration of ions with a single power supply, and application of thrust in a short amount of time. We present the concept of the thruster, operational physics, as well as experimental results demonstrating plasma creation and ion acceleration. These results along with plasma spectroscopy allow us to calculate thruster parameters.

  1. New Dielectric Resonances in Mesoscopic Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pattnaik, R.; Toulouse, J.

    1997-12-01

    A new type of dielectric resonance has been observed in several mixed ferroelectrics, KTa1-xNbxO3 (KTN), K1-xLixTaO3 (KLT), and PbMg1/3Nb2/3O3 (PMN), also known as relaxor ferroelectrics. This resonance and its metastability (persistence over long periods of time) in KTN in the paraelectric phase provides clear evidence, in relaxors, for the presence of permanent polar nanoregions and strong polarization-strain coupling. The frequencies calculated from the elastic constant reveal the unexpected clamped nature of the resonance. These results point to the essential role of polar regions in the relaxor behavior.

  2. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable. PMID:23215293

  3. First-principles study of interface doping in ferroelectric junctions

    PubMed Central

    Wang, Pin-Zhi; Cai, Tian-Yi; Ju, Sheng; Wu, Yin-Zhong

    2016-01-01

    Effect of atomic monolayer insertion on the performance of ferroelectric tunneling junction is investigated in SrRuO3/BaTiO3/SrRuO3 heterostrucutures. Based on first-principles calculations, the atomic displacement, orbital occupancy, and ferroelectric polarization are studied. It is found that the ferroelectricity is enhanced when a (AlO2)− monolayer is inserted between the electrode SRO and the barrier BTO, where the relatively high mobility of doped holes effectively screen ferroelectric polarization. On the other hand, for the case of (LaO)+ inserted layer, the doped electrons resides at the both sides of middle ferroelectric barrier, making the ferroelectricity unfavorable. Our findings provide an alternative avenue to improve the performance of ferroelectric tunneling junctions. PMID:27063704

  4. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K.; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J.; Kalinin, Sergei V.; Lai, Keji; Demkov, Alexander A.

    2015-01-14

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  5. Static ferroelectric memory transistor having improved data retention

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.

    1996-01-01

    An improved ferroelectric FET structure in which the ferroelectric layer is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer having first and second contacts thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode and a ferroelectric layer which is sandwiched between the semiconductor layer and the bottom electrode. The ferroelectric layer is constructed from a perovskite structure of the chemical composition ABO.sub.3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentrations between 1% and 8%.

  6. Silicon-Based Optical Modulator with Ferroelectric Layer

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas

    2006-01-01

    According to a proposal, a silicon dioxide layer in a high-speed, low-power, silicon- based electro-optical modulator would be replaced by a layer of lead zirconate titanate or other ferroelectric oxide material. The purpose of this modification is to enhance the power performance and functionality of the modulator. In its unmodified form, the particular silicon- based electro-optical modulator is of an advanced design that overcomes the speed limitation of prior silicon-based electro- optical modulators. Whereas modulation frequencies of such devices had been limited to about 20 MHz, this modulator can operate at modulation frequencies as high as 1 GHz. This modulator can be characterized as a silicon-waveguide-based metal oxide/semiconductor (MOS) capacitor phase shifter in which modulation of the index of refraction in silicon is obtained by exploiting the free-charge-carrier-plasma dispersion effect. As shown in the figure, the modulator includes an n-doped crystalline silicon slab (the silicon layer of a silicon- on-insulator wafer) and a p-doped polycrystalline silicon rib with a gate oxide layer (the aforementioned silicon dioxide layer) sandwiched between them. Under accumulation conditions, the majority charge carriers in the silicon waveguide modify the index of refraction so that a phase shift is induced in the optical mode propagating in the waveguide. The advantage of using an MOS capacitor phase shifter is that it is possible to achieve high modulation speed because there are no slow carrier-generation or -recombination processes involved in the accumulation operation. The main advantage of the proposed substitution of a ferroelectric oxide layer for the silicon dioxide layer would arise from the spontaneous polarization effect of the ferroelectric layer: This spontaneous polarization would maintain accumulation conditions in the absence of applied voltage. Consequently, once the device had been switched to a given optical state, it would remain in

  7. Synthesis, deposition and characterization of ferroelectric films for electrooptic devices

    NASA Astrophysics Data System (ADS)

    Tunaboylu, Bahadir

    The use of integrable ferroelectric electro-optic thin films is a revolutionary approach in the development of high-speed, low-voltage and high-contrast ratio integrated electro-optic spatial light modulators (SLM) for free-space optoelectronic interconnects. Thin films offer improved performance over bulk ferroelectric (FE) materials because of their lower modulator capacitance and operation at high speeds with low switching energies. Integration of ferroelectric thin films with silicon technology will also impact both the uncooled infrared sensor and dynamic and nonvolatile memory technologies. Ferroelectrics such as lead lanthanum zirconate titanate (PLZT) and patassium tantalate niobate (KTN) present great potential for SLMs due to their large electro-optic (EO) effect in the bulk form. The development of thin-film SLMs require electro-optic films of high optical quality with good dielectric and EO properties. High quality thin films of PLZT and KTN were deposited using RF magnetron sputtering on r-plane sapphire substrates which offer integration capability with semiconductor devices. PLZT films with extremely large peak dielectric constant, 2800 at the Curie temperature of 180sp°C, were achieved with remarkably low dissipation loss factor <0.04. The dielectric frequency dispersion was determined to be very small up to 1 Mhz. Also, the absorption of the light in the films was very low. A giant effective quadratic electrooptic effect was demonstrated in PLZT films. These results represent a huge leap forward for the FE-SLM technology with respect to the goal of fully integrated thin film electrooptic light modulators. Microstructural development and phase transformation kinetics in PLZT films were also analyzed for the first time and are presented here. Energy required for the formation of desirable perovskite phase was determined to be 322 kJ/mol. Single-phase PLZT films with larger average grain size showed higher dielectric constants and better EO

  8. Investigation of ferroelectric phase transitions of water in nanoporous silicates in simultaneous electrical noise and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Bordonskiy, G. S.; Orlov, A. O.

    2014-08-01

    The phase transitions of water in the nanoporous silicate materials SBA-15 and MCM-41 with an ordered system of cylindrical pores have been investigated. Measurements of low-frequency electrical noises (Barkhausen noises) in the frequency range of 1-100 Hz have been performed simultaneously with relative calorimetric measurements. It has been found that the voltage of electrical fluctuations increases approximately 100 times in the temperature range from -30 to -50°C, which is associated with the first-order and second-order ferroelectric phase transitions. It has been assumed that the ferroelectric ice XI can be formed in capillary pores of the materials under investigations.

  9. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers.

    PubMed

    Lehmann, W; Skupin, H; Tolksdorf, C; Gebhard, E; Zentel, R; Krüger, P; Lösche, M; Kremer, F

    2001-03-22

    Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and 'smart' ceramics such as lead zirconate titanate. But the strains achievable in these materials are small--less than 0.1 per cent--so several alternative materials and approaches have been considered. These include grafted polyglutamates (which have a performance comparable to quartz), silicone elastomers (passive material--the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes (which are slow). High and fast strains of up to 4 per cent within an electric field of 150 MV x m(-1) have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100 nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MV x m(-1). This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications. PMID:11260707

  10. Study of ferroelectric-thin-film thickness effects on metal-ferroelectric-SiO2-Si transistors

    NASA Astrophysics Data System (ADS)

    Lin, Yih-Yin; Singh, Jasprit

    2002-06-01

    This article examines the thickness effects of ferroelectric films on gate tunneling suppression and charge control in metal-ferroelectric-insulator-semiconductor field-effect transistors (MFISFETs). The formalism used is based on a blocking-layer model for the ferroelectric film and a self-consistent solution of the Poisson and Schrödinger equation. We show that with a polar ferroelectric the threshold voltage of the FET can be altered by controlling the ferroelectric film thickness. We also study the thickness dependence of the capacitance-voltage curve and the surface charge density and the effects of ferroelectric hysteresis. The tunneling probability and leakage current calculation in a MFISFET device are provided in this article. Ferroelectrics-based transistors show higher sheet charges and lower tunneling currents than oxide-based devices.

  11. Neutron scattering study of the relaxor ferroelectric K 1-xLi xTaO 3

    NASA Astrophysics Data System (ADS)

    Wakimoto, S.; Samara, G. A.; Grubbs, R. K.; Venturini, E. L.; Boatner, L. A.

    2009-02-01

    Neutron scattering experiments using triple axis spectrometers have been performed for the relaxor ferroelectric materials K 1-xLi xTaO 3 ( x=0.05, 0.10) in order to study the behavior of the zone-center (ZC) transverse-optic (TO) phonon mode (ferroelectric mode). A major contrast between the x=0.05 and 0.10 samples is the ferroelectric transition-observed only for the latter material at T C=115 K on warming and as detected by dielectric measurements and neutron diffraction. The ZC TO mode for x=0.05 shows monotonic softening with decreasing temperature down to 10 K, whereas the x=0.10 sample shows a phonon component below T C which hardens with decreasing temperature in addition to a phonon mode which behaves similarly to that of the x=0.05 sample. This suggests a phase separation of the x=0.10 sample into ferroelectric and relaxor states below T C, possibly originating from a percolative nature of the ferroelectric state.

  12. A multi-surface model for ferroelectric ceramics - application to cyclic electric loading with changing maximum amplitude

    NASA Astrophysics Data System (ADS)

    Maniprakash, S.; Arockiarajan, A.; Menzel, A.

    2016-05-01

    Depending on the maximum amplitude of externally applied cyclic electric fields, ferroelectric ceramics show minor or major hysteresis. The materials also show asymmetric butterfly hysteresis in a prepoled material. Aiming at capturing these behaviour in a phenomenological constitutive model, a multi-surface modelling approach for ferroelectrics is introduced. In this paper, with the note on the motivation for a multi-surface model related to the results of new experimental investigations and also to experimental data reported in the literature, the constitutive relation for a rate dependent multi-surface ferroelectric model is developed. Following this, a brief graphical illustration shows how this model captures the objective phenomena. Consequently, the numerical implementation of the model to capture experimental results is demonstrated. Finally, the performance of this model to represent behaviour of decaying polarisation offset of electrically fatigued specimen is shown.

  13. Discriminator Stabilized Superconductor/Ferroelectric Thin Film Local Oscillator

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    A tunable local oscillator with a tunable circuit that includes a resonator and a transistor as an active element for oscillation. Tuning of the circuit is achieved with an externally applied dc bias across coupled lines on the resonator. Preferably the resonator is a high temperature superconductor microstrip ring resonator with integral coupled lines formed over a thin film ferroelectric material. A directional coupler samples the output of the oscillator which is fed into a diplexer for determining whether the oscillator is performing at a desired frequency. The high-pass and lowpass outputs of the diplexer are connected to diodes respectively for inputting the sampled signals into a differential operational amplifier. The amplifier compares the sampled signals and emits an output signal if there is a difference between the resonant and crossover frequencies. Based on the sampled signal, a bias supplied to the ring resonator is either increased or decreased for raising or lowering the resonant frequency by decreasing or increasing, respectively, the dielectric constant of the ferroelectric.

  14. Simulation Model of A Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry W. (Technical Monitor)

    2002-01-01

    An electronic simulation model has been developed of a ferroelectric field effect transistor (FFET). This model can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The model uses a previously developed algorithm that incorporates partial polarization as a basis for the design. The model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current has values matching actual FFET's, which were measured experimentally. The input and output resistance in the model is similar to that of the FFET. The model is valid for all frequencies below RF levels. A variety of different ferroelectric material characteristics can be modeled. The model can be used to design circuits using FFET'S with standard electrical simulation packages. The circuit can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The model is a drop in library that integrates seamlessly into a SPICE simulation. A comparison is made between the model and experimental data measured from an actual FFET.

  15. Microwave conductance of ferroelectric domain walls in lead titanate

    NASA Astrophysics Data System (ADS)

    Tselev, Alexander; Cao, Ye; Yu, Pu; Kalinin, Sergei V.; Maksymovych, Petro

    Numerous theoretical works predicted electronically conducting domain walls in otherwise insulating ferroelectric crystals. A number of recent experiments reported conducting walls, although conductivity itself and a conclusive proof of conductance mechanism remain elusive, largely due to the electrical contact problem. The latter can be overcome using high-frequency AC voltage. Here we will present our successful measurements of microwave conductance at 180o domain walls in lead titanate using microwave microscopy. AC conducting domain walls can be repeatably reconfigured and have extraordinary stability in time and temperature. AC conductivity is detected even when DC is not. Quantitative modeling reveals that the conductance of domain walls is comparable to doped silicon. We will also present a new and robust mechanism to create charged domain walls in any ferroelectric lattice. Overall, this sets the stage for a new generation of local experiments on conducting domain walls, and furthers the prospects of their application in fast electronic devices. AT, YC, SVK, PM supported by Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, U. S. DOE. PY supported by the National Basic Research Program of China (2015CB921700).

  16. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  17. Stability of 180° domain in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Woo, C. H.

    2003-07-01

    Ferroelectric random access memory (FRAM) has attracted much attention in the last two decades due to its ideal properties such as nonvolatility, high speed, and low power consumption. There is a strong incentive to develop high-density FRAMs, in which the switched domains, developed under low voltage or short pulses, are necessarily very small, and are therefore usually unstable and suffer from significant backswitching upon removal of the external voltage. In this investigation, a general form of energy expression for a ferroelectric material containing 180° domains is derived, from which evolution equations of the domain are established. By choosing the change in internal energy as the Liapunov function, a general formulation is developed to determine the stability conditions of the switched domain. This is applied to the case of an ellipsoidal 180° domain and yields a criterion for the stability of switched domains. We note that our approach is generally applicable to many other fields, including phase transformation, nucleation, expansion of dislocation loops in thin films, etc.

  18. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics.

    PubMed

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  19. Applications of Domain Engineering in Ferroelectrics for Photonic Applications

    NASA Astrophysics Data System (ADS)

    Scrymgeour, D. A.

    The advent of the laser in the early 1960's brought a surge of interest in techniques to modify, deflect, and change the frequency of laser light. These functions are extensively used today in such technological applications as displays, telecommunications, analog to digital conversion, printing, and data storage devices. Of the many competing technologies, optical devices fabricated in ferroelectric materials like lithium niobate and lithium tantalate offer a versatile solid-state platform to do all of these functions integrated seamlessly in the same device. By patterning these crystals into periodic gratings, the wavelength of light can be converted to different wavelengths through nonlinear optical effects to create new laser sources not readily available. If the domains are patterned into the shape of lenses or prisms, light passing through the crystal can be focused and deflected through the electro-optic effect. By precisely creating the domain structures in ferroelectric crystals, these functions and others can be combined in a single device offering large design flexibility, compactness, and utility.

  20. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    PubMed Central

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-01-01

    The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493

  1. Dynamics of ferroelastic domains in ferroelectric thin films.

    PubMed

    Nagarajan, V; Roytburd, A; Stanishevsky, A; Prasertchoung, S; Zhao, T; Chen, L; Melngailis, J; Auciello, O; Ramesh, R

    2003-01-01

    Dynamics of domain interfaces in a broad range of functional thin-film materials is an area of great current interest. In ferroelectric thin films, a significantly enhanced piezoelectric response should be observed if non-180 degrees domain walls were to switch under electric field excitation. However, in continuous thin films they are clamped by the substrate, and therefore their contribution to the piezoelectric response is limited. In this paper we show that when the ferroelectric layer is patterned into discrete islands using a focused ion beam, the clamping effect is significantly reduced, thereby facilitating the movement of ferroelastic walls. Piezo-response scanning force microscopy images of such islands in PbZr0.2Ti0.8O3 thin films clearly point out that the 90 degrees domain walls can move. Capacitors 1 microm2 show a doubling of the remanent polarization at voltages higher than approximately 15 V, associated with 90 degrees domain switching, coupled with a d33 piezoelectric coefficient of approximately 250 pm V-1 at remanence, which is approximately three times the predicted value of 87 pm V-1 for a single domain single crystal. PMID:12652672

  2. Ab initio energetics of lanthanum substitution in ferroelectric bismuth titanate

    NASA Astrophysics Data System (ADS)

    Shah, S. H.; Bristowe, P. D.

    2011-04-01

    Using first principles calculations and atomistic thermodynamics the bulk and defect properties of orthorhombic bismuth titanate (Bi4Ti3O12) and bismuth lanthanum titanate (Bi3.25La0.75Ti3O12) have been investigated. Heats of formation, valid chemical conditions for synthesis, lanthanum substitution energies and oxygen and bismuth vacancy formation energies have been computed. The study improves our understanding of how native point defects and substitutional impurities influence the ferroelectric properties of these layered perovskite materials. It is found that lanthanum incorporation could occur on either of the two distinct bismuth sites in the structure and that the effect of substitution is to increase the formation energy of nearby native oxygen vacancies. The results provide direct atomistic evidence over a range of chemical conditions supporting the suggestion that lanthanum incorporation reduces the oxygen vacancy concentration. Oxygen vacancies contribute to ferroelectric fatigue by interacting strongly with domain walls, and therefore a decrease in their concentration is beneficial. The conditions that favor the greatest reduction in oxygen vacancy concentration are described.

  3. New Molecular Ferroelectrics Accompanied by Ultrahigh Second-Harmonic Generation.

    PubMed

    Liu, Chuang; Gao, Kaige; Cui, Zepeng; Gao, Linsong; Fu, Da-Wei; Cai, Hong-Ling; Wu, X S

    2016-05-19

    Second-harmonic generation (SHG) is one of the outstanding properties for practical applications. However, the great majority of molecular ferroelectric materials have very low nonlinear optical coefficients, attenuating their attractive performance. Here we synthesized (4-amino-2-bromopyridinium)(4-amino-2-bromopyridine)tetrafluoroborate (1), whose second-order nonlinear optical coefficient reaches up to 2.56 pm V(-1), 2.67 times of that of KDP, and (4-amino-2-bromopyridinium)tetrafluoroborate (2), possessing a more incredible large second-order nonlinear optical coefficient as high as 10.24 pm V(-1), 10.67 times that of KDP. The compound 1 undergoes two reversible phase transitions at around T1 = 244.1 K and T2 = 154.6 K, caused by dramatic changes of the protonated cations and order-disorder of anions, which was disclosed by differential scanning calorimetry, heat capacity, dielectric anomalies, SHG, and single-crystal X-ray diffraction analysis. The pyroelectric measurements reveal that compound 1 is a Rochelle salt type ferroelectric, which has a large spontaneous polarization of about 3 μC/cm(2). PMID:27111056

  4. Deaging and Asymmetric Energy Landscapes in Electrically Biased Ferroelectrics

    SciTech Connect

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L.

    2015-09-01

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO{sub 3}-0.64PbTiO{sub 3}.

  5. Deaging and Asymmetric Energy Landscapes in Electrically Biased Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L.

    2012-04-01

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO3-0.64PbTiO3.

  6. Deaging and asymmetric energy landscapes in electrically biased ferroelectrics.

    PubMed

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L

    2012-04-27

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO3 - 0.64PbTiO3. PMID:22680904

  7. Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms

    NASA Astrophysics Data System (ADS)

    Tyunina, Marina; Yao, Lide; Chvostova, Dagmar; Dejneka, Alexandr; Kocourek, Tomas; Jelinek, Miroslav; Trepakov, Vladimir; van Dijken, Sebastiaan

    2015-04-01

    Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.

  8. Ferroelectric control of a Mott insulator

    PubMed Central

    Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel

    2013-01-01

    The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020

  9. Ferroelectric polarization reversal in single crystals

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L.

    1992-01-01

    Research on the reversal of polarization in ferroelectric crystals is reviewed. Particular attention is given to observation methods for polarization reversal, BaTiO3 polarization reversal, crystal thickness dependence of polarization reversal, and domain wall movement during polarization reversal in TGS.

  10. Large magnetocapacitance in electronic ferroelectric manganite systems

    SciTech Connect

    Chowdhury, Ujjal; Goswami, Sudipta; Bhattacharya, Dipten; Midya, Arindam; Mandal, P.; Das, Pintu; Mukovskii, Ya. M.

    2013-11-21

    We have observed a sizable positive magnetocapacitance (∼5%–90%) in perovskite Pr{sub 0.55}Ca{sub 0.45}MnO{sub 3} and bilayer Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7} system under 5 T magnetic field across 20–100 K below the magnetic transition point T{sub N}. The magnetodielectric effect, on the other hand, exhibits a crossover: (a) from positive to negative for the perovskite system and (b) from negative to positive for the bilayer system over the same temperature range. The bilayer Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7} system exhibits a sizable anisotropy as well. We have also noticed the influence of magnetic field on the dielectric relaxation characteristics of these systems. These systems belong to a class of improper ferroelectrics and are expected to exhibit charge/orbital order driven ferroelectric polarization below the transition point T{sub CO}. Large magnetocapacitance in these systems shows a typical multiferroic behavior even though the ferroelectric polarization is small in comparison to that of other ferroelectrics.

  11. Ferroelectric polarization reversal via successive ferroelastic transitions.

    PubMed

    Xu, Ruijuan; Liu, Shi; Grinberg, Ilya; Karthik, J; Damodaran, Anoop R; Rappe, Andrew M; Martin, Lane W

    2015-01-01

    Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr(0.2)Ti(0.8)O3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed. PMID:25344784

  12. Giant Electroresistive Ferroelectric Diode on 2DEG

    PubMed Central

    Kim, Shin-Ik; Jin Gwon, Hyo; Kim, Dai-Hong; Keun Kim, Seong; Choi, Ji-Won; Yoon, Seok-Jin; Jung Chang, Hye; Kang, Chong-Yun; Kwon, Beomjin; Bark, Chung-Wung; Hong, Seong-Hyeon; Kim, Jin-Sang; Baek, Seung-Hyub

    2015-01-01

    Manipulation of electrons in a solid through transmitting, storing, and switching is the fundamental basis for the microelectronic devices. Recently, the electroresistance effect in the ferroelectric capacitors has provided a novel way to modulate the electron transport by polarization reversal. Here, we demonstrate a giant electroresistive ferroelectric diode integrating a ferroelectric capacitor into two-dimensional electron gas (2DEG) at oxide interface. As a model system, we fabricate an epitaxial Au/Pb(Zr0.2Ti0.8)O3/LaAlO3/SrTiO3 heterostructure, where 2DEG is formed at LaAlO3/SrTiO3 interface. This device functions as a two-terminal, non-volatile memory of 1 diode-1 resistor with a large I+/I− ratio (>108 at ±6 V) and Ion/Ioff ratio (>107). This is attributed to not only Schottky barrier modulation at metal/ferroelectric interface by polarization reversal but also the field-effect metal-insulator transition of 2DEG. Moreover, using this heterostructure, we can demonstrate a memristive behavior for an artificial synapse memory, where the resistance can be continuously tuned by partial polarization switching, and the electrons are only unidirectionally transmitted. Beyond non-volatile memory and logic devices, our results will provide new opportunities to emerging electronic devices such as multifunctional nanoelectronics and neuromorphic electronics. PMID:26014446

  13. A Model for Ferroelectric Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Qureshi, A. Haq

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstrip lines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  14. Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy

    SciTech Connect

    Miao, Hongchen; Sun, Yao; Zhou, Xilong; Li, Yingwei; Li, Faxin

    2014-08-14

    Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower than the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.

  15. Analysis of the Measurement and Modeling of a Digital Inverter Based on a Ferroelectric Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Sayyah, Rana; Ho, Fat D.

    2009-01-01

    The use of ferroelectric materials for digital memory devices is widely researched and implemented, but ferroelectric devices also possess unique characteristics that make them have interesting and useful properties in digital circuits. Because ferroelectric transistors possess the properties of hysteresis and nonlinearity, a digital inverter containing a FeFET has very different characteristics than one with a traditional FET. This paper characterizes the properties of the measurement and modeling of a FeFET based digital inverter. The circuit was set up using discrete FeFETs. The purpose of this circuit was not to produce a practical integrated circuit that could be inserted directly into existing digital circuits, but to explore the properties and characteristics of such a device and to look at possible future uses. Input and output characteristics are presented, as well as timing measurements. Comparisons are made between the ferroelectric device and the properties of a standard digital inverter. Potential benefits and possible uses of such a device are presented.

  16. High-performance ferroelectric memory based on fully patterned tunnel junctions

    NASA Astrophysics Data System (ADS)

    Boyn, S.; Girod, S.; Garcia, V.; Fusil, S.; Xavier, S.; Deranlot, C.; Yamada, H.; Carrétéro, C.; Jacquet, E.; Bibes, M.; Barthélémy, A.; Grollier, J.

    2014-02-01

    In tunnel junctions with ferroelectric barriers, switching the polarization direction modifies the electrostatic potential profile and the associated average tunnel barrier height. This results in strong changes of the tunnel transmission and associated resistance. The information readout in ferroelectric tunnel junctions (FTJs) is thus resistive and non-destructive, which is an advantage compared to the case of conventional ferroelectric memories (FeRAMs). Initially, endurance limitation (i.e., fatigue) was the main factor hampering the industrialization of FeRAMs. Systematic investigations of switching dynamics for various ferroelectric and electrode materials have resolved this issue, with endurance now reaching 1014 cycles. Here we investigate data retention and endurance in fully patterned submicron Co/BiFeO3/Ca0.96Ce0.04MnO3 FTJs. We report good reproducibility with high resistance contrasts and extend the maximum reported endurance of FTJs by three orders of magnitude (4 × 106 cycles). Our results indicate that here fatigue is not limited by a decrease of the polarization or an increase of the leakage but rather by domain wall pinning. We propose directions to access extreme and intermediate resistance states more reliably and further strengthen the potential of FTJs for non-volatile memory applications.

  17. Displacive-type ferroelectricity from magnetic correlations within spin-chain

    PubMed Central

    Basu, Tathamay; Kishore, V. V. Ravi; Gohil, Smita; Singh, Kiran; Mohapatra, N.; Bhattacharjee, S.; Gonde, Babu; Lalla, N. P.; Mahadevan, Priya; Ghosh, Shankar; Sampathkumaran, E. V.

    2014-01-01

    Observation of ferroelectricity among non-d0 systems, which was believed for a long time an unrealistic concept, led to various proposals for the mechanisms to explain the same (i.e. magnetically induced ferroelectricity) during last decade. Here, we provide support for ferroelectricity of a displacive-type possibly involving magnetic ions due to short-range magnetic correlations within a spin-chain, through the demonstration of magnetoelectric coupling in a Haldane spin-chain compound Er2BaNiO5 well above its Néel temperature of (TN = ) 32 K. There is a distinct evidence for electric polarization setting in near 60 K around which there is an evidence for short-range magnetic correlations from other experimental methods. Raman studies also establish a softening of phonon modes in the same temperature (T) range and T-dependent x-ray diffraction (XRD) patterns also reveal lattice parameters anomalies. Density-functional theory based calculations establish a displacive component (similar to d0-ness) as the root-cause of ferroelectricity from (magnetic) NiO6 chain, thereby offering a new route to search for similar materials near room temperature to enable applications. PMID:25005869

  18. Above-room-temperature ferroelectricity in a single-component molecular crystal.

    PubMed

    Horiuchi, Sachio; Tokunaga, Yusuke; Giovannetti, Gianluca; Picozzi, Silvia; Itoh, Hirotake; Shimano, Ryo; Kumai, Reiji; Tokura, Yoshinori

    2010-02-11

    Ferroelectrics are electro-active materials that can store and switch their polarity (ferroelectricity), sense temperature changes (pyroelectricity), interchange electric and mechanical functions (piezoelectricity), and manipulate light (through optical nonlinearities and the electro-optic effect): all of these functions have practical applications. Topological switching of pi-conjugation in organic molecules, such as the keto-enol transformation, has long been anticipated as a means of realizing these phenomena in molecular assemblies and crystals. Croconic acid, an ingredient of black dyes, was recently found to have a hydrogen-bonded polar structure in a crystalline state. Here we demonstrate that application of an electric field can coherently align the molecular polarities in crystalline croconic acid, as indicated by an increase of optical second harmonic generation, and produce a well-defined polarization hysteresis at room temperature. To make this simple pentagonal molecule ferroelectric, we switched the pi-bond topology using synchronized proton transfer instead of rigid-body rotation. Of the organic ferroelectrics, this molecular crystal exhibits the highest spontaneous polarization ( approximately 20 muC cm(-2)) in spite of its small molecular size, which is in accord with first-principles electronic-structure calculations. Such high polarization, which persists up to 400 K, may find application in active capacitor and nonlinear optics elements in future organic electronics. PMID:20148035

  19. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory.

    PubMed

    Fang, Huajing; Li, Qiang; He, Wenhui; Li, Jing; Xue, Qingtang; Xu, Chao; Zhang, Lijing; Ren, Tianling; Dong, Guifang; Chan, H L W; Dai, Jiyan; Yan, Qingfeng

    2015-11-01

    We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 10(3). More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems. PMID:26350823

  20. Polarization Domain Switching of Improper Hybrid Ferroelectric (Ca,Sr)3Ti2O7 Crystals

    NASA Astrophysics Data System (ADS)

    Lim, Seong Joon; Gao, Bin; Kim, Jaewook; Huang, Fei-Ting; Cheong, Sang-Wook; RCEM Team

    The observation of switchable polarization loops at room temperature in (Ca,Sr)3Ti2O7, induced by improper hybrid ferroelectricity, has drawn much attention. Since the ferroelectric polarization directly couples with structural distortions (oxygen octahedral tilting and rotation) in hybrid improper ferroelectrics, the energy barrier for polarization switching is predicted to be large, and the observation of ferroelectric polarization loops was a surprise. Furthermore, the observed complexity of the domain wall configuration in (Ca,Sr)3Ti2O7 may complicate the domain wall motion or the domain nucleation for polarization switching. Thus, it is imperative to understand the mechanism and dynamics of polarization domain switching. Particularly, it has to be clarified if polarization switching occurs through 90° or 180° switching. Comparing piezoresponse force microscope and polarized optical microscope images before and after applying electric fields consecutively, we explored the mechanism and dynamics of polarization domain switching. This work is funded by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4413 to the Rutgers Center for Emergent Materials.

  1. Three-dimensional H-bonding and ferroelectric transition in KDP. Quantum-chemical study

    NASA Astrophysics Data System (ADS)

    Dolin, S. P.; Mikhailova, T. Yu; Solin, M. V.; Breslavskaya, N. N.; Levin, A. A.

    On basis of the nonempirical methods (SCF, B3LYP, MP2-MP4) and several cluster models, the ferroelectric KH2PO4 (KDP) and its deuteroanalogue are studied. The tunneling integralsΩ and the parameters of the effective coupling of protons/deuterons U,V (the Ising parameters) are calculated for these materials with the 3d network of H/D-bonds. Using the obtained U,V andΩ values in the frames of molecular field approximation, it is found that the structural phase (ferroelectric) transition occurs for both crystals within the lowering of temperature. Such low-temperature behavior differs the 3d KDP-family materials from 0d systems, where the low-temperature phase transition takes place only upon deuteration. It is demonstrated that this difference is associated with an abrupt Ising parameters growth for KDP if compared with the nondeuterated 0d materials.

  2. Thermal Expansion Anomaly in TTB Ferroelectrics: The Interplay between Framework Structure and Electric Polarization.

    PubMed

    Lin, Kun; You, Li; Li, Qiang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-15

    Tetragonal tungsten bronze (TTB) makes up a large family of functional materials with fascinating dielectric, piezoelectric, or ferroelectric properties. Understanding the thermal expansion mechanisms associated with their physical properties is important for their practical applications as well as theoretical investigations. Fortunately, the appearance of anomalous thermal expansion in functional materials offers a chance to capture the physics behind them. Herein, we report an investigation of the thermal expansion anomalies in TTBs that are related to ferroelectric transitions and summarize recent progress in this field. The special role of Pb(2+) cation is elucidated. The interplay between the thermal expansion anomaly, electric polarization, and framework structure provides new insight into the structure-property relationships in functional materials. PMID:27487395

  3. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    SciTech Connect

    Awan, Saif Ullah E-mail: ullahphy@gmail.com; Hasanain, S. K.; Anjum, D. H.; Awan, M. S.; Shah, Saqlain A.

    2014-10-28

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn{sub 1−y}Li{sub y}O(0.00≤y≤0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4 × 10{sup 17}/cc to 7.3 × 10{sup 17}/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5 kV/cm (0.11 μC/cm{sup 2}) and 2.8 kV/cm (0.15 μC/cm{sup 2}) for y = 0.08 and y = 0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ≥5.3 × 10{sup 17}/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  4. Interaction of Terahertz Radiation with Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Nelson, Keith

    2007-03-01

    Ferroelectric crystals have long been used as acoustic transducers and receivers. An extensive toolset has been developed for MHz-frequency acoustic wave generation, control, guidance, and readout. In recent years, an analogous toolset has been developed for terahertz wave transduction and detection. Femtosecond optical pulses irradiate ferroelectric crystals to generate responses in the 0.1-5 THz frequency range that are admixtures of electromagnetic and polar lattice vibrational excitations called phonon-polaritons. Spatiotemporal femtosecond pulse shaping may be used to generate additional optical pulses that arrive at specified times and sample locations for control and manipulation of the THz waves. Femtosecond laser machining may be used for fabrication of waveguides, resonators, and other structures that are integrated into the ferroelectric host crystal. Finally, real-space imaging of the THz fields can be executed with variably delayed femtosecond probe pulses, permitting direct visualization of THz wave spatial and temporal evolution. This ``polaritonics'' toolset enables multiplexed generation of arbitrary THz waveforms and use of the waveforms within the ferroelectric host crystal or after projection into free space or an adjacent medium. The polaritonics platform will be reviewed and several new developments and applications will be presented. These include spectroscopy of relaxor ferroelectrics, whose temperature-dependent dielectric responses in the GHz-THz regime reveal complex polarization dynamics on well separated fast and slow time scales; direct measurement of phonon-polariton lattice vibrational displacements through femtosecond time-resolved x-ray diffraction; generation of high polariton field amplitudes and pulse energies; use of large-amplitude polariton waves to drive nonlinear lattice vibrational responses; and enhancement of optical-to-THz conversion efficiency through a pseudo-phase-matching approach that circumvents the very large

  5. Study of charge control and gate tunneling in a ferroelectric-oxide-silicon field effect transistor: Comparison with a conventional metal-oxide-silicon structure

    NASA Astrophysics Data System (ADS)

    Lin, Yih-Yin; Zhang, Yifei; Singh, Jasprit; York, Robert; Mishra, Umesh

    2001-02-01

    It is known that conventional metal-oxide-silicon (MOS) devices will have gate tunneling related problems at very thin oxide thicknesses. Various high-dielectric-constant materials are being examined to suppress the gate currents. In this article we present theoretical results of a charge control and gate tunneling model for a ferroelectric-oxide-silicon field effect transistor and compare them to results for a conventional MOS device. The potential of high polarization charge to induce inversion without doping and high dielectric constant to suppress tunneling current is explored. The model is based on a self-consistent solution of the quantum problem and includes the ferroelectric hysteresis response self-consistently. We show that the polarization charge associated with ferroelectrics can allow greater controllability of the inversion layer charge density. Also the high dielectric constant of ferroelectrics results in greatly suppressed gate current.

  6. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.

    PubMed

    Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin

    2016-02-19

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind. PMID:26788984

  7. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles

    NASA Astrophysics Data System (ADS)

    Paik, Young Hun; Shokri Kojori, Hossein; Kim, Sung Jin

    2016-02-01

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.

  8. Ferroelectric domain engineering by focused infrared femtosecond pulses

    SciTech Connect

    Chen, Xin; Shvedov, Vladlen; Sheng, Yan; Karpinski, Pawel; Koynov, Kaloian; Wang, Bingxia; Trull, Jose; Cojocaru, Crina; Krolikowski, Wieslaw

    2015-10-05

    We demonstrate infrared femtosecond laser-induced inversion of ferroelectric domains. This process can be realised solely by using tightly focused laser pulses without application of any electric field prior to, in conjunction with, or subsequent to the laser irradiation. As most ferroelectric crystals like LiNbO{sub 3}, LiTaO{sub 3}, and KTiOPO{sub 4} are transparent in the infrared, this optical poling method allows one to form ferroelectric domain patterns much deeper inside a ferroelectric crystal than by using ultraviolet light and hence can be used to fabricate practical devices. We also propose in situ diagnostics of the ferroelectric domain inversion process by monitoring the Čerenkov second harmonic signal, which is sensitive to the appearance of ferroelectric domain walls.

  9. Molecule-displacive ferroelectricity in organic supramolecular solids

    PubMed Central

    Ye, Heng-Yun; Zhang, Yi; Noro, Shin-ichiro; Kubo, Kazuya; Yoshitake, Masashi; Liu, Zun-Qi; Cai, Hong-Ling; Fu, Da-Wei; Yoshikawa, Hirofumi; Awaga, Kunio; Xiong, Ren-Gen; Nakamura, Takayoshi

    2013-01-01

    Ferroelectricity is essential to many forms of current technology, ranging from sensors and actuators to optical or memory devices. In this circumstance, organic ferroelectrics are of particular importance because of their potential application in tomorrow's organic devices, and several pure organic ferroelectrics have been recently developed. However, some problems, such as current leakage and/or low working frequencies, make their application prospects especially for ferroelectric memory (FeRAM) not clear. Here, we describe the molecule-displacive ferroelectricity of supramolecular adducts of tartaric acid and 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide. The adducts show large spontaneous polarization, high rectangularity of the ferroelectric hysteresis loops even at high operation frequency (10 kHz), and high performance in polarization switching up to 1 × 106 times without showing fatigue. It opens great perspectives in terms of applications, especially in organic FeRAM. PMID:23873392

  10. Molecule-displacive ferroelectricity in organic supramolecular solids

    NASA Astrophysics Data System (ADS)

    Ye, Heng-Yun; Zhang, Yi; Noro, Shin-Ichiro; Kubo, Kazuya; Yoshitake, Masashi; Liu, Zun-Qi; Cai, Hong-Ling; Fu, Da-Wei; Yoshikawa, Hirofumi; Awaga, Kunio; Xiong, Ren-Gen; Nakamura, Takayoshi

    2013-07-01

    Ferroelectricity is essential to many forms of current technology, ranging from sensors and actuators to optical or memory devices. In this circumstance, organic ferroelectrics are of particular importance because of their potential application in tomorrow's organic devices, and several pure organic ferroelectrics have been recently developed. However, some problems, such as current leakage and/or low working frequencies, make their application prospects especially for ferroelectric memory (FeRAM) not clear. Here, we describe the molecule-displacive ferroelectricity of supramolecular adducts of tartaric acid and 1,4-diazabicyclo[2.2.2]octane N,N'-dioxide. The adducts show large spontaneous polarization, high rectangularity of the ferroelectric hysteresis loops even at high operation frequency (10 kHz), and high performance in polarization switching up to 1 × 106 times without showing fatigue. It opens great perspectives in terms of applications, especially in organic FeRAM.

  11. Effect of Vegard strains on the extrinsic size effects in ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Golovina, Iryna S.; Lemishko, Sergiy V.; Andriiko, Alexander A.; Khainakov, Sergiy A.; Eliseev, Eugene A.

    2014-12-01

    By changing the size and the shape of ferroelectric nanoparticles, one can govern their polar properties, including their improvement in comparison with the bulk material. The shift of the ferroelectric transition temperature can reach hundreds of degrees Kelvin. A phenomenological description of these effects was proposed in the framework of Landau-Ginsburg-Devonshire (LGD) theory using the concepts of surface tension and surface bond contraction. However, this description contains a series of poorly defined parameters, and the physical nature is ambiguous. It appears that the size and shape dependences of the phase transition temperature, along with all polar properties, are defined by the nature of the size effect. Existing LGD-type models do not take into account that defect concentration strongly increases near the particle surface. In order to develop an adequate phenomenological description of size effects in ferroelectric nanoparticles, one should consider Vegard strains (local lattice deformations) originating from defect accumulation near the surface. In this paper, we propose a theoretical model that takes into account Vegard strains and performs a detailed quantitative comparison of the theoretical results with experimental ones for quasispherical KTa1 -xNbxO3 nanoparticles (average radius 25 nm), which reveal the essential (about 100 K) increase of the transition temperature in spherical nanoparticles in comparison with bulk crystals. From the comparison between the theory and experiment, we established the leading contribution of Vegard strains to the extrinsic size effects in ferroelectric nanoparticles. We determined the dependence of Vegard strains on the content of Nb and reconstructed the Curie temperature dependence on the content of Nb using this dependence. The dependence of the Curie temperature on the Nb content becomes a nonmonotonic one for the small (<20 nm) elongated KTa1 -xNbxO3 nanoparticles. We established that the accumulation of

  12. An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl₃).

    PubMed

    Ye, Heng-Yun; Zhang, Yi; Fu, Da-Wei; Xiong, Ren-Gen

    2014-10-13

    Hybrid organo-metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite-type complex (3-pyrrolinium)(CdCl3) exhibits above-room-temperature ferroelectricity with a Curie temperature T(c)=316 K and a spontaneous polarization P(s)=5.1 μC cm(-2). The material also exhibits antiparallel 180° domains which are related to the anomalous photovoltaic effect. The open-circuit photovoltage for a 1 mm-thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo-metal halide perovskites in photovoltaic research. PMID:25196506

  13. Fast 704 MHz Ferroelectric Tuner for Superconducting Cavities

    SciTech Connect

    Jay L. Hirshfield

    2012-04-12

    with narrower bandwidth. It is planned to build a 704 MHz version of the tuner, to check its underlying principles, and to make high-power tests at power densities aimed towards controlling 50 kW of average power. Steps towards this goal will be limited by, among other factors, losses in the actual ferroelectric elements in the ferroelectric assemblies. As the ferroelectric material loss tangent is reduced through efforts by the supplier Euclid TechLabs LLC, the concomitant power loss in its ferroelectric assemblies will drop, and the average power-handling capability of the Omega-P tuner will rise. It can thus be anticipated that the Phase II development project of the 704 MHz tuner will be iterative, but the pace and ultimate power-handling level of the tuner is difficult to predict at this early stage in Euclid's development program. Fortunately, since Omega-P's conceptual tuner is a simple module (nominally rated for 5 kW), so that the number of modules required in each tuner can be chosen, depending upon the cavity power level needed, plus the power for tuner losses.

  14. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites.

    PubMed

    Bristowe, N C; Varignon, J; Fontaine, D; Bousquet, E; Ghosez, Ph

    2015-01-01

    In magnetic materials, the Pauli exclusion principle typically drives anti-alignment between electron spins on neighbouring species resulting in antiferromagnetic behaviour. Ferromagnetism exhibiting spontaneous spin alignment is a fairly rare behaviour, but once materialized is often associated with itinerant electrons in metals. Here we predict and rationalize robust ferromagnetism in an insulating oxide perovskite structure based on the popular titanate series. In half-doped layered titanates, the combination of Jahn-Teller and oxygen breathing motions opens a band gap and creates an unusual charge and orbital ordering of the Ti d electrons. It is argued that this intriguingly intricate electronic network favours the elusive inter-site ferromagnetic (FM) ordering, on the basis of intra-site Hund's rules. Finally, we find that the layered oxides are also ferroelectric with a spontaneous polarization approaching that of BaTiO3. The concepts are general and design principles of the technologically desirable FM ferroelectric multiferroics are presented. PMID:25807180

  15. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  16. Citrate complexing sol-gel process of lead-free (K,Na)NbO3 ferroelectric films

    NASA Astrophysics Data System (ADS)

    Yao, Linlin; Zhu, Kongjun

    2016-05-01

    The citrate complexing sol-gel process to fabricate lead-free (K,Na)NbO3 ferroelectric thin films was studied. Soluble niobium source of niobium-citric acid (Nb-CA) solution was utilized as a raw material to synthesize (K,Na)NbO3 thin films, by pyrolyzing at 450-550∘C and annealing at 650∘C. The film pyrolyzed at 450∘C shows poor crystallization with porous morphology, whereas the film pyrolyzed at 550∘C appear to be well-crystallized and denser, and the ferroelectricity was also proved by the P-E hysteresis loop measurement.

  17. Giant Resistive Switching via Control of Ferroelectric Charged Domain Walls.

    PubMed

    Li, Linze; Britson, Jason; Jokisaari, Jacob R; Zhang, Yi; Adamo, Carolina; Melville, Alexander; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing

    2016-08-01

    Controlled switching of resistivity in ferroelectric thin films is demonstrated by writing and erasing stable, nanoscale, strongly charged domain walls using an in situ transmission electron microscopy technique. The resistance can be read nondestructively and presents the largest off/on ratio (≈10(5) ) ever reported in room-temperature ferroelectric devices, opening new avenues for engineering ferroelectric thin-film devices. PMID:27213756

  18. Determining the influence of ferroelectric polarization on electrical characteristics in organic ferroelectric field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fu, Zong-Yuan; Zhang, Jian-Chi; Hu, Jing-Hang; Jiang, Yu-Long; Ding, Shi-Jin; Zhu, Guo-Dong

    2015-05-01

    Organic ferroelectric field-effect transistors (OFeFETs) are regarded as a promising technology for low-cost flexible memories. However, the electrical instability is still a critical obstacle, which limits the commercialization process. Based on already established models for polarization in ferroelectrics and charge transport in OFeFETs, simulation work is performed to determine the influence of polarization fatigue and ferroelectric switching transient on electrical characteristics in OFeFETs. The polarization fatigue results in the decrease of the on-state drain current and the memory window width and thus degrades the memory performance. The output measurements during the ferroelectric switching process show a hysteresis due to the instable polarization. In the on/off measurements, a large writing/erasing pulse frequency weakens the polarization modulation and thus results in a small separation between on- and off-state drain currents. According to the electrical properties of the ferroelectric layer, suggestions are given to obtain optimal electrical characterization for OFeFETs. Project supported by the National Key Technologies R&D Program, China (Grant No. 2009ZX02302-002), the National Natural Science Foundation of China (Grant Nos. 61376108, 61076076, and 61076068), NSAF, China (Grant No. U1430106), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13NM1400600), and Zhuo Xue Plan in Fudan University, China.

  19. Ferroelectric switching behavior in morphology controlled ferroelectric-semiconductor polymer blends for organic memory

    NASA Astrophysics Data System (ADS)

    Lim, Eunhee; Su, Gregory; Kramer, Edward; Chabinyc, Michael

    2015-03-01

    Memory is a fundamental component of all modern electronic systems. Organic ferroelectric memories are advantageous because they are thin and lightweight devices that can be made printable, foldable, and stretchable. Organic ferroelectric memories comprise a physical blend of an organic semiconducting polymer and an insulating ferroelectric polymer as the active layer in a thin film diode. Controlling the thin film morphology in these blends is important for electrical properties of the resulting device. We have found that when a semiconducting thiophene polymer with polar alkanoate side chains (P3EPT) is blended with well-studied ferroelectric polymer poly [(vinylidenefluoride-co-trifluoroethylene] P (VDF-TrFE), the resulting film has low surface roughness and more controllable domain sizes compared to the widely used poly (3-hexylthiophene). This difference allows more reliable study of the ferroelectric switching behavior in devices with domain size of about 100nm. The influence of the 3D composition measured by a combination of methods, including soft x-ray microscopy, on the electrical characteristics will be presented.

  20. Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie temperature.

    SciTech Connect

    Narayanan, M.; Tong, S.; Ma, B.; Liu, S.; Balachandran, U.

    2012-01-01

    A modified Johnson model is proposed to describe the nonlinear field dependence of the dielectric constant ({var_epsilon}-E loop) in ferroelectric materials below the Curie temperature. This model describes the characteristic ferroelectric 'butterfly' shape observed in typical {var_epsilon}-E loops. The predicted nonlinear behavior agreed well with the measured values in both the low- and high-field regions for lead lanthanum zirconate titanate films. The proposed model was also validated at different temperatures below the ferroelectric-to-paraelectric Curie point. The anharmonic coefficient in the model decreased from 6.142 x 10{sup -19} cm{sup 2}/V{sup 2} to 2.039 x 10{sup -19} cm{sup 2}/V{sup 2} when the temperature increased from 25 C to 250 C.

  1. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films

    DOE PAGESBeta

    Tang, Y. L.; Zhu, Y. L; Ma, Xiuliang; Borisevich, Albina Y; Morozovska, A. N.; Eliseev, Eugene; Wang, W. Y; Wang, Yujia; Xu, Y. B.; Zhang, Z. D.; et al

    2015-05-01

    Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO3 films, mediated by tensile strain on a GdScO3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strain gradients up tomore » 109 per meter. We found engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.« less

  2. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Ahn, Yoonho; Jang, Joonkyung; Son, Jong Yeog

    2016-03-01

    CaBi2Nb2O9 (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm2 (2Pr ˜9.6 μC/cm2), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  3. Ferroelectric memory element based on thin film field effect transistor

    NASA Astrophysics Data System (ADS)

    Poghosyan, A. R.; Aghamalyan, N. R.; Elbakyan, E. Y.; Guo, R.; Hovsepyan, R. K.

    2013-09-01

    We report the preparation and investigation of ferroelectric field effect transistors (FET) using ZnO:Li films with high field mobility of the charge carriers as a FET channel and as a ferroelectric active element simultaneously. The possibility for using of ferroelectric FET based on the ZnO:Li films in the ZnO:Li/LaB6 heterostructure as a bi-stable memory element for information recording is shown. The proposed ferroelectric memory structure does not manifest a fatigue after multiple readout of once recorded information.

  4. FAST TRACK COMMUNICATION: Interlayer exchange coupling across a ferroelectric barrier

    NASA Astrophysics Data System (ADS)

    Zhuravlev, M. Ye; Vedyayev, A. V.; Tsymbal, E. Y.

    2010-09-01

    A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer.

  5. A ferroelectric model for the low emissivity highlands on Venus

    NASA Technical Reports Server (NTRS)

    Shepard, Michael K.; Arvidson, Raymond E.; Brackett, Robert A.; Fegley, Bruce, Jr.

    1994-01-01

    A model to explain the low emissivity venusian highlands is proposed utilizing the temperature-dependent dielectric constant of ferroelectric minerals. Ferroelectric minerals are known to occur in alkaline and carbonite rocks, both of which are plausible for Venus. Ferroelectric minerals possess extremely high dielectric constants (10(exp 5)) over small temperature intervals and are only required in minor (much less than 1%) abundances to explain the observed emissivities. The ferroelectric model can account for: (1) the observed reduction in emissivity with increased altitude, (2) the abrupt return to normal emissivities at highest elevations, and (3) the variations in the critical elevation observed from region to region.

  6. Dual Nature of Improper Ferroelectricity in a Magnetoelectric Multiferroic

    SciTech Connect

    Picozzi, S.; Yamauchi, K.; Sanyal, B.; Sergienko, Ivan A; Dagotto, Elbio R

    2007-01-01

    Using first-principles calculations, we study the microscopic origin of ferroelectricity (FE) induced by magnetic order in the orthorhombic HoMnO3. We obtain the largest ferroelectric polarization observed in the whole class of improper magnetic ferroelectrics to date. We find that the two proposed mechanisms for FE in multiferroics, lattice and electronic based, are simultaneously active in this compound: a large portion of the ferroelectric polarization arises due to quantum-mechanical effects of electron orbital polarization, in addition to the conventional polar atomic displacements. An interesting mechanism for switching the magnetoelectric domains by an electric field via a 180 coherent rotation of Mn spins is also proposed.

  7. High-Resolution Field Effect Sensing of Ferroelectric Charges

    SciTech Connect

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-01-01

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  8. High resolution field effect sensing of ferroelectric charges.

    SciTech Connect

    Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.; Min, D.-K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S.

    2011-03-04

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  9. Fabrication of Glassy and Crystalline Ferroelectric Oxide by Containerless Processing

    NASA Astrophysics Data System (ADS)

    Yoda, Shinichi

    1. Instruction Much effort has been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic effects. However, they require a higher cooling rate than glass formed by conventional techniques. Therefore, only amorphous thin-films have been formed, using rapid quenching with a cooling rate >105 K/s. The containerless processing is an attractive synthesis technique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable phase and glassy material. Recently a new ferroelectric materiel, monoclinic BaTi2 O5 , with Currie temperature as 747 K was reported. In this study, we fabricated a bulk BaTi2 O5 glass from melt using containerless processing to study the phase relations and ferroelectric properties of BaTi2 O5 . To our knowledge, this was the first time that a bulk glass of ferroelectric material was fabricated from melt without adding any network-forming oxide. 2. Experiments BaTi2 O5 sphere glass with 2mm diameter was fabricated using containerless processing in an Aerodynamic Levitation Furnace (ALF). The containerless processing allowed the melt to achieve deep undercooling for glass forming. High purity commercial BaTiO3 and TiO2 powders were mixed with a mole ratio of 1:1 and compressed into rods and then sintered at 1427 K for 10 h. Bulk samples with a mass of about 20 mg were cut from the rod, levitated with the ALF, and then melted by a CO2 laser beam. After quenching with a cooling rate of about 1000 K/s, 2 mm diameter sphere glass could be obtained. To analyze the glass structure, a high-energy x-ray diffraction experiment was performed using an incident photon energy of 113.5 keV at the high-energy x-ray diffraction beamline BL04B2 of SPring-8

  10. Improved Properties of Pb Based BLZT Ferroelectric Ceramics

    SciTech Connect

    Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-11-22

    Present report is concerning with investigation of effect of different sintering profiles on Pb based BLZT ceramics. The material powder of selected composition (Ba{sub 0.795}La{sub 0.005}Pb{sub 0.20}Ti{sub 0.90}Zr{sub 0.10}O{sub 3}) was prepared by solid state reaction route and then powder was compacted in the form of circular discs. The discs were then sintered at different temperatures (1325 deg. C for 4h, 1325 deg. C for 15min+1200 deg. C for 4h). Improved dielectric and ferroelectric properties were observed for samples sintered at 1200 deg. C. Shifting in T{sub c} to higher temperature could be related to enhanced tetragonality, which was further confirmed by X-ray diffraction analysis. All these improvements evidences that there is less Pb loss in case of modified sintering profile.

  11. High-resolution field effect sensing of ferroelectric charges.

    PubMed

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-04-13

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 μs. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 μC/cm(2), which is equivalent to 1/20 electron per nanometer square at room temperature. PMID:21375284

  12. Electrostatic potential of ferroelectric PbTiO{sub 3}: Visualized electron polarization of Pb ion

    SciTech Connect

    Tanaka, Hiroshi; Kuroiwa, Yoshihiro; Takata, Masaki

    2006-11-01

    A different method is proposed to evaluate the electrostatic potential and electric field from x-ray diffraction data by using maximum entropy method. The efficiency of the method is revealed in the application to a ferroelectric material PbTiO{sub 3}. Visualized electrostatic potential and electric field on the charge density distribution give a direct evidence for the dipolar polarization of the Pb ion. They show close agreement with results by ab initio calculations.

  13. Reversible photoresponsive switching in Bi(2.5)Na(0.5)Nb(2)O(9)-based luminescent ferroelectrics.

    PubMed

    Zhang, Qiwei; Sun, Haiqin; Li, Hao; Wang, Xusheng; Hao, Xihong; Song, Jinling; An, Shengli

    2015-11-25

    Reversible luminescence modulation upon photochromic reactions with excellent reproducibility was achieved from Eu(3+) doped Bi2.5Na0.5Nb2O9 multifunctional ferroelectrics. The material exhibits strong sensitivity to visible light or sunlight with fast response time without inducing any structural changes. PMID:26390220

  14. Computer simulations of ferroelectric domain structure and switching using phase-field approach

    NASA Astrophysics Data System (ADS)

    Choudhury, Samrat

    Ferroelectrics are important functional materials with wide applications in various microelectronic and electrooptical devices such as memories, sensors, and actuators. For the application to information storage devices, the switchability of domains in a ferroelectric by an applied electric field is utilized. The conventional thermodynamic approach to describe switching behavior typically assumes a material to be a perfect crystal while a real ferroelectric material is generally inhomogeneous and contains domains and domain walls, as well as defects such as surfaces, grain boundaries, dislocations and dipolar defects. As a result, prior thermodynamic calculations predicted coercive fields, the minimum applied field to switch a domain, are at least one or more orders of magnitude too high compared to those measured experimentally. In this work, I developed a three-dimensional (3-D) phase-field model for predicting the domain structures and ferroelectric properties in the presence of structural inhomogeneities in both bulk crystals and thin films. The model takes into account realistic polycrystalline grain structures as well as various energetic contributions including elastic energy, electrostatic energy, and domain wall energy. It is shown that the defects such as existing domain walls, and grain boundaries play a critical role in domain switching and in determining the magnitude of coercive field. It will be demonstrated that the phase-field approach is able to predict the coercive fields and remanent polarizations that are in excellent agreement with experimental measurements. The effect of substrate constraint on phase stability and ferroelectric properties is also discussed. Further, the phase-field model developed has been extended to study the local tip-induced polarization switching in the presence of twin defects. Epitaxial lead zirconate titanate (PbZr(1-x)TixO3) thin film were studied as a model system. It was observed that the electric potential

  15. The Physics of Sol-Gel Derived Ferroelectric Thin Film PZT

    NASA Astrophysics Data System (ADS)

    Melnick, Bradley Michael

    Initial examination of a simple Auger depth profile reveals that thin film, pure lead zirconate titanate (PZT) is intrinsically a layered structure. Oxygen vacancies at the electrode interfaces create an n-type region in a normally p-type material by contributing electrons into the conduction band. Therefore, such measurable effects as the polarization versus applied field (hysteresis), and the dielectric constant versus applied field are all thickness dependent via a space charge effect on the surface of the material. M. E. Lines has suggested that the decay in switching polarization (fatigue) of barium titanate is linked to a build up of a space charge layer near the surface region. Although no specifics as to the source of the space charge layer (electronic or ionic) are given, it is implied that the space charge layer does inhibit switching due to an interaction with the domain nuclei. Therefore, it is plausible that degradation of the remnant polarization in PZT may also be connected with a surface layer. The implication from the above discussion is that thin film ferroelectric materials, such as sol-gel derived PZT, are intrinsically layered structures. This thesis involves the study of ferroelectric PZT synthesized via a solution-gelation technique (sol -gel). Using a reproducible and stable liquid solution, thin films are made by spinning droplets of the metalorganic liquid onto a substrate. The thin layers are then dried and annealed in order to form perovskite phase ferroelectric PZT capacitors for testing. A testing methodology is presented in order to test the capacitors unambiguous of artifacts due to the integration process. Capacitance versus voltage (CV), true DC leakage current, switching curve and hysteresis curve data is analyzed in order to examine the unique properties of the thin film ferroelectric. CV analysis indicates that a depletion region exists near the surface of the ferroelectric capacitor. The depletion region is found to dominate

  16. Domain switching of fatigued ferroelectric thin films

    SciTech Connect

    Tak Lim, Yun; Yeog Son, Jong E-mail: hoponpop@ulsan.ac.kr; Shin, Young-Han E-mail: hoponpop@ulsan.ac.kr

    2014-05-12

    We investigate the domain wall speed of a ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  17. Super-crystals in composite ferroelectrics

    PubMed Central

    Pierangeli, D.; Ferraro, M.; Di Mei, F.; Di Domenico, G.; de Oliveira, C. E. M.; Agranat, A. J.; DelRe, E.

    2016-01-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium–lithium–tantalate–niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies. PMID:26907725

  18. Vertical Transport in Ferroelectric/Superconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Begon-Lours, Laura; Trastoy, Juan; Bernard, Rozenn; Jacquet, Eric; Carretero, Cecile; Bouzehouane, Karim; Fusil, Stephane; Garcia, Vincent; Xavier, Stephane; Girod, Stephanie; Deranlot, Cyrile; Bibes, Manuel; Barthelemy, Agnes; Villegas, Javier E.

    2015-03-01

    We study electric field-effects in superconducting films by measuring vertical transport in ferroelectric/superconductor heterostructures. These are based on ultrathin (4 to 8 nm thick) BiFeO3-Mn grown on YBa2Cu3O7 by pulsed laser deposition. Nanoscale contacts are defined on the BiFeO3 via a series of nanofabrication steps which include e-beam lithography, metal deposition (Nb or Co capped with Pt) and lift-off. Conductive-tip atomic force microscopy and piezoresponse force microscopy are used to characterize the transport across the ferroelectric barrier as a function of its polarization (up/down). The observed electro-resistance, measured at various temperatures, allows studying the different electric-field screening in the normal and superconducting states. Work supported by DIM Oxymore.

  19. Magnetocaloric effect in ferroelectric Ising chain magnet

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Liu, Jia; Yu, Nai-sen; Du, An

    2016-05-01

    We investigate the magnetocaloric effect (MCE) in multiferroic chain system by adopting the elastic Ising-chain model. Based on the transfer-matrix method, the magnetothermal quantities of characterizing MCE behaviors including the entropy, entropy change and adiabatic cooling rate are rigorously determined. Combined with analysis of ground-state, we mainly discuss results in an antiferromagnetic regime associated with ferroelectric transition. Our results show that the entropy change is greatly enhanced near the saturation field as frustration parameter varies in this regime, and accompanied with remarkable inverse MCE, indicating the enormous potential of multiferroic system in low-temperature refrigeration. Meanwhile we also observe a prominent temperature variation in the isoentropy curves close to zero-temperature ferroelectric transition, but this enhancing MCE signal is very sensitive to the thermal fluctuations, and can be strongly suppressed even under a small temperature.

  20. Block copolymer/ferroelectric nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  1. Super-crystals in composite ferroelectrics.

    PubMed

    Pierangeli, D; Ferraro, M; Di Mei, F; Di Domenico, G; de Oliveira, C E M; Agranat, A J; DelRe, E

    2016-01-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium-lithium-tantalate-niobate with micrometric lattice constant, 10(4) times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies. PMID:26907725

  2. Super-crystals in composite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pierangeli, D.; Ferraro, M.; di Mei, F.; di Domenico, G.; de Oliveira, C. E. M.; Agranat, A. J.; Delre, E.

    2016-02-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium-lithium-tantalate-niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies.

  3. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  4. Ferroelectricity in (K@C60)n

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2000-09-01

    A theoretical analysis of the ground state of long-chain (K@C60)n is presented. Within mean field theory, a ferroelectric ground state is found to be stable because of the pseudo-Jahn-Teller mixing of the b1u and the b2g band with a zone-center optical phonon involving the displacement of the endohedral K- ions. A phase diagram for this model is derived in the narrow bandwidth regime.

  5. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, Peter J.

    1987-01-01

    A method of electrically inducing mechanical precompression of a ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion.

  6. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

    1996-04-16

    A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

  7. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  8. Comparison of Properties of Pt/PZT/Pt and Ru/PZT/Pt Ferroelectric Capacitors

    NASA Astrophysics Data System (ADS)

    Jia, Ze; Ren, Tian-Ling; Liu, Tian-Zhi; Hu, Hong; Zhang, Zhi-Gang; Xie, Dan; Liu, Li-Tian

    2006-04-01

    Pb(Zr0.4Ti0.6)O3 film prepared by sol-gel spin coating on a Pt/Ti/SiO2/Si substrate is applied to ferroelectric capacitors with Pt or Ru as the top electrode. For the Pt/PZT/Pt and Ru/PZT/Pt ferroelectric capacitors, although with the same ferroelectric film, different top electrode materials incur different properties of PZT capacitors, such as fatigue, leakage, remanent and saturated polarization, except the similar crystal orientations of the PZT film. After 1010 switch cycles, the remanent polarizations of the Ru/PZT/Pt and Pt/PZT/Pt capacitors decrease to 70% and 84%, respectively. The leakage current density of the latter increases obviously at positive bias after 108 switch cycles, compared with the former. Different materials for the top electrode bring different conditions at the PZT/top electrode interface. The influence of oxygen-vacancy concentration at the PZT/electrode interface and the influence of oxides of the electrode material at the PZT/electrode interface to charge injection can explain the difference of properties of the PZT capacitors with Pt or Ru as the top electrodes.

  9. Removing pinhole shorts during large scale ferroelectric switching through ionic liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wong, Anthony; Herklotz, Andreas; Wisinger, Nina; Rack, Philip; Ward, Thomas

    Ferroelectrics are a classification of materials that spontaneously polarize, accumulating charge at interfaces, and have non-linear hysteretic polarization curves. Switching fields required for ferroelectric materials are often very high, requiring thin insulating layers and high applied voltages. This commonly leads to electric pinholes and limits the areal sizes that can be polarized at a time. Ionic liquids have recently received heavy interest for the formation of electronic double layers which lead to huge electric fields at interfacial regions with low applied biases, and without the thickness constraint associated with conventional capacitors. We will show recent results which demonstrate that ionic liquid gating may offer the ideal solution to switch large regions of a ferroelectric film without limitations associated with pinhole defects. This has great importance to practical applications and fundamental interface studies that require large sample regions to be uniformly polarized. Supported by the US DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division and under US DOE Grant DE-SC0002136.

  10. Ferroelectricity in underdoped La-based cuprates.

    PubMed

    Viskadourakis, Z; Sunku, S S; Mukherjee, S; Andersen, B M; Ito, T; Sasagawa, T; Panagopoulos, C

    2015-01-01

    Doping a "parent" antiferromagnetic Mott insulator in cuprates leads to short-range electronic correlations and eventually to high-Tc superconductivity. However, the nature of charge correlations in the lightly doped cuprates remains unclear. Understanding the intermediate electronic phase in the phase diagram (between the parent insulator and the high-Tc superconductor) is expected to elucidate the complexity both inside and outside the superconducting dome, and in particular in the underdoped region. One such phase is ferroelectricity whose origin and relation to the properties of high-Tc superconductors is subject of current research. Here we demonstrate that ferroelectricity and the associated magnetoelectric coupling are in fact common in La-214 cuprates namely, La2-xSrxCuO4, La2LixCu1-xO4 and La2CuO4+x. It is proposed that ferroelectricity may result from local CuO6 octahedral distortions, associated with the dopant atoms and clustering of the doped charge carriers, which break spatial inversion symmetry at the local scale whereas magnetoelectric coupling can be tuned through Dzyaloshinskii-Moriya interaction. PMID:26486276

  11. Ferroelectricity in underdoped La-based cuprates

    PubMed Central

    Viskadourakis, Z.; Sunku, S. S.; Mukherjee, S.; Andersen, B. M.; Ito, T.; Sasagawa, T.; Panagopoulos, C.

    2015-01-01

    Doping a “parent” antiferromagnetic Mott insulator in cuprates leads to short-range electronic correlations and eventually to high-Tc superconductivity. However, the nature of charge correlations in the lightly doped cuprates remains unclear. Understanding the intermediate electronic phase in the phase diagram (between the parent insulator and the high-Tc superconductor) is expected to elucidate the complexity both inside and outside the superconducting dome, and in particular in the underdoped region. One such phase is ferroelectricity whose origin and relation to the properties of high-Tc superconductors is subject of current research. Here we demonstrate that ferroelectricity and the associated magnetoelectric coupling are in fact common in La-214 cuprates namely, La2-xSrxCuO4, La2LixCu1-xO4 and La2CuO4+x. It is proposed that ferroelectricity may result from local CuO6 octahedral distortions, associated with the dopant atoms and clustering of the doped charge carriers, which break spatial inversion symmetry at the local scale whereas magnetoelectric coupling can be tuned through Dzyaloshinskii-Moriya interaction. PMID:26486276

  12. WFL: Microwave Applications of Thin Ferroelectric Films

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert

    2013-01-01

    We have developed a family of tunable microwave circuits, operating from X- through Ka-band, based on laser ablated BaxSr1-xTiO films on lanthanum aluminate and magnesium oxide substrates. Circuits include voltage controlled oscillators, filters, phase shifters and antennas. A review of the basic theory of operation of these devices will be presented along with measured performance. Emphasis has been on low-loss phase shifters to enable a new phased array architecture. The critical role of phase shifter loss and transient response in reflectarray antennas will be discussed. The Ferroelectric Reflectarray Critical Components Space Experiment was launched on the penultimate Space Shuttle, STS-134, in May of 2011. It included a bank of ferroelectric phase shifters with two different stoichiometries as well as ancillary electronics. The experiment package and status will be reported. In addition, unusual results of a Van der Pauw measurement involving a ferroelectric film grown on buffered high resisitivity silicon will be discussed.

  13. Ferroelectric-carbon nanotube memory devices.

    PubMed

    Kumar, Ashok; Shivareddy, Sai G; Correa, Margarita; Resto, Oscar; Choi, Youngjin; Cole, Matthew T; Katiyar, Ram S; Scott, James F; Amaratunga, Gehan A J; Lu, Haidong; Gruverman, Alexei

    2012-04-27

    One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNT-inorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Low-loss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Current-voltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectric-carbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. PMID:22460805

  14. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  15. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals.

    PubMed

    Oh, Yoon Seok; Luo, Xuan; Huang, Fei-Ting; Wang, Yazhong; Cheong, Sang-Wook

    2015-04-01

    On the basis of successful first-principles predictions of new functional ferroelectric materials, a number of new ferroelectrics have been experimentally discovered. Using trilinear coupling of two types of octahedron rotation, hybrid improper ferroelectricity has been theoretically predicted in ordered perovskites and the Ruddlesden-Popper compounds (Ca3Ti2O7, Ca3Mn2O7 and (Ca/Sr/Ba)3(Sn/Zr/Ge)2O7). However, the ferroelectricity of these compounds has never been experimentally confirmed and even their polar nature has been under debate. Here we provide the first experimental demonstration of room-temperature switchable polarization in bulk crystals of Ca3Ti2O7, as well as Sr-doped Ca3Ti2O7. Furthermore, (Ca, Sr)3Ti2O7 is found to exhibit an intriguing ferroelectric domain structure resulting from orthorhombic twins and (switchable) planar polarization. The planar domain structure accompanies abundant charged domain walls with conducting head-to-head and insulating tail-to-tail configurations, which exhibit a conduction difference of two orders of magnitude. These discoveries provide new research opportunities, not only for new stable ferroelectrics of Ruddlesden-Popper compounds, but also for meandering conducting domain walls formed by planar polarization. PMID:25581628

  16. Phase evolution in sonochemically synthesized Fe(3+) doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterisation.

    PubMed

    Dutta, Dimple P; Roy, Mainak; Maiti, Nandita; Tyagi, Avesh K

    2016-04-14

    The properties of nanomaterials are highly dependent on their size, morphology, crystal phase, etc., which in turn depend on the method of synthesis. We report here the electrical and magnetic characterisation of sonochemically synthesized Fe(3+) doped nano BaTiO3 samples. The dopant ion concentration has been optimized and the coexistence of ferromagnetism and ferroelectricity has been observed in the sample. With increase in Fe(3+) doping from 0 to 20 mol%, a gradual phase change from tetragonal to hexagonal occurred in these sonochemically synthesized BaTiO3 nanomaterials. Below 15 mol% Fe concentration the material displays ferroelectric behaviour with the absence of any magnetic ordering, while at an Fe concentration of ∼15 mol% the material exhibits both room temperature ferromagnetism and ferroelectricity. Ferromagnetism as well as relaxor type behaviour has been observed in the BaTiO3:Fe(3+)(20%) sample. We have studied the ferromagnetic and ferroelectric ordering in these sonochemically synthesized Fe(3+) doped BaTiO3 nanomaterials and have tried to correlate the results with their crystal structure and morphology. The origin of ferromagnetism in these materials has been attributed to both intrinsic as well as extrinsic factors. PMID:27003320

  17. Studies of ferroelectric heterostructure thin films, interfaces, and device-related processes via in situ analytical techniques.

    SciTech Connect

    Aggarwal, S.; Auciello, O.; Dhote, A. M.; Gao, Y.; Gruen, D. M.; Im, J.; Irene, E. A.; Krauss, A. R.; Muller, A. H.; Ramesh, R.

    1999-06-29

    The science and technology of ferroelectric thin films has experienced an explosive development during the last ten years. Low-density non-volatile ferroelectric random access memories (NVFRAMS) are now incorporated in commercial products such as ''smart cards'', while high permittivity capacitors are incorporated in cellular phones. However, substantial work is still needed to develop materials integration strategies for high-density memories. We have demonstrated that the implementation of complementary in situ characterization techniques is critical to understand film growth and device processes relevant to device development. We are using uniquely integrated time of flight ion scattering and recoil spectroscopy (TOF-ISARS) and spectroscopic ellipsometry (SE) techniques to perform in situ, real-time studies of film growth processes in the high background gas pressure required to growth ferroelectric thin films. TOF-ISARS provides information on surface processes, while SE permits the investigation of buried interfaces as they are being formed. Recent studies on SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub x}Sr{sub 1{minus}x}TiO{sub 3} (BST) film growth and interface processes are discussed. Direct imaging of ferroelectric domains under applied electric fields can provide valuable information to understand domain dynamics in ferroelectric films. We discuss results of piezoresponse scanning force microscopy (SFM) imaging for nanoscale studies of polarization reversal and retention loss in Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3} (PZT)-based capacitors. Another powerful technique suitable for in situ, real-time characterization of film growth processes and ferroelectric film-based device operation is based on synchrotrons X-ray scattering, which is currently being implemented at Argonne National Laboratory.

  18. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications.

    PubMed

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764

  19. Enhanced ferroelectric polarization and potential morphotrophic phase boundary in PZT-based alloys

    NASA Astrophysics Data System (ADS)

    Parker, David; McGuire, Michael; Singh, David

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3) with BZnT (BiZn0.5Ti0.5O3) and BZnZr (BiZn0.5Zr0.5O3), focussing on lattice instabilities, atomic displacements and ferroelectric polarization. From theory we find that the 75 - 25 PZT - BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Experiments indicate the feasibility of sample synthesis within this alloy system.

  20. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    NASA Astrophysics Data System (ADS)

    Parker, David S.; Herklotz, Andreas; Ward, T. Z.; McGuire, Michael A.; Singh, David J.

    2016-05-01

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3 ) with BZnT (BiZn0.5Ti0.5O3 ) and BZnZr (BiZn0.5Zr0.5O3 ), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c /a ratios. Elastic stability calculations find the structures to be essentially stable. Experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.

  1. Negative Thermal Expansion in Hybrid Improper Ferroelectric Ruddlesden-Popper Perovskites by Symmetry Trapping

    NASA Astrophysics Data System (ADS)

    Senn, M. S.; Bombardi, A.; Murray, C. A.; Vecchini, C.; Scherillo, A.; Luo, X.; Cheong, S. W.

    2015-01-01

    We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3Mn2O7 and Ca3Ti2O7 . To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6 ×10-6 K-1 ) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients.

  2. Photovoltaic properties of ferroelectric BaTiO3 thin films RF sputter deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1982-01-01

    Ferroelectric thin films of BaTiO3 have been successfully deposited on n-type silicon substrates at temperatures above 500 C by RF sputtering in an O2/Ar atmosphere. Analysis by X-ray diffraction patterns show that films deposited at room temperature are amorphous. At temperatures above 500 C, crystalline BaTiO3 films with a tetragonal structure are obtained. The polarization-electric field (P-E) hysteresis loops and a broad peak in the dielectric constant versus temperature curve at Curie point indicate that the RF sputtered BaTiO3 films are ferroelectric. An anomalous photovoltaic effect is observed in these thin films which is related to the remanent polarization of the material. The results on open-circuit and short-circuit measurements provide an important basis for a better understanding of the role of photovoltaic field, photovoltaic current, and the pyroelectric properties in photoferroelectric domain switching.

  3. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  4. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting.

  5. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    PubMed Central

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764

  6. Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching

    NASA Astrophysics Data System (ADS)

    Ievlev, A. V.; Jesse, S.; Morozovska, A. N.; Strelcov, E.; Eliseev, E. A.; Pershin, Y. V.; Kumar, A.; Shur, V. Ya.; Kalinin, S. V.

    2014-01-01

    Memristive materials and devices, which enable information storage and processing on one and the same physical platform, offer an alternative to conventional von Neumann computation architectures. Their continuous spectra of states with intricate field-history dependence give rise to complex dynamics, the spatial aspect of which has not been studied in detail yet. Here, we demonstrate that ferroelectric domain switching induced by a scanning probe microscopy tip exhibits rich pattern dynamics, including intermittency, quasiperiodicity and chaos. These effects are due to the interplay between tip-induced polarization switching and screening charge dynamics, and can be mapped onto the logistic map. Our findings may have implications for ferroelectric storage, nanostructure fabrication and transistor-less logic.

  7. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor

    NASA Astrophysics Data System (ADS)

    Montoro-Damas, A. M.; Brey, J. Javier; Rodríguez, Miguel A.; González-Elipe, Agustín R.; Cotrino, José

    2015-11-01

    In a tunable circular parallel plate dielectric barrier discharge reactor with pellets of a ferroelectric material separating the electrodes we investigate the plasma reforming of methane trying to maximize both the reaction yield and the energetic efficiency of the process. The geometrical configuration of the reactor (gap between electrodes, active electrode area) and the ferroelectric pellet size have been systematically varied to determine their influence on the process efficiency. The comparison between wet (with H2O as reactant), oxidative (with O2), and dry (with CO2) reforming reactions reveals a higher efficiency for the former with CO + H2 as main reaction products. The maximum energetic efficiency EE, defined as the produced number of litres of H2 per kWh, found for optimized working conditions at low-level applied power is higher than the up to date best-known results. A comprehensive discussion of the influence of the different parameters affecting the reaction yield is carried out.

  8. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-07-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results.

  9. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy.

    PubMed

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-08-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results. PMID:24953042

  10. Vibrational properties of ferroelectric {beta}-vinylidene fluoride polymers and oligomers.

    SciTech Connect

    Nakhmanson, S. M.; Korlacki, R.; Johnson, J. T.; Ducharme, S.; Ge, Z.; Takacs, J. M.; Materials Science Division; Univ.of Nebraska at Lincoln

    2010-01-01

    We utilize a plane-wave density-functional theory approach to investigate the vibrational properties of the all-trans ferroelectric phase of poly(vinylidene fluoride) ({beta}-PVDF) showing that its stable state corresponds to the Ama2 structure with ordered dihedral tilting of the VDF monomers along the polymer chains. We then combine our theoretical analysis with IR spectroscopy to examine vibrations in oligomer crystals that are structurally related to the {beta}-PVDF phase. We demonstrate that these materials - which can be grown in a highly crystalline form - exhibit IR activity similar to that of {beta}-PVDF, making them an attractive choice for the studies of electroactive phenomena and phase transitions in polymer ferroelectrics.

  11. Novel ferroelectric liquid crystals consisting glassy liquid crystal as chiral dopants

    NASA Astrophysics Data System (ADS)

    Chen, Huang-Ming Philip; Tsai, Yun-Yen; Lin, Chi-Wen; Shieh, Han-Ping David

    2006-08-01

    A series of ferroelectric liquid crystals consisting new glassy liquid crystals (GLCs) as chiral dopants were prepared and evaluated for their potentials in fast switching ability less than 1 ms. The properties of pure ferroelectric glassy liquid crystals (FGLCs) and mixtures were reported in this paper. In particular, the novel FGLC possessing wide chiral smectic C mesophase over 100 °C is able to suppress smectic A phase of host. The mixture containing 2.0 % GLC-1 performs greater alignment ability and higher contrast ratio than R2301 (Clariant, Japan) in a 2 μm pre-made cell (EHC, Japan). These results indicate that novel FLC mixtures consisting glassy liquid crystals present a promising liquid crystal materials for fast switching field sequential color displays.

  12. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping.

    PubMed

    Senn, M S; Bombardi, A; Murray, C A; Vecchini, C; Scherillo, A; Luo, X; Cheong, S W

    2015-01-23

    We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3 Mn2O7 and Ca3Ti2O7. To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6×10^(-6)  K^{-1}) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients. PMID:25659007

  13. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    SciTech Connect

    Genenko, Yuri A. Hirsch, Ofer; Erhart, Paul

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  14. The origin of ferroelectricity in magnetoelectric YMnO3.

    PubMed

    Van Aken, Bas B; Palstra, Thomas T M; Filippetti, Alessio; Spaldin, Nicola A

    2004-03-01

    Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO(3), using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO(5) polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics. PMID:14991018

  15. Future Development of Dense Ferroelectric Memories for Space Applications

    NASA Technical Reports Server (NTRS)

    Philpy, Stephen C.; Derbenwick, Gary F.

    2001-01-01

    The availability of high density, radiation tolerant, nonvolatile memories is critical for space applications. Ferroelectric memories, when fabricated with radiation hardened complementary metal oxide semiconductors (CMOS), can be manufactured and packaged to provide high density replacements for Flash memory, which is not radiation tolerant. Previous work showed ferroelectric memory cells to be resistant to single event upsets and proton irradiation, and ferroelectric storage capacitors to be resistant to neutron exposure. In addition to radiation hardness, the fast programming times, virtually unlimited endurance, and low voltage, low power operation make ferroelectric memories ideal for space missions. Previously, a commercial double level metal 64-kilobit ferroelectric memory was presented. Although the capabilities of radiation hardened wafer fabrication facilities lag behind those of the most modern commercial wafer fabrication facilities, several paths to achieving radiation tolerant, dense ferroelectric memories are emerging. Both short and long term solutions are presented in this paper. Although worldwide major semiconductor companies are introducing commercial ferroelectric memories, funding limitations must be overcome to proceed with the development of high density, radiation tolerant ferroelectric memories.

  16. Microscopic theory of superconductor-ferroelectric heterostructures: Interface charge redistribution

    NASA Astrophysics Data System (ADS)

    Pavlenko, N.; Schwabl, F.

    2003-03-01

    We present a theory of periodic ferroelectric-superconductor (FE-S) heterostructures containing ferroelectric layers sandwiched between superconducting planes. We analyze the electronic charge-carrier redistribution at the FE-S interface in the presence of the spontaneous polarization in the ferroelectric layer. On the other hand, we study the influence of the superconductor on the structural dynamics in the ferroelectric layer. The effect of FE-S contacts on the ferroelectrics is found to be crucial leading to a structural transformation from the state with the homogeneous-type polarization to the phase with a set of asymmetric stable polarization domains. FE-S interface phenomena induce a decrease of the temperature of the transition to the symmetric phase with two symmetric (negative and positive) polarization domains. Nevertheless, even above the ferroelectric critical temperature, we find in the ferroelectric layer a stable contact-induced enhanced spontaneous polarization. The domain structure in the symmetric phase appears as the response to the charge-carrier redistribution at the contact with the superconducting subsystem. An increase of the FE-S interface coupling results in a complex nonmonotonic behavior of the superconducting transition temperature and finally, for the strong-coupling regime, in a complete suppression of the superconductivity. The results are expected to be especially important for the analysis of high-temperature cuprate superconductor films grown on perovskite-type ferroelectrics.

  17. Novel Ferroelectric Liquid Crystals with Very Large Spontaneous Polarization

    NASA Astrophysics Data System (ADS)

    Nakauchi, Jun; Uematsu, Mioko; Sakashita, Keiichi; Kageyama, Yoshitaka; Hayashi, Seiji; Ikemoto, Tetsuya; Mori, Kenji

    1989-07-01

    Several ferroelectric liquid crystals derived from a new optically active (2S, 5R)-2-hydroxy-5-hexyl-δ-valerolactone have been synthesized, and their mesomorphic and ferroelectric properties have been investigated. Very large spontaneous polarization (Ps) has been observed in these compounds, one of which shows an extremly large Ps value: as high as 320 nC/cm2.

  18. Ferroelectric-like response from the surface of SrTiO₃ crystals at high temperatures

    SciTech Connect

    Jyotsna, Shubhra; Arora, Ashima; Sekhon, Jagmeet S.; Sheet, Goutam

    2014-09-14

    Since SrTiO₃ has a high dielectric constant, it is used as a substrate for a large number of complex physical systems for electrical characterization. Since SrTiO₃ crystals are known to be non-ferroelectric/non-piezoelectric at room temperature and above, SrTiO₃ has been believed to be a good choice as a substrate/base material for PFM (Piezoresponse Force Microscopy) on novel systems at room temperature. In this paper, from PFM-like measurement using an atomic force microscope on bare crystals of (110) SrTiO₃ we show that ferroelectric and piezoelectric-like response may originate from bare SrTiO₃ at remarkably high temperatures up to 420 K. Electrical domain writing and erasing are also possible using a scanning probe tip on the surface of SrTiO₃ crystals. This observation indicates that the role of the electrical response of SrTiO₃ needs to be revisited in the systems where signature of ferroelectricity/piezoelectricity has been previously observed with SrTiO₃ as a substrate/base material.

  19. Uncertainty analysis of continuum scale ferroelectric energy landscapes using density functional theory

    NASA Astrophysics Data System (ADS)

    Oates, William S.; Miles, Paul; Leon, Lider; Smith, Ralph

    2016-04-01

    Density functional theory (DFT) provides exceptional predictions of material properties of ideal crystal structures such as elastic modulus and dielectric constants. This includes ferroelectric crystals where excellent predictions of spontaneous polarization, lattice strain, and elastic moduli have been predicted using DFT. Less analysis has focused on quantifying uncertainty of the energy landscape over a broad range of polarization states in ferroelectric materials. This is non-trivial because the degrees of freedom contained within a unit cell are reduced to a single vector order parameter which is normally polarization. For example, lead titanate contains five atoms and 15 degrees of freedom of atomic nuclei motion which contribute to the overall unit cell polarization. Bayesian statistics is used to identify the uncertainty and propagation of error of a continuum scale, Landau energy function for lead titanate. Uncertainty in different parameters is quantified and this uncertainty is propagated through the model to illustrate error propagation over the energy surface. Such results are shown to have an impact in integration of quantum simulations within a ferroelectric phase field continuum modeling framework.

  20. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    SciTech Connect

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-15

    Electromechanical properties of a number of ferroelectric films including PbZr{sub x}Ti{sub 1{minus}x}O{sub 3}(PZT), 0.9PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}{endash}0.1PbTiO{sub 3}(PMN-PT), and SrBi{sub 2}Ta{sub 2}O{sub 9}(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Q{sub eff}, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d{sub 33}, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180{degree} domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Q{sub eff} are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Q{sub eff} of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators. {copyright} 2001 American Institute of Physics.