Science.gov

Sample records for ferroelectric single crystal

  1. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  2. Strain incompatibility and residual strains in ferroelectric single crystals

    PubMed Central

    Pramanick, A.; Jones, J. L.; Tutuncu, G.; Ghosh, D.; Stoica, A. D.; An, K.

    2012-01-01

    Residual strains in ferroelectrics are known to adversely affect the material properties by aggravating crack growth and fatigue degradation. The primary cause for residual strains is strain incompatibility between different microstructural entities. For example, it was shown in polycrystalline ferroelectrics that residual strains are caused due to incompatibility between the electric-field-induced strains in grains with different crystallographic orientations. However, similar characterization of cause-effect in multidomain ferroelectric single crystals is lacking. In this article, we report on the development of plastic residual strains in [111]-oriented domain engineered BaTiO3 single crystals. These internal strains are created due to strain incompatibility across 90° domain walls between the differently oriented domains. The average residual strains over a large crystal volume measured by in situ neutron diffraction is comparable to previous X-ray measurements of localized strains near domain boundaries, but are an order of magnitude lower than electric-field-induced residual strains in polycrystalline ferroelectrics. PMID:23226595

  3. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the VG sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. PMID:26487348

  4. Effective symmetry and physical properties of twinned perovskite ferroelectric single crystals

    E-print Network

    Cao, Wenwu

    Effective symmetry and physical properties of twinned perovskite ferroelectric single crystals Jirí properties of twinned ferroelectric crystals with perovskite structure were analyzed. The twins or twinbands perovskite structure. When a single fer- roelectric crystal is poled along [001] of the cubic coor- dinates

  5. Ferroelectric glycine silver nitrate: a single-crystal neutron diffraction study.

    PubMed

    Choudhury, R R; Chitra, R; Aliouane, N; Schefer, J

    2013-12-01

    Protonated crystals of glycine silver nitrate (C4H10Ag2N4O10) undergo a displacive kind of structural phase transition to a ferroelectric phase at 218?K. Glycine silver nitrate (GSN) is a light-sensitive crystal. Single-crystal X-ray diffraction investigations are difficult to perform on these crystals due to the problem of crystal deterioration on prolonged exposure to X-rays. To circumvent this problem, single-crystal neutron diffraction investigations were performed. We report here the crystal structure of GSN in a ferroelectric phase. The final R value for the refined structure at 150?K is 0.059. A comparison of the low-temperature structure with the room-temperature structure throws some light on the mechanism of the structural phase change in this crystal. We have attempted to explain the structural transition in GSN within the framework of the vibronic theory of ferroelectricity, suggesting that the second-order Jahn-Teller (pseudo-Jahn-Teller) behavior of the Ag(+) ion in GSN leads to structural distortion at low temperature (218?K). PMID:24253085

  6. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    SciTech Connect

    Murugan, G. Senthil Ramasamy, P.

    2014-04-24

    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  7. Giant Electro-Mechanical Energy Conversion in [011] cut Relaxor Ferroelectric Single Crystals

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Dong, Wen; Lynch, Chris; Amin, Ahmed

    2012-02-01

    Giant electro-mechanical energy conversion is demonstrated under a ferroelectric/ferroelectric phase transformation in [011] cut and poled lead titanate-based relaxor perovskite morphotropic single crystals. It is found that under mechanical pre-stress, a relatively small oscillatory stress drives the material reversibly between rhombohedral and orthorhombic phases with a remarkably high polarization and strain jumps induced at zero bias electric field and room temperature. The measured electrical output per cycle is more than an order of magnitude larger than that reported for linear piezoelectric materials. Ideal thermodynamic cycles are presented for this electro-mechanical energy conversion followed by a presentation and discussion of the experimental data.

  8. Giant electro-mechanical energy conversion in [011] cut ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Dong, Wen D.; Finkel, Peter; Amin, Ahmed; Lynch, Christopher S.

    2012-01-01

    Giant electro-mechanical energy conversion is demonstrated under a ferroelectric/ferroelectric phase transformation in [011] cut and poled lead titanate-based relaxor perovskite morphotropic single crystals. It is found that under mechanical pre-stress, a relatively small oscillatory stress drives the material reversibly between rhombohedral and orthorhombic phases with a remarkably high polarization and strain jump induced at zero bias electric field and room temperature. The measured electrical output per cycle is more than an order of magnitude larger than that reported for linear piezoelectric materials. Ideal thermodynamic cycles are presented for this electro-mechanical energy conversion followed by a presentation and discussion of the experimental data.

  9. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.

    PubMed

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L W; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  10. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33?2000 pC/N, kt?60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  11. Optical, Dielectric and Ferroelectric Properties of LaCrO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Matam, Mahesh Kumar; Ye, Zuo Guang

    2001-03-01

    Perovskite LaCrO3 crystallizes in an orthorhombic structure, which is used in various applications as an electrode material due to its p-type semicondutivity. LaCrO3 shows an antiferromagnetic behavior up to a Neel temperature TN = 258 K, and supposedly also exhibit ferroelectricity. However, the dielectric and ferroelectric properties have not been characterized thoroughly. This situation is mainly due to the difficulties encountered both in the ceramics sintering and the crystal growth of LaCrO3 due to its highly refractory character, which has also limited certain applications. In this work, single crystals of LaCrO3 have been successfully grown using a complex flux of Bi_2O3 and B_2O3 by slow cooling. Crystals thus obtained are transparent, green and of 0.75 x 0.5 x 0.1 mm size. Dielectric measurements carried out at various frequencies show an anomaly, pointing to a phase transition around TC = 350 ^oC. A large increase in dissipation factor (tan?) is observed just above the phase transition, which is attributed to an increase in conductivity. A partially saturated hysteresis loop is displayed, indicating the presence of ferroelectric behavior. Studies by Polarized Light Microscopy reveal the ferroelastic domain structures. Temperature dependence of domain structures and birefrengence shows the phase transition at TC around 350 ^oC accompanied by a significant change in domain structure, which is consistent with measurements. With its multi-ferroic properties confirmed, LaCrO3 could become a potentially magnetoelectric material.

  12. Direct imaging of both ferroelectric and antiferromagnetic domains in multiferroic BiFeO{sub 3} single crystal using x-ray photoemission electron microscopy

    SciTech Connect

    Moubah, R.; Colson, D.; Viret, M.; Elzo, M.; Jaouen, N.; Belkhou, R.

    2012-01-23

    In this work, we propose to study the magnetic and ferroelectric configurations in ferroelectric multidomain BiFeO{sub 3} single crystals. Using x-ray (magnetic) linear dichroism in a photoemission electron microscope (X-PEEM), we are able to directly image both the antiferromagnetic and ferroelectric domains. We find that inside one single ferroelectric domain several antiferromagnetic domains coexist. This is different from what was observed on epitaxial thin films, where the ferroelectric domains perfectly match the antiferromagnetic ones, but also from previous neutron measurements on ferroelectric monodomain single-crystals for which one single antiferromagnetic domain was identified. This underlines the fundamental differences between thin films, bulk samples, and single versus ferroelectric multidomain samples.

  13. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    PubMed Central

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  14. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals.

    PubMed

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs-termed 'DW'-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  15. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-10-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form.

  16. Ferroelectric single crystal fibers for high frequency electrooptic modulation and optical frequency shift

    NASA Astrophysics Data System (ADS)

    Huang, Chuanyong

    It is demonstrated in this thesis work that the pulse frequency and pulse profile of an optical wave propagating through an electrooptic single crystal fiber inside a microwave cavity are tuned or modulated by interaction with driving microwave field through nonlinear crystal medium. The approach provides a possible solution to the bandwidth demands and channel definition in optical communications systems. Ferroelectric crystals are of significant interests in electrooptic modulator devices due to their exceptionally high electrooptic coefficients. Ferroelectric single crystal fibers of strontium barium niobate (Sr0.61Ba0.39Nb2O6: SBN) grown by laser heated pedestal growth (LHPG) technique are employed to investigate the relevant properties and the characteristics of this bulk modulator in the microwave range. Grown from the congruent Sr0.61Ba0.39Nb2O 6 ceramics by LHPG, the phase component changing is monitored by XRD from ceramics to single crystal fibers. The corresponding dielectric properties are measured and compared with each other as function of temperature at low frequency range. Two dielectric anomalies are observed in dielectric spectroscopy at distinct temperature range and the mechanism is investigated to explain the difference of dielectric behavior. The dielectric property of SBN single crystal fiber is also measured at X band microwave frequency by perturbation method using the microwave resonant cavity. It is found that the dielectric constant is in the vicinity of ?r =40 (c-axis) in X band of microwave frequency and is relatively constant, deviating from the dramatic decrease trend of low frequency, and can be attributed to the combination of dipole reorientation and electronic polarizability at microwave frequency. The frequency dependent electrooptic (EO) coefficient of SBN crystal is investigated in this thesis using Senermont method at low frequency and a novel dynamic measurement at high frequency. The EO coefficient increases near the piezoelectric resonant frequency, which may be attributed to the harmonic contribution of piezoelectric resonances. The formula and new mechanism of measuring the EO coefficient at 10GHz is deduced and explored using a standing mode microwave cavity. It is found that SBN61 crystal possesses smaller electrooptic coefficient (r33 ˜200pm/V) at 10GHz compared to low frequency (rc ˜300pm/V) at 1kHz. This method can be easily extended to measure EO property at other frequency ranges using corresponsive cavity across the wide frequency scope without the requirement of electric contact on the specimen. Ferroelectric single SBN crystal fiber is evaluated for optical pulse engineering in terms of frequency shifting and pulse compression/expansion at microwave frequencies. The microwave-photonic interaction is investigated experimentally in a TE103 microwave cavity at 10GHz. The theoretical consideration and potential experimental solution in traveling wave mode are also studied in order to accumulate the modulating effect and to make full use of crystal length. It is shown that the frequency component of an optical pulse can be controlled effectively using the SBN single crystal in microwave cavity without the need of contact electrodes or any interruption to the optical system. The technique is of utility in several aspects of optical communications such as channel definition and security encoding of the signal, and of potential to a range of optoelectronic applications.

  17. Millimeter-Wave Dielectric Properties of Single Crystal Ferroelectric and Dielectric Materials

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Li, Zijing; Afsar, Mohammed N.; Sundaram, S. K.

    2011-01-03

    Transmittance measurements on various single crystal ferroelectric materials over a broad millimeter-wave frequency range have been performed. Frequency dependence of the complex dielectric permittivity has been determined in the millimeter wave region for the first time. The measurements have been employed using a free-space quasi-optical millimeter-wave spectrometer equipped with a set of high power backward wave oscillators (BWOs) as sources of coherent radiation, tunable in the range from 30 - 120 GHz. The uncertainties and possible sources of instrumentation and measurement errors related to the free-space millimeter-wave technique are discussed. This work has demonstrated that precise MMW permittivities can be obtained even on small thin crystals using the BWO quasi-optical approach.

  18. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.

    PubMed

    Sun, Enwei; Cao, Wenwu

    2014-08-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-x Ti x O3 (PZT) ceramics, the piezoelectric coefficient d 33 is increased by a factor of 5 and the electromechanical coupling factor k 33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe "PureWave". The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  19. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    PubMed Central

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  20. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.

    2015-11-01

    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  1. Electromechanical behavior of relaxor ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Liu, Tieqi

    Relaxor ferroelectric PZN-xPT and PMN-xPT single crystals exhibit extraordinary electromechanical properties. They are under development for applications in sensors, actuators and transducers. The polarization switching and phase transition behavior of PZN-4.5%PT and PMN-32%PT single crystals under external loading has been investigated. Experimental investigation elucidates the polarization switching and phase transition behavior of relaxor ferroelectric crystals at different orientation cuts under combined temperature, electric field and stress loading. These crystals exhibit strong orientation dependence of electromechanical properties, and the applied fields all affect the poling and phase states of the crystals. Based on experimental investigation, crystal variant modeling was developed to compute the piezoelectric properties of multi-domain crystals at different orientation cuts from a set of properties for the single domain. Thermodynamics and work-energy analysis of field induced phase transitions in these single crystals sheds light on the phase transition mechanism of ferroelectric crystals. Fracture behavior of relaxor single crystals under non-uniform electric fields at a partial electrode edge has also been measured and analyzed.

  2. The elastic and electromechanical properties of BaTiO{sub 3} single crystal through the ferroelectric transition

    SciTech Connect

    Li, Z.; Grimsditch, M.; Chan, S.K.

    1993-07-01

    Using Brillouin scattering and impedance methods, the elastic, piezoelectric and dielectric properties have been determined for monodomain single crystal BaTiO{sub 3} from 23 to 160C. In the cubic phase (T> 130C) only the compressional elastic constant C{sub 11} exhibits partial softening of about 6% upon cooling. During the tetragonal to cubic phase transition, most elastic constants sow discontinuous changes; either stiffening or softening. These and other results are discussed in terms of precursive effects through the electromechanical interaction of the ferroelectric phase transformation.

  3. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    SciTech Connect

    Li, Jun; Li, Yang; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1?x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ? 70%, k{sub 31} ? 70%, k{sub 33} ? 77%, d{sub 31} ? 230 pC/N, d{sub 33} ? 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1?x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ? 70%, k{sub 31} ? 70%, k{sub 33} ? 77%, d{sub 31} ? 230 pC/N, d{sub 33} ? 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  4. Investigations on ferroelectric PMN-PT and PZN-PT single crystals ability for power or resonant actuators.

    PubMed

    Lebrun, L; Sebald, G; Guiffard, B; Richard, C; Guyomar, D; Pleska, E

    2004-04-01

    Ferroelectric single crystals of PZN-PT and PMN-PT exhibit outstanding properties: high charge coefficient (dij), high coupling factor (kij) and high strain levels under DC fields. Besides, their mechanical quality factor is believed to be low. Their usefulness for non-resonant or large bandwidth transducers has therefore been previously investigated. However, few studies have been devoted to the dielectric and mechanical losses of single crystals and to their stability under high levels of excitations (electric fields, temperature and mechanical stress). A knowledge and understanding of such performances is needed to determine whether single crystals are suitable materials for power or resonant transducers. In this work, losses and non-linearity versus external excitations are investigated. Dielectric losses and mechanical losses are measured versus electric field for different compositions, orientations. The evolution of d33 and epsilonT33 are obtained versus electric field and temperature for the longitudinal mode. Strain and hysteresis versus sweep mode (up and down) are measured near the resonance frequency using a laser Doppler vibrometer. PMID:15047336

  5. Effects of composition and temperature on the large field behavior of [011]{sub C} relaxor ferroelectric single crystals

    SciTech Connect

    Gallagher, John A.; Lynch, Christopher S.; Tian, Jian

    2014-08-04

    The large field behavior of [011]{sub C} cut relaxor ferroelectric lead indium niobate–lead magnesium niobate–lead titanate, xPb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-(1-x-y)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-yPbTiO{sub 3}, single crystals was experimentally characterized in the piezoelectric d{sub 322}-mode configuration under combined mechanical, electrical, and thermal loading. Increasing the concentration of lead indium niobate and decreasing the concentration of lead titanate in compositions near the morphotropic phase boundary resulted in a decrease of mechanical compliance, dielectric permittivity, and piezoelectric coefficients as well as a shift from a continuous to a discontinuous transformation.

  6. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  7. EPR Studies of orthorhombic Jahn-Teller effect in single crystal of ferroelectric Cu(II):Cd2(NH4)2 (SO4)3

    NASA Astrophysics Data System (ADS)

    Benson, Yerima; de, Dilip

    In this paper we report the first EPR observation and theoretical explanation of orthorhombic Jahn-Teller effect in Cu(II) doped single crystal of ferroelectric cadmium ammonium sulphate: Cu(II):Cd2(NH4)2 (SO4)3 . The isotropic EPR spectra of the 2D ion (in regular octahedral symmetry) at higher temperature becomes anisotropic at low temperature with clear manifestation of orthorhombic g and hyperfine tensors at 15 K. The static Jahn-Teller(JT) effect can only be explained theoretically by assuming the three JT potential wells energetically inequivalent, unlike the potential wells in most of the Cu(II) doped crystalline materials where JT effect manifests. The measured splitting of the JT potential wells in this ferroelectric crystal fall in the sub millimeter wave region pointing to possible application of the material.

  8. Correlation between impurity distribution and location of ferroelectric domain walls in Nd : Mg : LiNbO 3 single crystal

    NASA Astrophysics Data System (ADS)

    Naumova, I. I.; Evlanova, N. F.; Blokhin, S. A.; Lavrishchev, S. V.

    1998-04-01

    Using selective chemical etching, scanning electron microscope (SEM) and wave dispersive X-ray (WDX) microanalysis we showed that the ferroelectric domain walls coincide with the maxima and minima Nd-impurity modulation in a periodically poled Nd : Mg : LiNbO 3 crystal grown by the Czochralski method along the normal to the (0 1 1¯ 2) face. Asymmetric form of the Nd-modulation produces nonequal positive and negative domains for one period. Variations of instantaneous rate of growth were estimated for facet and nonfacet crystal region in the framework of Burton-Prim-Slichter theory.

  9. Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate

    E-print Network

    Gopalan, Venkatraman

    Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate DAVID A electromechanical response across a single ferroelectric domain wall in congruent lithium niobate at room in the crystal, which interact with the domain wall. I. INTRODUCTION FERROELECTRIC lithium niobate and lithium

  10. Phase transitions and thermal-stress-induced structural changes in a ferroelectric Pb(Zr0.80Ti0.20)O3 single crystal.

    PubMed

    Frantti, J; Fujioka, Y; Puretzky, A; Xie, Y; Ye, Z-G; Parish, C; Glazer, A M

    2015-01-21

    A single crystal of lead-zirconate-titanate, composition Pb(Zr0.80Ti0.20)O3, was studied by polarized-Raman scattering as a function of temperature. Raman spectra reveal that the local structure deviates from the average structure in both ferroelectric and paraelectric phases. We show that the crystal possesses several, inequivalent complex domain boundaries which show no sign of instability even 200 K above the ferroelectric-to-paraelectric phase transition temperature TC. Two types of boundaries are addressed. The first boundary was formed between ferroelectric domains below TC. This boundary remained stable up to the highest measurement temperatures, and stabilized the domains so that they had the same orientation after repeated heating and cooling cycles. These domains transformed normally to the cubic paraelectric phase. Another type of boundary was formed at 673 K and exhibited no signs of instability up to 923 K. The boundary formation was reversible: it formed and vanished between 573 and 673 K during heating and cooling, respectively. A model in which the crystal is divided into thin slices with different Zr/Ti ratios is proposed. The physical mechanism behind the thermal-stress-induced structural changes is related to the different thermal expansion of the slices, which forces the domain to grow similarly after each heating and cooling cycle. The results are interesting for non-volatile memory development, as it implies that the original ferroelectric state can be restored after the material has been transformed to the paraelectric phase. It also suggests that a low-symmetry structure, stable up to high temperatures, can be prepared through controlled deposition of layers with desired compositions. PMID:25531118

  11. Phase transitions and thermal-stress-induced structural changes in a ferroelectric Pb(Zr0.80Ti0.20)O3 single crystal

    NASA Astrophysics Data System (ADS)

    Frantti, J.; Fujioka, Y.; Puretzky, A.; Xie, Y.; Ye, Z.-G.; Parish, C.; Glazer, A. M.

    2015-01-01

    A single crystal of lead-zirconate-titanate, composition Pb(Zr0.80Ti0.20)O3, was studied by polarized-Raman scattering as a function of temperature. Raman spectra reveal that the local structure deviates from the average structure in both ferroelectric and paraelectric phases. We show that the crystal possesses several, inequivalent complex domain boundaries which show no sign of instability even 200 K above the ferroelectric-to-paraelectric phase transition temperature TC. Two types of boundaries are addressed. The first boundary was formed between ferroelectric domains below TC. This boundary remained stable up to the highest measurement temperatures, and stabilized the domains so that they had the same orientation after repeated heating and cooling cycles. These domains transformed normally to the cubic paraelectric phase. Another type of boundary was formed at 673 K and exhibited no signs of instability up to 923 K. The boundary formation was reversible: it formed and vanished between 573 and 673 K during heating and cooling, respectively. A model in which the crystal is divided into thin slices with different Zr/Ti ratios is proposed. The physical mechanism behind the thermal-stress-induced structural changes is related to the different thermal expansion of the slices, which forces the domain to grow similarly after each heating and cooling cycle. The results are interesting for non-volatile memory development, as it implies that the original ferroelectric state can be restored after the material has been transformed to the paraelectric phase. It also suggests that a low-symmetry structure, stable up to high temperatures, can be prepared through controlled deposition of layers with desired compositions.

  12. Stability of nano-scale ferroelectric domains in a LiNbO3 single crystal: The role of surface energy and polar molecule adsorption

    NASA Astrophysics Data System (ADS)

    Sun, X.; Su, Y. J.; Li, X.; Gao, K. W.; Qiao, L. J.

    2012-05-01

    The stability of nano-scale ferroelectric domains in a LiNbO3 single crystal under varied atmospheric humidity levels was studied using piezoelectric force microscopy. Experimental results showed that the nano-scale domains fabricated by the tip field of the atomic force microscope changed as the environmental humidity changed; the c- domains expanded or shrank with increases or decreases in the environmental humidity (that is, with the amount of adsorbed H2O molecules on the domain surface), while the c+ domains transformed in the opposite sense. The surface energy of the domains is responsible for these transformations.

  13. Raman spectroscopy study of ferroelectric modes in 001-oriented 0.67Pb,,Mg1/3Nb2/3...O30.33PbTiO3 single crystals

    E-print Network

    Cao, Wenwu

    - sitions near the morphotropic phase boundary MPB x =0.33­0.34 have piezoelectric constant d33 2400 p on both relaxor ferroelectrics and relaxor-based ferroelectrics showed that, even in the high-temperature of micro-Raman spectra of a 001 -oriented 0.67Pb Mg1/3Nb2/3 O3­0.33PbTiO3 single crystal in the temperature

  14. Microdomain dynamics in single-crystal BaTi O3 during paraelectric-ferroelectric phase transition measured with time-of-flight neutron scattering

    NASA Astrophysics Data System (ADS)

    Pramanick, A.; Wang, X. P.; Hoffmann, C.; Diallo, S. O.; Jørgensen, M. R. V.; Wang, X.-L.

    2015-11-01

    Microscopic polar clusters can play an important role in the phase transition of ferroelectric perovskite oxides such as BaTi O3 , which have shown coexistence of both displacive and order-disorder dynamics, although their topological and dynamical characteristics are yet to be clarified. Here, we report sharp increases in the widths and intensities of Bragg peaks from a BaTi O3 single crystal, which are measured in situ during heating and cooling within a few degrees of its phase transition temperature TC, using the neutron time-of-flight Laue technique. Most significantly sharper and stronger increases in peak widths and peak intensities were found to occur during cooling compared to that during heating through TC. A closer examination of the Bragg peaks revealed their elongated shapes in both the paraelectric and ferroelectric phases, the analysis of which indicated the presence of microdomains that have correlated <111 > -type polarization vectors within the {110}-type crystallographic planes. No significant increase in the average size of the microdomains (˜10 nm ) near TC could be observed from diffraction measurements, which is also consistent with small changes in the relaxation times for motion of Ti ions measured with quasielastic neutron scattering. The current observations do not indicate that the paraelectric-ferroelectric phase transition in BaTi O3 is primarily caused by an increase in the size of the microscopic polar clusters or critical slowing down of Ti ionic motion. The sharp and strong increases in peak widths and peak intensities during cooling through TC are explained as a result of microstrains that are developed at microdomain interfaces during paraelectric-ferroelectric phase transition.

  15. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    NASA Astrophysics Data System (ADS)

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-05-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64?dB/cm at 1530?nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing.

  16. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64?dB/cm at 1530?nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  17. Growth and characterization of lead-free ferroelectric (K,Na,Li)(Nb,Ta,Sb)O3 single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Junjun; Zheng, Limei; Yang, Bin; Wang, Rui; Huo, Xiaoqing; Sang, Shijing; Wu, Jie; Chang, Yunfei; Ning, Huanpo; Lv, Tianquan; Cao, Wenwu

    2015-01-01

    In this work, a large size lead-free piezoelectric single crystal, (K,Na,Li)(Nb,Ta,Sb)O3 (KNLNTS) with the dimensions of 8.5×8.5×13.5 mm3 was successfully grown by the top-seeded solution growth method. This KNLNTS single crystal with high compositional homogeneity is in the tetragonal phase at room temperature. The Curie temperature TC of the tetragonal-cubic phase transition temperature is 210 °C. The piezoelectric coefficients and electromechanical coupling factors of the [001]C oriented KNLNTS single crystal are d33=172.55 pC/N, d31=-71.90 pC/N, k31=0.327, k33=0.523, and kt=0.541. In addition, the crystal shows good thermal stability so that it can be used for making high temperature electromechanical devices.

  18. Bipolar electro-caloric effect in SrxBa(1-x)Nb2O6 lead-free ferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    Bhaumik, Indranil; Ganesamoorthy, S.; Bhatt, R.; Karnal, A. K.; Gupta, P. K.; Takekawa, S.; Kitamura, K.

    2014-08-01

    Here we report the anomalous electro-caloric effect (ECE) observed in lead-free SrxBa(1-x)Nb2O6 (x=0.50 , 0.61 and 0.75) ferroelectric single crystals. Temperature-dependent hysteresis measurement revealed that the spontaneous polarization of SrxBa(1-x)Nb2O6 single crystals with all the compositions under investigation decreases with a decrease in the temperature below the temperature of the dielectric maxima (T_{\\max}) . As a consequence, these crystals exhibited negative electro-caloric effect at lower temperature along with the usual positive ECE above T_{\\max} . The EC coefficient (\\xi) obtained near T_{\\max} is 0.21, 0.43 and 0.28 K mm/kV for x=0.50 , 0.61 and 0.75 samples, respectively. The maximum values of \\xi in the negative ECE region are -1.4, -0.81 and -0.44\\ \\text{K mm/kV} for 50SBN, 61SBN and 75SBN, respectively.

  19. Spontaneous ferroelectric-ferroelectric phase transitions and giant electro-mechanical energy conversion in [011] cut relaxor ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Amin, Ahmed; Dong, Wen

    2013-03-01

    We report on giant electro-mechanical energy conversion is demonstrated under a ferroelectric/ferroelectric phase transformation in [011] cut and poled lead titanate-based relaxor perovskite morphotropic Pb(In1/2Nb1/2) O3-Pb(Mg1/3Nb2/3) O3-PbTiO3 (PIN-PMN-PT). single crystals. It is found that under mechanical pre-stress, a relatively small oscillatory stress drives the material reversibly between rhombohedral and orthorhombic phases with a remarkably high polarization and strain jumps induced at zero bias electric field and room temperature. The measured electrical output per cycle is more than an order of magnitude larger than that reported for linear piezoelectric materials. Ideal thermodynamic cycles are presented for this electro-mechanical energy conversion followed by a presentation and discussion of the experimental data. The stress dependence of thermally driven polarization change is reported for a ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation in [011] cut and poled. A giant jump in polarization and strain is associated with the phase transformation of the ferroelectric material. The phase transition temperature can be tuned, over a broad temperature range, through the application of bias stress. This phenomenon results in a new approach to applications in the field of energy harvesting

  20. Multiferroic nanoparticulate thin film composites by Co implantation of ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal targets

    NASA Astrophysics Data System (ADS)

    Torres, María; Ricote, Jesús; Amorín, Harvey; Jaafar, Miriam; Holgado, Susana; Piqueras, Juan; Asenjo, Agustina; García-Hernández, Mar; Algueró, Miguel

    2011-12-01

    Two-phase magnetostrictive-piezoelectric thin film composites are key materials to the development of a range of potentially disruptive magnetoelectric technologies, such as electrical-writing magnetic-reading random access memories. However, multiferroic thin film composites prepared so far show neither magnetoelectric switching nor magnetoelectric responses comparable to those of related bulk ceramic materials and cermets. Here we show that ion implantation of magnetic species into ferroelectric single crystal targets can be an effective alternative means of obtaining nanoparticulate thin film composites of this type. Concept is proved by the implantation of Co into a Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal with ultrahigh piezoelectricity. Formation of an ensemble of ferromagnetic nanoparticles embedded in an amorphized layer within the ferroelectric crystal is clearly shown.

  1. Spontaneous Ferroelectric Order in a Bent-Core Smectic Liquid Crystal of Fluid Orthorhombic Layers

    SciTech Connect

    R Reddy; C Zhu; R Shao; E Korblova; T Gong; Y Shen; M Glaser; J Maclennan; D Walba; N Clark

    2011-12-31

    Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP{sub F}, the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.

  2. Growth and characterization of piezo-/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3-Bi(Zn1/2Ti1/2)O3 ternary single crystals

    NASA Astrophysics Data System (ADS)

    Belan, Reagan A.; Tailor, Hamel N.; Long, Xifa; Bokov, Alexei A.; Ye, Zuo-Guang

    2011-03-01

    In order to develop new piezo-/ferroelectric materials, single crystals of the Pb(Mg1/3Nb2/3)O3-PbTiO3-Bi(Zn1/2Ti1/2)O3 [PMN-PT-BZT] ternary complex perovskite system has been grown by a high temperature solution method using the mixture of PbO and H3BO3 as flux (in a molar ratio of 4:2) with an optimum flux:charge molar ratio of 6:1. It is found that the addition of BZT into the relaxor ferroelectric PMN-PT system reduces the number of spontaneous nucleations, resulting in large single crystals (5 mm×5 mm×14 mm) of good quality. The grown crystals exhibit a pseudo-cubic morphology and show evidence of two-dimensional growth mechanism. Examination by polarized light microscopy (PLM) reveals the formation of striation, which can be reduced by changing the growth conditions. The domain structure and phase transition of the PMN-PT-BZT crystals are investigated by PLM. The temperature and frequency dependences of the dielectric permittivity of the grown crystals show typical relaxor ferroelectric behavior, with the frequency dependence of the temperature of maximum permittivity (Tmax) following the Vogel-Fulcher law. The ferroelectric property is displayed in the crystals with a remnant polarization, Pr=21 ?C/cm2 and a coercive field, EC=3.5 kV/cm. The piezoelectric coefficient, d33, is found to be 825 pC/N, a value much higher than that of the ternary ceramics.

  3. Effect of doping with Nd{sup 3+} ions on the structural and ferroelectric properties of Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} single crystal

    SciTech Connect

    Gao, W.L.; Zhang, H.J.; Xia, S.Q.; Huang, B.B.; Liu, D.; Wang, J.Y.; Jiang, M.H.; Zheng, L.M.; Wang, J.F.; Lu, C.J.

    2010-09-15

    The crystal structure of Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} (CBN-28) crystal with Nd-doping has been determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm and the following parameters: a = b = 12.458 A, c = 3.954 A, V = 613.688 A{sup 3}, and Z = 5. X-ray diffraction results on a Nd-doped CBN-28 single crystal also have demonstrated that Nd{sup 3+} and Ca{sup 2+} occupy the same site in the crystal structure. Dielectric and ferroelectric measurements have been performed. Transition from ferroelectric to paraelectric at around 223 {sup o}C has been observed. The Nd-doped crystal has a lower Curie temperature (T{sub m}) than that of undoped CBN-28 crystal. The spontaneous polarization (P{sub s}) and coercive electric field (E{sub c}) also decrease compared with their values in the undoped CBN-28 crystal.

  4. Piezoelectric activity in Perovskite ferroelectric crystals.

    PubMed

    Li, Fei; Wang, Linghang; Jin, Li; Lin, Dabin; Li, Jinglei; Li, Zhenrong; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    Perovskite ferroelectrics (PFs) have been the dominant piezoelectric materials for various electromechanical applications, such as ultrasonic transducers, sensors, and actuators, to name a few. In this review article, the development of PF crystals is introduced, focusing on the crystal growth and piezoelectric activity. The critical factors responsible for the high piezoelectric activity of PFs (i.e., phase transition, monoclinic phase, domain size, relaxor component, dopants, and piezoelectric anisotropy) are surveyed and discussed. A general picture of the present understanding on the high piezoelectricity of PFs is described. At the end of this review, potential approaches to further improve the piezoelectricity of PFs are proposed. PMID:25585387

  5. Polarization Rotation and Monoclinic Phase in Relaxor Ferroelectric PMN-PT Crystal

    E-print Network

    Polarization Rotation and Monoclinic Phase in Relaxor Ferroelectric PMN-PT Crystal V. Hugo Schmidt. A monoclinic phase is evidenced between rhombohedral and cubic phases in a -cut single crystal PMN-33%PT#-type). However, the present -cut crystal seems to disfavor the tetragonal phase and persists

  6. Elasticity of high coupling relaxor-ferroelectric lead zinc niobate-lead titanate crystals

    NASA Astrophysics Data System (ADS)

    Amin, Ahmed; Cross, Leslie E.

    2005-11-01

    The elastic response of a [001]-oriented and -poled ferroelectric rhombohedral lead zinc niobate-lead titanate single crystal close to the morphotropic phase region is examined under thermal, electrical, and mechanical boundaries similar to those used in sound projectors. Resonance measurements yielded a monotonically decreasing Young's modulus as a function of temperature in the ferroelectric rhombohedral state with a sudden stiffening near the ferroelectric rhombohedral (FR)-ferroelectric tetragonal (FT) transition. The quasistatic, zero-field stress-strain response revealed a FR instability under uniaxial compression. A dc bias field stabilized the FR state under compressive stress. Young's modulus derived from the linear elastic response below instability agrees well with resonance data for FR. A larger modulus than expected for FT was observed above instabilities. The elastic response is analyzed in terms of ferroelectric-ferroelectric transitions as predicted by a high-order Devonshire theory. Implications for sound projectors are discussed.

  7. Influence of KF substitution on the ferroelectric phase transition of lead titanate single crystals studied by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Shin, Seonhyeop; Ko, Jae-Hyeon; Tsukada, Shinya; Akishige, Yukikuni; Roleder, Krystian; Rytz, Daniel

    2015-05-01

    The elastic properties of KF-substituted perovskite lead titanate (PbTiO3) were investigated by dielectric measurements and Brillouin light scattering. The ferroelectric phase transition occurred at substantially lower temperature due to KF substitution, which was attributed to the modification of the covalency in Pb-O and Ti-O bonds. The longitudinal acoustic (LA) mode of KF-substituted PbTiO3 showed a frequency softening in the paraelectric phase, which was accompanied by increasing acoustic damping. This indicated that polarization fluctuations responsible for the acoustic anomalies were enhanced by KF substitution.

  8. Novel ferroelectric single crystals of Bi(Zn{sub 1/2}Ti{sub 1/2})O{sub 3}-PbZrO{sub 3}-PbTiO{sub 3} ternary solid solution

    SciTech Connect

    Wang, Bixia; Xie, Yujuan; Zhuang, Jian; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2014-02-28

    Ferroelectric single crystals of a new lead-reduced Bi(Zn{sub 1/2}Ti{sub 1/2})O{sub 3}-PbZrO{sub 3}-PbTiO{sub 3} (BZT-PZ-PT) ternary solid solution system have been grown for the first time by three different methods, namely high temperature solution growth (HTSG, or flux method), top-cooled solution growth (TCSG), and top-seeded solution growth (TSSG). The chemical and thermodynamic parameters, including the flux concentration, the soaking temperature and the cooling rate, have been optimized, leading to the growth of good quality BZT-PZ-PT crystals of pseudo-cubic morphology. A large size crystal of the dimensions of 2?×?2?×?0.5 cm{sup 3} has been obtained by the TSSG technique. The crystal structure is analyzed by means of X-ray powder diffraction. The highest ferroelectric Curie temperature T{sub C} of the grown crystals is found to be 320?°C by means of dielectric measurements. A remnant polarization of 32??C/cm{sup 2} is displayed with a coercive field of 15.4?kV/cm. The high T{sub C} and large coercive field of the BZT-PZ-PT single crystal make this material a promising candidate for applications in high power electromechanical transducers that can operate in a wider temperature range and at high fields.

  9. Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators

    E-print Network

    Wu, Shin-Tson

    Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators Ju-Hyun Lee Yung-Hsun Wu Shin (about 2.3p at k ¼ 1.55 lm under E ¼ 2.5 V=lm) and fast response time ( at an infrared wavelength, say k ¼ 1.55 mm. On the contrary, ferroelectric liquid crystals (FLCs) show very fast

  10. Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal.

    PubMed

    Fu, Da-Wei; Cai, Hong-Ling; Liu, Yuanming; Ye, Qiong; Zhang, Wen; Zhang, Yi; Chen, Xue-Yuan; Giovannetti, Gianluca; Capone, Massimo; Li, Jiangyu; Xiong, Ren-Gen

    2013-01-25

    Molecular ferroelectrics are highly desirable for their easy and environmentally friendly processing, light weight, and mechanical flexibility. We found that diisopropylammonium bromide (DIPAB), a molecular crystal processed from aqueous solution, is a ferroelectric with a spontaneous polarization of 23 microcoulombs per square centimeter [close to that of barium titanate (BTO)], high Curie temperature of 426 kelvin (above that of BTO), large dielectric constant, and low dielectric loss. DIPAB exhibits good piezoelectric response and well-defined ferroelectric domains. These attributes make it a molecular alternative to perovskite ferroelectrics and ferroelectric polymers in sensing, actuation, data storage, electro-optics, and molecular or flexible electronics. PMID:23349285

  11. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  12. Structure and properties of Bi(Zn0.5Ti0.5)O3- Pb(Zr(1-x)Ti(x))O3 ferroelectric single crystals grown by a top-seeded solution growth technique.

    PubMed

    Wang, Bixia; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2015-06-01

    Bi(Zn0.5Ti0.5)O3 (BZT)-modified Pb(Zr(1-x)Ti(x))O3 (PZT) single crystals have been grown using a top-seeded solution growth technique and characterized by various methods. The crystal structure is found to be rhombohedral by means of X-ray powder diffraction. The composition and homogeneity of the as-grown single crystals are studied by laser ablation inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The domain structure of a (001)(cub) platelet is investigated by polarized light microscopy (PLM), which confirms the rhombohedral symmetry. The paraelectric-to-ferroelectric phase transition temperature T(C) is found to be 313°C with the absence of rhombohedral-tetragonal phase transition. The ferroelectric properties of the ternary crystals are enhanced by the BZT substitution with a remanent polarization of 28 ?C/cm(2) and a coercive field E(C) of 22.1 kV/cm. PMID:26067036

  13. Modeling phonon-polariton generation and control in ferroelectric crystals

    E-print Network

    Chen, Zhao, S.M. Massachusetts Institute of Technology

    2009-01-01

    In this thesis, we present simulations, using Finite Element Method (FEM), of phonon-polariton generation and coherent control in ferroelectric crystals LiNbO? and LiTaO? through nonlinear electro-optic interactions with ...

  14. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-09-01

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0?°C?crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions.

  15. Ferroelectricity in antiferroelectric NaNbO3 crystal.

    PubMed

    Tyunina, M; Dejneka, A; Rytz, D; Gregora, I; Borodavka, F; Vondracek, M; Honolka, J

    2014-03-26

    Sodium niobate (NaNbO3, or NNO) is known to be antiferroelectric at temperatures between 45 and 753 K. Here we show experimentally the presence of the ferroelectric phase at temperatures between 100 and 830 K in the NNO crystals obtained by top-seeded solution growth. The ferroelectric phase and new phase transitions are evidenced using a combination of thermo-optical studies by variable angle spectroscopic ellipsometry, Raman spectroscopy analysis, and photoelectron emission microscopy. The possibility for strain-induced ferroelectricity in NNO is suggested. PMID:24594846

  16. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  17. Novel Polymer Ferroelectric Behavior via Crystal Isomorphism and Nanoconfinement Effect

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    2014-03-01

    Despite comprehensive understanding of novel ferroelectric [i.e., relaxor ferroelectric (RFE) and antiferroelectric (AFE)] behaviors for ceramics, RFE and double hysteresis loop (DHL) behaviors have just emerged for ferroelectric crystalline polymers since the past 15 years. A number of applications such as electrostriction, electric energy storage, and electrocaloric cooling have been realized by utilizing these novel ferroelectric properties. However, the fundamental understanding is still lacking. In this invited talk, we intend to unravel the basic physics behind these novel ferroelectric behaviors via systematic studies of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based terpolymers and e-beam irradiated copolymers. It is found that both crystal internal structure and crystal-amorphous interaction are important for achieving the RFE and DHL behaviors. For the crystal internal structure effect, friction-free dipole switching and nanodomain formation by pinning the polymer chains are essential, and they can be achieved via the mechanism of crystal repeating unit isomorphism. Physical pinning [e.g., in P(VDF-TrFE)-based terpolymers] induces a reversible RFE <-->FE phase transition and thus the DHL behavior, whereas chemical pinning [e.g., in e-beam irradiated P(VDF-TrFE)] results in the RFE behavior. Finally, the crystal-amorphous interaction (or the nanoconfinement effect) results in a competition between the polarization and depolarization local fields. When the depolarization field becomes stronger than the polarization field, a DHL behavior can also be observed. Obviously, the physics is different from ceramics and can be largely attributed to the long chain nature of semicrystalline ferroelectric polymers. This understanding will help us design new ferroelectric polymers with improved electroactive properties and/or better applications. This work is supported by NSF DMR-0907580.

  18. Ultrafast Polarization Response of an Optically Trapped Single Ferroelectric Nanowire

    E-print Network

    Ultrafast Polarization Response of an Optically Trapped Single Ferroelectric Nanowire Sanghee Nah-dimensional potassium niobate nanowires are of interest as building blocks in integrated piezoelectric devices of light-induced polarization dynamics within an optically trapped ferroelectric nanowire, using the second

  19. Structural change in polar nanoregion in alkali niobate added Pb(Zn1/3Nb2/3)0.95Ti0.05O3 single crystal and its effect on ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Park, Jong-Sung; Jung, Youngsoo; Lee, Jung-Kun

    2012-10-01

    Pb(Zn1/3Nb2/3)0.95Ti0.05O3 (PZNT) single crystals with 5 mol. % alkali niobate such as LiNbO3 (LN), NaNbO3 (NN), and KNbO3 (KN) were fabricated by using a flux method to investigate the effect of A-site cation radius on the structure and ferroelectric properties of PZNT under electric field (E-field). Their structure and properties showed different electric field dependence. Polarization versus electric field and strain versus electric field curves of PZNT-0.05LN showed E-field induced phase transition from a relaxor state to a normal ferroelectric state. However, only relaxor behavior was observed in PZNT-0.05NN and PZNT-0.05KN. The effect of A-site ion doping is attributed to the change in local lattice distortion and polar nano-region. When smaller cation such as Li ion substitutes Pb ion, the off-center displacement of Nb ion stabilizes rhombohedral lattice distortion. They, in turn, facilitate the development of macro-domains under electric field (E-field) in PZNT-0.05LN. In contrast, the substitution of Pb with larger cations such as Ni and K decreases the rhombohedral distortion of PZNT, which leads to the disappearance of unique E-field induced phase transition from rhombohedral to tetragonal phase in PZNT. Therefore, non-linear electrostrictive behavior of relaxor ferroelectrics is found in PZNT-0.05NN and PZNT-0.05KN.

  20. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  1. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    SciTech Connect

    Das, Abhijit; Department of Physics, Gauhati University, Guwahati 781014, Assam ; Boruah, Bosanta R.

    2014-04-15

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  2. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La{sub 1-x}Ba{sub x}MnO? thin films epitaxially grown on relaxor-based ferroelectric single crystals

    SciTech Connect

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui; Wang, Yu

    2014-09-21

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La{sub 1-x}Ba{sub x}MnO? (x=0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In{sub 1/2}Nb{sub 1/2})O?-0.35Pb(Mg{sub 1/3}Nb{sub 1/2})O?-0.34PbTiO? (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(?R/R){sub strain}] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La?.?Ba?.?MnO? film and 150 K for the La?.?Ba?.?MnO? film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  3. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Wang, Yu; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui

    2014-09-01

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La1-xBaxMnO3 (x = 0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb1/2)O3-0.34PbTiO3 (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(?R/R)strain] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La0.8Ba0.2MnO3 film and 150 K for the La0.6Ba0.4MnO3 film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  4. Journal of Crystal Growth 292 (2006) 395398 Direct observation of ferroelectric domains and phases in (0 0 1)-cut

    E-print Network

    2006-01-01

    Journal of Crystal Growth 292 (2006) 395­398 Direct observation of ferroelectric domains and phases in (0 0 1)-cut Pb(Mg1/3Nb2/3)1ÀxTixO3 single crystals under electric-field poling R.R. Chiena,Ã, V. Hugo.33O3 (PMNT33%) single crystal has been performed by polarizing microscopy. A hysteresis loop

  5. Visualization of ferroelectric domains in a hydrogen-bonded molecular crystal using emission of terahertz radiation

    SciTech Connect

    Sotome, M.; Kida, N. Okamoto, H.; Horiuchi, S.

    2014-07-28

    Using a terahertz-radiation imaging, visualizations of ferroelectric domains were made in a room-temperature organic ferroelectric, croconic acid. In as-grown crystals, observed are ferroelectric domains with sizes larger than 50-?m square, which are separated by both 180° and tail-to-tail domain walls (DWs). By applying an electric field along c axis (the polarization direction), a pair of 180° DWs is generated and an each 180° DW oppositely propagates along a axis, resulting in a single domain. By cyclic applications of electric fields, a pair of 180° DWs repeatedly emerges, while no tail-to-tail DWs appear. We discuss the usefulness of the terahertz-radiation imaging as well as the observed unique DW dynamics.

  6. Piezoresponse force microscopic study of ferroelectric (1 - x)Pb(Sc1/2Nb1/2)O3 - xPbTiO3 and Pb(Sc1/2Nb1/2)O3 single crystals

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Bing, Y. H.; Ye, Z.-G.

    2012-09-01

    The microscopic piezoelectric response and ferroelectric domain switching in the (001)-oriented rhombohedral piezo-/ferroelectric (1 - x)Pb(Sc1/2Nb1/2)O3 - xPbTiO3 (PSN-PT) and relaxor Pb(Sc1/2Nb1/2)O3 (PSN) single crystals were studied by piezoresponse force microscopy. PSN-PT shows clear domain structures while the domain contrast of PSN is very weak. For PSN-PT, after being fully poled vertically, its lateral domain structure is still composed of a multi-domain state. Both PSN-PT and PSN crystals respond to positive and negative DC field drives through piezoelectricity. However, their poling behaviors are different. For PSN-PT, during successive applications of a positive external electric field, the areas with piezoresponse in phase with the electric field grow at the expense of domains of opposite piezoresponse, implying a domain switching process via sideway motion of domain walls. On the other hand, in the PSN single crystal, the piezoresponse contrast of the alternatively poled area shows a uniformly fading and enhancing pattern, depending on the direction of the polarization component of the domains relative to the external field. While the domain pattern of PSN-PT and its evolution under an external field behave like a normal ferroelectric material, the domain structure and domain evolution process of PSN appear to be abnormal for a ferroelectric, but consistent with the character of a relaxor.

  7. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary

    PubMed Central

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-01-01

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0?°C?crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions. PMID:26334181

  8. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary.

    PubMed

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-01-01

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0?°C?crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions. PMID:26334181

  9. Nanodomain engineering in RbTiOPO4 ferroelectric crystals G. Rosenman,a)

    E-print Network

    Arie, Ady

    that sidewise nanodomain propa- gation in RTP crystals is highly anisotropic, and the growing domains stronglyNanodomain engineering in RbTiOPO4 ferroelectric crystals G. Rosenman,a) P. Urenski, A. Agronin, A microscope has been applied for tailoring strip-like nanodomains in RbTiOPO4 ferroelectric crystal. Highly

  10. Domain morphology from k-space spectroscopy of ferroelectric crystals Uwe Voelker and Klaus Betzler*

    E-print Network

    Osnabrück, Universität

    Domain morphology from k-space spectroscopy of ferroelectric crystals Uwe Voelker and Klaus Betzler, undoped crystals of all com- positions are ferroelectric with the tetragonal space group P crystals is reported. Noncollinear optical frequency doubling in a quasiphase-matched scheme allows

  11. Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Whatmore, Roger

    Ferroelectric materials offer a wide range of useful properties. These include ferroelectric hysteresis (used in nonvolatile memories), high permittivities (used in capacitors), high piezoelectric effects (used in sensors, actuators and resonant wave devices such as radio-frequency filters), high pyroelectric coefficients (used in infra-red detectors), strong electro-optic effects (used in optical switches) and anomalous temperature coefficients of resistivity (used in electric-motor overload-protection circuits). In addition, ferroelectrics can be made in a wide variety of forms, including ceramics, single crystals, polymers and thin films - increasing their exploitability. This chapter gives an account of the basic theories behind the ferroelectric effect and the main ferroelectric material classes, discussing how their properties are related to their composition and the different ways they are made. Finally, it reviews the major applications for this class of materials, relating the ways in which their key functional properties affect those of the devices in which they are exploited.

  12. Acceptor-oxygen vacancy defect dipoles and fully coordinated defect centers in a ferroelectric perovskite lattice: Electron paramagnetic resonance analysis of Mn2+ in single crystal BaTiO3

    NASA Astrophysics Data System (ADS)

    Maier, R. A.; Pomorski, T. A.; Lenahan, P. M.; Randall, C. A.

    2015-10-01

    Defect dipoles are significant point defects in perovskite oxides as a result of their impact on oxygen vacancy dynamics. Electron paramagnetic resonance (EPR) was used to investigate the local defect structure of single crystal BaTiO3 doped with manganese. These results, along with a re-analysis of literature data, do not support the conclusion that transition metal-oxygen vacancy nearest neighbor defect dipoles ( M nT i ? - VO • • ) × in ferroelectric BaTiO3 are majority defect centers as previously reported. Local symmetry analysis of the zero-field splitting term of the spin Hamiltonian supports the assignment of fully coordinated defect centers as opposed to defect dipoles for resonance signals at geff ˜ 2. A newly discovered defect center with g? ˜ 6 is observed in the manganese doped system, and it is argued that this defect center belongs to an associated defect complex or defect dipole. This newly reported strong axial defect center, however, is present in small, minor concentrations compared to the well-known Mn2+ center with zero-field splitting of D ˜ 645 MHz. In regard to relative concentration, it is concluded that the dominant point defect related to the Mn2+ ion doped in BaTiO3 corresponds to B-site substitution with six nearest neighbor anions in octahedral coordination.

  13. Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, S.; Shajinshinu, P. M.; . Vijayalakshmi, S.

    2015-11-01

    Single crystal of Ethylenediaminium Tetrachlorozincate has been grown by slow evaporation method. The single crystal XRD study confirms the orthorhombic structure of the crystal. The presence of functional group vibrations are ascertained through FTIR and Raman studies. In optical studies, the insulating behaviour of the material is established by Tauc plot. The refractive index and the real dielectric constant of the crystal are calculated. The electronic polarizability in the high frequency optical region is also calculated from the dielectric constant values by using the Clausius-Mossotti equation. The large value of dielectric constant is identified through dielectric studies and it points to the ferroelectric behaviour of the material. Further an experimental study confirms the ferroelectric behaviour of the material. The total polarizability of the crystal owing to the space charge, dipole, ionic and electronic polarizability contributions is obtained experimentally, and it matches well with the theoretically obtained value from Penn analysis. Further, Plasmon energy and Fermi energy of the material are also calculated using Penn analysis.

  14. ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based

    E-print Network

    Jo, Moon-Ho

    give rise to an interesting photovoltaic effect, dubbed as the bulk photovoltaic effect.1,2 This effectORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells Ji serves as a basis for solid-state memory. This phenomenon can also yield an interesting photovoltaic

  15. Gray Scale Generation and Stabilization in Photo-aligned Ferroelectric Liquid Crystal

    E-print Network

    Gray Scale Generation and Stabilization in Photo-aligned Ferroelectric Liquid Crystal Xihua Li Intrinsic gray scales generation and stabilization in photo-aligned ferroelectric liquid crystal display pulse is discussed for the criterion of memorized gray scale generation and stabilization. Based on this

  16. Comments on the paper “Studies on growth and characterization of a novel nonlinear optical and ferroelectric material - N,N-dimethylurea picrate single crystal

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.; Naik, Suvidha G.; Dhavskar, Kiran

    2015-01-01

    The authors of the title paper (J. Cryst. Growth 393 (2014) 7-12) report to have grown a novel organic nonlinear optical (NLO) crystal namely N,N-dimethylurea picrate (NNDMP) by the slow evaporation technique using dimethylformamide (DMF) as solvent. Many points of criticism, concerning the characterization of this so called NNDMP crystal, are highlighted in this comment to prove that NNDMP is not a novel NLO crystal.

  17. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ? 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  18. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  19. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light

    SciTech Connect

    Boes, Andreas; Crasto, Tristan; Steigerwald, Hendrik; Mitchell, Arnan; Wade, Scott; Frohnhaus, Jakob; Soergel, Elisabeth

    2013-09-30

    We report ferroelectric domain inversion in strontium barium niobate (SBN) single crystals by irradiating the surface locally with a strongly focused ultraviolet (UV) laser beam. The generated domains are investigated using piezoresponse force microscopy. We propose a simple model that allows predicting the domain width as a function of the irradiation intensity, which indeed applies for both SBN and LiNbO{sub 3}. Evidently, though fundamentally different, the domain structure of both SBN and LiNbO{sub 3} can be engineered through similar UV irradiation.

  20. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  1. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    SciTech Connect

    Sinha, Nidhi; Goel, Neeti; Singh, B.K.; Gupta, M.K.; Kumar, Binay

    2012-06-15

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (T{sub c}) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications. - Graphical abstract: Dye doping in TGS crystal resulted in hourglass morphology, increased hyper-luminescence intensity, improved T{sub c} and figure of merit. Highlights: Black-Right-Pointing-Pointer Amaranth dye doping in TGS crystals resulted in hourglass morphology. Black-Right-Pointing-Pointer Doping resulted in enhancement of Curie temperature from 49 to 53 Degree-Sign C. Black-Right-Pointing-Pointer Low cut off (230 nm) and wider transmittance window observed. Black-Right-Pointing-Pointer Strong hyper-luminescent emission bands at 350 and 375 nm were observed. Black-Right-Pointing-Pointer High and uniform figure of merit in ferroelectric phase was obtained.

  2. Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing

    NASA Astrophysics Data System (ADS)

    Johnson, Kristina M.; Moddel, Garret

    1989-11-01

    The operating characteristics of ferroelectric liquid crystals that make them especially attractive as components in optical connectionist machines are discussed. Results are presented on a new device, an optically addressed spatial light modulator which uses amorphous silicon as the photosensor and ferroelectric liquid crystals as the modulators. This device has a minimum resolution of 38 line pairs/mm with a 100-microsec turn-on-time and a 40-ms turn-off time. An optical connectionist module is described which can connect 256 input activation units to 256 output units using ferroelectric liquid crystals. This device can form 10 billion connections per second.

  3. Time-Resolved, Electric-Field-Induced Domain Switching and Strain in Ferroelectric Ceramics and Crystals

    NASA Astrophysics Data System (ADS)

    Jones, Jacob L.; Nino, Juan C.; Pramanick, Abhijit; Daniels, John E.

    Ferroelectric materials are used in a variety of applications including diagnostic and therapeutic ultrasound, sonar, vibration and displacement sensors, and non-volatile random access memory. The electromechanical response in ferroelectric materials is comprised of both intrinsic (piezoelectric lattice strain) and extrinsic (e.g., domain wall motion) components that are expressed as characteristic changes in the diffraction pattern. By applying slow, step-wise changes in the electric field, prior quasi-dynamic diffraction measurements have demonstrated both lattice strains and non-180 ? domain switching at fields exceeding the macroscopically defined coercive field. However, the loading conditions which most replicate real device operation involve dynamic actuation with sub-coercive, cyclic electric fields. At these operating conditions, extrinsic irreversibilities lead to hysteresis, frequency dispersion and nonlinearity of macroscopic properties. Observation of strain and domain switching at these cyclic loading conditions is an area in which we have reported recent advances using stroboscopic techniques. This chapter highlights the electric-field-induced lattice strain and kinetics of domain switching in a number of materials including technologically-relevant lead zirconate titanate (PZT) ceramics and relaxor single crystals. An outlook on the continuing use of time-resolved diffraction techniques in the characterization of ferroelectric materials is also discussed.

  4. A theory of triple hysteresis in ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Weng, George J.

    2009-10-01

    In the vicinity of the transition temperature between two ferroelectric states, a ferroelectric crystal could exhibit a triple hysteresis under an ac field. For a BaTiO3 with the "c-plate" configuration slightly below this temperature, the middle loop is caused by the 0°?180° domain switch in the orthorhombic phase, whereas the upper and lower loops are the result of orthorhombic-to-tetragonal phase transition, and vice versa. In this article we first develop a micromechanics-based thermodynamic model to determine the thermodynamic driving force for phase transition and for domain switch as a function of electric field and temperature, and in the latter case, further supplement it with a kinetic equation and a homogenization scheme. The dependence of dielectric constant of the orthorhombic and tetragonal phases on temperature and electric field are also established. The developed theory is then applied to calculate the triple hysteresis loops of BaTiO3 at several levels of temperature. The calculated results for the triple loops, and for the variation of dielectric constant, are found to be in full accord with the test data of Huibregtse and Young [Phys. Rev. 103, 1705 (1956)].

  5. Anchoring energy and orientational elasticity of a ferroelectric liquid crystal

    SciTech Connect

    Kaznacheev, A. V.; Pozhidaev, E. P.

    2012-06-15

    The dielectric susceptibility of a helix-free ferroelectric liquid crystal layer has been experimentally and theoretically studied as a function of the layer thickness. The investigation has been performed on the inner branch of the polarization hysteresis loop, in the region of a linear dependence of the polarization on the electric field. The experimental results are explained using the notion of effective layer thickness, which involves the characteristic distance {xi} over which the orienting effect of interfaces is operative. Comparison of the experimental data and theoretical results made it possible to estimate this distance as {xi} = 41 {mu}m and evaluate the anchoring energy (W = 2.8 Multiplication-Sign 10{sup -3}-1.1 Multiplication-Sign 10{sup -2} J/m{sup 2}) and the intralayer elastic constant (K Double-Prime Almost-Equal-To 1 Multiplication-Sign 10{sup -8}-3 Multiplication-Sign 10{sup -7} N).

  6. Design and characterisation of a ferroelectric liquid crystal over silicon spatial light modulator 

    E-print Network

    Burns, Dwayne C

    Many optical processing systems rely critically on the availability of high performance, electrically-addressed spatial light modulators. Ferroelectric liquid crystal over silicon is an attractive spatial light modulator ...

  7. Enhanced ferroelectric properties and thermal stability of nonstoichiometric 0.92(Na{sub 0.5}Bi{sub 0.5})TiO{sub 3}-0.08(K{sub 0.5}Bi{sub 0.5})TiO{sub 3} single crystals

    SciTech Connect

    Zhang, Haiwu E-mail: hsluo@mail.sic.ac.cn; Chen, Chao; Deng, Hao; Li, Long; Graduate University of Chinese Academy of Sciences, Beijing 100049 ; Zhao, Xiangyong; Lin, Di; Li, Xiaobing; Ren, Bo; Luo, Haosu E-mail: hsluo@mail.sic.ac.cn; Yan, Jun

    2013-11-18

    Bi deficient, Mn doped 0.92(Na{sub 0.5}Bi{sub 0.5})TiO{sub 3}-0.08(K{sub 0.5}Bi{sub 0.5})TiO{sub 3} single crystals were grown by carefully controlled top-seeded solution growth method. Local structures were investigated by transmission electron microscopy. The site occupation and valence state of manganese were characterized by electron paramagnetic resonance spectrum. The leakage current density in the as-grown single crystals is effectively depressed. The introduced defect complexes suppress the temperature induced phase transformation, increasing the depolarization temperature (165?°C) and thermal stability of ferroelectric properties.

  8. Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures

    E-print Network

    Gopalan, Venkatraman

    properties such as crystal conductivity,8 the lattice parameters in close-packed oxygen planes,9 thermalFerroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures Charles C in congruent LiTaO3 crystals with an increase in temperature from 22 to 250 °C. This is accompanied

  9. From nonpolar to ferroelectric crystal structure: the temperature-tuned growth of two guanidinium ethoxysulfonate polymorphs.

    PubMed

    Szafra?ski, Marek; Jarek, Marcin

    2008-03-13

    Guanidinium ethoxysulfonate, [C(NH2)3]+[C2H5O-SO3]-, was synthesized, and two polymorphs, both stable at normal conditions, were grown from an aqueous solution by only a slight change in the crystallization temperature. The nonpolar polymorph I is built of hydrogen-bonded bilayers, while the ferroelectric polymorph II consists of single-layers. The diversity in the crystals' architecture and properties originates from the excessive number of proton-acceptor sites. At 298 K, the structure of polymorph I is orthorhombic, space group Pbam, formed of supramolecular hydrogen-bonded sheets. Within such a sheet, the ethoxysulfonate anions assume alternately cis and trans conformations, both disordered at room temperature and at 150 K. The anisotropy of the crystal structure is mirrored by a strong anisotropy of its thermal expansion. Upon cooling at 120 K, the crystal undergoes a first-order order-disorder phase transition. The structure of polymorph II is also reinforced by the two-dimensional network of NH...O hydrogen bonds, but the supramolecular motif formed is different from that of polymorph I. The H-bonded strongly corrugated sheets are stacked, forming a densely packed single-layer structure. All the anions assume the same trans conformation. At 298 K, they are disordered between the two sites related by the mirror symmetry plane. The onset of ordering of the anions coincides with the Curie point at TC = 211 K, at which the dielectric constant exceeds 4000. The continuous paraelectric-ferroelectric phase transition is associated with the symmetry change Pnma --> Pna21. Despite the apparent order-disorder character of the transition, the transition mechanism also involves a substantial displacement of the ions and a rearrangement of the H-bonded network. PMID:18288830

  10. Dielectric and optical behaviors in relaxor ferroelectric Pb(In1/2Nb1/2)1KxTixO3 crystal

    E-print Network

    Dielectric and optical behaviors in relaxor ferroelectric Pb(In1/2Nb1/2)1KxTixO3 crystal C.-S. Tu a%) single crystal grown by the modified Bridgman method with Pb(Mg1/3Nb2/3)0.71Ti0.29O3 (PMNT29%) seed crystal. A diffused phase transition was observed in the temperature region of w430­460 K with strong

  11. Ultrafast polarization response of an optically trapped single ferroelectric nanowire.

    PubMed

    Nah, Sanghee; Kuo, Yi-Hong; Chen, Frank; Park, Joonsuk; Sinclair, Robert; Lindenberg, Aaron M

    2014-08-13

    One-dimensional potassium niobate nanowires are of interest as building blocks in integrated piezoelectric devices, exhibiting large nonlinear optical and piezoelectric responses. Here we present femtosecond measurements of light-induced polarization dynamics within an optically trapped ferroelectric nanowire, using the second-order nonlinear susceptibility as a real-time structural probe. Large amplitude, reversible modulations of the nonlinear susceptibility are observed within single nanowires at megahertz repetition rates, developing on few-picosecond time-scales, associated with anomalous coupling of light into the nanowire. PMID:25051318

  12. Optical interband transitions in [111] poled relaxor-based ferroelectric 0.24Pb(In1/2Nb1/2)O3–(0.76 ? x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystal

    PubMed Central

    Wu, Fengmin; Yang, Bin; Sun, Enwei; Wang, Zhu; Yin, Yongqi; Pei, Yanbo; Yang, Wenlong

    2013-01-01

    Optical transmission spectra of single crystal 0.24Pb(In1/2Nb1/2)O3–(0.76 ? x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (x = 0.27, 0.33) were measured in the pseudo-cubic crystallographic directions [111] and [112?]. Ferroelectric domain structures were observed in order to explain the difference of transmittance for the two composition crystals. Wavelength dependence of the absorption coefficients was measured and the optical energy band gaps were calculated for both direct and indirect transitions, which are Egd = 3.09–3.18 eV and Egi = 2.89–2.96 eV, respectively, and the phonon energy is Ep = 0.07–0.08 eV. The transmission spectra were explained by the refractive indices and extinction coefficients measured by spectroscopic ellipsometry. PMID:25170190

  13. Growth, structural phase transition and ferroelectric properties of Pb[(Zn 1/3Nb 2/3) 0.91 Ti 0.09]O 3 single crystals

    NASA Astrophysics Data System (ADS)

    Bubesh Babu, J.; Madeswaran, G.; Prakash, Chandra; Dhanasekaran, R.

    2006-07-01

    Growth of PZNT (91/9) single crystals at morphotropic phase boundary has been carried out by flux and flux Bridgman methods. Effects of multinucleation on morphology and effect of PbO evaporation on crystal growth are discussed. The grown crystals were cut along (0 0 1) direction and crystals were poled at the rate of 1 kV/mm. The slow scan X-ray diffraction results of the oriented crystals show a structural phase transition on poling. The phase transition has been studied with slow scan X-ray diffraction pattern for powdered Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZN-PT) crystal and (0 0 1) oriented single crystal which shows the existence of stressed phases and trapped phases in both cases. Further the grown PZN-PT single crystals have been subjected to compositional studies. Electrical characterizations such as hysteresis measurement, strain measurement and piezoelectric measurement were carried out and the results are discussed in detail.

  14. Free energies of ferroelectric crystals from a microscopic approach

    NASA Astrophysics Data System (ADS)

    Geneste, Grégory

    2010-04-01

    The free energy of barium titanate is computed around the Curie temperature as a function of polarization P? from the first-principles derived Effective Hamiltonian of Zhong, Vanderbilt and Rabe [Phys. Rev. Lett. 73 (1994) 1861], through Molecular Dynamics simulations coupled to the method of the Thermodynamic Integration. The algorithms used to fix the temperature (Nosé-Hoover) and/or the pressure/stress (Parrinello-Rahman), combined with fixed-polarization molecular dynamics, allow to compute a Helmholtz free energy (fixed volume/strain) or a Gibbs free energy (fixed pressure/stress). The main feature of this approach is to calculate the gradient of the free energy in the 3-D space ( P, P, P) from the thermal averages of the forces acting on the local modes, that are obtained by Molecular Dynamics under the constraint of fixed P?. This work extends the method presented in [Phys. Rev. B 79 (2009) 064101] to the calculation of the Gibbs free energy and presents new features about the computation of the free energy of ferroelectric crystals from a microscopic approach. A careful analysis of the states of constrained polarization is performed at T=280 K (?15-17 K below T) especially at low order parameter. These states are found reasonably homogeneous for small supercell size ( L=12 and L=16), until inhomogeneous states are observed at low order parameter for large supercells ( L=20). The effect of this evolution towards multidomain configurations on the mean force and free energy curves is shown. However, for reasonable supercell sizes ( L=12), the free energy curves obtained are in very good agreement with phenomenological Landau potentials of the literature and the states of constrained polarization are homogeneous. Moreover, the free energy obtained is quite insensitive to the supercell size from L=12 to L=16 at T=280 K, suggesting that interfacial contributions, if any, are negligible at these sizes around T. The method allows a numerical estimation of the free energy barrier separating the paraelectric from the ferroelectric phase at T ( ?G?0.012-0.015 meV/5-atom cell). However, our tests evidence phase separation at low temperature and low order parameter, in agreement with the results of Tröster et al. [Phys. Rev. B 72 (2005) 094103]. Finally, the natural decomposition of the forces into onsite, short-range, dipole-dipole and elastic-local mode interaction allows to make the same decomposition of the free energy. Some parts of this decomposition can be directly calculated from the coefficients of the Effective Hamiltonian.

  15. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman (State College, PA); Mitchell, Terrence E. (Los Alamos, NM); Kitamura, Kenji (Tsukuba, JP); Furukawa, Yasunori (Tsukuba, JP)

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  16. Flexo- and piezo-electric polarization of smectic layers in ferroelectric and antiferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kuczy?ski, W.; Hoffmann, J.; Dardas, D.; Nowicka, K.; Bielejewska, N.

    2015-11-01

    In this paper, we report on how flexoelectric and piezoelectric polarization components can be determined by a method based on simultaneous studies of dielectric and electrooptic properties of the chiral smectic liquid crystal in the regime of weak electric fields. As a rule, the measurements of spontaneous polarization are performed using switching experiments. The polarization measured in this way is not complete—it contains the piezoelectric component only. However, the knowledge of the entire local polarization of a single smectic layer is of great importance—it is necessary for correct determination of some material parameters, for instance elastic constants. Our experiments performed in a helical smectic mixture demonstrated that flexoelectric contribution to the local spontaneous polarization is significant in both ferroelectric and antiferroelectric phases. In the antiferroelectric phase, the flexoelectric polarization is less due to higher helical pitch.

  17. Terahertz radiation by optical rectification in a hydrogen-bonded organic molecular ferroelectric crystal, 2-phenylmalondialdehyde

    E-print Network

    Guan, W; Sotome, M; Kinoshita, Y; Takeda, R; Inoue, A; Horiuchi, S; Okamoto, H

    2014-01-01

    Terahertz radiation by optical rectification has been observed at room temperature in a hydrogen-bonded organic molecular ferroelectric crystal, 2-phenyl malondialdehyde (PhMDA). The radiated electromagnetic wave consisted of a single-cycle terahertz pulse with a temporal width of $\\sim$ 0.5 ps. The terahertz radiation amplitude divided by the sample thickness in PhMDA was nearly equivalent to that in a typical terahertz wave emitter ZnTe. This is attributable to a long coherence length in the range of 130 $\\sim$ 800 $\\mu$m for the terahertz radiation from PhMDA. We also discussed the possibility of PhMDA as a terahertz wave emitter in terms of the phase-matching condition.

  18. Alignment of ferroelectric liquid crystal on surface SiO2 films on oblique ion beam deposition

    E-print Network

    of the ferroelectric liquid crystals can be received on the alignment layer prepared by this method. Large deposition. From the other side the new generations of LCDs operate with large-area substrates (1870 x 2200 mm 2Alignment of ferroelectric liquid crystal on surface SiO2 films on oblique ion beam deposition A

  19. Single-crystal barium titanate thin films by ion slicing T. Izuhara,a)

    E-print Network

    Reeves, Mark E.

    Single-crystal barium titanate thin films by ion slicing T. Izuhara,a) I.-L. Gheorma, and R. M, D.C. 20052 Received 19 September 2002; accepted 3 December 2002 Thin barium titanate films, 0.5­8 m.1063/1.1540727 Barium titanate, BaTiO3 BTO , is a ferroelectric crystal whose outstanding electrical and optical

  20. Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-05-01

    The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.

  1. Effect of rare earth ions on the properties of glycine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Moorthy Babu, S.; Kumar, Binay; Bhagavannarayana, G.

    2013-01-01

    Optically transparent glycine phosphite (GPI) single crystals doped with rare earth metal ions (Ce, Nd and La) were grown from aqueous solution by employing the solvent evaporation and slow cooling methods. Co-ordination of dopants with GPI was confirmed by X-ray fluorescence spectroscopic analysis. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters and to analyze the structural morphology of GPI with dopants, which indicates that cell parameters of doped crystals were significantly varied with pure GPI. Crystalline perfection of doped GPI crystals was determined by high resolution X-ray diffraction analysis by means of full width at half maximum values. Influence of the dopants on the optical properties of the material was determined. Paraelectric to ferroelectric transition temperature (Tc) of doped GPI crystals were identified using differential scanning calorimetric measurements. Piezoelectric charge coefficient d33 was measured for pure and doped GPI crystals. Hysteresis (P-E) loop was traced for ferroelectric b-axis and (100) plane of pure and doped GPI crystals with different biasing field and ferroelectric parameters were calculated. Mechanical stability of crystals was determined by Vickers microhardness measurements; elastic stiffness constant 'C11' and yield strength '?y' were calculated from hardness values. Mechanical and ferroelectric properties of doped crystals were improved with doping of rare earth metals.

  2. The role of alkali additives in the crystallization of ferroelectric potassium lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Péter, Á.; Hajdara, I.; Szaller, Zs.; Lengyel, K.; Kovács, L.

    2013-05-01

    Ferroelectric K3Li2Nb5O15 (KLN-1) crystals have been grown by the top-seeded solution growth method from pure, Na+, Rb+ and Cs+ doped melt. The impact of alkali additives was assessed all over the entire pulling range by investigating the variation of the structural and physical properties by using spectroscopic and dielectric methods. The incorporation of alkali homologs has been correlated with their ionic radii: Na+ ions were found to enter both Li and K sites with high segregation coefficient (k˜1.6), Rb+ ions were detected only at K sites (k˜0.34) and Cs+ ions practically did not incorporate into the lattice (k˜0.12). Alkali additives have been found to play a dual role in the growth process by affecting the crystallization temperature and promoting the K and Li site occupancy. By decreasing the crystallization temperature the Cs2O additive reduced the concentration both of the antisite Nb ions at Li site and that of alkali vacancies; therefore it can be considered as a promising fluxing agent in the growth of KLN crystals.

  3. Surface charge regulation of osteogenic differentiation of mesenchymal stem cell on polarized ferroelectric crystal substrate.

    PubMed

    Li, Jianhua; Mou, Xiaoning; Qiu, Jichuan; Wang, Shu; Wang, Dongzhou; Sun, Dehui; Guo, Weibo; Li, Deshuai; Kumar, Anil; Yang, Xuebin; Li, Aixue; Liu, Hong

    2015-05-01

    Polarized ferroelectric crystal lithium niobate wafers with different cuts are selected to offer differently charged surfaces. By induction of the mesenchymal stem cells differentiation into osteoblasts on different charged surfaces, the specific osteogenic-associated markers are assessed and the results illustrate that the positively charged wafer surface enhances rBMMSCs osteogenic differentiation. PMID:25663267

  4. Feature article Novel polymer ferroelectric behavior via crystal isomorphism and the

    E-print Network

    Taylor, Philip L.

    ] behavior in ceramics, RFE and double-hysteresis-loop (DHL) behavior in crystalline ferroelectric polymers and DHL behaviors. For the crystal internal structure effect, dipole switching with reduced friction(VDF-TrFE)-based terpolymers] induces a reversible, electric field-induced RFE4FE phase transition and thus the DHL behavior

  5. Crystal growth of alkali metal ion doped potassium niobate fiber single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Tanahashi, R.; Zhao, H. Y.; Maiwa, K.; Cheng, Z. X.; Wang, X. L.

    2010-05-01

    Alkali metal (Na, Rb or Cs) ion doped KNbO 3 fiber single crystals are grown using an original pulling down method, to improve their composition change during a crystal growth, by means of co-doping of small ionic size Na and large ionic size Rb or Cs into KNbO 3. In spite of the co-doping, single crystals can be grown with orthorhombic single-phase at room temperature, as well as pure KNbO 3. Their electric properties, such as impedance, are changed depending on the doping ions. Na and Rb co-doped KNbO 3 is promising Pb free ferroelectric and piezoelectric crystals.

  6. Quantum ferroelectricity in charge-transfer complex crystals

    PubMed Central

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4–n bromine substituents (QBr4–nIn, n=0–4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF–QBr2I2 exhibits a ferroelectric neutral–ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral–ionic transition compounds, such as well-known ferroelectric complex of TTF–QCl4 and quantum antiferroelectric of dimethyl–TTF–QBr4. By contrast, TTF–QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  7. A computer study and photoelectric property analysis of potassium-doped lithium niobate single crystals.

    PubMed

    Wang, Wei; Wang, Rui; Zhang, Wen; Xing, Lili; Xu, Yanling; Wu, Xiaohong

    2013-09-14

    First-principles theory was used to design a potassium-doped lithium niobate single crystal. The structural, electronic, optical and ferroelectric properties of the potassium-doped LiNbO3 single crystal model have been investigated using a generalized gradient approximation within density functional theory. It was found that substitution with potassium drastically changed the optical and electronic nature of the crystal and that the band gap slightly decreases. A series of LiNbO3 single crystals doped with x mol% K (x = 0, 3, 6, 9, 12 mol%) were successfully grown using the Czochralski method. The crystals were characterized using powder X-ray diffraction, UV-vis-infrared absorption spectroscopy and a ferroelectric property test. The experimental test results were consistent with the calculated predictions. PMID:23877369

  8. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    SciTech Connect

    Basu, Rajratan

    2014-09-15

    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the ?–? electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  9. Effect of Reoriented Nanodomains on Crystal Structure and Piezoelectric Properties of Polycrystalline Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Fan, Qiaolan; Zeng, Weidong; Zhou, Changrong; Cen, Zhenyong; Yuan, Changlai; Xiao, Jianrong; Ma, Jiafeng

    2015-10-01

    It has been widely accepted that electric fields induce a reversible structural phase transition and thus yield giant piezoelectric responses in ferroelectric ceramics. Based on detailed measurements of polycrystalline (Li0.5Nd0.5)2+-modified 0.95Bi0.5Na0.5TiO3-0.05BaTiO3 ceramics, we demonstrate in this study that coherent diffraction from nanodomains in ferroelectric ceramics masks the real crystal structure. The observed electric-field-induced phase transformation behavior is a consequence of relaxor-to-ferroelectric transformation caused by changes in the coherence length of the nanodomains. A driving mechanism of the structure-property relationship in which high piezoelectric properties originate from correlated ordering of nanodomains during poling is proposed.

  10. Optical and Electronic Properties of Diisopropylammonium Bromide molecular ferroelectric crystal (DIPAB)

    NASA Astrophysics Data System (ADS)

    Alsaad, Ahmad; Al-Aqtash, Nabil; Sabirianov, Renat

    2015-03-01

    Diisopropylammonium Bromide molecular ferroelectric crystal (DIPAB) could be considered as a potential alternative for perovskite ferroelectric materials. We report the results of ab-initio calculations of electronic band structure and density of states to underline and explain the optical properties of P21 ferroelectric phase of DIPAB. In particular, we present the results on complex dielectric function, absorption, reflectivity, energy-loss spectra, and complex refractive index as functions of the frequency of the incident electromagnetic wave. We found that the optical band gap of the polar ferroelectric phase of DIPAB is ~ 5 eV consistent with the steepest rise in the absorption spectra. Furthermore, we found that the ferroelectric phase of DIPAB exhibits two fundamental oscillator bands at 5.91 and 6.4 eV, which correspond to the optical transitions from the valence band of bromine to the conduction band of nitrogen and carbon. Analysis of optical spectra in the 0-4.8 eV photon energy range reveals that this phase is characterized by high transparency, no absorption and a small reflectivity in this range. We found that the sharp maxima in the energy-loss occur at 14.35 and 15.82 eV in polar phase. The peak value of volume loss, 15.82 eV in polar phase, coincides with the zero values of the real part of the corresponding dielectric functions.

  11. Pressure-induced crossover from long-to-short-range order in Pb,,Zn13Nb23...O30.905,,PbTiO3...0.095 single crystal

    E-print Network

    ...0.095 single crystal G. A. Samaraa) and E. L. Venturini Sandia National Laboratories, Albuquerque, New Mexico normal ferroelectric­to­relaxor behavior has been observed in single crystal Pb Zn1/3Nb2/3 O3 0.905 Pb with single crystals. Numerous attempts, extending over several decades, to grow PZT crystals of suitable size

  12. Second optical harmonic near the surface of ferroelectric photonic crystals and photon traps

    NASA Astrophysics Data System (ADS)

    Voinov, Yu. P.; Gorelik, V. S.; Zaitsev, K. I.; Zlobina, L. I.; Sverbil', P. P.; Yurchenko, S. O.

    2015-03-01

    This paper reports on the results of experimental investigations of the generation of the second optical harmonic localized in a thin subsurface layer of ferroelectric photonic crystals and photon traps. To excite the second optical harmonic, a KGW: Yb solid-state pulsed-periodic laser generating the radiation with a wavelength of 1026 nm in a form of pulses ˜10-13 s long with a repetition frequency of 200 kHz at the average power of 0.1-3.5 W and power density of ˜109-1012 W/cm2 in a spot less than 100 ?m in diameter focused near the surface was used. Ferroelectrics, notably, barium titanate or sodium nitrite, were introduced into the pores between SiO2 nanoglobules. It is established that the maximal conversion efficiency of the exciting radiation into the second optical harmonic was several percents. The generation characteristics of the second optical harmonic near the surface of photonic crystals filled with ferroelectrics are compared with the generation of the second optical harmonic in ferroelectric photon traps of barium titanate ceramics and sodium nitrite microcrystals.

  13. Speckle noise suppression using a helix-free ferroelectric liquid crystal cell

    SciTech Connect

    Andreev, A L; Andreeva, T B; Kompanets, I N; Zalyapin, N V

    2014-12-31

    We have studied the method for suppressing speckle noise in patterns produced by a laser based on a fast-response electro-optical cell with a ferroelectric liquid crystal (FLC) in which helicoid is absent, i.e., compensated for. The character of smectic layer deformation in an electric field is considered along with the mechanism of spatially inhomogeneous phase modulation of a laser beam passing through the cell which is accompanied by the destruction of phase relations in the beam. Advantages of a helix-free FLC cell are pointed out as compared to helical crystal cells studied previously. (liquid crystal devices)

  14. Full determination of single ferroelectric nanocrystal orientation by Pockels electro-optic microscopy.

    PubMed

    Trinh, Duc Thien; Mayer, Ludovic; Hajj, Bassam; Lautru, Joseph; Zyss, Joseph; Shynkar, Vasyl

    2015-04-10

    We present a nanoscale electro-optic imaging method allowing access to the phase response, which is not amenable to classical second-harmonic generation microscopy. This approach is used to infer the vectorial orientation of single domain ferroelectric nanocrystals, based on polarization-resolved Pockels microscopy. The electro-optic phase response of KTP nanoparticles yields the full orientation in the laboratory frame of randomly dispersed single nanoparticles, together with their electric polarization dipole. The complete vector determination of the dipole orientation is a prerequisite to important applications including ferroelectric nanodomain orientation, membrane potential imaging, and rotational dynamics of single biomolecules. PMID:25967332

  15. Pressure-induced phase transitions of perovskite ferroelectric crystals: comparison of hydrostatic and 1D compression pressure

    NASA Astrophysics Data System (ADS)

    Gao, Junjie; Xie, Long; Zhang, Hao; Yu, Jidong; Wang, Ganghua; Liu, Gaomin; Gu, Yanqin; He, Hongliang; Bai, Jingsong

    2015-11-01

    The effects of hydrostatic and one-dimensional (1D) compression pressure on the phase transition of perovskite ferroelectric crystal were comparably investigated via the measurement of polarization P r with respect to applied pressure and the Landau-Devonshire (LD) phenomenological approach. The results showed that hydrostatic pressure can induce ferroelectric-to-paraelectric phase transition, while 1D compression can stablize the ferroelectric phase. This phenomenon was very different from the phase transitions of metal crystals, such as iron. In the framework of LD phenomenological theory, this phenomenon is believed to be associated with the strong anisotropy and electromechanical coupling which exists in ferroelectrics under high pressure. On the other hand, the piezoelectric stress coefficient e 31 and piezoelectric strain coefficient d h for PIN-PMN-PT crystal were obtained as??-2.9 C m-2 and 80 pC N-1, respectively.

  16. Optical interband transitions in relaxor-based ferroelectric 0.93Pb,,Zn1/3Nb2/3...O30.07PbTiO3 single crystal

    E-print Network

    Cao, Wenwu

    Optical interband transitions in relaxor-based ferroelectric 0.93Pb,,Zn1/3Nb2/3...O3­0.07PbTiO3 the rhombohedral-tetragonal morphotropic phase boundary MPB, x 0.09 possess superior dielectric and pi- ezoelectric in silicone oil at room temperature with an electric field of 4 kV/cm. The 11¯0 faces of the sample were

  17. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  18. Ferroelectric-like response from the surface of SrTiO? crystals at high temperatures

    SciTech Connect

    Jyotsna, Shubhra; Arora, Ashima; Sekhon, Jagmeet S.; Sheet, Goutam

    2014-09-14

    Since SrTiO? has a high dielectric constant, it is used as a substrate for a large number of complex physical systems for electrical characterization. Since SrTiO? crystals are known to be non-ferroelectric/non-piezoelectric at room temperature and above, SrTiO? has been believed to be a good choice as a substrate/base material for PFM (Piezoresponse Force Microscopy) on novel systems at room temperature. In this paper, from PFM-like measurement using an atomic force microscope on bare crystals of (110) SrTiO? we show that ferroelectric and piezoelectric-like response may originate from bare SrTiO? at remarkably high temperatures up to 420 K. Electrical domain writing and erasing are also possible using a scanning probe tip on the surface of SrTiO? crystals. This observation indicates that the role of the electrical response of SrTiO? needs to be revisited in the systems where signature of ferroelectricity/piezoelectricity has been previously observed with SrTiO? as a substrate/base material.

  19. Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies.

    PubMed

    King, Tzu-Chyang; Chen, De-Xin; Lin, Wei-Cheng; Wu, Chien-Jang

    2015-10-10

    In this work, the photonic band gap (PBG) structure in a one-dimensional ferroelectric photonic crystal (PC) is theoretically investigated. We consider a PC, air/(AB)N/air, in which layer A is a dielectric of MgO and layer B is taken to be a ferroelectric of Ba0.55Sr0.45TiO3 (BSTO). With an extremely high value in the dielectric constant in BSTO, the calculated photonic band structure at microwave frequencies exhibits some interesting features that are significantly different from those in a usual dielectric-dielectric PC. First, the photonic transmission band consists of multiple and nearly discrete transmission peaks. Second, the calculated bandwidth of the PBG is nearly unchanged as the angle of incidence varies in the TE wave. The bandwidth will slightly reduce for the TM mode. Thus, a wide omnidirectional PBG can be obtained. Additionally, the effect of the thickness of the ferroelectric layer on the PBG is much more pronounced compared to the dielectric layer thickness. That is, the increase of ferroelectric thickness can significantly decrease the PBG bandwidth. PMID:26479812

  20. Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Zhu, J. J.; Jiang, K.; Xu, G. S.; Hu, Z. G.; Li, Y. W.; Zhu, Z. Q.; Chu, J. H.

    2013-10-01

    We report direct observation for the structural transformations of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals with the aid of temperature-dependent polarized Raman scattering and X-ray diffraction. The cubic to tetragonal phase transition is observed at 460 K and tetragonal to rhombohedral structural transformation takes place at 390 K, which are consistent with the results determined by dielectric spectroscopy. In addition to two well-known phase transitions above room temperature, anomalous structure deformations involving octahedral rotations and tilting angle of polarization can be found around 200 K. A comparison of experimental results with the Devonshire expansion of the free energy by Vanderbilt et al. [Phys. Rev. B 63, 094108 (2001)] allows us to elucidate the peculiar characteristic as the variation of volume fractions among coexistence of three phases, including a first-order phase transition between the orthorhombic and rhombohedral phases and a second-order phase transition between the monoclinic and orthorhombic ones at low temperature.

  1. Topographic investigation of ferroelectric domain structures in periodically-poled lithium niobate crystals by a profilometer

    SciTech Connect

    Bazzan, M.; Argiolas, N.; Bernardi, A.; Mazzoldi, P.; Sada, C

    2003-10-15

    A topographic investigation of periodically poled lithium niobate (PPLN) crystals was performed by recording a map of the crystal surface after a selective etching process using a standard profilometer. A procedure to correct for the systematic error introduced by the finite size of the tip is discussed in detail so that the width of ferroelectric domains can be mapped with an estimated tolerance of about 3% along the whole length of the sample. The method is applied to a PPLN structure obtained by the Czochralski off-center technique.

  2. Critical Property in Relaxor-PbTiO3 Single Crystals --- Shear Piezoelectric Response

    PubMed Central

    Xu, Zhuo; Wei, Xiaoyong; Shrout, Thomas R.

    2011-01-01

    The shear piezoelectric behavior in relaxor-PbTiO3 (PT) single crystals is investigated in regard to crystal phase. High levels of shear piezoelectric activity, d15 or d24 >2000 pC N?1, has been observed for single domain rhombohedral (R), orthorhombic (O) and tetragonal (T) relaxor-PT crystals. The high piezoelectric response is attributed to a flattening of the Gibbs free energy at compositions proximate to the morphotropic phase boundaries, where the polarization rotation is easy with applying perpendicular electric field. The shear piezoelectric behavior of pervoskite ferroelectric crystals was discussed with respect to ferroelectric-ferroelectric phase transitions and dc bias field using phenomenological approach. The relationship between single domain shear piezoelectric response and piezoelectric activities in domain engineered configurations were given in this paper. From an application viewpoint, the temperature and ac field drive stability for shear piezoelectric responses are investigated. A temperature independent shear piezoelectric response (d24, in the range of ?50°C to O-T phase transition temperature) is thermodynamically expected and experimentally confirmed in orthorhombic relaxor-PT crystals; relatively high ac field drive stability (5 kV cm?1) is obtained in manganese modified relaxor-PT crystals. For all thickness shear vibration modes, the mechanical quality factor Qs are less than 50, corresponding to the facilitated polarization rotation. PMID:21960942

  3. Piezoelectric anisotropy of KNbO3 single crystal

    SciTech Connect

    Liang, Linyun; Li, Yulan; Hu, Shenyang Y.; Chen, Long-Qing; Lu, Guang-Hong

    2010-11-01

    Orientation dependence of the longitudinal piezoelectric coefficients (d*{sub 33}) of a KNbO{sub 3} single crystal has been investigated as a function of temperature by using the Landau-Ginzburg-Devonshire thermodynamic phenomenological theory. It is shown that the maximum of d*{sub 33} is not always along the polarization direction of the ferroelectric phase. The enhancement of d*{sub 33} d along a nonpolar direction is attributed to the ferroelectric phase transition at which a polarization changes its direction. In the tetragonal phase, the maximum of d*{sub 33}{sup t} for the tetragonal phase at high temperatures is along the tetragonal polar direction and then changes its direction toward the polar direction of the orthorhombic phase when close to the tetragonal-orthorhombic phase transition point. The maximum of d*{sub 33}{sup o} of the orthorhombic phase depends on the competition of both high-temperature and low temperature ferroelectric phase transitions. In the rhombohedral phase, the maximum of d*{sub 33}{sup r} is relatively insensitive to temperature due to the absence of any further phase transitions in the low temperature regime. These results can be generalized to the phase transitions induced by external electric-field, pressure, and composition variations.

  4. Piezoelectric and pyroelectric coefficients for ferroelectric crystals with polarizable molecules

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Taylor, P. L.

    1982-01-01

    Expressions for piezoelectric and pyroelectric coefficients for a crystal of polarizable point dipoles are derived. The effect of crystal structure on the local electric field acting to polarize the molecules is included via the Lorentz-factor formalism. The derived expressions for the piezo- and pyroelectric coefficients are found to contain terms dependent on derivatives of the Lorentz factors. These terms reflect the changing of molecular dipole moments in response to the changing local electric field in the strained crystal. Inclusion of this effect results in predictions of coefficients substantially different from those obtained using the Lorentz field approximation.

  5. Optical correlator using very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Turner, Richard M.; Jared, David A.; Sharp, Gary D.; Johnson, Kristina M.

    1993-01-01

    The use of 2-kHz 64 x 64 very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators as the input and filter planes of a VanderLugt-type optical correlator is discussed. Liquid-crystal layer thickness variations that are present in the devices are analyzed, and the effects on correlator performance are investigated through computer simulations. Experimental results from the very-large-scale-integrated / ferroelectric-liquid-crystal optical-correlator system are presented and are consistent with the level of performance predicted by the simulations.

  6. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface

    E-print Network

    Chen, Long-Qing

    switching scanning probe microscopy piezoresponse force microscopy BiFeO3 The electrical control of magnetic magnetic tunneling junctions, combining nonvolatile electrical writing and magnetic or resistive readIntrinsic single-domain switching in ferroelectric materials on a nearly ideal surface S. V

  7. Single-step colloidal processing of stable aqueous dispersions of ferroelectric nanoparticles for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Zribi, Olena; Garbovskiy, Yuriy; Glushchenko, Anatoliy

    2014-12-01

    The biomedical applications of ferroelectric nanoparticles rely on the production of stable aqueous colloids. We report an implementation of the high energy ball milling method to produce and disperse ultrafine BaTiO3 nanoparticles in an aqueous media in a single step. This technique is low-cost, environmentally friendly and has the capability to control nanoparticle size and functionality with milling parameters. As a result, ultrafine nanoparticles with sizes as small as 6 nm can be produced. These nanoparticles maintain ferroelectricity and can be used as second harmonic generating nanoprobes for biomedical imaging. This technique can be generalized to produce aqueous nanoparticle colloids of other imaging materials.

  8. Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

    SciTech Connect

    Ievlev, Anton; Morozovska, A. N.; Eliseev, E. A.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    Electric field induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science, and optoelectronics. In the last 20 years, much attention has been focused on the switching of individual domains using scanning probe microscopy, both as model of ferroelectric data storage and approach to explore fundamental physics of ferroelectric switching. The classical picture of tip induced switching includes formation of cylindrical domain oriented along the tip field, with the domain size is largely determined by the tip-induced field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behavior. Here, we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviors are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). The implications of these behaviors for ferroelectric materials and devices are discussed.

  9. The phase transitions of ferroelectric Sr2Ta2O7 crystals by MDSC, Brillouin and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Hushur, A.; Shabbir, G.; Ko, J.-H.; Kojima, S.

    2004-04-01

    The structural phase transitions of Sr2Ta2O7 single crystals have been studied by the modulated temperature differential scanning calorimetry (MDSC), Brillouin scattering and dielectric spectroscopy. The specific heat (Cp) was measured over a wide temperature range from -150°C to 25°C and from 100°C to 210°C. The Cp curve showed an anomaly at To = 166.7°C, indicating the phase transition Cmcm rarr P21/m. The transition enthalpy DgrH, the transition entropy DgrS and specific heat jump DgrCp at To were estimated to be 0.465 J g-1, 1.01 mJ g-1 K-1 and 9.78 mJ g-1 K-1, respectively. The Cp anomaly associated with the ferroelectric phase transition at Tc = -107°C has not been detected. However, both Brillouin and dielectric data showed the anomalies corresponding to the ferroelectric phase transition from P21/m to P21.

  10. A phenomenological thermodynamic potential for BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Cross, L. E.; Chen, L. Q.

    2005-09-01

    A phenomenological thermodynamic potential was constructed based on the properties of bulk BaTiO3 single crystals. An eighth-order polynomial of Landau-Devonshire expansion was employed. It reproduces bulk properties including the three possible ferroelectric transition temperatures and their dependence on electric fields, as well as the dielectric and piezoelectric constants. Different from the existing thermodynamic potential, it is applicable to predicting the ferroelectric phase transitions and properties of BaTiO3 thin films under large compressive biaxial strains.

  11. Banding in single crystals during plastic deformation

    E-print Network

    Mahesh, Sivasambu

    Banding in single crystals during plastic deformation M. Arul Kumar a Sivasambu Mahesh a,b a. India. Abstract A rigid-plastic rate-independent crystal plasticity model capable of capturing band- ing such as dense dislocation walls. Key words: crystal plasticity, single crystal, macroscopic shear band, regular

  12. Modeling and simulation of switchings in ferroelectric liquid crystals.

    E-print Network

    2009-12-09

    In this paper, we restrict ourselves to the system of a liquid crystal confined between two ... thin domain. More specifically, we study how different energy terms affect on the ...... the xy plane). Since d1 .... are the weights of the Legendre

  13. Photon tunnelling microscopy of polyethylene single crystals

    E-print Network

    Srinivasarao, Mohan

    Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S polyethylenesinglecrystals, providing a topographical map ofthe single-crystal surface.Tunnelling increases exponentially:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

  14. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals

    SciTech Connect

    Podgornov, Fedor V.; Ryzhkova, Anna V.; Haase, Wolfgang

    2010-11-22

    The influence of the gold nanorods (GNRs) diameter on the electro-optic and dielectric properties of the ferroelectric liquid crystals (FLCs) was investigated. It was shown that dispersing of GNRs in FLCs could lead to an increase of the internal electric field inside the liquid crystalline layer. This effect results in a significant decrease of the switching time and the rotational viscosity of the FLC/GNRs nanodispersions independently on the GNRs diameter. Oppositely, the relaxation frequency and the dielectric strength of the Goldstone mode strongly depend on the GNRs diameter, which can be explained by the charge transfer between the GNRs and FLC molecules.

  15. Helix unwinding in ferroelectric liquid crystals induced by tilted electric field

    NASA Astrophysics Data System (ADS)

    Nail, G. Migranov; Aleksey, A. Kudreyko

    2015-07-01

    Helix unwinding in ferroelectric liquid crystals induced by an electric field is theoretically studied on the basis of the continuum theory. By applying a weak electric field tilted to the smectic layers, the contribution of the dielectric interaction energy density to the total free energy density is increased. Approximation methods are used to calculate the free energy for different tilt angles between the electric field and the smectic layers. The obtained results suggest selecting the optimal number of pitches in the film that matches to the minimum of the free energy. Project supported by the Russian Foundation for Basic Research (RFBR) (Grant No. 14-02-97026).

  16. Theoretical study of ferroelectrics and dielectrics properties of novel pyroelectricc material triglycine sulphate crystal

    NASA Astrophysics Data System (ADS)

    Upadhyay, Trilok Chandra; Sharma, Sandeep

    2011-11-01

    An extended two sublattice pseudospin lattice coupled mode model of Chaudhuri et al [Phys.Rev.338 (1988) 689] by adding third and fourth-order phonon anharmonic interactions terms is considered for triglycine sulphate (CH2NH2COOH)3H2SO4 crystal and its isomorphs. With the help of double-time temperature dependent Green's function method, expressions for shift,width, soft mode frequency, dielectric constant and loss tangent are derived. By fitting model values in the theoritical expressions, temperature dependence of soft mode frequency, dielectric constant and loss tangent are calculated. The theoretical results compare well with experimental results of Aravazhi et al [Ferroelectrics200 (1997) 279.

  17. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  18. Supramolecular ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tayi, Alok S.; Kaeser, Adrien; Matsumoto, Michio; Aida, Takuzo; Stupp, Samuel I.

    2015-04-01

    Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics -- materials with a spontaneous and electrically reversible polarization -- are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

  19. High strength single crystal superalloys

    SciTech Connect

    Chin, S.; Duhl, D.N.

    1990-03-13

    This patent describes an alloy composition suitable for casting into a single crystal nickel base superalloy article. It comprises, on a weight percent basis, 4-5.5 Cr, 7.5-12 Co, 1.5-2.5 Mo, 1-6 W, 2-4 Re, 4.5-5.5 Al, 0.5-1.5 Ti, 8-12 Ta, 0-1 V, 0-0.5 Hf, 0.0-0.01 B, 0.0-0.2 Cb, 0.0-0.05 C, 0.0-0.01 Zr, with the balance nickel.

  20. Nanoscale Calorimetry of Isolated Polyethylene Single Crystals

    E-print Network

    Allen, Leslie H.

    Nanoscale Calorimetry of Isolated Polyethylene Single Crystals A. T. KWAN, M. YU. EFREMOV, E. A-film differential scanning calorimetry to investigate the melt- ing of isolated polyethylene single crystals with lamellar thicknesses of 12 1 nm. We observed the melting of as few as 25 crystals. Over a wide number

  1. The elastic and piezoelectric properties of tungsten bronze ferroelectric crystals ,,Sr0.7Ba0.3...2NaNb5O15 and ,,Sr0.3Ba0.7...2NaNb5O15

    E-print Network

    Cao, Wenwu

    perovskite structure ferro- electrics due to their superior dielectric, piezoelectric, pyro- electric that these single crystals have larger dielectric constant and good piezoelectric property compared to other known lead-free perovskite ferroelectric crystals. The measurements show that the SBNN70 has larger

  2. A face-shear mode single crystal ultrasonic motor Shiyang Li, Wenhua Jiang, Limei Zheng, and Wenwu Cao

    E-print Network

    Cao, Wenwu

    higher electromechanical coupling factor, and twice power density. This USM can be used for low frequency­11 With the discovery of new generation piezoelec- tric materials, i.e., the relaxor-PT ferroelectric single crystals USMs have been developed utilizing their superior pie- zoelectric and electromechanical coupling

  3. Titania single crystals with a curved surface.

    PubMed

    Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

    2014-01-01

    Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO?, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface. PMID:25373513

  4. Ferroelectric properties of neodymium-doped Bi4Ti3O12 thin films crystallized in different environments

    E-print Network

    Cao, Wenwu

    polarization and dielectric constants of the BNT films has been observed. D 2004 Elsevier B.V. All rights reserved. Keywords: Ferroelectric properties; Dielectric properties; Crystallization; Annealing 1. Introduction Recently, rare-earth lanthanides doped Bi4Ti3O12 (BIT) with Bi-layered perovskite structure has

  5. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  6. Crystal structures, phase transitions, and pressure-induced ferroelectricity in [C(NH2)3]5SO4(SO3-OC2H5)2F.

    PubMed

    Szafra?ski, Marek

    2011-09-01

    A guanidinium compound, [C(NH(2))(3)](5)SO(4)(SO(3)-OC(2)H(5))(2)F, with complex anionic sublattice has been synthesized and characterized by calorimetric and dielectric measurements at ambient and high hydrostatic pressures, as well as by single-crystal X-ray diffraction at varied temperatures. At room temperature, the crystal structure is orthorhombic, with the space group Pnma. In this phase, each of the two crystallographically nonequivalent ethoxysulfonate anions is disordered between two sites. On cooling, one of these anions starts to set in order at 228 K, where the crystal transforms in a continuous manner to the intermediate orthorhombic phase, with the space group P2(1)2(1)2(1). This transition belongs to the exceptionally rare pure gyrotropic phase transitions, the order parameter of which is described by the third-rank gyrotropic tensor. The ordering of the second ethoxysulfonate anion occurs suddenly at 187 K, inducing a first-order phase transition to the low-temperature phase of space group Pna2(1). The dissimilar response of both ethoxysulfonate anions to the temperature variation can be attributed to the different hydrogen bonding patterns they form with the cationic framework. Despite the polar symmetry, the low-temperature phase is not ferroelectric at ambient pressure, but it acquires ferroelectric features at elevated pressures above 140 MPa, as evidenced by the polarization reversal in an external electric field. The ferroelectric properties disappear on increasing pressure above 220 MPa, where the phase transition strongly modifying the crystal properties, but fully reversible, takes place. In the pressure-induced phase, a Debye-like dipolar relaxation process has been found and characterized as a function of pressure. The unusual properties of [C(NH(2))(3)](5)SO(4)(SO(3)-OC(2)H(5))(2)F under hydrostatic pressure have been summarized in the p-T phase diagram. PMID:21761883

  7. Phase transitions and electromechanical properties for barium titanate and lead titanate ferroelectric crystals under one-dimensional shock wave compression

    NASA Astrophysics Data System (ADS)

    Gao, Junjie; Xu, Zhuo; Li, Fei; Jiang, Dongdong; Zhang, Chonghui; Liu, Yi; Liu, Gaomin; He, Hongliang

    2012-12-01

    Ferroelectric phase transitions and electromechanical properties of BaTiO3 (BT) and PbTiO3 (PT) crystals under one-dimensional shock wave compression were investigated using Landau-Ginzburg-Devonshire phenomenological approach. The results showed that the Curie temperature of both BT and PT increased with increasing pressure. Under highest shock wave compression, the orthorhombic phase was the stable state for BT, while no ferroelectric-ferroelectric phase transition was induced for PT. At room temperature, the electromechanical parameters for PT and BT were found to decrease with increasing one-dimensional compression, except for the dielectric susceptibility ?22 and piezoelectric coefficient e24 of tetragonal BT. The variations of dielectric and piezoelectric parameters were analyzed according to the elastic Gibbs free-energy.

  8. Phase Diagram of Modulated Structures in Ferroelectric Crystals Based on Quantum Ising Model with Third-Neighbor Interactions

    NASA Astrophysics Data System (ADS)

    Mashiyama, Hiroyuki

    2015-10-01

    Incommensurate-commensurate phase transitions are analyzed using a model derived from the normal coordinate Hamiltonian for a crystal lattice. The Hamiltonian consists of a local self-potential and effective third-neighbor interactions. Free energies of various modulated phases are calculated with a mean-field approximation under the condition that two quantum states within the local potential are important at low temperature. It is demonstrated that the quantum effect works to stabilize the incommensurate phase rather than the commensurate phase. Even at zero temperature, the incommensurate phase can occupy a finite region in the phase diagram. This situation is similar to quantum paraelectricity in some ferroelectrics, and can be expected as a general feature of modulated structures of dielectric crystals. The phase diagram for ferroic first- and third-neighbor interactions but antiferroic second-neighbor interactions is constructed theoretically and is discussed in detail to explain qualitatively the low-temperature behavior of some ferroelectric crystals.

  9. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  10. Time evolution photoluminescence studies of quantum dot doped ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Tripathi, S.; Deshmukh, A. D.; Haranath, D.; Singh, P.; Biradar, A. M.

    2013-05-01

    Time evolution photoluminescence (PL) studies of ferroelectric liquid crystal (FLC) mixtures doped with different concentrations of ZnS and CdS quantum dots (QDs) are carried out. Remarkable enhancement in the PL intensity and a significant shift in the emission band of FLC materials are observed by doping with a suitable amount of QDs. The modifications in the PL behaviour of the QD/FLC composites are found to depend strongly on time, and also on the QD/FLC mixtures themselves. The enhancement in the PL intensity of the FLC materials is attributed to the additive combination of the emissions from FLCs and QDs and the highly scattering phase of the FLC materials used. The shifting of the emission band and reduction in the PL intensity of the QD/FLC composites could be attributed to the oxidation of QDs. The observed results would be helpful in selecting QD/FLC composites to observe stable and enhanced PL from composites.

  11. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  12. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  13. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC (United States); Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC (United States); Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC (United States); Liang, Qi [Carnegie Inst. for Science, Washington, DC (United States)

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  14. Method of making single crystal fibers

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J. (inventor)

    1990-01-01

    Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.

  15. Resonant ultrasonic spectroscopy of KTa1-xNbxO3 ferroelectric relaxor crystals

    SciTech Connect

    Svitelskiy, O.; Headley, S.; Suslov, A. V.; Migliori, A.; Yong, G.; Boatner, Lynn A

    2008-08-01

    The influence of the development of a ferroelectric state on the elastic properties of KTa1-xNbxO3 relaxor crystals is explored. The high sensitivity of all elements of the elastic stiffness tensor to the polar distortions and their reorientational dynamics is, however, individual for each particular element: c11 and c44 are pimarily influenced by the reorientational motion of these distortions between neighboring (111) directions; the c12 mostly depends on the reorientations between cubic face diagonal (111) directions. Consequently, the temperature behavior of c12 demonstrates different dependence on the Nb concentration than that of c11 and c44. While in the 1.2% Nb crystal all three elastic constants clearly show their softening with the appearance of the dynamic polar distortions; in the 16% crystal this effect is strong for c11 and c44, but negligible for c12. The curves of slowness and Young's modulus within (100) crystallographic plane are presented. The linear compressibility modulus is estimated. The value of the Debye temperature is estimated to be approximately 592 K.

  16. Permissible symmetries of multi-domain configurations in perovskite ferroelectric crystals

    E-print Network

    Cao, Wenwu

    coordinates. These multi-domain crystals show extremely high piezoelectric co- efficient d33 2500p of domain struc- tures. When there is more than one low temperature variant, twinning is unavoidable under Mg1/3Nb2/3)O3 ­PbTiO3 PMN-PT . Such single crystals are poled along a nonpolar but high symmetry axis

  17. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  18. Ferroelectric domain wall motion induced by polarized light

    NASA Astrophysics Data System (ADS)

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-03-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light.

  19. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  20. Monte Carlo simulations of ferroelectric crystal growth and molecular electronic structure of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Suewattana, Malliga

    In this thesis, we explore two stochastic techniques to study properties of materials in realistic systems. Specifically, the kinetic Monte Carlo (KMC) method is utilized to study the crystal growth process of ferroelectric materials and the quantum Monte Carlo (QMC) approach is used to investigate the ground state properties of atoms and molecules. In the growth simulations, we study the growth rates and chemical ordering of ferroelectric alloys using an electrostatic model with long-range Coulomb interactions. Crystal growth is characterized by thermodynamic processes involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algorithm is formulated to simulate this model efficiently in the presence of long-range interactions. The growth process is simulated as a function of temperature, chemical composition, and substrate orientation. We carried out the simulations on two heterovalent binaries, those of the NaCl and the Ba(Mg1/3Nb2/3))O3(BMN) structures. Compared to the simple rocksalt ordered structures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials with tetravalent compositions, such as (1-x)Ba(Mg 1/3Nb2/3))O3 + x BaZrO3 (BMN-BZ), the model does not incorporate tetravalent ions at low-temperature, exhibiting a phase-separated ground state instead. At higher temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the absence of diffusive mechanisms. In the second part of the thesis, we present results from an auxiliary field quantum Monte Carlo (AFQMC) study of ground state properties, in particular dissociation and ionization energy, of second-row atoms and molecules. The method projects the many-body ground state from a trial wavefunction by random walks in the space of Slater determinants. The Hubbard-Stratonovich transformation is employed to decouple the Coulomb interaction between electrons. A trial wave function is used in the approximation to control the "phase problem". We also carry out Hartree-Fock (HF) and Density Functional Theory (DFT) calculations for comparison to AFQMC results and to serve as starting wavefunctions for our AFQMC calculations. Results of dissociation energy are in excellent agreement with experimental values. Ionization energy errors are somewhat larger than those of other methods. We conclude with a discussion of several possible sources of error as well as a direction for the improvement.

  1. Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}

    SciTech Connect

    Kitamura, Naoto; Mizoguchi, Takuma; Itoh, Takanori; Idemoto, Yasushi

    2014-02-15

    In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that the Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.

  2. Improved Equivalent Circuit Model for V-Shaped, Thresholdless Switching Ferroelectric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Meng-yao; Pan, Wei; Luo, Bin; Zhang, Wei-li; Zou, Xi-hua

    2008-05-01

    For V-shaped, thresholdless switching ferroelectric liquid crystals (FLCs), the impedance divider induced by the multilayer structure of FLC cells and the drive circuit play an important role in switching characteristics. In this paper, an equivalent circuit model that can be applied to conventional circuit simulators is proposed for the optical response prediction and drive circuit optimization of V-shaped FLCs. The model is improved from the original model of Moore and Travis; however, the impedance divider is taken into account, and both polar and nonpolar surface anchoring energies are considered to make the model more preferable. The model is then utilized to investigate thresholdless switching characteristics. Simulation results show that the hysteresis inversion frequency fi increases more than one thousand fold with the drive circuit and then decreases with REXT following the relation log fi = -alog REXT + b, and a (b) increases from 0.43 to 0.46 (2.46 to 2.66) as the amplitude of triangular voltage increases from 4 to 10 V, agreeing with experimental results. Also, the same optical transmissions are plotted as different coordinates, as a function of voltage dropping on liquid crystal layer and of drive voltage, and the results show that genuine V-shaped switching is only observed when the transmission is plotted as a function of drive voltage, coinciding with the model suggested by Blinov et al.

  3. Ferroelectric phase transitions and electromechanical properties of barium titanate and lead titanate crystals under uniaxial and shear stresses: a thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Gao, Junjie; Li, Fei; Xu, Zhuo; Zhang, Chonghui; Liu, Yi; Liu, Gaomin; Zhang, Tao; He, Hongliang

    2013-05-01

    Ferroelectric phase transitions and electromechanical properties of BaTiO3 (BT) and PbTiO3 (PT) crystals under uniaxial and shear stresses are investigated using the Landau-Devonshire phenomenological approach. The results show that (1) the Curie temperature of BT and PT crystals increases with increasing stress; (2) at room temperature, no ferroelectric-ferroelectric phase transition is induced by uniaxial stress along the [1?0?0]c direction for the PT crystal, while the orthorhombic phase is the ultimate stable state for BT and PT crystals under uniaxial stress along the [0?0?1]c direction and shear stress; (3) shear stress induces a temperature-independent morphotropic phase boundary in tetragonal phase BT and PT crystals; (4) the dielectric and piezoelectric properties are closely related to the phase transition induced by external stresses, where nonlinearity is observed owing to higher order terms of free energy.

  4. Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed

    2013-12-01

    Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ?111? and ?001? orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ?001?-oriented crystal while such a shift is not observed in the ?111?-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.

  5. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  6. Liquid crystal deposition on poled, single crystalline lithium niobate

    NASA Astrophysics Data System (ADS)

    Bharath, S. C.; Pimputkar, K. R.; Pronschinske, A. M.; Pearl, T. P.

    2008-01-01

    For the purpose of elucidating the mechanisms for molecular organization at poled ferroelectric surfaces, single crystalline lithium niobate (LN), 'Z-cut' along the (0 0 0 1) plane, has been prepared and characterized and subsequently exposed to liquid crystal molecules. As a model system we chose to study the anchoring of 4- n-octyl-4'-cyanobiphenyl (8CB) to LN. Liquid crystalline films are of interest because of their useful electronic and optical properties as well as chemical sensing attributes. Low-energy electron diffraction (LEED), atomic force microscopy (AFM), surface contact angle measurements (CA), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface of lithium niobate as well as the nature of 8CB films grown on the surface. Atomically flat LN surfaces were prepared as a support for monolayer thick, 8CB molecular domains. 8CB liquid crystal molecules were deposited by an ambient vaporization technique and the films were analyzed using XPS and CA. Understanding electrostatic anchoring mechanisms and thin film organization for this molecule on uniformly poled surfaces allows for a fuller appreciation of how molecular deposition of other polarizable molecules on periodically poled and patterned poled lithium niobate surfaces would occur.

  7. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  8. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 ?m to 1.67 ?m for chiral PCF can be realized with moderate chirality strength.

  9. Allowed mesoscopic point group symmetries in domain average engineering of perovskite ferroelectric crystals

    E-print Network

    Cao, Wenwu

    Allowed mesoscopic point group symmetries in domain average engineering of perovskite ferroelectric average engineering in proper ferroelectric systems arising from the cubic Pm3¯m symmetry perovskite­4 Both solid solution systems have a perovskite structure. Poling along one of the pseudocubic axes

  10. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

  11. Domain wall nucleation by impurity ions in KNbO3 single crystals

    NASA Astrophysics Data System (ADS)

    Ingle, S. G.; Dutta, H. S.; David, A. P.

    1988-11-01

    It has been shown theoretically as well as experimentally that microwalls with linear dimensions of the order of 10-6-10-8 m can be nucleated in KNbO3 single crystals under the influence of the electric dc fields applied externally at the sites of the impurity ions. The critical field for nucleation is found to be about 8×103 V m-1. Since such low fields already exist in crystals at the nonferroelectric to ferroelectric phase transition, the mechanism is expected to be operative at that time, and a photographic evidence of it is also obtained. A model has been developed to explain the nucleation. Employing thermodynamic considerations, expressions have been derived for the critical length of the domain wall nucleated, and the activation energy of nucleation, both for 60° and 90° walls. The photomicrographs obtained after applying the dc fields show microwalls nucleated at the impurity sites, with their linear dimensions of the order given by the theory. Many other aspects of the domain wall nucleation have been made clear by the photomicrographs. Particularly, it has been found that the microwalls move after nucleation to lie linearly to reduce the strain energy of the crystal. The microwalls are not pinned at the impurities, and extend themselves so that they meet each other end to end, producing a continuous wall. It is possible to distinquish these microwalls from the microwalls nucleated by the dislocation loops. The expression for the activation energy of nucleation is also verified experimentally. It is suggested that the mechanism of domain wall nucleation can occur in other ferroelectric crystals also, and shown that the memory of domain walls, commonly observed in ferroelectrics, can be readily attributed to the impurity ions present in the crystals, and the phenomenon of domain wall nucleation operative at their sites.

  12. Growth of high-quality hexagonal ErMnO3 single crystals by the pressurized floating-zone method

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Meier, D.; Schaab, J.; Ramesh, R.; Samulon, E.; Bourret, E.

    2015-01-01

    Hexagonal manganites are among the most intensively studied multiferroics, exhibit unusual geometrically driven ferroelectricity and magnetoelectric couplings, and form domains and domain walls with intriguing functional properties. In order to study these electronic correlation phenomena and develop a comprehensive understanding about the underlying physics, the availability of high-quality single-crystals is crucial. In particular, different members of the RMnO3 (R=Sc, Y, In, Dy to Lu) family require different growth condition in order to achieve stoichiometric single-phase crystals. Here, we report on the growth of high-quality ErMnO3 single crystals with dimensions of 5 mm in diameter and up to 60 mm in length using the pressurized floating-zone technique. We present Laue diffraction, piezoresponse force microscopy, and conductive atomic force microscopy data, reflecting the quality of our single crystals regarding the structure, as well as electronic properties on the level of domains and domain walls.

  13. Oxygen incorporation in rubrene single crystals.

    PubMed

    Mastrogiovanni, Daniel D T; Mayer, Jeff; Wan, Alan S; Vishnyakov, Aleksey; Neimark, Alexander V; Podzorov, Vitaly; Feldman, Leonard C; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  14. Oxygen Incorporation in Rubrene Single Crystals

    NASA Astrophysics Data System (ADS)

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-05-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed.

  15. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  16. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  17. Ferroelectric domain formation in discotic liquid crystals : Monte Carlo study on the influence of boundary conditions

    E-print Network

    Tushar Kanti Bose; Jayashree Saha

    2015-03-06

    The realization of a spontaneous macroscopic ferroelectric order in fluids of anisotropic mesogens is a topic of both fundamental and technological interest. Recently, we demonstrated that a system of dipolar achiral disklike ellipsoids can exhibit long-searched ferroelectric liquid crystalline phases of dipolar origin. In the present work, extensive off-lattice Monte Carlo simulations are used to investigate the phase behavior of the system under the influences of the electrostatic boundary conditions that restrict any global polarization. We find that the system develops strongly ferroelectric slablike domains periodically arranged in an antiferroelectric fashion. Exploring the phase behavior at different dipole strengths, we find existence of the ferroelectric nematic and ferroelectric columnar order inside the domains. For higher dipole strengths, a biaxial phase is also obtained with a similar periodic array of ferroelectric slabs of antiparallel polarizations. We have studied the depolarizing effects by using both the Ewald summation and the spherical cut-off techniques. We present and compare the results of the two different approaches of considering the depolarizing effects in this anisotropic system. It is explicitly shown that the domain size increases with the system size as a result of considering longer range of dipolar interactions. The system exhibits pronounced system size effects for stronger dipolar interactions. The results provide strong evidence to the novel understanding that the dipolar interactions are indeed sufficient to produce long range ferroelectric order in anisotropic fluids.

  18. Ferroelectric domain formation in discotic liquid crystals: Monte Carlo study on the influence of boundary conditions

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2015-10-01

    The realization of a spontaneous macroscopic ferroelectric order in fluids of anisotropic mesogens is a topic of both fundamental and technological interest. Recently we demonstrated that a system of dipolar achiral disklike ellipsoids can exhibit long-searched ferroelectric liquid crystalline phases of dipolar origin. In the present work, extensive off-lattice Monte Carlo simulations are used to investigate the phase behavior of the system under the influences of the electrostatic boundary conditions that restrict any global polarization. We find that the system develops strongly ferroelectric slablike domains periodically arranged in an antiferroelectric fashion. Exploring the phase behavior at different dipole strengths, we find existence of the ferroelectric nematic and ferroelectric columnar order inside the domains. For higher dipole strengths, a biaxial phase is also obtained with a similar periodic array of ferroelectric slabs of antiparallel polarizations. We have studied the depolarizing effects by using both the Ewald summation and the spherical cutoff techniques. We present and compare the results of the two different approaches of considering the depolarizing effects in this anisotropic system. It is explicitly shown that the domain size increases with the system size as a result of considering a longer range of dipolar interactions. The system exhibits pronounced system size effects for stronger dipolar interactions. The results provide strong evidence to the novel understanding that the dipolar interactions are indeed sufficient to produce long-range ferroelectric order in anisotropic fluids.

  19. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  20. First Single-Crystal Mullite Fibers

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Ceramic-matrix composites strengthened by suitable fiber additions are being developed for high-temperature use, particularly for aerospace applications. New oxide-based fibers, such as mullite, are particularly desirable because of their resistance to high-temperature oxidative environments. Mullite is a candidate material in both fiber and matrix form. The primary objective of this work was to determine the growth characteristics of single-crystal mullite fibers produced by the laser-heated floating zone method. Directionally solidified fibers with nominal mullite compositions of 3Al2O3 2SiO2 were grown by the laser-heated floating zone method at the NASA Lewis Research Center. SEM analysis revealed that the single-crystal fibers grown in this study were strongly faceted and that the facets act as critical flaws, limiting fiber strength. The average fiber tensile strength is 1.15 GPa at room temperature. The mullite fibers exhibit superior strength retention (80 percent of their room temperature tensile strength at 1450 C). Examined by transmission electron microscopy, these mullite single crystals are free of dislocations, low-angle boundaries, and voids. In addition, they show a high degree of oxygen vacancy ordering. High-resolution digital images from an optical microscope furnish evidence of the formation of a liquid-liquid miscibility gap during crystal growth. These images represent the first experimental evidence of liquid immiscibility for these compositions and temperatures. Continuing investigation with controlled seeding of mullite single crystals is planned.

  1. Molecular ferroelectrics: where electronics meet biology

    PubMed Central

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also noted. PMID:24018952

  2. Surface acoustic wave propagation properties in 0.67Pb,,Mg1/3Nb2/3...O3-0.33PbTiO3 single crystal

    E-print Network

    Cao, Wenwu

    Surface acoustic wave propagation properties in 0.67Pb,,Mg1/3Nb2/3...O3-0.33PbTiO3 single crystal%PT ferroelectric single crystals poled along 111 c has been analyzed theoretically. We found 5° canted from 111 c is the optimum direction for the X-cut 111 c poled crystals in SAW device

  3. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Pokorný, J.; Rafalovskyi, I.; Gregora, I.; Borodavka, F.; Savinov, M.; Drahokoupil, J.; Tyunina, M.; Kocourek, T.; Jelinek, M.; Bing, Y.; Ye, Z.-G.; Hlinka, J.

    2015-06-01

    This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN) single crystals and epitaxially compressed thin films grown on (100)-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  4. Charge transport in single crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form high-quality single crystals and exhibit large ambipolar mobilities. Nevertheless, a gap remains between the theory-predicted properties and this preliminary result, which itself is another fundamental challenge. This is further addressed by appropriate device optimization, and in particular, contact engineering approach to improve the charge injection efficiencies. The outcome is not only the achievement of new record ambipolar mobilities in one of the derivatives, namely, 4.8 cm2V-1s-1 for holes and 4.2 cm2V-1s-1 for electrons, but also provides a comprehensive and rational pathway towards the realization of high-performance organic semiconductors. Efforts to achieve high mobility in other organic single crystals are also presented. The second challenge is tuning the transition of electronic ground states, i.e., semiconducting, metallic and superconducting, in organic single crystals. Despite an active research area since four decades ago, we aim to employ the electrostatic approach instead of chemical doping for reversible and systematic control of charge densities within the same crystal. The key material in this study is the high-capacitance electrolyte, such as ionic liquids (ILs), whose specific capacitance reaches ~ ?F/cm2, thus allowing accumulation of charge carrier above 1013 cm-2 when novel transport phenomena, such as insulator-metal transition and superconductivity, are likely to occur. This thesis addresses the electrical characterization, device physics and transport physics in electrolyte-gated single crystals, in the device architecture known as the electrical double layer transistor (EDLT). A detailed characterization scheme is first demonstrated for accurate determination of several key parameters, e.g., carrier mobility and charge density, in organic EDLTs. Further studies, combining both experiments and theories, are devoted to understanding the unusual charge density dependent channel conductivity and gate-to-channel capacitance behaviors. In addition, Hall effect and temperature-dependent measurements are employed for more in-depth unders

  5. Microhardness studies of sulfamic acid single crystal

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  6. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  7. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate

    E-print Network

    Gopalan, Venkatraman

    niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization focused on the phenomena of antiparallel 180° ferroelectric domains in ferroelectrics, lithium niobate Li

  8. Crystal structure and morphology of syndiotactic polypropylene single crystals

    SciTech Connect

    Bu, J.Z.; Cheng, S.Z.D.

    1996-12-31

    In the past several years there have been an increased interest in the crystal structure and morphology of s-PP due to the new development of homogeneous metallocene catalysts which can produce s-PP having a high stereoregularity. In this research, the crystal structure and morphology of s-PP single crystals grown from the melt were investigated. A series of ten fractions of s-PP was studied with different molecular weights ranging from 10,300 to 234,000 (g/mol). These fractions all possess narrow molecular weight distributions (around 1.1-1.2) and high syndiotacticities ([r]{approximately}95%). The main techniques employed including transmission electron microscopy (TEM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS).

  9. Lightweight optical mirrors formed in single crystal substrate

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2006-01-01

    This invention is directed to a process for manufacturing a lightweight mirror from a single crystal material, such as single crystal silicon. As a near perfect single crystal material, single crystal silicon has much lower internal stress than a conventional material. This means much less distortion of the optical surface during the light weighting process. After being ground and polished, a single crystal silicon mirror is light weighted by removing material from the back side using ultrasonic machining. After the light weighting process, the single crystal silicon mirror may be used as-is or further figured by conventional polishing or ion milling, depending on the application and the operating wavelength.

  10. Domains in Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device, the need to fully understand how size and morphology affect domain behaviour in small scale ferroelectrics is obvious. In this talk, observations from a programme of study examining domains in meso and nano-scale BaTiO3 shapes, that have been cut directly from bulk single crystal using focused ion beam milling, will be presented. In general, the equilibrium static domain configurations that occur appear to be the result of a simultaneous desire to minimize both the macroscopic strain and depolarizing fields developed on cooling through the Curie Temperature. While such governing factors might be obvious, the specific patterns that result as a function of morphology are often non-intuitive, and a series of images of domains in nanodots, rods and wires will be presented and rationalised. In addition, the nature in which morphological factors influence domain dynamics during switching will be discussed, with particular focus on axial switching in nanowires, and the manner in which local surface perturbations (such as notches and antinotches) affect domain wall propagation. In collaboration with Alina Schilling, Li-Wu Chang, Mark McMillen, Raymond McQuaid, and Leo McGilly, Queen's University Belfast; Gustau Catalan, Universitat Autonoma de Barcelona; and James Scott, University of Cambridge.

  11. Transverse acoustic actuation of Ni-Mn-Ga single crystals

    E-print Network

    Simon, Jesse Matthew

    2007-01-01

    Two methods for the transverse acoustic actuation of {110}-cut Ni-Mn-Ga single crystals are discussed. In this actuation mode, crystals are used that have the {110}- type twinning planes parallel to the base of the crystal. ...

  12. Laser-induced breakdown and damage generation by nonlinear frequency conversion in ferroelectric crystals: Experiment and theory

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Hatano, Hideki; Kitamura, Kenji

    2013-11-28

    Using our experimental data for ns pulsed second harmonic generation (SHG) by periodically poled stoichiometric LiTaO{sub 3} (PPSLT) crystals, we consider in detail the mechanism underlying laser-induced damage in ferroelectric crystals. This mechanism involves generation and heating of free electrons, providing an effective kinetic pathway for electric breakdown and crystal damage in ns pulsed operation via combined two-photon absorption (TPA) and induced pyroelectric field. In particular, a temperature increase in the lattice of ?1 K induced initially by ns SHG and TPA at the rear of operating PPSLT crystal is found to induce a gradient of spontaneous polarization generating a pyroelectric field of ?10 kV/cm, accelerating free electrons generated by TPA to an energy of ?10 eV, followed by impact ionization and crystal damage. Under the damage threshold for ns operation, the impact ionization does not lead to the avalanche-like increase of free electron density, in contrast to the case of shorter ps and fs pulses. However, the total number of collisions by free electrons, ?10{sup 18} cm{sup ?3} (generated during the pulse and accelerated to the energy of ?10 eV), can produce widespread structural defects, which by entrapping electrons dramatically increase linear absorption for both harmonics in subsequent pulses, creating a positive feedback for crystal lattice heating, pyroelectric field and crystal damage. Under pulse repetition, defect generation starting from the rear of the crystal can propagate towards its center and front side producing damage tracks along the laser beam and stopping SHG. Theoretical analysis leads to numerical estimates and analytical approximation for the threshold laser fluence for onset of this damage mechanism, which agree well with our (i) experiments for the input 1064 nm radiation in 6.8 kHz pulsed SHG by PPSLT crystal, (ii) pulsed low frequency 532 nm radiation transmission experiments, and also (iii) with the data published for other nonlinear crystals and operated wavelengths.

  13. Low-loss crystal-ion-sliced single-crystal potassium tantalate films T. Izuharaa)

    E-print Network

    Reeves, Mark E.

    Low-loss crystal-ion-sliced single-crystal potassium tantalate films T. Izuharaa) and R. M. Osgood-crystal potassium tantalate films formed by crystal ion slicing. Scanning microwave microscopy shows of single-crystal potassium tantalate (KTaO3) allows its permittivity to be easily tuned with an external

  14. Shock Hugoniot of Single Crystal Copper

    SciTech Connect

    Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

    2009-08-28

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  15. The Creep of Single Crystals of Aluminum

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Shober, F R; Schwope, A D

    1953-01-01

    The creep of single crystals of high-purity aluminum was investigated in the range of temperatures from room temperature to 400 F and at resolved-shear-stress levels of 200, 300, and 400 psi. The tests were designed in an attempt to produce data regarding the relation between the rate of strain and the mechanism of deformation. The creep data are analyzed in terms of shear strain rate and the results are discussed with regard to existing creep theories. Stress-strain curves were determined for the crystals in tinsel and constant-load-rate tests in the same temperature range to supplement the study of plastic deformation by creep with information regarding the part played by crystal orientation, differences in strain markings, and other variables in plastic deformation.

  16. Single-crystal gallium nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-01

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an `epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200nm and wall thicknesses of 5-50nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  17. Laser-induced nondestructive patterning of a thin ferroelectric polymer film with controlled crystals using Ge8Sb2Te11 alloy layer for nonvolatile memory.

    PubMed

    Bae, Insung; Kim, Richard Hahnkee; Hwang, Sun Kak; Kang, Seok Ju; Park, Cheolmin

    2014-09-10

    We present a simple but robust nondestructive process for fabricating micropatterns of thin ferroelectric polymer films with controlled crystals. Our method is based on utilization of localized heat arising from thin Ge(8)Sb(2)Te(11) (GST) alloy layer upon exposure of 650 nm laser. The heat was generated on GST layer within a few hundred of nanosecond exposure and subsequently transferred to a thin poly(vinylidene fluoride-co-trifluoroethylene) film deposited on GST layer. By controlling exposure time and power of the scanned laser, ferroelectric patterns of one or two microns in size are fabricated with various shape. In the micropatterned regions, ferroelectric polymer crystals were efficiently controlled in both degree of the crystallinity and the molecular orientations. Nonvolatile memory devices with laser scanned ferroelectric polymer layers exhibited excellent device performance of large remnant polarization, ON/OFF current ratio and data retention. The results are comparable with devices containing ferroelectric films thermally annealed at least for 2 h, making our process extremely efficient for saving time. Furthermore, our approach can be conveniently combined with a number of other functional organic materials for the future electronic applications. PMID:25127181

  18. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. PMID:26249568

  19. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  20. Ionic diffusion in single crystals of vermiculite

    SciTech Connect

    Maraqah, H.R.

    1993-01-01

    Novel guest-host compounds, based on single crystal vermiculite, were synthesized by diffusive techniques through a new hydrogen vermiculite. Single crystals were chosen because of the ease of characterization. An investigation of the ion transport properties of these single crystals was done to determine the mechanism of conductivity including the predominant charge carrier. Measurements of the ionic conductivity using impedance spectroscopy and X-ray lattice parameters of the ion-exchanged samples strongly suggest that the native cations and not protons are the major current carriers. Single crystals of hydrogen vermiculite were synthesized at room temperature by ion exchange from sodium-vermiculite using 1 molar acetic acid for a one week. Subsequent ion exchange with other cations was found to be much enhanced. Thus transition metals were exchanged in about a week in contrast to the need of several months using previous methods. The ionic conductivity of hydrogen vermiculite was measured and shown to be much lower than that of many other monovalent cations in the same host lattice. Its enthalpy of motion is also much lower. These marked differences suggest that protonic species do not play a significant role in charge transport in these layered materials. These materials were characterized by x-ray powder diffraction, thermogravimetric analysis and acid-base titration. Hydrogen-vermiculite was found to react with organic bases, like methylamine, ethylamine, n-butylamine, n-hexylamine, n-octylamine, n-decylamine, aniline, acrylamide, methacrylaminde, urea, 1,10phenanthroline, and 1,1phenanthroline ferrous sulfate complex, to undergo ion exchange with metal cations like sodium, zinc, copper(II) ions and polymerization reactions could be performed in the galleries of the structure like pyrrole and aniline. Its behavior was compared with that of powdered montmorillonite.

  1. Single crystal diamond detector for radiotherapy

    NASA Astrophysics Data System (ADS)

    Schirru, F.; Kisielewicz, K.; Nowak, T.; Marczewska, B.

    2010-07-01

    The new generation of synthetic diamonds grown as a CVD single crystal on a high pressure high temperature substrate offers a wide range of applications. In particular, because of the near tissue equivalence and its small size (good spatial resolution), CVD single crystal diamond finds applicability in radiotherapy as a dosemeter of ionizing radiation. In this paper we report the electrical and dosimetric properties of a new diamond detector which was fabricated at IFJ based on a single crystal detector-grade CVD diamond provided with a novel contact metallization. Diamond properties were assessed at IFJ using a Theratron 680E therapeutic 60Co gamma rays unit and at COOK with 6 and 18 MV x-rays Varian Clinac CL2300 C/D accelerator. The new dosemeter showed high electric and dosimetric performances: low value of dark current, high current at the level of some nanoamperes during irradiation, very fast dynamic response with a rise time amounting to parts of a second, good stability and repeatability of the current and linearity of the detector signal at different dose and dose rate levels typically applied in radiotherapy. The results confirm the potential applicability of diamond material as a dosemeter for applications in radiotherapy.

  2. Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free (KNa)NbO single crystal

    NASA Astrophysics Data System (ADS)

    Lin, Dabin; Li, Zhenrong; Zhang, Shujun; Xu, Zhuo; Yao, Xi

    2009-10-01

    (K 0.5Na 0.5)NbO 3 (KNN) single crystals were grown using a high temperature flux method. The dielectric permittivity was measured as a function of temperature for [001]-oriented KNN single crystals. The ferroelectric phase transition temperatures, including the rhombohedral-orthorhombic T, orthorhombic-tetragonal T and tetragonal-cubic TC were found to be located at -149 ?C, 205 ?C and 393 ?C, respectively. The domain structure evolution with an increasing temperature in [001]-oriented KNN single crystal was observed using polarized light microscopy (PLM), where three distinguished changes of the domain structures were found to occur at -150 ?C, 213 ?C and 400 ?C, corresponding to the three phase transition temperatures.

  3. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  4. Sponge-like nanoporous single crystals of gold

    NASA Astrophysics Data System (ADS)

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  5. Influence of crystallization on the spectral features of nano-sized ferroelectric barium strontium titanate (Ba 0.7Sr 0.3Tio 3) thin films

    NASA Astrophysics Data System (ADS)

    Bobby Singh, S.; Sharma, H. B.; Sarma, H. N. K.; Phanjoubam, Sumitra

    2008-08-01

    Ferroelectric barium strontium titanate (Ba 0.7Sr 0.3TiO 3)(BST) thin films have been prepared from barium 2-ethylhexanoate [Ba[CH 3(CH 2) 3CH(C 2H 5)CO 2] 2] , strontium 2-ethylhexanoate [Sr[CH 3(CH 2) 3CH(C 2H 5)CO 2] 2] and titanium(IV) isopropoxide [TiOCH(CH 3) 2] 4 precursors using a modified sol-gel technique. The precursor except [TiOCH(CH 3) 2] 4 were synthesized in the laboratory. Transparent and crack-free films were fabricated on pre-cleaned quartz substrates by spin coating. The structural and optical properties of films annealed at different temperatures have been investigated. The as-fired films were found to be amorphous that crystallized to the tetragonal phase after annealing at 550 °C for 1 h in air. The lattice constants “ a” and “ c” were found to be 3.974 A and 3.990 A, respectively. The grain sizes of the films annealed at 450, 500 and 550 °C were found to be 30.8, 36.0 and 39.8 nm respectively. The amorphous film showed very high transparency (?95%), which decreases slightly after crystallization (?90%). The band gap and refractive index of the amorphous and crystalline films were estimated. The optical dispersion data are also analyzed in the light of the single oscillator model and are discussed.

  6. Growth and dielectric parameters of DGS single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Vimal; Vyas, S. M.; Patel, Piyush; Jani, M. P.; Pavagadhi, Himanshu

    2015-08-01

    Anhydrous Diglycine sulfate single crystals have been grown from the aqueous solutions, which is made from the glycerin and sulfuric acid at room temperature with pH values. This grown crystal now used to study some optical and dielectric properties. i.e. refractive index, density, molar refraction, Polarizability and Molar Polarization. These all parameter provides information about the DGS single crystals, which is used in various processes of dielectric presentation of DGS single crystals.

  7. Structural origin for the change of the order of ferroelectric phase transition in triglycine sulfate/selenate systems

    NASA Astrophysics Data System (ADS)

    Choudhury, Rajul Ranjan; Chitra, R.

    2009-08-01

    Crystal structures of triglycine selenate (TGSe) and triglycine sulfate (TGS) obtained from single crystal neutron diffraction are compared. The double well single cell local potential experienced by the non-planar amino group of one of the three glycine ions (GI) of these two isostructural crystals is obtained using their crystal structure. It is suggested that the change in the nature of the ferroelectric phase transition as one goes from TGS to TGSe is due to the increase in the zero point energy resulting due to the change in the shape and height of the double well local potential of these crystals. Substitution of a selenate ion (SeO42-) in TGSe by a sulfate ion (SO42-) is considered as a source of an effective chemical pressure that can be utilized to tune the ferroelectric phase boundary in these crystals. The influence of alanine substitution on the ferroelectric phase transition in these crystals is investigated using differential scanning calorimetry.

  8. Single crystal to single crystal polymerization of a columnar assembled diacetylene macrocycle

    NASA Astrophysics Data System (ADS)

    Xu, Weiwei

    Organic tubular materials have attracted lots of attentions for their potential applications as nanoscale fluidic transport systems, specific ion sensors, molecular sieves and confined molecular reaction containers. While conjugated polymers, due to delocalized Pi electrons, exhibit interesting solar cells and sensors applications. In this thesis, we developed a conjugated polymer which combines the attributes of conjugated polymers with tubular materials, which should have great potential to work as a sensing material. We reproduced and scaled-up the synthesis of a polymerizable macrocycle 1 that contains two rigidly separated diacetylene units. We found that, through hydrogen bonding, 1 can assemble into columnar crystals and can be polymerized under a single crystal to single crystal transformation process to afford porous polydiacetylene (PDA) crystals. We studied the assembly of the macrocycles 1 under different conditions to give three different crystalline forms and micro-phase crystals, and also investigated their subsequent polymerizations. The macrocycle assembly and polymerized materials were characterized by a variety of technique. Since the gas adsorption measurement exhibited PDA crystals still retained its porosity and the polymer should have ability to uptake suitable guest molecules, therefore the absorption of iodine for PDA crystals was investigated as well.

  9. ?-Lead tellurite from single-crystal data

    PubMed Central

    Zavodnik, Valery E.; Ivanov, Sergey A.; Stash, Adam I.

    2008-01-01

    The crystal structure of the title compound, ?-PbTeO3 (PTO), has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128–130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c) structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbOx] polyhedra (x = 7 and 9) which share their O atoms with TeO3 pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb2+ and Te4+ cations. PMID:21201834

  10. ?-Lead tellurite from single-crystal data.

    PubMed

    Zavodnik, Valery E; Ivanov, Sergey A; Stash, Adam I

    2008-01-01

    The crystal structure of the title compound, ?-PbTeO(3) (PTO), has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128-130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c) structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbO(x)] polyhedra (x = 7 and 9) which share their O atoms with TeO(3) pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb(2+) and Te(4+) cations. PMID:21201834

  11. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and deserves more attention in the near future. Following that, recent efforts in fabricating large single-crystal monolayer graphene on other metal substrates, including Ni, Pt, and Ru, are also described. The differences in growth conditions reveal different growth mechanisms on these metals. Another key challenge for graphene growth is to make graphene single crystals on insulating substrates, such as h-BN, SiO2, and ceramic. The recently developed plasma-enhanced CVD method can be used to directly synthesize graphene single crystals on h-BN substrates and is described in this Account as well. To summarize, recent research in synthesizing millimeter-sized monolayer graphene grains with different pretreatments, graphene grain shapes, metal catalysts, and substrates is reviewed. Although great advancements have been achieved in CVD synthesis of graphene single crystals, potential challenges still exist, such as the growth of wafer-sized graphene single crystals to further facilitate the fabrication of graphene-based devices, as well as a deeper understanding of graphene growth mechanisms and growth dynamics in order to make graphene grains with precisely controlled thicknesses and spatial structures. PMID:24527957

  12. Exfoliation of graphene oxide and its application in improving the electro-optical response of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Kumar, Veeresh; Kumar, Ajay; Bhandari, Shruti; Biradar, A. M.; Reddy, G. B.; Pasricha, Renu

    2015-09-01

    Near complete exfoliation and reduction of lyophilized graphene oxide (GO) has been carried out at temperature as low as 400 °C. The structural characterizations of the reduced GO have been performed using X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy techniques. The morphological studies were carried out using scanning electron microscopy. The synthesized GO finds an application in improving the switching performance of a liquid crystal (LC) mixture by remarkably modifying the physical properties, such as spontaneous polarization and rotational viscosity of the ferroelectric LC (FLC) material which in turn resulted into faster response of the FLC. The present study explores the possibility of low temperature thermal reduction of GO along with its application in improving the properties of LC based display systems.

  13. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  14. 2D superconductivity in single crystals of LSCO

    E-print Network

    Keren, Amit

    /h), rotation of the feed rod and crystal ·Growing atmosphere It appears that LSCO grows with it's c2D superconductivity in single crystals of LSCO DrachuckGil Amit Keren Colaborators: Galina this unintentionally while measuring magnetization of single crystal of LSCO with different orientations. #12;Traveling

  15. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  16. Biaxial constitutive equation development for single crystals

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    Current gas turbine engines utilize large single crystal superalloy components in the hot section. Structural analysis of these components requires a valid stress strain temperature constitutive equation. The goal of the program described is to create one or more models and verify these models. A constitutive equation based on an assumed slip behavior of a single slip system was formulated, programmed, and debugged. Specifically, the basic theory for a model based on aggravating slip behavior on individual slip systems was formulated and programmed and some simulations were run using assumed values of constants. In addition, a formulation allowing strain controlled simulations was completed. An approach to structural analysis of the specimen was developed. This approach uses long tube consistancy conditions and finite elements specially formulated to take advantage of the symmetry of 100 oriented specimens.

  17. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15?Å in diameter, within 1?h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  18. Electric field induced phase transition and domain structure evolution in (Pb, La)(Zr, Sn, Ti)O3 single crystal

    NASA Astrophysics Data System (ADS)

    Gao, Jinghan; Li, Qiang; Li, Yuanyuan; Zhuo, Fangping; Yan, Qingfeng; Cao, Wenwu; Xi, Xiaoqing; Zhang, Yiling; Chu, Xiangcheng

    2015-08-01

    Antiferroelectric (Pb, La)(Zr, Sn, Ti)O3 (PLZST) single crystals with composition in the vicinity of morphotropic phase boundary have been grown and studied. From electric measurements, Raman study, and observation of domain structures, we found an electric field induced antiferroelectric to ferroelectric phase transition accompanied with fifteen times of strain difference. After this phase transition, the metastable ferroelectric phase (FEin) is preserved with soften of A1(TO1) mode and increase of long-range force. Coexistence of tetragonal (T) and rhombohedral (R) domains has been observed in virgin sample. Electric field induced T to R phase transition is verified by both extinction angle and domain morphology changes. Clamping "polar" structure formed by the embedded R phase would contribute to increase of long-range force. The remarkable strain difference accompany with induced phase transition makes the PLZST single crystal a promising candidate for electric switch and actuator applications.

  19. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  20. Constitutive modeling for single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Jayaraman, N.; Sheh, M.; Alden, D.

    1986-01-01

    The inelastic response of single crystal gamma/gamma prime superalloys is quite different from the behavior of polycrystalline nickel base superalloys. Upto a critical temperature the yield stress of single crystal alloys is a function of the material orientation relative to the direction of the applied stress and the material exhibits significant tension/compression asymmetry. This behavior is primarily due to slip on the octahedral slip system. Above the critical temperature there is a sharp drop in the yield stress, cube slip becomes more predominant and the tension/compression asymmetry is reduced. Similar orientation and tension/compression asymmetry is observed in creep and secondary creep above the critical temperature is inferred to occur by octahedral slip. There are two exceptions to this behavior. First, loading near the (111) orientation exhibits cube slip at all temperatures, and; second, loading near the (001) orientation produces only octahedral slip at all temperatures. The constitutive model is based on separating the total global strain into elastic and inelastic components. This model is developed and briefly discussed.

  1. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  2. CHIN. PHYS. LETT. Vol. 29, No. 2 (2012) 024302 Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single

    E-print Network

    Cao, Wenwu

    2012-01-01

    /2/024302 In recent years, perovskite relaxorbased ferroelec- tric single crystal (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN the morphotropic phase boundary (MPB, x 0.09) composition, PZN-xPT single crystals pos- sess superior dielectric

  3. Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Li, Patrick; Adireddy, Shiva; Chrisey, Douglas B.

    2015-09-01

    Polycrystalline La-doped BaTiO3 (Ba(1-x)Lax TiO3) [x=0,0.0005,0.001,0.003] ceramics (denoted as BTO,BLT1,BLT2,BLT3) were synthesized by conventional solid-state reaction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. XRD and Raman spectra revealed single-phase tetragonal perovskite crystalline structure. Well-saturated polarization-electric field (P-E) hysteresis loops were observed with the measurement frequency of 50 Hz at room temperature and confirmed ferroelectric nature of these ceramics and a high recoverable electrical energy storage density of 0.350 J/cm3 with energy efficiency (n)˜9%, which is useful in energy storage capacitor applications. Dielectric studies revealed anomalies around 415-420 K and near the Curie temperature. The latter is attributed to the ferroelectric to paraelectric phase transition. Better dielectric performances were obtained for La-doped samples sintered at 1350°C for 4 h. Grain growth is inhibited with lanthanum (La) incorporation into the BTO lattice. Room temperature semiconducting behavior with positive temperature coefficient of resistivity (PTCR) behavior at TC is attributed to electron compensation mechanism.

  4. Stabilization of metastable ferroelectric Ba1?xCaxTi2O5 by breaking Ca-site selectivity via crystallization from glass

    PubMed Central

    Masuno, Atsunobu; Moriyoshi, Chikako; Mizoguchi, Teruyasu; Okajima, Toshihiro; Kuroiwa, Yoshihiro; Arai, Yasutomo; Yu, Jianding; Inoue, Hiroyuki; Watanabe, Yasuhiro

    2013-01-01

    The thermal stability and dielectric and structural properties of ferroelectric Ba1?xCaxTi2O5 (0 ? x ? 0.30) prepared by crystallization from glass are investigated. The Ba1?xCaxTi2O5 compounds with x < 0.10 are thermally stable phases, while those with x ? 0.10 are metastable phases. The ferroelectric transition temperature drastically decreases from 470 to 220°C with increasing x. Crystal structure analyses reveal that one of two possible Ba sites is occupied by Ca in the stable phase region, while Ca-site selectivity is broken in the metastable phase region. The Ca-site selectivity introduces local distortion and makes the crystal lattice unstable. However, the local distortion is suppressed by the occupancy of Ca into both Ba sites. Accordingly, the metastable ferroelectric phase can be obtained beyond the substitution limit of Ca by crystallization from the glassy state. The stabilization mechanism provides possible wide control of the functionality of materials by expanding the composition range. PMID:24145958

  5. Exchange coupling with the multiferroic compound BiFeO3 in antiferromagnetic multidomain films and single-domain crystals

    NASA Astrophysics Data System (ADS)

    Lebeugle, D.; Mougin, A.; Viret, M.; Colson, D.; Allibe, J.; Béa, H.; Jacquet, E.; Deranlot, C.; Bibes, M.; Barthélémy, A.

    2010-04-01

    The exchange coupling observed between a soft ferromagnetic layer and the antiferromagnetic multiferroic compound BiFeO3 (BFO) is investigated. Results obtained on BFO ferroelectric and antiferromagnetic multidomain films and monodomain single crystals are compared. A significant interface coupling occurs in the two systems whose anisotropy however differs significantly. In thin film based heterostructures, the measured twofold anisotropy of the FM layer imposed by the magnetic field during deposition is well accounted for using a double macrospin model describing the role of uncompensated spins, pinned or reversible, in the vicinity of the interface. In contrast, no macroscopic bias is observed in thin films deposited on BFO single crystals where the anisotropy direction is imposed by the underlying antiferromagnetic structure. This highlights the fundamental difference between exchange coupling with a single domain antiferromagnet and with a much more magnetically disordered multidomain state.

  6. Growing single crystals in silica gel

    NASA Technical Reports Server (NTRS)

    Rubin, B.

    1970-01-01

    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

  7. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.

  8. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J. (Washington, DC); Mao, Ho-kwang (Washington, DC); Yan, Chih-shiue (Washington, DC)

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  9. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high. PMID:24694217

  10. Near Surface Structure of Organic Semiconductor Tetracene Single Crystal

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yusuke; Morisaki, Hazuki; Kimura, Tsuyoshi; Miwa, Kazumoto; Koretsune, Takashi; Takeya, Jun

    2014-03-01

    Electric conduction in organic crystals is highly anisotropic because of the anisotropic molecular orbitals. Crystal structure governs the transfer through the overlap integral among the highest occupied (or lowest unoccupied) molecular orbitals. In case of organic devices, the place where electrons conduct is the interface. Therefore, the surface structure of organic single crystals is relevant. Surface relaxation of the structure of rubrene single crystal was firstly observed by means of surface x-ray diffraction a few years ago. This time we performed similar measurement on tetracene single crystal, whose molecular shape has large similarity with rubrene while the crystal structure is very different. Tetracene single crystal was grown by the physical vapor transport method, and the surface x-ray diffraction experiments were performed at BL-3A and 4C of the Photon Factory, KEK, Japan. Obtained electron density profile shows a large structural deformation at the surface layer of tetracene.

  11. Constitutive modeling for single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald C.; Dame, L. Thomas; Jayaraman, N.

    1985-01-01

    A crystallographic approach to constitutive modeling of single crystal superalloys is discussed. The approach is based on identifying the active slip planes and slip directions. The shear stresses are computed on each of the slip planes from applied stress components. The slip rate is then computed on each slip system and the microscopic inelastic strain rates are the sum of the slip in the individual slip systems. The constitutive model was implemented in a finite element code using twenty noted isoparametric solid elements. Constants were determined for octahedral and cube slip systems. These constants were then used to predict tension-compression asymmetry and fatigue loops. Other data was used to model the tensile and creep response.

  12. Low-cobalt single crystal Rene 150

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.

    1982-01-01

    The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

  13. Single-crystal superalloy drives turbine advances

    SciTech Connect

    Harris, K.

    1995-04-01

    In searching for ways to improve power-to-weight ratios and fuel efficiency, gas turbine engine manufacturers invest heavily in the development and testing of new alloys. Their goal is to find turbine airfoil materials that can handle the higher operating temperatures, increased component stresses, and faster rotational speeds that are needed to increase turbine performance. Major turbine engine manufacturers find they can achieve these objectives through ultra-high performance, single-crystal superalloys -- a group of nickel-base materials that exhibit outstanding strength and surface stability at temperatures up to 85{percent} of their melting points. One such superalloy is CMSX-4, co-engineered by ingot maker Cannon-Muskegon and turbine engine manufacturers Rolls-Royce and Allison Engine Company. It is currently being used in such applications as Allison`s advanced airfoil programs.

  14. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  15. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  16. Single-crystal AlN nanonecklaces

    NASA Astrophysics Data System (ADS)

    Wang, Huatao; Xie, Zhipeng; Wang, Yiguang; Yang, Weiyou; Zeng, Qingfeng; Xing, Feng; An, Linan

    2009-01-01

    Distinct single-crystal aluminum nitride nanonecklaces with uniform \\{10\\bar {1}1\\} faceted beads are synthesized via catalyst-assisted nitriding of Al. The detailed morphology and structure of the nanonecklaces have been characterized. The growth process has been investigated by comparing the products obtained at different synthesis times. The results reveal that the formation of the nanonecklaces is via a process consisting of facet formation and bead unification. The formation of the \\{10\\bar {1}1\\} facets is due to the presence of a liquid phase that lowers the surface tension of otherwise high-energy \\{10\\bar {1}1\\} planes. The bead unification is driven by minimizing the energy contributed by surface energy and electrostatic energy. The unique morphology of the nanonecklaces could be useful for studying fundamental physical phenomena and fabricating nanodevices.

  17. Quantum criticality in a uniaxial organic ferroelectric.

    PubMed

    Rowley, S E; Hadjimichael, M; Ali, M N; Durmaz, Y C; Lashley, J C; Cava, R J; Scott, J F

    2015-10-01

    Tris-sarcosine calcium chloride (TSCC) is a highly uniaxial ferroelectric with a Curie temperature of approximately 130 K. By suppressing ferroelectricity with bromine substitution on the chlorine sites, pure single crystals were tuned through a ferroelectric quantum phase transition. The resulting quantum critical regime was investigated in detail and was found to persist up to temperatures of at least 30-40 K. The nature of long-range dipole interactions in uniaxial materials, which lead to non-analytical terms in the free-energy expansion in the polarization, predict a dielectric susceptibility varying as 1/T (3)close to the quantum critical point. Rather than this, we find that the dielectric susceptibility varies as 1/T (2) as expected and observed in better known multi-axial systems. We explain this result by identifying the ultra-weak nature of the dipole moments in the TSCC family of crystals. Interestingly, we observe a shallow minimum in the inverse dielectric function at low temperatures close to the quantum critical point in paraelectric samples that may be attributed to the coupling of quantum polarization and strain fields. Finally, we present results of the heat capacity and electro-caloric effect and explain how the time dependence of the polarization in ferroelectrics and paraelectrics should be considered when making quantitative estimates of temperature changes induced by applied electric fields. PMID:26360383

  18. Quantum criticality in a uniaxial organic ferroelectric

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Hadjimichael, M.; Ali, M. N.; Durmaz, Y. C.; Lashley, J. C.; Cava, R. J.; Scott, J. F.

    2015-10-01

    Tris-sarcosine calcium chloride (TSCC) is a highly uniaxial ferroelectric with a Curie temperature of approximately 130 K. By suppressing ferroelectricity with bromine substitution on the chlorine sites, pure single crystals were tuned through a ferroelectric quantum phase transition. The resulting quantum critical regime was investigated in detail and was found to persist up to temperatures of at least 30-40 K. The nature of long-range dipole interactions in uniaxial materials, which lead to non-analytical terms in the free-energy expansion in the polarization, predict a dielectric susceptibility varying as 1/T 3close to the quantum critical point. Rather than this, we find that the dielectric susceptibility varies as 1/T 2 as expected and observed in better known multi-axial systems. We explain this result by identifying the ultra-weak nature of the dipole moments in the TSCC family of crystals. Interestingly, we observe a shallow minimum in the inverse dielectric function at low temperatures close to the quantum critical point in paraelectric samples that may be attributed to the coupling of quantum polarization and strain fields. Finally, we present results of the heat capacity and electro-caloric effect and explain how the time dependence of the polarization in ferroelectrics and paraelectrics should be considered when making quantitative estimates of temperature changes induced by applied electric fields.

  19. Three-dimensional single crystal silicon micromachining

    NASA Astrophysics Data System (ADS)

    Hofmann, Wolfgang Maximilian Josef

    1999-11-01

    A monolithic, multiple-level (ML), single-crystal-silicon (SCS) micromachining process called SCREAM3D has been developed. The high-aspect-ratio (HAR) levels are self-aligned and are fabricated from a single substrate by deep etching. Anisotropic reactive ion etching of silicon has been studied in detail and new recipes for the vertical etch and release of HAR ML structures have been developed. The SCREAM3D levels are electrically isolated from the substrate and one another using a novel ML isolation scheme, which requires only a single lithography and metallization step, regardless of the number of levels. Two- and three-level SCREAM3D devices have been fabricated. They demonstrate three device concepts: ML microelectromechanical systems (MEMS), micromachined electron gun arrays (MEGA) and ML actuators for out-of-plane deflection. ML MEMS consist of several suspended levels moving relative to each other. They can be coupled mechanically and/or electrically. One example is a novel clamp-alignment device which uses the relative translation of two initially self-aligned apertures to grip and align an external component (such as an optical fiber) to the wafer. MEGA is a multiple-beam architecture to increase the throughput of electron beam lithography. MEGA is an array of identical electron sources, consisting of silicon field emitters with integrated electrostatic lenses. The parallel operation of a large number (N = 10,000) of sources is required to increase the total current and throughput (60 8"-wafers/hour) of the system while maintaining standard single-beam parameters (10nA, 20MHz exposure rate) and limiting charge-interaction effects. ML actuators have been studied by numerical simulation. All four designs outperform comparable single-level actuators: the generated force is up to five times larger, and the range of motion up to ten times greater. Two of the ML designs operate bi-directionally and one design can be used to form a bi-stable system. Several of the actuators have been integrated with torsional and z-motion-stages and experimentally characterized using laser vibrometry. SCREAM3D extends SCS bulk-micromachining to multiple-level structures. The self-aligned, high-aspect-ratio levels allow the implementation of more efficient device designs and novel ML device concepts. Complex actuators, generating larger forces in reduced chip area, can be fabricated and entire microinstruments can be integrated on a single wafer.

  20. Novel biphenyl-substituted 1,2,4-oxadiazole ferroelectric liquid crystals: synthesis and characterization

    PubMed Central

    Subrao, Mahabaleshwara; Potukuchi, Dakshina Murthy; Sharada Ramachandra, Girish; Bhagavath, Poornima; Bhat, Sangeetha G

    2015-01-01

    Summary Two novel series of unsymmetrically substituted 1,2,4-oxadiazole viz., R.Ox.C*Cn compounds are synthesized and characterized. An optically active, (S)-(+)-methyl 3-hydroxy-2-methylpropionate is used to introduce a chiral center in the molecule. A biphenyl moiety prepared by Suzuki coupling reaction is directly attached to the oxadiazole core at C-5 position. Investigations for the phase behavior revealed that the series with a benzyl group on one end of the oxadiazole core exhibits an 1D orthogonal smectic-A phase while the second series with dodecyl flexible end chain shows orthogonal smectic-A and tilted chiral smectic-C (SmC*) phases over a wide range of temperatures. The smectic-C phase exhibits ferroelectric (FE) polarization switching. The mesomorphic thermal stabilities of these compounds are discussed in the domain of the symmetry and the flexibility of the alkyloxy end chain length attached to the chiral center. PMID:25815075

  1. Voltage-dependent domain evolution in La0.89Sr0.11MnO3 single crystals by Piezoresponse Force Microscopy

    NASA Astrophysics Data System (ADS)

    Panwar, Neeraj; Coondoo, Indrani; Kholkin, A. L.

    2013-06-01

    Bias voltage dependent domain dynamics have been investigated on the surface of La0.89Sr0.11MnO3 (LSMO-0.11) single crystals by Piezoresponse Force Microscopy (PFM). The created domain size increases with both the amplitude and duration of the bias voltage pulse. It is observed that domain growth takes place following an activated process wherein the domain wall interacts with the defects (e.g. oxygen vacancies) resulting from the high electric field under the PFM tip. Fractal analysis, based on the interaction of the domain boundary with the defects, provides the Hausdorff fractal dimension value ˜1.3, lower than that usually observed for solid-state crystalline ferroelectrics indicating a smaller correlation length value for LSMO-0.11 crystal. These studies reveal a clear potential of LSMO for new memory devices based on ferroelectric-like domain states in manganites.

  2. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker (Lemont, IL); Miller, Dean J. (Darien, IL); Shi, Donglu (Oak Park, OH); Sengupta, Suvankar (Columbus, OH)

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  3. Single-Crystal Calcium Hexaboride Nanowires: Synthesis and

    E-print Network

    and by reaction of calcium chloride (CaCl2) with sodium borohydride (NaBH4) at 500 °C in an autoclave for 8 h.23Single-Crystal Calcium Hexaboride Nanowires: Synthesis and Characterization Terry T. Xu, Jian, Illinois 60612 Received August 17, 2004 ABSTRACT Catalyst-assisted growth of single-crystal calcium

  4. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  5. Hybrid Single-Nanowire Photonic Crystal and Microresonator Structures

    E-print Network

    Loncar, Marko

    Hybrid Single-Nanowire Photonic Crystal and Microresonator Structures Carl J. Barrelet, Jiming Bao that combines chemically synthesized single nanowire emitters with lithographically defined photonic crystal and racetrack microresonator structures. Finite-difference time-domain calculations were used to design nanowire

  6. Semiconductor single crystal external ring resonator cavity laser and gyroscope

    SciTech Connect

    Spitzer, M.P.

    1993-08-31

    A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

  7. Fatigue behavior of a single crystal nickel-base superalloy

    SciTech Connect

    Zhang, J.H.; Xu, Y.B.; Wang, Z.G.; Hu, Z.Q.

    1995-06-15

    Many investigations indicate that high cycle fatigue cracks, in general, initiate at pores, inclusions, and grain boundaries in materials. The fatigue strength limit of a single crystal superalloy increases markedly compared to that of a conventional cast alloy, because the number of pores and inclusions in a single crystal superalloy are less than those of both conventionally cast and directionally solidified superalloys. Also, grain boundaries are eliminated in the single crystal superalloy. The fatigue fracture of a single crystal superalloy usually appears to be brittle. Therefore, it is necessary to study the micro-fracture mechanism. This paper presents an investigation of the fracture characteristics and micro-mechanism of fracture in a single crystal superalloy during high cycle fatigue.

  8. Oxygen diffusion in single crystal barium titanate.

    PubMed

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential ?0 and the bulk diffusion coefficient D*(?). Analysis of the temperature and oxygen activity dependencies of D*(?) and ?0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(?) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ?Hmig,V = (0.70 ± 0.04) eV. PMID:25899818

  9. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  10. Microscale Laser Peen Forming of Single Crystal

    SciTech Connect

    Wang,Y.; Fan, Y.; Kysar, J.; Vukelic, S.; Yao, Y.

    2008-01-01

    As the result of quickly increased requirement in many industrial products resulting from microtechnology, laser thermal microforming and microsurface treatment [microscale laser shock peening (?LSP)] have been well studied. By combining the beneficial effects of these two processes with a controlled bending deformation, microscale laser peen forming (?LPF) attracts more attention recently since it not only improves the fatigue life of the material but also shapes microscale metallic parts at the same time. In the present study, ?LSP of single crystal aluminum was presented to study anisotropic material response. Local plastic deformation was characterized by lattice rotation measured through electron backscatter diffraction. Residual stress distributions of both sides of a peened sample, characterized by x-ray microdiffraction, were compared with the results obtained from finite element method simulation. ?LPF anisotropic behavior was investigated in three effective slip systems via both the anisotropic slip line theory and numerical method. Also, the work hardening effect resulted from self-hardening, and latent hardening was analyzed through comparing the results with and without considering hardening.

  11. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    PubMed

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10?? and a reproducibility of 1.2×10??, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources. PMID:25967193

  12. Probing on phase dependent luminescent properties of Al2O3 nanowires for their performance in ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Gangwar, Jitendra; Chandran, Achu; Joshi, Tilak; Verma, Rajni; Biradar, Ashok M.; Kant Tripathi, Surya; Gupta, Bipin Kumar; Srivastava, Avanish Kumar

    2015-07-01

    Herein, we have investigated the various characteristics of two structurally different phases of Al2O3 nanowires: (i) ?-Al2O3 (cubic) and (ii) ?-Al2O3 (monoclinic). These nanowires were synthesized via hydrothermal treatment followed by calcination. The structural and luminescent properties were analyzed by scanning electron microscopy, high-resolution transmission electron microscopy and time-resolved photoluminescence spectroscopy. A plausible formation mechanism was proposed on the basis of experimental observations and analysis. These nanowires of both phases exhibit blue emission at ?466 nm (2.65 eV) upon 253 nm UV excitation wavelength. The time-resolved photoluminescence spectroscopy indicated that the decay time (?) of ?-Al2O3 nanowires (? = 273 picoseconds) is longer than that of ?-Al2O3 nanowires (? = 198 picoseconds). Moreover, these Al2O3 nanowires were dispersed in ferroelectric liquid crystal (FLC) to observe their effect on the electro-optical characteristics. The electro-optical response of the composite devices showed faster electro-optical response, thereby suggesting potential applications in electro-optical shutters and modulators.

  13. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  14. Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals

    SciTech Connect

    Babu, G. Anandha; Subramaniyan, Raja R.; Bhaumik, Indranil; Ganesamoorthy, S.; Ramasamy, P.; Gupta, P.K.

    2014-05-01

    Highlights: • Single crystals of undoped and Mn doped NKBT crystals are grown by spontaneous nucleation. • Temperature and frequency dependent dielectric constant and loss are measured. • Dielectric constant has increased and the loss has reduced on Mn doped NKBT. • Concentration of oxygen vacancies has been reduced in Mn doped NKBT. • The activation energy for undoped and Mn doped NKBT are calculated. - Abstract: Lead-free piezoelectric single crystals of undoped and 1 wt% Mn doped 0.80 Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.20 K{sub 0.5}Bi{sub 0.5}TiO{sub 3} (NKBT) was grown using self-flux. Powder X-ray diffraction analysis revealed that the grown crystals belong to tetragonal system at room temperature. The lattice strain was calculated from Williamson Hall relation for undoped and Mn doped NKBT crystals. A significant change is observed in dielectric behavior of Mn doped NKBT when compared to undoped sample. The diffuseness increased substantially on Mn doped NKBT which masked the ferroelectric to antiferroelectric transition in the dielectric constant plot. The AC impedance study revealed that the conduction is governed by the singly ionized oxygen vacancy. Further, the decrease in the conductivity on Mn doping suggests that Mn replaces the Bi vacancy, which reduces the oxygen vacancy.

  15. Full field electron spectromicroscopy applied to ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Barrett, N.; Rault, J. E.; Wang, J. L.; Mathieu, C.; Locatelli, A.; Mentes, T. O.; Niño, M. A.; Fusil, S.; Bibes, M.; Barthélémy, A.; Sando, D.; Ren, W.; Prosandeev, S.; Bellaiche, L.; Vilquin, B.; Petraru, A.; Krug, I. P.; Schneider, C. M.

    2013-05-01

    The application of PhotoEmission Electron Microscopy (PEEM) and Low Energy Electron Microscopy (LEEM) techniques to the study of the electronic and chemical structures of ferroelectric materials is reviewed. Electron optics in both techniques gives spatial resolution of a few tens of nanometres. PEEM images photoelectrons, whereas LEEM images reflected and elastically backscattered electrons. Both PEEM and LEEM can be used in direct and reciprocal space imaging. Together, they provide access to surface charge, work function, topography, chemical mapping, surface crystallinity, and band structure. Examples of applications for the study of ferroelectric thin films and single crystals are presented.

  16. Ion crystal transducer for strong coupling between single ions and single photons

    E-print Network

    L. Lamata; D. R. Leibrandt; I. L. Chuang; J. I. Cirac; M. D. Lukin; V. Vuletic; S. F. Yelin

    2011-07-11

    A new approach for realization of a quantum interface between single photons and single ions in an ion crystal is proposed and analyzed. In our approach the coupling between a single photon and a single ion is enhanced via the collective degrees of freedom of the ion crystal. Applications including single-photon generation, a memory for a quantum repeater, and a deterministic photon-photon, photon-phonon, or photon-ion entangler are discussed.

  17. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  18. Growth of Sb-Bi gradient single crystals

    SciTech Connect

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  19. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

    1996-01-01

    A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.

  20. Method for harvesting single crystals from a peritectic melt

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-08-27

    A method of preparing single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid. 2 figs.

  1. Double freezing of (NH(4))(2)SO(4)/H(2)O droplets below the eutectic point and the crystallization of (NH(4))(2)SO(4) to the ferroelectric phase.

    PubMed

    Bogdan, A

    2010-09-23

    This paper presents the differential scanning calorimetry (DSC) results obtained from measurements of single droplets of different subeutectic concentrations (<40 wt % (NH4)2SO4) and diameters of 1-1.5 mm. The measurements show that despite the fact that the freezing of the droplets takes place below the eutectic temperature of Te ? 254.5 K, a phase separation into ice and a residual freeze-concentrated solution occurs. The residual solution is formed by the expulsion of NH4+ and SO42- ions from the ice lattice during the nucleation and growth of ice and may possess the eutectic concentration of 40 wt % (NH4)2SO4. On further cooling, the residual solution freezes to the eutectic solid mixture of ice/(NH4)2SO4 at a temperature that is either above or below the ferroelectric "Curie" temperature of Tc ? 223 K. If the freezing of the residual solution takes place below the Tc, then (NH4)2SO4 crystallizes directly into the ferroelectric phase. PMID:20735056

  2. Simulation of Single Crystal Growth: Heat and Mass Transfer

    E-print Network

    Zhmakin, A I

    2015-01-01

    The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.

  3. Investigation about relationships between the symmetries of ferroelectric crystal Ca0.28Ba0.72Nb2O6 and second-harmonic patterns

    NASA Astrophysics Data System (ADS)

    Xu, Tianxiang; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2015-08-01

    The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca0.28Ba0.72Nb2O6 (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found to be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.

  4. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  5. Potassium-Sodium Niobate Single Crystals and Electric Properties

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Tanahashi, R.; Maiwa, K.; Baba, H.; Cheng, Z. X.; Wang, X. L.

    Potassium-sodium-rubidium niobate single crystals are grown using an original pulling down method, to improve their composition change during a crystal growth, by means of co-doping of small ionic size sodium and large ionic size rubidium into potassium niobate. Even by the co-doping, single crystals can be grown with orthorhombic single-phase at room temperature, as well as pure potassium niobate. Their electric properties, such as the dielectric constant and the impedance, are changed depending on the doping ions.

  6. Fabrication of thin, luminescent, single-crystal diamond membranes

    NASA Astrophysics Data System (ADS)

    Magyar, Andrew P.; Lee, Jonathan C.; Limarga, Andi M.; Aharonovich, Igor; Rol, Fabian; Clarke, David R.; Huang, Mengbing; Hu, Evelyn L.

    2011-08-01

    The formation of single-crystal diamond membranes is an important prerequisite for the fabrication of high-quality optical cavities in this material. Diamond membranes fabricated using lift-off processes involving the creation of a damaged layer through ion implantation often suffer from residual ion damage, which severely limits their usefulness for photonic structures. The current work demonstrates that strategic etch removal of the most highly defective material yields thin, single-crystal diamond membranes with strong photoluminescence and a Raman signature approaching that of single-crystal bulk diamond. These optically active membranes can form the starting point for fabrication of high-quality optical resonators.

  7. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-11-02

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  8. Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications

    NASA Technical Reports Server (NTRS)

    Banan, M.; Lal, R. B.; Batra, Ashok

    1992-01-01

    Effects of caesium and cerium, L-alanine, and caesium plus L-alanine impurities on ferroelectric and pyroelectric properties of TGS crystals are investigated. Dielectric constant and loss, pyroelectric coefficient, spontaneous polarization, and coercive field measurements of these modified crystals, as a function of temperature, are reported. Caesium and cerium did not affect the electrical properties of TGS crystals significantly, whereas L-alanine- and, especially, Cs + L-alanine-doped TGS crystals exhibited promising improvements in pyroelectric properties, up to 48 C, as compared to pure TGS crystals.

  9. New Fluorinated Terphenyl Isothiocyanate Liquid Crystal Single Compounds and Mixtures

    E-print Network

    Wu, Shin-Tson

    New Fluorinated Terphenyl Isothiocyanate Liquid Crystal Single Compounds and Mixtures Amanda Parish fluorinated NCS terphenyl single compounds and mixtures based solely on laterally fluorinated aromatic rigid core structures. The single compounds have Dn $ 0.35 in the visible spectral region and relatively low

  10. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.

    PubMed

    Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U

    2015-01-25

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. PMID:25168233

  11. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.

  12. A high frequency polarization intensity electrooptic modulator in BSTN ferroelectric crystal 

    E-print Network

    Wilson, Erik James

    1996-01-01

    device is a high electrooptic coefficient. This allows the optical signal to be manipulated with a low electrical voltage. A material that has a higher electrooptic coefficient than the commercially used LiNbO3 and LiTaO3 is the tungsten bronze crystal...

  13. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  14. Three-Dimensional Conformation of Folded Polymers in Single Crystals.

    PubMed

    Hong, You-Lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-16

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of ^{13}C CH_{3}-labeled isotactic poly(1-butene) (iPB1) in form III chiral single crystals blended with nonlabeled iPB1 crystallized in dilute solutions under low supercooling. An advanced ^{13}C-^{13}C double-quantum NMR technique probing the spatial proximity pattern of labeled ^{13}C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals. PMID:26550905

  15. Growing intermetallic single crystals using in situ decanting

    SciTech Connect

    Petrovic, Cedomir; Canfield, Paul; Mellen, Jonathan

    2012-05-16

    High temperature metallic solution growth is one of the most successful and versatile methods for single crystal growth, and is particularly suited for exploratory synthesis. The method commonly utilizes a centrifuge at room temperature and is very successful for the synthesis of single crystal phases that can be decanted from the liquid below the melting point of the silica ampoule. In this paper, we demonstrate the extension of this method that enables single crystal growth and flux decanting inside the furnace at temperatures above 1200°C. This not only extends the number of available metallic solvents that can be used in exploratory crystal growth but also can be particularly well suited for crystals that have a rather narrow exposed solidification surface in the equilibrium alloy phase diagram.

  16. Top-Seeded Solution Growth of Pb[(Zn1/3Nb2/3)0.93Ti0.07]O3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Karaki, Tomoaki; Nakamoto, Maki; Adachi, Masatoshi

    2002-11-01

    Top-seeded solution growth (TSSG) of relaxor-based ferroelectric single crystal Pb[(Zn1/3Nb2/3)0.93Ti0.07]O3 (PZNT93/7) was investigated. PbO and PbO+B2O3 were used as fluxes. The solution compositions were (PZNT93/7)/PbO]=70/30 wt% and (PZNT93/7)/PbO/B2O3=70/29/1 wt%. A platinum stick, PZNT93/7 single crystal and Pb[(Mg1/3Nb2/3)0.65Ti0.35]O3 (PMNT65/35) single crystal were used as seeds. The addition of B2O3 was used to lower the growth temperature and reduce the rate of PbO evaporation. Crystals grown inside the melting solution had a pure perovskite structure and their Curie temperature was 168°C, corresponding to PZNT93/7 composition. However, it was found that the perovskite crystals decomposed little by little from the crystal surface to undesirable pyrochlore after being pulled out of the melt and exposed to air during the growth. Crystals grown at the melt surface were originally of pyrochlore structure. The investigated results revealed the possibility of growing these single crystals by a continually charged TSSG technique.

  17. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

  18. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

  19. Effect of gamma ray irradiation on sodium borate single crystals

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  20. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The parameters and requirements for growing single crystals of relatively high melting point metals in a zero gravity environment are studied. The crystal growth of metals such as silver, copper, gold, and alloys with a melting point between 900-1100 C is examined.

  1. Brittlestar-inspired microlens arrays made of calcite single crystals.

    PubMed

    Ye, Xiaozhou; Zhang, Fei; Ma, Yurong; Qi, Limin

    2015-04-01

    Unique concave microlens arrays (MLAs) made of calcite single crystals with tunable crystal orientations can be readily fabricated by template-assisted epitaxial growth in solution without additives under ambient conditions. While the non-birefringent calcite (001) MLA showed excellent imaging performance like brittlestar's microlens arrays, the birefringent calcite (104) MLA exhibited remarkable polarization-dependent optical properties. PMID:25366272

  2. On the deformation mechanisms in single crystal Hadfield manganese steels

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.

    1998-02-13

    Austenitic manganese steel, so called Hadfield manganese steel, is frequently used in mining and railroad frog applications requiring excessive deformation and wear resistance. Its work hardening ability is still not completely understood. Previous studies attributed the work-hardening characteristics of this material to dynamic strain aging or an imperfect deformation twin, a so-called pseudotwin. Unfortunately, these previous studies have all focused on polycrystalline Hadfield steels. To properly study the mechanisms of deformation in the absence of grain boundary or texture effects, single crystal specimens are required. The purpose of this work is the following: (1) observe the inelastic stress-strain behavior of Hadfield single crystals in orientations where twinning and slip are individually dominating or when they are competing deformation mechanisms; and (2) determine the microyield points of Hadfield single crystals and use micro-mechanical modeling to predict the stress-strain response of a single crystal undergoing micro-twinning.

  3. Superconducting Proximity Effect in Single-Crystal Nanowires 

    E-print Network

    Liu, Haidong

    2010-07-14

    This dissertation describes experimental studies of the superconducting proximity effect in single-crystal Pb, Sn, and Zn nanowires of lengths up to 60 um, with both ends of the nanowires in contact with macroscopic electrodes that are either...

  4. Aluminium segregation of TiAl during single crystal growth

    SciTech Connect

    Bi, Y.J.; Abell, J.S.

    1997-09-15

    {gamma}-TiAl single crystals have been successfully prepared by an induction-heated cold crucible Czochralski technique which offers more flexibility than vertical float zoning. Compositional analysis of the Czochralski grown single crystals indicates a homogeneous composition after initial transition; and the average composition is close to the peritectic composition. However, {gamma}-TiAl single crystals prepared by vertical float zoning show a small aluminium segregation profile along the growth direction; and the average composition of the as-grown crystals is close to that of the starting alloy. Compositional analysis further demonstrated the banded structure with alternative single {gamma}-phase and {alpha}{sub 2} + {gamma} lamellar regions in the vertical float zoned Ti-54 at.% Al.

  5. Synthesis and physical characterization of thermoelectric single crystals

    E-print Network

    Porras Pérez Guerrero, Juan Pablo

    2012-01-01

    There is much current interest in thermoelectric devices for sustainable energy. This thesis describes a research project on the synthesis and physical characterization of thermoelectric single crystals. 1In?Se?-[delta] ...

  6. The Herbertsmithite Hamiltonian: ?SR measurements on single crystals

    E-print Network

    Ofer, Oren

    We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular ...

  7. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  8. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  9. Single-drop optimization of protein crystallization

    PubMed Central

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-01-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  10. Growing Single Crystals of Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Lehoczky, Sandor L.; Frazier, Donald O.

    1987-01-01

    Defect reduced by preventing melt/furnace contact and suppressing convention. Large crystals of compound semiconductors with few defects grown by proposed new method. Such materials as gallium arsenide and cadmium telluride produced, with quality suitable for very-large-scale integrated circuits or for large focal-plane arrays of photodetectors. Method used on small scale in Earth gravity, but needs microgravity to provide crystals large enough for industrial use.

  11. Synthesis, crystal growth and characterization of an organic material: 2-Aminopyridinium succinate succinic acid single crystal.

    PubMed

    Magesh, M; Bhagavannarayana, G; Ramasamy, P

    2015-11-01

    The 2-aminopyridinium succinate succinic acid (2APS) single crystal was synthesized and grown by slow evaporation method. The crystal structure has been confirmed by powder X-ray diffraction as well as single crystal X-ray diffraction analysis. The crystal perfection has been evaluated by high resolution X-ray diffraction (HRXRD). The grown crystal is transparent in the visible and near infrared region. The optical absorption edge was found to be 348 nm. The fluorescence study was carried out by spectrofluorophotometer. The thermal stability of grown crystal was analyzed by thermal gravimetric and differential thermal gravimetric (TG-DTA) analysis. Vicker's hardness study carried out at room temperature shows increased hardness while increasing the load. Laser damage threshold value was determined by Nd:YAG laser operating at 1064 nm. The grown 2APS crystal was characterized by etching studies using water as etchant. PMID:26099828

  12. A low-temperature crystallization path for device-quality ferroelectric films

    SciTech Connect

    Li Jinwang; Trinh, Bui Nguyen Quoc; Miyasako, Takaaki; Mitani, Tadaoki; Kameda, Hiroyuki; Tue, Phan Trong; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2010-09-06

    We show a path for low-temperature crystallization of device-quality solution-processed lead zirconate titanate films. The essential aspect of the path is to circumvent pyrochlore formation at around 300 deg. C during temperature increase up to 400 deg. C. By maintaining enough carbon via pyrolysis at 210 deg. C, well below the temperature for pyrochlore formation, Pb{sup 2+} can be reduced to Pb{sup 0}. This leads to the lack of Pb{sup 2+} in the film to suppress the development of pyrochlore, which accounts for the usual high-temperature conversion to perovskite. Films on metal, metal/oxide hybrid, and oxide bottom electrodes were successfully crystallized at 400-450 deg. C.

  13. Halide electrodeposition on single-crystal electrodes

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven James

    2001-07-01

    In this dissertation, we investigate in depth by computational and theoretical methods the processes and behavior of submonolayer electrochemical deposition of Br onto single-crystal Ag(100) electrodes. Although this system has little direct industrial application, it provides a test bed for developing theoretical and computational techniques which can be used to study systems of more applied interest. Br electrodeposited onto a Ag(100) substrate at room temperature displays a disordered phase at low electrochemical potentials. At higher electrochemical potentials, the adlayer undergoes a disorder-order phase transition to a c(2 x 2) ordered phase. The phase transition, the equilibrium properties of the adlayer, and the dynamics of the ordering and disordering processes are studied by a variety computational techniques, including static and dynamic lattice-gas models, an off-lattice equilibrium model, and Langevin simulations. Using a two-dimensional lattice-gas approximation for the adlayer, Monte Carlo simulations are used to explore the equilibrium properties of the Br adlayer under different values of the electrochemical potential. The model predicts the existence of low-temperature phases which are not stable at room temperature. The effects of these low-temperature phases on the room-temperature properties of the adlayer are discussed. Starting from the lattice-gas model developed for equilibrium simulations, a dynamic Monte Carlo simulation program is constructed, and the phase-ordering, disordering, and hysteresis behaviors are studied. The phase-ordering process is in the dynamic universality class known as Model A (Lifshitz-Allen-Cahn dynamics), but the disordering behavior is not as easily classified. Dynamic simulations of cyclic-voltammetry experiments show hysteresis due to kinetic limitations associated with the ordering and disordering processes. To further investigate the properties of the adlayer, the lattice-gas approximation was relaxed and replaced by a corrugation-potential approximation. Within this two-dimensional off-lattice model, the equilibrium properties were found to be similar to those of the lattice-gas model. However, the off-lattice model obviously allows calculations of additional quantities, such as the average lateral displacement from the adsorption site. Langevin dynamic simulations of the off-lattice model were also performed to test the validity of the assumptions used in the dynamic Monte Carlo simulations. However, these dynamic simulations were far too computationally intensive to allow off-lattice simulations of the ordering, disordering, and hysteresis behaviors. As a first step towards developing accelerated simulation methods for off-lattice simulations, we construct an advanced dynamic algorithm for continuum spin systems.

  14. Synthesis and Single-Crystal Growth of Ca

    SciTech Connect

    Nakatsuji, Satoru; Maeno, Yoshiteru

    2001-01-01

    For the study of the quasi-two-dimensional Mott transition system Ca{sub 2-x}Sr{sub x}RuO{sub 4}, we have succeeded in synthesizing polycrystalline samples and also growing single crystals by a floating-zone method. Details of the preparations for the entire solution range are described. The structural, transport, and magnetic properties of both polycrystalline and single-crystal samples are fully in agreement.

  15. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    NASA Astrophysics Data System (ADS)

    Alikin, D. O.; Ievlev, A. V.; Turygin, A. P.; Lobov, A. I.; Kalinin, S. V.; Shur, V. Ya.

    2015-05-01

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  16. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    SciTech Connect

    Alikin, D. O.; Turygin, A. P.; Lobov, A. I.; Shur, V. Ya.; Ievlev, A. V.; Kalinin, S. V.

    2015-05-04

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  17. Transitions between paraelectric and ferroelectric phases of bent-core smectic liquid crystals in the bulk and in thin freely suspended films.

    PubMed

    Eremin, Alexey; Floegel, Martin; Kornek, Ulrike; Stern, Stephan; Stannarius, Ralf; Nádasi, Hajnalka; Weissflog, Wolfgang; Zhu, Chenhui; Shen, Yongqiang; Park, Cheol Soo; Maclennan, Joseph; Clark, Noel

    2012-11-01

    We report on the contrasting phase behavior of a bent-core liquid crystal with a large opening angle between the mesogenic units in the bulk and in freely suspended films. Second-harmonic generation experiments and direct observation of director inversion walls in films in an applied electric field reveal that the nonpolar smectic C phase observed in bulk samples becomes a ferroelectric "banana" phase in films, showing that a mesogen with a small steric moment can give a phase with polar order in freely suspended films even when the corresponding bulk phase is paraelectric. PMID:23214799

  18. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  19. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching.

    PubMed

    Fodor, Daniel; Krumeich, Frank; Hauert, Roland; van Bokhoven, Jeroen A

    2015-04-13

    After base treatment of ZSM-5 crystals below 100?nm in size, TEM shows hollow single crystals with a 10?nm shell. SEM images confirm that the shell is well- preserved even after prolonged treatment. Determination of the Si/Al ratios with AAS and XPS in combination with argon sputtering reveals aluminum zoning of the parent zeolite, and the total pore volume increases in the first two hours of base treatment. In corresponding TEM images, the amount of hollow crystals are observed to increase during the first two hours of base treatment, and intact crystals are visible even after 10?h of leaching; these observations indicate different dissolution rates between individual crystals. TEM of large, commercially available ZSM-5 crystals shows inhomogeneous distribution of mesopores among different crystals, which points to the existence of structural differences between individual crystals. Only tetrahedrally coordinated aluminum is detected with (27) Al MAS NMR after the base leaching of nano-sized ZSM-5. PMID:25720305

  20. Single crystal growth and characterization of MnAs

    NASA Astrophysics Data System (ADS)

    de Campos, A.; Mota, M. A.; Gama, S.; Coelho, A. A.; White, B. D.; da Luz, M. S.; Neumeier, J. J.

    2011-10-01

    A simple method to grow MnAs single crystals is described, using careful temperature control. Crystal characterization was determined by powder X-ray diffraction, back-reflection Laue diffraction and vibrating sample magnetometry. The results show good magnetic properties with first-order transition sharper than in polycrystalline samples and with the transition occurring at slightly lower temperatures ( TC=315.5 K) than in the case of polycrystalline samples. The second-order transition in single crystal decreases with applied field at 391 K.

  1. Functional ferroelectric tunnel junctions on silicon

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando; Chen, Jingsheng

    2015-07-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories.

  2. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    SciTech Connect

    Babu, R. Ramesh; Sukumar, M.; Vasudevan, V.; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 ; Shakir, Mohd.; Ramamurthi, K.; Bhagavannarayana, G.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure and doped benzimidazole crystals measured using Kurtz powder test.

  3. Fatigue Failure Criteria for Single Crystal Nickel Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    1999-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine and rocket engine turbopump blades is a pervasive problem. Single crystal turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry and NASA because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the pan geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades is complicated to predict due to the material orthotropy and variations in crystal orientations. A fatigue failure criteria based on the maximum shear stress amplitude [delta t max] on the 30 slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criteria reduces the scatter in uniaxial LCF test data, for four different specimen orientations, for PWA 1484 at 1200 F in air, quite well. A power law curve fit of the failure parameter, delta t max, vs. cycles to failure is presented.

  4. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  5. Measurement of single crystal surface parameters

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Bell, A. E.; Strayer, R. W.

    1972-01-01

    The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

  6. Photorefractive Properties of Stoichiometric Lithium Niobate Single Crystals

    SciTech Connect

    Sidorov, N. V.; Antonycheva, E. A.; Syui, A. V.; Palatnikov, M. N.

    2010-11-15

    The specific features of photorefractive light scattering in nominally pure stoichiometric (Li/Nb = 1) sin- gle crystals grown from a melt with 58.6 mol % Li{sub 2}O (LiNbO{sub 3}st) and in the stoichiometric single crystals grown from a melt of congruent composition in the presence of K{sub 2}O flux (LiNbO{sub 3}stK{sub 2}O) have been investi- gated. At an excitation power of 30 mW, LiNbO{sub 3}stK{sub 2}O single crystals are found to exhibit a stronger photo- refractive effect than LiNbO{sub 3}st single crystals.

  7. Investigations on the nucleation kinetics of ?-glycine single crystal

    NASA Astrophysics Data System (ADS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of ?-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (?Gv), interfacial tension (?), critical free energy change of the nucleus (?G*), nucleation rate (J), number of molecules in the critical nucleus (i*) have been calculated for the aqueous solution grown ?-glycine single crystals. The second harmonic generation (SHG) of ?-glycine was confirmed by Q-switched Nd:YAG laser technique.

  8. Synthetic Superconductivity in Single-Layer Crystals

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Borgnia, Dan; Lee, Patrick

    2015-03-01

    Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ? (?) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.

  9. Growth technology of piezoelectric langasite single crystal

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Wang, Shou-Qi; Konishi, Nozomi; Inaba, Hitoshi; Harada, Jiro

    2005-02-01

    Although langasite (La 3Ga 5SiO 14) is an incongruent material, it can directly grow from the "pseudo-congruent melt" via the Czochralski method using a langasite seed crystal when the appropriate supercooling is provided. This may be explained by the extension of the univariant line of langasite+liquid into the primary phase field of Ga-containing lanthanum silicate. Free energies serving to solute transport, growth kinetics, surface creation and defect generation are summed up to be the total supercooling necessary for growth which may be larger for the formation of Ga-containing lanthanum silicate and smaller for langasite than the actual supercooling. The growth technology of 4-in-size crystal along [0 1 1¯ 1] is optimized by understanding (i) the importance of the prior annealing of the melt to acquire the suitable supercooling for growth, (ii) the transform of the unstable growth interface, (0 1 1¯ 1), into the complex of more stable principal planes, and (iii) the necessity of the accurate evaluation method to examine the homogeneity of the grown crystal. Issues of (i) and (ii) are interrelated. Physical crystal properties at high temperature are also demonstrated.

  10. SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES

    SciTech Connect

    MURPHY, JAMES E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ?C of the melting temperature of niobium, which is 2477 ?C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ?C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ?C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ?C. and the operating temperature was increased by 50 ?C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it

  11. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767

  12. Thermodynamics and Ferroelectric Properties of KNbO3

    SciTech Connect

    Liang, Linyun; Li, Yulan; Chen , L.Q.; Hu, Shenyang Y.; Lu, Guang-Hong

    2009-11-15

    The Landau-Ginsburg-Devonshire (LGD) phenomenological theory is employed to model and predict the ferroelectric phase transitions and properties of single-domain potassium niobate (KNbO3). Based on the LGD theory and the experimental data of KNbO3 single crystal, an eighth-order polynomial of free energy function is proposed. The fitted coefficients are validated by comparing to a set of experimental measured values including phase transition temperatures, spontaneous polarization, dielectric constants, and lattice constants. The effects of hydrostatic pressure and external electric field on phase transition temperatures and piezoelectric coefficients are investigated. The free energy function may be used a phase-field modeling to predict ferroelectric domain structures and properties of KNbO3 bulk crystals and films by phase-field approach.

  13. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (inventor); Holliday, R. J. (inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  14. Inspection of Single Crystal Aerospace Components with Ultrasonic Arrays

    NASA Astrophysics Data System (ADS)

    Lane, C. J. L.; Dunhill, A.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Single crystal metal alloys are used extensively in the manufacture of jet engine components for their excellent mechanical properties at elevated temperatures. The increasing use of these materials and demand for longer operational life and improved reliability motivates the requirement to have capable NDE methods available. Ultrasonic arrays are well established at detecting sub-surface defects however these methods are not currently suitable to the inspection of single crystal components due to their high elastic anisotropy causing directional variation in ultrasonic waves. In this paper a model of wave propagation in anisotropic material is used to correct an ultrasonic imaging algorithm and is applied to single crystal test specimens. The orientation of the crystal in a specimen must be known for this corrected-algorithm; therefore a crystal orientation method is also presented that utilizes surface skimming longitudinal waves under a 2D array. The work detailed in this paper allows an ultrasonic 2D array to measure the orientation of a single crystal material and then perform accurate volumetric imaging to detect and size defects.

  15. Investigation of the optical response of photonic crystal nanocavities in ferroelectric oxide thin film

    NASA Astrophysics Data System (ADS)

    Lin, Pao Tai; Russin, William A.; Joshi-Imre, Alexandra; Ocola, Leonidas E.; Wessels, B. W.

    2015-10-01

    The optical properties of BaTiO3 two dimensional photonic crystal (PhC) nanocavities were investigated. Two types of nanocavities consisting of dopants and vacancies with PhC periodicities ranging from 200 to 550 nm were evaluated. The images from laser scanning confocal microscopy show the optical scattering of the PhC cavities is highly wavelength dependent. An optical intensity reversal is observed when the wavelength of probe light shifts by 29 nm. Meanwhile, intensity contrast between the nanocavity and its adjacent PhCs is enhanced as the PhC periodicity becomes shorter than the probe wavelength. To determine the photonic band structures fluorescence from dye covered PhCs were imaged and analyzed. A strong enhancement of fluorescence is observed for the PhC with a period of 200 nm. Upon comparison to the 2D finite difference time domain calculations, the enhancement is attributed to strong light localization within the PhC nanocavity. As a result, the in-plane lightwave propagation is prohibited that results in an increase in the vertical light scattering.

  16. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r? phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ? and reentrant smectic C r? phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  17. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  18. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  19. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  20. Growth and characterization of lithium yttrium borate single crystals

    SciTech Connect

    Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati

    2014-04-24

    Single crystals of 0.1% Ce doped Li{sub 6}Y(BO{sub 3}){sub 3} have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ? 420 nm corresponding to Ce{sub 3+} emission from 5d?4f energy levels. The decay profile of this emission shows a fast response of ? 28 ns which is highly desirable for detector applications.

  1. A viscoplastic model for single crystals

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1992-01-01

    A viscoplastic constitutive model is described in which deformation behavior is postulated on representative slip systems and the behavior of the entire crystal is determined by summing the slip on the active slip systems. By building in the slip geometry known from the metallurgical literature, it is possible to predict the anisotropic deformation behavior and to model in a straightforward manner other phenomena which have been described by metallurgists in crystallographic terms. Elevated temperature tension-torsion tests were run and used to verify the model's predictive abilities. Ratchetting behavior under thermomechanical loading conditions is specifically addressed.

  2. Creep of CoO single crystals.

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Seltzer, M. S.; Wilcox, B. A.

    1971-01-01

    The crystals were creep tested in compression over ranges of temperature, stress, and oxygen pressure. The creep curves were S-shaped, and only the inflection creep rate was analyzed. A formula is presented for the inflection creep rate in the range from 1000 to 1200 C, 850 to 1700 psi, and 0.001 to 1 atm oxygen. Slip was found to occur on two orthogonal slip systems. The presence of subboundaries was observed by optical and transmission electron microscopy. It is suggested that the creep rate is controlled by oxygen diffusion.

  3. Large Silver Halide Single Crystals as Charged Particle Track Detectors

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.

    1972-01-01

    The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.

  4. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  5. Plane wave simulation of elastic-viscoplastic single crystals

    NASA Astrophysics Data System (ADS)

    Lloyd, J. T.; Clayton, J. D.; Austin, R. A.; McDowell, D. L.

    2014-09-01

    Despite the large amount of research that has been performed to quantify the high strain rate response of Aluminum, few studies have addressed effects of crystal orientation and subsequent crystal-level microstructure evolution on its high strain rate response. To study orientation effects in single crystal Al, both a constitutive model and novel numerical method have been developed. A plane wave formulation is developed so that materials undergoing anisotropic viscoplastic deformation can be modeled in a thermodynamically consistent framework. Then, a recently developed high strain rate viscoplastic model is extended to include single crystal effects by incorporating higher order crystal-based thermoelasticity, anisotropic plasticity kinetics, and distinguishing influences of forest and parallel dislocation densities. Steady propagating shock waves are simulated for [100], [110], and [111] oriented single crystals and compared to existing experimental wave profile and strength measurements. Finally, influences of initial orientation and peak pressure ranging from 0 to 30 GPa are quantified. Results indicate that orientation plays a significant role in dictating the high rate response of both the wave profile and the resultant microstructure evolution of Al. The plane wave formulation can be used to evaluate microstructure-sensitive constitutive relations in a computationally efficient framework.

  6. Fabrication and characterization of dielectric strontium titanium oxynitride single crystal

    NASA Astrophysics Data System (ADS)

    Hoshina, Takuya; Sahashi, Akira; Takeda, Hiroaki; Tsurumi, Takaaki

    2015-10-01

    In this paper, we show a fabrication method and the dielectric properties of strontium titanium oxynitride (SrTiO3:N) single crystals. Oxynitride single crystals were prepared by annealing SrTiO3 single crystals in gaseous ammonia. SrTiO3:N was assumed to have the chemical composition SrTiO3-3xN2x, which contained oxygen vacancies. To reduce the number of oxygen vacancies, SrTiO3 crystals co-doped with nitrogen and niobium (SrTiO3:N,Nb) were fabricated. The semiconducting Nb-doped SrTiO3 crystals changed to dielectric N,Nb-codoped SrTiO3 crystals with a resistivity of 6 × 1012 ?·cm with annealing in gaseous ammonia. XPS measurement indicated that niobium doping was effective for increasing the amount of dopant nitrogen. The dielectric permittivity increased with the amount of dopant nitrogen, indicating the effectivity of nitrogen doping for increasing the dielectric permittivity of perovskite oxides.

  7. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  8. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  9. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal

    NASA Astrophysics Data System (ADS)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.

    2008-09-01

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  10. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  11. Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1-xCaxRuO3 (0 le x le 1).

    PubMed

    Eom, C B; Cava, R J; Fleming, R M; Phillips, J M; Vandover, R B; Marshall, J H; Hsu, J W; Krajewski, J J; Peck, W F

    1992-12-11

    Single-crystal epitaxial thin films of the isotropic metallic oxides Sr1-xCaxRuO(3) (0 ferroelectric, magneto-optic, and electro-optic devices. PMID:17831659

  12. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

    1980-01-01

    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

  13. Apparatus And Method For Producing Single Crystal Metallic Objects

    DOEpatents

    Huang, Shyh-Chin (Latham, NY); Gigliotti, Jr., Michael Francis X. (Scotia, NY); Rutkowski, Stephen Francis (Duanesburg, NY); Petterson, Roger John (Fultonville, NY); Svec, Paul Steven (Scotia, NY)

    2006-03-14

    A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

  14. Two-photon-induced singlet fission in rubrene single crystal.

    PubMed

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E; Gurzadyan, Gagik G

    2013-05-14

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm?GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data. PMID:23676057

  15. Two-photon-induced singlet fission in rubrene single crystal

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

    2013-05-01

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm/GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.

  16. Preparation of single-crystal copper ferrite nanorods and nanodisks

    SciTech Connect

    Du Jimin; Liu Zhimin . E-mail: liuzm@iccas.ac.cn; Wu Weize; Li Zhonghao; Han Buxing . E-mail: hanbx@iccas.ac.cn; Huang Ying

    2005-06-15

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  17. Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3

    E-print Network

    phase upon heating above 130 °C. In cubic perovskite BaTiO3, the structure of which is displayed­3 Ferroelectric properties and a high dielectric constant make BaTiO3 useful in an array of applications such as multilayer ceramic capacitors,4,5 gate dielectrics,6 waveguide modulators,7,8 IR detectors,9 and holographic

  18. Growth, mechanical, thermal and dielectric properties of pure and doped KHP single crystal

    NASA Astrophysics Data System (ADS)

    M, Lakshmipriya.; Babu, D. Rajan; Vizhi, R. Ezhil

    2015-06-01

    L-Arginine doped potassium hydrogen phthalate and L-Histidine doped potassium hydrogen phthalate single crystals were grown by slow evaporation method at room temperature. The grown crystal crystallizes in orthorhombic system which is confirmed by single crystal XRD analysis. The grown crystals are subjected to thermal, mechanical and dielectric analysis.

  19. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the application of the magnetic field leads to a significant reduction in fluid flow, with improved homogeneity of composition. The field strength required to suppress flow increases with diameter of the material. The 8 mm diameter sample used here was less than the upper diameter limit for a ST magnet. The configuration for USMP-4 was changed so that the material was seeded and other processing techniques were also modified. It was decided to examine the effects of a strong magnetic field under the modified configuration and parameters. A further change from USMP-2 was that a different composition of material was grown, namely with 0.152 mole fraction of cadmium telluride rather than the 0.200 of the USMP-2 experiment. The objective was to grow highly homogeneous, low defect density material of a composition at which the conduction band and the valence band of the material impinge against each other. As indicated, the furnace was contaminated during the mission. As a result of solid debris remaining in the furnace bore, the cartridge in this experiment, denoted as SL1-417, was significantly bent during the insertion phase. During translation the cartridge scraped against the plate which isolates the hot and cold zones of the furnace. Thermocouples indicated that a thermal assymetry resulted. The scraping in the slow translation or crystal growth part of the processing was not smooth and it is probable that the jitter was sufficient to give rise to convection in the melt. Early measurements of composition from the surface of the sample have shown that the composition varies in an oscillatory manner.

  20. Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In{sub 1?2}Nb{sub 1?2})O{sub 3}-Pb(Mg{sub 1?3}Nb{sub 2?3})O{sub 3}-PbTiO{sub 3} single crystals: Temperature dependent spectroscopic study

    SciTech Connect

    Zhu, J. J.; Zhang, J. Z.; Chu, J. H.; Xu, G. S.; Zhang, X. L.; Hu, Z. G.

    2014-03-31

    Optical properties and phase transitions of Pb(In{sub 1?2}Nb{sub 1?2})O{sub 3}-Pb(Mg{sub 1?3}Nb{sub 2?3})O{sub 3}-PbTiO{sub 3} (PIN-PMN-PT) crystals near morphotropic phase boundary (MPB) have been investigated by temperature dependent transmittance and reflectance spectra. Three critical point energies E{sub g}?=?3.17–3.18?eV, E{sub a}?=?3.41–3.61?eV, and E{sub b}?=?4.74–4.81?eV can be assigned to the transitions from oxygen 2p to titanium d, niobium d, and lead 6p states, respectively. They show narrowing trends with increasing temperature, which can be caused by thermal expansion of the lattice and electron-phonon interaction. Deviation from the linear behaviors can be observed from E{sub a} and E{sub b} versus PT concentration, indicating a complex multiphase structure near MPB region.

  1. CuInP?S? Room Temperature Layered Ferroelectric.

    PubMed

    Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V

    2015-06-10

    We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family". PMID:25932503

  2. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    PubMed Central

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br? or I?) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization. PMID:26145157

  3. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M.; Fehrenbacher, Markus

    2014-08-04

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263?K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  4. Single-photon frequency conversion in nonlinear crystals

    E-print Network

    Susanne Blum; Georgina A. Olivares-Rentería; Carlo Ottaviani; Christoph Becher; Giovanna Morigi

    2013-09-10

    Frequency conversion of single photons in a nonlinear crystal is theoretically discussed. Losses and noise are included within a Heisenberg-Langevin formalism for the propagating photon field. We calculate the first- and second-order correlation functions of the frequency-converted light when the input is a train of single-photon pulses. This model allows one to identify the requirements on the nonlinear device so that it can be integrated in a quantum network.

  5. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

  6. Ferroelectricity induced by ferriaxial crystal rotation and spin helicity in a B -site-ordered double-perovskite multiferroic In2NiMnO6

    NASA Astrophysics Data System (ADS)

    Terada, Noriki; Khalyavin, Dmitry D.; Manuel, Pascal; Yi, Wei; Suzuki, Hiroyuki S.; Tsujii, Naohito; Imanaka, Yasutaka; Belik, Alexei A.

    2015-03-01

    We have performed dielectric measurements and neutron diffraction experiments on the double perovskite In2NiMnO6 . A ferroelectric polarization, P ?30 ? C /m2, is observed in a polycrystalline sample below TN= 26 K where a magnetic phase transition occurs. The neutron diffraction experiment demonstrates that a complex noncollinear magnetic structure with "cycloidal" and "proper screw" components appears below TN, which has the incommensurate propagation vector k =(ka,0 ,kc;ka?0.274 ,kc?-0.0893 ) . The established magnetic point group 21' implies that the macroscopic ferroelectric polarization is along the monoclinic b axis. Recent theories based on the inverse Dzyaloshinskii-Moriya effect allow us to specify two distinct contributions to the polarization of In2NiMnO6 . One of them is associated with the cycloidal component, p1?ri j×(Si×Sj)? , and the other with the proper screw component, p2?[ri j.(Si×Sj)||] A . The latter is explained by coupling between spin helicity and "ferriaxial" crystal rotation with macroscopic ferroaxial vector A , characteristic of the B -site ordered perovskite systems with out-of-plane octahedral tilting.

  7. Polyimide thin-film dielectrics on ferroelectrics

    NASA Technical Reports Server (NTRS)

    Galiardi, R. V.

    1977-01-01

    Conducting layers of multi-layered thin-film ferroelectric device, such as is used in liquid crystal/ferroelectric display, can be electrically isolated using thin-film layer of polyimide. Ease of application and high electrical-breakdown strength allow dependable and economical means of providing dielectric for other thin-film microelectronic devices.

  8. Macroscale Janus polymer single crystal film and its wettability analysis

    NASA Astrophysics Data System (ADS)

    Qi, Hao; Wang, Wenda; Zhou, Tian; Li, Christopher

    2014-03-01

    Liquid-liquid interface between two immiscible solvents is crucial to studying amphiphile and colloidal self-assembly. It can also guide chain folding during the crystallization process. In this presentation, we show that crystallization of dicarboxy end functionalized poly(?-caprolactone) at water/pentyl acetate interface result in millimeter scale, uniform polymer single crystal (PSC) film. Due to the asymmetric nature at the liquid-liquid interface, the PSC film exhibit Janus property - a hydrophobic side and a hydrophilic side, which is confirmed by in-situ nano-condensation experiment using an environmental scanning electron microscope. The thickness of the PSC film changes with different polymer solution concentration, revealing a surface tension dominated crystallization process.

  9. The viscoplastic behavior of Hastelloy-X single crystal

    NASA Technical Reports Server (NTRS)

    Jordan, Eric H.; Shi, Shixiang; Walker, Kevin P.

    1993-01-01

    A viscoplastic constitutive model for simulating the behavior of Hastelloy-X single crystal material was derived based on crystallographic slip theory. To determine the appropriate constitutive model constants and to test the predictions of the model, tests on Hastelloy-X crystals were carried out, including the rate sensitivity, cyclic hardening, nonproportional hardening, relaxation, and strain rate dip tests. It was found necessary to include cube slip in the model in order to correlate the uniaxial behavior of the single crystal, to incorporate the interaction effects in both the hardening and the dynamic recovery evolution equations for the drag stress, and to successfully capture correct strain rate sensitivity under biaxial tension-torsion loading conditions.

  10. Characterization of hydrogen embrittlement in nickel base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Chene, J.; Baker, C. L.; Bernstein, I. M.; Williams, J. C.

    1986-01-01

    In order to study the role of CMSX2 single crystal microstructure on the combined stress-hydrogen environment effects, hydrogen was introduced by cathodic charging. Concentration measurements were carried out to investigate the dependence of hydrogen solubility and trapping on microstructure. Mechanical properties were measured at room temperature on smooth tensile specimens as a function of heat treatment, crystal orientation and H charging conditions. SEM and TEM allow to study H induced cracks initiation and propagation. A large amount of hydrogen can be dissolved and trapped in CMSX2 single crystals when exposed to a high hydrogen fugacity environment. The strong H trapping evidenced in voids explains the predominant role of these defects as crack initiation sites. The strong detrimental effect of hydrogen on the material tenacity is discussed.

  11. Atomistic simulation of shocks in single crystal and polycrystalline Ta

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.

    2011-06-01

    Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.

  12. Ho:YAG single crystal fiber: fabrication and optical characterization

    E-print Network

    ,* Craig D. Nie,2 James A. Harrington,2 and Ramesh Shori3 1 The Holcombe Department of Electrical, D. Sangla, F. Balembois, and P. Georges, "34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm," Appl. Phys. B 104(1), 1­4 (2011). 4. P. C. Shi, I. A. Watson, and J. H. Sharp, "High

  13. Low temperature magnetic transitions of single crystal HoBi

    SciTech Connect

    Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.; Budko, Sergei L.; Canfield, Paul C.

    2013-09-04

    We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

  14. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  15. Unified constitutive model for single crystal deformation behavior with applications

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Meyer, T. G.; Jordan, E. H.

    1988-01-01

    Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.

  16. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  17. Low-cost single-crystal turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Heath, B.; Fujii, M.

    1983-01-01

    The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

  18. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  19. Engineering chromium related single photon emitters in single crystal diamond

    E-print Network

    I Aharonovich; S Castelletto; B C Johnson; J C McCallum; S Prawer

    2010-09-29

    Color centers in diamond as single photon emitters, are leading candidates for future quantum devices due to their room temperature operation and photostability. The recently discovered chromium related centers are particularly attractive since they possess narrow bandwidth emission and a very short lifetime. In this paper we investigate the fabrication methodologies to engineer these centers in monolithic diamond. We show that the emitters can be successfully fabricated by ion implantation of chromium in conjunction with oxygen or sulfur. Furthermore, our results indicate that the background nitrogen concentration is an important parameter, which governs the probability of success to generate these centers.

  20. Phase transition behavior and defect chemistry of [001]-oriented 0.15Pb(In1/2Nb1/2)O3-0.57Pb(Mg1/3Nb2/3)O3-0.28PbTiO3-Mn single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Fang, Bijun; Deng, Ji; Deng, Hao; Yan, Hong; Yue, Qingwen; Chen, Jianwei; Li, Xiaobing; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu

    2015-06-01

    The ferroelectric single crystals 0.5 mol. % Mn-doped 0.15Pb(In1/2Nb1/2)O3-0.57Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PIMNT-Mn) with rhombohedral perovskite structure were grown by a modified Bridgman method. Dielectric performance analysis reveals that the as-grown PIMNT-Mn single crystals exhibit complex dielectric behavior after polarization, in which the dielectric constant depends on frequency apparently around the ferroelectric phase transition temperatures TR-M and Tm. The temperature and electric-field induced ferroelectric phase transitions were investigated by the temperature dependent unipolar strain curves. The electric-field induced discontinuous ferroelectric phase transitions at elevated temperatures exhibit first-order like phase transition character. The converse piezoelectric constant (d33), maximum strain value (Smax%), and longitudinal electrostrictive coefficient (Q) increase considerably when the temperature approaches the ferroelectric phase transition temperatures TR-M and TM-T. The complex impedance curves (Z?-Z') present typical semicircle shapes from 425 °C to 550 °C. The activation energy calculated by the Arrhenius law is 0.86 eV, indicating that the high-temperature conduction mechanism is dominated by the extrinsically formed oxygen vacancies.

  1. Single-crystal Si formed on amorphous substrate at low temperature by nanopatterning and nickel-induced lateral crystallization

    E-print Network

    Single-crystal Si formed on amorphous substrate at low temperature by nanopatterning and nickel-induced lateral crystallization Jian Gu and Stephen Y. Chou NanoStructure Laboratory, Department of Electrical, Utah 84020 Received 11 April 2002; accepted for publication 7 June 2002 Single-crystal silicon has been

  2. Green “planting” nanostructured single crystal silver

    PubMed Central

    Zhao, Hong; Wang, Fei; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Lai, Yijian; Zheng, Junwei; Hu, Xiaobin; Fan, Tongxiang; Tang, Jianguo; Zhang, Di; Hu, Keao

    2013-01-01

    Design and fabrication of noble metal nanocrystals have attracted much attention due to their wide applications in catalysis, optical detection and biomedicine. However, it still remains a challenge to scale-up the production in a high-quality, low-cost and eco-friendly way. Here we show that single crystalline silver nanobelts grow abundantly on the surface of biomass-derived monolithic activated carbon (MAC), using [Ag(NH3)2]NO3 aqueous solution only. By varying the [Ag(NH3)2]NO3 concentration, silver nanoplates or nanoflowers can also be selectively obtained. The silver growth was illustrated using a galvanic-cell mechanism. The lowering of cell potential via using [Ag(NH3)2]+ precursor, together with the AgCl crystalline seed initiation, and the releasing of OH? in the reaction process, create a stable environment for the self-compensatory growth of silver nanocrystals. Our work revealed the great versatility of a new type of template-directed galvanic-cell reaction for the controlled growth of noble metal nanocrystals. PMID:23515002

  3. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  4. Low-dissipation cavity optomechanics in single-crystal diamond

    E-print Network

    Mitchell, Matthew; Lake, David P; Barclay, Paul E

    2015-01-01

    Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, creating devices from high quality bulk diamond chips is challenging. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to $2\\,\\text{GHz}$ frequency ($f_\\text{m}$) mechanical resonances is observed. In room temperature ambient conditions, the resonances have a record combination of low dissipation ($Q_\\text{m} > 9000$) and high frequency, with $Q_\\text{m}\\cdot f_\\text{m} \\sim 1.9\\times10^{13}$ sufficient for room temperature single phonon coherence. The system is nearly sideband resolved, and radiation pressure is used to excite $\\sim 31\\,\\text{pm}$ amplitude mechanical self-oscillations that can drive diamond color centre electron spin transitions.

  5. ESR and Microwave Absorption in Boron Doped Diamond Single Crystals

    NASA Astrophysics Data System (ADS)

    Timms, Christopher

    2015-03-01

    Superconductivity has been reportedly found in boron-doped diamond. Most research to date has only studied superconductivity in polycrystalline and thin film boron-diamonds, as opposed to a single crystal. In fact, only one other group has examined a macro scale boron-doped diamond crystal. Our group has successfully grown large single crystals by using the High Temperature High Pressure method (HTHP) and observed a transition to metallic and superconducting states for high B concentrations. For the present, we are studying BDD crystal using Electron Spin Resonance. We conducted our ESR analysis over a range of temperatures (2K to 300K) and found several types of signals, proving the existence of charge carriers with spin 1/2 in BDD. Moreover, we have found that with increasing B concentrations, from n ~ 1018 cm-3 to n of over 1020 cm-3, the ESR signal changes from that of localized spins to the Dysonian shape of free carriers. The low magnetic field microwave absorption has also been studied in BDD samples at various B concentrations and the clear transition to superconducting state has been found below Tc that ranges from 2K to 4 K depending on concentration and quality of crystal. Sergey Polyakov, Victor Denisov, Vladimir Blank, Ray Baughman, Anvar Zakhidov.

  6. Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism

    SciTech Connect

    Yang, Qian; Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 ; Zhao, Jiong-Peng; Liu, Zhong-Yi

    2012-12-15

    Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {l_brace}[Ni(Pzc)ClH{sub 2}O]{center_dot}MeOH{r_brace}{sub n} with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism. - Graphical abstract: A porous complex 1 with rare (10,3)-d net was gained, and 1 underwent a single-crystal-to-single-crystal transformation to another phase 2. Highlights: Black-Right-Pointing-Pointer New (10,3)-d net was obtained with pyrazine-2-carboxylate ligands as a triangular node. Black-Right-Pointing-Pointer The complex 1 has a 1D channel filled with methanol molecules as guests. Black-Right-Pointing-Pointer 1 could undergo SCSC structural transition to 2 after guests exchanged. Black-Right-Pointing-Pointer Antiferromagnetic interactions were found in 1 and 2.

  7. Single crystal growth, crystal structure and characterization of a novel crystal: L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP)

    NASA Astrophysics Data System (ADS)

    Wang, L. N.; Wang, X. Q.; Zhang, G. H.; Liu, X. T.; Sun, Z. H.; Sun, G. H.; Wang, L.; Yu, W. T.; Xu, D.

    2011-07-01

    A novel organic crystal, L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP), synthesized and grown from aqueous solution, is presented. X-ray single diffraction shows that LAPP belongs to the monoclinic crystallographic system with space group P2 1. FT-IR and UV/vis/NIR transmission spectra have been employed to characterize the crystal. The computational calculation based on the density functional theory at the B3LYP/6-31G (d, p) level has been used to compute the first-order hyperpolarizability of LAPP relating to different molecular models. The morphology, nonlinear characteristic and thermal stability of the crystal have also been investigated.

  8. Microcompression Behaviors of Single Crystals Simulated by Crystal Plasticity Finite Element Method

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Na, Young-Sang; Cho, Kyung-Mox; Dimiduk, Dennis M.; Choi, Yoon Suk

    2015-11-01

    The microcompression behavior of single-slip oriented, single-crystal micro-pillars was simulated using a crystal plasticity finite element method, by varying a primary slip-plane inclination angle from 36.3 to 48.7 deg while keeping the same primary slip system. Simulated global deformation of the micro-pillars was separated into two types, depending upon the primary slip-plane inclination angle: the one consistent with the primary slip direction and the other diagonally opposite to the primary slip direction.

  9. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wan; Li, Shu-guang; Bao, Ya-jie; Fan, Zhen-kai; An, Guo-wen

    2016-01-01

    A design for single-polarization single-mode photonic crystal fiber with rectangular lattice is proposed in this paper. The proposed fiber is studied by the full vector finite element method with perfectly matched layers. The single-polarization single-mode operation region of the fiber is achieved in a certain wavelength range with low confinement loss include the wavelength of 1.55 ?m. The loss of one polarization is 0.124 dB/km at the wavelength of 1.55 ?m and the confinement loss of the other one polarization is very high which can not ensure the transmission in the fiber. The single-polarization single-mode photonic crystal fiber is desirable for some polarization-sensitive applications such as high-power fiber lasers, fiber optic gyroscopes, current sensors and optical coherent communication systems.

  10. Shaped crystal growth of langasite-type piezoelectric single crystals and their physical properties.

    PubMed

    Yokota, Yuui; Yoshikawa, Akira; Futami, Yoshisuke; Sato, Masato; Tota, Kazushige; Onodera, Ko; Yanagida, Takayuki

    2012-09-01

    We have grown shape-controlled langasite-type crystals by the micro-pulling-down (?-PD) method. Columnar shaped La(3)Ta(0.5)Ga(5.5)O(14) (LTG), Ca(3)NbGa(3)Si(2)O(14) (CNGS), Ca(3)TaGa(3)Si(2)O(14) (CTGS), Sr(3)NbGa(3)Si(2)O(14) (SNGS), and Sr(3)Ta- Ga(3)Si(2)O(14) (STGS) crystals were grown using a Pt-Rh crucible with a 3-mm-diameter columnar die at the bottom. All grown crystals showed high transparency except for the peripheral area and diameter of approximately 3 mm. The chemical phases at the central parts of the grown crystals were identified as a single phase of langasite-type structure and their lattice parameters were almost the same as those of crystals grown by the Czochralski (Cz) method; however, some impurity phases were observed in the peripheral area. In X-ray rocking curve measurements, the grown crystals indicated equivalent crystallinity to the crystal grown by the Cz method. The piezoelectric constant d(11) of the CNGS crystal was 3.98 pC/N; this value is well correlated with those of previous reports. PMID:23007752

  11. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  12. Growth and electrical properties of mercury indium telluride single crystals

    SciTech Connect

    Wang Linghang Dong Yangchun; Jie Wanqi

    2007-11-06

    A novel photoelectronic single crystal, mercury indium telluride (MIT), has been successfully grown by using vertical Bridgman method (VB). The crystallinity, thermal and electrical properties of the MIT crystal were investigated. The results of X-ray rocking curve show that the as-grown MIT crystal has good crystal quality with the FWHM on (3 1 1) face of about 173 in. DSC measurement reveals that the Hg element is easy to solely evaporate from the compound when the temperature is higher than 387.9 deg. C in the open system. Hall measurements at room temperature show that the resistivity, carrier density and mobility of the MIT crystal were 4.79 x 10{sup 2} {omega} cm, 2.83 x 10{sup 13} cm{sup -3} and 4.60 x 10{sup 2} cm{sup 2} V{sup -1} s{sup -1}, respectively. The reduction of carrier mobility and the increase of the resistivity are related to the adding of In{sub 2}Te{sub 3} into HgTe, which changes the energy band structure of the crystal.

  13. Structural and thermal properties of MnSi single crystal

    NASA Astrophysics Data System (ADS)

    Tite, T.; Shu, G. J.; Chou, F. C.; Chang, Y.-M.

    2010-07-01

    Polarized Raman spectroscopy of MnSi single crystal was carried out to characterize its phonons, crystal structure, and thermal stability. The Raman spectra show correct Raman selection rules and consistence with those of the other transition metal silicide compounds. The MnSi thermal stability and phase transformation is investigated by monitoring the evolution of Raman spectrum as a function of the laser intensity, in which three compositions, MnSi, MnSiO3, and Mn5Si3, can be identified. The involved oxidation reaction is then proposed and verified by performing the thermogravimetric and x-ray diffraction analysis.

  14. Spatial Coherence Preservation By Synthetic Single Diamond Crystals

    SciTech Connect

    Hoszowska, J.; Freund, A. K.; Guigay, J.-P.; Rommeveaux, A.

    2004-05-12

    The degree of spatial coherence after x-ray diffraction by synthetic single diamond crystals was investigated. The coherence preservation was measured by means of the Talbot effect for x-rays at the optics beamline BM5 at the ESRF. The (111)- and (100)- oriented specimens of type Ib and IIa were grown by De Beers. To establish a correlation between the coherence degradation and the surface quality, 3D surface topography was measured with an optical interferometric profiler and an AFM. Likewise, to pinpoint the relationship with crystalline quality, the samples were characterized by means of double crystal x-ray diffractometry with microscopic resolution.

  15. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry

    PubMed Central

    Wilson, P. W.; Beaglehole, D.; DeVries, A. L.

    1993-01-01

    Antarctic fishes synthesise antifreeze proteins which can effectively inhibit the growth of ice crystals. The mechanism relies on adsorption of these proteins to the ice surface. Ellipsometry has been used to quantify glycopeptide antifreeze adsorption to the basal and prism faces of single ice crystals. The rate of accumulation was determined as a function of time and at concentrations between 0.0005 and 1.2 mg/ml. Estimates of packing density at saturation coverage have been made for the basal and prism faces. PMID:19431902

  16. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.

  17. Composition Dependence of Electrocaloric Effect in (1 - x)Pb(Mg1/3Nb2/3)O3 -xPbTiO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Qiu, Jian-Hua; Wang, Xiu-Qin; Yuan, Ning-Yi; Ding, Jian-Ning

    2015-07-01

    Composition dependence of electrocaloric effect is investigated in (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 single crystals by using an eighth-order Landau-Devonshire theory. The applied electric field along [001] direction reduces the ferroelectric-ferroelectric phase transition temperatures, but increases the Curie temperatures. The electrocaloric coefficients of tetragonal phase are much larger than that of rhombohedral and monoclinic phase. A negative electrocaloric effect is observed near the MC-T phase transition in 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystal. The application of a strong enough electric field results in a high adiabatic temperature change over a broad range of temperature. Therefore, it would be useful to construct a solid state cooling cycle over a broad temperature range for practical applications. Supported by the State Key Program of National Natural Science of China under Grant No. 51335002, Changzhou Science and Technology Project under Grant No. CJ20130022, and the Priority Academic Program Development of Jiangsu Higher Education Institutions on Renewable Energy Material Science and Engineering

  18. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory

    NASA Astrophysics Data System (ADS)

    Fang, Huajing; Li, Qiang; He, Wenhui; Li, Jing; Xue, Qingtang; Xu, Chao; Zhang, Lijing; Ren, Tianling; Dong, Guifang; Chan, H. L. W.; Dai, Jiyan; Yan, Qingfeng

    2015-10-01

    We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 103. More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems.We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 103. More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05098g

  19. Control of Pr for Ba substitution in PBCO single crystals by the crystal pulling method

    NASA Astrophysics Data System (ADS)

    Tagami, Minoru; Shiohara, Yuh

    1997-02-01

    Substitution of Pr for Ba in Pr 1 + xBa 2 - xCu 3O 7 - ? ( x = 0.06-0.29) single crystals was successfully controlled by the crystal pulling method. The substitution ratios x of the grown single crystals from an average composition in the melt of Pr : Ba: Cu = 5 : 30 : 65, Pr : Ba : Cu = 5 : 28 : 67 and Pr : Ba : Cu = 5 : 24 : 71 were x = 0.06, 0.14 and 0.29 respectively. These phenomena appear to depend on the local equilibrium tie-line of {Pr1 + xBa2 - xCu3O7 - ?}/{liquid} on the isothermal section of the PrO y?BaO?CuO ternary phase diagram at the growth temperature. The resistivity of these crystals shows the tendency to increase with decreasing temperature. However, the resistivity of the crystal with x = 0.06 is six orders of magnitude smaller than that of the x = 0.29 crystal at 70 K.

  20. A statistical model approximation for perovskite solid-solutions: A Raman study of lead-zirconate-titanate single crystal

    NASA Astrophysics Data System (ADS)

    Frantti, J.; Fujioka, Y.; Puretzky, A.; Xie, Y.; Ye, Z.-G.; Glazer, A. M.

    2013-05-01

    Lead titanate (PbTiO3) is a classical example of a ferroelectric perovskite oxide illustrating a displacive phase transition accompanied by softening of a symmetry-breaking mode. The underlying assumption justifying the soft-mode theory is that the crystal is macroscopically sufficiently uniform that a meaningful free energy function can be formed. In contrast to PbTiO3, experimental studies show that the phase transition behaviour of lead-zirconate-titanate solid solution (PZT) is far more subtle. Most of the studies on the PZT system have been dedicated to ceramic or powder samples, in which case an unambiguous soft-mode study is not possible, as modes with different symmetries appear together. Our Raman scattering study on titanium-rich PZT single crystal shows that the phase transitions in PZT cannot be described by a simple soft-mode theory. In strong contrast to PbTiO3, splitting of transverse E-symmetry modes reveals that there are different locally ordered regions. The role of crystal defects, random distribution of Ti and Zr at the B-cation site and Pb ions shifted away from their ideal positions, dictates the phase transition mechanism. A statistical model explaining the observed peak splitting and phase transformation to a complex state with spatially varying local order in the vicinity of the morphotropic phase boundary is given.

  1. Pressure-induced crossover from long-to-short-range order in [Pb(Zn{sub 1/3})Nb{sub 2/3}O{sub 3}]{sub 0.905}(PbTiO{sub 3}){sub 0.095} single crystal

    SciTech Connect

    SAMARA,GEORGE A.; VENTURINI,EUGENE L.; SCHMIDT,V. HUGO

    2000-01-25

    A pressure-induced crossover from normal Ferroelectric-to-Relaxer behavior has been observed in single crystal [Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.905}(PbTiO{sub 3}){sub 0.0095}, or PZN - 9.5% PT. Analogy with similar observations for other perovskites indicates that this crossover is a general feature of compositionally-disordered soft mode ferroelectrics. The Pressure-Temperature phase diagram has been also determined.

  2. Dislocations and Grain Boundaries in Semiconducting Rubrene Single-Crystals

    SciTech Connect

    Chapman,B.; Checco, A.; Pindak, R.; Siegrist, T.; Kloc, C.

    2006-01-01

    Assessing the fundamental limits of the charge carrier mobilities in organic semiconductors is important for the development of organic electronics. Although devices such as organic field effect transistors (OFETs), organic thin film transistors (OTFTs) and organic light emitting diodes (OLEDs) are already used in commercial applications, a complete understanding of the ultimate limitations of performance and stability in these devices is still lacking at this time. Crucial to the determination of electronic properties in organic semiconductors is the ability to grow ultra-pure, fully ordered molecular crystals for measurements of intrinsic charge transport. Likewise, sensitive tools are needed to evaluate crystalline quality. We present a high-resolution X-ray diffraction and X-ray topography analysis of single-crystals of rubrene that are of the quality being reported to show mobilities as high as amorphous silicon. We show that dislocations and grain boundaries, which may limit charge transfer, are prominent in these crystals.

  3. Engineering domain configurations for enhanced piezoelectricity in barium titanate single crystals

    E-print Network

    Li, Jiangyu

    Engineering domain configurations for enhanced piezoelectricity in barium titanate single crystals piezoelectric responses of barium titanate single crystals under different crystallographic orientations, and use it to explain the ultrahigh piezoelectric response recently observed in a 270 cut barium titanate

  4. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  5. Crystal growth and luminescence properties of Cr-doped YAlO3 single crystals

    NASA Astrophysics Data System (ADS)

    Sugiyama, Makoto; Yanagida, Takayuki; Totsuka, Daisuke; Yokota, Yuui; Futami, Yoshisuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    We have investigated optical and scintillation properties of Cr-doped YAlO3 (Cr:YAP) single crystals with different Cr concentrations. Cr:YAP crystals were grown by the micro-pulling-down (?-PD) method. The grown crystals had a single-phase confirmed by the powder XRD analysis. For all the Cr-doped samples, a peak positioned near 700 nm wavelength dominates the spectra. It can be ascribed to the Cr3+2E?4A2 emission. In X-ray induced radioluminescence spectra, 2E?4A2 emissions were observed. The light output of Cr 0.5%:YAP under X-ray excitation was more than twice as high as the standard CdWO4.

  6. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  7. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  8. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  9. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  10. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  11. Magnetocapacitance effect in nonmultiferroic YFeO3 single crystal

    NASA Astrophysics Data System (ADS)

    Cheng, Z. X.; Shen, H.; Xu, J. Y.; Liu, P.; Zhang, S. J.; Wang, J. L.; Wang, X. L.; Dou, S. X.

    2012-02-01

    YFeO3 single crystal displays two relaxor-like dielectric relaxations, one at low temperature (170 - 300 K) and one at high temperature (370 - 520 K), which are attributed to the activation of electrons and oxygen vacancies, respectively. Above the temperature at which electrons are activated, the sample displays a large magnetocapacitance effect. Comparison of the impedance Cole-Cole plots measured with and without applied magnetic field reveals that the occurrence of magnetocapacitance effect is accompanied with an increasing in DC conductivity under magnetic field after the activation of electrons, which is explained by the enhancement of electron jumping in Fe2+-O-Fe3+ chains by magnetic field. Thus the magnetocapacitance effect in YFeO3 single crystal can be explained by the combination of the Maxwell-Wagner space charge effect and/or magnetoresistance effect, depending on the frequency range.

  12. Nanofluidics of Single-crystal Diamond Nanomechanical Resonators

    E-print Network

    Kara, V; Atikian, H; Yakhot, V; Loncar, M; Ekinci, K L

    2015-01-01

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, i.e., a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N$_2$, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water, and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators o...

  13. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  14. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.

    PubMed

    Kara, V; Sohn, Y-I; Atikian, H; Yakhot, V; Lon?ar, M; Ekinci, K L

    2015-12-01

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N2, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators operable in fluids. PMID:26509332

  15. Thermal fatigue of NiAl single crystals

    SciTech Connect

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-07-01

    Single crystals of [001]-oriented NiAl single crystals were subjected to thermal fatigue by a method which employs induction heating of disk-shaped specimens heated in an argon atmosphere. Several time-temperature heating and cooling profiles were used to produce different thermal strain histories in specimens cycled between 973 K and 1,473 K. After thermal cycling, pronounced shape changes in the form of diametrical elongations along {l{underscore}angle}100{r{underscore}angle} directions with accompanying increases in thickness at and near the {l{underscore}angle}100{r{underscore}angle} specimen axes were observed. The deformations were analyzed in terms of operative slip systems in tension and compression, ratchetting (cyclic strain accumulation), and the elastic properties of NiAl. The experimental results correlate best with thermal stresses associated with the large elastic anisotropy of NiAl.

  16. Ultrafast dynamics of excitons in tetracene single crystals

    SciTech Connect

    Birech, Zephania; Schwoerer, Heinrich; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S{sub n} on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S{sub 1} on a 40 ps timescale. The high energy Davydov component of the S{sub 1} exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  17. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  18. Internal friction measurement in high purity tungsten single crystal

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.

    1974-01-01

    Internal friction peaks observed after small deformation in high purity tungsten single crystals between liquid helium temperature and 800 K in the frequency range 30-50 KHz, are studied as a function of orientation. An orientation effect is observed in the internal friction spectra due to the creation of internal stresses. The elementary processes related to these peaks are discussed in terms of kink generation and geometric kink motion on screw and edge dislocations in an internal stress field.

  19. The specific heat of YBCO single crystals near Tc

    SciTech Connect

    Reagan, S.; Lawrie, I.D.; Howson, M.A.

    1992-12-01

    The authors present results for the measured specific heat of YBCO single crystals between 80 and 110K. The specific heat has been measured using an a.c. optical heating technique with a temperature resolution of 15mK. The superconducting transition is marked by a sharply peaked {open_quote}Lambda{close_quote} like anomaly. The {open_quote}fluctuation{close_quote} contributions to the specific heat fit a logarithmic divergence very well.

  20. Ion implantation induced blistering of rutile single crystals

    NASA Astrophysics Data System (ADS)

    Xiang, Bing-Xi; Jiao, Yang; Guan, Jing; Wang, Lei

    2015-07-01

    The rutile single crystals were implanted by 200 keV He+ ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He+ ion implantation with appropriate fluence and the following thermal annealing.

  1. Diamond turning of Si and Ge single crystals

    SciTech Connect

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  2. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  3. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, Carol M. (Aiken, SC)

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  4. ATMOSPHERIC EFFECTS ON THE PERFORMANCE OF CDZNTE SINGLE CRYSTAL DETECTORS

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2010-05-12

    The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.

  5. Oxygen tracer diffusion in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Cawley, James D.; Halloran, John W.; Cooper, Alfred R.

    1991-01-01

    Oxygen tracer diffusion coefficients are determined in single-crystal alumina samples with differing dopant levels using the gas-exchange technique. The diffusion direction is parallel to the c-axis and the ambient PO2 is 1 atm (100,000 Pa) for all experiments except a single run with a low PO2, approximately 10 to the -15th atm (10 to the -10th Pa) produced by a CO/CO2 mixture. The diffusion is insensitive to both impurities and ambient PO2. The insensitivities are discussed in terms of point-defect clustering. Prior tracer studies are compared and discussed.

  6. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    SciTech Connect

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  7. Synthesis of Calcite Single Crystals with Porous Surface by Templating of Polymer Latex Particles

    E-print Network

    Qi, Limin

    Synthesis of Calcite Single Crystals with Porous Surface by Templating of Polymer Latex Particles in solution. After template removal, well-defined, calcite single crystals exhibiting a rhombohedral morphology and uniform surface pores are obtained. The surface pore size of the calcite single crystals can

  8. Tip-Induced Calcite Single Crystal Nanowear Ramakrishna Gunda, and Alex A. Volinsky

    E-print Network

    Volinsky, Alex A.

    Tip-Induced Calcite Single Crystal Nanowear Ramakrishna Gunda, and Alex A. Volinsky Department Wear behavior of freshly cleaved single crystal calcite (CaCO3) was investigated by continuous scanning of effects. The wear regime is due to abrasive wear. Single crystal calcite hardness of 2.8±0.3 GPa

  9. Pore space percolation in sea ice single crystals D. J. Pringle,1,2

    E-print Network

    Golden, Kenneth M.

    Pore space percolation in sea ice single crystals D. J. Pringle,1,2 J. E. Miner,2 H. Eicken,2 and K December 2009. [1] We have imaged sea ice single crystals with X-ray computed tomography, and characterized model. Our results shed new light on the complex microstructure of sea ice, highlighting single crystal

  10. Large pyramid shaped single crystals of BiFeO3 by solvothermal synthesis method

    NASA Astrophysics Data System (ADS)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara

    2012-06-01

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO3. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  11. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    SciTech Connect

    A. Wang; G. Pickrell; R. May

    2002-09-10

    In this research program, several optical instruments for high temperature measurement based on single crystal sapphire material are introduced and tested for real-time, reliable, long-term monitoring of temperatures for coal gasifier. These are sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; intensity-measurement based polarimetric sapphire sensor and broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development. This approach is based on the self-calibrating measurement of optical path differences (OPD) in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes. The BPDI sensor system extracts absolute temperature information by absolute measurement of phase delays. By encoding temperature information in optical spectrum instead of optical intensity, this sensor guarantees its relative immunity to optical source power fluctuations and fiber losses, thus providing a high degree of long-term measurement stability which is highly desired in industrial applications. The entire prototype for BPDI system including the single crystal sapphire probe, zirconia prism, alumina extension tube, optical components and signal processing hardware and software have shown excellent performance in the laboratory experiments shown in this report.

  12. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Weiyao; Cao, Shixun; Huang, Ruoxiang; Cao, Yiming; Xu, Kai; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    We report the control of spin reorientation (SR) transition in perovskite D y1 -xS mxFe O3 , a whole family of single crystals grown by an optical floating zone method from x =0 to 1 with an interval of 0.1. Powder x-ray diffractions and Rietveld refinements indicate that lattice parameters a and c increase linearly with Sm doping concentration, whereas b keeps a constant. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied in detail. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x >0.2 , which covers an extremely wide temperature range including room temperature. The a -axis magnetization curves under the FC during cooling (FCC) process bifurcate from and then jump back to that of the ZFC and FC warming process in single crystals when x =0.5 -0.9 , suggesting complicated 4 f -3 d electron interactions among D y3 + -S m3 +,D y3 + -F e3 + , and S m3 + -F e3 + sublattices of diverse magnetic configurations. The magnetic properties from the doping effect on SR transition temperature in these single crystals might be useful in the material physics and device design applications.

  13. Chiral multichromic single crystals for optical devices (LDRD 99406).

    SciTech Connect

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  14. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  15. Interfacial dislocation motion and interactions in single-crystal superalloys

    SciTech Connect

    Liu, B.; Raabe, D.; Roters, F.; Arsenlis, A.

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  16. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  17. Orientation effects in 2-2 piezocomposites based on (1-x)Pb(A1/3Nb2/3)O3-xPbTiO3 single crystals (A=Mg or Zn)

    NASA Astrophysics Data System (ADS)

    Topolov, V. Yu.; Krivoruchko, A. V.

    2009-04-01

    Volume fraction and orientation dependences of piezoelectric coefficients and hydrostatic piezoelectric response of 2-2 parallel-connected composites with two piezoactive components are analyzed. These composites comprise relaxor-ferroelectric (1-x)Pb(A1/3Nb2/3)O3-xPbTiO3 single crystals (A =Mg or Zn) and polyvinylidene fluoride, and different variants of poling directions of these layers are considered. It is shown how the orientation of the main crystallographic axes and the anisotropy of the electromechanical properties of the single crystal influence maxima of effective piezoelectric coefficients and other parameters of the composites. Advantages of the piezocomposites based on the [011] poled single crystals are discussed.

  18. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

  19. Effect of Li-doping on polar-nanoregions in K(Ta1-xNbx)O3 single crystals

    NASA Astrophysics Data System (ADS)

    Mijanur Rahaman, Md.; Imai, Tadayuki; Kobayashi, Junya; Kojima, Seiji

    2015-10-01

    The anomalous changes of the elastic properties in the vicinity of the Curie temperature, TC = 304 K, of a 5%Li-doped KTa1-xNbxO3 (KTN) single crystal were investigated by micro-Brillouin scattering. By the Li-doping, the temperature region of the elastic anomaly was extended in comparison with a non-doped KTN crystal. This fact indicates that the Li-doping enhances the growth of polar nanoregions (PNRs), while the remarkable elastic anomaly just above TC is suppressed. The growth of PNRs was also evident from the change in the behavior of the central peak (CP) in comparison with the non-doped KTN. The broadening of the elastic anomaly can be the evidence of the enhanced diffusive nature of the ferroelectric phase transition, which is induced by Li ions.

  20. Formation of charged ferroelectric domain walls with controlled periodicity

    PubMed Central

    Bednyakov, Petr S.; Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan; Setter, Nava

    2015-01-01

    Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with strong enhancement upon increased charged domain wall density. The existence of charged domain walls in proper ferroelectrics is disfavoured by their high formation energy and methods of their preparation in predefined patterns are unknown. Here we develop the theoretical background for the formation of charged domain walls in proper ferroelectrics using energy considerations and outline favourable conditions for their engineering. We experimentally demonstrate, in BaTiO3 single crystals the controlled build-up of high density charged domain wall patterns, down to a spacing of 7??m with a predominant mixed electronic and ionic screening scenario, hinting to a possible exploitation of charged domain walls in agile electronics and sensing devices. PMID:26516026

  1. New Techniques in Characterization of Ferroelectric Materials

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp

    2008-01-01

    Two new techniques have been developed to characterize Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) based ferroelectric single crystals: (i) electro-thermal imaging, and (ii) single crystal x-ray diffraction in the transmission mode. (i) Electro-thermal imaging is a remote sensing technique that can detect the polarization direction and poling state of a whole crystal slice. This imaging technique utilizes an IR camera to determine the field induced temperature change and does not require any special or destructive sample preparation. In the resulting images it is possible to distinguish regions of 180 deg domains. This powerful technique can be used remotely during poling to determine the poling state of the crystal to avoid over-poling that can result in inferior properties and/or cracking of the crystals. Electro-thermal imaging produced the first direct observations of polarization rotation. Under bipolar field, the domains near the corners were the first to switch direction. As the field increased above the coercive field, domains at the center part of the crystals switched direction. (ii) X-ray diffraction in the transmission mode has long been used in structure determination of organic crystals and proteins; however, it is not used much to characterize inorganic systems. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were examined by this XRD technique for the first time, and a never-before-seen super-lattice was revealed with a doubling of the unit cell in all three directions, giving a cell volume eight times that of a traditional perovskite unit cell. The significance of the super-lattice peaks increased with poling, indicating a structural contribution to ordering. Lack of such observations by electron diffraction in the transmission electron microscope examinations suggests the presence of a bulk effect.

  2. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T., Jr.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.

  3. Entropy changes and caloric effects in RAl2 single crystals

    NASA Astrophysics Data System (ADS)

    Antunes de Oliveira, Nilson; Caro Patiño, Julieth; von Ranke, Pedro R.

    2015-03-01

    In this work we theoretically discuss the entropy changes and the caloric effects in RAl2 single crystals, which crystalize in the cubic symmetry and have large magneto crystalline anisotropy due to the crystal electric field. For this purpose, we use a model of interacting magnetic moments including a term to account for the crystal electric field. We apply the model to calculate the entropy changes and the magnetocaloric quantities in TmAl2 and NdAl2 by applying magnetic field variations in different crystallographic directions. Our calculations for the entropy changes in these compounds are in a reasonable agreement with the available experimental data for ?B = 7 T. Further experimental data are necessary to compare with our theoretical predictions for the adiabatic temperature change. We also calculate the caloric quantities by fixing the magnitude of the magnetic field and rotating its direction. In this case, our calculations predict an anomaly (i.e. a change of sign) in the caloric quantities of TmAl2 when a magnetic field of 3 T rotates from < 100 > to < 110 > direction. A similar behavior is also observed in NdAl2. This very interesting fact, which is basically due to the magneto crystalline anisotropy, needs experimental data to be confirmed CNPq, CAPES, FAPERJ.

  4. ESR Study on Irradiated Ascorbic Acid Single Crystal

    SciTech Connect

    Tuner, H.; Korkmaz, M.

    2007-04-23

    Food irradiation is a 'cold' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  5. Lithium containing chalcogenide single crystals for neutron detection

    NASA Astrophysics Data System (ADS)

    Tupitsyn, E.; Bhattacharya, P.; Rowe, E.; Matei, L.; Cui, Y.; Buliga, V.; Groza, M.; Wiggins, B.; Burger, A.; Stowe, A.

    2014-05-01

    Lithium containing semiconductor-grade chalcogenide single crystals were grown using the vertical Bridgman method. The source material was synthesized from elementary precursors in two steps, (i) preparing the metal alloy LiIn or LiGa, and (ii) reaction with chalcogen - Se or Te. In a number of experiments, enriched 6Li isotope was used for synthesis and growth. The composition and structure of the synthesized materials was verified using powder X-Ray diffraction. The energy band gaps of the crystals were determined using optical absorption measurements. The resistivity of LiInSe2 and LiGaSe2, obtained using current-voltage measurements is on the order of 108-1011 ? cm. Photoconductivity measurement of a yellow LiInSe2 sample showed a peak in the photocurrent around 445 nm. Nuclear radiation detectors were fabricated from single crystal wafers and the responses to alpha particles, neutrons and gammas were measured and presented. It suggests that this material is a promising candidate for neutron detection applications.

  6. Plastic deformation of Ni{sub 3}Nb single crystals

    SciTech Connect

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-07-01

    Temperature dependence of yield stress and operative slip system in Ni{sub 3}Nb single crystals with the D0{sub a} structure was investigated in comparison with that in an analogous L1{sub 2} structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and {l{underscore}brace}211{r{underscore}brace}{lt}{bar 1}{bar 0} 7 13{gt} twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni{sub 3}Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1{sub 2}-type compounds.

  7. Single-crystal magnetic anisotropies of rock-forming minerals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas

    2013-04-01

    Anisotropy of magnetic susceptibility (AMS) is often used as an indicator of mineral fabric in rocks. For a quantitative estimate of mineral fabric, it is necessary to know and understand the intrinsic magnetic anisotropy of each mineral in the rock. Susceptibility, and thus AMS, is a superposition of paramagnetic and ferromagnetic components. In general, the paramagnetic contribution can be related to silicates, whereas the ferromagnetic component arises from iron oxide inclusions. We determined single-crystal AMS in both low and high magnetic fields for a series of olivine, amphibole, clinopyroxene and orthopyroxene compositions. Analysis of high-field data allows for separation of ferromagnetic and paramagnetic contributions to the magnetic anisotropy. Acquisition of isothermal remanent magnetization (IRM) was measured in order to further characterize the ferromagnetic inclusions. Often, the iron oxides grow epitaxially on the silicate structure and have specific orientations with respect to the silicate. The ferromagnetic component of the AMS can provide information on the orientation or shape of the inclusions. The paramagnetic AMS in a single crystal is related to the distribution of cations with a strong magnetic moment, e.g. ferric and ferrous iron, in the lattice structure. Relationships between the anisotropy, e.g. the anisotropy degree (delta k) or principal susceptibility directions, and iron content were thus established for each mineral group. For example, the orientation of the intermediate and minimum susceptibility axes in olivine depends on the iron content - the minimum susceptibility is parallel to the crystallographic a-axis for 3-5 wt.% FeO and parallel to b for 7-9 wt.% FeO at room temperature; and for amphiboles, the degree of AMS increases linearly with increasing iron content. AMS in a rock depends on the single-crystal properties, which are influenced by lattice structure and composition, as well as the crystallographic preferred orientation of crystals. Information on single crystal AMS can thus be used to predict bulk AMS of ultrabasic rocks, when the orientation distribution function of the constituent minerals is known.

  8. Electronic properties of graphene-single crystal diamond heterostructures

    SciTech Connect

    Zhao, Fang; Thuong Nguyen, Thuong; Golsharifi, Mohammad; Amakubo, Suguru; Jackman, Richard B.; Loh, K. P.

    2013-08-07

    Single crystal diamond has been used as a substrate to support single layer graphene grown by chemical vapor deposition methods. It is possible to chemically functionalise the diamond surface, and in the present case H-, F-, O-, and N-group have been purposefully added prior to graphene deposition. The electronic properties of the resultant heterostructures vary strongly; a p-type layer with good mobility and a band gap of ?0.7?eV is created when H-terminated diamond layers are used, whilst a layer with more metallic-like character (high carrier density and low carrier mobility) arises when N(O)-terminations are introduced. Since it is relatively easy to pattern these functional groups on the diamond surface, this suggests that this approach may offer an exciting route to 2D device structures on single layer graphene sheets.

  9. One-dimensional photonic crystal cavities in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Li, Luozhou; Schröder, Tim; Chen, Edward H.; Bakhru, Hassaram; Englund, Dirk

    2015-06-01

    The realization of efficient optical interfaces for nitrogen vacancy centers in diamond is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate two techniques for fabricating one-dimensional photonic crystal cavities in single-crystal diamond, using (1) a combination of reactive ion etching and focused ion beam milling and (2) transferred silicon hard mask lithography with reactive ion etching. We use two kinds of one-dimensional photonic crystal cavity designs and discuss their optical performances. We find that transferred silicon mask lithography results in better optical properties than focused ion beam patterning techniques. The silicon masks also exhibit high oxygen plasma etching selectivity in excess of 36:1 (diamond:silicon). We use these masks to produce a variety of diamond photonic devices.

  10. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals

    NASA Astrophysics Data System (ADS)

    Hossain, M. Anwar; Tanaka, Isao; Tanaka, Takaho; Khan, A. Ullah; Mori, Takao

    2016-01-01

    We studied thermoelectric properties of YB41Si1.3 single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers, with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also.

  11. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 ?m3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  12. Drift mobility of holes in phenanthrene single crystals

    NASA Technical Reports Server (NTRS)

    Sonnonstine, T. J.; Hermann, A. M.

    1974-01-01

    The temperature dependence of drift mobilities of holes in single crystals of phenanthrene was measured in the range from 203 to 353 K in three crystallographic directions. Below the anomaly temperature of 72 C, the mobility temperature dependences are consistent with the Munn and Siebrand slow-phonon hopping process in the b direction and the Munn and Siebrand slow-phonon coherent mode in the a and c prime directions. The drift mobility temperature dependences in crystals that have been cooled through the anomaly temperature in the presence of illumination and an electric field are consistent with the model of Spielberg et al. (1971), in which the hindered vibration of the 4,5 hydrogens introduces a new degree of freedom above 72 C.

  13. Single-crystal Ti2AlN thin films

    NASA Astrophysics Data System (ADS)

    Joelsson, T.; Hörling, A.; Birch, J.; Hultman, L.

    2005-03-01

    We have produced pure thin-film single-crystal Ti2AlN(0001), a member of the Mn +1AXn class of materials. The method used was UHV dc reactive magnetron sputtering from a 2Ti:Al compound target in a mixed Ar -N2 discharge onto (111) oriented MgO substrates. X-ray diffraction and transmission electron microscopy were used to establish the hexagonal crystal structure with c and a lattice parameters of 13.6 and 3.07Å, respectively. The hardness H, and elastic modulus E, as determined by nanoindentation measurements, were found to be 16.1±1GPa and 270±20GPa, respectively. A room-temperature resistivity for the films of 39??cm was obtained.

  14. In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography

    NASA Astrophysics Data System (ADS)

    Grilli, Simonetta; Ferraro, Pietro; Paturzo, Melania; Alfieri, Domenico; de Natale, Paolo; de Angelis, Marella; de Nicola, Sergio; Finizio, Andrea; Pierattini, Giovanni

    2004-05-01

    In-situ monitoring of domain reversal in congruent lithium niobate by a digital holographic technique is described. While the ferroelectric polarization is reversed by electric field poling, the two-dimensional distribution of the phase shift, due mainly to the linear electro-optic and piezoelectric effects, is measured and visualized. Digital holography is used to reconstruct both amplitude and phase of the wavefield transmitted by the sample to reveal the phase shift induced by adjacent reversed domains during the poling. The resulting movies of both amplitude and phase maps, for in-situ visualization of domain pattern formation, are shown. The possibility of using the technique as tool for monitoring in real-time the periodic poling of patterned samples is discussed.

  15. Single Crystal Structure Determination of Alumina to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, L.; Prakapenka, V.; Mao, H.

    2014-12-01

    Aluminum oxide (Al2O3) is an important ceramic material and a major oxide in the earth. Additionally, alumina is a widely used pressure standard in static high-pressure experiments (Cr3+-bearing corundum, ruby). The changes of its crystal structure with pressure (P) and temperature (T) are important for its applications and understanding its physical properties in the deep Earth. There have been numerous reports on the high P-T polymorphs of alumina. Previous theoretical calculations and experiments suggest that the crystal structure of Al2O3 evolves greatly at high P-T. In this study, we used the newly developed multigrain crystallography method combined with single-crystal x-ray diffraction analysis technique for the structure determination of alumina at high P-T to provide single-crystal structure refinement for high-pressure phases of Al2O3. Alumina powder was mixed with ~10% Pt and Ne was used as both pressure transmitting media and thermal insulating layers during laser-heating. Coarse-grained aggregates of Al2O3 were synthesized in a laser-heated diamond anvil cell. The structure change of Al2O3 was monitored by in situ x-ray diffraction at ~1 Mbar and 2700 K. The results allow us to distinguish the structural differences between the Rh2O3 (II) structure (space group Pbcn) and perovskite structure (space group Pbnm) for the first high-pressure phase of Al2O3. More detailed results will be discussed in the later work.

  16. Relations between single-domain and multidomain piezoelastic properties in single crystals.

    PubMed

    Delaunay, Thomas; Le Clézio, Emmanuel; Lematre, Mickaël; Feuillard, Guy

    2006-11-01

    This paper presents a new method to compute the piezoelastic properties of multidomain single crystals from the single-domain constants. Based on a quasi static assumption, a PMN-chiPT multidomain is defined as a periodic medium with a lattice composed of layers of two domains in a twin structure. Such a structure is assumed to have charged domain walls that imply specific lattice media and boundary conditions. A numerical computation has been performed for a PMN-33PT single crystal in the rhombohedral phase. The effective elastic, piezoelectric, and dielectric constants of the macroscopic structure have been calculated, as well as the wave velocities in different configurations of domain patterns. PMID:17091833

  17. Single crystal silicon capacitors with low microwave loss in the single photon regime

    E-print Network

    S. Weber; K. W. Murch; D. H. Slichter; R. Vijay; I. Siddiqi

    2011-04-19

    We have fabricated superconducting microwave resonators in a lumped element geometry using single crystal silicon dielectric parallel plate capacitors with C >2 pF. Aluminum devices with resonant frequencies between 4.0 and 6.5 GHz exhibited an average internal quality factor Q_i of 2 x 10^5 in the single photon excitation regime at T = 20 mK. Attributing all the observed loss to the capacitive element, our measurements correspond to a loss tangent of intrinsic silicon of 5 x 10^-6. This level of loss is an order of magnitude lower than is currently observed in structures incorporating amorphous dielectric materials, thus making single crystal silicon capacitors an attractive, robust route for realizing long-lived quantum circuits.

  18. Experiment MA-028 crystal growth. [low gravity manufacturing of single crystals from Apollo/Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Lind, D. M.

    1976-01-01

    A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number.

  19. Epitaxial growth, structure, and magnetism of epitaxial Ni80Fe20 single-crystal, bicrystal, and quad-crystal films

    E-print Network

    Huang, Jung-Chun

    Epitaxial growth, structure, and magnetism of epitaxial Ni80Fe20 single-crystal, bicrystal, and quad-crystal films J. C. A. Huang,1,2, * C. C. Yu,2 C. M. Fu,3 and C. H. Lee4 1 Physics Department planes and MgO 110 substrate have been studied. Single-crystal Ni80Fe20 110 films were prepared on Mg

  20. Field emission properties of single crystal chromium disilicide nanowires

    SciTech Connect

    Valentin, L. A.; Carpena-Nunez, J.; Yang, D.; Fonseca, L. F.

    2013-01-07

    The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi{sub 2}) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi{sub 2} nanowires. Field emission measurements show that an emission current density of 0.1 {mu}A/cm{sup 2} was obtained at a turn-on electric field intensity of 2.80 V/{mu}m. The maximum emission current measured was 1.86 mA/cm{sup 2} at 3.6 V/{mu}m. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi{sub 2}. The thermal tolerance of the nanowires was studied up to a temperature of 1100 Degree-Sign C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi{sub 2} nanowires a promising material for field emission applications.

  1. Hydrogen chemisorption on Pt single crystal surfaces in acidic solutions

    NASA Astrophysics Data System (ADS)

    Ross, Philip N.

    1981-01-01

    Hydrogen chemisorption from dilute acidic solution onto Pt single crystal surfaces was examined using an electrochemical cell directly coupled to LEED/Auger analytical system. No pre-anodization was used prior to observing hydrogen adsorption by cyclic voltammetry so that clean surfaces having the ordered structures indicated by LEED were studied. The problem of contributions from non-ordered parts of the electrode like support wires and edges was solved by using a gold evaporation masking technique. The specific contribution of atomic imperfections to the voltammetry curve was deduced from the ordered and countable imperfections occurring on high Miller index single crystal surfaces that have a stepped structure. The H-Pt bond energy was found to be structure sensitive, and sensitive both to local site geometry and long range order in the surface. The bond strength was found to vary systematically: n(111) × (100) > (100) > n(111) × (111) > (110) > (111). Distinct states for hydrogen at steps versus hydrogen on terraces could be distinguished. The (110) surface is shown to be a (111) vicinal, probably the [3(111) × 2(111)] microfacetted surface. The zero coverage heat of adsorption on the well-ordered (111) surface (48 {kJ}/{mol}) in solutions is the same as the value reported by Ertl and co-workers for adsorption on a (111) surface in vacuum. Adsorption isotherms for hydrogen on the (111) and (100) surfaces are adequately fit by the classical model for immobile adsorption at single sites with nearest neighbor repulsive interaction.

  2. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    SciTech Connect

    Prokhorov, I. A.; Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V.; Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

  3. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    NASA Astrophysics Data System (ADS)

    Prokhorov, I. A.; Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V.; Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A.

    2013-12-01

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

  4. Growth and characterization of L-arginine acetate single crystals: a new NLO material

    NASA Astrophysics Data System (ADS)

    Muralidharan, R.; Mohankumar, R.; Jayavel, R.; Ramasamy, P.

    2003-12-01

    Single crystal growth of nonlinear optical L-arginine acetate is reported. Low temperature solution growth was employed for the growth of bulk single crystals. The cell parameters were determined by powder X-ray diffraction analysis. FTIR analysis was used to confirm the presence of various functional groups in the grown crystals. Thermal analysis was performed to study the thermal stability of the grown crystals. The crystals possess lower UV-cut off wavelength at 240 nm as confirmed by the transmittance studies. Kurtz powder SHG measurement confirms the NLO property of the grown crystal. Laser damage threshold studies were also performed on the grown crystals.

  5. Shock response of He bubbles in single crystal Cu

    NASA Astrophysics Data System (ADS)

    Li, B.; Wang, L.; E, J. C.; Ma, H. H.; Luo, S. N.

    2014-12-01

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

  6. Shock response of He bubbles in single crystal Cu

    SciTech Connect

    Li, B.; Wang, L.; E, J. C.; Luo, S. N.; Ma, H. H.

    2014-12-07

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

  7. Acoustic and thermal properties of strontium pyroniobate single crystals

    NASA Astrophysics Data System (ADS)

    Shabbir, G.; Kojima, S.

    2003-04-01

    High resolution Brillouin scattering and modulated differential scanning calorimetry (MDSC) experiments were performed to study the acoustic and thermal properties of strontium pyroniobate (Sr2Nb2O7) single crystals. The anomalous temperature dependence of the longitudinal acoustic phonon mode frequency corresponding to c22 elastic stiffness coefficient was observed in the neighbourhood of the normal-incommensurate phase transition temperature Ti (491 K). The specific heat measured by MDSC showed an anomaly around 487+/-2 K. The changes in enthalpy and entropy of the phase transition were estimated as 147 J mol-1 and 0.71 J mol-1 K-1, respectively.

  8. Coherent Josephson phase qubit with a single crystal silicon capacitor

    E-print Network

    U. Patel; Y. Gao; D. Hover; G. J. Ribeill; S. Sendelbach; R. McDermott

    2012-10-04

    We have incorporated a single crystal silicon shunt capacitor into a Josephson phase qubit. The capacitor is derived from a commercial silicon-on-insulator wafer. Bosch reactive ion etching is used to create a suspended silicon membrane; subsequent metallization on both sides is used to form the capacitor. The superior dielectric loss of the crystalline silicon leads to a significant increase in qubit energy relaxation times. T1 times up to 1.6 micro-second were measured, more than a factor of two greater than those seen in amorphous phase qubits. The design is readily scalable to larger integrated circuits incorporating multiple qubits and resonators.

  9. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  10. The sublimation kinetics of GeSe single crystals

    NASA Technical Reports Server (NTRS)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  11. Hardness and fracture toughness of bulk single crystal gallium nitride

    SciTech Connect

    Drory, M.D.; Ager, J.W. III; Suski, T.; Grzegory, I.; Porowski, S.

    1996-12-01

    Basic mechanical properties of single crystal gallium nitride are measured. A Vickers (diamond) indentation method was used to determine the hardness and fracture toughness under an applied load of 2N. The average hardness was measured as 12{plus_minus}2 GPa and the average fracture toughness was measured as 0.79{plus_minus}0.10 MPa{radical}m. These values are consistent with the properties of brittle ceramic materials and about twice the values for GaAs. A methodology for examining fracture problems in GaN is discussed. {copyright} {ital 1996 American Institute of Physics.}

  12. Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal defect layer

    NASA Astrophysics Data System (ADS)

    Wang, Yuling; Song, Wei; Sun, Enwei; Zhang, Rui; Cao, Wenwu

    2014-06-01

    Longitudinal acoustic wave propagation in one-dimensional phononic crystal containing a 0.2 mol% Fe-doped relaxor-based ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-0.38PT) single crystal defect layer is theoretically studied using the transfer matrix method. A passband can be produced in the stopband when the inserted PMN-0.38PT layer with thickness around its half wavelength. The frequency of the passband is closely dependent on the PMN-PT strain coefficient, suggesting that the band structure of phononic crystal is tunable by applying external electric field onto the piezoelectric crystal. Also, we investigated the influence of acoustic impedance of periodic constitutive materials (layers A and B) on the passband, where the bandwidth of the new passband becomes narrower as the acoustic impedance ratio of layer A and B (ZA/ZB) increase. The simulated results provide valuable guidance for designing tunable acoustic filters and switches made of phononic crystal consisting of the piezoelectric defect layer.

  13. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  14. Two-Photon Absorption Spectrum of a Single Crystal Cyanine-like Honghua Hu,

    E-print Network

    Van Stryland, Eric

    Two-Photon Absorption Spectrum of a Single Crystal Cyanine-like Dye Honghua Hu, Dmitry A. Fishman Vegas, New Mexico 87701, United States *S Supporting Information ABSTRACT: The two-photon absorption (2PA) spectrum of an organic single crystal is reported. The crystal is grown by self

  15. Growth of Nd2TiO5 single crystal using optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Murugesan, G.; Nithya, R.; Kalainathan, S.; Ravindran, T. R.

    2015-06-01

    Single crystals of Nd2TiO5 were grown using Optical Floating zone technique in oxygen atmosphere by spontaneous nucleation. Powder X-ray diffraction pattern showed that the grown single crystal is of homogeneous composition. Laue diffraction was recorded in both transmission and backscattering geometries to check the crystal quality. Vibrational properties were analyzed using Raman measurements.

  16. Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discretecontinuous model simulations

    E-print Network

    Devincre, Benoit

    crystals of nickel-based superalloys are specifically developed for high-temperature applications [1Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discrete of single-crystal nickel-based superalloys is simulated. At 1123 K, two uniaxial tensile loading cases

  17. Hydrothermal growth of single crystals of the quantum magnets: Clinoatacamite, paratacamite, and herbertsmithite

    E-print Network

    Müller, Peter

    for growing millimeter-sized crystals of the quantum magnets with formula Cu4-xZnx OH 6Cl2: clinoatacamite x=0Hydrothermal growth of single crystals of the quantum magnets: Clinoatacamite, paratacamite , paratacamite 0.33 x 1 and herbertsmithite x=1 . These highly pure single crystals have been characterized by x

  18. k=0 magnetic structure and absence of ferroelectricity in SmFeO3.

    PubMed

    Kuo, C-Y; Drees, Y; Fernández-Díaz, M T; Zhao, L; Vasylechko, L; Sheptyakov, D; Bell, A M T; Pi, T W; Lin, H-J; Wu, M-K; Pellegrin, E; Valvidares, S M; Li, Z W; Adler, P; Todorova, A; Küchler, R; Steppke, A; Tjeng, L H; Hu, Z; Komarek, A C

    2014-11-21

    SmFeO3 has attracted considerable attention very recently due to its reported multiferroic properties above room temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveal a clear sign for magneto-elastic coupling at the Néel-temperature of ?675??K, the dielectric measurements remain silent as far as ferroelectricity is concerned. PMID:25479519

  19. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory.

    PubMed

    Fang, Huajing; Li, Qiang; He, Wenhui; Li, Jing; Xue, Qingtang; Xu, Chao; Zhang, Lijing; Ren, Tianling; Dong, Guifang; Chan, H L W; Dai, Jiyan; Yan, Qingfeng

    2015-10-15

    We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 10(3). More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems. PMID:26350823

  20. Asymmetrical Functionalization of Nanoparticles Mediated by Polymer Single Crystals

    NASA Astrophysics Data System (ADS)

    Li, Bing; Li, Christopher

    2008-03-01

    Considerable attention has been paid to nanoparticle (NP) research because of their fascinating properties and potential applications in nanotechnology and biotechnology. Asymmetrically functionalizing NP is of particular interest because it could directly lead to controlled patterning of NPs into complex structures for a variety of applications. Herein we report using 2-dimensional thiol-terminated poly(ethylene oxide) (HS-PEO) lamellar single crystals to immobilize gold NPs (AuNPs). Furthermore, this unique technique also enables asymmetric functionalization of AuNPs. Free-standing bilayer AuNP/PEO films were obtained. Dissolving PEO single crystals led to free asymmetrically functionalized AuNPs and AuNP complexes. The degree of functionalization (number of polymer chains per particle) can be readily controlled by tuning the molecular weight. The low molecular weight PEO undergoes integral folding, which leads to the high areal density of thiol groups and thus the higher degree of functionalization, and vice versa. We anticipate that this methodology could be applied to other metal or semiconductor NPs.

  1. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  2. Bithermal fatigue of a nickel-base superalloy single crystal

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    The thermomechanical fatigue behavior of a nickel-base superalloy single crystal was investigated using a bithermal test technique. The bithermal fatigue test was used as a simple alternative to the more complex thermomechanical fatigue test. Both in-phase and out-of-phase bithermal tests were performed on (100)-oriented coated and bare Rene N4 single crystals. In out-of-plane bithermal tests, the tensile and compressive halves of the cycle were applied isothermally at 760 and 982 C, respectively, while for the in-phase bithermal tests the temperature-loading sequence was reversed. The bithermal fatigue lives of bare specimens were shorter than the isothermal fatigue lives at either temperature extreme when compared on an inelastic strain basis. Both in-phase and out-of-phase bithermal fatigue life curves converged in the large strain regime and diverged in the small strain regime, out-of-phase resulting in the shortest lives. The coating had no effect on life for specimens cycled in-phase; however, the coating was detrimental for isothermal fatigue at 760 C and for out-of-phase fatigue under large strains.

  3. Bithermal fatigue of a nickel-base superalloy single crystal

    SciTech Connect

    Verrilli, M.J.

    1988-05-01

    The thermomechanical fatigue behavior of a nickel-base superalloy single crystal was investigated using a bithermal test technique. The bithermal fatigue test was used as a simple alternative to the more complex thermomechanical fatigue test. Both in-phase and out-of-phase bithermal tests were performed on (100)-oriented coated and bare Rene N4 single crystals. In out-of-plane bithermal tests, the tensile and compressive halves of the cycle were applied isothermally at 760 and 982 C, respectively, while for the in-phase bithermal tests the temperature-loading sequence was reversed. The bithermal fatigue lives of bare specimens were shorter than the isothermal fatigue lives at either temperature extreme when compared on an inelastic strain basis. Both in-phase and out-of-phase bithermal fatigue life curves converged in the large strain regime and diverged in the small strain regime, out-of-phase resulting in the shortest lives. The coating had no effect on life for specimens cycled in-phase; however, the coating was detrimental for isothermal fatigue at 760 C and for out-of-phase fatigue under large strains.

  4. Folding in FCC metal single crystals under compression

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Alfyorova, E. A.

    2015-10-01

    Results of the analysis of folding during compression deformation of metals with fcc lattice are presented. Single crystals with orientations at angles of the standard stereographic triangle and different crystallographic orientations of lateral faces have been studied. It has been found that the major factor affecting the folding intensity is the slip plane shear with respect to lateral faces. Such a shear results in face bending and the formation of fold systems in maximum curvature regions. It has been shown that, among all considered orientations, the maximum susceptibility to the formation of different folds is inherent in single crystals with bar 1 compression axis orientation. For this orientation, the development of shear and rotational components during folding is traced by interference microscopy and electron backscatter diffraction methods. It has been found that an excess dislocation density is accumulated when shear is activated in the folding region, which results in an increase in fold misorientation. The activation of this process in fcc metals is promoted by an increase in the homologous deformation temperature and stacking fault energy.

  5. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  6. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-?m-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  7. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  8. The fatigue damage behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1988-01-01

    The uniaxial fatigue behavior of a single crystal superalloy, PWA 1480, is described. Both monotonic tensile and constant amplitude fatigue tests were conducted at room temperature, in an effort to assess the applicability of polycrystalline-based fatigue life prediction methods to a single crystal superalloy. The observed constant amplitude behavior correlated best using a stress-based life criterion. Nearly all specimens failed at surface or slightly subsurface microporosity; this is thought to be responsible for the unusually large amount of scatter in the test results. An additional term is developed in the stress-life equation for the purpose of accounting for the effect of microporosity on fatigue life. The form chosen is a function of the effective area of the failure-producing microporosity projected on a plane perpendicular to the loading axis, as well as the applied stress. This additional term correlated the data to within factors of two on life. Although speculative, extrapolation of the microporosity relation to zero micropore area indicates that approximately an order of magnitude improvement in fatigue life should result.

  9. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  10. Process for Making Single-Domain Magnetite Crystals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.

    2004-01-01

    A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.

  11. Polarised IR and Raman spectra of monoglycine nitrate single crystal

    NASA Astrophysics Data System (ADS)

    Baran, Jan A.; Drozd, Marek A.; Ratajczak, Henryk

    2010-07-01

    Polarised Raman spectra of the monoglycine (monoglycinium) nitrate (hereafter MGN) single crystal are reported. Additionally, the polarised specular reflection spectra for the (1 0 0) single crystal sample (E|| Y( b) and E|| Z( c)) were measured in the region 3600-80 cm -1. The spectra of the imaginary parts of the refractive indices are computed by the Kramers-Kronig transformation (Opus). The polarised spectra are discussed with respect to the diffraction crystal structure and recent literature data on normal co-ordinate analysis for the glycinium cation ( +NH 3CH 2COOH). The stretching vibrations of the NH3+ groups are explained by considering their hydrogen bonds. The intensity of the Raman bands arising from the stretching vibrations of the CH 2 group are explained assuming that each C sbnd H bond stretches independently. This finding is unusual and suggests that the C(2) sbnd H(5) bond is involved in the hydrogen bonding (improper hydrogen bond). The deformation vibrations of the CH 2 group are explained assuming scissoring, twisting, wagging and rocking type of vibrations. The band at 871 cm -1 exhibits the CC stretching character of the CCN skeleton, whereas the band at ca. 1050 cm -1 shows the ?aCCN character. The stretching ?OH vibrations of the C sbnd O sbnd H⋯O hydrogen bond gives rise to a band at ca. 3087 cm -1, clearly seen in the Y( xx) Z Raman spectrum. Its ?OH mode appears at 896 cm -1. The ?OH vibration is coupled to other vibrations, although the IR band at ca. 1375 (E|| Y) likely arises from this mode. It was impossible to define a character of the glycinium cations deformation vibrations giving rise to the bands observed in between 680 and 490 cm -1, on the basis of their polarisation properties. The polarisation properties of the internal modes of the nitrate ions are discussed.

  12. Deformation of olivine single crystals under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Tommasi, A.; Cordier, P.

    2012-12-01

    The rheology of mantle rocks at lithospheric temperatures (<1000°C) remains poorly constrained, in contrast to the extensive experimental data on creep of olivine single crystals and polycrystalline aggregates at high temperature (T > 1200°C). Consequently, we have performed tri-axial compression experiments on oriented single crystals and polycrystalline aggregates of San Carlos olivine at temperatures ranging from 800° to 1090°C. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at constant strain rates ranging from 7 × 10-6 s-1 to 1 × 10-4 s-1 . Compression was applied along three different crystallographic directions: [101]c, [110]c and [011]c, to activate the several slip systems. Yield differential stresses range from 88 to 1076 MPa. To constrain hardening, stick-and-slip, or strain localization behaviors, all samples were deformed at constant displacement rate for finite strains between 4 to 23 %. Hardening was observed in all experiments and the maximum differential stress often overcame the confining pressure. EBSD mapping highlights macroscale bending of the crystalline network in three crystals. TEM observations on several samples show dislocations with [100] and [001] Burgers vectors in all samples, but dislocation arrangements vary. The results from the present study permit to refining the power-law expressing the strain rate dependence on stress and temperature for olivine, allowing its application to the lithospheric mantle. Our experiments confirm that previous published high-temperature power flow laws overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at higher temperatures than it has previously been established.

  13. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  14. Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime

    E-print Network

    Osterloh, Frank

    Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement INTRODUCTION Tungsten trioxide crystallizes in the ReO3 structure type and is an n-type semiconductor with a 2

  15. Orientational order parameters of a de Vries-type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sanchez-Castillo, A.; Osipov, M. A.; Jagiella, S.; Nguyen, Z. H.; Kašpar, M.; Hamplov?, V.; Maclennan, J.; Giesselmann, F.

    2012-06-01

    The orientational order parameters and of the ferroelectric, de Vries-type liquid crystal 9HL have been determined in the SmA* and SmC* phases by means of polarized Raman spectroscopy, and in the SmA* phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions of different molecular axes. We have developed a systematic procedure in which we calculate the angle between these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques support a “sugar loaf” orientational distribution in the SmA* phase with no qualitative difference to conventional smectics A. The role of individual molecular fragments in promoting de Vries-type behavior is considered.

  16. Scanning secondary-electron microscopy on ferroelectric domains and domain walls in YMnO{sub 3}

    SciTech Connect

    Li, J.; Yang, H. X.; Tian, H. F.; Ma, C.; Li, J. Q.; Zhang, S.; Zhao, Y. G.

    2012-04-09

    Ferroelectric domain structures in YMnO{sub 3} single crystals on the hexagonal polar surface have been investigated by scanning electron microscopy in secondary electron emission mode. The experimental results demonstrate that the domain, as well as domain walls, can be clearly revealed under the operation voltages ranging from 0.6 to 3 kV. Evolution of domain contrasts arising from electron-beam irradiation can be mainly explained by the pyroelectric effect and related charging process. A rich variety of microstructure features of ferroelectric domains can be clearly revealed in YMnO{sub 3} by this high-resolution technique.

  17. Ferroelectricity in undoped hafnium oxide

    SciTech Connect

    Polakowski, Patrick; Müller, Johannes

    2015-06-08

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 4–20?nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization P{sub r} of up to 10??C?cm{sup ?2} as well as a read/write endurance of 1.6?×?10{sup 5} cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems.

  18. Ferroelectricity in undoped hafnium oxide

    NASA Astrophysics Data System (ADS)

    Polakowski, Patrick; Müller, Johannes

    2015-06-01

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 4-20 nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization Pr of up to 10 ?C cm-2 as well as a read/write endurance of 1.6 × 105 cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems.

  19. Detection of the critical end point in PbSc0.5Ta0.36Nb0.14O3 relaxor ferroelectrics crystals via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Mihailova, B.; Gospodinov, M.; Roth, M.

    2014-09-01

    PbSc0.5Ta0.36Nb0.14O3 relaxor-ferroelectric crystals were studied by the means of dielectric and acoustic emission (AE) methods in the temperature range of 180-300 K. In zero dc electric field (E) no AE was detected at the smeared dielectric maximum Tm ? 260 K characteristic for canonical relaxor ferroelectrics. Under the E a phase transition appears at TC = 217 K for E ˜ 1 kV cm-1. The TC(E) dependence is linear with an anomaly point at E ˜ 1.3 kV cm-1, at which dTC/dE abruptly changes. At this E value the AE rate exhibits a maximum. The anomalous E point is assigned to be the critical end point for this solid solution.

  20. Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.

  1. Crystal growth in fused solvent systems. [in space environment

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noval, B. A.; White, W. B.; Spear, K. E.; Henry, E. C.

    1974-01-01

    The successful nucleation of bismuth germanate, B12GeO20 on a high quality seed and the growth of regions of single crystals of the same orientation of the seed are reported. Lead germanate, Pb5Ge3O11 was also identified as a ferroelectric crystal with large electrooptic and nonlinear optic constants. Solvent criteria, solvent/development, and crystal growth are discussed, and recommendations for future studies are included.

  2. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    SciTech Connect

    Thirumurugan, R. Anitha, K.

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UV–vis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  3. Simultaneous Stress and Field Control of Sustainable Switching of Ferroelectric Phases

    NASA Astrophysics Data System (ADS)

    Finkel, P.; Staruch, M.; Amin, A.; Ahart, M.; Lofland, S. E.

    2015-09-01

    In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40?×?106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2?MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices.

  4. Simultaneous Stress and Field Control of Sustainable Switching of Ferroelectric Phases

    PubMed Central

    Finkel, P.; Staruch, M.; Amin, A.; Ahart, M.; Lofland, S.E.

    2015-01-01

    In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40?×?106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2?MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices. PMID:26345729

  5. Crystal growth, structural, thermal and mechanical behavior of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals.

    PubMed

    Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y

    2014-12-10

    Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. PMID:24967545

  6. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  7. Comparative study of intrinsic luminescence in undoped transparent ceramic and single crystal garnet scintillators

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yagi, Hideki; Yanagidani, Takagimi; Chani, Valery

    2014-10-01

    Scintillation properties associated with intrinsic lattice defects of undoped Y3A5O12 (YAG) and Lu3A5O12 (LuAG) transparent ceramics and single crystals are compared. The ceramics excited with X-ray demonstrated relatively low emission intensity when compared with that of the single crystals. Decay times of the ceramics and the single crystals were similar. These parameters were approximately 430 ns (YAG ceramic), 460 ns (YAG single crystal), 30 ns and 1090 ns (LuAG ceramic), and 25 ns and 970 ns (LuAG single crystal). According to the pulse height spectra recorded under 137Cs gamma-ray irradiation, the scintillation light yield of the both ceramics were about 2950 ± 290 ph/MeV. However, the single crystals had greater kight yield of about about 14,300 ± 1430 ph/MeV for YAG and 8350 ± 830 ph/MeV for LuAG.

  8. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  9. Coupling of magnetic field and lattice strain and its impact on electronic phase separation in La{sub 0.335}Pr{sub 0.335}Ca{sub 0.33}MnO{sub 3}/ferroelectric crystal heterostructures

    SciTech Connect

    Zheng, M.; Yang, M. M.; Zhu, Q. X.; Li, X. M.; Shi, X.; Luo, H. S.; Zheng, R. K.; Li, X. Y.; Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 ; Wang, Y.; Chan, H. L. W.; Li, X. G.

    2013-12-23

    Phase-separated La{sub 0.335}Pr{sub 0.335}Ca{sub 0.33}MnO{sub 3} films were epitaxially grown on (001)- and (111)-oriented ferroelectric single-crystal substrates. Upon poling along the [001] or [111] direction, dramatic decrease in resistance, up to 99.98%, and complete melting of the charge-ordered phase were observed, caused by poling-induced strain rather than accumulation of electrostatic charge at interface. Such poling-induced strain effects can be effectively tuned by a magnetic field and mediated by electronic phase separation. In particular, our findings show that the evolution of the strength of electronic phase separation against temperature and magnetic field can be determined by measuring the strain-tunability of resistance [(?R/R){sub strain}] under magnetic fields.

  10. Micro- and nanostructures in lithium niobate single crystals doped with lanthanides

    SciTech Connect

    Palatnikov, M. N. Shcherbina, O. B.; Sidorov, N. V.; Bormanis, K.

    2010-09-15

    Lithium niobate single crystals doped with lanthanides (Gd, Er) and nominally pure single crystals of congruent and stoichiometric compositions have been grown under time-dependent thermal conditions. Regular growth domain microstructures and periodic nanostructures have been investigated by optical microscopy and atomic force microscopy with a step from 10 to 100 nm. Comparative investigations of the Raman spectra of lithium niobate single crystals of different compositions have been performed.

  11. Crystal growth and spectroscopic properties of Er3+ ions doped CdF2 single crystals

    NASA Astrophysics Data System (ADS)

    Djellab, S.; Diaf, M.; Labbaci, K.; Guerbous, L.

    2014-04-01

    Single crystals of Er3+:CdF2 with good optical quality were grown by a Bridgman technique after purification of the starting materials. Absorption and emission spectra are recorded at room temperature. The Judd-Ofelt (JO) analysis was applied to obtain the three phenomenological intensity parameters and the transition strengths. These JO parameters are used to calculate the radiative transition probabilities, the radiation lifetimes and the branching ratios. The results obtained are in good agreement with those of other fluoride laser materials. We also carried out luminescence measurements for red and green emission. The studied host may offer infrared and visible laser emissions.

  12. Growth and characterization of isotopically enriched [sup 70]Ge and [sup 74]Ge single crystals

    SciTech Connect

    Itoh, K.

    1992-10-01

    Isotopically enriched [sup 70]Ge and [sup 74]Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm[sup 3] volume. To our knowledge, we have grown the first [sup 70]Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be [approximately]2 [times] cm[sup [minus]3] which is two order of magnitude better that of [sup 74]Ge crystals previously grown by two different groups. Isotopic enrichment of the [sup 70]Ge and the [sup 74]Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed.

  13. Growth and characterization of isotopically enriched {sup 70}Ge and {sup 74}Ge single crystals

    SciTech Connect

    Itoh, K.

    1992-10-01

    Isotopically enriched {sup 70}Ge and {sup 74}Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm{sup 3} volume. To our knowledge, we have grown the first {sup 70}Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be {approximately}2 {times} cm{sup {minus}3} which is two order of magnitude better that of {sup 74}Ge crystals previously grown by two different groups. Isotopic enrichment of the {sup 70}Ge and the {sup 74}Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed.

  14. Single-crystal GaN/AlN layers on CVD diamond

    NASA Astrophysics Data System (ADS)

    Khrykin, O. I.; Drozdov, Yu. N.; Drozdov, M. N.; Yunin, P. A.; Shashkin, V. I.; Bogdanov, S. A.; Muchnikov, A. B.; Vikharev, A. L.; Radishev, D. B.

    2015-10-01

    Original approach to fabricating a GaN/AlN/nanocrystalline diamond structure has been suggested and implemented. The stages of deposition of a structure of this kind include the following: (a) growth of nanocrystalline CVD-diamond on single-crystal AlN (preliminarily grown on a silicon substrate), (b) etch removal of the silicon substrate, and (c) growth of single-crystal GaN on the surface of single-crystal AlN. Single-crystal gallium nitride with a width of the X-ray rocking curve for the (0002) reflection of 0.35° was obtained on a nanocrystalline-diamond substrate.

  15. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin; Maier, Hans J.; Chumlyakov, Y.

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  16. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  17. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5?-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  18. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  19. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    DOE PAGESBeta

    Bolotnikov, A. E.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; James, R. B.; Gorichok, I. V.

    2015-01-02

    We grew single crystals of cadmium telluride, doped with bromine by the Bridgman method, annealed them under a cadmium overpressure (PCd = 10² - 10? Pa) at 800-1100 K, and investigated their electrical properties at high- and low-temperature. The influence of impurities on the crystals' electrical properties were analyzed using the defect subsystem model; the model includes the possibility of the formation of point intrinsic defects (V²?Cd, Cd²?i, V²?Te, Te²?i), and substitutional ones (Br?Te, Br?Te), as well as complexes of point defects, i.e., (Br?Te V²?Cd)? and (2Br?Te V²?Cd)?. We established the concentration dependence between free charge carriers and themore »parameters of the annealing process. Here, n(T) and n(PCd) are determined by two dominant defects – Br?Te and (2Br?Te V²?Cd)?. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not affect the electron density.« less

  20. Gatability of vanadium dioxide single crystal nanobeams and hydrogen doping

    NASA Astrophysics Data System (ADS)

    Wei, Jiang; Ji, Heng; Natelson, Douglas

    2011-03-01

    Vanadium dioxide is famous for its dramatic metal insulator transition, exhibiting up to 4 or 5 orders magnitude change in conductivity. It is also known to be nongatable, although in the insulating phase it behaves like a semiconductor with 0.5-0.7 eV energy gap. With no sign of gating effects using conventional dielectric materials, such as Si O2 , Al 2 O3 and Hf O2 , ionic liquids were used as the gating medium. Ionic liquids form electric double layers (EDL) and could possibly exert an electric field as high as 109 V/m on the interface of ionic liquid and single-crystal vanadium dioxide nanobeam. No gating effect was observed in the vanadium dioxide device. On the other hand, we found that under positive gate voltage the hydrogen ions originating from trace amounts of water diffuse into the vanadium dioxide crystal, acting as dopants. By controlling the gate voltage and temperature, the insulating phase's conductivity can be reversibly increased up to 2-3 orders magnitude by this process. Supported by Robert A.Welch Foundation and Department of Energy award DE-FG02-06ER46337.