Science.gov

Sample records for ferroelectric single crystal

  1. Ferroelectric polarization reversal in single crystals

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L.

    1992-01-01

    Research on the reversal of polarization in ferroelectric crystals is reviewed. Particular attention is given to observation methods for polarization reversal, BaTiO3 polarization reversal, crystal thickness dependence of polarization reversal, and domain wall movement during polarization reversal in TGS.

  2. Shear mode properties of single crystal ferroelectrics

    NASA Astrophysics Data System (ADS)

    McLaughlin, E. A.; Robinson, H. C.

    2003-10-01

    Single crystal ferroelectrics or piezocrystals were recently introduced into the electroactive materials community. The 33-mode electromechanical coupling factor of piezocrystals is typically greater than 0.90, which is significantly larger than typical values for piezoelectric ceramics (0.62-0.74). For sonar projector applications this large k33 has been responsible for more than doubling the bandwidth of active sonar arrays over what is currently achievable with ceramics. Last year a crystal grower produced a cut of lead magnesium niobate-lead titanate (PMN-PT) single crystal with piezoelectric shear coefficient values of 7000 pm/V and shear coupling factors of 0.97. (For PZT5H, d15 is 730 pm/V.) This piezocrystal d15 coefficient implies significantly improved sensitivity and signal-to-noise ratio for accelerometers and hydrophones, while the high coupling promises bandwidth increases greater than those realized in 33-mode projectors using piezocrystals. This research studies the shear-mode behavior of PMN-PT piezocrystals for use in sensors and projectors. By measuring the response of the materials to high and low level electrical bias and excitation fields, frequency, and temperature, the materials' effective material properties as a function of these operational variables were determined. [Work sponsored by ONR and NUWC ILIR.

  3. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  4. Ultra-thin single crystal perovskite ferroelectric on Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Ramamoorthy, Ramesh; Salahuddin, Sayeef

    Single crystalline ultra-thin films (sub-10 nm) of ferroelectric complex oxides are important for tunnelling memory devices. Commercially viable realization of such devices requires their integration with the peripheral Si-based input-output electronics. Integration of single crystalline films of such oxides using direct synthesis remains challenging due to the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. In this work we report epitaxial transfer of ultra-thin single crystalline, oxide films (down to 1 unit cell) onto Si substrates, at room temperature. The thickness of the transferred films has been confirmed by atomic force microscopy. Piezoelectric force microscopy shows ferroelectric property is retained in the transferred film. Electrical transport studies on these transferred ultra-thin films are ongoing.

  5. Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor.

    PubMed

    Park, Nahee; Kang, Haeyong; Park, Jeongmin; Lee, Yourack; Yun, Yoojoo; Lee, Jeong-Ho; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    2015-11-24

    The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the V(G) sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. PMID:26487348

  6. Single-crystal relaxor ferroelectric piezoactuators with interdigitated electrodes.

    PubMed

    Levy, Miguel; Vanga, Raghav; Moon, Kee S; Park, Heung K; Hong, Yong K

    2004-12-01

    We report on the fabrication and performance of (1-x) Pb(Zn(1/3)Nb(2/3))O3-xPbTiO3 (PZN-PT) single-crystal relaxor piezoactuators with interdigitated electrodes patterned on a single surface. An electric field gradient across the sample thickness induces a differential contraction between opposite faces, and it is responsible for the actuation. The samples are poled by energizing the electrodes at 100 degrees C and cooling in a field. Calculations of the piezoelectric response based on a periodically modulated dipolar field yield good agreement with experiment. Discrepancies with the model are ascribed to multidomain formation in the ferroelectric sample as a result of field reversals in the applied electric field along the sample length. PMID:15690720

  7. Ferroelectric domain pattern in barium titanate single crystals studied by means of digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Doleček, Roman; Vápenka, David; Lédl, Vít

    2016-06-01

    In this article, we report on the observation of a ferroelectric domain pattern in the whole volume of the ferroelectric barium titanate single crystal by means of digital holographic microscopy (DHM). Our particular implementation of DHM is based on the Mach–Zehnder interferometer and the numerical processing of data employs the angular spectrum method. A modification of the DHM technique, which allows a fast and accurate determination of the domain walls, i.e. narrow regions separating the antiparallel domains, is presented. Accuracy and sensitivity of the method are discussed. Using this approach, the determination of important geometric parameters of the ferroelectric domain patterns (such as domain spacing or the volume fraction of the anti-parallel domains) is possible. In addition to the earlier DHM studies of domain patterns in lithium niobate and lithium tantalate, our results indicate that the DHM is a convenient method to study a dynamic evolution of ferroelectric domain patterns in all perovskite single crystals.

  8. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    SciTech Connect

    Murugan, G. Senthil Ramasamy, P.

    2014-04-24

    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  9. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-02-01

    Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

  10. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    SciTech Connect

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern.

  11. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.

    PubMed

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L W; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  12. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  13. Optimization of electrooptic and pieozoelectric coupling effects in tetragonal relaxor-PT ferroelectric single crystals

    PubMed Central

    Sun, Enwei; Sang, Shijing; Yuan, Zhongyuan; Qi, Xudong; Zhang, Rui; Cao, Wenwu

    2015-01-01

    The electrooptic and piezoelectric coupling effects in tetragonal relaxor-based ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-0.38PT) and 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 (PZN-0.12PT) single-domain crystals have been analyzed by the coordinate transformation. The orientation dependence of the electrooptic and half-wave voltage was calculated based on the full sets of refractive indices, electrooptic and piezoelectric coefficients. The optimum orientation cuts for achieving the best electrooptic coefficient and half-wave voltage were found. The lowset half-wave voltage is only 76 V for the PMN-0.38PT single-domain crystal. Compared to commonly used electrooptic crystal LiNbO3, tetragonal relaxor-PT ferroelectric single-domain crystals are much superior for optical modulation applications because of their much higher linear electrooptic coefficients and substantially lower half-wave voltages when the piezoelectric strain influence is considered. PMID:25954059

  14. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    PubMed Central

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  15. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-10-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form.

  16. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals.

    PubMed

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs-termed 'DW'-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  17. Growth and characterization of ferroelectric Pb(Sc1/2Nb1/2)O3 single crystals

    NASA Astrophysics Data System (ADS)

    Huo, Siqi; Bokov, Alexei A.; Paterson, Alisa; Ye, Zuo-Guang

    2015-10-01

    Single crystals of Pb(Sc1/2Nb1/2)O3 were grown by the high-temperature solution method using PbO + B2O3 as flux. The size of the as-grown crystals varies from 1 to 2 mm. X-ray diffraction indicates a pure perovskite phase without B-site ordering. Polarized light microscopy shows that the crystals are of rhombohedral symmetry at room temperature and become cubic at TC = 112 °C on heating. A ferroelectric-to-relaxor phase transition is verified at TC by dielectric spectroscopy. Frequency-dependent permittivity is observed in dielectric measurements, revealing relaxor behavior above TC. Poling the crystal at room temperature does not change TC, but suppresses the permittivity. Typical ferroelectric hysteresis loop is displayed at room temperature, indicating the ferroelectric nature of the rhombohedral phase.

  18. Millimeter-Wave Dielectric Properties of Single Crystal Ferroelectric and Dielectric Materials

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Li, Zijing; Afsar, Mohammed N.; Sundaram, S. K.

    2011-01-03

    Transmittance measurements on various single crystal ferroelectric materials over a broad millimeter-wave frequency range have been performed. Frequency dependence of the complex dielectric permittivity has been determined in the millimeter wave region for the first time. The measurements have been employed using a free-space quasi-optical millimeter-wave spectrometer equipped with a set of high power backward wave oscillators (BWOs) as sources of coherent radiation, tunable in the range from 30 - 120 GHz. The uncertainties and possible sources of instrumentation and measurement errors related to the free-space millimeter-wave technique are discussed. This work has demonstrated that precise MMW permittivities can be obtained even on small thin crystals using the BWO quasi-optical approach.

  19. Measuring and Altering Ferroelectric Domain Structures in Lead Perovskite Single-Crystals

    NASA Astrophysics Data System (ADS)

    Harker, John Chamberlain

    Relaxor ferroelectric single-crystal materials PMN-PT and PZN-PT are currently of interest to the scientific community due to their enhanced properties and possible role as next-generation piezoelectric transducers in applications such as sonar and medical ultrasound. One key phenomenon affecting both the properties and the mechanical integrity of these materials is the ferroelectric domain structure within the material. In this work we examine the morphology and behavior of domain structures in PMN-29%PT. In order to do this we first present details of the construction and testing of a working piezo-response force microscope (PFM), and then use the PFM to verify a new domain observation technique called "relief polishing". Relief polishing is shown to reveal surface domains in the same manner as acid etching, preserving domain details as small as 0.5mum. Using these two techniques, we then determine that cutting and polishing strongly affect the surface and subsurface ferroelectric domain structures in PMN-29%PT. Specifically, we show that saw cutting can create characteristic striated domain structures as deep as 130mum within a sample, while straight polishing creates a characteristic domain structure known as the "fingerprint" pattern to a depth proportional to the size of the polishing grit, on the order of 0--12mum for grits as large as 15mum. We hypothesize that most samples contain these "skin effect" domain structures. In consequence, it is suggested that researchers presenting experimental results on domain structures should report the physical treatment history of the samples along with the experimental data.

  20. Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions

    NASA Astrophysics Data System (ADS)

    Bekheet, Maged F.; Svoboda, Ingrid; Liu, Na; Bayarjargal, Lkhamsuren; Irran, Elisabeth; Dietz, Christian; Stark, Robert W.; Riedel, Ralf; Gurlo, Aleksander

    2016-09-01

    To understand the origin of the ferroelectricity in InMnO3, single crystals with average size of 1 mm were grown in PbF2 flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO3 single crystals reveal that the room-temperature state in this material is ferroelectric with P63cm symmetry. The polar InMnO3 specimen undergoes a reversible phase transition from non-centrosymmetric P63cm structure to a centrosymmetric P63/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments.

  1. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.

    2015-11-01

    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  2. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.

    PubMed

    Sun, Enwei; Cao, Wenwu

    2014-08-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-x Ti x O3 (PZT) ceramics, the piezoelectric coefficient d 33 is increased by a factor of 5 and the electromechanical coupling factor k 33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe "PureWave". The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery

  3. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    PubMed Central

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery

  4. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals

    PubMed Central

    Wei, Xian-Kui; Jia, Chun-Lin; Sluka, Tomas; Wang, Bi-Xia; Ye, Zuo-Guang; Setter, Nava

    2016-01-01

    In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was treated only at the theoretical level and its real appearance is still a mystery. Here we report a Néel-like domain wall imaged by atom-resolved transmission electron microscopy in Ti-rich ferroelectric Pb(Zr1−xTix)O3 crystals, where nanometre-scale monoclinic order coexists with the tetragonal order. The formation of such domain walls is interpreted in the light of polarization discontinuity and clamping effects at phase boundaries between the nesting domains. Phase-field simulation confirms that the coexistence of both phases as encountered near the morphotropic phase boundary promotes the polarization to rotate in a continuous manner. Our results provide a further insight into the complex domain configuration in ferroelectrics, and establish a foundation towards exploring chiral domain walls in ferroelectrics. PMID:27539075

  5. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals.

    PubMed

    Wei, Xian-Kui; Jia, Chun-Lin; Sluka, Tomas; Wang, Bi-Xia; Ye, Zuo-Guang; Setter, Nava

    2016-01-01

    In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was treated only at the theoretical level and its real appearance is still a mystery. Here we report a Néel-like domain wall imaged by atom-resolved transmission electron microscopy in Ti-rich ferroelectric Pb(Zr1-xTix)O3 crystals, where nanometre-scale monoclinic order coexists with the tetragonal order. The formation of such domain walls is interpreted in the light of polarization discontinuity and clamping effects at phase boundaries between the nesting domains. Phase-field simulation confirms that the coexistence of both phases as encountered near the morphotropic phase boundary promotes the polarization to rotate in a continuous manner. Our results provide a further insight into the complex domain configuration in ferroelectrics, and establish a foundation towards exploring chiral domain walls in ferroelectrics. PMID:27539075

  6. Above-room-temperature ferroelectricity in a single-component molecular crystal.

    PubMed

    Horiuchi, Sachio; Tokunaga, Yusuke; Giovannetti, Gianluca; Picozzi, Silvia; Itoh, Hirotake; Shimano, Ryo; Kumai, Reiji; Tokura, Yoshinori

    2010-02-11

    Ferroelectrics are electro-active materials that can store and switch their polarity (ferroelectricity), sense temperature changes (pyroelectricity), interchange electric and mechanical functions (piezoelectricity), and manipulate light (through optical nonlinearities and the electro-optic effect): all of these functions have practical applications. Topological switching of pi-conjugation in organic molecules, such as the keto-enol transformation, has long been anticipated as a means of realizing these phenomena in molecular assemblies and crystals. Croconic acid, an ingredient of black dyes, was recently found to have a hydrogen-bonded polar structure in a crystalline state. Here we demonstrate that application of an electric field can coherently align the molecular polarities in crystalline croconic acid, as indicated by an increase of optical second harmonic generation, and produce a well-defined polarization hysteresis at room temperature. To make this simple pentagonal molecule ferroelectric, we switched the pi-bond topology using synchronized proton transfer instead of rigid-body rotation. Of the organic ferroelectrics, this molecular crystal exhibits the highest spontaneous polarization ( approximately 20 muC cm(-2)) in spite of its small molecular size, which is in accord with first-principles electronic-structure calculations. Such high polarization, which persists up to 400 K, may find application in active capacitor and nonlinear optics elements in future organic electronics. PMID:20148035

  7. Acoustic Imaging of Ferroelectric Domains in BaTiO3 Single Crystals Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Zeng, Huarong; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion G.; Takekawa, Shunji; Kitamura, Kenji; Yin, Qingrui

    2007-01-01

    An “alternating-force-modulated” atomic force microscope (AFM) operating in the acoustic mode, generated by launching acoustic waves on the piezoelectric transducer that is attached to the cantilever, was used to visualize the ferroelectric domains in barium titanate (BaTiO3) single crystals by detecting acoustic vibrations generated by the tip and transmitted through the sample placed beneath it to the transducer. The acoustic signal was found to reflect locally elastic microstructures at low frequencies, while high-frequency acoustic images revealed strip like domain configurations of internal substructures in BaTiO3 single crystals. The underlying acoustic imaging mechanism using the AFM was discussed in terms of the interaction between the excited acoustic wave and ferroelectric domains.

  8. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-07-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  9. Studies on conventional and Sankaranarayanan-Ramasamy (SR) method grown ferroelectric glycine phosphite (GPI) single crystals

    NASA Astrophysics Data System (ADS)

    Senthil Pandian, M.; Pattanaboonmee, N.; Ramasamy, P.; Manyum, P.

    2011-01-01

    Transparent single crystals of glycine phosphite were grown by Sankaranarayanan-Ramasamy (SR) method and conventional slow evaporation solution technique (SEST) which had the sizes of 100 mm in length, 30 mm diameter and 10×11×8 mm 3. The conventional slow evaporation and Sankaranarayanan-Ramasamy method grown glycine phosphite single crystals were characterized using laser damage threshold, chemical etching, Vickers microhardness, UV-vis-NIR and dielectric analysis. The laser damage threshold value was higher in SR method grown GPI crystal as against conventional method grown crystal. The SR method grown GPI has higher hardness and also higher transmittance compared to conventional method grown crystal. The chemical etching and dielectric loss measurements indicate that the crystal grown by SR method has low density of defects and low value of dielectric loss compared to conventional method grown GPI crystal.

  10. Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal

    NASA Astrophysics Data System (ADS)

    Dalal, Jyoti; Kumar, Binay

    2016-01-01

    New semiorganic nonlinear optical single crystals of Lithium nitrate oxalate monohydrate (LNO) were grown by slow evaporation solution technique. Single crystal X-ray diffraction study indicated that LNO crystal belongs to the triclinic system with space group P1. Various functional groups present in the material were identified by FTIR and Raman analysis. UV-vis study showed the high transparency of crystals with a wide band gap 5.01 eV. Various Optical constants i.e. Urbach energy (Eu), extinction coefficient (K), refractive index, optical conductivity, electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. A sharp emission peak was found at 438 nm in photoluminescence measurement, which revealed suitability of crystal for fabricating violet lasers. In dielectric studies, a peak has been observed at 33 °C which is due to ferroelectric to paraelectric phase transition. Piezoelectric charge coefficients (d33 = 9.2 pC/N and g33) have been calculated, which make it a suitable for piezoelectric devices applications. In ferroelectric studies, a saturated loop was found in which the values of coercive field and remnant polarization were found to be 2.18 kV/cm and 0.39 μC/cm2, respectively. Thermal behavior was studied by TGA and DSC studies. The relative SHG efficiency of LNO was found to be 1.2 times that of KDP crystal. In microhardness study, Meyer's index value was found to be 1.78 which revealed its soft nature. These optical, dielectric, piezoelectric, ferroelectric, mechanical and non-linear optical properties of grown crystal establish the usefulness of this material for optoelectronics, non-volatile memory and piezoelectric devices applications.

  11. Effects of composition and temperature on the large field behavior of [011]{sub C} relaxor ferroelectric single crystals

    SciTech Connect

    Gallagher, John A.; Lynch, Christopher S.; Tian, Jian

    2014-08-04

    The large field behavior of [011]{sub C} cut relaxor ferroelectric lead indium niobate–lead magnesium niobate–lead titanate, xPb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-(1-x-y)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-yPbTiO{sub 3}, single crystals was experimentally characterized in the piezoelectric d{sub 322}-mode configuration under combined mechanical, electrical, and thermal loading. Increasing the concentration of lead indium niobate and decreasing the concentration of lead titanate in compositions near the morphotropic phase boundary resulted in a decrease of mechanical compliance, dielectric permittivity, and piezoelectric coefficients as well as a shift from a continuous to a discontinuous transformation.

  12. Nucleation kinetics of urea succinic acid –ferroelectric single crystal

    SciTech Connect

    Dhivya, R.; Vizhi, R. Ezhil E-mail: revizhi@gmail.com; Babu, D. Rajan

    2015-06-24

    Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.

  13. Domain Motion of Ferroelectricity of Bi2SrTa2O9 Single Crystals under an AC-Voltage Electric Field

    NASA Astrophysics Data System (ADS)

    Machida, Akio; Nagasawa, Naomi; Ami, Takaaki; Suzuki, Masayuki

    1999-02-01

    A novel phenomenon, which increases the remanent polarization of Bi2SrTa2O9 single crystals, a promising candidate for ferroelectric random access memories (FeRAM), has been identified. The single crystals, grown in vapor phases using the self-flux method, have a composition characterized asBixSryTa2O9 (x=2.08±0.09, y=1.04±0.06). Incontrast to BixSryTa2O9 (x=1.91±0.05, y=1.27±0.08) single crystals grown by the self-flux method, the coercive field of the present single crystals is smaller. Observing optical anisotropy in the c-plane, we found that this material has a paraelectric phase, which might originate from the partial distortion of the crystal. After voltage was applied, the paraelectric phase disappeared and the crystal became a ferroelectric domain structure. Measuring the electrical properties in the c-plane, the remanent polarization of the Bi2SrTa2O9 single crystal was increased by applying ac-voltage. One-hour annealing over the Curie temperature also produced a paraelectric phase in the crystal but it was confirmed that this paraelectric phase can also be decreased by applying ac-voltage. Using this ac-voltage application, we can clearly observe the domain structure of BiSTa single crystal for the first time.

  14. Energy harvesting based on FE-FE transition in ferroelectric single crystals.

    PubMed

    Guyomar, Daniel; Pruvost, Sebastien; Sebald, Gael

    2008-02-01

    The pyroelectric properties of Pb(Zn(1/3)Nb(2/3))(0955)Ti(0.045)O(3) single crystals versus an electric field have been studied for energy harvesting in this paper. Two thermodynamic cycles (Stirling and Ericsson) were used for this purpose. By applying an electric field, a FE-FE transition was induced, abruptly increasing the polarization. This transition minimized the supplied energy and improved the harvested energy. By discharging the single crystal at a higher temperature, a gain of 1100% was obtained with the Stirling cycle at 1 kV/mm (gain is defined as harvested energy divided by supplied energy). The study revealed that Stirling cycles are more interesting for low electric fields. Based on experimental results, simulations were carried out to estimate energy harvesting in high electric fields to evaluate the performances of thin samples (single crystals or oriented thin films). At high electric fields, both cycles gave almost the same energy harvesting, but Ericsson cycles were more appropriate to control the voltage on the sample. The simulation led to a harvested energy of 500 mJ/g for an applied electric field equal to 50 kV/mm. The efficiency with respect to Carnot was raised 20%. PMID:18334334

  15. Ferroelectric domain structures in <001>-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} lead-free single crystal

    SciTech Connect

    Chen, Yan; Wong, Chi-Man; Yau, Hei-Man; Dai, Jiyan; Deng, Hao; Luo, Haosu; Wang, Danyang; Yan, Zhibo; Chan, Helen L. W.

    2015-03-15

    In this work, ferroelectric domain structures of <001 >-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} single crystal are characterized. Transmission electron microscopy (TEM) observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1/2 (eeo) and 1/2 (ooe) in electron diffraction patterns are observed in the crystal, revealing the a{sup +}a{sup +}c{sup −} tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K{sub 0.15}Na{sub 0.85}NbO{sub 3} crystal are observed by piezoresponse force microscopy (PFM), and the results assure its good ferroelectric properties.

  16. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  17. Determination of 60° polarization nanodomains in a relaxor-based ferroelectric single crystal

    SciTech Connect

    Kim, Kyou-Hyun; Zuo, Jian-Min; Payne, David A.

    2015-10-19

    Here, we report a determination of monoclinic nanodomains in PMN-xPT with x = 31%PT by using scanning convergent beam electron diffraction (SCBED). We show the presence of 60 ± α degree nanodomains with Cm-like symmetry as well as significant variations (α) in local polarization directions across lengths of ∼10 nm. The principle of our technique is general and can be applied for the determination of polarization domains in other ferroelectric materials of different symmetry.

  18. Fabrication of graphene field-effect transistor on top of ferroelectric single-crystal substrate

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Yourack; Kim, Jeong-Gyun; Kim, Joong-Gyu; Yun, Yoojoo; Park, Jeongmin; Kim, Taesoo; Kim, Jung Ho; Jin, Youngjo; Shin, Yong Seon; Lee, Young Hee; Suh, Dongseok

    2015-03-01

    In the analysis of Graphene field-effect transistor, the substrate material which has the direct contact with Graphene layer plays an important in the device performance. In this presentation, we have tested PMN-PT(i.e.(1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) substrate as a gate dielectric of Graphene field-effect transistor. Unlike the case of previously used substrates such as silicon oxide or hexagonal Boron-Nitride(h-BN), the PMN-PT substrate can induce giant amount of surface charge that is directly injected to the attached Graphene layer due to its ferroelectric property. And the hysteresis of polarization versus electric field of PMN-PT can cause the device to show the ferroelectric nonvolatile memory operation. We had successfully fabricated Graphene field-effect transistor using the mechanically exfoliated Graphene layer transferred on the PMN-PT(001) substrate. Unlike the case of mechanical exfoliation on the surface of silicon-oxide or the Poly(methyl methacrylate) (PMMA), the weak adhesion properties between graphene and PMNPT required the pretreatment on PMMA before the exfoliation process. The device performance is analyzed in terms of the effect of ferro- and piezo-electric effect of PMNPT substrate.

  19. Dielectric dispersion of ferroelectric ceramics and single crystals by sound generation in piezoelectric domains

    SciTech Connect

    Arlt, G.; Boettger, U.; Witte, S.

    1995-04-01

    Periodic domain configurations with alternating 180{degree} and 90{degree} domains are not completely mechanically clamped up to microwave frequencies. Above the acoustic resonance of the ferroelectric sample, therefore, the dielectric constant comprises contributions which can be attributed to the free dielectric constant. Up to microwave frequencies the domains are piezoelectrically active; they emit longitudinal and shear thickness waves into the surroundings which cause dielectric loss in the sample. The dielectric step from the free condition to the clamped condition at the relaxation frequency is on the order of {Delta}{var_epsilon} {approx} 10--100. This step is much smaller than the step caused by the emission of shear waves from 90{degree} domain walls.

  20. High-Performance Ferroelectric Bi4Ti3O12 Single Crystals Grown by Top-Seeded Solution Growth Method under High-Pressure Oxygen Atmosphere

    NASA Astrophysics Data System (ADS)

    Kitanaka, Yuuki; Noguchi, Yuji; Miyayama, Masaru

    2010-09-01

    The top-seeded solution growth (TSSG) method under high oxygen pressure (PO2 ) atmosphere has been developed to obtain large high-performance single crystals of ferroelectric Bi4Ti3O12. Crystals grown at 960 °C at a PO2 of 0.9 MPa exhibited well-saturated hysteresis with a remanent polarization of 48 µC/cm2 and a coercive field of 29 kV/cm. The results of piezoresponse force microscopy indicate that polarization switching is accomplished throughout the crystals. Electric-field-induced strain measurements along the a axis yield a piezoelectric constant d11* of 37 pm/V for Bi4Ti3O12.

  1. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics.

    PubMed

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  2. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  3. Phase transitions and thermal-stress-induced structural changes in a ferroelectric Pb (Zr0.80Ti0. 20)O3 single crystal

    DOE PAGESBeta

    Frantti, Johannes; Fujioka, Y.; Puretzky, Alexander A.; Xie, Y; Ye, Z. -G.; Parish, Chad M.; Glazer, A. M.

    2014-12-22

    Zirconium-rich lead-zirconate-titanate (PZT) Pb(Zr0.80Ti0.20)O3 single crystal is studied by polarized-Raman scattering experiments as a function of temperature. We show that the crystal possesses complex domain boundaries which show no sign of instability even 200 K above the ferroelectric-to-paraelectric phase transition. The boundary stabilized the domains which had the same orientation after cyclic heating and cooling up to 773 K. The domains transformed normally to the cubic paraelectric phase, but returned to their original state after cooling. Physical mechanism behind the reversible behavior is related to the strain between the boundary region and domain, which forces the domain to grow similarlymore » after each heating and cooling cycle. Electron backscattering diffraction measurements show that macroscopic domains, lengths scale in hundreds of microns, are divided into regions whose Pb-displacements are not correlated. The results are notably interesting for non-volatile memory development as it implies that the original ferroelectric state can be restored after the material has been transformed to a paraelectric phase. Incoherent Pbdisplacements play a role for polarization switching.« less

  4. An I-integral method for crack-tip intensity factor variation due to domain switching in ferroelectric single-crystals

    NASA Astrophysics Data System (ADS)

    Yu, Hongjun; Wang, Jie; Shimada, Takahiro; Wu, Huaping; Wu, Linzhi; Kuna, Meinhard; Kitamura, Takayuki

    2016-09-01

    In the present study, an I-integral method is established for solving the crack-tip intensity factors of ferroelectric single-crystals. The I-integral combined with the phase field model is successfully used to investigate crack-tip intensity factor variations due to domain switching in ferroelectricity subjected to electromechanical loadings, which exhibits several advantages over previous methods based on small-scale switching. First, the shape of the switching zone around a crack tip is predicted by the time-dependent Ginzburg-Landau equation, which does not require preset energy-based switching criterion. Second, the I-integral can directly solve the crack-tip intensity factors and decouple the crack-tip intensity factors of different modes based on superimposing an auxiliary state onto an actual state. Third, the I-integral is area-independent, namely, the I-integral is not affected by the integral area size, the polarization distributions, or domain walls. This makes the I-integral applicable to large-scale domain switching. To this end, the electro-elastic field intensity factors of an impermeable crack in PbTiO3 ferroelectric single crystals are evaluated under electrical, mechanical, and combined loading. The intensity factors obtained by the I-integral agree well with those obtained by the extrapolation technique. From numerical results, the following conclusions can be drawn with respect to fracture behavior of ferroelectrics under large-scale switching. Under displacement controlled mechanical loading, the stress intensity factors (SIFs) decrease monotonically due to the domain switching process, which means a crack tip shielding or effective switching-induced toughening occurs. If an external electric field is applied, the electric displacement intensity factor (EDIF) increases in all cases, i.e., the formed domain patterns enhance the electric crack tip loading. The energy release rate, expressed by the crack-tip J-integral, is reduced by the domain

  5. Nb:BST: Crystal growth and ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Varatharajan, R.; Madeswaran, S.; Jayavel, R.

    2001-05-01

    Nb substituted barium strontium titanate single crystals were grown by the high-temperature solution growth technique with different Nb concentrations. The growth conditions were optimized to grow good quality large sized single crystals. Nb doping reduced the twin formation considerably and yielded bulk single crystals. A surface morphology observation indicates layer and hopper growth mechanisms. Powder X-ray diffraction studies show an increase in c/a ratio with Nb content, and ferroelectric studies revealed a decrease in curie temperature and a sharp increase in dielectric constant and spontaneous polarization.

  6. Precursor polar clusters in the paraelectric phase of ferroelectric Ba₀.₈₀Ca₀.₂₀TiO₃ single crystals studied by Brillouin light scattering.

    PubMed

    Kim, Tae Hyun; Kojima, Seiji; Park, Kibog; Kim, Sung Baek; Ko, Jae-Hyeon

    2010-06-01

    A strong relaxation mode was observed in the gigahertz frequency window in the paraelectric phase of Ba₀.₈₀Ca₀.₂₀TiO₃ single crystals by using Brillouin light scattering. The appearance and growth of this relaxation mode were accompanied by substantial softening of the longitudinal acoustic mode as well as a remarkable increase in the hypersonic damping. Similar to BaTiO₃, the temperature dependence of the relaxation time of Ba₀.₈₀Ca₀.₂₀TiO₃ displayed a slowing-down behavior near the Curie temperature, indicating the order-disorder nature of the paraelectric-ferroelectric phase transition in this substance. The dynamics of precursor polar clusters observed in this work was discussed in relation with recent theoretical studies and found to be consistent with their predictions. PMID:21393751

  7. Anomalous variations in elastic properties of lead zirconate niobate-lead titanate single crystals in the vicinity of its ferroelectric phase transition

    NASA Astrophysics Data System (ADS)

    Shabbir, G.; Kojima, S.

    2014-03-01

    The acoustic phonon mode anomalies in the paraelectric phase of tetragonal and rhombohedral (1 - x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals were systematically investigated by Brillouin light scattering measurements. The inverse relaxation time in the paraelectric phase of both crystals showed a stretched-type slowing-down temperature dependence approaching the structural phase transition temperature (T_{\\text{C}}) instead of a normal critical slowing-down. The observed anomalous part of the elastic constant (c_{11}) in the paraelectric phase of the tetragonal crystal in the vicinity of T_{\\text{C}} , exhibited a log(T-T_{0}/T_{0}) -type dependence in the temperature range from T_{\\text{C}} to \\sim T_{\\text{C}}+80\\ ^\\circ \\text{C} . On the other hand, the elastic constant of the rhombohedral ferroelectric crystal exhibited a deviation from such a temperature dependence. This was attributed to the interaction of acoustic phonon modes with strong polarization fluctuations and elastic deformation arising from the complex dynamics of polar nanoregions.

  8. Phase-field modeling of ferroelectric to paraelectric phase boundary structures in single-crystal barium titanate

    NASA Astrophysics Data System (ADS)

    Woldman, Alexandra Y.; Landis, Chad M.

    2016-03-01

    Ferroelectric perovskite materials have been shown to exhibit a large electrocaloric effect near phase transitions. We develop a computational model based on a phase-field approach to characterize the structure of ferroelectric to paraelectric phase boundaries for planar configurations under generalized plane strain with temperatures near the Curie temperature. A nonlinear finite element method is used to solve for the phase boundary structure of a representative unit cell with a 180° ferroelectric laminate for a range of domain widths. The temperature at which the phase boundary can be found increases with domain width, approaching the Curie temperature asymptotically. The excess free energy density per unit area of the boundary increases with domain width. As expected, closure domains form between the ferroelectric and paraelectric phase, and the shape of the closure domains evolves from triangular to needle-shaped as the domain width increases. The entropy jump across the phase boundary is quantified and is shown to increase with domain width as well. A planar configuration with a 90° ferroelectric laminate is investigated, but shown to be physically unlikely due to the high stress levels required to achieve strain compatibility between the phases. Possible three-dimensional structures of the ferroelectric-paraelectric phase boundary are also discussed.

  9. Ferroelectric, Thermal, and Magnetic Characteristics of Praseodymium Malonate Hexahydrate Crystals

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2016-04-01

    Gel-grown single crystals of [Pr2(C3H2O4)3(H2O)6] exhibit remarkably flat habit faces, the most predominant being {110}. High-resolution x-ray diffraction analysis showed that the crystals are free from structural grain boundaries, which is the key requirement for single crystals for use in the microelectronics industry to serve as low-dielectric-constant ferroelectric material. The dielectric behavior recorded on {110} planes of single crystals shows that the crystal is ferroelectric with transition temperature T c = 135°C, which differs from the Curie-Weiss temperature T 0 by 2°C (T 0 < T c). Material in pellet form is shown to exhibit slightly different dielectric behavior. Polarization versus electric field confirms the ferroelectric behavior of the material. The dielectric behavior is also supported by the results of thermal studies, viz. thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The magnetic susceptibility and magnetic moment are calculated to be 30.045 × 10-6 emu and 3.092 BM, respectively.

  10. 180 deg. domain structure and its evolution in Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} ferroelectric single crystals of tungsten bronzes structure

    SciTech Connect

    Lu, C.J.; Nie, C.J.; Duan, X.F.; Li, J.Q.; Zhang, H.J.; Wang, J.Y.

    2006-05-15

    Ferroelectric domain structure and its evolution in uniaxial relaxor Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} single crystals were investigated using transmission electron microscopy. It was found that there exists a high density of 180 deg. domain walls in the crystals. The domains appear predominantly spike shaped along the polar axis and have a typical diameter of 50-500 nm. Domain wall motion was occasionally induced by electron beam irradiation. Macrodomains-to-microdomains switching has been observed corresponding to the normal-to-relaxor ferroelectrics transition during an in situ heating experiments. At temperature just below ferroelectric phase transition temperature T{sub C}, zero-field-cooled needlelike nanodomains were also observed.

  11. Electrical and optical properties of Nd3+-doped Na0.5Bi0.5TiO3 ferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    He, Chongjun; Zhang, Yungang; Sun, Liang; Wang, Jiming; Wu, Tong; Xu, Feng; Du, Chaoling; Zhu, Kongjun; Liu, Youwen

    2013-06-01

    Sodium bismuth titanate Na0.5Bi0.5TiO3 (NBT) single crystal doped with Nd3+ was grown by a top-seeded solution growth method. Powder x-ray diffraction revealed a pure perovskite structure with the rhombohedral phase. We found that the dielectric and ferroelectric properties were enhanced by the Nd3+ dopant. After poling along the [1 1 1] direction, transmittance was enhanced dramatically. The Sellmeier dispersion equation and energy band gaps were obtained. The absorption band around 808 nm has high full-width at half-maximum and large absorption cross-section, which is suitable for AlGaAs diode-laser pumping. A strong emission transition band of Nd3+ at around 1066 nm was observed; a long radiation lifetime 324 µs shows a low quenching effect. These results indicate that Nd3+-doped NBT crystal could be applied in photonic or integrated optoelectronic devices as a multi-functional crystal.

  12. Modeling of elastic nonlinearities in ferroelectric materials including nonlinear losses: application to nonlinear resonance mode of relaxors single crystals.

    PubMed

    Sebald, Gaël; Lebrun, Laurent; Guyomar, Daniel

    2005-04-01

    (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) and (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) single crystals are considered to behave like soft Pb(Zr,Ti)O3 (PZT) ceramics because of their small mechanical quality factor Qm and poor stability under external disturbances (Qm > 500-1000 for hard PZT ceramic, and Qm < 100 for soft PZT and PMN-PT and PZN-PT single crystals). At weak signal excitation of the first resonance mode, the displacement at the end of a lateral bar is proportional to the Q31d31 figure of merit that is very close to that found for hard PZT. Indeed the very large piezoelectric coefficient compensates the low Qm. But increasing alternating current (AC) field results in the appearance of strong non-linearities through a shift of the resonance frequency and jumps phenomenon observed on increasing and decreasing frequency sweep. It is shown in this paper that these nonlinearities are due to the nonlinear elastic compliance that can be modeled by a third order development of the constitutive piezoelectric equations. Experiments on PMN-PT and PZN-PT single crystals are used for comparison with the model to show the viability of the approach. Both the frequency shift and jumps phenomenon are simulated with a very good agreement with experimental results. The importance is also shown of losses associated with the third order term responsible for the large decrease of the mechanical quality factor for high strain levels. Thus, the nonlinear losses are related to the hysteresis of domain wall motion when subjected to large displacements. PMID:16060508

  13. Super-crystals in composite ferroelectrics.

    PubMed

    Pierangeli, D; Ferraro, M; Di Mei, F; Di Domenico, G; de Oliveira, C E M; Agranat, A J; DelRe, E

    2016-01-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium-lithium-tantalate-niobate with micrometric lattice constant, 10(4) times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies. PMID:26907725

  14. Super-crystals in composite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pierangeli, D.; Ferraro, M.; di Mei, F.; di Domenico, G.; de Oliveira, C. E. M.; Agranat, A. J.; Delre, E.

    2016-02-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium-lithium-tantalate-niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies.

  15. Super-crystals in composite ferroelectrics

    PubMed Central

    Pierangeli, D.; Ferraro, M.; Di Mei, F.; Di Domenico, G.; de Oliveira, C. E. M.; Agranat, A. J.; DelRe, E.

    2016-01-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium–lithium–tantalate–niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies. PMID:26907725

  16. Spontaneous Ferroelectric Order in a Bent-Core Smectic Liquid Crystal of Fluid Orthorhombic Layers

    SciTech Connect

    R Reddy; C Zhu; R Shao; E Korblova; T Gong; Y Shen; M Glaser; J Maclennan; D Walba; N Clark

    2011-12-31

    Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP{sub F}, the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.

  17. Piezoelectric activity in Perovskite ferroelectric crystals.

    PubMed

    Li, Fei; Wang, Linghang; Jin, Li; Lin, Dabin; Li, Jinglei; Li, Zhenrong; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    Perovskite ferroelectrics (PFs) have been the dominant piezoelectric materials for various electromechanical applications, such as ultrasonic transducers, sensors, and actuators, to name a few. In this review article, the development of PF crystals is introduced, focusing on the crystal growth and piezoelectric activity. The critical factors responsible for the high piezoelectric activity of PFs (i.e., phase transition, monoclinic phase, domain size, relaxor component, dopants, and piezoelectric anisotropy) are surveyed and discussed. A general picture of the present understanding on the high piezoelectricity of PFs is described. At the end of this review, potential approaches to further improve the piezoelectricity of PFs are proposed. PMID:25585387

  18. Effect of doping with Nd{sup 3+} ions on the structural and ferroelectric properties of Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} single crystal

    SciTech Connect

    Gao, W.L.; Zhang, H.J.; Xia, S.Q.; Huang, B.B.; Liu, D.; Wang, J.Y.; Jiang, M.H.; Zheng, L.M.; Wang, J.F.; Lu, C.J.

    2010-09-15

    The crystal structure of Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} (CBN-28) crystal with Nd-doping has been determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm and the following parameters: a = b = 12.458 A, c = 3.954 A, V = 613.688 A{sup 3}, and Z = 5. X-ray diffraction results on a Nd-doped CBN-28 single crystal also have demonstrated that Nd{sup 3+} and Ca{sup 2+} occupy the same site in the crystal structure. Dielectric and ferroelectric measurements have been performed. Transition from ferroelectric to paraelectric at around 223 {sup o}C has been observed. The Nd-doped crystal has a lower Curie temperature (T{sub m}) than that of undoped CBN-28 crystal. The spontaneous polarization (P{sub s}) and coercive electric field (E{sub c}) also decrease compared with their values in the undoped CBN-28 crystal.

  19. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  20. Topology and temperature dependence of the diffuse X-ray scattering in Na0.5Bi0.5TiO3 ferroelectric single crystals

    PubMed Central

    Gorfman, Semën; Keeble, Dean S.; Bombardi, Alessandro; Thomas, Pam A.

    2015-01-01

    The results of high-resolution measurements of the diffuse X-ray scattering produced by a perovskite-based Na0.5Bi0.5TiO3 ferroelectric single crystal between 40 and 620 K are reported. The study was designed as an attempt to resolve numerous controversies regarding the average structure of Na0.5Bi0.5TiO3, such as the mechanism of the phase transitions between the tetragonal, P4bm, and rhombohedral | monoclinic, R3c | Cc, space groups and the correlation between structural changes and macroscopic physical properties. The starting point was to search for any transformations of structural disorder in the temperature range of thermal depoling (420–480 K), where the average structure is known to remain unchanged. The intensity distribution around the {032} pseudocubic reflection was collected using a PILATUS 100K detector at the I16 beamline of the Diamond Light Source (UK). The data revealed previously unknown features of the diffuse scattering, including a system of dual asymmetric L-shaped diffuse scattering streaks. The topology, temperature dependence, and relationship between Bragg and diffuse intensities suggest the presence of complex microstructure in the low-temperature R3c | Cc phase. This microstructure may be formed by the persistence of the higher-temperature P4bm phase, built into a lower-temperature R3c | Cc matrix, accompanied by the related long-range strain fields. Finally, it is shown that a correlation between the temperature dependence of the X-ray scattering features and the temperature regime of thermal depoling is present. PMID:26877721

  1. 2-2 composites based on [011]-poled relaxor-ferroelectric single crystals: from the piezoelectric anisotropy to the hydrostatic response

    NASA Astrophysics Data System (ADS)

    Bowen, C. R.; Topolov, V. Y.; Betts, D. N.; Kim, H. A.

    2013-05-01

    In this paper effect of the orientation of the main crystallographic axes on the piezoelectric anisotropy and hydrostatic parameters of 2-2 parallel-connected single crystal (SC) / auxetic polymer composites is analysed. SCs are chosen among the perovskite-type relaxor-ferroelectric solid solutions of (1 - x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 and xPb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-(1 - x - y)PbTiO3. The SC layers in a composite sample are poled along the perovskite unit-cell [011] direction and characterised by mm2 symmetry. The orientation of the main crystallographic axes in the SC layer is observed to strongly influence the effective piezoelectric coefficients d*3j, g*3j, squared figured of merit d*3j g*3j, electromechanical coupling factors k*3j (j = 1, 2 and 3), and hydrostatic analogs of these parameters of the 2-2 composite. A comparison of values of d*3j g*3j was first carried out at d*31 ≠ d*32 in a wide range of orientations and volume-fraction. Large values of the effective parameters and inequalities | d*33 / d*3f | > 5 and | k*33 / k*3f | > 5 (f = 1 and 2) are achieved at specific orientations of the main crystallographic axes due to the anisotropy of elastic and piezoelectric properties of the SC component. The use of an auxetic polyethylene with a negative Poisson's ratio leads to a significant increase in the hydrostatic parameters of the 2-2 composite. Particular advantages of the studied composites over the conventional ceramic / polymer composites are taken into account for transducer, hydroacoustic and energyharvesting applications.

  2. Effects of electron irradiation on the ferroelectric 180 deg. in-plane nanostripe domain structure in a thin film prepared from a bulk single crystal of BaTiO{sub 3} by focused ion beam

    SciTech Connect

    Matsumoto, Takao; Okamoto, Masakuni

    2011-01-01

    Effects of electron irradiation on the ferroelectric 180 deg. in-plane nanostripe domain structure in a thin film prepared from a bulk single crystal of BaTiO{sub 3} by focused ion beam were studied. The domain structure transformed into a characteristic 90 deg. in-plane nanostripe domain structure under intense electron irradiation. In particular, an unconventional triangular 90 deg. in-plane nanostripe domain structure was observed. Polarization analysis suggests the existence of an incomplete or half tetradomain vortex at the boundary of the triangular domain structure. Together with the help of phase-field simulations using time-dependent Ginzburg-Landau equations, it is suggested that such a domain structure is created by an anisotropic in-plane electric field, which is plausibly induced by an anisotropic interaction of the incident electron beam with the ferroelectric material.

  3. Novel Ferroelectric Liquid Crystals with Very Large Spontaneous Polarization

    NASA Astrophysics Data System (ADS)

    Nakauchi, Jun; Uematsu, Mioko; Sakashita, Keiichi; Kageyama, Yoshitaka; Hayashi, Seiji; Ikemoto, Tetsuya; Mori, Kenji

    1989-07-01

    Several ferroelectric liquid crystals derived from a new optically active (2S, 5R)-2-hydroxy-5-hexyl-δ-valerolactone have been synthesized, and their mesomorphic and ferroelectric properties have been investigated. Very large spontaneous polarization (Ps) has been observed in these compounds, one of which shows an extremly large Ps value: as high as 320 nC/cm2.

  4. Structure and properties of Bi(Zn0.5Ti0.5)O3- Pb(Zr(1-x)Ti(x))O3 ferroelectric single crystals grown by a top-seeded solution growth technique.

    PubMed

    Wang, Bixia; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2015-06-01

    Bi(Zn0.5Ti0.5)O3 (BZT)-modified Pb(Zr(1-x)Ti(x))O3 (PZT) single crystals have been grown using a top-seeded solution growth technique and characterized by various methods. The crystal structure is found to be rhombohedral by means of X-ray powder diffraction. The composition and homogeneity of the as-grown single crystals are studied by laser ablation inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The domain structure of a (001)(cub) platelet is investigated by polarized light microscopy (PLM), which confirms the rhombohedral symmetry. The paraelectric-to-ferroelectric phase transition temperature T(C) is found to be 313°C with the absence of rhombohedral-tetragonal phase transition. The ferroelectric properties of the ternary crystals are enhanced by the BZT substitution with a remanent polarization of 28 μC/cm(2) and a coercive field E(C) of 22.1 kV/cm. PMID:26067036

  5. Fork gratings based on ferroelectric liquid crystals.

    PubMed

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices. PMID:27136779

  6. Chiralization and ferroelectric state induction in nanostructured liquid crystals

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Rafailov, P. M.; Todorov, N.

    2016-02-01

    The liquid crystals (LC), due to their naturally high bulk ordering, strong birefringence and easy electrooptical driving, serve as matrix in the nanocomposites doped with non-mesogenic or mesogenic nanoparticles. The nanocomposite's structural units exhibit very complex molecular form indicating the strength and the intermolecular interaction between the matrix and dopant's molecules. Hydrogen bonds are of particular significance for the formation of the nanocomposite structural units, since the symmetry of the LC nanocomposite could be controlled and controllably decreased due to the acceptor-donor interaction between the dimeric matrix and the dopants. As a result, the LC nanocomposite can reach the lowest symmetry, known as triclinic - C1. Using the LC p,n-alkyloxybensoic acids (nOBA) in form of hydrogen-bonded dimers as matrix and non-mesogenics - single walls carbon nanotubes (SWCNT), perfluorooctanoic acid (PFOA), 4-hydrooxypiridin (HOPY) or mesogen - cholesteryl benzoate (ChB) as dopants and choosing optimal concentrations (where the typical LC state was preserved), we obtained nanocomopsites 7OBA/SWCNT, 7OBA/PFOA, 9OBA/HOPY and 8OBA/ChB. We indicate two forms of ferroelectricity in the studied nanocomposites: developable ferroelectricity, characteristic for the 9OBA/HOPY, 7OBA/PFOA compounds and developed ferroelectricity characteristic for 8OBA/SWCNT, 8OBA/ChB.

  7. Novel ferroelectric single crystals of Bi(Zn{sub 1/2}Ti{sub 1/2})O{sub 3}-PbZrO{sub 3}-PbTiO{sub 3} ternary solid solution

    SciTech Connect

    Wang, Bixia; Xie, Yujuan; Zhuang, Jian; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2014-02-28

    Ferroelectric single crystals of a new lead-reduced Bi(Zn{sub 1/2}Ti{sub 1/2})O{sub 3}-PbZrO{sub 3}-PbTiO{sub 3} (BZT-PZ-PT) ternary solid solution system have been grown for the first time by three different methods, namely high temperature solution growth (HTSG, or flux method), top-cooled solution growth (TCSG), and top-seeded solution growth (TSSG). The chemical and thermodynamic parameters, including the flux concentration, the soaking temperature and the cooling rate, have been optimized, leading to the growth of good quality BZT-PZ-PT crystals of pseudo-cubic morphology. A large size crystal of the dimensions of 2 × 2 × 0.5 cm{sup 3} has been obtained by the TSSG technique. The crystal structure is analyzed by means of X-ray powder diffraction. The highest ferroelectric Curie temperature T{sub C} of the grown crystals is found to be 320 °C by means of dielectric measurements. A remnant polarization of 32 μC/cm{sup 2} is displayed with a coercive field of 15.4 kV/cm. The high T{sub C} and large coercive field of the BZT-PZ-PT single crystal make this material a promising candidate for applications in high power electromechanical transducers that can operate in a wider temperature range and at high fields.

  8. Optical interband transitions in relaxor-based ferroelectric 0.93Pb(Zn1∕3Nb2∕3)O3–0.07PbTiO3 single crystal

    PubMed Central

    Sun, Enwei; Zhang, Rui; Wang, Zhu; Xu, Dapeng; Li, Liang; Cao, Wenwu

    2010-01-01

    The optical transmission spectrum of [111]c poled relaxor-based ferroelectric single crystal 0.93Pb(Zn1∕3Nb2∕3)O3–0.07PbTiO3 (PZN–0.07PT) was measured in the range of ultraviolet to near infrared. The optical absorption edge has been determined and the wavelength dependence of the absorption coefficient was calculated. The direct energy gap Egd=3.144 eV, indirect energy gap Egi=2.915 eV, and phonon energy Ep=0.097 eV (or 782 cm−1) were determined based on the theory of band to band transitions. It was also confirmed by Raman spectra that the indirect transition for the [111]c poled PZN–0.07PT single crystal is mainly due to the contribution of 780 cm−1 phonon corresponding to the Nb–O–Zn bond stretching mode. PMID:20634967

  9. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  10. A transverse electric current in triglycine sulphate ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Fugiel, Bogusław; Kikuta, Toshio

    2016-05-01

    The application of a prolonged transverse electric field at a temperature TA < TC leads to unexpected qualitative changes in dielectric and thermal properties of the uniaxial ferroelectric triglycine sulphate (TGS) crystal, where TC is the critical temperature of the paraelectric-ferroelectric phase transition. The new properties can be still observed even after the transverse field has ceased to be applied as long as the temperature of the sample does not exceed TA. However, annealing the sample above TC leads to the restoration of the original state of the crystal. An electric current flowing along the direction perpendicular to the polar axis of the uniaxial TGS ferroelectric crystal was measured below the temperature TA at which the prolonged transverse electric field had been formerly applied to the crystal for a few hours. The experimental data resemble the classic pyroelectric current flowing along the polar axis.

  11. Phase transitions and thermal-stress-induced structural changes in a ferroelectric Pb (Zr0.80Ti0. 20)O3 single crystal

    SciTech Connect

    Frantti, Johannes; Fujioka, Y.; Puretzky, Alexander A.; Xie, Y; Ye, Z. -G.; Parish, Chad M.; Glazer, A. M.

    2014-12-22

    Zirconium-rich lead-zirconate-titanate (PZT) Pb(Zr0.80Ti0.20)O3 single crystal is studied by polarized-Raman scattering experiments as a function of temperature. We show that the crystal possesses complex domain boundaries which show no sign of instability even 200 K above the ferroelectric-to-paraelectric phase transition. The boundary stabilized the domains which had the same orientation after cyclic heating and cooling up to 773 K. The domains transformed normally to the cubic paraelectric phase, but returned to their original state after cooling. Physical mechanism behind the reversible behavior is related to the strain between the boundary region and domain, which forces the domain to grow similarly after each heating and cooling cycle. Electron backscattering diffraction measurements show that macroscopic domains, lengths scale in hundreds of microns, are divided into regions whose Pb-displacements are not correlated. The results are notably interesting for non-volatile memory development as it implies that the original ferroelectric state can be restored after the material has been transformed to a paraelectric phase. Incoherent Pbdisplacements play a role for polarization switching.

  12. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO3-BaZrO3-CaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Benabdallah, F.; Veber, P.; Prakasam, M.; Viraphong, O.; Shimamura, K.; Maglione, M.

    2014-04-01

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba0.850Ca0.150)(Ti0.900Zr0.100)O3 ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO3-BaZrO3-CaTiO3 pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO2-ZrO2 solid solution led to single crystals with various compositions ranging from (Ba0.857Ca0.143)(Ti0.928Zr0.072)O3 to (Ba0.953Ca0.047)(Ti0.427Zr0.573)O3. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba0.838Ca0.162)(Ti0.854Zr0.146)O3 composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d31 and k31 of 93 pC.N-1 and 0.18, respectively, near the room temperature (T = 305 K).

  13. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} single crystals

    SciTech Connect

    Benabdallah, F.; Veber, P. Prakasam, M.; Viraphong, O.; Maglione, M.; Shimamura, K.

    2014-04-14

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba{sub 0.850}Ca{sub 0.150})(Ti{sub 0.900}Zr{sub 0.100})O{sub 3} ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO{sub 2}-ZrO{sub 2} solid solution led to single crystals with various compositions ranging from (Ba{sub 0.857}Ca{sub 0.143})(Ti{sub 0.928}Zr{sub 0.072})O{sub 3} to (Ba{sub 0.953}Ca{sub 0.047})(Ti{sub 0.427}Zr{sub 0.573})O{sub 3}. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba{sub 0.838}Ca{sub 0.162})(Ti{sub 0.854}Zr{sub 0.146})O{sub 3} composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d{sub 31} and k{sub 31} of 93 pC.N{sup −1} and 0.18, respectively, near the room temperature (T = 305 K)

  14. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  15. Design of a polarimeter with two ferroelectric liquid crystal panels

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Lizana, Angel; Campos, Juan

    2013-09-01

    We present a Stokes polarimeter based on two ferroelectric liquid crystal monopixel panels. This architecture presents advantages associated to dynamic polarimeters and also, allows very fast polarization measurements. A ferroelectric liquid crystal panel can be modeled as a waveplate with a constant retardance and, with two possible orientations for its fast axis when a bipolar electrical sign is addressed. We have calibrated the optical features of our ferroelectric liquid crystal panels: retardance and rotation of the optical axis. In addition, we have carried out an optimization of the orientation of these panels in the setup in order to obtain a minimum condition number of our polarimeter and so, minimize the propagation of noise. Afterwards, we have conducted a tolerance analysis of the elements involved in the setup, focusing for a 2% of accuracy in the Stokes vectors measurements. Then, an experimental calibration is carried out and several measurements are taken in order to analyze its performance.

  16. Iminodiacetic acid doped ferroelectric triglycine sulphate crystal: Crystal growth and characterization

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Narayana Moolya, B.; Dharmaprakash, S. M.

    2011-01-01

    Single crystals of iminodiacetic acid (HN(CH 2COOH) 2) doped triglycine sulphate (IDATGS) crystals have been grown from aqueous solution containing 1-10 mol% of iminodiacetic acid at constant temperature by slow evaporation technique. The effects of different amounts of doping entities on the growth habit have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. The grown crystals were subjected to Fourier transform infrared (FTIR) spectroscopy studies to find the presence of various functional groups qualitatively. The dielectric permittivity has been studied as a function of temperature. An increase in the transition temperature (49.2-49.7 °C) of IDATGS crystals is observed. The dielectric constant ( ε‧ max) of IDATGS crystals vary in the range 922-2410 compared to pure TGS ( Tc=49.12 °C and ε‧ max=3050). Curie Weiss constants Cp and Cf in the paraelectric and ferroelectric phases were determined. The transition temperature ( Tc) is found to decrease with increase in dopant concentration. P- E hysteresis studies show the presence of internal bias field in the crystal. Piezoelectric measurements were also carried out at room temperature. Domain patterns on b-cut plates were observed using scanning electron microscope. The micro hardness studies reveal that the doped crystals are harder than the pure TGS crystals. The low dielectric constant, higher transition temperature, internal bias field and hardness suggest that IDATGS crystals could be a potential material for IR detectors.

  17. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Wang, Yu; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui

    2014-09-01

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La1-xBaxMnO3 (x = 0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb1/2)O3-0.34PbTiO3 (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R)strain] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La0.8Ba0.2MnO3 film and 150 K for the La0.6Ba0.4MnO3 film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  18. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La{sub 1-x}Ba{sub x}MnO₃ thin films epitaxially grown on relaxor-based ferroelectric single crystals

    SciTech Connect

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui; Wang, Yu

    2014-09-21

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La{sub 1-x}Ba{sub x}MnO₃ (x=0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In{sub 1/2}Nb{sub 1/2})O₃-0.35Pb(Mg{sub 1/3}Nb{sub 1/2})O₃-0.34PbTiO₃ (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R){sub strain}] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La₀.₈Ba₀.₂MnO₃ film and 150 K for the La₀.₆Ba₀.₄MnO₃ film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  19. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    SciTech Connect

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-15

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  20. Visualization of ferroelectric domains in a hydrogen-bonded molecular crystal using emission of terahertz radiation

    SciTech Connect

    Sotome, M.; Kida, N. Okamoto, H.; Horiuchi, S.

    2014-07-28

    Using a terahertz-radiation imaging, visualizations of ferroelectric domains were made in a room-temperature organic ferroelectric, croconic acid. In as-grown crystals, observed are ferroelectric domains with sizes larger than 50-μm square, which are separated by both 180° and tail-to-tail domain walls (DWs). By applying an electric field along c axis (the polarization direction), a pair of 180° DWs is generated and an each 180° DW oppositely propagates along a axis, resulting in a single domain. By cyclic applications of electric fields, a pair of 180° DWs repeatedly emerges, while no tail-to-tail DWs appear. We discuss the usefulness of the terahertz-radiation imaging as well as the observed unique DW dynamics.

  1. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary

    PubMed Central

    Tian, Hao; Yao, Bo; Wang, Lei; Tan, Peng; Meng, Xiangda; Shi, Guang; Zhou, Zhongxiang

    2015-01-01

    The dynamic response of polar nanoregions under an AC electric field was investigated by measuring the frequency dependence of the quadratic electro-optic (QEO) effect in a paraelectric KTa0.61Nb0.39O3 single crystal near the para-ferroelectric phase boundary (0 °C < T-Tc < 13 °C). The QEO coefficient R11 − R12 reached values as large as 5.96 × 10−15 m2/V2 at low frequency (500 Hz) and gradually decreased to a nearly stable value as the frequency increased to 300 kHz. Furthermore, a distortion of the QEO effect was observed at low frequency and gradually disappeared as R11 − R12 tended towards stability. The giant QEO effect in the KTa0.61Nb0.39O3 crystal was attributed to the dynamic rearrangement of polar nanoregions and its anomalous distortion can be explained by considering the asymmetric distribution of polar nanoregions. PMID:26334181

  2. Dielectric studies of iron nanoparticles-ferroelectric liquid crystal mixture

    NASA Astrophysics Data System (ADS)

    Khushboo, Sharma, Puneet; Jayoti, Divya; Malik, Praveen; Raina, K. K.

    2016-05-01

    Iron nanoparticles doped ferroelectric liquid crystal mixtures have been prepared and studied in thin planar cell. The effect of temperature and frequency on permittivity behavior in SmC* phase has been studied. Permittivity increases with increasing the temperature in SmC* phase and show a reduction near the SmC*-SmA transition temperature. A Goldstone mode is clearly observed at ~100 Hz.

  3. Photo-aligned ferroelectric liquid crystals in microchannels.

    PubMed

    Budaszewski, Daniel; Srivastava, Abhishek K; Tam, Alwin M W; Wolinski, Tomasz R; Chigrinov, Vladimir G; Kwok, Hoi-Sing

    2014-08-15

    In this Letter we disclose a method to realize a good alignment of ferroelectric liquid crystals (FLCs) in microchannels, based on photo-alignment. The sulfonic azo dye used in our research offers variable anchoring energy depending on the irradiation energy and thus provides good control on the FLC alignment in microchannels. The good FLC alignment has been observed only when anchoring energy normalized to the capillary diameter is less than the elastic energy of the FLC helix. The same approach can also be used for the different microstructures viz. photonic crystal fibers, microwaveguides, etc. which gives an opportunity for designing a photonic devices based on FLC. PMID:25121847

  4. Characteristic Pressure Dependence of Spontaneous Polarization in Ferroelectric Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Uehara, Hiroyuki

    2008-09-01

    The spontaneous polarization and rotational viscosity of the c-director of the ferroelectric liquid crystal 4'-octyloxy-biphenyl-4-carboxylic acid 4-(1-methyl-heptyloxy)-phenyl ester at various pressures were investigated. Spontaneous polarization as a function of T-TCA( p) decreased markedly when pressure was changed from 0.1 to 20 MPa and was independent of pressure as pressure was further increased. Rotational viscosity decreased when pressure was applied. These results suggest that the conformation of liquid crystal molecules changes at pressures below 20 MPa.

  5. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    NASA Astrophysics Data System (ADS)

    Sinha, Nidhi; Goel, Neeti; Singh, B. K.; Gupta, M. K.; Kumar, Binay

    2012-06-01

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (Tc) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications.

  6. Growth and ferroelectric properties of L-, D-, and DL-methionine-doped triglycine sulfate crystals

    NASA Astrophysics Data System (ADS)

    Kikuta, Toshio; Yamazaki, Toshinari; Nakatani, Noriyuki

    2010-12-01

    Single crystals of triglycine sulfate (TGS) doped with L-, D-, and DL-methionine have been prepared. Doping effects on the crystal morphology, the ferroelectric domain structure, and the generation of internal bias field Eb were investigated. These effects were compared with each other and also compared with those of alanine-doped crystals. Though L-methionine-doped crystals show the asymmetric morphology analogous to L-alanine-doped crystals, these two crystals are distinct from each other in their domain structure and the generation of Eb. It was ascertained that the asymmetry caused by L- and D-methionine are mutually reversed in the b-axis. For the doping of racemic mixture DL-methionine, we could recognize the overlap of doping effects caused by the both enantiomers of methionine.

  7. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  8. Novel ferroelectric liquid crystals consisting glassy liquid crystal as chiral dopants

    NASA Astrophysics Data System (ADS)

    Chen, Huang-Ming Philip; Tsai, Yun-Yen; Lin, Chi-Wen; Shieh, Han-Ping David

    2006-08-01

    A series of ferroelectric liquid crystals consisting new glassy liquid crystals (GLCs) as chiral dopants were prepared and evaluated for their potentials in fast switching ability less than 1 ms. The properties of pure ferroelectric glassy liquid crystals (FGLCs) and mixtures were reported in this paper. In particular, the novel FGLC possessing wide chiral smectic C mesophase over 100 °C is able to suppress smectic A phase of host. The mixture containing 2.0 % GLC-1 performs greater alignment ability and higher contrast ratio than R2301 (Clariant, Japan) in a 2 μm pre-made cell (EHC, Japan). These results indicate that novel FLC mixtures consisting glassy liquid crystals present a promising liquid crystal materials for fast switching field sequential color displays.

  9. Crystal growth and dielectric, mechanical, electrical and ferroelectric characterization of n-bromo succinimide doped triglycine sulphate crystals

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Byrappa, K.; Dharmaprakash, S. M.

    2011-09-01

    Single crystals of triglycine sulphate (TGS) doped with n-bromo succinimide (NBS) were grown at ambient temperature by the slow evaporation technique. An aqueous solution containing 1-20 mol% of n-bromo succinimide as dopant was used for the growth of NBSTGS crystals. The incorporation of NBS in TGS crystals has been qualitatively confirmed by FTIR spectral data. The effect of the dopant on morphology and crystal properties was investigated. The cell parameters of the doped crystal were determined by the powder X-ray diffraction technique. The dielectric constant of NBS doped TGS crystal was calculated along the ferroelectric direction over the temperature range of 30-60 °C. The dielectric constant of NBSTGS crystals decrease with the increase in NBS concentration and considerable shift in the phase transition temperature ( TC) towards the higher temperature observed. Pyroelectric studies on doped TGS were carried out to determine the pyroelectric coefficient. The emergence of internal bias field due to doping was studied by collecting P- E hysteresis data. Temperature dependence of DC conductivity of the doped crystals was studied and gradual increase in the conductivity with the increase of dopant concentration was observed. The activation energy (Δ E) calculated was found to be lower in both the ferroelectric and the paraelectric phases for doped crystals compared to that of pure TGS. The micro-hardness studies were carried out at room temperature on thin plates cut perpendicular to the b-axis. Less doped TGS crystals show higher hardness values compared to pure TGS. Piezoelectric measurements were also carried out on 010 plates of doped TGS crystals at room temperature.

  10. Recent Developments on High Curie Temperature PIN-PMN-PT Ferroelectric Crystals

    PubMed Central

    Zhang, Shujun; Li, Fei; Sherlock, Nevin P.; Luo, Jun; Lee, Hyeong Jae; Xia, Ru; Meyer, Richard J.; Hackenberger, Wesley; Shrout, Thomas R.

    2011-01-01

    Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ferroelectric crystals attracted extensive attentions in last couple years, due to their higher usage temperatures range (> 30°C) and coercive fields (~5kV/cm), meanwhile maintaining similar electromechanical couplings (k33> 90%) and piezoelectric coefficients (d33~1500pC/N), when compared to their binary counterpart Pb(Mg1/3Nb2/3)O3-PbTiO3. In this article, we reviewed recent developments on the PIN-PMN-PT single crystals, including the Bridgman crystal growth, dielectric, electromechanical, piezoelectric and ferroelectric behaviors as function of temperature and dc bias. Mechanical quality factor Q was studied as function of orientation and phase. Of particular interest is the dynamic strain, which related to the Q and d33, was found to be improved when compared to binary system, exhibiting the potential usage of PIN-PMN-PT in high power application. Furthermore, PIN-PMN-PT crystals exhibit improved thickness dependent properties, due to their small domain size, being on the order of 1μm. Finally, the manganese acceptor dopant in the ternary crystals was investigated and discussed briefly in this paper. PMID:21516190

  11. Ferroelectric thin films with liquid crystal for gradient index applications.

    PubMed

    Willekens, Oliver; George, John Puthenparampil; Neyts, Kristiaan; Beeckman, Jeroen

    2016-04-18

    We report on the first ever combination of a thin film of lead zirconate titanate (PZT) with a liquid crystal (LC) layer. Many liquid crystal applications use a transparent conductive oxide to switch the liquid crystal. Our proposed processing does not, instead relying on the extremely high dielectric constant of the ferroelectric layer to extend the electric field from widely spaced electrodes over the liquid crystal. It eliminates almost entirely the fringe field problems that arise in nearly all the liquid crystal devices that use multiple addressing electrodes. We show, both via rigorous simulations as well as experiments, that the addition of a PZT layer over the addressing electrodes leads to a markedly improved LC switching performance at distances of up to 30 μm from the addressing electrodes with the current PZT-layer thickness of 0.84 μm. This improvement in switching is used to tune the focal length of the microlens with electrodes spaced at 30 μm. PMID:27137248

  12. Low-temperature specific heat in ferroelectric (Pb,Ba)5Ge3O11 crystals

    NASA Astrophysics Data System (ADS)

    Gmelin, E.; Burns, Gerald

    1988-07-01

    We report specific-heat measurements in ferroelectric (Pb1-xBax)5Ge3O11 single crystals for x=0 and 0.02, from 2-80 K. We consider the data in terms of a classical Debye model, and allow for the possibility of an extra low-temperature term CLT and an extra high-temperature Einstein term CE (to account for extra oscillators). The data are accounted for with just the Debye model; CLT and CE terms are not needed, and the implications of these results are discussed.

  13. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light

    SciTech Connect

    Boes, Andreas; Crasto, Tristan; Steigerwald, Hendrik; Mitchell, Arnan; Wade, Scott; Frohnhaus, Jakob; Soergel, Elisabeth

    2013-09-30

    We report ferroelectric domain inversion in strontium barium niobate (SBN) single crystals by irradiating the surface locally with a strongly focused ultraviolet (UV) laser beam. The generated domains are investigated using piezoresponse force microscopy. We propose a simple model that allows predicting the domain width as a function of the irradiation intensity, which indeed applies for both SBN and LiNbO{sub 3}. Evidently, though fundamentally different, the domain structure of both SBN and LiNbO{sub 3} can be engineered through similar UV irradiation.

  14. A theory of triple hysteresis in ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Weng, George J.

    2009-10-01

    In the vicinity of the transition temperature between two ferroelectric states, a ferroelectric crystal could exhibit a triple hysteresis under an ac field. For a BaTiO3 with the "c-plate" configuration slightly below this temperature, the middle loop is caused by the 0°→180° domain switch in the orthorhombic phase, whereas the upper and lower loops are the result of orthorhombic-to-tetragonal phase transition, and vice versa. In this article we first develop a micromechanics-based thermodynamic model to determine the thermodynamic driving force for phase transition and for domain switch as a function of electric field and temperature, and in the latter case, further supplement it with a kinetic equation and a homogenization scheme. The dependence of dielectric constant of the orthorhombic and tetragonal phases on temperature and electric field are also established. The developed theory is then applied to calculate the triple hysteresis loops of BaTiO3 at several levels of temperature. The calculated results for the triple loops, and for the variation of dielectric constant, are found to be in full accord with the test data of Huibregtse and Young [Phys. Rev. 103, 1705 (1956)].

  15. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  16. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    SciTech Connect

    Sinha, Nidhi; Goel, Neeti; Singh, B.K.; Gupta, M.K.; Kumar, Binay

    2012-06-15

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (T{sub c}) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications. - Graphical abstract: Dye doping in TGS crystal resulted in hourglass morphology, increased hyper-luminescence intensity, improved T{sub c} and figure of merit. Highlights: Black-Right-Pointing-Pointer Amaranth dye doping in TGS crystals resulted in hourglass morphology. Black-Right-Pointing-Pointer Doping resulted in enhancement of Curie temperature from 49 to 53 Degree-Sign C. Black-Right-Pointing-Pointer Low cut off (230 nm) and wider transmittance window observed. Black-Right-Pointing-Pointer Strong hyper-luminescent emission bands at 350 and 375 nm were observed. Black-Right-Pointing-Pointer High and uniform figure of merit in ferroelectric phase was obtained.

  17. Effect of anharmonicity of the crystal potential on ferroelectric-antiferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Spiridonov, N. A.

    2012-05-01

    The ferroelectric-antiferroelectric phase transitions in lead zirconate-titanate-based solid solutions have been considered with allowance made for anharmonicity of the crystal potential. In the phase diagram of lead zirconate-titanate, the boundary separating the regions of the ferroelectric and antiferroelectric states are shifted toward higher titanium concentrations. The calculated and experimental phase diagrams are presented for such cases.

  18. Anisotropic behavior of water in ferroelectric liquid crystals.

    PubMed

    Singh, G; Choudhary, A; Prakash, G Vijaya; Biradar, A M

    2010-05-01

    The outcome of water addition in ferroelectric liquid crystal (FLC) has been investigated in uniform and defect-free homogeneous and homeotropically aligned monodomain sample cells from electro-optical and dielectric spectroscopic measurements. The lagging in optical response between nonconducting (spatially variable switching) and conducting (conventional switching) portions of water added FLC sample cell has been observed by frequency-dependent electro-optical studies. The bias-dependent water related new relaxation peak near the conventional Goldstone mode relaxation process has been observed only in the homogeneous alignment and not in the homeotropic one. Further, the significant increment in dielectric anisotropy as well as faster diffusion of water along long molecular axis than short molecular axis has also been monitored. These studies strongly suggest that the distribution of water is anisotropic in FLC medium and could be the reason for new relaxation peak in the water added FLC sample. PMID:20866247

  19. Analysis of polarization switching in ferroelectric crystals in the injection mode

    SciTech Connect

    Maslovskaya, A. G. Kopylova, I. B.

    2009-07-15

    We report on the results of experiments on polarization switching in a ferroelectric TGS crystal during injection of electron beams from a scanning electron microscope under a surface layer. A series of models reflecting the polarization switching dynamics of a ferroelectric crystal under the action of an injected charge is constructed. The implementation of these models is based on the principles of evolution of domain structures taking into account analysis of possible polarization switching mechanisms for ferroelectric samples. A mathematical model developed using these principles demonstrates qualitative similarity of model current pulses and those obtained experimentally in the injection mode.

  20. Note: High-power piezoelectric transformer fabricated with ternary relaxor ferroelectric Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3 single crystal.

    PubMed

    Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou

    2016-03-01

    A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm(3). This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density. PMID:27036838

  1. Note: High-power piezoelectric transformer fabricated with ternary relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou

    2016-03-01

    A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm3. This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density.

  2. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  3. Analog switching in the nanocolloids of ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Kishore, Avinash; Sinha, Aloka

    2016-06-01

    Nanoparticle (NP) dispersion in liquid crystals (LCs) results in significant changes in the physical properties of the existing LC mixtures. Two ferroelectric liquid crystals (FLCs), 5 F6T and 6 F6T , have been studied for analog switching. The 5 F6T sample is doped with titanium dioxide (T i O2) NPs of two different concentrations of the same average particle size and another FLC 6 F6T is systematically doped with barium titanate (B a T i O3) NPs of two different average particle sizes at the same concentration. The frequency and temperature dependence of the coercive voltage of FLC nanocolloids has been studied. The V-shaped switching was observed in the case of nano-doped FLCs. The value of inversion frequency for the 5 F6T +1.0 wt.% TiO2 doped sample is 30 Hz while it is 24 Hz for the 6 F6T +0.5 wt.% BaTiO3 (particle size 5-10 nm) doped sample. The conductivity measurements show that the conductivity of doped samples is higher than the conductivity of their parental FLCs and can be considered the main reason for the V-shaped switching in the FLC nanocolloids, which was initially absent in their parental FLCs.

  4. Cathodoluminescence investigation of relaxor-based ferroelectrics Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 (PMN-0.3PT) single-crystal

    NASA Astrophysics Data System (ADS)

    Ge, Wanyin; Zhu, Wenliang; Pezzotti, Giuseppe

    2010-01-01

    Relaxor-based ferroelectric lead magnesium niobate-lead titanate Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3 (PMN-PT) possesses ultrahigh electromechanical coefficients near the morphotropic phase boundary (MPB). In this paper, the electro-stimulated emission characteristics of a [0 0 1]-oriented PMN-0.3PTsingle-crystal were studied using high resolution cathodoluminescence (CL) spectroscopy at room temperature. Four luminescence bands were observed in the range of 200-900 nm and they were assigned to polaron, nanometre cluster emission, interband emission and structure-related emission. Besides, it was found that the residual stress field ahead of a crack tip of a Vickers indentation had a considerable influence on these luminescence bands. The relationship between the intensities of CL bands and the residual stress field has been investigated and discussed in this paper.

  5. Pyroelectric Response and Conduction Mechanism in Highly Crystallized Ferroelectric Sr3(VO4)2 Ceramic

    NASA Astrophysics Data System (ADS)

    Pati, Biswajit; Choudhary, R. N. P.; Das, Piyush R.

    2015-01-01

    We present a study on the ferroelectric phase transition, pyroelectric properties, and conduction mechanism of highly crystallized strontium orthovanadate (Sr3V2O8) ceramic, prepared by a solid-state reaction technique. X-ray diffraction studies show the formation of a single-phase compound in trigonal crystal system. Detailed studies of dielectric parameters ( ɛ r and tan δ) of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. An anomaly in ɛ r suggests the possible existence of a ferroelectric-paraelectric phase transition of diffuse type in the material, which is confirmed by electric polarization and pyroelectric studies. The low dielectric loss and moderate relative permittivity make this material (with suitable modifications) a potential candidate for use in microwave applications. The low leakage current and negative temperature coefficient of resistance (NTCR) behavior of the sample have been verified from J- E plots. The nature of the variation of the direct-current (DC) conductivity with temperature confirms the Arrhenius and NTCR behavior of the material.

  6. High intensity electron emission from ferroelectric cathode induced by a pyroelectric crystal

    NASA Astrophysics Data System (ADS)

    Hockley, M.; Huang, Z.

    2012-11-01

    A high voltage pulse generated by changing the temperature of a pyroelectric crystal was used to trigger a strong ferroelectric electron emission from a ferroelectric cathode. Different configurations such as a positive or negative pulse being applied to the front or back of the ferroelectric cathode were investigated. Negative pulse applied to the front of the cathode was found to generate the largest emission current and total charges. These differences in emission properties are interpreted using the mechanism of surface plasma assisted electron emission.

  7. Growth, structural phase transition and ferroelectric properties of Pb[(Zn 1/3Nb 2/3) 0.91 Ti 0.09]O 3 single crystals

    NASA Astrophysics Data System (ADS)

    Bubesh Babu, J.; Madeswaran, G.; Prakash, Chandra; Dhanasekaran, R.

    2006-07-01

    Growth of PZNT (91/9) single crystals at morphotropic phase boundary has been carried out by flux and flux Bridgman methods. Effects of multinucleation on morphology and effect of PbO evaporation on crystal growth are discussed. The grown crystals were cut along (0 0 1) direction and crystals were poled at the rate of 1 kV/mm. The slow scan X-ray diffraction results of the oriented crystals show a structural phase transition on poling. The phase transition has been studied with slow scan X-ray diffraction pattern for powdered Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZN-PT) crystal and (0 0 1) oriented single crystal which shows the existence of stressed phases and trapped phases in both cases. Further the grown PZN-PT single crystals have been subjected to compositional studies. Electrical characterizations such as hysteresis measurement, strain measurement and piezoelectric measurement were carried out and the results are discussed in detail.

  8. Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-05-01

    The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.

  9. Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids.

    PubMed

    Bose, Tushar Kanti; Saha, Jayashree

    2014-05-01

    The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system. PMID:25353817

  10. Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review

    PubMed Central

    Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang

    2014-01-01

    Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials’ behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor

  11. Single crystal complex oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Lee, Oukjae; Salahuddin, Sayeef

    Flexible ferroelectrics are needed for various applications such as biocompatible energy harvesting and flexible memory. In this sector, most of the current research is focused on organic piezoelectric materials which have advantage of flexibility but suffers severely from poor energy conversion and generation efficiency. On the contrary, owing to very high electromechanical coupling factor (representing energy conversion efficiency) complex oxides are the best choices as energy harvesting and transduction elements, especially for transforming mechanical energies into electronic energy. Still their usage in energy harvesting is very limited mainly due to the stringent growth conditions of single crystals, high temperature needed for crystallization and lack of flexibility and stretchability. We have shown that single crystal Pb0.8Zr0.2TiO3 can be epitaxially transferred on flexible plastic substrate. The transferred PZT shows 70 uC/cm2 remnant polarization and dielectric constant over 100 even when it is bent. These results suggest the possibility of single crystal complex oxide devices on flexible platform.

  12. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3-33%PbTiO3 Ferroelectric Single Crystal Substrate

    NASA Astrophysics Data System (ADS)

    Huang, Nai-Xing; LÜ, Tian-Quan; Zhang, Rui; Wang, Yu-Ling; Cao, Wen-Wu

    2014-10-01

    Dispersion relations of Love mode acoustic guided waves propagation in Pb(Mg1/3Nb2/3)O3-33%PbTiO3 (PMN-0.33 PT) single crystal with a gold electrode film are calculated. There is no cross coupling among Love wave modes, which is conducive to eliminating the cross interference between modes. The general formula is derived to precisely measure the thickness of the electrode. More acoustic energy would be concentrated inside the electrode with the increase of film thickness for a given frequency. Compared with the PZT-5 ceramic, [001]c poled PMN-33%PT single crystal has a slower attenuation of the amplitude of the acoustic guided wave. Therefore, single crystal is extremely suitable for making low loss acoustic wave devices with a high operating frequency.

  13. In situ high-temperature high-pressure Raman spectroscopy on single-crystal relaxor ferroelectrics PbSc1/2Ta1/2O3 and PbSc1/2Nb1/2O3

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Mihailova, B.; Gospodinov, M.; Bismayer, U.

    2013-04-01

    The effect of temperature on the pressure-induced structural changes in perovskite-type (ABO3) relaxor ferroelectrics is studied by in situ high-temperature high-pressure Raman spectroscopy on single crystals of PbSc1/2Ta1/2O3 (PST) and PbSc1/2Nb1/2O3 (PSN), which allowed us to elucidate the interplay between the polar and antiferrodistortive order coexisting on the mesoscopic scale at ambient conditions. High-pressure experiments were carried out at elevated temperatures below and above the characteristic intermediate temperature T*. The results were compared with those obtained at room temperature, which for PST is just above the paraelectric-ferroelectric phase transition TC, whereas for PSN is below TC. It is shown that the first critical pressure pc1, at which a transition from a relaxor to a non-polar rhombohedral state with antiphase octahedral tilt ordering occurs, decreases at elevated temperatures due to the weakening of the polar coupling, which in turn facilitates the evolution of the preexisting medium-range antiferrodistortive order into a long-range order. The critical pressure pc2 of the second phase transition, involving a change in the type of the antiferrodistortive order, is not affected by temperature, i.e. it is independent of the state of polar coupling and is mainly related to the initial correlation length of antiferrodistortive order. The strong influence of temperature on pc1, which occurs only when the mesoscopic polar order is suppressed, emphasizes the importance of coexisting ferroelectric and antiferrodistortive coupling for the occurrence of the relaxor states.

  14. Selective Deposition of Silver Oxide on Single-Domain Ferroelectric Nanoplates and Their Efficient Visible-Light Photoactivity.

    PubMed

    Chen, Fang; Ren, Zhaohui; Gong, Siyu; Li, Xiang; Shen, Ge; Han, Gaorong

    2016-08-16

    In this work, single-crystal and single-domain PbTiO3 nanoplates are employed as substrates to prepare Ag2 O/PbTiO3 composite materials through a photodeposition method. It is revealed that silver oxide nanocrystals with an average size of 63 nm are selectively deposited on the positive polar surface of the ferroelectric substrate. The possible mechanism leading to the formation of silver oxide is that silver ions are first reduced to silver and then oxidized by oxygen generation. The composite shows an efficient photodegradation performance towards rhodamine B (RhB) and methyl orange (MO) under visible-light irradiation. Such highly efficient photoactivity can be attributed to the ferroelectric polarization effect of the substrate, which promotes the separation of photogenerated electrons and holes at the interface. PMID:27430192

  15. Machining induced defects in Relaxor ferroelectric PMN-PT crystals

    NASA Astrophysics Data System (ADS)

    Deng, Cheng

    The superior piezoelectric and dielectric properties of the relaxor based piezoelectric single crystals (PMN-PT) render them as prime candidates for Navy sonar detectors as well as in broad band medical ultrasonic imaging devices. Production of phased array probes utilizing these types of high performance ceramics requires dicing these crystals to arrays with pitches of less than the desired wavelength, ranging from tens to hundreds of micrometers. However, the relaxor based single crystals are very brittle with fracture toughness of about a third to a half that of typical PZT ceramics (0.4-0.8 MPa m ). Excessive chipping and cracking, either during the cutting or poling process, have been reported as major hurdles in processing, leading to spurious resonance and degradation of the distance resolution. In addition, residual stress from the cutting process could be major reliability degradation if it is not well quantified and minimized. In this work, we experimentally analyzed the machining induced damage in a group of Lead Magnesium Niobate-Lead Titanate solid solution single crystal {(1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT)} under simulated process parameters for cutting speeds and down feeds. The machined surfaces are examined by non-contact optical profilometer for planarity and roughness, scanning electron microscopy for subsurface damage, and by micro-raman spectroscopic analysis and X-ray diffraction analysis to uncover machining induced phase transformations. The analysis reveals the preferred process parameters for minimal machining induced damages.

  16. High-optical-quality ferroelectric film wet-processed from a ferroelectric columnar liquid crystal as observed by non-linear-optical microscopy.

    PubMed

    Araoka, Fumito; Masuko, Shiori; Kogure, Akinori; Miyajima, Daigo; Aida, Takuzo; Takezoe, Hideo

    2013-08-01

    The self-organization of ferroelectric columnar liquid crystals (FCLCs) is demonstrated. Columnar order is spontaneously formed in thin films made by the wet-process due to its liquid crystallinity. Electric-field application results in high optical quality and uniform spontaneous polarization. Such good processability and controllability of the wet-processed FCLC films provide us with potential organic ferroelectric materials for device applications. PMID:23740767

  17. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  18. Single crystal cylinder transducers for sonar applications

    NASA Astrophysics Data System (ADS)

    Robinson, Harold; Stevens, Gerald; Buffman, Martin; Powers, James

    2005-04-01

    A segmented cylinder transducer constructed of single crystal lead magnesium niobate-lead titanate (PMN-PT) has been under development at NUWC and EDO Corporation for several years. The purpose of this development was to provide an extremely compact, high power broadband source. By virtue of their extraordinary material properties, ferroelectric single crystals are the ideal transduction material for developing such compact broadband systems. This presentation shall review the evolution of the transducer design as well as present the results of a successful in-water test conducted at NUWC in October of 2003. It shall be shown that design changes intended to eliminate spurious modes limiting the transducer bandwidth first observed in 2002 were successful, resulting in a transducer with a clean frequency response and an effective coupling factor of 0.85. The measured transducer admittance was in nearly exact agreement with theoretical predictions. The NUWC in-water tests demonstrated that the single crystal cylinder achieved an admittance bandwidth (based on the Stansfield criterion) of over 100%, while the tuned power factor was 0.8 or more over 2.5 octaves of frequency. Additionally, the transducer produced 12 dB higher source levels than a similarly sized PZT transducer. [Work sponsored by DARPA.

  19. Quantum ferroelectricity in charge-transfer complex crystals.

    PubMed

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  20. Quantum ferroelectricity in charge-transfer complex crystals

    PubMed Central

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4–n bromine substituents (QBr4–nIn, n=0–4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF–QBr2I2 exhibits a ferroelectric neutral–ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral–ionic transition compounds, such as well-known ferroelectric complex of TTF–QCl4 and quantum antiferroelectric of dimethyl–TTF–QBr4. By contrast, TTF–QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  1. Bioengineering single crystal growth.

    PubMed

    Wu, Ching-Hsuan; Park, Alexander; Joester, Derk

    2011-02-16

    Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern. PMID:21265521

  2. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    SciTech Connect

    Yablonskii, S. V. Bondarchuk, V. V.; Soto-Bustamante, E. A.; Romero-Hasler, P. N.; Ozaki, M.; Yoshino, K.

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  3. Confinement-Induced Orientational Order in a Ferroelectric Liquid Crystal Containing Dispersed Aerosils

    NASA Astrophysics Data System (ADS)

    Cordoyiannis, George; Nounesis, George; Bobnar, Vid; Kralj, Samo; Kutnjak, Zdravko

    2005-01-01

    The study of the smectic-A to chiral smectic-C* phase transition of the liquid crystal S-(+)-[4-(2'-methyl butyl) phenyl 4'-n-octylbiphenyl-4-carboxylate] (CE8) containing dispersed hydrophilic aerosils reveals novel properties, important to understanding quenched disorder and confinement in ferroelectric liquid crystals. Smectic layer compression leads to a distribution of transition temperatures inducing smearing of the macroscopic data across the transition. A pronounced confinement-induced pretransitional tilted order is observed.

  4. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    SciTech Connect

    Basu, Rajratan

    2014-09-15

    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the π–π electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  5. Morphotropic domain structures and dielectric relaxation in piezo-/ferroelectric Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Li, Tao; Chen, Chang; Ye, Mao; Qiu, Ximei; Lin, Peng; Xiong, Xinbo; Zeng, Xierong; Huang, Haitao; Ke, Shanming

    2016-05-01

    The domain structures, phase transitions and dielectric relaxation of relaxor-based piezo-/ferroelectric (1-x)Pb(In1/2Nb1/2)O3-0.33Pb(Zn1/3Nb2/3)O3-xPbTiO3 (x=0.30, 0.34, 0.37, and 0.42) single crystals, abbreviated as PIN-PZN-PT, grown by flux method, have been analyzed by polarized light microscope and dielectric spectroscopy. The dielectric relaxation was described by the Curie-Weiss law and Lorentz-type quadratic equation. The substitution of Ti4+ ions for the B-site complex (Zn1/3Nb2/3)4+ and (In1/2Nb1/2)4+ ions results in a long-range symmetry breaking, as revealed by the formation of birefringent domains. Single crystal of PIN-PZN-PT with morphotropic compositions exhibit complex domain structures, which are composed of both rhombohedral and tetragonal phases intimately mixed together. The domain structures, the sequence and temperature of phase transitions have been interpreted in relation to the morphotropic phase boundary behavior of the PIN-PZN-PT system. The analysis of morphotropic domain structures and phase transitions provides a better understanding of the microscopic mechanisms of the enhanced piezoelectric properties recently disclosed in the PIN-PZN-PT and other PZN-based piezocrystals.

  6. Effect of rare earth ions on the properties of glycine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Moorthy Babu, S.; Kumar, Binay; Bhagavannarayana, G.

    2013-01-01

    Optically transparent glycine phosphite (GPI) single crystals doped with rare earth metal ions (Ce, Nd and La) were grown from aqueous solution by employing the solvent evaporation and slow cooling methods. Co-ordination of dopants with GPI was confirmed by X-ray fluorescence spectroscopic analysis. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters and to analyze the structural morphology of GPI with dopants, which indicates that cell parameters of doped crystals were significantly varied with pure GPI. Crystalline perfection of doped GPI crystals was determined by high resolution X-ray diffraction analysis by means of full width at half maximum values. Influence of the dopants on the optical properties of the material was determined. Paraelectric to ferroelectric transition temperature (Tc) of doped GPI crystals were identified using differential scanning calorimetric measurements. Piezoelectric charge coefficient d33 was measured for pure and doped GPI crystals. Hysteresis (P-E) loop was traced for ferroelectric b-axis and (100) plane of pure and doped GPI crystals with different biasing field and ferroelectric parameters were calculated. Mechanical stability of crystals was determined by Vickers microhardness measurements; elastic stiffness constant 'C11' and yield strength 'σy' were calculated from hardness values. Mechanical and ferroelectric properties of doped crystals were improved with doping of rare earth metals.

  7. Mechanical and thermal transitions in morphotropic PZN-pT and PMN-PT single crystals and their implication for sound projectors.

    PubMed

    Amin, Ahmed; McLaughlin, Elizabeth; Robinson, Harold; Ewart, Lynn

    2007-06-01

    Isothermal compression experiments on multidomain [001] oriented and poled ferroelectric rhombohedral PZN-0.07PT and PMN-0.30PT single crystals revealed elastic instabilities corresponding to zero field ferroelectric-ferroelectric phase transition under mechanical compression. The application of an appropriate dc bias field doubled the stability range of the ferroelectric rhombohedral state under uniaxial compression for both crystals and maintained a linear elastic response. Young's modulus as derived from the quasistatic, zero field stress-strain linear response agreed well with that derived from small signal resonance for the ferroelectric rhombohedral FR state of both PZN-PT and PMN-PT. Elastic compliances s(E)33 as determined from high temperature resonance revealed a monotonically decreasing Young's modulus as a function of temperature in the ferroelectric rhombohedral state with a sudden stiffening near the ferroelectric rhombohedral (FR)-ferroelectric tetragonal (FT) transition. The reversible ferroelectric-ferroelectric transition of morphotropic PZN-PT and PMN-PT single crystals as accessed by mechanical compression is discussed in terms of strain calculations from Devonshire's theory, domain unfolding, and morphotropic phase boundary shift with mechanical stress. The mechanically-induced and thermally-induced ferroelectric-ferroelectric transition trajectories are discussed in terms of the Devonshire theory. Implications of these observations for sound projectors are discussed. A single crystal tonpilz projector fabricated into a 16-element array and a segmented cylinder transducer demonstrated the outstanding capabilities of single crystals to achieve compact, broadband, and high-source level projectors when compared to conventional lead zirconate-titanate PZT8 projectors. PMID:17571807

  8. Speckle noise suppression using a helix-free ferroelectric liquid crystal cell

    SciTech Connect

    Andreev, A L; Andreeva, T B; Kompanets, I N; Zalyapin, N V

    2014-12-31

    We have studied the method for suppressing speckle noise in patterns produced by a laser based on a fast-response electro-optical cell with a ferroelectric liquid crystal (FLC) in which helicoid is absent, i.e., compensated for. The character of smectic layer deformation in an electric field is considered along with the mechanism of spatially inhomogeneous phase modulation of a laser beam passing through the cell which is accompanied by the destruction of phase relations in the beam. Advantages of a helix-free FLC cell are pointed out as compared to helical crystal cells studied previously. (liquid crystal devices)

  9. Influence of isopropanol on ferroelectric properties of triglycine sulfate crystals

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Nguen, Kh. T.; Bykova, A. V.

    2015-03-01

    The dielectric and switching properties of triglycine sulfate (TGS) crystals grown from aqua solution with isopropanol have been studied. It has been shown that their behavior has common features with the behavior of the TGS crystals irradiated by X-rays, and also with the TGS crystals doped with L, α-alanine.

  10. Losses in Ferroelectric Materials

    PubMed Central

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu

    2015-01-01

    Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy

  11. Pyroelectric photodetector based on ferroelectric crystal-semiconductor thin film heterostructure

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen; Aghamalyan, N. R.; Guo, R.; Hovsepyan, R. K.; Vardanyan, E. S.

    2010-08-01

    Very important advantage of ZnO thin films is an opportunity of use in the composite heterostructures opening opportunities for development of ZnO-based optoelectronics devices. In this work we report the preparation of ferroelectric crystal - ZnO thin film heterostructures by vacuum deposition method and creation of new type of pyroelectric photodetector. The ferroelectric field effect transistor has been prepared using ZnO:Li films as transistor channel and LiNbO3 and TGS crystals as pyroelectric sensitive element. The photoelectric properties (currents ratio, charge carriers mobility, ampere-watt sensitivity in IR diapason, NEP sensitivity, and photocurrent kinetics) of prepared heterostructures were investigated and first samples of novel pyroelectric photodetector with high sensitivity and detectability were prepared.

  12. Ferroelectric BaTiO3 phase of orthorhombic crystal structure contained in nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram, S.; Jana, A.; Kundu, T. K.

    2007-09-01

    Ferroelectric BaTiO3 phase of a Pnma orthorhombic crystal structure is synthesized from a chemical method using a polymer complex of Ba2+ and Ti4+ with polyvinyl alcohol (PVA). After burning out the polymer at temperature as high as 550 °C in air for 2 h results in an average 15 nm crystallite BaTiO3 size, with lattice parameters a =0.6435 nm, b =0.5306 nm, c =0.8854 nm, and density 5.124 g/cm3. The relationship between dielectric constant ɛr and temperature showed a single Curie transition temperature TC=131 °C, with as large a ɛr value as 263 at TC. A low value of dissipation factor tan δ, as small as 0.033 at room temperature (frequency f =1 kHz), with good insulating properties made the sample promising for use in uncooled infrared detectors and thermal imaging applications. The ɛr value is nearly independent of f value up to 100 kHz. A spectrum of sharp EPR signals of g values 2.21 to 1.88 characterizes three major kinds of VBa-, VTi3-, and Ti3+-Vo2+ paramagnetic species present in the imperfections.

  13. Ferroelectric-like response from the surface of SrTiO₃ crystals at high temperatures

    SciTech Connect

    Jyotsna, Shubhra; Arora, Ashima; Sekhon, Jagmeet S.; Sheet, Goutam

    2014-09-14

    Since SrTiO₃ has a high dielectric constant, it is used as a substrate for a large number of complex physical systems for electrical characterization. Since SrTiO₃ crystals are known to be non-ferroelectric/non-piezoelectric at room temperature and above, SrTiO₃ has been believed to be a good choice as a substrate/base material for PFM (Piezoresponse Force Microscopy) on novel systems at room temperature. In this paper, from PFM-like measurement using an atomic force microscope on bare crystals of (110) SrTiO₃ we show that ferroelectric and piezoelectric-like response may originate from bare SrTiO₃ at remarkably high temperatures up to 420 K. Electrical domain writing and erasing are also possible using a scanning probe tip on the surface of SrTiO₃ crystals. This observation indicates that the role of the electrical response of SrTiO₃ needs to be revisited in the systems where signature of ferroelectricity/piezoelectricity has been previously observed with SrTiO₃ as a substrate/base material.

  14. Electric field effects on phase transitions in the 8CB liquid crystal doped with ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Daoudi, A.; Segovia-Mera, A.; Dubois, F.; Legrand, C.; Douali, R.

    2016-06-01

    The influence of a low ac electric field on phase transitions is discussed in the case of a nematic liquid crystal 4 -n -octyl-4 '-cyanobiphenyl (8CB) doped with Sn2P2S6 ferroelectric nanoparticles. The phase-transition temperatures obtained from temperature-dependent dielectric measurements were higher than those determined by the calorimetric method. This difference is explained by the presence of the measuring electric field which induces two effects. The first one is the amplification of the interactions between the nanoparticle polarization and the liquid-crystal order parameter. The second one is the field-induced disaggregation or aggregation process at high nanoparticle concentrations.

  15. Boundary layer elasto-optic switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1992-01-01

    The first experimental observation of a change in the director azimuthal angle due to applied shear stress is reported in a sample configuration involving a liquid-crystal-coated top surface exposed directly to gas flow. The electrooptic response caused by the shear stress is large, fast, and reversible. These findings are relevant to the use of liquid crystals in boundary layer investigations on wind tunnel models.

  16. Electromechanical properties of high coupling single crystals under large electric drive and uniaxial compression.

    PubMed

    Amin, Ahmed

    2005-10-01

    This work investigates the 33-mode electromechanical response of relaxor-ferroelectric lead magnesium niobate-lead titanate (PMN-PT) single crystals when driven with large fields approximately 0.4 MV/m under a combined direct current (DC) field and mechanical bias similar to those used in the design of sound projectors. It demonstrates that the remarkable small signal length extensional coupling (k33 > 0.90) and other electromechanical properties of morphotropic PMN-PT single crystals prevail under large drive. The observed k33 roll-off at 42 MPa compressive stress is analyzed in terms of the recent structural data and the high-order Devonshire theory of possible ferroelectric-ferroelectric transition trajectories. PMID:16382615

  17. The effect of in-situ high-temperature high-pressure on the structural changes of single-crystal relaxor ferroelectrics PbSc1/2Ta1/2O3 (PST) and PbSc1/2Nb1/2O3 (PSN)

    NASA Astrophysics Data System (ADS)

    Waeselmann, Naemi; Mihailova, Boriana; Gospodinov, Marin; Bismayer, Ullrich

    2013-06-01

    Relaxor ferroelectrics (relaxor) of the perovskite structure (ABO3) have remarkably high dielectric permittivity dependent on temperature and frequency as well as remarkable piezoelectric and electro-optic coefficients. These structurally heterogeneous materials undergo a sequence of structural changes on the mesoscopic scale associated with characteristic temperatures resulting from the development of polar order on temperature decrease. Pressure increase on the other hand favors antiferrodistortive order at room temperature. To explore the importance of the antiferrodistortive coupling on the development of polar order simultaneous high-temperature high-pressure Raman studies were undertaken on single crystals of PST and PSN from 400-600 K over pressures extending to 9 GPa. We find that the first pressure-induced transition pc1 decreases with temperature while the second transition pc2 is relatively temperature independent. The behavior of pc1 is interpreted as a weakening of the polar coupling, which in turn facilitates the evolution of the preexisting medium-range antiferodistortive order into a long-range order. The near constant value of pc2 suggests that it is independent of the state of polar coupling and is mainly related to the initial correlation length of antiferrodistortive order. Thus the coexistence of both polar order and antiferrodistortive order is required for the occurrence of the relaxor state. Now at: University of Washington.

  18. Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

    SciTech Connect

    Ievlev, Anton; Morozovska, A. N.; Eliseev, E. A.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    Electric field induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science, and optoelectronics. In the last 20 years, much attention has been focused on the switching of individual domains using scanning probe microscopy, both as model of ferroelectric data storage and approach to explore fundamental physics of ferroelectric switching. The classical picture of tip induced switching includes formation of cylindrical domain oriented along the tip field, with the domain size is largely determined by the tip-induced field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behavior. Here, we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviors are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). The implications of these behaviors for ferroelectric materials and devices are discussed.

  19. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  20. Optical correlator using very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Turner, Richard M.; Jared, David A.; Sharp, Gary D.; Johnson, Kristina M.

    1993-01-01

    The use of 2-kHz 64 x 64 very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators as the input and filter planes of a VanderLugt-type optical correlator is discussed. Liquid-crystal layer thickness variations that are present in the devices are analyzed, and the effects on correlator performance are investigated through computer simulations. Experimental results from the very-large-scale-integrated / ferroelectric-liquid-crystal optical-correlator system are presented and are consistent with the level of performance predicted by the simulations.

  1. Mechanism of homeotropic alignment of ferroelectric liquid crystals doped with ferro-fluid and applications

    NASA Astrophysics Data System (ADS)

    Joshi, Tilak; Singh, Shri; Choudhary, Amit; Pant, R. P.; Biradar, A. M.

    2013-07-01

    We report homeotropic (HT) alignment of ferroelectric liquid crystal (FLC) doped with various concentrations of ferro-fluid (FF) without using any type of alignment layer. The FF induced HT alignment of FLC was found to be dependent on the doping concentration as revealed by optical micrographs, contact angle, and dielectric spectroscopy studies. Higher water contact angle of FF doped FLC films with respect to pure FLC film suggests higher surface energy of FF doped FLC than the surface energy of substrate. The physico-chemical mechanism together with steric model successfully explains the HT alignment of the studied FLC on the ITO substrate.

  2. Programmable ZnO nanowire transistors using switchable polarization of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Hong, Woong-Ki; Inn Sohn, Jung; Cha, SeungNam; Min Kim, Jong; Park, Jong-Bae; Seok Choi, Su; Coles, Harry J.; Welland, Mark E.

    2013-02-01

    We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions.

  3. Influence of gold nanorods size on electro-optical and dielectric properties of ferroelectric liquid crystals

    SciTech Connect

    Podgornov, Fedor V.; Ryzhkova, Anna V.; Haase, Wolfgang

    2010-11-22

    The influence of the gold nanorods (GNRs) diameter on the electro-optic and dielectric properties of the ferroelectric liquid crystals (FLCs) was investigated. It was shown that dispersing of GNRs in FLCs could lead to an increase of the internal electric field inside the liquid crystalline layer. This effect results in a significant decrease of the switching time and the rotational viscosity of the FLC/GNRs nanodispersions independently on the GNRs diameter. Oppositely, the relaxation frequency and the dielectric strength of the Goldstone mode strongly depend on the GNRs diameter, which can be explained by the charge transfer between the GNRs and FLC molecules.

  4. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.

    PubMed

    Śliwa, I; Jeżewski, W; Kuczyński, W

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples. PMID:26871130

  5. Supramolecular ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tayi, Alok S.; Kaeser, Adrien; Matsumoto, Michio; Aida, Takuzo; Stupp, Samuel I.

    2015-04-01

    Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics -- materials with a spontaneous and electrically reversible polarization -- are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

  6. Stacking fault energy in some single crystals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2012-06-01

    The stacking fault energy of single crystals has been reported using the peak shift method. Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory. The structural characterizations of these crystals are made by XRD. Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry, which possesses the stacking fault in the single crystal.

  7. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  8. Critical Property in Relaxor-PbTiO3 Single Crystals --- Shear Piezoelectric Response

    PubMed Central

    Xu, Zhuo; Wei, Xiaoyong; Shrout, Thomas R.

    2011-01-01

    The shear piezoelectric behavior in relaxor-PbTiO3 (PT) single crystals is investigated in regard to crystal phase. High levels of shear piezoelectric activity, d15 or d24 >2000 pC N−1, has been observed for single domain rhombohedral (R), orthorhombic (O) and tetragonal (T) relaxor-PT crystals. The high piezoelectric response is attributed to a flattening of the Gibbs free energy at compositions proximate to the morphotropic phase boundaries, where the polarization rotation is easy with applying perpendicular electric field. The shear piezoelectric behavior of pervoskite ferroelectric crystals was discussed with respect to ferroelectric-ferroelectric phase transitions and dc bias field using phenomenological approach. The relationship between single domain shear piezoelectric response and piezoelectric activities in domain engineered configurations were given in this paper. From an application viewpoint, the temperature and ac field drive stability for shear piezoelectric responses are investigated. A temperature independent shear piezoelectric response (d24, in the range of −50°C to O-T phase transition temperature) is thermodynamically expected and experimentally confirmed in orthorhombic relaxor-PT crystals; relatively high ac field drive stability (5 kV cm−1) is obtained in manganese modified relaxor-PT crystals. For all thickness shear vibration modes, the mechanical quality factor Qs are less than 50, corresponding to the facilitated polarization rotation. PMID:21960942

  9. Relaxor-PT Single crystals: Observations and Developments

    PubMed Central

    Zhang, Shujun; Shrout, Thomas R.

    2011-01-01

    Relaxor-PT based ferroelectric single crystals Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZNT) and Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMNT) attracted lot of attentions in last decade due to their ultra high electromechanical coupling factors and piezoelectric coefficients. However, owing to a strongly curved morphotropic phase boundary (MPB), the usage temperature of these perovskite single crystals is limited by TRT - the rhombohedral to tetragonal phase transition temperature, which occurs at significantly lower temperatures than the Curie temperature TC. Furthermore, the low mechanical quality factors and coercive fields of these crystals, usually being on the order of ~70 and 2–3kV/cm, respectively, restrict their usage in high power applications. Thus, it is desirable to have high performance crystals with high temperature usage range and high power characteristics. In this survey, different binary and ternary crystal systems were explored, with respect to their temperature usage range, general trends of dielectric and piezoelectric properties of relaxor-PT crystal systems were discussed related to their TC/TRT. In addition, two approaches were proposed to improve mechanical Q values, including acceptor dopant strategy, analogous to “hard” polycrystalline ceramics, and anisotropic domain engineering configurations. PMID:20889397

  10. Observation of adsorption behavior of biomolecules on ferroelectric crystal surfaces with polarization domain patterns

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoaki; Isobe, Akiko; Ogino, Toshio

    2016-08-01

    Lithium tantalate (LiTaO3) is one of the ferroelectric crystals that exhibit spontaneous polarization domain patterns on its surface. We observed the polarization-dependent adsorption of avidin molecules, which are positively charged in a buffer solution at pH 7.0, on LiTaO3 surfaces caused by electrostatic interaction at an electrostatic double layer using atomic force microscopy (AFM). Avidin adsorption in the buffer solution was confirmed by scratching the substrate surfaces using the AFM cantilever, and the adsorption patterns were found to depend on the avidin concentration. When KCl was added to the buffer solution to weaken the electrostatic double layer interaction between avidin molecules and LiTaO3 surfaces, adsorption domain patterns disappeared. From the comparison between the adsorption and chemically etched domain patterns, it was found that avidin molecule adsorption is enhanced on negatively polarized domains, indicating that surface polarization should be taken into account in observing biomolecule behaviors on ferroelectric crystals.

  11. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kotova, Svetlana P.; Samagin, Sergey A.; Pozhidaev, Evgeny P.; Kiselev, Alexei D.

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50 μ m , the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible.

  12. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals.

    PubMed

    Kotova, Svetlana P; Samagin, Sergey A; Pozhidaev, Evgeny P; Kiselev, Alexei D

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50μm, the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible. PMID:26764706

  13. Microscopic interpretation of sign reversal in the electrocaloric effect in a ferroelectric PbMg1/3Nb2/3O3-30PbTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Axelsson, A.-K.; Le Goupil, F.; Dunne, L. J.; Manos, G.; Valant, M.; Alford, N. McN.

    2013-03-01

    With increasing temperature, PbMg1/3Nb2/3O3-30PbTiO3 (PMN-30PT) crystals change from pseudo-rhombohedral to tetragonal to cubic phases. In addition to the usual positive electrocaloric effect (ECE), a negative ECE, whose origin is uncertain, is observed. Here, these two types of the ECE contributions in PbMg1/3Nb2/3O3-30PbTiO3 crystals are modelled theoretically using a one dimensional statistical mechanical lattice model, which is solved by an exact matrix method. The quasi one-dimensional model reproduces the trends in the experimental behaviour and attributes the electrocaloric sign reversal to free energy changes induced by the electric field.

  14. A novel boundary layer sensor utilizing domain switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1991-01-01

    This paper describes the design and the principles of operation of a novel sensor for the optical detection of a shear stress field induced by air or gas flow on a rigid surface. The detection relies on the effects of shear-induced optical switching in ferroelectric liquid crystals. It is shown that the method overcomes many of the limitations of similar measuring techniques including those using cholesteric liquid crystals. The present method offers a preferred alternative for flow visualization and skin friction measurements in wind-tunnel experiments on laminar boundary layer transition investigations. A theoretical model for the optical response to shear stress is presented together with a schematic diagram of the experimental setup.

  15. Visualization of VLSI integrated circuits by means of ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Picart, B.; Dugoujon, L.; Petit, O.; Destrade, C.; Leon, C.; Nguyen, H. T.; Marcerou, J. P.

    1989-07-01

    The increasing density and complexity of integrated circuits illustrates the quick evolution of their technology. As a consequence, new methods of internal testing are now necessary for failure analysis that allow for the visualization of the internal functioning of these circuits. In this way such methods as electronic microscopy working in the voltage contrast process have been developed a longtime ago. An alternate promising method uses liquid crystals for the visualization of electric fields present on the surface of the chip. In this article we investigate the various potentialities of the nematic and smectic mesophases for such a visualization. We will especially underline the use of new ferroelectric liquid crystals which could allow for the dynamical analysis of integrated circuits.

  16. Growth, morphology, structure and characterization of L-histidinium dihydrogen arsenate orthoarsenic acid single crystal.

    PubMed

    Tyagi, Nidhi; Sinha, Nidhi; Yadav, Harsh; Kumar, Binay

    2016-08-01

    L-Histidinium dihydrogen arsenate orthoarsenic acid (LHAS) crystals were grown by the slow evaporation method. Single-crystal X-ray diffraction confirms monoclinic structure. The growth rates of various planes of LHAS crystals were estimated by morphological study. Hirshfeld surface and fingerprint plots were analyzed to investigate the intermolecular interactions at 0.002 a.u. present in the crystal structure. The functional groups and phase behavior of the compound are studied by FTIR spectroscopy and differential scanning calorimetry (DSC). A ferroelectric to paraelectric phase transition at 307 K was observed in dielectric studies. The piezoelectric charge coefficients of the grown crystal were found to be 2 pC/N. The values of coercive field (Ec), remnant polarization (Pr) and spontaneous polarization (Ps) in the hysteresis loop are found to be 5.236 kV cm(-1), 0.654 µC cm(-2) and 2.841 µC cm(-2), respectively. Piezoelectricity and ferroelectricity are reported for the first time in LHAS crystals. The mechanical strength was confirmed from microhardness study and void volume. Due to the low value of the dielectric constant, and good piezoelectric and ferroelectric properties, LHAS crystals can be used in microelectronics, sensors and advanced electronic devices. PMID:27484380

  17. Ferroelectric properties of vinylidene fluoride/tetrafluoroethylene copolymer thin films consisting of needle-like crystals

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yuuta; Hashizume, Yoichiro; Nakajima, Takashi; Okamura, Soichiro

    2016-05-01

    Unique ferroelectric vinylidene fluoride (VDF)/tetrafluoroethylene (TeFE) copolymer thin films consisting of needle-like crystals were formed using Au-sputtered substrates. The VDF/TeFE films with a mixing ratio of 80:20 mol % were melted at 170 °C for 30 min and then recrystallized at 116 °C for 300 min. The molecules in the resultant needle-like crystals had a β-phase form and showed 200/110 orientation, while the direction of each needle-like crystal was random in-plane. The remanent polarization of the 450-nm-thick VDF/TeFE films consisting of the needle-like crystals were estimated to be 62 mC/m2 from the electric displacement vs electric field (D–E) hysteresis measurement at the applied field of 156 MV/m and the frequency of 10 Hz. The remanent polarization of 62 mC/m2 was approximately 50% larger than that of conventional VDF/TeFE films consisting of plate-like crystals.

  18. Testing a new generation 512 x 512, >200 Hz capable, liquid crystal on silicon (LCoS) with ferro-electric liquid crystal, IR scene projector

    NASA Astrophysics Data System (ADS)

    Lippert, Jack R.; Bauchert, Kipp

    2006-05-01

    A Liquid Crystal on Silicon (LCoS) Spatial Light Modulator device was fabricated into an IR Scene Projector Concept Demonstrator for MWIR Hardware-in-the-loop Testing. Presently on-going in-house efforts are establishing performance benchmarks that rival many of the capabilities of the alternative, and presently the high end performance standard device, the suspended-bridge resistor array. New adaptations, like incorporating Ferro-electric Liquid Crystal (FELC) can achieve improved IR performance values breaking through the "slow" settling time limit exhibited by earlier Liquid Crystal based systems. In fact, specific parameters may even exceed some of the resistor array parameter's performance values (such as apparent thermal rise time allowing an overall faster frame rate). In addition, the relatively simple CMOS fabrication for the basic chip and ease of system "customization" allows system fabrication cost to be more on the order of the economical low end performance Digital Mirror Devices for the Infrared waveband; but still keeps the analog controlled thermal gradient in a single switch time to accommodate fast integrating sensors of modern seeker systems. Our research is using a 512x512 array originally intended for visible applications, but tailored for the MWIR operational regime. A new CMOS fabrication run to incorporate additional features and achieve further performance benefits is planned, but the existing product capability is adequate for most HIL simulation requirements. The measured performance of our in-house prototype device using FELC will be discussed.

  19. Effect of metallic dopants on potassium acid phthalate (KAP) single crystals

    NASA Astrophysics Data System (ADS)

    Chithambaram, V.; Jerome Das, S.; Arivudai Nambi, R.; Srinivasan, K.; Krishnan, S.

    2010-06-01

    Optically transparent single crystals of Cu 2+ and Zn 2+ doped potassium acid phthalate (KAP) were grown in aqueous solution by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis confirmed the changes in the lattice parameters of the doped crystals. The presence of functional groups in the crystal lattice has been determined qualitatively by Fourier transform infrared (FTIR) analysis. Optical absorption studies revealed that the doped crystals possess very low absorption in the entire visible region. The dielectric constant has been studied as a function of frequency for the doped crystals at temperatures viz., 328, 348, 368 K. Further the influence of metal dopants on the dielectric behaviour has been studied which clearly exhibited the ferroelectric properties of the crystal.

  20. Formulation of a room temperature ferroelectric liquid crystal mixture with sub-millisecond switching time

    NASA Astrophysics Data System (ADS)

    Debnath, A.; Sinha, D.; Mandal, P. K.; Dabrowski, R.

    2015-06-01

    Ferroelectric liquid crystal (FLC) based display devices show faster response compared to nematic LC based devices. Since pure FLC compounds are high temperature LCs and do not possess optimum parameters necessary for display devices, a room temperature FLC mixture has been formulated, first time by any Indian group. The mixture is prepared by doping an appropriate chiral compound in a four-component LC based achiral host mixture. Resulting mixture was characterized using optical polarizing microscopy, frequency domain dielectric spectroscopy and electro-optic methods. It shows very wide range ferroelectric SmC* phase followed by paraelectric SmA* phase (Cr< 19°CSmC*89°C SmA* 108°C I) which would facilitate attaining book shelf geometry alignment in display devices. Dielectric spectroscopy study reveals Goldstone (in kHz region) and soft mode (in hundred kHz region) relaxations in SmC* and SmA* phases respectively. The mixture possesses moderate tilt angle (34.5° - 13°), low viscosity (0.9 - 0.05 N.s.m-2) and moderately high spontaneous polarization (112 - 36 nC.cm-2) which decrease with temperature. These result in very fast switching, slowest response time being 475 µs at ambient temperature.

  1. Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Fetisov, L. Y.; Fetisov, Y. K.; Srinivasan, G.

    2012-01-01

    Mechanical strain mediated magnetoelectric (ME) effects are studied in bilayers and trilayers of piezoelectric single-crystal lanthanum gallium tantalate (LGT) and magnetostrictive permendur (P). The ME voltage coefficient ranges from 2.3 V/cm Oe at 20 Hz to 720 V/cm Oe at bending resonance and is higher by an order of magnitude than in composites with ferroelectric lead zirconate titanate or lead magnesium niobate-lead titanate. The low-frequency magnetic noise for P-LGT-P is a factor of 2-10 smaller than for ferroelectrics based composites. Langatate is free of ferroelectric hysteresis, pyroelectric effects, and phase transitions up to 1450 °C and is of interest for ultrasensitive, high temperature magnetic sensors.

  2. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  3. Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens.

    PubMed

    Srivastava, A K; Wang, X; Gong, S Q; Shen, D; Lu, Y Q; Chigrinov, V G; Kwok, H S

    2015-04-15

    In this Letter, we disclose a fast switchable Fresnel zone lens (FZL) by confining the ferroelectric liquid crystals (FLCs) in multiple microscopically defined photo-aligned alignment domains. The photo-alignment (PA) offers good control on the anchoring energy (W) by mean of irradiation doses (ID) and thus excellent alignment for FLCs. Two operational modes of the FLCFZL, i.e., FOCUS/OFF and FOCUS/DEFOCUS, were demonstrated. The proposed diffracting element provides fast response time, high diffraction efficiency (η), with saturated electro-optical (EO) operations up to high frequency (≈2  kHz). Thus, the proposed FLCFZLs with simple fabrication open several opportunities to improve the quality of existing devices and to find new applications. PMID:25872037

  4. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  5. Sign reversal of dielectric anisotropy of ferroelectric liquid crystals doped with cadmium telluride quantum dots

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Silotia, P.; Biradar, A. M.

    2011-08-01

    A small amount of cadmium telluride quantum dots (CdTe QDs) has been doped into various ferroelectric liquid crystals (FLCs) to observe the modifications in the alignment and dielectric anisotropy (Δɛ) of the composites. The CdTe QDs have induced a uniform homeotropic (HMT) alignment in most of the FLC mixtures. We observed an unexpected switching (from HMT to homogeneous configuration) of CdTe QDs doped FLC CS1026 (having positive Δɛ) by the application of high dc bias. This reverse switching has been attributed to the interaction between FLC molecules and CdTe QDs which caused the sign reversal of Δɛ of FLC CS1026.

  6. Beam Steering Experiment with Two Cascaded Ferroelectric Liquid-Crystal Spatial Light Modulators

    NASA Astrophysics Data System (ADS)

    Engström, David; Hård, Sverker; Rudquist, Per; D'Havé, Koen; Matuszczyk, Tomasz; Skeren, Marek; Löfving, Björn

    2004-03-01

    The design, construction, and evaluation of a laser beam steerer that uses two binary ferroelectric liquid-crystal (FLC) spatial light modulators (SLMs) operated in conjunction are presented. The system is characterized by having few components and is in principle lossless. Experimentally, a throughput of ~20% was achieved. The simple system design was achieved because of the high tilt angle FLC material used in the SLMs, which were specifically designed and manufactured for this study. By coherently imaging the first SLM onto the second SLM, pixel by pixel, we obtained an effective four-level phase structure with a phase step of 90°. An appropriate alignment procedure is presented. The beam steering performance of the system is reported and analyzed.

  7. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

    NASA Astrophysics Data System (ADS)

    Ma, Ying; Wang, Xiaoqian; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H.-S.

    2016-03-01

    In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, which can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.

  8. Smectic-A*-smectic-C* transition in a ferroelectric liquid crystal without smectic layer shrinkage.

    PubMed

    Giesselmann, F; Zugenmaier, P; Dierking, I; Lagerwall, S T; Stebler, B; Kaspar, M; Hamplová, V; Glogarová, M

    1999-07-01

    The smectic layer spacing of a nonfluorinated ferroelectric liquid crystal (FLC) compound with almost no shrinkage and only minor tendency to form zigzag defects was characterized by small angle x-ray diffraction. The material lacks a nematic phase. The smectic-A*-smectic-C* phase transition was studied by measuring the thermal and electric field response of the optical tilt and the electric polarization. These properties are described very well by a Landau expansion even without introduction of a higher-order Theta(6) term. This result suggests a pure second-order phase transition far from tricriticality and differs considerably from the typical behavior of the A*-C* transition in most FLC materials. PMID:11969798

  9. Comparative Analysis of Time and Spatially Multiplexed Diffractive Optical Elements in a Ferroelectric Liquid Crystal Display

    NASA Astrophysics Data System (ADS)

    Martínez, Antonio; Moreno, Ignacio; Sánchez-López, María M.

    2008-03-01

    We present a very simple method of generating time-multiplexed optical diffractive elements. We use a commercially available ferroelectric liquid crystal device originally designed to visualize colour images by sequentially displaying the three red, green, and blue (RGB) colour channels. We substitute the original light emitting diode (LED) light source by monochromatic illumination. Then we generate a three time-multiplexed diffractive element simply by addressing a colour RGB image where each colour component corresponds to a different diffractive screen. We carry out computer simulations in order to compare this simple time multiplexing technique with various spatial multiplexing techniques proposed in the literature. We numerically evaluate the different methods in terms of light efficiency, noise level and the quality of the hologram reconstruction. We provide experimental results that verify the simulations and show the advantage of using the time multiplexing technique.

  10. Performance of ferroelectric liquid crystal spatial light modulators for polarization and color diffractive elements

    NASA Astrophysics Data System (ADS)

    Moreno, Ignacio; García-Martínez, P.; Sánchez-López, M. M.; Martínez-García, A.; Martínez, J. L.

    2009-08-01

    In this work we applied a ferroelectric liquid crystal on silicon (FLCoS) display for implementing monochrome and color diffractive optical elements (DOE). We first apply a reverse engineering process specifically adapted to characterize the optical parameters of a commercial FLCoS display, specifically the phase shift and the tilt angle. We then analyze the performance of the device for implementing a binary polarization diffraction grating (PDG), and how it adopts the form of either a binary amplitude grating or a binary phase grating as particular cases when the polarization states emerging from the display are projected to an analyzer. As a final experiment, we have applied the FLCoS display to generate RGB improved dynamic color binary-phase Fourier computer-generated holograms (CGHs). We have electronically synchronized the properly scaled image addressed to the display with a color filter wheel with RGB filters. Experimental results show an excellent chromatic compensation of the color image reconstruction.

  11. Influence of polymer network in polymer-stabilized ferroelectric liquid crystals and its direct observation using a confocal microscope

    NASA Astrophysics Data System (ADS)

    Petkovšek, R.; Pirš, J.; Kralj, S.; Čopič, M.; Šuput, D.

    2006-01-01

    The paper presents the analysis of the three-dimensional polymer network distribution inside the polymer-stabilized ferroelectric liquid-crystal layer based on the laser scanning fluorescence confocal microscopy and a fluorescent dye tagging of the polymer. The studies of polymer-stabilized ferroelectric liquid-crystal structures described in this paper are focused on the comparison of the influence of polymer network in case that the polymerization is initiated in the chevron as well as in the quasibookshelf liquid-crystal molecular orientation. In the case of the chevron structure the regular distribution of the polymer network within the layer leads to the monostability of the chevron state. On the other hand the specific distribution of the polymer in the polymer-stabilized quasibookshelf stripe textures leads to the perfect bistability, improved multiplex driving, and analog gray scale capability.

  12. Physics of Heavily Implanted Single Crystal Complex Oxides

    NASA Astrophysics Data System (ADS)

    Ofan, Avishai

    Ion implantation is known to result in a significant amount of damage in solid single crystals. In this work a battery of material probes is used to study the effect of a very high-dose He implantation in ferroelectric lithium niobate (LiNbO3) and the implantation-induced formation of defects. In addition, the evolution of these defects with post-implantation annealing is examined. After irradiation, a high concentration of defects is found to collect and create a network of thick prismatic planar defects having typical dimensions of ˜1.5 microm and 200 nm parallel and perpendicular to the Z axis, respectively. Optical microscopy shows that there is strong temperature dependence for forming the network; the density of these defects reaches a maximum value for an annealing temperature of 250 °C. However, annealing to temperatures above 380 °C fully eliminates the defects. High-resolution TEM studies indicate that the defects are likely localized twinning and dislocation pileups due to plastic deformation of the lattice to relieve He-implantation-induced stress. During this deformation He accumulates at the twin boundaries. A second type of implantation induced defects is studied using room temperature, high- resolution electron microscopy; this study shows that implanted He in LiNbO3 nucleates and accumulates as bubbles. These He inclusions are at ˜20 GPa pressure and most probably in the solid phase. In addition, the energetically favored shape of the inclusions in their as-implanted form is spherical and not oblate; this spherical shape is due to the fact their diameter is below a critical radius for balancing the surface and elastics energies as predicted by elastic theory. When annealed, the characteristic length scale of the He inclusions increases, forming faceted bubbles. Annealing also causes the He inclusions to migrate and accumulate into strings due to the preferred {1014}-pyramidal-twinning planes. The ion implantation-induced defects are found to be

  13. Interest of using piezoelectric single crystals with high electromechanical coupling factor in Coriolis Vibrating Gyros

    NASA Astrophysics Data System (ADS)

    Parent, A.; Masson, S.; Le Traon, O.

    2005-09-01

    In piezoelectric Coriolis Vibrating Gyros piezoelectricity is both used to excite the in plane reference vibration and to detect the out of plane vibration induced by an input angular rate. Quartz crystal is used because of its good mechanical properties (e.g. high quality factor... ). In this paper, the opportunity of using new piezoelectric crystals with high electromechanical coupling factor is studied. An analytical model of a piezoelectric beam CVG has been established in the case of high piezoelectric coupling. This model predicts an improvement by a factor 50 of the gyro resolution by using the ferroelectric single crystal PMN-0.34PT instead of quartz.

  14. Titania single crystals with a curved surface

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

    2014-11-01

    Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO2, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface.

  15. Titania single crystals with a curved surface.

    PubMed

    Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

    2014-01-01

    Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO₂, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface. PMID:25373513

  16. Linear and non-linear dielectric properties of a short-pitch ferroelectric liquid crystal stabilized by a polymer network.

    PubMed

    Cherfi, Y; Hemine, J; Douali, R; Beldjoudi, N; Ismaili, M; Leblond, J M; Legrand, C; Daoudi, A

    2010-12-01

    Linear and non-linear dielectric measurements were carried out on a ferroelectric liquid crystal stabilized by an anisotropic polymer network. The polymerization process was achieved at room temperature. It was performed from an achiral monomer in the ferroelectric chiral smectic C phase, exhibiting a very short helical pitch and a large polarization. The linear and non-linear dielectric spectroscopy were also completed by textural morphology as well as structural and ferroelectric characterizations. All these measurements were carried out on a pure ferroelectric liquid crystal material and on composite films containing two polymer concentrations. The increase of the polymer network density leads to a decrease of the dielectric strength determined in the linear and non-linear dielectric spectroscopy. The complementarity between the linear and non-linear dielectric measurements and their confrontation with a theoretical model allowed the simultaneous determination of some physical parameters such as macroscopic polarization, rotational viscosity and twist elastic energy. We also discuss the effect of the polymer network density on the obtained physical parameters. PMID:21107879

  17. Nonlinear pyroelectric energy harvesting from relaxor single crystals.

    PubMed

    Khodayari, Akram; Pruvost, Sebastien; Sebald, Gael; Guyomar, Daniel; Mohammadi, Saber

    2009-04-01

    Energy harvesting from temperature variations in a Pb(Zn(1/3)Nb(2/3))(0.955)Ti(0.045)O(3) single crystal was studied and evaluated using the Ericsson thermodynamic cycle. The efficiency of this cycle related to Carnot cycle is 100 times higher than direct pyroelectric energy harvesting, and it can be as high as 5.5% for a 10 degrees C temperature variation and 2 kV/mm electric field. The amount of harvested energy for a 60 degrees C temperature variation and 2 kV/mm electric field is 242.7 mJ x cm(-3). The influence of ferroelectric phase transitions on the energy harvesting performance is discussed and illustrated with experimental results. PMID:19406698

  18. Peculiarities of electro-optic properties of the ferroelectric particles-liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Ibragimov, T. D.; Imamaliyev, A. R.; Bayramov, G. M.

    2016-04-01

    Influence of ferroelectric barium titanate particles on electro-optic properties of the liquid crystal (LC) 4-cyano-4'-pentylbiphenyl (5CB) with positive dielectric anisotropy and the LC mixture (H37) consisting of 4-methoxybezylidene-4'-butylaniline and 4-ethoxybezylidene-4'-butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles (1 wt%) in 5CB and H37 decreased the clearing temperature from 35.2 °C to 32.4°C and from 61.2°C to 60.1°C, respectively. The threshold voltage of the Freedericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect for the pure 5CB was observed at 2.1 V. The threshold voltage of the Freedericksz effect increased from 2.8 V to up 3.1 V at additive of particles in H37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the pecularities of Williams' domain formation (WDF) were also investigated in the colloid based on the H37 matrix. It was established that the WDF voltage decreased, a rise time increased and a decay time decreased in comparison with the pure H37. Experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.

  19. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  20. Monte Carlo simulations of ferroelectric crystal growth and molecular electronic structure of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Suewattana, Malliga

    In this thesis, we explore two stochastic techniques to study properties of materials in realistic systems. Specifically, the kinetic Monte Carlo (KMC) method is utilized to study the crystal growth process of ferroelectric materials and the quantum Monte Carlo (QMC) approach is used to investigate the ground state properties of atoms and molecules. In the growth simulations, we study the growth rates and chemical ordering of ferroelectric alloys using an electrostatic model with long-range Coulomb interactions. Crystal growth is characterized by thermodynamic processes involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algorithm is formulated to simulate this model efficiently in the presence of long-range interactions. The growth process is simulated as a function of temperature, chemical composition, and substrate orientation. We carried out the simulations on two heterovalent binaries, those of the NaCl and the Ba(Mg1/3Nb2/3))O3(BMN) structures. Compared to the simple rocksalt ordered structures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials with tetravalent compositions, such as (1-x)Ba(Mg 1/3Nb2/3))O3 + x BaZrO3 (BMN-BZ), the model does not incorporate tetravalent ions at low-temperature, exhibiting a phase-separated ground state instead. At higher temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the absence of diffusive mechanisms. In the second part of the thesis, we present results from an auxiliary field quantum Monte Carlo (AFQMC) study of ground state properties, in particular dissociation and ionization energy, of second-row atoms and molecules. The method projects the many-body ground state from a trial wavefunction by random walks in the space of Slater determinants. The Hubbard-Stratonovich transformation is employed to decouple the Coulomb interaction between electrons. A trial wave

  1. Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}

    SciTech Connect

    Kitamura, Naoto; Mizoguchi, Takuma; Itoh, Takanori; Idemoto, Yasushi

    2014-02-15

    In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that the Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.

  2. Improved Equivalent Circuit Model for V-Shaped, Thresholdless Switching Ferroelectric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Meng-yao; Pan, Wei; Luo, Bin; Zhang, Wei-li; Zou, Xi-hua

    2008-05-01

    For V-shaped, thresholdless switching ferroelectric liquid crystals (FLCs), the impedance divider induced by the multilayer structure of FLC cells and the drive circuit play an important role in switching characteristics. In this paper, an equivalent circuit model that can be applied to conventional circuit simulators is proposed for the optical response prediction and drive circuit optimization of V-shaped FLCs. The model is improved from the original model of Moore and Travis; however, the impedance divider is taken into account, and both polar and nonpolar surface anchoring energies are considered to make the model more preferable. The model is then utilized to investigate thresholdless switching characteristics. Simulation results show that the hysteresis inversion frequency fi increases more than one thousand fold with the drive circuit and then decreases with REXT following the relation log fi = -alog REXT + b, and a (b) increases from 0.43 to 0.46 (2.46 to 2.66) as the amplitude of triangular voltage increases from 4 to 10 V, agreeing with experimental results. Also, the same optical transmissions are plotted as different coordinates, as a function of voltage dropping on liquid crystal layer and of drive voltage, and the results show that genuine V-shaped switching is only observed when the transmission is plotted as a function of drive voltage, coinciding with the model suggested by Blinov et al.

  3. Dielectric and electro-optical studies of a nickel-ferrite-nanoparticle- doped ferroelectric liquid crystal mixture

    NASA Astrophysics Data System (ADS)

    Khushboo; Sharma, Puneet; Malik, Praveen; Raina, K. K.

    2016-02-01

    Effect of magnetic nanoparticles (nickel ferrite) doping on the dielectric and electro-optical properties of a ferroelectric liquid crystal mixture has been studied. In a doped ferroelectric liquid crystal mixture, dispersion of a small amount (0.25 wt.%) of nickel ferrite nanoparticles decreases the polarization and improves the response time compared to an undoped mixture. The significant changes in the polarization and response time are explained on the basis of dipole-dipole interaction and anchoring phenomena. Dielectric permittivity also increases with increasing the temperature of the SmC* phase and shows a reduction in dielectric loss in a doped sample. A Goldstone mode is clearly observed at ∼200 and ∼500 Hz in an undoped and a doped sample, respectively.

  4. Ferroelectric domain wall motion induced by polarized light.

    PubMed

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO₃ single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO₃ at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  5. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  6. Single crystals for welding research

    SciTech Connect

    David, S.A.; Boatner, L.A.

    1991-01-01

    Most welds last for many years, but a few fail after a relatively short time. Knowing the reasons why welds fail is important because cracks in welds can threaten the safety of people in buildings, airplanes, ships, automobiles, and power plants. Bad welds can lead to costly, extended shutdowns of industrial facilities such as petroleum refineries. Thus, research on this very important fabrication technology is critical to the multibillion-dollar welding industry. Research at ORNL and elsewhere strives to determine the structural features that make some welds strong and others weak. The goals are to find cost-effective ways to characterize the structure and strength of a new weld, correctly predict whether it will last a long time, and determine the welding conditions most likely to produce high-quality welds. There is more to welding than meets the eye. The cracks that make welds fail result from the complexities of microstructures formed during welding. Thus weld microstructure is linked to weld properties such as mechanical strength. As the hot weld material cools from a liquid into a solid, the crystalline grains grow at different speeds and in different directions, forming a new microstructure. By using single crystals rather than polycrystalline alloys to study different weld microstructures, scientists at ORNL have developed a way to predict more accurately the microstructures of various welds. The results could guide welders in providing the right conditions (correct welding speed, heat input, and weld thickness) for producing safer, higher-quality, and longer-lasting welds.

  7. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  8. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  9. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  10. Single gate p-n junctions in graphene-ferroelectric devices

    NASA Astrophysics Data System (ADS)

    Hinnefeld, J. Henry; Xu, Ruijuan; Rogers, Steven; Pandya, Shishir; Shim, Moonsub; Martin, Lane W.; Mason, Nadya

    2016-05-01

    Graphene's linear dispersion relation and the attendant implications for bipolar electronics applications have motivated a range of experimental efforts aimed at producing p-n junctions in graphene. Here we report electrical transport measurements of graphene p-n junctions formed via simple modifications to a PbZr0.2Ti0.8O3 substrate, combined with a self-assembled layer of ambient environmental dopants. We show that the substrate configuration controls the local doping region, and that the p-n junction behavior can be controlled with a single gate. Finally, we show that the ferroelectric substrate induces a hysteresis in the environmental doping which can be utilized to activate and deactivate the doping, yielding an "on-demand" p-n junction in graphene controlled by a single, universal backgate.

  11. Adhesion of single crystals on modified surfaces in crystallization fouling

    NASA Astrophysics Data System (ADS)

    Mayer, Moriz; Augustin, Wolfgang; Scholl, Stephan

    2012-12-01

    In crystallization fouling it has been observed that during a certain initial phase the fouling is formed by a non-uniform layer consisting of a population of single crystals. These single crystals are frequently formed by inverse soluble salts such as CaCO3. During heterogeneous nucleation and heterogeneous growth an interfacial area between the crystal and the heat transfer surface occurs. The development of this interfacial area is the reason for the adhesion of each single crystal and of all individual crystals, once a uniform layer has been built up. The emerging interfacial area is intrinsic to the heterogeneous nucleation of crystals and can be explained by the thermodynamic principle of the minimum of the Gibbs free energy. In this study CaCO3 crystals were grown heterogeneously on untreated and on modified surfaces inside a flow channel. An untreated stainless steel (AISI 304) surface was used as a reference. Following surface modifications were investigated: enameled and electropolished stainless steel as well as diamond-like-carbon based coatings on stainless steel substrate. The adhesion was measured through a novel measurement technique using a micromanipulator to shear off single crystals from the substrate which was fixed to a spring table inside a SEM.

  12. Synthesis, properties, and structure of potassium titanyl phosphate single crystals doped with chromium

    NASA Astrophysics Data System (ADS)

    Orlova, E. I.; Kharitonova, E. P.; Novikova, N. E.; Sorokina, N. I.; Voronkova, V. I.

    2015-11-01

    Chromium-doped potassium titanyl phosphate single crystals have been synthesized and their physical properties have been studied. Doping with chromium barely affects the temperature of the ferroelectric phase transition but significantly reduces conductivity (by almost two orders of magnitude). A precise Xray diffraction study of K1.00Cr0.02Ti0.98OPO4 and K0.996Cr0.005Ti0.995OPO4 crystals has shown that chromium atoms are located near sites of titanium atoms.

  13. Temperature dependence dielectric behavior of Ge-doped lead scandium tantalate single crystals

    NASA Astrophysics Data System (ADS)

    Dixit, Chandra Kumar; Srivastava, Anil Kumar

    2012-07-01

    The doping of Pb2SeTaO6 with Ge ferroelectrics was produced by a high-temperature solution method. We measure dielectric constant, dielectric loss and conductivity in the temperature range -30°C to 200°C and frequency range 1 to 100 KHz. The value of dielectric constant of the Pb2SeTaO6 (PST) crystal remained the same after thermal annealing whereas they decreased after Ge doping in the phase transition temperature range of the PST single crystal. All samples were investigated for conductivity with increasing temperature.

  14. Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at nanoscale

    DOE PAGESBeta

    Kalinin, Sergei V.; Jesse, Stephen; Yang, Yaodong; Li, Linglong; Liu, Zhengchun; Vasudevan, Rama K.

    2016-04-27

    Here, the nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with first order reversal curve (FORC) measurements on (K,Na)NbO3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the FORC ofmore » the polarization switching shows a clear decrease in correlation with increasing AC bias, suggesting the impact of domain wall clamping on the DC measurement case. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. These confirm the link between local piezoelectric nonlinearity, domain wall motion and minor loop formation, and suggest that existing theories (such as Preisach) are applicable at these length scales, with associated implications for future nanoscale devices.« less

  15. Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower.

    PubMed

    Xu, Chenglin; Qu, Zhongquan; Zhang, Xiaoyu; Jin, Chunlan; Yan, Xiaoli

    2006-11-20

    A polarimeter to be mounted on the Yunnan solar tower is described. It features the ability to simultaneously measure the magnetic fields of the solar photosphere and chromosphere by analyzing the Stokes spectra of those magnetosensitive lines forming in the two regions with very high efficiency of polarization measurement. The polarimeter consists of two ferroelectric liquid crystals and one lambda/4 wave plate before a polarizing beam splitter. The achromatism of the design is emphasized to get the maximum combination efficiency over a spectral range from 5000 to 6000 A. For the used solar absorption lines MgI517.27, FeI525.06, FeI630.15, and FeI630.25 nm, the design gives theoretical efficiencies of polarization measurements, which are 0.999, 1.0, 0.943, and 0.943, respectively. A comparison with other reference polarimeters, such as the Synoptic Optical Long-term Investigation of the Sun, the Tenerife infrared polarimeter, and the La Palma Stokes Polarimeter, is carried out. PMID:17086251

  16. Fast bistable intensive light scattering in helix-free ferroelectric liquid crystals.

    PubMed

    Andreev, Alexander; Andreeva, Tatiana; Kompanets, Igor; Zalyapin, Nikolay; Xu, Huan; Pivnenko, Mike; Chu, Daping

    2016-05-01

    A new type of ferroelectric liquid crystal (FLC) is considered, where the reorientation of the director (main optical axes) at the interaction of an electric field with the FLC's spontaneous polarization is due to the movement of spatially localized waves with a stationary profile: solitons arise at the transition due to the Maxwellian mechanism of energy dissipation. Under certain conditions, the appearance of such waves leads to the formation of a structure of transient domains, and as a consequence, to the scattering of light. The Maxwellian mechanism of energy dissipation allows one to reduce the electric field strength at which the maximum efficiency of light scattering is achieved down to 2-3 V/μm and to increase the frequency of light modulation up to 3-5 kHz. Intensive bistable light scattering in an electro-optical cell filled with a specially designed helix-free FLC was studied, and a stable scattering state can be switched on and off for a few tens of microseconds and memorized for a few tens of seconds. PMID:27140360

  17. Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale

    NASA Astrophysics Data System (ADS)

    Li, Linglong; Yang, Yaodong; Liu, Zhengchun; Jesse, Stephen; Kalinin, Sergei V.; Vasudevan, Rama K.

    2016-04-01

    The nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with hysteresis measurements with varying voltage windows on (K,Na)NbO3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the amplitude during hysteresis loop acquisition shows a clear decrease with increasing AC bias. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. This study suggests applicability at local length scales of fundamental principles of Rayleigh behavior, with associated implications for future nanoscale ferroic devices.

  18. Advanced piezoelectric single crystal based actuators

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Smith, Edward; Dong, Shuxiang; Viehland, Dwight; Moore, Jim, Jr.; Patrick, Brian

    2005-05-01

    TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

  19. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube.

    PubMed

    Son, Jong Yeog; Ryu, Sangwoo; Park, Yoon-Cheol; Lim, Yun-Tak; Shin, Yun-Sok; Shin, Young-Han; Jang, Hyun Myung

    2010-12-28

    We demonstrate a field-effect nonvolatile memory device made of a ferroelectric copolymer gate nanodot and a single-walled carbon nanotube (SW-CNT). A position-controlled dip-pen nanolithography was performed to deposit a poly(vinylidene fluoride-ran-trifluoroethylene) (PVDF-TrFE) nanodot onto the SW-CNT channel with both a source and drain for field-effect transistor (FET) function. PVDF-TrFE was chosen as a gate dielectric nanodot in order to efficiently exploit its bipolar chemical nature. A piezoelectric force microscopy study confirmed the canonical ferroelectric responses of the PVDF-TrFE nanodot fabricated at the center of the SW-CNT channel. The two distinct ferroelectric polarization states with the stable current retention and fatigue-resistant characteristics make the present PVDF-TrFE-based FET suitable for nonvolatile memory applications. PMID:21050014

  20. Ferroelectric domain formation in discotic liquid crystals: Monte Carlo study on the influence of boundary conditions.

    PubMed

    Bose, Tushar Kanti; Saha, Jayashree

    2015-10-01

    The realization of a spontaneous macroscopic ferroelectric order in fluids of anisotropic mesogens is a topic of both fundamental and technological interest. Recently we demonstrated that a system of dipolar achiral disklike ellipsoids can exhibit long-searched ferroelectric liquid crystalline phases of dipolar origin. In the present work, extensive off-lattice Monte Carlo simulations are used to investigate the phase behavior of the system under the influences of the electrostatic boundary conditions that restrict any global polarization. We find that the system develops strongly ferroelectric slablike domains periodically arranged in an antiferroelectric fashion. Exploring the phase behavior at different dipole strengths, we find existence of the ferroelectric nematic and ferroelectric columnar order inside the domains. For higher dipole strengths, a biaxial phase is also obtained with a similar periodic array of ferroelectric slabs of antiparallel polarizations. We have studied the depolarizing effects by using both the Ewald summation and the spherical cutoff techniques. We present and compare the results of the two different approaches of considering the depolarizing effects in this anisotropic system. It is explicitly shown that the domain size increases with the system size as a result of considering a longer range of dipolar interactions. The system exhibits pronounced system size effects for stronger dipolar interactions. The results provide strong evidence to the novel understanding that the dipolar interactions are indeed sufficient to produce long-range ferroelectric order in anisotropic fluids. PMID:26565261

  1. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  2. Phase polymorphism and electro-optical properties of a ferroelectric liquid crystal containing the biphenyl system

    NASA Astrophysics Data System (ADS)

    Zalewski, Sławomir; Ossowska-Chruściel, Mirosława D.

    2016-04-01

    In this article we present results concerning phase transitions and physical properties of the ferroelectric phase of the compound (S)-4-(1-methylheptyloxy)biphenyl-4'-(heptyloxy phenyl)-4-carboxylate (MHOBOPO7). The compound has the following phases: smectic ferroelectric C (SmC*), chiral nematic N*, and two defected phases, TGBC and blue phase. The mesomorphic properties were investigated by means of three complementary methods: differential scanning calorimetry, polarizing light optical microscopy, and transmitted light intensity. The electro-optical measurements were carried out on an ordered sample in a middle electric field during very slow cooling from the nematic phase to the ferroelectric phase.

  3. Combined X-Ray and fully leaky guided mode studies of the smectic layer and optic tensor configuration in a ferroelectric liquid-crystal cell.

    PubMed

    Hodder, B; Sambles, J R; Jenkins, S; Richardson, R M

    2000-10-01

    X-ray scattering together with optical characterization using fully leaky guided modes have been used for the first time to study the same ferroelectric liquid-crystal cell. This enables direct calculation of an accurate cone and chevron description of the liquid-crystal director profile since the layer structure and optic tensor configuration are both well known. PMID:11019296

  4. Photocurrent multiplication in organic single crystals

    NASA Astrophysics Data System (ADS)

    Hiramoto, Masahiro; Miki, Ayako; Yoshida, Manabu; Yokoyama, Masaaki

    2002-08-01

    A photocurrent multiplication of up to 200 times has been observed in single crystals of naphthalene tetracarboxylic anhydride sandwiched between metal electrodes. Photocurrent multiplication arises from photoinduced electron injection occurring at the crystal/metal interface. The high-speed response of the multiplied photocurrent reached 500 ms.

  5. Effect of swift heavy ion beam irradiation on the dielectric and ferroelectric properties of pure and cobalt doped TGS crystals

    NASA Astrophysics Data System (ADS)

    Bajpai, P. K.; Shah, Deepak; Kumar, Ravi

    2012-01-01

    Effect of swift heavy ion (100 MeV O 7+ ion) beam irradiation on the temperature and frequency dependence of real ( ɛ') and imaginary ( ɛ″) parts of dielectric permittivity in pure and Co 2+ doped TGS crystals are analyzed. Irradiation with swift heavy ion beam changes the dielectric response considerably. Observed dielectric peak in irradiated crystals shifts towards lower temperature and broadens up; the reduction in peak value, shift in temperature and broadening changes systematically with fluence. The most interesting results of SHI irradiation are (i) the dielectric loss peak value ( emax″) in all crystals is invariably less in comparison to the value in unirradiated crystals (ii) the minimum value of dielectric loss peak ( emax″) occurs at different fluence in different crystals, and (iii) a second loss peak is observed below Tc in CTGS10 especially at higher fluence. It seems that irradiation creates/strengthens internal field in the crystals by orienting the domains through some mechanism that is not clear at present. The observed results could be explained if one presumes that irradiation annihilate the defects already present in the crystals by creating local charges and thermal gradient resulting into internal bias field. Ferroelectric hysteresis loops demonstrate the internal bias field developing in the SHI irradiated crystals. It is argued that SHI irradiation is a better alternate in comparison to cobalt doping in inhibiting dipolar switching in TGS crystal.

  6. FAST TRACK COMMUNICATION: Ferroelectricity in low-symmetry biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Osipov, Mikhail A.; Gorkunov, Maxim V.

    2010-09-01

    Order parameters and phenomenological theory for both high- and low-symmetry biaxial nematic phases are presented and it is predicted that the chiral low-symmetry biaxial phase must be ferroelectric. This conclusion is based on general symmetry arguments and on the results of the Landau-de Gennes theory. The microscopic mechanism of the ferroelectric ordering in this chiral biaxial phase is illustrated using a simple molecular model based on dispersion interactions between biaxial molecules of low symmetry. Similar to the chiral smectic C* phase, the ferroelectricity in the chiral biaxial nematic phase is improper, i.e., polarization is not a primary order parameter and is not determined by dipolar interactions. Ferroelectric ordering in biaxial nematics may be found, in principle, in materials composed of chiral analogues of the tetrapod molecules which are known to exhibit biaxial phases.

  7. Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed

    2013-12-01

    Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.

  8. A Neutron Study of the Structure and Lattice Dynamics of Single Crystal PZT

    NASA Astrophysics Data System (ADS)

    Gehring, Peter

    2011-03-01

    The outstanding piezoelectric properties of PbZr 1-x Ti x O3 (PZT) perovskite ceramics have long been exploited in numerous device applications, making PZT arguably the most technologically important ferroelectric material in use today. Efforts to understand the piezoelectric mechanism have inspired a plethora of structural studies spanning decades, but solving the PZT phase diagram has proven to be famously problematic because single crystals have not been available save for Zr- and Ti-rich compositions that lie very near the end members PbZr O3 and PbTi O3 , where the piezoelectricity is weakest. Thus, whereas PZT has been the subject of thousands of powder and ceramic investigations, no consensus regarding the crystal structures of PZT exists. We report the first neutron diffraction study of single-crystal PZT with compositions x = 0.325 and 0.460. Our data refute the thesis that the ferroelectric phases of PZT within this composition range, all of which are highly piezoelectric, are purely monoclinic (Cc or Cm). The broadening of certain Bragg peaks can be interpreted in terms of coexisting rhombohedral and monoclinic domains, whereby monoclinic order is enhanced by Ti-doping. This is consistent with the theoretical proposal that the tendency to form macroscopic monoclinic phases facilitates the mechanism of polarization rotation by reducing the energy required to reorient the electric polarization. Dispersions of the lowest energy TO and TA phonon modes were measured on a single crystal of PZT with x = 0.325 in the paraelectric phase at 650 K. The TO mode energy drops at small wave-vectors suggesting that it is a soft mode associated with the ferroelectric phase transition at 590 K. Evidence of a second soft-mode, corresponding to a phase transition at 370 K at the R-point, is provided based on the redistribution of spectral weight as a function of temperature.

  9. Magnetodielectric Effects and Transport Study in LuFe2O4 Single Crystal

    NASA Astrophysics Data System (ADS)

    Jang, Tae Hwan; Park, Sang Youn; Lee, Hai Joon; Kang, Sun Hee; Koo, Tae Yeong; Kim, Sung Baek; Kim, Ill Won; Jeong, Yoon Hee; Cheong, Sang Wook

    2008-03-01

    Magnetic, dielectric, and magnetodielectric properties of geometrically frustrated mixed valance LuFe2O4 single crystal are discussed to clarify the charge order based ferroelectricity and its coupling with magnetism. From the magnetization and dielectric constant measurement, a new anomalous temperature point TN'(˜160 K) in both magnetization and dielectric constant versus temperature curve below the ferrimagnetic transition temperature TN(˜225 K) has been observed. The sign of magnetodielectric effect (MDE) also changes from positive T > TN' into negative T < TN'. No field hysteresis in positive MDE temperature region was found. However a large hysteretic behavior in negative MDE below TN' with the same magnetic coercive field measured in M (H) curve was observed. This indicates a strong coupling between magnetism and ferroelectricity in the charge and spin frustrated ferrimagnetic LuFe2O4 system.

  10. Growth of shaped single crystals of proteins

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Rondón, Deyanira; García-Ruiz, Juan Ma.

    1996-09-01

    We present a procedure for obtaining protein single crystals that fill the capillary tubes in which they grow. The implementation was typical of the gel acupuncture method and the four different proteins are used as examples: lysozyme (HEW), thaumatin I, ferritin and insulin. Rod- and prismatic-shaped protein single crystals of these four proteins were grown inside capillary tubes of 0.2, 0.3, 0.5 mm in diameter and, for the case of lysozyme, up to 1.2 mm in diameter. The maximum length measured along the long axes of the rod crystals was 1.6 mm again for lysozyme crystals. It was observed that, once the capillary tube was filled, the crystal continues to grow by diffusion of the precipitating agent throughout the porous network formed by the protein crystal structure. We also discuss the possibility of growing these cylinders of crystalline proteins by the addition of protein solution to the mother liquor through the upper end of the glass capillary while the precipitating agent diffuses through the protein crystal itself. X-ray diffraction patterns confirm the single crystal character of the protein rods.

  11. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  12. Molecular ferroelectrics: where electronics meet biology

    PubMed Central

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also noted. PMID:24018952

  13. Investigaction of Switching Behavior in a Ferroelectric Liquid Crystal Aligned on Obliquely Deposited SiO Films

    NASA Astrophysics Data System (ADS)

    Yamada, Yuichiro; Yamamoto, Norio; Inoue, Tetsuya; Orihara, Hiroshi; Ishibashi, Yoshihiro

    1989-01-01

    The effect of oblique evaporation of SiO on the chevron structure and the switching behavior in a ferroelectric liquid crystal have been investigated by means of the X-ray diffraction and the stroboscopic micrographs. It is found experimentally that the chevron direction and the domain structure appearing during the switching are determined by the direction of incidence of evaporated SiO. On the basis of the experimental results, it is clarified that the bow and the stern of the boat-shaped domain correspond to {+}2π and {-}2π internal disclinations, respectively. The structure of the zig-zag defect is determined.

  14. Large second-order optical nonlinearity in a ferroelectric molecular crystal of croconic acid with strong intermolecular hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Sawada, R.; Uemura, H.; Sotome, M.; Yada, H.; Kida, N.; Iwano, K.; Shimoi, Y.; Horiuchi, S.; Okamoto, H.

    2013-04-01

    Linear and nonlinear optical responses in a molecular crystal, croconic acid, showing electronic-type ferroelectricity were studied by reflection and second harmonic generation spectroscopy. The second-order nonlinear susceptibility χ(2) was very large, exceeding 10-6 esu in the near-infrared region. The enhancement of χ(2) was attributed to the large dipole moment of the lowest π-π* transition and the large difference between the molecular dipole moments for the ground state and the photoexcited state. We deduced the molecular orbitals (MOs) and dipole moments responsible for the large χ(2) by comparing the experimental optical parameters and MO calculation results based upon density functional theory.

  15. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  16. Stability of tetragonal <0 0 1> oriented PZN-12PT single crystals

    NASA Astrophysics Data System (ADS)

    Touhtouh, S.; Hajjaji, A.; Boughaleb, Y.; Benkhouja, K.; Arbaoui, A.; Rguiti, M.; Guyomar, D.

    2012-08-01

    The present paper reports on the synthesis and electromechanical characterization of tetragonal (1 - x)Pb(Zn1/3-Nb2/3)O3-xPbTiO3 (x = 12) single crystals as a function of various external disturbances. Tetragonal PZN-12PT single crystals were grown using the flux method. The set of piezoelectric coefficients in the lateral mode was measured. Samples with size of 10 × 2 × 1 mm3 were polled in the <0 0 1> and <1 1 0> crystallographic directions and were found to possess a high Curie temperature (>170 °C). Moreover, no ferroelectric-ferroelectric phase transition was observed for the positive temperatures, which expanded the usage range significantly. Tetragonal crystals were also found to have high coercive field, mechanical quality factors, and good optical properties, attracting much effort on the characterization of tetragonal PZN-12PT crystals. However, the most interesting properties in the lateral mode were obtained for <0 0 1>. Finally, the thermal stability and stress dependence were studied in order to determine the working conditions.

  17. Domains in Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    2010-03-01

    , the need to fully understand how size and morphology affect domain behaviour in small scale ferroelectrics is obvious. In this talk, observations from a programme of study examining domains in meso and nano-scale BaTiO3 shapes, that have been cut directly from bulk single crystal using focused ion beam milling, will be presented. In general, the equilibrium static domain configurations that occur appear to be the result of a simultaneous desire to minimize both the macroscopic strain and depolarizing fields developed on cooling through the Curie Temperature. While such governing factors might be obvious, the specific patterns that result as a function of morphology are often non-intuitive, and a series of images of domains in nanodots, rods and wires will be presented and rationalised. In addition, the nature in which morphological factors influence domain dynamics during switching will be discussed, with particular focus on axial switching in nanowires, and the manner in which local surface perturbations (such as notches and antinotches) affect domain wall propagation. In collaboration with Alina Schilling, Li-Wu Chang, Mark McMillen, Raymond McQuaid, and Leo McGilly, Queen's University Belfast; Gustau Catalan, Universitat Autonoma de Barcelona; and James Scott, University of Cambridge.

  18. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their

  19. Neutron detection with single crystal organic scintillators

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia P.; Newby, Jason; Hamel, Sebastien; Carman, Leslie; Faust, Michelle; Lordi, Vincenzo; Cherepy, Nerine J.; Stoeffl, Wolfgang; Payne, Stephen A.

    2009-08-01

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10- diphenylanthracene and diphenylacetylene.

  20. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  1. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  2. Remarkable structural diversity and single-crystal-to-single-crystal transformations in sulfone functionalized lanthanide MOFs

    SciTech Connect

    Neofotistou, Eleftheria; Malliakas, Christos D.; Trikalitis, Pantelis N.

    2010-04-13

    We report the formation of novel open framework lanthanide (La, Ce, Pr and Dy) MOFs using the ligand 4,4{prime}-bibenzoic acid-2,2{prime}-sulfone. In the case of Ce and Pr, an unprecedented single-crystal-to-single-crystal transformation at room temperature was discovered.

  3. Single-Crystal-to-Single-Crystal Transformations in One Dimensional Ag-Eu Helical System

    SciTech Connect

    Cai, Yue-Peng; Zhout, Xiu-Xia; Zhout, Zheng-Yuan; Zhu, Shi-Zheng; Thallapally, Praveen K.; Liu, Jun

    2009-07-06

    Single-crystal-to-single-crystal transformation of 1-D 4d-4f coordination polymers have been investigated for the first time. It displays high selectivity for Mg2+ and can be used as magnesium ion-selective luminescent probe. More importantly, we observed the transformation of meso-helical chain to rac-helical chain as a function of temperature.

  4. Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate.

    PubMed

    Singh, Dharmendra Pratap; Gupta, Swadesh Kumar; Vimal, Tripti; Manohar, Rajiv

    2014-08-01

    Multilayer graphene was deposited on indium tin oxide (ITO) -coated glass plates and characterized by suitable techniques. A liquid crystal sample cell was designed using graphene deposited ITO glass plates without any additional treatment for alignment. Ferroelectric liquid crystal (FLC) material was filled in the sample cell. The effect of multilayer graphene on the characteristics of FLC material was investigated. The extremely high relative permittivity of pristine graphene and charge transfer between graphene and FLC material were consequences of the enormous increase in relative permittivity for the graphene-FLC (GFLC) system as compared to pure FLC. The presence of multilayer graphene suppresses the ionic impurities, comprised in the FLC material at lower frequencies. The ionic charge annihilation mechanism might be responsible for the reduction of ionic impurities. The presence of graphene reduces the net ferroelectricity and results in a change in the spontaneous polarization of pure FLC. Rotational viscosity of the GFLC system also decreases due to the strong π-π interaction between the FLC molecule and multilayer graphene. The photoluminescence of the GFLC system is blueshifted as compared to pure FLC, which is due to the coupling of energy released in the process of charge annihilation and photon emission. PMID:25215743

  5. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  6. Strong influence of non-ideality of electrodes on stability of single domain state in ferroelectric-paraelectric superlattices

    NASA Astrophysics Data System (ADS)

    Levanyuk, A. P.; Misirlioglu, I. B.

    2016-01-01

    We study the phase stabilities with respect to small perturbations in ferroelectric-paraelectric superlattices and show that nature of the electrodes characterized by a deviation from the ideal behavior strongly influences the possibility to obtain single-domain state in ferroelectric-paraelectric superlattices. To demonstrate this, we analyze the limit of stability of the paraelectric and the single domain state in ferroelectric-paraelectric superlattices in contact with top and bottom electrodes with finite screening lengths. The combined analytical and numerical analyses of one bilayer and two bilayer systems are carried out using the Landau-Ginzburg-Devonshire formalism and equations of electrostatics. The BaTiO3/SrTiO3 system was considered as an example. Unlike the case of ideal electrodes where the stability limits are independent of the system size, the stability analysis in a multilayer with real electrodes should take into account explicitly the number of the repeating units that makes the algebra very cumbersome, forcing us to consider systems with one and two bilayer stacks only. Extrapolating the difference between the two systems to the cases of many repeating units gives us the possibility to make qualitative but feasible predictions related to those with many repeating units. We observe that in systems with nearly equal thicknesses of the ferroelectric and paraelectric layers, the electrodes with realistic screening lengths lead to dramatic widening of the parametric region where the single-domain state is absolutely unstable expelling the single-domain state to unphysical layer thicknesses and temperatures. This region grows when one goes from a single bilayer to two bilayer system, implying that obtaining a single domain state becomes even less feasible in systems with many bilayers. When electrode properties approach that of ideal in addition to increasing the volume fraction of the ferroelectric component, the effect of growth of the region of

  7. Graphene single crystals: size and morphology engineering.

    PubMed

    Geng, Dechao; Wang, Huaping; Yu, Gui

    2015-05-13

    Recently developed chemical vapor deposition (CVD) is considered as an effective way to large-area and high-quality graphene preparation due to its ultra-low cost, high controllability, and high scalability. However, CVD-grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene-based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale-up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed. PMID:25809643

  8. Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal

    SciTech Connect

    Kaznacheev, A. V.; Pozhidaev, E. P.

    2015-08-15

    We present the results of a theoretical investigation of the effect of boundary surfaces of a liquidcrystal cell on the effective dielectric susceptibility of the helical structure of a ferroelectric smectic C* liquid crystal (FLC). We consider for this purpose the deformation and untwisting of the helix by solid surfaces bounding the FLC layer. An analytic expression is obtained for critical thickness d{sub c} of the liquid-crystal layer, for which untwisting of the helix by surfaces takes place. In calculating the effective dielectric susceptibility, it is shown that the deformation of the FLC helix by the boundaries leads to the occurrence of anisotropy in the effective dielectric susceptibility in the plane perpendicular to the helix axis.

  9. New application of terahertz time-domain spectrometry (THz-TDS) to the phonon-polariton observation on ferroelectric crystals.

    PubMed

    Nishizawa, Seizi; Tsumura, Naoki; Kitahara, Hideaki; Wada Takeda, Mitsuo; Kojima, Seiji

    2002-11-01

    A new instrument for terahertz time-domain spectroscopy (THz-TDS) has been developed. It consists of a composite THz-TDS system and a high throughput (Martin-Puplett) interferometer. The instrument is for use in the qualitative study of optoelectronic constants of materials. The spectral transmission intensity and phase shift related to phonon-polariton dispersion have been measured between 100 cm(-1) and 3 cm(-1) on ferroelectric crystals of industrial interest. These include bismuth titanate Bi4Ti3O12 (a key material for FeRAM), lithium niobate LiNbO3 (a typical nonlinear crystal for parametric oscillator applications) and lithium heptagermanate Li2Ge7O15 for surface elastic wave filter applications. The complex dielectric constants are well reproduced by the phonon-polariton dispersion relation based on the Kurosawa formula. The instrument details and phonon-polariton dispersion results are described. PMID:12452567

  10. Effects of nanoparticle doping on the phase transitional behaviour of ferroelectric liquid crystal Langmuir-Blodgett composite films

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Raina, K. K.

    2015-12-01

    Langmuir-Blodgett films of ferroelectric liquid crystals (FLCs) doped with a low concentration of functionalized Al: ZnO (AZO) nanoparticles were prepared and characterized. Pressure-area isotherms show that the nanoparticles as well as FLC composite systems have the capability to form stable monolayers at the air-water interface. The molecular interaction between nanoparticles and FLC molecules increased during barrier compression, which resulted in increased surface pressure. We observed various phases in isotherms with increasing concentration of nanoparticles in the FLC matrix. An X-ray diffraction profile at a low angle confirmed that FLCs retain their layer structure at a low concentration doping of AZO nanoparticles in the FLC matrix. Atomic force microscopy images indicate that low wt% composites are uniformly deposited without disturbing the translation behaviour of SmC* liquid crystals.

  11. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals.

    PubMed

    Oh, Yoon Seok; Luo, Xuan; Huang, Fei-Ting; Wang, Yazhong; Cheong, Sang-Wook

    2015-04-01

    On the basis of successful first-principles predictions of new functional ferroelectric materials, a number of new ferroelectrics have been experimentally discovered. Using trilinear coupling of two types of octahedron rotation, hybrid improper ferroelectricity has been theoretically predicted in ordered perovskites and the Ruddlesden-Popper compounds (Ca3Ti2O7, Ca3Mn2O7 and (Ca/Sr/Ba)3(Sn/Zr/Ge)2O7). However, the ferroelectricity of these compounds has never been experimentally confirmed and even their polar nature has been under debate. Here we provide the first experimental demonstration of room-temperature switchable polarization in bulk crystals of Ca3Ti2O7, as well as Sr-doped Ca3Ti2O7. Furthermore, (Ca, Sr)3Ti2O7 is found to exhibit an intriguing ferroelectric domain structure resulting from orthorhombic twins and (switchable) planar polarization. The planar domain structure accompanies abundant charged domain walls with conducting head-to-head and insulating tail-to-tail configurations, which exhibit a conduction difference of two orders of magnitude. These discoveries provide new research opportunities, not only for new stable ferroelectrics of Ruddlesden-Popper compounds, but also for meandering conducting domain walls formed by planar polarization. PMID:25581628

  12. Single-Crystal Springs For Accelerometers

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Thermal noise reduced, enabling use of smaller proof masses. Spring-and-mass accelerometers in which springs made of single-crystal material being developed. In spring-and-mass accelerometer, proof mass attached to one end of spring, and acceleration of object at other end of spring measured in terms of deflection of spring, provided frequency spectrum of acceleration lies well below resonant frequency of spring-and-proof-mass system. Use of single-crystal spring materials instead of such polycrystalline spring materials as ordinary metals makes possible to construct highly sensitive accelerometers (including seismometers) with small proof masses.

  13. Polarization Domain Switching of Improper Hybrid Ferroelectric (Ca,Sr)3Ti2O7 Crystals

    NASA Astrophysics Data System (ADS)

    Lim, Seong Joon; Gao, Bin; Kim, Jaewook; Huang, Fei-Ting; Cheong, Sang-Wook; RCEM Team

    The observation of switchable polarization loops at room temperature in (Ca,Sr)3Ti2O7, induced by improper hybrid ferroelectricity, has drawn much attention. Since the ferroelectric polarization directly couples with structural distortions (oxygen octahedral tilting and rotation) in hybrid improper ferroelectrics, the energy barrier for polarization switching is predicted to be large, and the observation of ferroelectric polarization loops was a surprise. Furthermore, the observed complexity of the domain wall configuration in (Ca,Sr)3Ti2O7 may complicate the domain wall motion or the domain nucleation for polarization switching. Thus, it is imperative to understand the mechanism and dynamics of polarization domain switching. Particularly, it has to be clarified if polarization switching occurs through 90° or 180° switching. Comparing piezoresponse force microscope and polarized optical microscope images before and after applying electric fields consecutively, we explored the mechanism and dynamics of polarization domain switching. This work is funded by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4413 to the Rutgers Center for Emergent Materials.

  14. Laser-induced nondestructive patterning of a thin ferroelectric polymer film with controlled crystals using Ge8Sb2Te11 alloy layer for nonvolatile memory.

    PubMed

    Bae, Insung; Kim, Richard Hahnkee; Hwang, Sun Kak; Kang, Seok Ju; Park, Cheolmin

    2014-09-10

    We present a simple but robust nondestructive process for fabricating micropatterns of thin ferroelectric polymer films with controlled crystals. Our method is based on utilization of localized heat arising from thin Ge(8)Sb(2)Te(11) (GST) alloy layer upon exposure of 650 nm laser. The heat was generated on GST layer within a few hundred of nanosecond exposure and subsequently transferred to a thin poly(vinylidene fluoride-co-trifluoroethylene) film deposited on GST layer. By controlling exposure time and power of the scanned laser, ferroelectric patterns of one or two microns in size are fabricated with various shape. In the micropatterned regions, ferroelectric polymer crystals were efficiently controlled in both degree of the crystallinity and the molecular orientations. Nonvolatile memory devices with laser scanned ferroelectric polymer layers exhibited excellent device performance of large remnant polarization, ON/OFF current ratio and data retention. The results are comparable with devices containing ferroelectric films thermally annealed at least for 2 h, making our process extremely efficient for saving time. Furthermore, our approach can be conveniently combined with a number of other functional organic materials for the future electronic applications. PMID:25127181

  15. Microhardness studies of sulfamic acid single crystal

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  16. The origin of ferroelectricity in magnetoelectric YMnO3.

    PubMed

    Van Aken, Bas B; Palstra, Thomas T M; Filippetti, Alessio; Spaldin, Nicola A

    2004-03-01

    Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO(3), using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO(5) polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics. PMID:14991018

  17. Nonlinear spectroscopy of C60 single crystal

    NASA Astrophysics Data System (ADS)

    Zamboni, Roberto; Muccini, Michele; Danieli, R.; Taliani, Carlo; Mohn, H.; Muller, W.; ter Meer, Hans-Ulrich

    1994-11-01

    Two-photon excitation measurements of C60 single crystal at 4 K have been performed. The TPE spectrum shows a sharp band at 1.846 eV which is assigned to the C60 lowest forbidden Frenkel singlet exciton of T1g symmetry. This assignment is supported by the analysis of Herzberg-Teller induced photoluminescence.

  18. Tunable dielectric properties of KTaO3 single crystals in the terahertz range

    NASA Astrophysics Data System (ADS)

    Skoromets, V.; Kadlec, C.; Němec, H.; Fattakhova-Rohlfing, D.; Kužel, P.

    2016-02-01

    Electric-field tunability of the dielectric properties of potassium tantalate single crystal was studied by terahertz spectroscopy in a broad temperature range (40-250 K). Complex-valued terahertz transmission spectra of samples were measured with an external electric field perpendicular to the sample surface and parallel to the terahertz wave-vector. We found that the ferroelectric soft mode hardening is fully responsible for the observed electric-field-induced changes in the spectra and no signature of a central mode was detected. We determined the anharmonic properties of the soft-mode potential in the mean field approximation. The observed behavior was compared with that previously reported for SrTiO3 single crystals.

  19. Infrared investigations of 4-hydroxycyanobenzene single crystals.

    PubMed

    Capria, E; Benevoli, L; Perucchi, A; Fraboni, B; Tessarolo, M; Lupi, Stefano; Fraleoni-Morgera, A

    2013-08-01

    4-Hydroxycyanobenzene (4HCB) single crystals (SCs) and polycrystals (PCs) have been analyzed by means of both unpolarized and linearly polarized (LP) infrared (IR) beams. Most of the signals found at room temperature (298 K) were assigned to well-defined vibrational modes. Using an LP-IR beam and keeping the beam polarization aligned with either the a or the b crystal axis, anisotropic spectra of SCs were also attributed. The differences between the LP and unpolarized spectra of SCs are discussed in view of spatially anisotropic vibronic couplings between the benzenic π electrons and the molecular functional groups (FGs), with reference to the overall lattice arrangement and the polarizability of the FGs. In addition, signals suggesting the low-concentration presence of tautomers within the crystal were detected. LP-IR measurements of SCs in the temperature range between 298 and 120 K are also reported and discussed, with particular reference to the hydrogen-bonding-related functional groups of 4HCB, allowing the assignment of OH bending signals that were otherwise not clearly attributable and the inference of an anisotropic shrinking of the crystals. Overall, the presented results show that LP-IR spectroscopy is a valuable tool for noncontact, nondestructive characterization of organic semiconducting single crystals. PMID:23829587

  20. Dynamic mechanism of the ferroelectric to antiferroelectric phase transition in chiral smectic liquid crystals.

    PubMed

    Song, Jang-Kun; Fukuda, Atsuo; Vij, J K

    2008-08-29

    The temperature-induced phase transition between the chiral smectic phases, antiferroelectric (smectic-C(A)*) and ferroelectric (smectic-C*), is found to occur through solitary wave propagation. We measure the free energy, which shows a double well shape in the entire SmC(A)* temperature range and the global minimum is found to shift from the antiferroelectric order to the ferroelectric order at the transition temperature. However, any significant supercooling is not observed and the transition cannot be described by the first order Landau-de Gennes theory, where the double well potential exists only in a narrow range of temperatures. This implies that the SmC(A)*-SmC* transition can occur only nonhomogeneously through the solitary wave propagation which overcomes the high energy barrier between the two minima. PMID:18851661

  1. Single-crystal disk drive miniactuators

    NASA Astrophysics Data System (ADS)

    Giovanardi, Marco; McKenney, Kevin B.; Rule, John A.; Yoshikawa, Shoko

    2001-08-01

    As hard disk drive areal densities increase at a compound annual growth rate (CAGR) of 60%, disk drives must position the head over increasingly small areas while moving more rapidly to reach the desired position. This results in an increase in vibration disturbance. To meet this demand, many hard disk drive manufactures have created prototype dual-stage actuators employing piezoelectric ceramics for the second stage. These are an attractive means of obtaining higher-bandwidth control due to the low inertia and size of the actuator element. As the technology improves, the next limiting factor will be the amount of displacement obtainable with traditional piezoceramic elements. Under the AXIS (Advanced Crystal Integrated System) Consortium program funded by DARPA, the application of PZN-PT single crystal piezoceramic as a second stage disk drive actuator was studied, based on the fact that the single crystal material provides larger stroke than its traditional PZT counterparts. The transverse (d31) strain of PZN-PT single crystal was measured to be about two times larger than that of PZT-5H ceramic. Both materials were integrated into a disk drive system and compared as second stage actuators. The methodologies used and the servo control techniques applied are also discussed in the paper.

  2. A pair of dinuclear Re(I) enantiomers: synthesis, crystal structures, chiroptical and ferroelectric properties.

    PubMed

    Li, Xi-Li; Zhang, Zhiqiang; Zhang, Xue-Li; Kang, Jia-Long; Wang, Ai-Ling; Zhou, Liming; Fang, Shaoming

    2015-03-01

    The reaction of enantiomeric bis-bidentate bridging ligands (+)/(-)-2,5-bis(4,5-pinene-2-pyridyl)pyrazine (L(S)/L(R)) with [Re(CO)5Cl] yielded a pair of dinuclear Re(I) enantiomers formulated as [Re2(L(S)/L(R))(CO)6Cl2]·4CH2Cl2 (R-1 and S-1, the isomers containing the respective L(R) and L(S) ligands). They were characterized by elemental analyses, IR spectra and X-ray crystallography. Circular dichroism spectra verified their chiroptical activities and enantiomeric nature. The measurements of second harmonic generation (SHG) and ferroelectric properties showed that R-1 displays a nonlinear optical (NLO) activity and ferroelectricity with a remnant polarization (P(r)) of 1.6 μC cm(-2) under an applied field of 7.3 kV cm(-1) at room temperature. R-1 and S-1 represent the first example of polynuclear Re(i) complexes with ferroelectric properties. Notably, the P(r) value is much larger than that of the reported mononuclear chiral Re(I) analogue. In particular, unlike mononuclear Re(i) complexes of the type [Re(CO)3(N^N)(X)] (N^N = diimine and X = halide), which usually exhibit an intense emission in the visible range, R-1 and S-1 do not show any detectable emission at any temperature range and the reason for the nonluminescence of R-1 and S-1 was further elucidated in this work. Moreover, our research results also elucidated that Re nuclearity has a great influence on not only the emitting properties but also on ferroelectric behavior. PMID:25623284

  3. Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Ueno, Risako; Funakubo, Hiroshi; Koda, Seiichiro

    2006-07-01

    The influence of ion modification using rare-earth cations on crystal structures, along with the insulating and ferroelectric properties of BiFeO3 (BFO) thin films was investigated. Rare-earth-substituted BFO films with chemical compositions of (Bi1.00-xREx)Fe1.00O3 (x =0-0.15, RE =La and Nd) were fabricated on (111)Pt/TiO2/SiO2/(100)Si substrates using a chemical solution deposition technique. A crystalline phase of rhombohedral BFO was obtained by heat treatment in a N2 atmosphere at 500°C for 5min. The crystal anisotropy and the Curie temperature of BFO were degraded continuously with increasing contents of La3+ or Nd3+ cations. Ion modification using La3+ and Nd3+ cations up to x =0.05 lowered the leakage current density of the BFO film at room temperature from approximately 10-3 down to 10-6A/cm2. A polarization (P)-electrical field (E) hysteresis loop measured at 10K revealed that the intrinsic remanent polarization of La3+- and Nd3+-substituted BFO films with x =0.05 (44 and 51μC/cm2, respectively) was smaller than that of a nonsubstituted BFO film (79μC/cm2), which is ascribed to the degradation of crystal anisotropy and the Curie temperature of the BFO crystal.

  4. Experimental Investigation of Orthoenstatite Single Crystal Rheology

    NASA Astrophysics Data System (ADS)

    fraysse, G.; Girard, J.; Holyoke, C. W.; Raterron, P.

    2013-12-01

    The plasticity of enstatite, upper mantle second most abundant mineral, is still poorly constrained, mostly because of its high-temperature (T) transformation into proto- and clino-enstatite at low pressure (P). Mackwell (1991, GRL, 18, 2027) reports a pioneer study of protoenstatite (Pbcn) single-crystal rheology, but the results do not directly apply to the orthorhombic (Pbca) mantle phase. Ohuchi et al. (2011, Contri. Mineral. Petrol , 161, 961) carried out deformation experiments at P=1.3 GPa on oriented orthoenstatite crystals, investigating the activity of [001](100) and [001](010) dislocation slip systems; they report the first rheological laws for orthoenstatite crystals. However, strain and stress were indirectly constrained in their experiments, which questioned whether steady state conditions of deformation were achieved. Also, data reported for [001](100) slip system were obtained after specimens had transformed by twinning into clinoenstatite. We report here new data from deformation experiments carried out at high T and P ranging from 3.5 to 6.2 GPa on natural Fe-bearing enstatite single crystals, using the Deformation-DIA apparatus (D-DIA) that equipped the X17B2 beamline of the NSLS (NY, USA). The applied stress and specimen strain rates were measured in situ by X-ray diffraction and imaging techniques (e.g., Raterron & Merkel, 2009, J. Sync. Rad., 16, 748; Raterron et al., 2013, Rev. Sci. Instr., 84, 043906). Three specimen orientations were tested: i) with the compression direction along [101]c crystallographic direction, which forms a 45° angle with both [100] and [001] axes, to investigate [001](100) slip-system activity; ii) along [011]c direction to investigate [001](010) system activity; iii) and along enstatite [125] axis, to activate both slip systems together. Crystals were deformed two by two, to compare slip system activities, or against enstatite aggregates or orientated olivine crystals of known rheology for comparison. Run products

  5. X-ray diffraction study of ferroelectric and antiferroelectric liquid crystal mixtures exhibiting de Vries SmA∗-SmC∗ transitions.

    PubMed

    Manna, U; Richardson, R M; Fukuda, Atsuo; Vij, J K

    2010-05-01

    In this Rapid Communication, results on smectic layer thickness, using synchrotron radiation x-ray diffraction, for different mixtures of ferroelectric and antiferroelectric liquid crystals are given. We find that with an increased ferroelectric component in the mixtures, the layer shrinkage at the de Vries SmA∗-SmC∗ transition increases. This observation can be used to explain our previously observed behaviors [U. Manna, J.-K. Song, Yu. P. Panarin, A. Fukuda, and J. K. Vij, Phys. Rev. E 77, 041707 (2008)] that the soft-mode dielectric strength decreases, the Landau coefficient increases, and the Curie-Weiss temperature range decreases with increased ferroelectric component in the mixture exhibiting de Vries SmA∗-SmC∗ transition. PMID:20866175

  6. Lightweight optical mirrors formed in single crystal substrate

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2006-01-01

    This invention is directed to a process for manufacturing a lightweight mirror from a single crystal material, such as single crystal silicon. As a near perfect single crystal material, single crystal silicon has much lower internal stress than a conventional material. This means much less distortion of the optical surface during the light weighting process. After being ground and polished, a single crystal silicon mirror is light weighted by removing material from the back side using ultrasonic machining. After the light weighting process, the single crystal silicon mirror may be used as-is or further figured by conventional polishing or ion milling, depending on the application and the operating wavelength.

  7. Exfoliation of graphene oxide and its application in improving the electro-optical response of ferroelectric liquid crystal

    SciTech Connect

    Kumar, Veeresh; Kumar, Ajay; Bhandari, Shruti; Biradar, A. M.; Pasricha, Renu E-mail: renu1505@gmail.com; Reddy, G. B.

    2015-09-21

    Near complete exfoliation and reduction of lyophilized graphene oxide (GO) has been carried out at temperature as low as 400 °C. The structural characterizations of the reduced GO have been performed using X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy techniques. The morphological studies were carried out using scanning electron microscopy. The synthesized GO finds an application in improving the switching performance of a liquid crystal (LC) mixture by remarkably modifying the physical properties, such as spontaneous polarization and rotational viscosity of the ferroelectric LC (FLC) material which in turn resulted into faster response of the FLC. The present study explores the possibility of low temperature thermal reduction of GO along with its application in improving the properties of LC based display systems.

  8. Molecular motions in a novel ferroelectric crystal (CH 3NH 3) 5Bi 2Br 11 studied by NMR

    NASA Astrophysics Data System (ADS)

    Piekara-Sady, L.; Jakubas, R.; Piślewski, N.

    1989-11-01

    The temperature dependence of the 1H relaxation times T1, T1 ρ and T1 D were studied in the ferroelectric (CH 3NH 3) 5Bi 2Br 11. Three kinds of motions of the methylammonium cation, i.e. (1) rotations of the CH 3 and NH 3 groups about C 3 axis, (2) reorientation of the whole cation about C 3 axis forming an angle α = 13° with the C 3 axis of NH 3 and CH 3 groups, (3) 180° flip motion of the methylammonium cation, have been observed separately. The small activation energies of these motions imply that the cations experience a weak crystal field.

  9. Shock Hugoniot of Single Crystal Copper

    SciTech Connect

    Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

    2009-08-28

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  10. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.