Solitary waves on a ferrofluid jet
NASA Astrophysics Data System (ADS)
Blyth, Mark; Parau, Emilian
2015-11-01
The propagation of axisymmetric solitary waves on the surface of an otherwise cylindrical ferrofluid jet subjected to a magnetic field is investigated. An azimuthal magnetic field is generated by an electric current flowing along a stationary metal rod which is mounted along the axis of the moving jet. A numerical method is used to compute fully-nonlinear travelling solitary waves and predictions of elevation waves and depression waves by Rannacher & Engel (2006) using a weakly-nonlinear theory are confirmed in the appropriate ranges of the magnetic Bond number. New nonlinear branches of solitary wave solutions are identified. As the Bond number is varied, the solitary wave profiles may approach a limiting configuration with a trapped toroidal-shaped bubble, or they may approach a static wave (i.e. one with zero phase speed). For a sufficiently large axial rod, the limiting profile may exhibit a cusp.
NASA Astrophysics Data System (ADS)
Bush, John W. M.
2015-01-01
Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantum-like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.
Hydrodynamics of chains in ferrofluid-based magnetorheological fluids under rotating magnetic field.
Patel, Rajesh; Chudasama, Bhupendra
2009-07-01
Ferrofluid-based magnetorheological (MR) fluid is prepared by dispersing micron-size magnetic spheres in a ferrofluid. We report here the mechanism of chain formation in ferrofluid based MR fluid, which is quite different from conventional MR fluid. Some of the nanomagnetic particles of ferrofluid filled inside the microcavities are formed due to association of large particles, and some of them are attached at the end of large particles. Under rotating magnetic field, fragmentation of a single chain into three parts is observed. Two of them are chains of micron-size magnetic particles which are suspended in a ferrofluid, and the third one is the chain of nanomagnetic particles of ferrofluid, which may be the connecting bridge between the two chains of larger magnetic particles. The rupture of a single chain provides evidence for the presence of nanomagnetic particles within the magnetic field-induced chainlike structure in this bidispersed MR fluid. PMID:19658750
NASA Technical Reports Server (NTRS)
1993-01-01
A new Ferrofluidics exclusion seal promises improvement in controlling "fugitive emissions" -vapors that escape into the atmosphere from petroleum refining and chemical processing facilities. These are primarily volatile organic compounds, and their emissions are highly regulated by the EPA. The ferrofluid system consists of a primary mechanical seal working in tandem with a secondary seal. Ferrofluids are magnetic liquids - fluids in which microscopic metal particles have been suspended, allowing the liquid to be controlled by a magnetic force. The concept was developed in the early years of the Space program, but never used. Two Avco scientists, however, saw commercial potential in ferrofluids and formed a company. Among exclusion seal commercial applications are rotary feedthrough seals, hydrodynamic bearings and fluids for home and automotive loudspeakers. Ferrofluidics has subsidiaries throughout the world.
NASA Astrophysics Data System (ADS)
Odenbach, Professor Stefan
2006-09-01
This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of ferrofluid research. Ferrofluids—suspensions of magnetic nanoparticles—exhibit as a specific feature the magnetic control of their physical parameters and of flows appearing in such fluids. This magnetic control can be achieved by means of moderate magnetic fields with a strength of the order of 10 mT. This sort of magnetic control also enables the design of a wide variety of technical applications such as the use of the magnetic forces for basic research in fluid dynamics. The overall field of ferrofluid research is already about 40 years old. Starting with the first patent on the synthesis of magnetic nanoparticle suspensions by S Papell in 1964, a vivid field of research activities has been established. Looking at the long time in which ferrofluids have been the focus of scientific interest, one can ask the question, what kind of recent developments justify a special issue of a scientific journal? New developments in a field, which depends strongly on a certain material class and which opens research possibilities in different scientific fields will nowadays usually require an interdisciplinary approach. This kind of approach starting from the synthesis of magnetic suspensions, including research concerning their basic properties and flow behaviour and focusing on new applications has been the core of a special research programme funded by the Deutsche Forschungsgemeinschaft (DFG) over the past 6 years. Within this programme—entitled `Colloidal Magnetic Fluids: Basics, Synthesis and Applications of New Ferrofluids'—more than 30 different research groups have been coordinated to achieve new results in various fields related to ferrofluid research. The basic approach of the program has been the assumption that new applications well beyond the typical ferrofluid techniques, for example loud speaker cooling or sealing of rotary shafts, will require tailored magnetic suspensions with properties clearly focused towards the need of the application. While such tailoring of fluids to certain well defined properties sounds like a straightforward approach one has to face the fact that it requires a clear definition of the required properties. This definition itself has to be based on a fundamental physical knowledge of the processes determining certain magnetically controlled phenomena in ferrofluids. To make this point concrete one can look into the detailed aims of the mentioned research program. The application areas identified for the future development of research and application of suspensions of magnetic nanoparticles have been on the one hand the biomedical application—especially with respect to cancer treatment—and on the other hand the use of magnetically controlled rheological properties of ferrofluids for new active technical devices. Both directions require, as mentioned, as a basis for success the synthesis of new ferrofluids with dedicated properties. While the medical applications have to rely on biocompatibility as well as on stability of the suspensions in a biomedical environment, the use of ferrofluids in technical devices employing their magnetically controlled rheological properties will depend on an enhancement of the changes of the fluid's viscous properties in the presence of moderate magnetic fields. For both requirements ferrofluids with a make up clearly different from the usual magnetite based fluids have to be synthesized. The question of how the detailed microscopic make up of the fluids would have to look has to be answered on the basis of basic research results defining the physics background of the respective phenomena. Taking these aspects together it becomes obvious that the aforementioned research program had goals aiming far beyond the state of the art of classical ferrofluid research. These goals as well as the basic strategy to achieve them is in a way reflected by the structure of this issue of Journal of Physics: Condensed Matter. The issue contains results emerging from the research programme as well as invited papers from researchers not participating in the programme but working in closely related areas. The issue is subdivided into five main sections dealing with synthesis, basic physical description, rheology, and both the medical and technical applications of ferrofluids. As can be expected from work done within an interdisciplinary context many of the papers would fit into more than one of these sections and catagorization is thus sometimes difficult. We have therefore tried to place them into the section reflecting the main field of research to which the respective results belong. The first section is on synthesis and characterization of magnetic suspensions. The first paper in this section is dedicated partly to magnetite ferrofluids but with special aspects concerning the particle size tailoring them for applications especially in the field of magnetic hyperthermia. After this, three different types of `new' ferrofluids are presented. Fluids based on pure metal particles exhibiting much stronger magnetic properties than the common magnetite fluids, fluids with a temperature sensitive surfactant shell allowing a change of the particle’s hydrodynamic diameter by variation of the fluid’s temperature and fluids containing spheres of nonmagnetic material with embedded magnetic particles which are already used in new medical applications. The second section is dedicated to the basic physics of ferrofluids and highlights three different topics. First the question of magnetization dynamics is discussed and different aspects of this fundamental problem, which determines the basic description of ferrofluids, are highlighted. The second topic is the well known surface instability appearing in ferrofluids in a homogeneous magnetic field perpendicular to the fluid surface. This part shows clearly how many undiscovered phenomena can be found, even in an area which is as old as the whole research field, if an appropriate measuring technique is used and fresh ideas help to find unexpected effects. The last part of this section deals with the question of dynamics and structure of ferrofluids and shows the experimental possibilities of scattering techniques in this field. Within the third section the question of field dependent changes of the rheological behaviour of ferrofluids is discussed. The first three papers provide theoretical approaches for the understanding of the connection between the rheological properties and shear and field induced changes in the fluid’s microstructure. The fourth paper provides the related experimental results showing the combination of microstructural and rheological measurements under well defined conditions. The last paper of this section does not directly belong to ferrofluid research but to a closely related field—so called magneto-rheological (MR) suspensions, which differ from ferrofluids mainly by the size of the suspended particles and the strength of the rheological effects. As modern theoretical approaches, like the one discussed by Liu et al in the second section have shown, the relation between the effects in ferrofluids and those in MR fluids is so close that it could probably be described in a common theory. Sections four and five contain the application orientated results. In the fourth section the medical applications are the focus of interest. The section starts with a paper which could have also been placed in the synthesis section—the growth of magnetotactic bacteria and the extraction of the magnetic particles produced by these bacteria. The paper also contains information about the characterization of the particles especially with respect to their application. The characterization aspect is then continued in two papers outlining new diagnostic techniques with close relation to future biomedical application of magnetic fluids. Next in vitro applications, especially questions of cell separation using magnetic forces, are highlighted before the final papers address the therapeutic aspects of magnetic drug targeting and magnetic hyperthermia. Finally the fifth section describes three different new approaches for the technical use of ferrofluids. Again, the specialized design of the fluids themselves is an important step towards the new application goals. Altogether the papers within this issue outline the unique potential of magnetically controlled suspensions, the interdisciplinary nature of the related research and the prospects of strongly networked and interdisciplinary activities in the field. I hope that it will give an insight into the fascination of ferrofluid research and a feeling for the advances made in the past years.
Nonlinear waves in second order conformal hydrodynamics
NASA Astrophysics Data System (ADS)
Fogaça, D. A.; Marrochio, H.; Navarra, F. S.; Noronha, J.
2015-02-01
In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations corresponding to Israel-Stewart theory. Small amplitude waves are studied within the linearization approximation while waves with large amplitude are investigated using the reductive perturbation method, which is generalized to the case of 2nd order relativistic hydrodynamics. Our results indicate the presence of a "soliton-like" wave solution in Israel-Stewart hydrodynamics despite the presence of dissipation and relaxation effects.
Simple Waves in Ideal Radiation Hydrodynamics
Johnson, B M
2008-09-03
In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.
Hydrodynamic principles of wave power extraction.
Mei, Chiang C
2012-01-28
The hydrodynamic principles common to many wave power converters are reviewed via two representative systems. The first involves one or more floating bodies, and the second water oscillating in a fixed enclosure. It is shown that the prevailing basis is impedance matching and resonance, for which the typical analysis can be illustrated for a single buoy and for an oscillating water column. We then examine the mechanics of a more recent design involving a compact array of small buoys that are not resonated. Its theoretical potential is compared with that of a large buoy of equal volume. A simple theory is also given for a two-dimensional array of small buoys in well-separated rows parallel to a coast. The effects of coastline on a land-based oscillating water column are examined analytically. Possible benefits of moderate to large column sizes are explored. Strategies for broadening the frequency bandwidth of high efficiency by controlling the power-takeoff system are discussed. PMID:22184659
Chiral Alfvén Wave in Anomalous Hydrodynamics.
Yamamoto, Naoki
2015-10-01
We study the hydrodynamic regime of chiral plasmas at high temperature. We find a new type of gapless collective excitation induced by chiral effects in an external magnetic field. This is a transverse wave, and it is present even in incompressible fluids, unlike the chiral magnetic and chiral vortical waves. The velocity is proportional to the coefficient of the gravitational anomaly. We briefly discuss the possible relevance of this "chiral Alfvén wave" in physical systems. PMID:26551804
Experiments on the interaction between hydrodynamic turbulence and surface waves
NASA Astrophysics Data System (ADS)
Jamin, Timothee; Berhanu, Michael; Falcon, Eric
2014-11-01
Different regimes of interaction between hydrodynamic turbulence and a free surface are investigated in a meter scale basin. A homogeneous and isotropic turbulence is generated by an 8×8 array of jets pointing upwards at the bottom of the tank. The 64 jets are driven individually to reach a random spatiotemporal forcing pattern and produce an intense turbulence. Using fluid velocity measurements, we characterize the turbulence obtained with this setup, then we investigate free-surface deformations induced by hydrodynamic turbulence. In a second stage an electromechanical shaker will generate gravity-capillary waves at the free surface. We aim to study reduction or amplification of surface waves and then measure energy exchange between hydrodynamic turbulence and wave turbulence. This work was supported by the DGA-CNRS Ph.D program and ANR Turbulon 12-BS04-0005.
Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas
NASA Astrophysics Data System (ADS)
Veeresha, B. M.; Sen, A.; Kaw, P. K.
2008-09-01
A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.
Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas
Veeresha, B. M.; Sen, A.; Kaw, P. K.
2008-09-07
A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.
Hydrodynamic waves and correlation functions in dusty plasmas
Wang, X.; Bhattacharjee, A.
1997-11-01
A hydrodynamic description of strongly coupled dusty plasmas is given when physical quantities vary slowly in space and time and the system can be assumed to be in local thermodynamic equilibrium. The linear waves in such a system are analyzed. In particular, a dispersion equation is derived for low-frequency dust acoustic waves, including collisional damping effects, and compared with experimental results. The linear response of the system is calculated from the fluctuation-dissipation theorem and the hydrodynamic equations. The requirement that these two calculations coincide constrains the particle correlation function for slowly varying perturbations. It is shown that in the presence of weakly damped, long-wavelength dust-acoustic waves, the dust autocorrelation function is of the Debye{endash}H{umlt u}ckel form and the characteristic shielding distance is the dust Debye length. {copyright} {ital 1997 American Institute of Physics.}
Visualization of hydrodynamic pilot-wave dynamics
NASA Astrophysics Data System (ADS)
Prost, Victor; Quintela, Julio; Harris, Daniel; Brun, Pierre-Thomas; Bush, John
2015-11-01
We present a low-cost device for examining the dynamics of droplets bouncing on a vibrating fluid bath, suitable for educational purposes. Dual control of vibrational and strobing frequency from a cell phone application allowed us to reduce the total cost to 60 dollars. Illumination with inhomogeneous colored light allows for striking visualization of the droplet dynamics and accompanying wave field via still photography or high-speed videography. Thanks to the NSF.
NASA Astrophysics Data System (ADS)
Laird, P.; Caron, N.; Rioux, M.; Borra, E. F.; Ritcey, A.
2006-05-01
A magnetic liquid mirror based on ferrofluids was demonstrated. Magnetic liquid mirrors represent a major departure from solid mirror technology. They present both advantages and disadvantages with respect to established technologies. Stroke (from a fraction of a wave to several hundreds of micrometers), cost (a few dollars per actuator), and scalability (hundreds of thousands of actuators) are the main advantages. Very large mirrors having diameters of the order of a meter should be feasible. There are a few disadvantages. The most important disadvantage is the time response, which is of the order of a few milliseconds. Although this time response could be further decreased with additional technical developments, it is unlikely to match the speed of solid mirrors. The technology is still in its infancy, and considerable work must still be done. However, the advantages are such that the technology is worth pursuing.
Acoustic waves in the solar atmosphere. I - The hydrodynamic code
NASA Technical Reports Server (NTRS)
Ulmschneider, P.; Nowak, T.; Bohn, U.; Kalkofen, W.
1977-01-01
This paper studies large-amplitude radiatively damped acoustic waves in the solar atmosphere. A modified method of characteristics is described for the solution of the time-dependent hydrodynamic equations in a gravitational atmosphere. A procedure for the detection of shocks is outlined. Several tests of the accuracy of the method are described. The evolution of the wave and the height of shock formation are computed for several values of the period and the initial acoustic flux in isothermal atmospheres with temperatures of 4000 and 5000 K as well as in a model solar atmosphere.
Hydrodynamic shock wave studies within a kinetic Monte Carlo approach
NASA Astrophysics Data System (ADS)
Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Pickett, Rodney; Staber, Alec; Strother, Terrance
2014-06-01
We introduce a massively parallelized test-particle based kinetic Monte Carlo code that is capable of modeling the phase space evolution of an arbitrarily sized system that is free to move in and out of the continuum limit. Our code combines advantages of the DSMC and the Point of Closest Approach techniques for solving the collision integral. With that, it achieves high spatial accuracy in simulations of large particle systems while maintaining computational feasibility. Using particle mean free paths which are small with respect to the characteristic length scale of the simulated system, we reproduce hydrodynamic behavior. To demonstrate that our code can retrieve continuum solutions, we perform a test-suite of classic hydrodynamic shock problems consisting of the Sod, the Noh, and the Sedov tests. We find that the results of our simulations which apply millions of test-particles match the analytic solutions well. In addition, we take advantage of the ability of kinetic codes to describe matter out of the continuum regime when applying large particle mean free paths. With that, we study and compare the evolution of shock waves in the hydrodynamic limit and in a regime which is not reachable by hydrodynamic codes.
Hydrodynamic modes of a holographic p-wave superfluid
NASA Astrophysics Data System (ADS)
Arias, Raúl E.; Landea, Ignacio Salazar
2014-11-01
In this work we analyze the hydrodynamics of a p- wave superfluid on its strongly coupled regime by considering its holographic description. We obtain the poles of the retarded Green function through the computation of the quasi-normal modes of the dual AdS black hole background finding diffusive, pseudo-diffusive and sound modes. For the sound modes we compute the speed of sound and its attenuation as function of the temperature. For the diffusive and pseudo-diffusive modes we find that they acquire a non-zero real part at certain finite momentum.
Smoothed Particle Hydrodynamics for water wave propagation in a channel
NASA Astrophysics Data System (ADS)
Omidvar, Pourya; Norouzi, Hossein; Zarghami, Ahad
2015-01-01
In this paper, Smoothed Particle Hydrodynamics (SPH) is used to simulate the propagation of waves in an intermediate depth water channel. The major advantage of using SPH is that no special treatment of the free surface is required, which is advantageous for simulating highly nonlinear flows with possible wave breaking. The SPH method has an option of different formulations with their own advantages and drawbacks to be implemented. Here, we apply the classical and Arbitrary Lagrange-Euler (ALE) formulation for wave propagation in a water channel. The classical SPH should come with an artificial viscosity which stabilizes the numerical algorithm and increases the accuracy. Here, we will show that the use of classical SPH with an artificial viscosity may cause the waves in the channel to decay. On the other hand, we will show that using the ALE-SPH algorithm with a Riemann solver is more stable, and in addition to producing the pressure fields with much less numerical noise, the waves propagate in the channel without dissipation.
RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS
Bard, S.; Carlsson, M.
2010-10-10
We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.
Hydrodynamic growth and decay of planar shock waves
NASA Astrophysics Data System (ADS)
Piriz, A. R.; Sun, Y. B.; Tahir, N. A.
2016-03-01
A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston, as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.
Ferrofluids: Thermophysical properties and formation of microstructures
NASA Astrophysics Data System (ADS)
Mousavi Khoeini, NargesSadat Susan
This work is a combined effort of experimental and theoretical studies toward better understanding the structural and physical properties of aqueous ferrofluids containing nano-sized magnetite (iron oxide magnetic particles) of about 10nm. Ferrofluids have attracted remarkable attention mainly because their properties can be controlled by means of an externally applied magnetic field. The dispersion of nano-sized magnets in a carrier liquid exhibits superparamagnetic behaviour while retaining its fluid properties. The interplay between hydrodynamic and magnetic phenomena has made ferrofluids an extremely promising and useful tool in wide spectra of applications, from technical applications to biomedical ones. In the presence of a magnetic field, magnetic moments of the nanomagnets suspended in the host liquid are aligned toward the field direction and begin to form microstructures such as short chains, strands and long stripes. As this process advances the microstructures may collapse into bundles and thick chains and form macrostructures. Upon the removal of the magnetic field, nanoparticles will be homogeneously redistributed throughout the sample due to thermal agitation. Zero-field structures, and especially the field-induced assembly of magnetic nanoparticles, are primarily responsible for the change in physical properties of ferrofluids, including thermophysical, optical, rheological, and magnetization properties. Because of the field-induced assembly of magnetic nanoparticles in the field direction, ferrofluids become strongly anisotropic and as a result, ferrofluids can significantly enhance directional heat transfer in a thermal system. Thermophysical properties of a ferrofluid are important in studying heat transfer processes in any thermal application, making the study of their behavior a necessity. Taking into account the influence of the formation and growth of microstructures on change in properties of ferrofluids, one can find the significance of identifying and studying the parameters by which ferrofluids' properties can be tailored for a specific need. In Chapter 2 of this dissertation, the influences of magnetic field strength and concentration of ferrofluids on the formation and growth of the chains are observed by employing cryogenic transmission electron microscopy technique. The samples are aqueous magnetite dispersions with concentrations of 0.15%, 0.48% and 0.59% (w/v%). Magnetic field strengths varies from a relatively weak strength of 51.5 mT to the strong field of 0.42 T. Cryo-TEM imaging technique is employed as it allows us to observe the near-native state of the hydrated samples. The cryo-TEM images draw a qualitative comparison basis on the relative significance of magnetic field and concentration on chaining processes. They also provide better understanding of the chains, columns and their internal structures. From a theoretical perspective, an energy equation employing an Eulerian formalism is derived in Chapter 3. Introducing the definition for isotropy and anisotropy of the medium, the equation of heat conduction can be simplified to govern each of the regimes. The equation has taken into account contributions from the important parameters (1) Brownian motion of nanoparticles, (2) magnetic field, (3) temperature, (4) particle size, and (5) volume fraction of particles. In chapter 4, change in effective heat capacity of ferrofluids is addressed and studied with the help of the derivation of the energy equation. The relative significance of the various aforementioned parameters that may have influence on heat capacity of a given medium is quantitatively studied. Lastly, a theoretical model to predict thermal conductivity of a ferrofluid is developed in Chapter 5. From the study on the micrographs, the ferrofluid that becomes anisotropic in the presence of the field is treated as a heterogeneous medium. A structural model, taken into account the anisotropy of the ferrofluid, is introduced in order to develop a theoretical model for effective thermal conductivity of ferrofluids. In order for the model to be qualitatively validated, the measured thermal conductivities of kerosenebased and water-based magnetite ferrofluids are compared to the predictions by the proposed model. The most common method that is being used for thermal conductivity measurement of the ferrofluids is the transient hot wire (THW). Thermal conductivities of the ferrofluids are also measured using a transient hot wire. Further, The accuracy of the method and reliability of the measurements are comprehensively investigated and discussed in detail.
The dynamics analysis of a ferrofluid shock absorber
NASA Astrophysics Data System (ADS)
Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong
2016-03-01
The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology.
Three-dimensional wave-coupled hydrodynamics modeling in South San Francisco Bay
NASA Astrophysics Data System (ADS)
Chou, Yi-Ju; Holleman, Rusty C.; Fringer, Oliver B.; Stacey, Mark T.; Monismith, Stephen G.; Koseff, Jeffrey R.
2015-12-01
In this paper, we present a numerical model to simulate wind waves and hydrodynamics in the estuary. We employ the unstructured-grid SUNTANS model for hydrodynamics, and within this model we implement a spectral wave model which solves for transport of wave action density with the finite-volume formulation. Hydrodynamics is coupled to the wave field through the radiation stress. Based on the unstructured grid and finite-volume formulation of SUNTANS, the radiation stress is implemented in a way that directly calculates the divergence of transport of the wave-induced orbital velocity. A coupled hydrodynamics-wave simulation of San Francisco Bay is then performed. Through the input of wind forcing that is obtained from the reconstructed wind field, the model is capable of predicting wave heights that are in good agreement with the field measurements. We examine the importance of modeling sea bed dissipation in muddy shallow water environments by using a bottom friction model and a bed mud model with different mud layer thicknesses. Moreover, currents driven by wave shoaling and dissipation are investigated in the presence of abrupt bathymetric change. We find that spatially varying wave heights induced by spatially heterogeneous bottom mud dissipation produce wave-driven currents that are stronger than those induced by wave shoaling and can be of the same order as the tidal currents in shallow water.
Colliding Shock Waves and Hydrodynamics in Small Systems
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2015-12-01
Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size R ˜1 /Teff with Teff the effective temperature, and has large gradients and large transverse flow. Nevertheless, the postcollision evolution is well described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics.
NASA Astrophysics Data System (ADS)
Cobb, M.; Blain, C. A.
2001-12-01
Tidal inlets are important areas with respect to bio-diversity, sediment transport, and fresh water river outflow. This study examines the 2-D depth-averaged circulation of inlets that are driven by waves, tides, and fresh water river inflow using a coupled hydrodynamic-wave model. The circulation patterns of an ideal embayment and Bay St. Louis, located in the northeastern Gulf of Mexico, are compared under the range of forcing conditions. Wave-current interaction is simulated by iteratively coupling the depth-integrated ADCIRC-2DDI hydrodynamic model to the phase-averaged spectral wave model SWAN. Radiation stress gradients are determined from the wave predictions of SWAN and used to force the circulation model. ADCIRC-2DDI is a fully developed, 2-dimensional, finite element, barotropic hydrodynamic model capable of including wind, wave, and tidal forcing as well as river flux into the domain. The circulation within each inlet is examined during the flood, slack, and ebb phases of the tidal cycles with and without river inflow under different wave conditions. The effects of including/excluding advection and varying the strength of the lateral mixing are examined as well. The influence of the various forcings on bay/inlet circulation is further investigated by the introduction of Lagrangian tracers. Lagrangian tracers are a reasonable indicator of how circulation patterns affect the motion of sediment particles or passive biological organisms such as fish larvae. Lastly, influence of the wave model itself in the hydrodynamic coupling, and in particular the effect of wave diffraction on the wave-induced circulation, is comparatively examined within the ideal inlet by separately coupling the REF/DIF1 and REF/DIFS wave models to ADCIRC-2DDI; REF/DIF1 is a monochromatic phase-resolving wave model capable of simulating wave diffraction and refraction and REF/DIF-S is a multi-spectral version of REF/DIF1.
Dispersion of ferrofluid aggregates in steady flows
NASA Astrophysics Data System (ADS)
Williams, Alicia M.; Vlachos, Pavlos P.
2011-12-01
Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 × 105 and 2.4 × 105 A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number following a power law curve and can be scaled for different magnetic fields using the magnetic induction at the inner wall of the vessel. In addition, the decay rate of the ferrofluid is shown to be proportional to the wall shear rate. Finally, a dimensionless parameter, which scales the inertia-driven flow pressures, relative to the applied magnetic pressures, reveals a power law decay relationship with respect to the incident bulk flow.
Colliding Shock Waves and Hydrodynamics in Small Systems.
Chesler, Paul M
2015-12-11
Using numerical holography, we study the collision of a planar sheet of energy with a bounded localized distribution of energy. The collision, which mimics proton-nucleus collisions, produces a localized lump of debris with transverse size R∼1/T_{eff} with T_{eff} the effective temperature, and has large gradients and large transverse flow. Nevertheless, the postcollision evolution is well described by viscous hydrodynamics. Our results bolster the notion that debris produced in proton-nucleus collisions may be modeled using hydrodynamics. PMID:26705624
Morphology and hydrodynamics of wave-cut gullies
NASA Astrophysics Data System (ADS)
Priestas, A. M.
2010-12-01
Wave-cut gullies are triangular incisions formed by the concentration of wave energy on a vegetated marsh scarp. Wave gullies are usually equispaced and incise the marsh and enlarge in time both in length and width. Here we provide a high resolution survey of ten wave gullies formed along the chenier plain of the Rockefeller Wildlife Refuge, Louisiana, USA. Our measurements capture the morphologic character, evolution, and erosion rates of wave-cut gullies over a two month period. We further relate changes in morphology to geometric factors and shoreline retreat. Finally, we present the first analysis of wave data measured by acoustic doppler velocity profilers to show how propagating waves are transformed inside a wave-cut gully in order to describe the processes leading to their formation. Results show that waves of intermediate period (4-6 sec) yield very strong swash currents that hit the gully head detaching marsh substrate and triggering headward erosion. A conceptual model of wave gully evolution is finally presented as an explanation for this non-uniform, episodic shoreline erosion. Snapshots of a wave propagating in wave gully. The convergent geometry of wave gullies concentrates wave energy and incites rapid headward erosion.
Towards ferrofluidics for μ-TAS and lab on-a-chip applications
NASA Astrophysics Data System (ADS)
Mao, Leidong; Koser, Hur
2006-02-01
In this paper, we show that ferrofluids can be pumped very effectively in closed-channel geometries both in the macro- and micro-scales using spatially travelling, sinusoidally time-varying magnetic fields. The results from numerical modelling demonstrate that the optimum pumping frequency is the reciprocal of the Brownian relaxation time constant of the magnetic nanoparticles inside the ferrofluid. Since the Brownian time constant depends in part on the overall hydrodynamic volume of the magnetic nanoparticles, this work has been carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors in the context of ferrohydrodynamic pumping via travelling magnetic fields. A micro-ferrofluidic device has been designed and fabricated in order to demonstrate the potential development of this technology for pathogen detection. A cost-effective fabrication process combining insulated metal substrate etching and soft lithography is used to realize the prototype micro-ferrofluidic device. Results show good agreement between simulation and experiment. We finally propose a ferrofluid-based pathogen detection scheme that is expected to be insensitive to temperature and viscosity differences between the ferrofluid and the sample to be tested.
Hydrodynamic analysis of elastic floating collars in random waves
NASA Astrophysics Data System (ADS)
Bai, Xiao-dong; Zhao, Yun-peng; Dong, Guo-hai; Li, Yu-cheng
2015-06-01
As the main load-bearing component of fish cages, the floating collar supports the whole cage and undergoes large deformations. In this paper, a mathematical method is developed to study the motions and elastic deformations of elastic floating collars in random waves. The irregular wave is simulated by the random phase method and the statistical approach and Fourier transfer are applied to analyze the elastic response in both time and frequency domains. The governing equations of motions are established by Newton's second law, and the governing equations of deformations are obtained based on curved beam theory and modal superposition method. In order to validate the numerical model of the floating collar attacked by random waves, a series of physical model tests are conducted. Good relationship between numerical simulation and experimental observations is obtained. The numerical results indicate that the transfer function of out-of-plane and in-plane deformations increase with the increasing of wave frequency. In the frequency range between 0.6 Hz and 1.1 Hz, a linear relationship exists between the wave elevations and the deformations. The average phase difference between the wave elevation and out-of-plane deformation is 60° with waves leading and the phase between the wave elevation and in-plane deformation is 10° with waves lagging. In addition, the effect of fish net on the elastic response is analyzed. The results suggest that the deformation of the floating collar with fish net is a little larger than that without net.
Morphology and hydrodynamics of wave-cut gullies
NASA Astrophysics Data System (ADS)
Priestas, A. M.; Fagherazzi, S.
2011-08-01
Wave-cut gullies are sub-triangular incisions common along deteriorating marsh scarps. Wave gullies may be equispaced to quasi-equispaced and enlarge in time, incising the marsh boundary. A high resolution survey is provided for ten wave gullies formed along the chenier plain of the Rockefeller Wildlife Refuge, Louisiana, USA. The measurements capture the morphologic character, evolution, and erosion rates of wave-cut gullies over a two month period. The data relate changes in morphology to geometric factors and shoreline retreat. Finally, the first analysis of wave data measured by acoustic Doppler velocity profilers is presented to show how propagating waves are transformed inside a wave-cut gully in order to describe the processes leading to their formation. Results show that waves of intermediate period (4-6 s) yield very strong swash currents that hit the gully head, detaching marsh substrate and triggering headward erosion. A conceptual model of wave gully evolution is presented as an explanation for this non-uniform, episodic shoreline erosion.
Oldenburg, Curtis; Moridis, George
1998-03-24
We have developed EOS7M, a ferrofluid flow and transport module for TOUGH2. EOS7M calculates the magnetic forces on ferrofluid caused by an external magnetic field and allows simulation of flow and advective transport of ferrofluid-water mixtures through porous media. Such flow problems are strongly coupled and well suited to the TOUGH2 framework. Preliminary applications of EOS7M to some simple pressure and flow problems for which experiments were carried out in the lab show good qualitative agreement with the laboratory results.
A Dynamic Analysis of Hydrodynamic Wave Journal Bearings
NASA Technical Reports Server (NTRS)
Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G.
2008-01-01
The purpose of this paper is to study the dynamic behavior of a three-wave journal bearing using a transient approach. The transient analysis permits the determination of the rotor behavior after the fractional frequency whirl appears. The journal trajectory is determined by solving a set of nonlinear equations of motion using the Runge-Katta method. The fluid film forces are computed by integrating the transient Reynolds equation at each time step location of the shaft with respect to the bearing. Because of the large values of the rotational speeds, turbulent effects were included in the computations. The influence of the temperature on the viscosity was also considered. Numerical results were compared to experimenta1 results obtained at the NASA Glenn Research Center. Comparisons of the theoretical results with experimental data were found to be in good agreement. The numerical and experimental results showed that the fluid film of a three-wave journal bearing having a diameter of 30 mm, a length of 27 mm, and a wave amplitude ratio greater than 0.15 is stable even at rotational speeds of 60,000 RPM. For lower wave amplitude ratios, the threshold speed at which the fluid film becomes unstable depends on the wave amplitude and on the supply pocket pressure. Even if the fluid film is unstable, the wave bearing maintains the whirl orbit inside the bearing clearance.
Technology Transfer Automated Retrieval System (TEKTRAN)
Longissimus lumborum samples were removed 24 h postmortem from six U.S. Utility carcasses to be utilized in determining the effects of tenderness enhancement methods and aging time on quality attributes of beef. Within each sample, sections were randomly assigned to hydrodynamic shock waves (HSW), b...
NO EFFECT OF HYDRODYNAMIC SHOCK WAVE ON PROTEIN FUNCTIONALITY OF BEEF MUSCLE
Technology Transfer Automated Retrieval System (TEKTRAN)
The protein functionality of meat proteins after treatment with hydrodynamic shock wave was determined. Frankfurters (cooked to 71 deg C) were evaluated for cooking yield, CIE L*a*b*, nitrosylhemochrome, Texture Profile Analysis (hardness, cohesiveness), and stress and strain (torsion testing). Comp...
Hydrodynamic instabilities in supernova remnants - Self-similar driven waves
NASA Technical Reports Server (NTRS)
Chevalier, Roger A.; Blondin, John M.; Emmering, Robert T.
1992-01-01
An initial study aimed at elucidating the multidimensional aspects of the hydrodynamic instabilities in supernova remnants is presented. Self-similar solutions are found to exist for the interaction of a steep power-law density profile expanding into a relatively flat stationary power-law density profile. Consideration of the pressure and entropy profiles in the shocked 1D flows shows that the flows are subject to convective instability, by a local criterion. The growth rate for the instability becomes very large near the contact discontinuity between the two shocked regions. A linear analysis of the complete self-similar solutions shows that the solutions are unstable above a critical wavenumber and that the growth rate is greatest at the position of the contact discontinuity. The X-ray image of the remnant of SN 1572 (Tycho) shows emission from clumps of supernova ejecta, which is good evidence for instabilities in this remnant.
Application of CHAD hydrodynamics to shock-wave problems
Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.
1997-12-31
CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, it is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.
Hydrodynamic responses of a thin floating disk to regular waves
NASA Astrophysics Data System (ADS)
Yiew, L. J.; Bennetts, L. G.; Meylan, M. H.; French, B. J.; Thomas, G. A.
2016-01-01
The surge, heave and pitch motions of two solitary, thin, floating disks, extracted from laboratory wave basin experiments are presented. The motions are forced by regular incident waves, for a range of wave amplitudes and frequencies. One disk has a barrier attached to its edge to stop the incident waves from washing across its upper surface. It is shown that the motions of the disk without the barrier are smaller than those of the disk with the barrier. Moreover, it is shown that the amplitudes of the motions, relative to the incident amplitude, decrease with increasing incident wave amplitude for the disk without a barrier and for short incident wavelengths. Two theoretical models of the disk motions are considered. One is based on slope-sliding theory and the other on combined linear potential-flow and thin-plate theories. The models are shown to have almost the same form in the long-wavelength regime. The potential-flow/thin-plate model is shown to capture the experimentally measured disk motions with reasonable accuracy.
The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves
NASA Astrophysics Data System (ADS)
Zank, G. P.; Matthaeus, W. H.
1991-01-01
A unified analysis delineating the conditions under which the equations of classical incompressible and compressible hydrodynamics are related in the absence of large-scale thermal, gravitational, and field gradients is presented. By means of singular expansion techniques, a method is developed to derive modified systems of fluid equations in which the effects of compressibility are admitted only weakly in terms of the incompressible hydrodynamic solutions (hence ``nearly incompressible hydrodynamics''). Besides including molecular viscosity self-consistently, the role of thermal conduction in an ideal fluid is also considered. With the inclusion of heat conduction, it is found that two distinct routes to incompressibility are possible, distinguished according to the relative magnitudes of the temperature, density, and pressure fluctuations. This leads to two distinct models for thermally conducting, nearly incompressible hydrodynamics—heat-fluctuation-dominated hydrodynamics (HFDH's) and heat-fluctuation-modified hydrodynamics (HFMD's). For the HFD case, the well-known classical passive scalar equation for temperature is derived as one of the nearly incompressible fluid equations and temperature and density fluctuations are predicted to be anticorrelated. For HFM fluids, a new thermal transport equation, in which compressible acoustic effects are present, is obtained together with a more-complicated ``correlation'' between temperature, density, and pressure fluctuations. Although the equations of nearly incompressible hydrodynamics are envisaged principally as being applicable to homogeneous turbulence and wave propagation in low Mach number flow, it is anticipated that their applicability is likely to be far greater.
The hydrodynamics of a wave-power device in a tapered harbor
Gallachoir, B.P.O.; Thomas, G.P.; Sarmento, A.J.N.A.
1995-12-31
This paper considers the hydrodynamic performance of a single wave-power device placed at the end of a tapered harbor and set in a reflecting coastline. A relatively simple model, in which the harbor width is assumed to be much smaller than the incident wavelength, is used to calculate approximate values for the hydrodynamic coefficients and hence determine the energy absorbing capabilities of the device. A comparison is presented between a device in a rectangular harbor and one in a tapered harbor in order to make a preliminary assessment of the influence of the taper.
Ferrofluid Photonic Dipole Contours
NASA Astrophysics Data System (ADS)
Snyder, Michael; Frederick, Jonathan
2008-03-01
Understanding magnetic fields is important to facilitate magnetic applications in diverse fields in industry, commerce, and space exploration to name a few. Large electromagnets can move heavy loads of metal. Magnetic materials attached to credit cards allow for fast, accurate business transactions. And the Earth's magnetic field gives us the colorful auroras observed near the north and south poles. Magnetic fields are not visible, and therefore often hard to understand or characterize. This investigation describes and demonstrates a novel technique for the visualization of magnetic fields. Two ferrofluid Hele-Shaw cells have been constructed to facilitate the imaging of magnetic field lines [1,2,3,4]. We deduce that magnetically induced photonic band gap arrays similar to electrostatic liquid crystal operation are responsible for the photographed images and seek to mathematically prove the images are of exact dipole nature. We also note by comparison that our photographs are very similar to solar magnetic Heliosphere photographs.
Simulation of wave mitigation by coastal vegetation using smoothed particle hydrodynamics method
NASA Astrophysics Data System (ADS)
Iryanto; Gunawan, P. H.
2016-02-01
Vegetation in coastal area lead to wave mitigation has been studied by some researchers recently. The effect of vegetation forest in coastal area is minimizing the negative impact of wave propagation. In order to describe the effect of vegetation resistance into the water flow, the modified model of framework smoothed hydrodynamics particle has been constructed. In the Lagrangian framework, the Darcy, Manning, and laminar viscosity resistances are added. The effect of each resistances is given in some results of numerical simulations. Simulation of wave mitigation on sloping beach is also given.
Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia
NASA Astrophysics Data System (ADS)
Sakellari, Despoina; Mathioudaki, Stella; Kalpaxidou, Zoi; Simeonidis, Konstantinos; Angelakeris, Makis
2015-04-01
In this work we examine a selection of commercially available magnetic iron oxide nanoparticles as candidates for magnetic particle hyperthermia applications combining their primary modality with additional heat triggered actions. Contrary to lab-made magnetic nanoparticles, commercial ferrofluids may be rapidly pushed through the medical approval processes since their applicability has already been addressed successfully (i.e., formulation, reproducibility, toxicity and quality assurance) in conjunction with the strong companies‧ drive in the fast delivery of the new therapy to the patient. Four samples are under study with variable hydrodynamic diameters from two companies (Micromod and Chemicell) consisting of iron-oxide magnetic nanoparticles. The tunable magnetic heating characteristics of the ferrofluids were correlated with particle, field and colloidal solution features. Our work revealed a size-dependent magnetic heating efficiency together with fast thermal response, features that are crucial for adequate thermal efficiency combined with minimum treatment duration and show the potential of such materials as multifunctional theranostic agents.
On the consistency of the drag between air and water in meteorological, hydrodynamic and wave models
NASA Astrophysics Data System (ADS)
van Nieuwkoop, Joana; Baas, Peter; Caires, Sofia; Groeneweg, Jacco
2015-07-01
For the design, assessment and flood control of water defences, hydraulic loads in terms of water levels and wave conditions are required and often obtained from numerical models. For these hydraulic loads to be reliable, accurate atmospheric forcing is required. Waves and surges are typically forced by surface stress. However, in most cases, the input for these models consists of 10-m wind velocities that are internally converted to surface stress by applying a particular drag relation. This procedure generally leads to inconsistencies, since the hydrodynamic, wave and atmospheric models often apply different drag relations. By means of a case study, we explored the consequences of this inconsistency in the drag formulation for a North Sea storm wave and surge hindcast. This was done by forcing the hydrodynamic and wave models using both the 10-m wind velocity and the surface stress fields computed by the atmospheric model. Our study results show significant differences between the wave parameter values and water levels computed with surface stress input and 10-m wind velocity input. Our goal is not to assess different drag parameterizations but to raise awareness for this issue and to plea for the use of a consistent drag relation in meteorological and hydrodynamic/wave models. The consistent use of one drag formulation facilitates the identification of problems and the eventual improvement of the drag formulation. Furthermore, we suggest using the so-called pseudo-wind, which is a translation of the surface stress to the 10-m wind speed using a reference drag relation.
Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves.
Fuchs, Heidi L; Gerbi, Gregory P; Hunter, Elias J; Christman, Adam J; Diez, F Javier
2015-05-01
Hydrodynamic signals from turbulence and waves may provide marine invertebrate larvae with behavioral cues that affect the pathways and energetic costs of larval delivery to adult habitats. Oysters (Crassostrea virginica) live in sheltered estuaries with strong turbulence and small waves, but their larvae can be transported into coastal waters with large waves. These contrasting environments have different ranges of hydrodynamic signals, because turbulence generally produces higher spatial velocity gradients, whereas waves can produce higher temporal velocity gradients. To understand how physical processes affect oyster larval behavior, transport and energetics, we exposed larvae to different combinations of turbulence and waves in flow tanks with (1) wavy turbulence, (2) a seiche and (3) rectilinear accelerations. We quantified behavioral responses of individual larvae to local instantaneous flows using two-phase, infrared particle-image velocimetry. Both high dissipation rates and high wave-generated accelerations induced most larvae to swim faster upward. High dissipation rates also induced some rapid, active dives, whereas high accelerations induced only weak active dives. In both turbulence and waves, faster swimming and active diving were achieved through an increase in propulsive force and power output that would carry a high energetic cost. Swimming costs could be offset if larvae reaching surface waters had a higher probability of being transported shoreward by Stokes drift, whereas diving costs could be offset by enhanced settlement or predator avoidance. These complex behaviors suggest that larvae integrate multiple hydrodynamic signals to manage dispersal tradeoffs, spending more energy to raise the probability of successful transport to suitable locations. PMID:25788721
NASA Astrophysics Data System (ADS)
Miike, H.; Miura, K.; Nomura, A.; Sakurai, T.
2010-06-01
We introduce a short review of chemically driven convection together with a series of our experiments on hydrodynamic instabilities induced by chemical waves excited in the batch reactor of a Belousov-Zhabotinsky reaction. Several unresolved phenomena are picked out and possible mechanisms are discussed extensively. Interesting features of these phenomena can be summarized as being caused by the ‘global and dynamic hydrodynamic pattern induced by chemical waves’. These chemically induced global pattern of hydrodynamic phenomena may not be simply explained by the reaction-diffusion-convection model based on Marangoni instability (surface tension-driven convection), which produces only a localized structure of the convection pattern. Observed flow waves show global and dynamic patterns of convection that generate a functional structure associated with hierarchical patterns appearing in the reaction-diffusion-convection system. In particular, we clarify the existence of a continuous stream of hydrodynamic flow with growing amplitude and its rotating direction. We find that the flow does not stabilize to a motionless state until the system has self-collapsed. This new picture of the flow waves requires a revision of the reaction-diffusion-convection model. The established flow structure can be regarded as a mixing and/or transport process to supply the substrate from the peripheral region to the centre of the chemical waves to sustain the reaction. This characteristic may be a function of the hierarchical structure. A new mechanism for the viscous-elastic feature of the gas-liquid interface is discussed in order to understand these curious phenomena of interest.
NASA Astrophysics Data System (ADS)
Degtyarev, A.; Gankevich, I.
2015-05-01
Determining the impact of external excitations on a dynamic marine object such as ship hull in a seaway is the main goal of simulations. Now such simulations is most often based on approximate mathematical models that use results of the theory of small amplitude waves. The most complicated software for marine objects behavior simulation LAMP IV (Large amplitude motion program) uses numerical solution of traditional hydrodynamic problem without often used approximations but on the basis of theory of small amplitude waves. For efficiency reasons these simulations can be based on autoregressive model to generate real wave surface. Such a surface possesses all the hydrodynamic characteristics of sea waves, preserves dispersion relation and also shows superior performance compared to other wind wave models. Naturally, the known surface can be used to compute velocity field and in turn to determine pressures in any point under sea surface. The resulting computational algorithm can be used to determine pressures without use of theory of small-amplitude waves.
Pu, Jaan Hui; Shao, Songdong
2012-01-01
This research paper presents an incompressible smoothed particle hydrodynamics (ISPH) technique to investigate a regular wave overtopping on the coastal structure of different types. The SPH method is a mesh-free particle modeling approach that can efficiently treat the large deformation of free surface. The incompressible SPH approach employs a true hydrodynamic formulation to solve the fluid pressure that has less pressure fluctuations. The generation of flow turbulence during the wave breaking and overtopping is modeled by a subparticle scale (SPS) turbulence model. Here the ISPH model is used to investigate the wave overtopping over a coastal structure with and without the porous material. The computations disclosed the features of flow velocity, turbulence, and pressure distributions for different structure types and indicated that the existence of a layer of porous material can effectively reduce the wave impact pressure and overtopping rate. The proposed numerical model is expected to provide a promising practical tool to investigate the complicated wave-structure interactions. PMID:22919291
Application of a Coupled Wave and Hydrodynamic Model over Complex Bathymetry in Eastern Lake Ontario
NASA Astrophysics Data System (ADS)
McCombs, M. P.; Mulligan, R. P.; Boegman, L.; Yerubandi, R. R.
2012-12-01
The Kingston Basin in eastern Lake Ontario is a region with complex bathymetry including islands, shoals and deeper channels. This area can have waves over 5 m in height and storm surges on the order of 1 m, forced by strong westerly fall and winter storm winds. We characterize the waves, hydrodynamics and thermal structure from observations acquired by acoustic Doppler current profilers, thermistor chains, optical backscatter loggers, water level sensors and wave gauges collected over the 2012 winter period. The SWAN and Delft3D coupled models, validated by the observations, are used to simulate the wave and hydrodynamic conditions for two large storm events. The model was forced with forecast data from the Great Lakes Coastal Forecasting System, observations from the National Oceanographic and Atmospheric Administration and Environment Canada. Results indicate that there is strong spatial variability in wave conditions due to refraction and focusing of the bathymetry. Future work will extend the model to determine the potential environmental impacts of offshore wind farm construction in the region.
NASA Astrophysics Data System (ADS)
Fuchs, Heidi L.; Gerbi, Gregory P.
2016-02-01
Plankton exhibit diverse and dramatic responses to fluid motions, and these behaviors are likely critical for survival and fitness. Fluid motions can be generated by organisms or by physical processes, including turbulence and surface gravity waves. Physical processes vary geographically in their intensity and generate hydrodynamic signals experienced by plankton as fluid forces on their sensory receptors. In this synthesis, we review how turbulence and waves vary in space, the scales and statistics of their motions, and the forces exerted on plankton. We then quantify the hydrodynamic signals produced by turbulence and waves in four seascape types - surf zones, inlets and estuaries, the continental shelf, and the open ocean - using published dissipation rates, wind and wave data from buoys, and observations from two coastal sites in Massachusetts, USA. We relate these geographic patterns in signals to the observed behaviors of example species and to the forces sensed by typical plankters with different receptor types. Turbulence-generated shears are largest in the surf zone, inlets and estuaries, while wave-generated accelerations are larger offshore; as a result, each seascape exhibits some range of combined shears and accelerations that is distinct. These signals generate forces on plankton that vary among habitats and with plankton size and swimming speed. Spatial patterns in fluid forces create a potential mechanism for dispersing larvae to distinguish habitats by their hydrodynamic signatures. However, turbulence can be strong in all seascapes and may cause widespread interference in signaling among predators and prey. Plankton with a single receptor type could identify nearshore habitats, while those with multiple receptor types potentially could distinguish inshore vs. offshore seascapes or decode signals produced by physical processes and by other organisms.
A Stability Analysis for a Hydrodynamic Three-Wave Journal Bearing
NASA Technical Reports Server (NTRS)
Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G., Jr.
2007-01-01
The influence of the wave amplitude and oil supply pressure on the dynamic behavior of a hydrodynamic three-wave journal bearing is presented. Both, a transient and a small perturbation technique, were used to predict the threshold to fractional frequency whirl (FFW). In addition, the behavior of the rotor after FFW appeared was determined from the transient analysis. The turbulent effects were also included in the computations. Bearings having a diameter of 30 mm, a length of 27.5 mm, and a clearance of 35 microns were analyzed. Numerical results were compared to experimental results obtained at the NASA GRC. Numerical and experimental results showed that the above-mentioned wave bearing with a wave amplitude ratio of 0.305 operates stably at rotational speeds up to 60,000 rpm, regardless of the oil supply pressure. For smaller wave amplitude ratios, a threshold of stability was found. It was observed that the threshold of stability for lower wave amplitude strongly depends on the oil supply pressure and on the wave amplitude. When the FFW occurs, the journal center maintains its trajectory inside the bearing clearance and therefore the rotor can be run safely without damaging the bearing surfaces.
Fabrication of Multi-layered Shock Wave Tube for Hydrodynamic Instability Experiment
NASA Astrophysics Data System (ADS)
Zhu, Xiurong; Zhou, Bin; Xu, Xiang; Zhong, Yanhong; Du, Ai; Li, Yunong; Zhang, Zhihua; Shen, Jun; Wu, Guangming; Ni, Xingyuan
2011-12-01
In inertial confinement fusion (ICF) experiments, the growth of hydrodynamic instability occurred at the layer-to-layer interface of multilayer capsule is of the main importance to obtain ignition and high gain. In order to investigate and simulate the growth of hydrodynamic instability at "SG II"laser facility, we designed and fabricated a multi-layered shock wave tube (MSWT) in this article. The MSWT consisted of four functional units: planar polystyrene (CH) film, Al film with perturbation patterns, polyimide (PI) plastic and cylindrical carbonized-resorcinol-formaldehyde (CRF) aerogel, which were assembled into a cylindrical CH tube. The design, preparation process and assembly process of MSWT were detailed described. The assembly deviations and packaging material were discussed.
NASA Astrophysics Data System (ADS)
Brumley, Douglas R.; Polin, Marco; Pedley, Timothy J.; Goldstein, Raymond E.
2012-12-01
From unicellular ciliates to the respiratory epithelium, carpets of cilia display metachronal waves, long-wavelength phase modulations of the beating cycles, which theory suggests may arise from hydrodynamic coupling. Experiments have been limited by a lack of organisms suitable for systematic study of flagella and the flows they create. Using time-resolved particle image velocimetry, we report the discovery of metachronal waves on the surface of the colonial alga Volvox carteri, whose large size and ease of visualization make it an ideal model organism for these studies. An elastohydrodynamic model of weakly coupled compliant oscillators, recast as interacting phase oscillators, reveals that orbit compliance can produce fast, robust synchronization in a manner essentially independent of boundary conditions, and offers an intuitive understanding of a possible mechanism leading to the emergence of metachronal waves.
Hydrodynamic Equilibrium for Sediment Transport and Bed Response to Wave Motion
NASA Astrophysics Data System (ADS)
Kaczmarek, Leszek M.; Sawczyński, Szymon; Biegowski, Jarosław
2015-04-01
An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order "upwind" numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness zm.
East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model
NASA Astrophysics Data System (ADS)
Grashorn, Sebastian; Lettmann, Karsten A.; Wolff, Jörg-Olaf; Badewien, Thomas H.; Stanev, Emil V.
2015-03-01
An unstructured-grid model (FVCOM) coupled to a surface wave model (FVCOM-SWAVE) with two different setups is used to investigate the hydrodynamic and wave energy conditions during a moderate wind and a storm situation in the southern North Sea. One setup covers the whole North Sea with moderately increased grid resolution at the coast, whereas the other is a very high-resolution Wadden Sea setup that is one-way coupled to the coarser North Sea model. The results of both model setups are validated, compared to each other and analysed with a focus on longshore currents and wave energy. The numerical results show that during storm conditions, strong wave-induced longshore currents occur in front of the East Frisian Wadden Sea islands with current speeds up to 1 m/s. The model setup with the higher resolution around the islands shows even stronger currents than the coarser setup. The wave-current interaction also influences the surface elevation by raising the water level in the tidal basins. The calculated wave energies show large differences between moderate wind and storm conditions with time-averaged values up to 200 kW/m.
NASA Astrophysics Data System (ADS)
Bever, A. J.; MacWilliams, M.
2012-12-01
Under the conceptual model of sediment transport in San Pablo Bay, a sub-embayment of San Francisco Bay, proposed by Krone (1979), sediment typically enters San Pablo Bay during large winter and spring flows and is redistributed during summer conditions through wind wave resuspension and transport by tidal currents. A detailed understanding of how the waves and tides redistribute sediment within San Francisco Bay is critical for predicting how future sea level rise and a reduction in the sediment supply to the Bay will impact existing marsh and mudflat habitat, tidal marsh restoration projects, and ongoing maintenance dredging of the navigation channels. The three-dimensional UnTRIM San Francisco Bay-Delta Model was coupled with the Simulating WAves Nearshore (SWAN) wave model and the SediMorph morphological model, to develop a three-dimensional hydrodynamic, wind wave, and sediment transport model of the San Francisco Bay and the Sacramento-San Joaquin Delta. Numerical simulations of sediment resuspension due to tidal currents and wind waves and the subsequent transport of this sediment by tidal currents are used to quantify the spatial and temporal variability of sediment fluxes on the extensive shoals in San Pablo Bay under a range of tidal and wind conditions. The results demonstrate that suspended sediment concentration and sediment fluxes within San Pablo Bay are a complex product of tides and waves interacting spatially throughout the Bay, with concentrations responding to local resuspension and sediment advection. Sediment fluxes between the San Pablo Bay shoals and the deeper channel are highest during spring tides, and are elevated for up to a week following wave events, even though the greatest influence of the wave event occurs abruptly.
NASA Astrophysics Data System (ADS)
Atis, S.; Saha, S.; Auradou, H.; Martin, J.; Rakotomalala, N.; Talon, L.; Salin, D.
2012-09-01
Autocatalytic reaction fronts between two reacting species in the absence of fluid flow, propagate as solitary waves. The coupling between autocatalytic reaction front and forced simple hydrodynamic flows leads to stationary fronts whose velocity and shape depend on the underlying flow field. We address the issue of the chemico-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Towards that purpose, we perform experiments over a wide range of flow velocities with the well characterized iodate arsenious acid and chlorite-tetrathionate autocatalytic reactions in transparent packed beads porous media. The characteristics of these porous media such as their porosity, tortuosity, and hydrodynamics dispersion are determined. In a pack of beads, the characteristic pore size and the velocity field correlation length are of the order of the bead size. In order to address these two length scales separately, we perform lattice Boltzmann numerical simulations in a stochastic porous medium, which takes into account the log-normal permeability distribution and the spatial correlation of the permeability field. In both experiments and numerical simulations, we observe stationary fronts propagating at a constant velocity with an almost constant front width. Experiments without flow in packed bead porous media with different bead sizes show that the front propagation depends on the tortuous nature of diffusion in the pore space. We observe microscopic effects when the pores are of the size of the chemical front width. We address both supportive co-current and adverse flows with respect to the direction of propagation of the chemical reaction. For supportive flows, experiments and simulations allow observation of two flow regimes. For adverse flow, we observe upstream and downstream front motion as well as static front behaviors over a wide range of flow rates. In order to understand better these observed static state fronts, flow experiments around a single obstacle were used to delineate the range of steady state behavior. A model using the "eikonal thin front limit" explains the observed steady states.
Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin
Brumley, Douglas R.; Polin, Marco; Pedley, Timothy J.; Goldstein, Raymond E.
2015-01-01
Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behaviour—possibly influenced by both mechanical interactions and direct biological regulation—is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves. PMID:26040592
Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin.
Brumley, Douglas R; Polin, Marco; Pedley, Timothy J; Goldstein, Raymond E
2015-07-01
Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves. PMID:26040592
NASA Astrophysics Data System (ADS)
Korolev, A. S.; Pushkar, E. A.
2014-03-01
Hydrodynamic parameters and magnetic field generated in each of the waves in neighborhood of the Earth's bow shock when an interplanetary shock wave impinges on it and propagates along its surface are found in the three-dimensional non-plane-polarized formulation within the framework of the ideal magnetohydrodynamic model. The interaction pattern is constructed in the quasi-steady-state formulation as a mosaic of exact solutions, obtained by means of a computer, to the Riemann problem of breakdown of a discontinuity between the states downstream of the impinging wave and the bow shock on the traveling line of intersection of their fronts. The calculations are carried out for typical parameters of the quiescent solar wind and the interplanetary magnetic field in the Earth's orbit when the plane front of a shock wave moves along the Sun-Earth radius with various given velocities. The solutions obtained can be used to interpret measurements carried out by spacecraft in the solar wind and in neighborhood of the Earth's magnetosphere.
Study of audio speakers containing ferrofluid.
Rosensweig, R E; Hirota, Y; Tsuda, S; Raj, K
2008-05-21
This work validates a method for increasing the radial restoring force on the voice coil in audio speakers containing ferrofluid. In addition, a study is made of factors influencing splash loss of the ferrofluid due to shock. Ferrohydrodynamic analysis is employed throughout to model behavior, and predictions are compared to experimental data. PMID:21694276
Study of audio speakers containing ferrofluid
NASA Astrophysics Data System (ADS)
Rosensweig, R. E.; Hirota, Y.; Tsuda, S.; Raj, K.
2008-05-01
This work validates a method for increasing the radial restoring force on the voice coil in audio speakers containing ferrofluid. In addition, a study is made of factors influencing splash loss of the ferrofluid due to shock. Ferrohydrodynamic analysis is employed throughout to model behavior, and predictions are compared to experimental data.
NASA Astrophysics Data System (ADS)
Griv, Evgeny; Wang, Hsiang-Hsu
2014-07-01
Most rapidly and differentially rotating disk galaxies, in which the sound speed (thermal velocity dispersion) is smaller than the orbital velocity, display graceful spiral patterns. Yet, over almost 240 yr after their discovery in M51 by Charles Messier, we still do not fully understand how they originate. In this first paper of a series, the dynamical behavior of a rotating galactic disk is examined numerically by a high-order Godunov hydrodynamic code. The code is implemented to simulate a two-dimensional flow driven by an internal Jeans gravitational instability in a nonresonant wave-“fluid” interaction in an infinitesimally thin disk composed of stars or gas clouds. A goal of this work is to explore the local and linear regimes of density wave formation, employed by Lin, Shu, Yuan and many others in connection with the problem of spiral pattern of rotationally supported galaxies, by means of computer-generated models and to compare those numerical results with the generalized fluid-dynamical wave theory. The focus is on a statistical analysis of time-evolution of density wave structures seen in the simulations. The leading role of collective processes in the formation of both the circular and spiral density waves (“heavy sound”) is emphasized. The main new result is that the disk evolution in the initial, quasilinear stage of the instability in our global simulations is fairly well described using the local approximation of the generalized wave theory. Certain applications of the simulation to actual gas-rich spiral galaxies are also explored.
Dispensing nano-pico droplets of ferrofluids
NASA Astrophysics Data System (ADS)
Irajizad, Peyman; Farokhnia, Nazanin; Ghasemi, Hadi
2015-11-01
Dispensing miniature volumes of a ferrofluid is of fundamental and practical importance for diverse applications ranging from biomedical devices, optics, and self-assembly of materials. Current dispensing systems are based on microfluidics flow-focusing approaches or acoustic actuation requiring complicated structures. A simple method is presented to continuously dispense the miniature droplets from a ferrofluid reservoir. Once a jet of the ferrofluid is subjected to a constrained flux through a membrane and an inhomogeneous magnetic field, the jet experiences a curvature-driven instability and transforms to a droplet. Ferrofluid droplets in the range of 0.1-1000 nl are dispensed with tunable dispensing frequencies. A model is developed that predicts the dispensed volume of the ferrofluid droplets with an excellent agreement with the measurements.
Transition to turbulence in Taylor-Couette ferrofluidic flow
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572
Transition to turbulence in Taylor-Couette ferrofluidic flow.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572
A Lagrangian description of nearshore hydrodynamics and rip currents forced by a random wave field
NASA Astrophysics Data System (ADS)
Leandro, S.; Cienfuegos, R.; Escauriaza, C. R.
2011-12-01
Nonlinear processes become important for waves propagating in the shoaling and surf zones. Wave shape changes when approaching the coast under the influence of bathymetry, becoming increasingly asymmetric until reaching the breaking limit. In the shoaling zone, non-linearities induce a net velocity in the direction of wave propagation, a phenomenon called Stokes drift, while in the surf zone, currents are mainly driven by spatio-temporal variations in energy dissipation gradients. In this work we aim at investigating and characterizing the nearshore circulation forced by a random wave field propagating over a variable bathymetry. We carry out numerical simulations over a laboratory experiment conducted in a wave basin over a realistic bathymetry [Michallet et al. 2010]. For the hydrodynamics, we use a 2D shock-capturing finite-volume model that solves the non-linear shallow water equations, taking into account energy dissipation by breaking, friction, bed-slope variations, and an accurate description for the moving shoreline in the swash zone [Marche et al. 2007;Guerra et al. 2010]. Model predictions are compared and validated against experimental data giving confidence for its use in the description of wave propagation in the surf/swash zone, together with mean eulerian velocities. The resulting wave propagation and circulation provided by the 2D model will then be used to describe drifter's patterns in the surf zone and construct Lagrangian particle tracking. The chosen experimental configuration is of great interest due to the random wave forcing (slowly modulated), the beach non-uniformities, and the existence of several bar-rip channels that enhance quasi-periodic rip instabilities. During the experiment, balloons filled with water, with a diameter between 5 and 10 cm, were placed in the surf zone in order to characterize circulation in a Lagrangian framework [Castelle et al. 2010]. The time-location of the balloons was continuously tracked by a shore-mounted video camera, and the images were processed to obtain the trajectories and mean velocities. The Lagrangian description provided by the numerical model will be thus confronted to experimental data, and then used to characterize circulation patterns, rip instabilities and infragravity wave pulsations.
NASA Astrophysics Data System (ADS)
Lasky, Paul D.; Bennett, Mark F.; Melatos, Andrew
2013-03-01
Hydrodynamic turbulence driven by crust-core differential rotation imposes a fundamental noise floor on gravitational wave observations of neutron stars. The gravitational wave emission peaks at the Kolmogorov decoherence frequency which, for reasonable values of the crust-core shear, ΔΩ, occurs near the most sensitive part of the frequency band for ground-based, long-baseline interferometers. We calculate the energy density spectrum of the stochastic gravitational wave background from a cosmological population of turbulent neutron stars generalizing previous calculations for individual sources. The spectrum resembles a piecewise power law, Ωgw(ν)=Ωανα, with α=-1 and 7 above and below the decoherence frequency respectively, and its normalization scales as Ωα∝(ΔΩ)7. Nondetection of a stochastic signal by Initial LIGO implies an upper limit on ΔΩ and hence by implication on the internal relaxation time scale for the crust and core to come into corotation, τd=ΔΩ/Ω˙, where Ω˙ is the observed electromagnetic spin-down rate, with τd≲107yr for accreting millisecond pulsars and τd≲105yr for radio-loud pulsars. Target limits on τd are also estimated for future detectors, namely Advanced LIGO and the Einstein Telescope, and are found to be astrophysically interesting.
NASA Astrophysics Data System (ADS)
Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.
2015-06-01
A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.
NASA Astrophysics Data System (ADS)
Uzair, Ahmed Syed; Koo, Weoncheol
2012-09-01
Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.
Wave-driven Hydrodynamics for Different Reef Geometries and Roughness Scenarios
NASA Astrophysics Data System (ADS)
Franklin, G. L.; Marino-Tapia, I.; Torres-Freyermuth, A.
2013-05-01
In fringing reef systems where a shallow lagoon is present behind the reef crest, wave breaking appears to dominate circulation, controlling numerous key processes such as the transport and dispersion of larvae, nutrients and sediments. Despite their importance, there is a need for more detailed knowledge on the hydrodynamic processes that take place within the surf zone of these systems and the effects different combinations of geometries and roughness have on them. The present study focuses on the use of two-dimensional (2DV) numerical model simulations and data obtained during a field campaign in Puerto Morelos, Quintana Roo, Mexico to better understand the detailed surf zone processes that occur over a fringing reef. The model used is Cornell Breaking Wave and Structures (COBRAS), which solves Reynolds-Averaged Navier-Stokes (RANS) equations. Reef geometries implemented in the model include a reef flat and two different reef crests. The effect of roughness on wave setup, radiation stress, mean flows, and cross-shore spectral evolution for the model results was studied using different roughness coefficients (Nikuradse) and a bathymetric profile obtained in the field using the bottom track option of an Acoustic Doppler Current Profiler. Field data were also analysed for the configuration and roughness of Puerto Morelos. Model results reveal that for all profiles wave setup increased significantly (~22%) with increasing bed roughness, in agreement with previous findings for sandy beaches.For all wave heights and periods studied, increasing roughness also affected spectral wave evolution across the reef, with a significant reduction in energy, particularly at infragravity frequencies. The presence of a reef crest in the profile resulted in differences in behaviour at infragravity frequencies. For example, preliminary results suggest that there is a shift towards higher frequencies as waves progress into the lagoon when a crest is present, something that does not appear to occur over the reef flat. Time-averaged velocities exhibited a dominant onshore flow due to waves at the surface, as is generally reported for coral reefs. Model results also suggest the presence of offshore velocities, which were slightly greater over the reef flat compared to the reef crest. Maximum offshore velocities appear to be more localised in the case of the reef flat whereas they extended over a larger area in the case of the reef crest. In all cases, increased roughness resulted in reduced velocities. These results are important since they concern processes that affect the circulation within the lagoon, which has implications in terms of the lagoon's residence time and hence heat dispersion and exposure to pollutants.
The Effect of Morphology, Tides and Wind Waves on the Hydrodynamics of Idealized River-Mouth Systems
NASA Astrophysics Data System (ADS)
Olabarrieta, M.; Coco, G.; Zhou, Z.
2012-12-01
The hydrodynamics and the morphological configuration of estuaries strongly depend on tidal wave propagation, offshore wave climate, and river discharges. Depending of their relative contribution, an estuary can exhibit a wave-dominated morphology, a tidal-dominated configuration, or a river dominated one. This has a direct effect on hydrodynamic parameters relevant from the ecological and biological points of view. Overall, these coastal systems are highly dynamic and complex and the interplay of the physical processes and the resulting dynamics are still not fully understood. The 3D COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system is applied to analyze numerically wave-tidal hydrodynamics in 3 idealized inlet-estuary configurations. The configurations differ because of the presence/absence of the ebb delta and a main channel crossing the delta and because of the water depths inside the estuary. In essence we consider different wave climates, tidal prisms, and standing/progressive tidal conditions. The goal is to infer the effect of the ebb delta on the combined wave-tidal flows along a whole tidal cycle and its dependency with the characteristics of the tides and the incoming swell waves. The interaction between surface gravity waves and currents is modeled with the 3D vortex force method, which decouples conservative and non-conservative wave forces. We show how the ebb shoal acts as a roughness element increasing energy losses in the inlet area. It also enhances the relative effect of the wave driven forces and circulations in the inlet region. The effect of waves is not confined to the inlet and its influence extends to the inner part of the estuary. These are manifested on increased mean water levels, dissipation of the main tidal harmonics and a more progressive character of the tides inside the estuary. The main forces responsible for these changes are wave breaking induced accelerations and the increase of bed friction. Tidal modulations of the full directional wave spectra are also identified in the inlet region. The wave penetration capacity into the estuary changes during a tidal cycle, because of variations in the energy dissipation over the ebb shoal and because the wave action advection by the tidal currents. The momentum balance analysis performed along the whole tidal cycle shows tidal modulations of the wave induced forces as a consequence of temporal and spatial variations in water depths and tidal currents. This presentation will discuss the relevance of the wave induced forces on the inlet estuarine systems pointing out the limitations and future efforts in these directions.
Observing the Rosensweig instability of a quantum ferrofluid
NASA Astrophysics Data System (ADS)
Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias; Wink, Clarissa; Maier, Thomas; Ferrier-Barbut, Igor; Pfau, Tilman
2016-02-01
Ferrofluids exhibit unusual hydrodynamic effects owing to the magnetic nature of their constituents. As magnetization increases, a classical ferrofluid undergoes a Rosensweig instability and creates self-organized, ordered surface structures or droplet crystals. Quantum ferrofluids such as Bose-Einstein condensates with strong dipolar interactions also display superfluidity. The field of dipolar quantum gases is motivated by the search for new phases of matter that break continuous symmetries. The simultaneous breaking of continuous symmetries such as the phase invariance in a superfluid state and the translational symmetry in a crystal provides the basis for these new states of matter. However, interaction-induced crystallization in a superfluid has not yet been observed. Here we use in situ imaging to directly observe the spontaneous transition from an unstructured superfluid to an ordered arrangement of droplets in an atomic dysprosium Bose-Einstein condensate. By using a Feshbach resonance to control the interparticle interactions, we induce a finite-wavelength instability and observe discrete droplets in a triangular structure, the number of which grows as the number of atoms increases. We find that these structured states are surprisingly long-lived and observe hysteretic behaviour, which is typical for a crystallization process and in close analogy to the Rosensweig instability. Our system exhibits both superfluidity and, as we show here, spontaneous translational symmetry breaking. Although our observations do not probe superfluidity in the structured states, if the droplets establish a common phase via weak links, then our system is a very good candidate for a supersolid ground state.
Behdadfar, Behshid; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat; Morales, Maria del Puerto; Mozaffari, Morteza
2012-03-15
Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.
Ferrofluid-based Stretchable Magnetic Core Inductors
NASA Astrophysics Data System (ADS)
Lazarus, N.; Meyer, C. D.
2015-12-01
Magnetic materials are commonly used in inductor and transformer cores to increase inductance density. The emerging field of stretchable electronics poses a new challenge since typical magnetic cores are bulky, rigid and often brittle. This paper presents, for the first time, stretchable inductors incorporating ferrofluid as a liquid magnetic core. Ferrofluids, suspensions of nanoscale magnetic particles in a carrier liquid, provide enhanced magnetic permeability without changing the mechanical properties of the surrounding elastomer. The inductor tested in this work consisted of a liquid metal solenoid wrapped around a ferrofluid core in separate channels. The low frequency inductance was found to increase from 255 nH before fill to 390 nH after fill with ferrofluid, an increase of 52%. The inductor was also shown to survive uniaxial strains of up to 100%.
Magnetic detection of ferrofluid injection zones
Borglin, S.; Moridis, G.; Becker, A.
1998-03-01
Ferrofluids are stable colloidal suspensions of magnetic particles that can be stabilized in various carrier liquids. In this study the authors investigate the potential of ferrofluids to trace the movement and position of liquids injected in the subsurface using geophysical methods. An ability to track and monitor the movement and position of injected liquids is essential in assessing the effectiveness of the delivery system and the success of the process. Ferrofluids can also provide a significant detection and verification tool in containment technologies, where they can be injected with the barrier liquids to provide a strong signature allowing determination of the barrier geometry, extent, continuity and integrity. Finally, ferrofluids may have unique properties as tracers for detecting preferential flow features (such as fractures) in the subsurface, and thus allow the design of more effective remediation systems. In this report the authors review the results of the investigation of the potential of ferrofluids to trace the movement and position of liquids injected in the subsurface using geophysical methods. They demonstrate the feasibility of using conventional magnetometry for detecting subsurface zones of injected ferrofluids used to trace liquids injected for remediation or barrier formation. The geometrical shapes considered were a sphere, a thin disk, a rectangular horizontal slab, and a cylinder. Simple calculations based on the principles of magnetometry are made to determine the detection depths of FTs. Experiments involving spherical, cylindrical and horizontal slabs show a very good agreement between predictions and measurements.
Investigation into loss in ferrofluid magnetization
NASA Astrophysics Data System (ADS)
Li, J.; Gong, X. M.; Lin, Y. Q.; Liu, X. D.; Chen, L. L.; Li, J. M.; Mao, H.; Li, D. C.
2014-07-01
Ferrofluids containing γ-Fe2O3/Ni2O3 nanoparticles (not chemically treated) were synthesized using water and mixed water-glycerol as carrier liquid and the ferrofluid viscosity was modified by varying the glycerol content in the carrier liquid. The apparent magnetization of the ferrofluids decreased with increasing glycerol content. The loss in magnetization is described by the ratio of effective magnetic volume fraction to physical volume fraction of nanoparticles in the ferrofluids as a characteristic parameter. We ascribe the loss to the formation of "dead aggregates" having a ring-like structure of closed magnetic flux rather than to any chemical reaction. Such dead aggregates exist in zero magnetic field and do not contribute to the magnetization in the low or high field regime, so that the effective magnetic volume fraction in the ferrofluids decrease. An increase in carrier liquid viscosity is similar to a weakening of the thermal effect, so the number of dead aggregates increases and the magnetization decreases in inverse proportion to the viscosity. This relationship between the apparent magnetization and ferrofluid carrier liquid viscosity can be termed the "viscomagnetic effect".
NASA Astrophysics Data System (ADS)
Ganju, N. K.; Sherwood, C. R.; Signell, R. P.
2008-12-01
Sorted grain-size features, also known as rippled scour depressions, are persistent cross-shore structures found in many nearshore environments, characterized by sharp gradients in grain size and gentle relief in the alongshore direction. The formation of these features is not completely understood, but self-organization and feedback have been proposed as explanations for their persistence. Sorted grain-size features near the Martha's Vineyard Coastal Observatory (MVCO), Massachusetts, are characterized by bathymetric lows with coarse (0.5 mm) sand and large ripples (heights of 0.10-0.15 cm, wavelengths of 0.6 to 0.8 m) and bathymetric highs with fine sand (0.125 mm) and small ripples (heights of 0.01 m, wavelengths of 0.1 m). The features extend from the shallowest region surveyed (6 m) to depths of 17 m, 3 km offshore, with a maximum alongshore width of less than 1 km. Wave-current interaction is an important component of the inner shelf and circulation at MVCO. However, subtle changes in topography and hydrodynamic roughness associated with these features complicate evaluation of numerical models, especially because of the spatial and temporal variability in alongshore flows and wave forcing near MVCO. We have investigated these features and the inner-shelf circulation using nested and coupled wave-hydrodynamic models. The models were calibrated using water-level, current, and wave data from MVCO and several wave buoys. The suite of nested models applied here began with basin- scale (5-km grid for the eastern seaboard) wave models that provided spectral wave forcing to a regional wave model (1-km grid for the southern New England shelf). The regional wave model and a regional hydrodynamic model at the same scale were then run uncoupled, to provide boundary conditions for a cascade of nested, coupled, wave-hydrodynamic models. The final nested model, at an 8-m grid resolution, resolved the sorted grain-size features. At this level, a sediment-transport model with time-dependent ripple geometry and various roughness formulations was applied to investigate the maintenance of these features and their influence on circulation under realistic conditions. Given an initial bed sediment distribution, the roughness introduced by these features significantly alters the quasi-steady-state distribution within the bed, and highlights the concept of feedback and self-organization.
Studies of Rossby waves and hydrodynamic turbulence in a Taylor-Couette device
NASA Astrophysics Data System (ADS)
Edlund, Eric; Schartman, E.; Spence, E.; Roach, A.; Sloboda, P.; Ji, H.
2010-11-01
We present the design of a new experiment at the Princeton Plasma Physics Laboratory with the mission of studying angular momentum transport in rotating incompressible fluids at Re >10^6. This hydrodynamic experiment supports and complements a similar device, the Princeton MRI experiment, which uses a liquid metal to study MHD effects [1]. The inner and outer cylinders may be separately driven; differentially rotating rings on the top and bottom boundaries between the cylinders allow the Ekman circulation to be greatly diminished while maintaining shear in the azimuthal flow close to the Rayleigh criterion. The top, fluid-facing boundary of the device can be outfitted with various surfaces or operated with a free surface to modify the Rossby wave characteristics. A set of ultrasonic transducers is used to measure the vr and vφ profiles at three distinct heights. A two component LDV system provides measurements of the local vr and vφ which will further constrain measurements of the turbulent angular momentum transport reported previously [2].[4pt] [1] E. Schartman et al., RSI 80, 024501 (2009).[0pt] [2] H. Ji et al., Nature 444, 343 (2006).
NASA Astrophysics Data System (ADS)
Chen, Jia-Lin; Hsu, Tian-Jian; Shi, Fengyan; Raubenheimer, Britt; Elgar, Steve
2015-06-01
The interactions between waves, tidal currents, and bathymetry near New River Inlet, NC, USA are investigated to understand the effects on the resulting hydrodynamics and sediment transport. A quasi-3-D nearshore community model, NearCoM-TVD, is used in this integrated observational and modeling study. The model is validated with observations of waves and currents at 30 locations, including in a recently dredged navigation channel and a shallower channel, and on the ebb tidal delta, for a range of flow and offshore wave conditions during May 2012. In the channels, model skills for flow velocity and wave height are high. Near the ebb tidal delta, the model reproduces the observed rapid onshore (offshore) decay of wave heights (current velocities). Model results reveal that this sharp transition coincides with the location of the breaker zone over the ebb tidal delta, which is modulated by semidiurnal tides and by wave intensity. The modulation of wave heights is primarily owing to depth changes rather than direct wave-current interaction. The modeled tidally averaged residual flow patterns show that waves play an important role in generating vortices and landward-directed currents near the inlet entrance. Numerical experiments suggest that these flow patterns are associated with the channel-shoal bathymetry near the inlet, similar to the generation of rip currents. Consistent with other inlet studies, model results suggest that tidal currents drive sediment fluxes in the channels, but that sediment fluxes on the ebb tidal delta are driven primarily by waves.
NASA Astrophysics Data System (ADS)
Busca, Claudia; Coluccelli, Alessandro; Valentini, Andrea; Benetazzo, Alvise; Bonaldo, Davide; Bortoluzzi, Giovanni; Carniel, Sandro; Falcieri, Francesco; Paccagnella, Tiziana; Ravaioli, Mariangela; Riminucci, Francesco; Sclavo, Mauro; Russo, Aniello
2014-05-01
The complex dynamics of the Adriatic Sea are the result of geographical position, orography and bathymetry, as well as rivers discharge and meteorological conditions that influence, more strongly, the shallow northern part. Such complexity requires a constant monitoring of marine conditions in order to support several activities (marine resources management, naval operations, emergency management, shipping, tourism, as well as scientific ones). Platforms, buoys and mooring located in Adriatic Sea supply almost continuously real time punctual information, which can be spatially extended, with some limitations, by drifters and remote sensing. Operational forecasting systems represent valid tools to provide a complete tridimensional coverage of the area, with a high spatial and temporal resolution. The Hydro-Meteo-Clima Service of the Emilia-Romagna Environmental Agency (ARPA-SIMC, Bologna, Italy) and the Dept. of Life and Environmental Sciences of Università Politecnica delle Marche (DISVA-UNIVPM, Ancona, Italy), in collaboration with the Institute of Marine Science of the National Research Council (ISMAR-CNR, Italy) operationally run several wave and hydrodynamic models on the Adriatic Sea. The main implementations are based on the Regional Ocean Modeling System (ROMS), the wave model Simulating WAves Nearshore (SWAN), and the coupling of the former two models in the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) system. Horizontal resolutions of the different systems range from the 2 km of AdriaROMS to the 0.5 km of the recently implemented northern Adriatic COAWST. Forecasts are produced every day for the subsequent 72 hour with hourly resolution. All the systems compute the fluxes exchanged through the interface with the atmosphere from the numerical weather prediction system named COSMO-I7, an implementation for Italy of the Consortium for Small-scale Modeling (COSMO) model, at 7 km horizontal resolution. Considering the several operational implementations currently running, there is the need to: assess their forecast skill; quantitatively evaluate if the new, coupled systems provide better performances than the uncoupled ones; individuate weaknesses and eventual time trends in the forecasts quality, their causes, and actions to improve the systems. This work presents a first effort aimed to satisfy such need. We employ in situ and remote sensing data collected starting from November 2011, in particular: temperature and salinity data collected during several oceanographic cruises, sea surface temperature derived from satellite measurements, waves, sea level and currents measurements from oceanographic buoys and platforms; specific observational activities funded by the Italian Flagship project RITMARE allowed to collect new measurements in NA coastal areas. Data-model comparison is firstly performed with exploratory qualitative comparisons in order to highlight discrepancies between observed and forecasted data, then a quantitative comparison is performed through the computation of standard statistical scores (root mean square error, mean error, mean bias, standard deviation, cross-correlation). Results are plotted in Taylor diagrams for a rapid evaluation of the overall performances.
Ejection of ferrofluid grains from a ferrofluid using nonlinear acoustic impulses
NASA Astrophysics Data System (ADS)
Manciu, Felicia S.; Manciu, Marian; Sen, Surajit
2000-03-01
We consider a model study of a dilute ferrofluid in a container with a flat base and an open top surface with monodisperse ferrofluid grains that form a stable colloid in water or oil. The grains are assumed to be under the influence of a strong, uniform, external magnetic field. It is well known that due to the influence of the field, such a system forms chains of ferrofluid grains between the base and the surface of the liquid. The phase-separated system is then subjected to non-linear acoustic impulses at its base. We show that for impulses of any magnitude, it is possible to generate non-dispersive bundles of energy through the chains. By carrying out detailed dynamical simulations of impulse propagation in the chains, we show that for appropriate impulse magnitudes, the ferrofluid grains in each of the chains, which are in the vicinity of the surface, will overcome the force due to surface tension and eject into air. Ferrofluid grains carry a coating of the host liquid, which can be colored for water-based ferrofluids and hence the system may potentially be used to design a nozzle-free inkjet printer. For ferrofluid grains of typical diameter of about 100 Angstroms, the proposed system could lead one to develop inkjet printers with dot sizes that are less than 200 Angstroms and hence to a printing system of unparalleled resolution. [1] S. Sen, M. Manciu and F.S. Manciu, Appl. Phys. Lett. 75, 1479 (1999).
A contribution about ferrofluid based flow manipulation and locomotion systems
NASA Astrophysics Data System (ADS)
Zimmermann, K.; Zeidis, I.; Bohm, V.; Popp, J.
2009-02-01
With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.
Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.
2005-01-01
Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr
2014-07-01
We show that the exact partition function of U( N) six-dimensional gauge theory with eight supercharges on ℂ2 × S 2 provides the quantization of the integrable system of hydrodynamic type known as gl( N) periodic Intermediate Long Wave (ILW). We characterize this system as the hydrodynamic limit of elliptic Calogero-Moser integrable system. We compute the Bethe equations from the effective gauged linear sigma model on S 2 with target space the ADHM instanton moduli space, whose mirror computes the Yang-Yang function of gl( N) ILW. The quantum Hamiltonians are given by the local chiral ring observables of the six-dimensional gauge theory. As particular cases, these provide the gl( N) Benjamin-Ono and Korteweg-de Vries quantum Hamiltonians. In the four dimensional limit, we identify the local chiral ring observables with the conserved charges of Heisenberg plus W N algebrae, thus providing a gauge theoretical proof of AGT correspondence.
NASA Astrophysics Data System (ADS)
Shi, Chuanqi; An, Yi; Wu, Qiang; Liu, Qingquan; Cao, Zhixian
2016-06-01
We simulate the generation of a landslide-induced impulse wave with a newly-developed soil-water coupling model in the smoothed particle hydrodynamics (SPH) framework. The model includes an elasto-plastic constitutive model for soil, a Navier-Stokes equation based model for water, and a bilateral coupling model at the interface. The model is tested with simulated waves induced by a slow and a fast landslide. Good agreement is obtained between simulation results and experimental data. The generated wave and the deformation of the landslide body can both be resolved satisfactorily. All parameters in our model have their physical meaning in soil mechanics and can be obtained from conventional soil mechanics experiments directly. The influence of the dilatancy angle of soil shows that the non-associated flow rule must be selected, and the value of the dilatancy angle should not be chosen arbitrarily, if it is not determined with relative experiments.
NASA Astrophysics Data System (ADS)
Miura, Hitoshi; Nakamoto, Taishi
2007-05-01
Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekyia et al. [Sekyia, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728]. We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. [Sekiya, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728] can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems.
Some results of the hydrodynamic theory of finite-amplitude waves
NASA Technical Reports Server (NTRS)
Sekerzh-Zenkovich, Y. I.
1975-01-01
Standing waves can be interpreted as free waves between two vertical walls; for a standing wave in an unlimited container there is no transport of liquid mass in the horizontal direction. Standing waves of finite amplitude also possess the following properties not possessed by the waves of the linear theory: (1) there are no motionless points, (2) the points of maximum amplitude (crests and troughs) are fixed, and coincide with the antinodes of the original linear wave, (3) the ordinates of the wave crests are greater in absolute magnitude than the ordinates of the troughs; the wave is similar to a trochoid curve; (4) the wave profile never becomes straight; and (5) the frequency of the oscillations depends not only on the wave length but also on the amplitude.
Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux
NASA Astrophysics Data System (ADS)
Khan, W. A.; Khan, Z. H.; Haq, R. U.
2015-04-01
The present work is dedicated to analyze the flow and heat transport of ferrofluids along a flat plate subjected to uniform heat flux and slip velocity. A magnetic field is applied in the transverse direction to the plate. Moreover, three different kinds of magnetic nanoparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4 are incorporated within the base fluid. We have considered two different kinds of base fluids (kerosene and water) having poor thermal conductivity as compared to solid magnetic nanoparticles. Self-similar solutions are obtained and are compared with the available data for special cases. A simulation is performed for each ferrofluid mixture by considering the dominant effects of slip and uniform heat flux. It is found that the present results are in an excellent agreement with the existing literature. The variation of skin friction and heat transfer is also performed at the surface of the plate and then the better heat transfer and of each mixture is analyzed. Kerosene-based magnetite Fe3O4 provides the higher heat transfer rate at the wall as compared to the kerosene-based cobalt ferrite and Mn-Zn ferrite. It is also concluded that the primary effect of the magnetic field is to accelerate the dimensionless velocity and to reduce the dimensionless surface temperature as compared to the hydrodynamic case, thereby increasing the skin friction and the heat transfer rate of ferrofluids.
Passive Magnetic Bearing With Ferrofluid Stabilization
NASA Technical Reports Server (NTRS)
Jansen, Ralph; DiRusso, Eliseo
1996-01-01
A new class of magnetic bearings is shown to exist analytically and is demonstrated experimentally. The class of magnetic bearings utilize a ferrofluid/solid magnet interaction to stabilize the axial degree of freedom of a permanent magnet radial bearing. Twenty six permanent magnet bearing designs and twenty two ferrofluid stabilizer designs are evaluated. Two types of radial bearing designs are tested to determine their force and stiffness utilizing two methods. The first method is based on the use of frequency measurements to determine stiffness by utilizing an analytical model. The second method consisted of loading the system and measuring displacement in order to measure stiffness. Two ferrofluid stabilizers are tested and force displacement curves are measured. Two experimental test fixtures are designed and constructed in order to conduct the stiffness testing. Polynomial models of the data are generated and used to design the bearing prototype. The prototype was constructed and tested and shown to be stable. Further testing shows the possibility of using this technology for vibration isolation. The project successfully demonstrated the viability of the passive magnetic bearing with ferrofluid stabilization both experimentally and analytically.
The effect of temperature on the anisotropy of ultrasound attenuation in a ferrofluid
NASA Astrophysics Data System (ADS)
Skumiel, A.
2004-11-01
This paper reports results of a study on the acoustic properties of a ferrofluid, APG-513A. The anisotropy of the ultrasonic wave absorption coefficient was determined in a sample subjected to an external magnetic field. The measurements were performed in a strong magnetic field HDC = 125 kA m-1, for temperatures of 1-60°C. The dependence of the absorption coefficient of the ultrasonic wave (f = 3.6 MHz) on the angle between the direction of measurement and that of the magnetic field provided important information on the ferrofluid structure in a magnetic field. A comparison of the experimental results with the predictions of the Taketomi theory allowed a determination of the cluster radius and the number density of the colloidal particles. These data allowed us to draw conclusions about the changes in the parameters describing the structure of the ferrofluid at different temperatures. The per cent contribution of the magnetic particles in the cluster structures was estimated. On the basis of the measurements performed, it was possible to establish the proportion of the ultrasonic wave used for excitation of the translational and rotational degrees of freedom. The results revealed a significant effect of temperature on the translational and rotational components of the absorption coefficient. Moreover, the magnetic susceptibility was measured versus the external magnetic field intensity.
A Novel Implantable Glaucoma Valve Using Ferrofluid
Paschalis, Eleftherios I.; Chodosh, James; Sperling, Ralph A.; Salvador-Culla, Borja; Dohlman, Claes
2013-01-01
Purpose To present a novel design of an implantable glaucoma valve based on ferrofluidic nanoparticles and to compare it with a well-established FDA approved valve. Setting Massachusetts Eye & Ear Infirmary, Boston, USA. Methods A glaucoma valve was designed using soft lithography techniques utilizing a water-immiscible magnetic fluid (ferrofluid) as a pressure-sensitive barrier to aqueous flow. Two rare earth micro magnets were used to calibrate the opening and closing pressure. In-vitro flow measurements were performed to characterize the valve and to compare it to Ahmed™ glaucoma valve. The reliability and predictability of the new valve was verified by pressure/flow measurements over a period of three months and X-ray diffraction (XRD) analysis over a period of eight weeks. In vivo assessment was performed in three rabbits. Results In the in vitro experiments, the opening and closing pressures of the valve were 10 and 7 mmHg, respectively. The measured flow/pressure response was linearly proportional and reproducible over a period of three months (1.8 µl/min at 12 mmHg; 4.3 µl/min at 16 mmHg; 7.6 µl/min at 21 mmHg). X-ray diffraction analysis did not show oxidization of the ferrofluid when exposed to water or air. Preliminary in vivo results suggest that the valve is biocompatible and can control the intraocular pressure in rabbits. Conclusions The proposed valve utilizes ferrofluid as passive, tunable constriction element to provide highly predictable opening and closing pressures while maintaining ocular tone. The ferrofluid maintained its magnetic properties in the aqueous environment and provided linear flow to pressure response. Our in-vitro tests showed reliable and reproducible results over a study period of three months. Preliminary in-vivo results were very promising and currently more thorough investigation of this device is underway. PMID:23840691
Andreev, P. A.; Kuzmenkov, L. S.; Trukhanova, M. I.
2011-12-15
In this paper, we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Although we focused primarily on the two-dimensional (2D) physical systems, the method is valid for three-dimensional (3D) and one-dimensional (1D) systems too. The presented method is based upon the Schroedinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schroedinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimensional ion and hole gas placed into an external electric field, which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D, and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma, and in 2D electron-hole plasma. Generation of waves in 3D-system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.
Floating and flying ferrofluid bridges induced by external magnetic fields
NASA Astrophysics Data System (ADS)
Ma, Rongchao; Zhou, Yixin; Liu, Jing
2015-04-01
A ferrofluid is a mixture that exhibits both magnetism and fluidity. This merit enables the ferrofluid to be used in a wide variety of areas. Here we show that a floating ferrofluid bridge can be induced between two separated boards under a balanced external magnetic field generated by two magnets, while a flying ferrofluid bridge can be induced under an unbalanced external magnetic field generated by only one magnet. The mechanisms of the ferrofluid bridges were discussed and the corresponding mathematical equations were also established to describe the interacting magnetic force between the ferro particles inside the ferrofluid. This work answered a basic question that, except for the well-known floating water bridges that are related to electricity, one can also build up a liquid bridge that is related to magnetism.
Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis
Apotsos, A.; Jaffe, B.; Gelfenbaum, G.
2011-01-01
While the destruction caused by a tsunami can vary significantly owing to near- and onshore controls, we have only a limited quantitative understanding of how different local parameters influence the onshore response of tsunamis. Here, a numerical model based on the non-linear shallow water equations is first shown to agree well with analytical expressions developed for periodic long waves inundating over planar slopes. More than 13,000 simulations are then conducted to examine the effects variations in the wave characteristics, bed slopes, and bottom roughness have on maximum tsunami run-up and water velocity at the still water shoreline. While deviations from periodic waves and planar slopes affect the onshore dynamics, the details of these effects depend on a combination of factors. In general, the effects differ for breaking and non-breaking waves, and are related to the relative shift of the waves along the breaking–non-breaking wave continuum. Variations that shift waves toward increased breaking, such as steeper wave fronts, tend to increase the onshore impact of non-breaking waves, but decrease the impact of already breaking waves. The onshore impact of a tsunami composed of multiple waves can be different from that of a single wave tsunami, with the largest difference occurring on long, shallow onshore topographies. These results demonstrate that the onshore response of a tsunami is complex, and that using analytical expressions derived from simplified conditions may not always be appropriate.
NASA Astrophysics Data System (ADS)
Hennings, Ingo; Herbers, Dagmar
2006-10-01
The investigations carried out between 2002 and 2004 during six field experiments within the Operational Radar and Optical Mapping in monitoring hydrodynamic, morphodynamic and environmental parameters for coastal management (OROMA) project aimed to improve the effectiveness of new remote sensing monitoring technologies such as shipborne imaging radars in coastal waters. The coastal monitoring radar of the GKSS Research Center, Geesthacht, Germany, is based on a Kelvin Hughes RSR 1000 X band (9.42 GHz) vertical (VV) polarized river radar and was mounted on board the research vessel Ludwig Prandtl during the experiments in the Lister Tief, a tidal inlet of the German Bight in the North Sea. The important progress realized in this investigation is the availability of calibrated X band radar data. Another central point of the study is to demonstrate the applicability of the quasi-specular scattering theory in combination with the weak hydrodynamic interaction theory for the radar imaging mechanism of the seabed. Radar data have been taken at very low grazing angles ≤2.6° of flood and ebb tide-oriented sand wave signatures at the sea surface during ebb tidal current phases. Current speeds perpendicular to the sand wave crest ≤0.6 m s-1 have been measured at wind speeds ≤4.5 m s-1 and water depths ≤25 m. The difference between the maximum measured and simulated normalized radar cross section (NRCS) modulation of the ebb tide-oriented sand wave is 27%. For the flood tide-oriented sand wave, a difference of 21% has been calculated. The difference between the minimum measured and simulated NRCS modulation of the ebb tide-oriented sand wave is 10%, and for the flood tide-oriented sand wave, a value of 43% has been derived. Phases of measured and simulated NRCS modulations correspond to asymmetric sand wave slopes. The results of the simulated NRCS modulation show the qualitative trend but do not always quantitatively match the measured NRCS modulation profiles because the quasi-specular scattering theory at very low grazing angle is a first-order theory.
The equations of nearly incompressible fluids. I - Hydrodynamics, turbulence, and waves
NASA Technical Reports Server (NTRS)
Zank, G. P.; Matthaeus, W. H.
1991-01-01
An attempt is made to develop a more general theory of nearly incompressible fluids that can then be applied to many different fields. A perturbation expansion is developed for the fully compressible fluid equations which, in the limit of low Mach number (sound or Alfvenic Mach number), reduce to the appropriate incompressible fluid equations. The method developed derives modified systems of fluid equations in which the compressibility effects are admitted only weakly in terms of the incompressible hydrodynamic solutions ('nearly incompressible hydrodynamics'). Molecular viscosity is included self-consistently, and the role of thermal conduction in an ideal fluid is also considered. With heat conduction included, two distinct routes to incompressibility are found to be possible, distinguished according to the relative magnitudes of the temperature, density, and pressure fluctuations.
Numerical simulation model for the study of magneto-hydrodynamic (MHD) waves in a structured medium
Xiao, Y.
1988-01-01
This dissertation contains two basic parts: a formal development of a numerical simulation model for the study of MHD waves in a structured medium, and an application of the model to the investigation of the propagation of MHD waves in a magnetic slab and their interactions with nonmagnetic surroundings. The numerical model is a time-dependent, two-dimensional, and nonlinear MHD model with gravity and radiative energy loss. The corresponding numerical code is based on the newly developed SINIL (Semi-Implicit-Non-Iterative-Lagrangian) scheme. The MHD governing equations are discretized on a Lagrangian grid, using the control-volume method. The gas dynamic properties are solved explicitly, and the magnetic field is solved implicitly without using numerical iterations. Using this numerical model, three kinds of slab waves are studied, namely, kink type slab waves, sausage type slab waves, and kink-type single interface waves (which are considered as kink-type slab waves in the limit of infinite slab width). In this study, external acoustic waves can only be excited by internal body waves. The excitation of external acoustic waves represents the energy leakage from the internal magnetized region to the external field-free region.
Grűbel, Klaudiusz; Machnicka, Alicja
2014-01-01
The efficiency of disintegration of sewage sludge cells microorganisms were characterized using biochemical parameters such as COD, phosphate, ammonium nitrogen and proteins. The investigated process was additionally assessed using the coefficient DD (Degree of Disintegration). It has been demonstrated that a 30-min of hydrodynamic and ultrasonic disintegration causes the soluble COD value increased about 300 mg /L and 190 mg /L (average), while the degree of disintegration reached 24% and 21%, respectively. The efficiency of sewage sludge hydrodynamic and ultrasonic disintegration was confirmed by increased release of phosphate (V) (from 4 to 54 mg PO₄(3-) /L and to 50 mg PO₄(3-) /L, respectively), ammonium nitrogen (from 1.5 to 4 mg N-NH₄(+) /L and to 3.5 mg N-NH₄(+) /L, respectively) and proteins (from 5 to 70 mg/L and to 60 mg/L, respectively). The effectiveness of surplus activated sludge disintegration was tested in the infrared spectrum. Changes in absorbance at the specified wavelength attest to a release of i.e., amines, amino acids, amide groups (proteins), phosphates, ammonium salts of carboxylic acid, etc. during disintegration time. Revealing these chemical groups in over-sludge liquids attests to a destructive influence of hydrodynamic and ultrasonic cavitation on activated sludge microorganisms and effective cells lysis. PMID:24117089
Anomalous attenuation of ultrasound in ferrofluids under the influence of a magnetic field
NASA Technical Reports Server (NTRS)
Isler, W. E.; Chung, D. Y.
1978-01-01
Ultrasonic wave propagation has been studied in a water-base ferrofluid by pulse-echo methods. A commercial box-car integrator was used to measure the change in attenuation due to an external magnetic field applied at various angles relative to the ultrasonic propagation vector. Anomalous results were obtained when the attenuation was plotted as a function of the magnetic field strength. As the field increased, the attenuation reached a maximum and then decreased to a flat minimum before it approached saturation at a field of 2 KG. This variation of attenuation with magnetic field cannot be explained from the simple picture derivable from the work of McTague on the viscosity of ferrofluids. In no case was the viscosity seen to decrease with field, nor was the oscillatory behavior observed. The results of this study were compared with the theory developed by Parsons.
NASA Astrophysics Data System (ADS)
Hoeke, Ron; Storlazzi, Curt; Ridd, Peter
2011-04-01
This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.
Hoeke, R.; Storlazzi, C.; Ridd, P.
2011-01-01
This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.
Ferrofluid based micro-electrical energy harvesting
NASA Astrophysics Data System (ADS)
Purohit, Viswas; Mazumder, Baishakhi; Jena, Grishma; Mishra, Madhusha; Materials Department, University of California, Santa Barbara, CA93106 Collaboration
2013-03-01
Innovations in energy harvesting have seen a quantum leap in the last decade. With the introduction of low energy devices in the market, micro energy harvesting units are being explored with much vigor. One of the recent areas of micro energy scavenging is the exploitation of existing vibrational energy and the use of various mechanical motions for the same, useful for low power consumption devices. Ferrofluids are liquids containing magnetic materials having nano-scale permanent magnetic dipoles. The present work explores the possibility of the use of this property for generation of electricity. Since the power generation is through a liquid material, it can take any shape as well as response to small acceleration levels. In this work, an electromagnet-based micropower generator is proposed to utilize the sloshing of the ferrofluid within a controlled chamber which moves to different low frequencies. As compared to permanent magnet units researched previously, ferrofluids can be placed in the smallest of containers of different shapes, thereby giving an output in response to the slightest change in motion. Mechanical motion from 1- 20 Hz was able to give an output voltage in mV's. In this paper, the efficiency and feasibility of such a system is demonstrated.
Niederhaus, John; Ranjan, Devesh; Anderson, Mark; Oakley, Jason; Bonazza, Riccardo; Greenough, Jeff
2005-05-15
Experiments studying the compression and unstable growth of a dense spherical bubble in a gaseous medium subjected to a strong planar shock wave (2.8 < M < 3.4) are performed in a vertical shock tube. The test gas is initially contained in a free-falling spherical soap-film bubble, and the shocked bubble is imaged using planar laser diagnostics. Concurrently, simulations are carried out using a compressible hydrodynamics code in r-z axisymmetric geometry.Experiments and computations indicate the formation of characteristic vortical structures in the post-shock flow, due to Richtmyer-Meshkov and Kelvin-Helmholtz instabilities, and smaller-scale vortices due to secondary effects. Inconsistencies between experimental and computational results are examined, and the usefulness of the current axisymmetric approach is evaluated.
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.
Magnetoviscosity and orientational order parameters of dilute ferrofluids
NASA Astrophysics Data System (ADS)
Ilg, Patrick; Kröger, Martin; Hess, Siegfried
2002-05-01
The linear and nonlinear rheological behavior of dilute ferrofluids is determined from an underlying kinetic model and the dependence of the viscosity coefficient on the scalar orientational order parameters is obtained. In case of uniaxial symmetry, the antisymmetric contribution to the hydrodynamic stress tensor is of the same form as in the classical Ericksen-Leslie theory of uniaxial nematic liquid crystals and the linear magnetoviscosity is found to coincide with earlier results obtained by the so-called effective field method. While the assumption of uniaxial symmetry is fulfilled exactly in the limit of strong vorticity and weak magnetic field, the exact result for the linear magnetoviscosity shows corrections due to contributions from biaxial symmetry. Measures for the deviations from uniaxial symmetry are introduced and the generalization of the stress tensor in case of biaxial symmetry is obtained. The investigations are accompanied by numerical simulation of the kinetic equation and reveal that the assumption of uniaxial symmetry seems to be a good approximation for most values of the magnetic field and vorticity.
Dynamic analysis of hydrodynamic behavior of a flatfish cage system under wave conditions
NASA Astrophysics Data System (ADS)
Cui, Yong; Guan, Chang-tao; Wan, Rong; Huang, Bin; Li, Jiao
2014-04-01
This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.
NASA Astrophysics Data System (ADS)
Suwa, T.; Imamura, F.; Sugawara, D.; Ogasawara, K.; Watanabe, M.; Hirahara, T.
2014-12-01
A tsunami simulator integrating a 3-D fluid simulation technology that runs on large-scale parallel computers using smoothed-particle hydrodynamics (SPH) method has been developed together with a 2-D tsunami propagation simulation technique using a nonlinear shallow water wave model. We use the 2-D simulation to calculate tsunami propagation of scale of about 1000km from epicenter to near shore. The 3-D SPH method can be used to calculate the water surface and hydraulic force that a tsunami can exert on a building, and to simulate flooding patterns at urban area of at most km scale. With our simulator we can also see three dimensional fluid feature such as complex changes a tsunami undergoes as it interacts with coastal topography or structures. As a result it is hoped that, e.g. , effect of the structures to dissipate waves energy passing over it can be elucidated. The authors utilize the simulator in the third of five fields of the Strategic Programs for Innovative Research, "Advanced Prediction Researches for Natural Disaster Prevention and Reduction," or the theme "Improvement of the tsunami forecasting system on the HPCI computer." The results of tsunami simulation using the K computer will be reported. We are going to apply it to a real problem of the disaster prevention in future.
Nonlinear dynamics of a ferrofluid pendulum.
Shliomis, Mark I; Zaks, Michael A
2004-07-23
A ferrofluid torsion pendulum in an oscillating magnetic field exhibits a rich variety of nonlinear self-oscillatory regimes. The dynamics is governed by the system of coupled differential equations for the in- and off-axis components of the fluid magnetization and the pendulum angular deflection. In the limiting case of high driving frequency, the system reduces to the sole Rayleigh-type equation. Much more complicated temporal patterns arise when the field frequency and the pendulum eigen frequency are of the same order. PMID:15323788
Field-Induced Structures in Ferrofluid Emulsions
NASA Astrophysics Data System (ADS)
Liu, Jing; Lawrence, E. M.; Wu, A.; Ivey, M. L.; Flores, G. A.; Javier, K.; Bibette, J.; Richard, J.
1995-04-01
The field-induced structure in a monodisperse ferrofluid emulsion is studied. An applied magnetic field induces a magnetic dipole moment in each droplet. When the dipole-dipole interaction energy exceeds the thermal energy, a phase transition occurs as the fluid of randomly dispersed droplets changes to a solid of nearly equally sized and spaced columns. Our results show that the column spacing follows a relation d = 1.33L0.37 for cell thickness 3<=L<=800 μm. A new theory, which treats the column shape more realistically, is developed to account for the results.
NASA Astrophysics Data System (ADS)
Mihalas, Dimitri
Basic Radiation Theory Specific Intensity Photon Number Density Photon Distribution Function Mean Intensity Radiation Energy Density Radiation Energy Flux Radiation Momentum Density Radiation Stress Tensor (Radiation Pressure Tensor) Thermal Radiation Thermodynamics of Thermal Radiation and a Perfect Gas The Transfer Equation Absorption, Emission, and Scattering The Equation of Transfer Moments of the Transfer Equation Lorentz Transformation of the Transfer Equation Lorentz Transformation of the Photon 4-Momentum Lorentz Transformation of the Specific Intensity, Opacity, and - Emissivity Lorentz Transformation of the Radiation Stress Energy Tensor The Radiation 4-Force Density Vector Covariant Form of the Transfer Equation Inertial-Frame Equations of Radiation Hydrodynamics Inertial-Frame Radiation Equations Inertial-Frame Equations of Radiation Hydrodynamics Comoving-Frame Equation of Transfer Special Relativistic Derivation (D. Mihalas) Consistency Between Comoving-Frame and Inertial-Frame Equations Noninertial Frame Derivation (J. I. Castor) Analysis of O (v/c) Terms Lagrangian Equations of Radiation Hydrodynamics Momentum Equation Gas Energy Equation First Law of Thermodynamics for the Radiation Field First Law of Thermodynamics for the Radiating Fluid Mechanical Energy Equation Total Energy Equation Consistency of Different Forms of the Radiating-Fluid Energy - and Momentum Equations Consistency of Inertial-Frame and Comoving-Frame Radiation Energy - and Momentum Equations Radiation Diffusion Radiation Diffusion Nonequilibrium Diffusion The Problem of Flux Limiting Shock Propagation: Numerical Methods Acoustic Waves Numerical Stability Systems of Equations Implications of Shock Development Implications of Diffusive Energy Transport Illustrative Example Numerical Radiation Hydrodynamics Radiating Fluid Energy and Momentum Equations Computational Strategy Energy Conservation Formal Solution Multigroup Equations An Astrophysical Example Adaptive-Grid Radiation Hydrodynamics Front Fitting Artificial Dissipation The Adaptive Grid The TITAN Code References
Waves in Radial Gravity Using Magnetic Fluid
NASA Technical Reports Server (NTRS)
Ohlsen, Daniel R.; Hart, John E.; Weidman, Patrick D.
1996-01-01
We are beginning laboratory experiments using magnetically active ferrofluids to study surface waves in novel geometries. Terrestrial gravity is eliminated from the dynamics, and the magnetic body force felt by ferrofluid in the presence of a magnetic field gradient is used to create a geopotential field which is a section of or an entire sphere or cylinder. New optical, electromagnetic and ultrasonic diagnostic techniques are under development to initially study capillary-gravity wave propagation and interaction in such geometries.
NASA Astrophysics Data System (ADS)
Inogamov, N. A.; Sunyaev, R. A.
2015-12-01
In the early Universe up to hydrogen recombination in the Universe, the radiation pressure was much greater than the pressure of baryons and electrons. Moreover, the energy density of cosmic microwave background (CMB) photons was greater than or close to the energy density contained in the rest mass of baryonic matter, i.e., the primordial plasma was a radiated-dominated one and the adiabatic index was close to 4/3. The small density perturbations from which the observed galaxies have grown grew as long as the characteristic perturbation scales exceeded the horizon of the Universe сt at that time. On smaller scales, the density perturbations were standing sound waves. Radiative viscosity and heat conduction must have led to the damping of sound waves on very small scales. After the discovery of the cosmic microwave background, J. Silk calculated the scales of this damping, which is now called Silk damping, knowing the CMBtemperature and assuming the density of baryons and electrons. Observations with the South Pole Telescope, the Atacama Cosmology Telescope, and the Planck satellite have revealed the predicted damping of acoustic peaks in the CMB power spectrum and confirmed one important prediction of the theory. In 1970, R.A. Sunyaev and Ya.B. Zeldovich showed that such energy release in the early Universe should lead to characteristic deviations of the CMB spectrum from the Planck one. The development of the technology of cryogenic detectors of submillimeter and millimeter wavelength radiation has made it possible to measure the CMB spectral distortions at 10-8 of its total intensity (PIXIE). This has sharply increased the interest of theoretical cosmologists in the problem of energy release when smallscale sound waves are damped. We have derived a relativistic formula for the energy of a standing sound wave in a photon-baryon-electron plasma from simple hydrodynamic and thermodynamic relations. This formula is applicable for an arbitrary relation between the energy density of photons and the rest energy density of baryons and their thermal energy density. It continuously describes the transition between the two extreme cases. We obtain the expression for a radiation-dominated plasma in one limit and return to the expression for a gas of classicalmassive particles in the other limit. We have derived the relations that relate the amplitudes of velocity, baryon number density, and temperature perturbations in a radiation-dominated plasma of photons, baryons, and electrons.
Elongational flow effects on the vortex growth out of Couette flow in ferrofluids.
Altmeyer, S; Leschhorn, A; Hoffmann, Ch; Lücke, M
2013-05-01
The growth behavior of stationary axisymmetric vortices and of oscillatory, nonaxisymmetric spiral vortices in Taylor-Couette flow of a ferrofluid in between differentially rotating cylinders is analyzed using a numerical linear stability analysis. The investigation is done as a function of the inner and outer cylinder's rotation rates, the axial wave number of the vortex flows, and the magnitude of an applied homogeneous axial magnetic field. In particular, the consequences of incorporating elongational flow effects in the magnetization balance equation on the marginal control parameters that separate growth from decay behavior are determined. That is done for several values of the transport coefficient that measures the strength of these effects. PMID:23767623
Multiphase ferrofluid flows for micro-particle sorting
NASA Astrophysics Data System (ADS)
Zhou, Ran; Wang, Cheng
2015-11-01
Utilizing negative magnetophoresis, ferrofluids have demonstrated great potential for sorting nonmagnetic micro-particles by size. Most of the existing techniques use single phase ferrofluids by pushing micro-particles to channel walls; the sorting speed is thus hindered. We demonstrate a novel sorting strategy by co-flowing a ferrofluid and a non-magnetic fluid in microchannels. Due to the magnetic force, the particles migrate across the ferrofluid stream at size-dependent velocities as they travel downstream. The laminar interface between the two fluids functions as a virtual boundary to accumulate particles, resulting in effective separation of particles. A stable and sharp interface is important to the success of this sorting technique. We investigate several factors that affect sorting efficiency, including magnetic field, susceptibility difference of the fluids, flow velocity, and channel geometry.
Magnetophoretic control of water droplets in bulk ferrofluid
NASA Astrophysics Data System (ADS)
Katsikis, Georgios; Bréant, Alexandre; Prakash, Manu
2015-11-01
We present a microfluidic platform for 2-D manipulation of water droplets immersed in bulk oil-based ferrofluid. Although non-magnetic, the droplets are exclusively controlled by magnetic fields, without any pressure-driven flow. The diphasic fluid layer is trapped in a submillimeter Hele-Shaw chamber that includes permalloy tracks on its substrate. An in-plane rotating magnetic field magnetizes the permalloy tracks, thus producing local magnetic gradients, while an orthogonal magnetic field magnetizes the bulk ferrofluid. To minimize the magnetostatic energy of the system, droplets are attracted towards the locations of the tracks where ferrofluid is repelled. Using this technique, we demonstrate synchronous propagation of water droplets, analyze PIV data of the bulk ferrofluid flow and study the kinematics of propagation. In addition, we show droplet break-up, merging and derive relevant scaling laws. Finally, we discuss future applications owing to the biocompatibility of the droplets.
Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets.
Alghane, M; Chen, B X; Fu, Y Q; Li, Y; Desmulliez, M P Y; Mohammed, M I; Walton, A J
2012-11-01
We report an experimental and numerical characterization of three-dimensional acoustic streaming behavior in small droplets of volumes (1-30 μl) induced by surface acoustic wave (SAW). We provide a quantitative evidence of the existence of strong nonlinear nature of the flow inertia in this SAW-driven flow over a range of the newly defined acoustic parameter F{NA}=Fλ/(σ/R_{d})≥0.01, which is a measure of the strength of the acoustic force to surface tension, where F is the acoustic body force, λ is the SAW wavelength, σ is the surface tension, and R{d} is the droplet radius. In contrast to the widely used Stokes model of acoustic streaming, which generally ignores such a nonlinearity, we identify that the full Navier-Stokes equation must be applied to avoid errors up to 93% between the computed streaming velocities and those from experiments as in the nonlinear case. We suggest that the Stokes model is valid only for very small acoustic power of ≤1 μW (F{NA}<0.002). Furthermore, we demonstrate that the increase of F{NA} above 0.45 induces not only internal streaming, but also the deformation of droplets. PMID:23214873
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Knight, E.; Yang, X.; Patton, H. J.
2013-12-01
A goal of the Source Physics Experiments (SPE) is to develop explosion source models expanding monitoring capabilities beyond empirical methods. The SPE project combines field experimentation with numerical modelling. The models take into account non-linear processes occurring from the first moment of the explosion as well as complex linear propagation effects of signals reaching far-field recording stations. The hydrodynamic code CASH is used for modelling high-strain rate, non-linear response occurring in the material near the source. Our development efforts focused on incorporating in-situ stress and fracture processes. CASH simulates the material response from the near-source, strong shock zone out to the small-strain and ultimately the elastic regime where a linear code can take over. We developed an interface with the Spectral Element Method code, SPECFEM3D, that is an efficient implementation on parallel computers of a high-order finite element method. SPECFEM3D allows accurate modelling of wave propagation to remote monitoring distance at low cost. We will present CASH-SPECFEM3D results for SPE1, which was a chemical detonation of about 85 kg of TNT at 55 m depth in a granitic geologic unit. Spallation was observed for SPE1. Keeping yield fixed we vary the depth of the source systematically and compute synthetic seismograms to distances where the P and Rg waves are separated, so that analysis can be performed without concern about interference effects due to overlapping energy. We study the time and frequency characteristics of P and Rg waves and analyse them in regard to the impact of free-surface interactions and rock damage resulting from those interactions. We also perform traditional CMT inversions as well as advanced CMT inversions, developed at LANL to take into account the damage. This will allow us to assess the effect of spallation on CMT solutions as well as to validate our inversion procedure. Further work will aim to validate the developed models with the data recorded on SPEs. This long-term goal requires taking into account the 3D structure and thus a comprehensive characterization of the site.
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered. PMID:25871228
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
Hydrodynamic model of wave-ordered structures formed by ion bombardment of solids
NASA Astrophysics Data System (ADS)
Rudy, A. S.; Smirnov, V. K.
1999-10-01
The model of a wave-ordered structures (WOS) formed by ion-bombardment on a surfaces of amorphous materials is put forward. The model is based on the assumption that amorphous layer under ion-bombardment may be considered as Newtonian fluid on a hard substrate in the field of external force. Within this approach the mathematical model of an amorphous layer is formulated as a boundary value problem for Navier-Stokes and continuity equations for incompressible liquid. Analysis of the problem results in two quasi-stationary spatial-periodic solutions governed by two control parameters: one of them a⊥ is a capillary constant under a vertical ion beam incidence, normalized to layer thickness, another is an angle of incidence Θ. In the general case a capillary constant a⊥(L,Θ) is a convex function of both variables viz. normalized spatial-period L and an angle of incidence Θ. With energy E0=9 keV this function exhibits a local maximum at L=1.77,Θ=50.4∘ which is already global a⊥c=0.375 when E0=5 keV and (as judged by indirect measurements) becomes more convex with further energy reduction. Collation of a⊥(L,Θ) with experimental data reveals that the observed maximum value of capillary constant a⊥ob=0.367, which due to an inherent supercriticality is a little bit lower than a⊥c, falls at Θ=55∘, i.e., with energy diminution angular range should contract to this point. This outcome is consistent with our experimental results on N2+-Si system, manifesting that angular range reduces to a small vicinity of Θcin=55∘ when ion energy tends to minimum energy of WOS formation E0=1.5 keV.
Torque measurements on ferrofluid cylinders in rotating magnetic fields
NASA Astrophysics Data System (ADS)
Rinaldi, Carlos; Gutman, Fernando; He, Xiaowei; Rosenthal, Adam D.; Zahn, Markus
2005-03-01
We study the response of magnetic nanoparticle suspensions (ferrofluids) to uniform rotating magnetic fields generated by a two-pole three-phase magnetic induction motor stator winding. Measurements of the torque required to rotate a polycarbonate spindle submerged in ferrofluid subjected to co-rotating and counter-rotating fields yield experimental observations of negative magnetoviscosity in a cylindrical Couette geometry, conceptually similar to the observations of Bacri et al. (Phys. Rev. Lett. 75 (1995) 2128) in a Poiseuille flow under an oscillating magnetic field. Further measurements are presented for the torque required to restrain a spindle when it is (i) entirely filled with ferrofluid, (ii) entirely surrounded with ferrofluid, and (iii) both entirely filled and surrounded with ferrofluid. Some of the results for the spindle either entirely filled or entirely surrounded with ferrofluid are compared to theoretical expressions obtained from the ferrohydrodynamic equations using a rigorous regular perturbation expansion in the small parameter Ωτ, where Ω is the applied field frequency and τ is the effective magnetic relaxation time of the suspension.
Static and Dynamic Contact Angles of Immersed Ferrofluid Droplets
NASA Astrophysics Data System (ADS)
Chatterjee, Souvick; Bhowmik, Dipanwita; Mukhopadhyay, Achintya; Ganguly, Ranjan
2013-11-01
Ferrofluid plug driven micro-pumps are useful for manipulating micro-volume of liquids by providing remote actuation using a localized magnetic field gradient. Inside a microchannel, the ferrofluid experiences combined actions of different relevant body forces. While the pressure, viscous and magnetic forces can be estimated using established techniques, the surface tension force requires information about the contact angle between the ferrofluid and glass capillary wall. We address this phenomenon through experimental characterization of static and dynamic contact angles of oil based ferrofluid (EFH3) droplets on glass surface immersed in pure or surfacted distilled water. The equilibrium static contact angle is found to significantly reduce in presence of a magnetic field. Dynamic contact angles are measured through high-speed imaging as the ferrofluid droplets slide along an inclined glass surface. Variation of contact angle hysteresis, which falls outside the Hoffmann Tanner equation for this case, is also investigated as a function of contact line velocity. A strong dependence is found between the contact angle hysteresis and the wetting time. Findings of the work is useful for designing ferrofluid plug-driven microfluidic plugs for different lab-on-a-chip applications.
Thin viscous ferrofluid film in a magnetic field
NASA Astrophysics Data System (ADS)
Conroy, Devin T.; Matar, Omar K.
2015-09-01
We consider a thin, ferrofluidic film flowing down an inclined substrate, under the action of a magnetic field, bounded above by an inviscid gas. Its dynamics are governed by a coupled system of the steady Maxwell's, the Navier-Stokes, and the continuity equations. The magnetization of the film is a function of the magnetic field and may be prescribed by a Langevin function. We make use of a long-wave reduction in order to solve for the dynamics of the pressure and velocity fields inside the film. In addition, we investigate the problem in the limit of a large magnetic permeability. Imposition of appropriate interfacial conditions allows for the construction of an evolution equation for the interfacial shape via use of the kinematic condition. The resultant one-dimensional equations are solved numerically using spectral methods. The magnetic effects give rise to a non-local contribution. We conduct a parametric study of both the linear and nonlinear stabilities of the system in order to evaluate the effects of the magnetic field. Through a linear stability analysis, we verify that the Maxwell's pressure generated from a normally applied magnetic field is destabilizing and can be used to control the size and shape of lobes and collars on the free surface. We also find that in the case of a falling drop, the magnetic field causes an increase in the velocity and capillary ridge of the drop.
Viscous ferrofluid films under the effects of magnetic fields
NASA Astrophysics Data System (ADS)
Conroy, Devin; Wray, Alex; Matar, Omar
2014-11-01
We consider a thin, ferrofluidic film flowing down an inclined substrate, under the action of a magnetic field, bounded above by an inviscid gas. The fluid is assumed to be weakly-conducting. Its dynamics are governed by a coupled system of the steady Maxwell's, the Navier-Stokes, and the continuity equation. The magnetisation of the film is a function of the magnetic field, and may be prescribed by a Langevin function. We make use of a long-wave reduction in order to solve for the dynamics of the pressure and velocity fields inside the film. The potential in the gas phase is solved with the use of Fourier Transforms. Imposition of appropriate interfacial conditions allows for the construction of an evolution equation for the interfacial shape via use of the kinematic condition. The magnetic effects give rise to a non-local contribution. We conduct a parametric study of both the linear and nonlinear stability of the system in order to evaluate the effects of the magnetic field. EPSRC DTG Studentship (AWW).
NASA Astrophysics Data System (ADS)
Suslov, Sergey A.; Bozhko, Alexandra A.; Putin, Gennady F.; Sidorov, Alexander S.
2012-11-01
Study of Boussinesq convection in a vertical differentially heated fluid layer is one of classical problems in hydrodynamics. It is well known that as the value of fluid's Grashof number increases the basic flow velocity profile becomes unstable with respect to stationary shear-driven disturbances (at Prandtl numbers Pr < 12.5) or thermogravitational waves propagating vertically (at larger values of Prandtl number). However linear stability studies of a similar flow of magnetopolarizable nanosuspensions (ferrofluids) placed in a uniform magnetic field perpendicular to a fluid layer predicted the existence of a new type of instability, oblique waves, that arise due to the differential local magnetisation of a non-uniformly heated fluid. The existence of such (thermomagnetic) waves has now been confirmed experimentally using a kerosene-based ferrofluid with magnetite particles of the average size of 10 nm stabilized with oleic acid. The heat transfer rate measurements using thermocouples and flow visualization using a thermosensitive film and an infrared camera have been performed. Perturbation energy analysis has been used to determine the physical nature of various observed instability patterns and quantitatively distinguish between thermogravitational and thermomagnetic waves.
Linear viscoelasticity of an inverse ferrofluid.
de Gans, B J; Blom, C; Philipse, A P; Mellema, J
1999-10-01
A magnetorheological fluid consisting of colloidal silica spheres suspended in an organic ferrofluid is described. Its linear viscoelastic behavior as a function of frequency, magnetic field strength, and silica volume fraction was investigated with a specially designed magnetorheometer. The storage modulus G' is at least an order of magnitude larger than the loss modulus G" at all magnetic field strengths investigated. G' does depend only weakly on frequency, and linearly on volume fraction. A model is presented for the high frequency limit of the storage modulus G'(infinity). In the model our system is treated as a collection of single noninteracting chains of particles. Assuming a dipolar magnetic interaction, theory and experiment show reasonable agreement at high frequencies. PMID:11970308
Viscoelasticity of mono- and polydisperse inverse ferrofluids.
Saldivar-Guerrero, Ruben; Richter, Reinhard; Rehberg, Ingo; Aksel, Nuri; Heymann, Lutz; Rodriguez-Fernández, Oliverio S
2006-08-28
We report on measurements of a magnetorheological model fluid created by dispersing nonmagnetic microparticles of polystyrene in a commercial ferrofluid. The linear viscoelastic properties as a function of magnetic field strength, particle size, and particle size distribution are studied by oscillatory measurements. We compare the results with a magnetostatic theory proposed by De Gans et al. [Phys. Rev. E 60, 4518 (1999)] for the case of gap spanning chains of particles. We observe these chain structures via a long distance microscope. For monodisperse particles we find good agreement of the measured storage modulus with theory, even for an extended range, where the linear magnetization law is no longer strictly valid. Moreover we compare for the first time results for mono- and polydisperse particles. For the latter, we observe an enhanced storage modulus in the linear regime of the magnetization. PMID:16965057
Simard, J Marc; Pampori, Adam; Keledjian, Kaspar; Tosun, Cigdem; Schwartzbauer, Gary; Ivanova, Svetlana; Gerzanich, Volodymyr
2014-07-15
Traumatic brain injury (TBI) caused by an explosive blast (blast-TBI) is postulated to result, in part, from transvascular transmission to the brain of a hydrodynamic pulse (a.k.a., volumetric blood surge, ballistic pressure wave, hydrostatic shock, or hydraulic shock) induced in major intrathoracic blood vessels. This mechanism of blast-TBI has not been demonstrated directly. We tested the hypothesis that a blast wave impacting the thorax would induce a hydrodynamic pulse that would cause pathological changes in the brain. We constructed a Thorax-Only Blast Injury Apparatus (TOBIA) and a Jugular-Only Blast Injury Apparatus (JOBIA). TOBIA delivered a collimated blast wave to the right lateral thorax of a rat, precluding direct impact on the cranium. JOBIA delivered a blast wave to the fluid-filled port of an extracorporeal intravenous infusion device whose catheter was inserted retrograde into the jugular vein, precluding lung injury. Long Evans rats were subjected to sublethal injury by TOBIA or JOBIA. Blast injury induced by TOBIA was characterized by apnea and diffuse bilateral hemorrhagic injury to the lungs associated with a transient reduction in pulse oximetry signals. Immunolabeling 24 h after injury by TOBIA showed up-regulation of tumor necrosis factor alpha, ED-1, sulfonylurea receptor 1 (Sur1), and glial fibrillary acidic protein in veins or perivenular tissues and microvessels throughout the brain. The perivenular inflammatory effects induced by TOBIA were prevented by ligating the jugular vein and were reproduced using JOBIA. We conclude that blast injury to the thorax leads to perivenular inflammation, Sur1 up-regulation, and reactive astrocytosis resulting from the induction of a hydrodynamic pulse in the vasculature. PMID:24673157
Pampori, Adam; Keledjian, Kaspar; Tosun, Cigdem; Schwartzbauer, Gary; Ivanova, Svetlana; Gerzanich, Volodymyr
2014-01-01
Abstract Traumatic brain injury (TBI) caused by an explosive blast (blast-TBI) is postulated to result, in part, from transvascular transmission to the brain of a hydrodynamic pulse (a.k.a., volumetric blood surge, ballistic pressure wave, hydrostatic shock, or hydraulic shock) induced in major intrathoracic blood vessels. This mechanism of blast-TBI has not been demonstrated directly. We tested the hypothesis that a blast wave impacting the thorax would induce a hydrodynamic pulse that would cause pathological changes in the brain. We constructed a Thorax-Only Blast Injury Apparatus (TOBIA) and a Jugular-Only Blast Injury Apparatus (JOBIA). TOBIA delivered a collimated blast wave to the right lateral thorax of a rat, precluding direct impact on the cranium. JOBIA delivered a blast wave to the fluid-filled port of an extracorporeal intravenous infusion device whose catheter was inserted retrograde into the jugular vein, precluding lung injury. Long Evans rats were subjected to sublethal injury by TOBIA or JOBIA. Blast injury induced by TOBIA was characterized by apnea and diffuse bilateral hemorrhagic injury to the lungs associated with a transient reduction in pulse oximetry signals. Immunolabeling 24 h after injury by TOBIA showed up-regulation of tumor necrosis factor alpha, ED-1, sulfonylurea receptor 1 (Sur1), and glial fibrillary acidic protein in veins or perivenular tissues and microvessels throughout the brain. The perivenular inflammatory effects induced by TOBIA were prevented by ligating the jugular vein and were reproduced using JOBIA. We conclude that blast injury to the thorax leads to perivenular inflammation, Sur1 up-regulation, and reactive astrocytosis resulting from the induction of a hydrodynamic pulse in the vasculature. PMID:24673157
Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.
2004-01-01
Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.
Motion of Ferrofluid Droplets Under Oscillating Magnetic Field
NASA Astrophysics Data System (ADS)
Gu, Yu; Chow, Huiyanangel; Morris, Karl
Ferrofluids are stable, colloidal suspensions of single-domain ferromagnetic particles of nanometer size. Because of their good sealing properties and ease of actuation, ferrofluids are ideal for applications in Lab-On-Chip, or micro-total analysis systems (μTAS). In particular, because of their changing viscosity and surface properties under magnetic fields, as well as previously reported nonlinear behavior in bulk volumes, understanding the periodic movement of ferrofluid droplets for applications in pumping, valving and switching is important. We characterize the movement of ferrofluid droplets with volumes from 80 nL to 200 nL under oscillating magnetic fields in the frequency range 1Hz to 100Hz. Oil-based ferrofluid droplets are placed in circular cross-sectional capillaries and motion is recorded using a high-speed camera, then distilled using computer-assisted image analysis. Kinematics variables such as the position and velocity of the droplets' centers of mass are observed. Nonlinear behaviors in droplet shape and travel distance per cycle of actuation are also presented. This work was supported by the Research Corporation for Science Advancement.
Sink-float ferrofluid separator applicable to full scale nonferrous scrap separation
NASA Technical Reports Server (NTRS)
1973-01-01
Design and performance of a ferrofluid levitation separator for recovering nonferrous metals from shredded automobiles are reported. The scrap separator uses an electromagnet to generate a region of constant density within a pool of ferrofluid held between the magnetic poles; a saturated kerosene base ferrofluid as able to float all common industrial metals of interest. Conveyors move the scrap into the ferrofluid for separation according to density. Results of scrap mixture separation studies establish the technical feasibility of relatively pure aluminum alloy and zinc alloy fractions from shredded automobile scrap by this ferrofluid levitation process. Economic projections indicate profitable operation for shredders handling more than 300 cars per day.
Electromagnetic induction by ferrofluid in an oscillating heat pipe
NASA Astrophysics Data System (ADS)
Monroe, J. G.; Vasquez, E. S.; Aspin, Z. S.; Walters, K. B.; Berg, M. J.; Thompson, S. M.
2015-06-01
Thermal-to-electrical energy conversion was demonstrated using an oscillating heat pipe (OHP) filled with ferrofluid and equipped with an annular-type solenoid. The OHP was subjected to a 100 °C axial temperature difference allowing the ferrofluid to passively oscillate through the solenoid, thus accomplishing electromagnetic induction. The measured solenoid voltage consisted of aperiodic pulses with dominant frequencies between 2 and 5 Hz and peak-to-peak amplitudes approaching 1 mV. Despite exposure to the thermal and phase change cycling within the OHP, nanoparticle morphologies and magnetic properties of the ferrofluid remained intact. This energy harvesting method allows for combined thermal management and in-situ power generation.
Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids.
Shokrollahi, H
2013-07-01
This paper is aimed at conducting a survey of the synthetic methods and magnetic properties of nanoparticles as ferrofluids used in biomedicine. As compared with other works in the field, the distinctive feature of the current work is the systematic study of recent advances in ferrofluids utilized in hyperthermia and magnetic resonance imaging (MRI). The most important feature for application of ferrofluids is super-paramagnetic behavior of magnetic cores with relatively high saturation magnetization. Although Fe3O4 nanoparticles have traditionally been used in medicine; the modified Mn-ferrite has recently received special attention due to its higher saturation magnetization and r2-relaxivity as a contrast agent in MRI. Co-ferrite nanoparticles are also good candidates for hyperthermia treatment because of their high coercivity and magnetocrystalline anisotropy. The thermal decomposition and hydrothermal methods are good candidates for obtaining appropriate super-paramagnetic particles. PMID:23623058
Ferrofluid nucleus phase transitions in an external uniform magnetic field
NASA Astrophysics Data System (ADS)
M. Tanygin, B.; I. Shulyma, S.; F. Kovalenko, V.; V. Petrychuk, M.
2015-10-01
The phase transition between a massive dense phase and a diluted superparamagnetic phase has been studied by means of a direct molecular dynamics simulation. The equilibrium structures of the ferrofluid aggregate nucleus are obtained for different values of a temperature and an external magnetic field magnitude. An approximate match of experiment and simulation has been shown for the ferrofluid phase diagram coordinates “field-temperature”. The provided phase coexistence curve has an opposite trend comparing to some of known theoretical results. This contradiction has been discussed. For given experimental parameters, it has been concluded that the present results describe more precisely the transition from linear chains to a dense globes phase. The theoretical concepts which provide the opposite binodal curve dependency trend match other experimental conditions: a diluted ferrofluid, a high particle coating rate, a high temperature, and/or a less particles coupling constant value.
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm. PMID:23787680
Experimental demonstration of metamaterial ``multiverse'' in a ferrofluid
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N.
2013-06-01
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2+1 dimensional Minkowski spacetime [1]. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
Shape Transformation of Fluctuating Vesicles Filled with a Ferrofluid Emulsion
NASA Astrophysics Data System (ADS)
Tao, Zhang; Yafei, Wang; Gang, Hu
2005-03-01
By transferring inverse double emulsion (O/W/O) droplets from an oil phase into a water phase we have assembled asymmetric vesicles containing monodisperse submicron-sized emulsion droplets, which are made of an oil-based ferrofluid. Under a magnetic field the submicron-sized ferrofluid droplets trapped inside flexible vesicles form chain structures, which depend on the size and the shape of vesicles. The formation of chains of trapped ferrofluid droplets can also induce shape changes in fluctuating vesicles. We examine the metastable shapes of lipid vesicles manipulated by an external magnetic field. The responsive vesicles provide a model system to study the topological and rheological properties of biological membranes. The equilibrium shapes and stability of the vesicles under various ionic strengths are also studied.
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
TOXLINE Toxicology Bibliographic Information
Smolyaninov II; Yost B; Bates E; Smolyaninova VN
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2015-06-01
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638
Linear and nonlinear magnetic properties of ferrofluids.
Szalai, I; Nagy, S; Dietrich, S
2015-10-01
Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983)] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data. PMID:26565247
Linear and nonlinear magnetic properties of ferrofluids
NASA Astrophysics Data System (ADS)
Szalai, I.; Nagy, S.; Dietrich, S.
2015-10-01
Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001), 10.1103/PhysRevE.64.041405] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983), 10.1080/00268978300100621] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data.
Printing microstructures in a polymer matrix using a ferrofluid droplet
NASA Astrophysics Data System (ADS)
Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.
2016-03-01
We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry.
Magnetic Sensing with Ferrofluid and Fiber Optic Connectors
Homa, Daniel; Pickrell, Gary
2014-01-01
A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI) interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications. PMID:24573312
The effects of polydispersity on the initial susceptibilities of ferrofluids
NASA Astrophysics Data System (ADS)
Camp, Philip J.; Elfimova, Ekaterina A.; Ivanov, Alexey O.
2014-11-01
The effects of particle-size polydispersity on the initial susceptibilities of concentrated ferrofluids are analyzed using a combination of theory and computer simulation. The study is focused on a model ferrofluid with a prescribed magnetic-core diameter distribution, a fixed non-magnetic surface layer (corresponding to a demagnetized layer and adsorbed surfactant) and a combination of dipolar and hard-core interactions. The non-trivial effects of polydispersity are identified by comparing the initial susceptibilities of monodisperse and polydisperse ferrofluids with the same Langevin susceptibility. The theory is based on a correction to the second-order modified mean-field theory arising from a formal Mayer-type cluster expansion; this correction is dependent on a parameter similar to the normal dipolar coupling constant, except that it contains a complicated double average over the particle-size distribution, which means that the initial susceptibility should depend significantly on polydispersity. Specifically, the theory predicts that the initial susceptibility is enhanced significantly by polydispersity. This prediction is tested rigorously against results from Monte Carlo simulations and is found to be robust. The qualitative agreement between theory and simulation is already satisfactory, but the quantitative agreement could be improved by a systematic extension of the cluster expansion. The overall conclusion is that polydispersity should be accounted for carefully in magnetogranulometric analyses of real ferrofluids.
Rheological characterization of a magnetorheological ferrofluid using iron nitride nanoparticles
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Ahuré-Powell, Louise A.; Wereley, Norman M.
2015-05-01
Magnetorheology of a magnetorheological ferrofluid (MRFF) was investigated to study the role of a ferromagnetic nanoparticle (NP) additive in magnetorheological fluids (MRFs). Iron nitride (Fe16N2) NPs, nominally within the diameter range of ˜16-45 nm (spherical NPs) and ˜30-66 nm (cubic NPs), were coated with carboxy-polyethylene glycol (carboxy-PEG) and dispersed in silicone oil in order to produce a magnetic carrier fluid or ferrofluid for two solids loadings: 2 vol. % and 5 vol. %. Conventional spherical carbonyl iron (CI) particles, varying in diameter from 6 to 10 μm, were suspended in the ferrofluid at 25 vol. % solids loading. Rheological properties of the MRFF synthesized with the carboxy-PEG-based ferromagnetic carrier fluid were compared to the MRF synthesized with silicone oil to determine how ferrofluid can influence dynamic viscosity and yield stress. Rheological measurements of both MRF and MRFF samples were carried out using a Paar Physica 300 rheometer to estimate the field-off viscosity and to measure flow curves (i.e., shear stress vs. shear rate) as a function of magnetic field. A Bingham-plastic model was used to characterize the flow curves, and results show that there is an increase in the dynamic viscosity of the MRFF over the MRF. The ferromagnetic carrier fluid greatly increases yield stress as only 2 vol. % of added carboxy-PEG NPs improves the yield stress performance by almost 5%. A second MRFF sample synthesized with 5 vol. % of added carboxy-PEG NPs contained in the ferrofluid significantly enhanced the yield stress performance by 13% over the MRF at the same CI solids loading (25 vol. %).
Torres-Díaz, I; Rinaldi, C
2014-11-21
Ferrofluids are suspensions of magnetic nanoparticles that have the attractive feature of being controlled by applied magnetic fields. Ferrofluids have been studied for decades in an ever growing number of applications that take advantage of their response to applied magnetic fields. Here, we provide a summary of recent advances in established and emerging applications of ferrofluids, including applications in optics, sensors, actuators, seals, lubrication, and static/dynamic magnetically driven assembly of structures. PMID:25277700
Gu, Yu; Valentino, Gianna; Mongeau, Eric
2014-02-01
We present a low-cost, reconfigurable, parallel optofluidic switch that exploits the optical and magnetic properties of water-based ferrofluid. Each switch is composed of an integrated waveguide orthogonally crossing a microfluidic channel containing high-index oil and a ferrofluid plug. The switch is turned ON or OFF by movement of the ferrofluid plug. In contrast to conventional integrated switches, ferrofluid plugs act as switching mechanisms that are portable and reconfigurable. Switches are demonstrated in parallel geometries for single and multimode waveguides. Possible applications include optofluidic memory, multiplexed sensing for lab-on-chip, or frequency-encoded laser excitation. PMID:24514168
Preparation of a biocompatible magnetic film from an aqueous ferrofluid
NASA Astrophysics Data System (ADS)
Albornoz, Cecilia; Jacobo, Silvia E.
2006-10-01
Very promising nanoparticles for biomedical applications or in medical drug targeting are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. Polyvinyl alcohol (PVA) is a unique synthetic biocompatible polymer that can be chemically cross-linked to form a gel. Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. In this paper we report the synthesis of an aqueous ferrofluid and the preparation of a biocompatible magnetic gel with polyvinyl alcohol and glutharaldehyde (GTA). HClO 4 was used to induce the peptization since this kind of ferrofluid does not have surfactant. The magnetic gel was dried to generate a biocompatible film.
Thermodiffusion study in ferrofluids through collinear mirage effect
NASA Astrophysics Data System (ADS)
Silva, A. J.; Gonçalves, M.; Shibli, S. M.
2005-03-01
We studied some thermodiffusion effects for ferrofluid samples with two different kinds of surfactant by mirage effect technique. We focused a laser beam in the sample introducing a heat gradient that provoked ferroparticles mobility (thermodiffusion) and analyzed the behavior of the mirage signal as a function of the pump laser beam intensity, for a fixed frequency. The main results showed that for the ferrofluid with anionic surfactant no thermodiffusion variation was verified, even for the most concentrated sample. On the other hand, for the cationic one we observed an increase in the thermodiffusion with greater ferroparticles concentration. Therefore, we showed that collinear mirage effect technique can be used for detecting Soret effect generated by the thermal interactions between the laser radiation and the highly absorbing material.
Tritium test of a ferro-fluidic rotary seal
Antipenkov, A.; Day, C.; Adami, H. D.
2008-07-15
The ferro-fluidic seal is being investigated as an internal rotary seal for tritium compatible mechanical roots type vacuum pumps. After its successful testing with helium and integration into a small (250 m{sup 3}/h) test roots pump, the seal, made as a cartridge, has been integrated into a special test unit and is currently being tested with tritium in order to define the leak rates and the possible degradation of the ferro-fluid under long term exposure to tritium radiation. The tritium pressure from one side of the seal is 0.125 MPa, the nitrogen pressure from the other side is 0.075 MPa, the rotation speed is maintained at 1500 rpm. The tritium leak through the cartridge contributes to the tritium concentration in the nitrogen, which is continuously measured by an ionisation chamber; the pressure in both chambers is continuously registered by precise pressure gauges. The experimental program is discussed. (authors)
Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids
NASA Astrophysics Data System (ADS)
Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun
We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.
Small-amplitude oscillatory shear magnetorheology of inverse ferrofluids.
Ramos, Jose; de Vicente, Juan; Hidalgo-Alvarez, Roque
2010-06-15
A comprehensive investigation is performed on highly monodisperse silica-based inverse ferrofluids under small-amplitude oscillatory shear in the presence of external magnetic fields up to 1 T. The effect of particle volume fraction and continuous medium Newtonian viscosity is thoroughly investigated. Experimental results for storage modulus are used to validate existing micromechanical magnetorheological models assuming different particle-level field-induced structures. PMID:20345105
Accelerated thermal aging of petroleum-based ferrofluids
NASA Astrophysics Data System (ADS)
Segal, V.; Nattrass, D.; Raj, K.; Leonard, D.
1999-07-01
The effect of elevated temperature on the physical and insulating properties of ferrofluid specifically developed for use as a liquid dielectric (D-fluid) for power transformers has been investigated. The D-fluid was produced as a colloidal mix of a specifically synthesized ferrofluid with a conventional mineral oil, and it was subjected to thermal aging conditions modeled after a typical power transformer where the insulation fluid is expected to retain its dielectric performance for about 40 years of continuous service in a sealed tank. The well-known Arrhenius relationship was employed to model "life in service" for up to 40 years at 105°C which corresponded to holding the samples in sealed jars for 10 weeks at 185°C. Another set of small ampules (5 ml) was prepared to test the main physical properties after even longer aging. D-fluid tested after a period of 34 and 50 weeks at 185°C showed no degradation of thermal or colloid stability. The dielectric colloid was also subjected to a 21 day-long test at 110°C in a sealed jar in the presence of typical transformer materials: copper, cellulose, and silicon steel (so-called "bomb" test). Finally, the ferrofluid went through an oxidation stability test (ASTM D2440). Test results show that the newly developed dielectric colloid satisfies the long-term service requirements the transformer users typically apply to conventional mineral oils.
Experiments of Interfacial Instability on a Ferrofluid Droplet
NASA Astrophysics Data System (ADS)
Chen, Ching-Yao; Cheng, Y.-Z.; Tsai, W.-K.; Miranda, Jose A.
2008-11-01
The interfacial morphologies of an extremely thin layer of ferrofluid droplet under a constant perpendicular magnetic field are investigated. Striking patterns consisting of numerous sub-scale droplets that develop from Rosensweig instability are observed. For a dry plate the breaking pattern of sub-scale droplets can be characterized by a dimensionless magnetic Bond number, Bom. In general, a more pronounced instability, which is evident by a greater number of breaking sub-scale droplets N, arises with a higher Bom. For a magnetic Bond number that is larger than a critical value, the central droplet is torn apart. For a prewetted plate, a nearly flat fluid surface is achieved due to a smaller contact angle, which then leads to virtually evenly distributed sub-scale droplets. A global size for all breaking sub-scale droplets is observed regardless of their initial diameters. On the other hand, when a ferrofluid droplet is immersed in a thin layer of a nonmagnetic fluid, a formation of intriguing interfacial structures is observed, and the development of a hybrid-type ferrohydrodynamic instability is verified, where peak and labyrinthine ferrofluid patterns coexist and share a coupled dynamic evolution.
Dielectric behavior of some ferrofluids in low-frequency fields.
Malaescu, I; Marin, C N
2002-07-01
The dielectric behavior of a ferrofluid with magnetite particles dispersed in kerosene was analyzed taking into account the Schwarz model, concerning the low-frequency dielectric behavior in systems consisting of colloidal particles suspended in electrolytes. For this reason, the complex dielectric permittivity and dielectric loss factor, in the frequency range of 10 Hz-500 kHz, at different temperatures between 20 degrees C and 100 degrees C were measured. Based on these experimental results, the experimental dependencies on both temperature of the relaxation time and activation energy of the relaxation process were analyzed. The obtained results show that the Schwarz model can be applied, in order to explain the low-frequency dielectric behavior of a ferrofluid with magnetite particles in kerosene, if the change of counterion concentration at the surface of colloidal particles is taken into account. Consequently, it is shown that the dielectric spectroscopy can be used in order to analyze the presence of particle agglomerations within ferrofluids. PMID:16290703
Immunomagnetic cell separation, imaging, and analysis using Captivate ferrofluids
NASA Astrophysics Data System (ADS)
Jones, Laurie; Beechem, Joseph M.
2002-05-01
We have developed applications of CaptivateTM ferrofluids, paramagnetic particles (approximately 200 nm diameter), for isolating and analyzing cell populations in combination with fluorescence-based techniques. Using a microscope-mounted magnetic yoke and sample insertion chamber, fluorescent images of magnetically captured cells were obtained in culture media, buffer, or whole blood, while non-magnetically labeled cells sedimented to the bottom of the chamber. We combined this immunomagnetic cell separation and imaging technique with fluorescent staining, spectroscopy, and analysis to evaluate cell surface receptor-containing subpopulations, live/dead cell ratios, apoptotic/dead cell ratios, etc. The acquired images were analyzed using multi-color parameters, as produced by nucleic acid staining, esterase activity, or antibody labeling. In addition, the immunomagnetically separated cell fractions were assessed through microplate analysis using the CyQUANT Cell Proliferation Assay. These methods should provide an inexpensive alternative to some flow cytometric measurements. The binding capacities of the streptavidin- labled Captivate ferrofluid (SA-FF) particles were determined to be 8.8 nmol biotin/mg SA-FF, using biotin-4- fluorescein, and > 106 cells/mg SA-FF, using several cell types labeled with biotinylated probes. For goat anti- mouse IgG-labeled ferrofluids (GAM-FF), binding capacities were established to be approximately 0.2 - 7.5 nmol protein/mg GAM-FF using fluorescent conjugates of antibodies, protein G, and protein A.
Dynamics of Single Chains of Suspended Ferrofluid Particles
NASA Technical Reports Server (NTRS)
Cutillas, S.; Liu, J.
1999-01-01
We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field. Therefore, only motions in this plane are probed. A very dilute sample of a ferrofluid emulsion with a particle volume fraction of 10(exp -5) is used in this experiment. We chose such a low volume fraction to avoid multiple light scattering as well as lateral chain-chain aggregation. DLS measures the dynamic structure factor S(q,t) of the sample (q is the scattering wave vector, t is the time). In the absence of the magnetic field, identical particles of ferrofluid droplets are randomly distributed and S(q,t) reduces to exp(-q(exp 2)2D(sub 0)t). D(sub 0)=(kT/(6(pi)(eta)(a)) is the diffusion coefficient of Brownian particles (where Xi = (6(pi)(eta)(a)) is the Stokes frictional coefficient of a spherical particle in a fluid of viscosity eta). If interactions or polydispersity can not be ignored, an effective diffusion coefficient is introduced. Formally, D(sub eff) is defined as: D(sub eff) = - q(exp -2) partial derivative of (ln(S(q,t)) with respect to time, as t goes to 0. D(sub eff) reduces to D(sub 0) if no interactions and only a few particles size are present. Therefore, we can use DLS to measure particle size. The particle radius was found to be a=0.23 mu m with 7% of polydispersity. In this case, if we vary the scattering angle theta (and so q) we do not have any change in the measured diffusion coefficient: it is q-independent. When a magnetic field is applied, particles aggregate into chains if lambda > 1. We first studied the kinetics of the chain formation when lambda = 406. At a fixed scattering angle, we measured diffusion coefficient D(sub eff) as a function of time. Experimentally, we find that D(sub eff) decreases monotonously with time. Physically, this means that chains are becoming longer and longer. Since we are only sensitive to motions in the scattering plane and since chains have their main axis perpendicular to this plane, the measured diffusion coefficient is the trans-verse diffusion coefficient. We can relate D(sub eff) to the mean number of particles per chain N(t) at a given time and to the diffusion coefficient of an isolated particle D(sub 0) as D(sub eff)=f(N(t))D(sub 0). Since f(N) is known from other recent work, N can be expressed as a function of the time. We found a square root dependency: N(t) proportional to the square root of t. As expected for very low volume fraction, this behavior is characteristic of a diffusion-limited aggregation as suggested by several authors and by our previous work. In this study, we focus on the dependence of the effective diffusion coefficient on the scattering angle and the magnetic field strength. After the magnetic field is applied (lambda = 406) for a long time, typically 6 hours, kinetics of chain formation becomes very slow. Chain size does not vary much over the next hour period. Thus, we can perform different interesting experiments. First, at a fixed magnetic field, we measure the effective diffusion coefficient as a function of the scattering angle (from 5 to 130 deg). Our results show that the measured diffusion coefficient increases linearly with the scattering angle: D(sub eff) proportional to q. If we do the same experiment for different lambda values, D(sub eff) depends on lambda as D(sub eff) proportional to lambda(exp -1/2). We also find for different lambda values that the same asymptotic D(sub eff) value is obtained when q approaches zero. The angle dependency of D(sub eff) suggests that an additional motion exists besides chain drifting. Chain size is constant during experiment, which was verified by measuring the same diffusion coefficient at the beginning and at the end of the angle switching. If chains are rigid, D(sub eff) is independent of q. Therefore, we found that D(sub eff) not only measures the motion of the entire chain but also its internal fluctuations. These internal motions are the fluctuations of the particles in the chain. To understand the q dependency of D(sub eff), let us look at the probing length used. In our study, the characteristic length scale probed is l=2pi/q which is in the range of 0.9
Moridis, George J.; Oldenburg, Curtis M.
2001-01-01
Disclosed are processes for monitoring and control of underground contamination, which involve the application of ferrofluids. Two broad uses of ferrofluids are described: (1) to control liquid movement by the application of strong external magnetic fields; and (2) to image liquids by standard geophysical methods.
Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids
NASA Astrophysics Data System (ADS)
Regmi, Rajesh; Black, Correy; Sudakar, C.; Keyes, P. H.; Naik, Ratna; Lawes, G.; Vaishnava, Prem; Rablau, Cornel; Kahn, David; Lavoie, Melissa; Garg, Vijayendra K.; Oliveira, A. C.
2009-12-01
We prepared Fe3O4 magnetic nanoparticles having diameters of approximately 12 nm by chemical coprecipitation, which were coated with three different fatty acid surfactants: oleic acid, lauric acid, and myristic acid. From x-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy measurements we confirmed that Fe3O4 is the only phase present in the samples. The zero field cooled magnetization curves for the nanoparticles exhibit broad peaks, consistent with superparamagnetic blocking for the polydisperse samples, and a saturation magnetization smaller than that for bulk Fe3O4. Although there are minimal differences in the magnetic properties of the nanoparticles having different surfactants, we find significant changes in the hydrodynamic response depending on chain length. Hyperthermia measurements show considerably larger response for oleic acid-coated samples, while magneto-optical studies indicate that these samples have slower dynamics of aggregation under the influence of a dc field. These results suggest that the magnetohydrodynamic response of ferrofluids can be controlled by judiciously selecting appropriate surfactants.
Modeling of hydrodynamic forces on a finite-sized spherical particle due to a planar shock wave
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Parmar, Manoj; Mehta, Yash; Balachandar, S.
2014-11-01
Shock-particle interaction is a very important phenomenon, for example in the study of explosive dispersal of particles. When conducting simulations involving millions of particles, it is not feasible to resolve the flow around each particle. Therefore the goal here is to obtain an exact analytic solution for shock-particle interaction in the limit of weak shock, and based on which propose a model which can estimate the force on a particle as a finite-strength shock wave passes over it. For the exact solution we consider an acoustic wave passing over a finite-sized rigid spherical particle situated in a viscous compressible ambient fluid. Linearized Navier-Stokes equations are solved to evaluate the (first-order) force that acts upon the particle due to this disturbance (acoustic wave). In the inviscid limit we observe that our force expression is identical to that obtained by Parmar et al., J. Fluid Mech. 699, 352 (2012), although the latter's work was limited to only small particle diameters. However we clearly see the viscous forces to depend on particle size. The overall force thus obtained is compared against DNS results. Our model is able to correctly predict the magnitude of the peak force in addition to the time at which the maximum occurs.
Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj
2015-08-17
Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.
Resistive magneto-hydrodynamical cut-off of Alfvén wave in fully ionized plasmas
Vranjes, J.; Kono, M.
2014-01-15
The term cut-off in the theory of the Alfvén wave is used to describe several different phenomena. In this work, the cut-off due to magnetohydrodynamic resistive damping in fully ionized plasmas is revisited. This cut-off requires short enough wavelengths, it is routinely discussed in numerous works, and graphs depicting it are available even in textbooks. We show that this cut-off is hardly ever possible in real plasmas. This is due to the fact that some essential criteria and conditions become strongly violated in order to achieve the cut-off.
Hydrodynamics of Turning Flocks
NASA Astrophysics Data System (ADS)
Yang, Xingbo; Marchetti, M. Cristina
2015-12-01
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.
NASA Astrophysics Data System (ADS)
Robinson, Alex P. L.
The main aim of this lecture is to provide a broad overview of the area of hydrodynamic simulation. The provision of introductions to a couple of basic algorithms for solving the equations of gas dynamics is a secondary objective. Hydrodynamic simulation in the context of laser-plasma physics and inertial fusion is now a large and mature field, deserving of an entire book (or books…) for a proper treatment. Individual topics will not be treated in great depth, and mathematical detail is avoided where possible. It is hoped that the reader will understand the key aspects of hydrodynamic simulation and the ability to write a very simple 1D hydro-solver with a view to using this knowledge as a "springboard" for more in-depth study.
Formation of magnetoconvection by photoabsorptive methods in ferrofluid layers
NASA Astrophysics Data System (ADS)
Zablotsky, Dmitry; Mezulis, Ansis; Blums, Elmars
2013-04-01
A periodic concentration grating was induced in a layer of ferrofluid by photoabsorption and thermophoresis under the action of the applied uniform magnetic field. The application of the external field causes the appearance of an internal demagnetizing field within the layer and of magnetic forces due to the non-uniform distribution of concentration. The induced magnetic forces cause the appearance of parasitic microconvection within the layer. The experimental observations of the formation stage of the grating are interpreted to explain magnetoconvection, making use of numerical simulations.
Size dependence of magnetorheological properties of cobalt ferrite ferrofluid
NASA Astrophysics Data System (ADS)
Radhika, B.; Sahoo, Rasmita; Srinath, S.
2015-06-01
Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ˜30nm and ˜48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.
The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids
NASA Astrophysics Data System (ADS)
Brojabasi, Surajit; Muthukumaran, T.; Laskar, J. M.; Philip, John
2015-02-01
We investigate the effect of hydrodynamic particle size on the magnetic field induced light transmission and transmitted speckle pattern in water based ferrofluids containing functionalized Fe3O4 nanoparticles of size ranging from 15 to 46 nm. Three water-based magnetic nanofluids, containing Fe3O4 nanoparticles functionalized with poly-acrylic acid (PAA), tetra-methyl ammonium hydroxide (TMAOH) and phosphate, are used in the present study. In all three cases, the transmitted light intensity starts decreasing above a certain magnetic field (called first critical field) and becomes a minimum at another field (second critical field). These two critical fields signify the onset of linear aggregation process and zippering transitions between fully grown chains, respectively. Both these critical fields shift towards a lower magnetic field with increasing hydrodynamic diameter, due to stronger magnetic dipolar interactions. The first and the second critical fields showed a power law dependence on the hydrodynamic diameters. The dipolar resonances occurring at certain values of the scatterer size, leads to the field induced extinction of light. Both the onset of chaining and zippering transitions were clearly evident in the time dependent transmitted light intensity. Above the first critical field, the lobe part of the transmitted intensity and the lobe speckle contrast values increase with increasing external magnetic field due to reduced Brownian motion of the field induced aggregates. The speckle contrast was highest for nanoparticle with the largest hydrodynamic diameter, due to reduced Brownian motion. These results provide better insight into field dependent light control in magnetic colloids, which may find interesting applications in magneto-optical devices.
Wang, Xianping; Yin, Cheng; Sun, Jingjing; Han, Qingbang; Li, Honggen; Sang, Minghuang; Yuan, Wen; Cao, Zhuangqi
2013-11-01
We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos-Hänchen shift, which potentially may be for practical use in novel optical devices. PMID:24216657
Single-mode fiber variable optical attenuator based on a ferrofluid shutter.
Duduś, Anna; Blue, Robert; Uttamchandani, Deepak
2015-03-10
We report on the fabrication and characterization of a single-mode fiber variable optical attenuator (VOA) based on a ferrofluid shutter actuated by a magnetic field created by a low voltage electromagnet. We compare the performance of a VOA using oil-based ferrofluid, with one VOA using water-based 12 ferrofluid, and demonstrate broadband optical attenuation of up to 28 dB with polarization dependent 13 loss of 0.85 dB. Our optofluidic VOA has advantages over MEMS-based VOAs such as simple construction and the absence of mechanical moving parts. PMID:25968370
ERIC Educational Resources Information Center
Lafrance, Pierre
1978-01-01
Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)
Recent development of hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions in the next decade.
A Ferrofluidic Magnetic Micropump for Variable-Flow-Rate Applications
NASA Astrophysics Data System (ADS)
Lee, Chia-Yen; Leong, Jik-Chang; Wang, Yao-Nan; Fu, Lung-Ming; Chen, Sih-Jia
2012-04-01
A novel micropump is proposed comprising two ferrofluidic plugs contained within a circular poly(methyl methacrylate) (PMMA) microchannel and a permanent magnet positioned beneath one of the plugs and driven by a rotating stepping motor. The ferrofluidic plugs are immiscible with the sample fluid. Thus, as the stepping motor rotates, the sample trapped between the two plugs is driven through the circular microchannel and exits the pump via the outlet diffuser. Meanwhile, more sample fluid is drawn into the microchannel on the inlet side. As a result, a continuous pumping effect is achieved. It is shown that the flow rate in the proposed device can be easily controlled by adjusting the rotational velocity of the stepping motor. In addition, for a constant motor velocity, the flow rate can be improved by increasing the circular channel width. The experimental results show that a maximum flow rate of 93 µl/min is obtained given a channel width of 1000 µm and a rotational velocity of 8 rpm. In addition, it is shown that the pump is capable of developing a maximum pressure head of 75 mm water (0.66 kPa) with channel width of 500 µm.
Anisotropy of magnetoviscous effect in structure-forming ferrofluids.
Sreekumari, Aparna; Ilg, Patrick
2015-07-01
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of microstructure formation. PMID:26274161
Anisotropy of magnetoviscous effect in structure-forming ferrofluids
NASA Astrophysics Data System (ADS)
Sreekumari, Aparna; Ilg, Patrick
2015-07-01
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of microstructure formation.
A comparative study of different ferrofluid constitutive equations.
NASA Astrophysics Data System (ADS)
Kaloni, Purna
2011-11-01
Ferrofluids are stable colloidal suspensions of fine ferromagnetic monodomain nanoparticles in a non-conducting carrier fluid. The particles are coated with a surfacant to avoid agglomeration and coagulation.Brownian motion keeps the nanoparticles from settling under gravity. In recent years these fluids have found several applications including in liquid seals in rotary shafts for vacuum system and in hard disk drives of personal computers, in cooling and damping of loud speakers, in shock absorbers and in biomedical applications. A continuum description of ferrofluids was initiated by Neuringer and Rosensweig but the theory had some limitations. In subsequent years,several authors have proposed generalization of the above theory.Some of these are based upon the internal particle rotation concept, some are phemonological, some are based upon a thermodynamic framework, some employ statistical approach and some have used the dynamic mean field approach. The results based upon these theories ane in early stages and inconclusive. Our purpose is, first, to critically examine the basic foundations of these equations and then study the pedictions obtained in all the theories related to an experimental as well as a theoretical study.
Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas E-mail: thj@mpa-garching.mpg.de
2013-03-20
We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas
2013-03-01
We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.
NASA Astrophysics Data System (ADS)
Mojumder, Satyajit; Rabbi, Khan Md.; Saha, Sourav; Hasan, MN; Saha, Suvash C.
2016-06-01
In this study magneto-hydrodynamic convection in a half-moon shaped cavity filled with ferrofluid has been analyzed numerically. The cavity has two semi-circular bottom heaters and effect of the distance between these two heaters (λ = 0.1 , 0.4) has been thoroughly investigated. Numerical simulation has been carried out for a wide range of Rayleigh number (Ra =103 ∼107), Hartmann number (Ha = 0 ∼ 100) and inclination angle of magnetic field (γ = 0 ° ∼ 90 °) to understand the flow field, thermal field and entropy generation respectively. Cobalt-kerosene and Fe3 O4 -water ferrofluids are used for the present investigation and considered as a single phase fluid. Galerkin weighted residual method of finite element analysis has been used for numerical solution. The code validation and grid independency test have been carried out to justify the numerical accuracy. It has been observed that increment of magnetic field reduces the heat transfer rate, whereas increment of heater distance augments the heat transfer rate significantly. Results are discussed on the basis of Nusselt number (Nu), Bejan number (Be) and shown by contours and 3D plots. It has also been found that λ = 0.4 always shows better heat transfer rate and entropy optimization.
Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application.
Singh, Avanish Pratap; Mishra, Monika; Chandra, Amita; Dhawan, S K
2011-11-18
This paper deals with the preparation of graphene oxide-ferrofluid-cement nanocomposites to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) in the 8.2-12.4 GHz frequency range. It has been observed that incorporation of graphene oxide (30 wt%) along with an appropriate amount of ferrofluid in the cement matrix leads to a shielding effectiveness of 46 dB (>99% attenuation).The presence of graphene oxide and ferrofluid in the cement leads to strong polarizations and magnetic losses that consequently result in higher shielding effectiveness compared to pristine cement. The resulting nanocomposites have shown Shore hardness of 54 and dc conductivity of 10.40 S cm( - 1). SEM reveals the homogeneous dispersion of graphene oxide and ferrofluid in the cement matrix. PMID:22024967
NASA Astrophysics Data System (ADS)
Lauga, Eric
2016-01-01
Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.
Flow of immiscible ferrofluids in a planar gap in a rotating magnetic field
Sule, Bhumika; Torres-Díaz, Isaac; Rinaldi, Carlos
2015-07-15
Analytical solutions are obtained for the steady, fully developed flow of two layers of immiscible ferrofluids of different thicknesses between two parallel plates. Interfacial linear and internal angular momentum balance relations are derived for the case when there is a ferrofluid-ferrofluid interface to obtain the translational and spin velocity profiles in the gap. As expected for the limit of low applied field amplitude, the magnitude of the translational velocity is directly proportional to the frequency of the applied magnetic field and to the square of the magnetic field amplitude. Expressions for the velocity profiles are obtained for the zero spin viscosity and non-zero spin viscosity cases and the effect of applied pressure gradient on the flows is studied. The spin velocity in both ferrofluid phases is in the direction of the rotating magnetic field, except for cases of extreme applied pressure gradients for which the fluid vorticity opposes the spin. We find that for the case of non-zero spin viscosity, flow reversals are predicted using representative ferrofluid property values and field conditions. The unique predictions of the solution with non-zero spin viscosity could be used to experimentally test the existence of couple stresses in ferrofluids and the validity of previously reported values of the so-called spin viscosity.
Gravity waves in a realistic atmosphere.
NASA Technical Reports Server (NTRS)
Liemohn, H. B.; Midgley, J. E.
1966-01-01
Internal atmospheric gravity waves in isothermal medium, solving hydrodynamic equations, determining wave propagation in realistic atmosphere for range of wave parameters, wind amplitude, reflected energy, etc
Label-free cellular manipulation and sorting via biocompatible ferrofluids.
Kose, Ayse R; Fischer, Birgit; Mao, Leidong; Koser, Hur
2009-12-22
We present a simple microfluidic platform that uses biocompatible ferrofluids for the controlled manipulation and rapid separation of both microparticles and live cells. This low-cost platform exploits differences in particle size, shape, and elasticity to achieve rapid and efficient separation. Using microspheres, we demonstrate size-based separation with 99% separation efficiency and sub-10-microm resolution in <45 s. We also show continuous manipulation and shape-based separation of live red blood cells from sickle cells and bacteria. These initial demonstrations reveal the potential of ferromicrofluidics in significantly reducing incubation times and increasing diagnostic sensitivity in cellular assays through rapid separation and delivery of target cells to sensor arrays. PMID:19995975
Concentration and temperature effect in microstructure of ferrofluids
NASA Astrophysics Data System (ADS)
Török, Gy.; Lebedev, V. T.; Bica, D.; Vékás, L.; Avdeev, M. V.
2006-05-01
The spatial correlations in magnetite-based ferrofluids (FF) with pentanol carrier have been investigated by small-angle neutron scattering, as dependent on the concentration of magnetic phase ( C=0.6-20 vol%) and temperature (20-85 °C). Some peculiarities in the structure of FF were detected. An anomalous increase of short range order by heating of low-concentrated FF ( C˜0.6-4.0 vol%); the formation of short range order at ambient temperature which weakens at growing concentrations C=7-14 vol% and the existence of a stable structure at the highest concentration C˜20 vol% when particles' shell interpenetrate. Neutron scattering data are discussed with regard to the particles' intrinsic magnetisation enhancement induced by ordering.
NASA Astrophysics Data System (ADS)
Jeon, Sangyong; Heinz, Ulrich
Hydrodynamics has been successful in providing a good description of the bulk dynamics in ultra-relativistic heavy ion collisions. In this brief review, we provide basics of the theory of viscous hydrodynamics. Topics covered include derivation of the 2nd order viscous hydrodynamics from the linear response theory and kinetic theory, viscous anisotropic hydrodynamics, and numerical implementation of relativistic hydrodynamics.
Interfacial stress balances in structured continua and free surface flows in ferrofluids
Chaves, Arlex; Rinaldi, Carlos
2014-04-15
Interfacial linear and internal angular momentum balances are obtained for a structured continuum and for the special case of a ferrofluid, a suspension of magnetic nanoparticles in a Newtonian fluid. The interfacial balance equations account for the effects of surface tension and surface tension gradient, magnetic surface excess forces, antisymmetric stresses, and couple stresses in driving interfacial flows in ferrofluids. Application of the interfacial balance equations is illustrated by obtaining analytical expressions for the translational and spin velocity profiles in a thin film of ferrofluid on an infinite flat plate when a rotating magnetic field is applied with axis of rotation parallel to the ferrofluid/air interface. The cases of zero and non-zero spin viscosity are considered for small applied magnetic field amplitude. Expressions for the maximum translational velocity, slope of the translational velocity profile at the ferrofluid/air interface, and volumetric flow rate are obtained and their use to test the relevance of spin viscosity and couple stresses in the flow situation under consideration is discussed.
Phase behavior of ferrofluid and colloidal spheres and rods in a magnetic field
NASA Astrophysics Data System (ADS)
Islam, M. F.; Lacoste, D.; Lubensky, T. C.; Yodh, A. G.
2001-03-01
We have studied theoretically and experimentally different phases formed by aqueous ferrofluid only, or by mixtures of this ferrofluid with colloidal latex spheres and rods. The ferrofluid is an aqueous suspension of magnetite Fe3O4 particles, of average diameter 20nm. The latex spheres are PMMA particles of diameter 42nm. The rods are fd-virus. In the presence of a magnetic field applied perpendicular to a thin sample layer, a pure ferrofluid forms disordered columns. When latex spheres or rods are added, the mixture shows a transition from a disordered phase of columns to an hexagonal phase of columns. The columns merge into sheets of ferrofluid at higher magnetic field. Theoretically, we regard this phenomenon as a kind of liquid-solid phase transition, and we study the formation and the stability of these phases by a simple mean field theory. We gratefully acknowledge support from NSF (DMR99-71226), MRSEC (DMR00-79909) and a grant from the French Ministry of Foreign Affairs.
Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.
2010-01-01
Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electro-magnet charging time delays. With this control, we show that dynamic actuation of electro-magnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain – an example of precision control of a ferrofluid by magnets acting at a distance. PMID:21218157
López, J. González, Luz E.; Quiñonez, M. F.; Gómez, M. E.; Porras-Montenegro, N.; Zambrano, G.
2014-05-21
Ferrofluids based on magnetic Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} ferrite nanoparticles were prepared by co-precipitation method from aqueous salt solutions of Co (II), ZnSO{sub 4}, and Fe (III) in an alkaline medium. Ferrofluids placed in an external magnetic field show properties that make them interesting as magneto-controllable soft photonic crystals. Morphological and structural characterizations of the samples were obtained from Scanning Electron Microscopy and Transmission Electron Microscopy studies. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature. Herein, the Co{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} samples showed superparamagnetic behavior, according to hysteresis loop results. Taking in mind that the Co-Zn ferrite hysteresis loop is very small, our magnetic nanoparticles can be considered soft magnetic material with interesting technological applications. In addition, by using the plane-wave expansion method, we studied the photonic band structure of 2D photonic crystals made of ferrofluids with the same nanoparticles. Previous experimental results show that a magnetic field applied perpendicular to the ferrofluid plane agglomerates the magnetic nanoparticles in parallel rods to form a hexagonal 2D photonic crystal. We calculated the photonic band structure of photonic crystals by means of the effective refractive index of the magnetic fluid, basing the study on the Maxwell-Garnett theory, finding that the photonic band structure does not present any band gaps under the action of applied magnetic field strengths used in our experimental conditions.
NASA Astrophysics Data System (ADS)
López, J.; González, Luz E.; Quiñonez, M. F.; Gómez, M. E.; Porras-Montenegro, N.; Zambrano, G.
2014-05-01
Ferrofluids based on magnetic Co0.25Zn0.75Fe2O4 ferrite nanoparticles were prepared by co-precipitation method from aqueous salt solutions of Co (II), ZnSO4, and Fe (III) in an alkaline medium. Ferrofluids placed in an external magnetic field show properties that make them interesting as magneto-controllable soft photonic crystals. Morphological and structural characterizations of the samples were obtained from Scanning Electron Microscopy and Transmission Electron Microscopy studies. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature. Herein, the Co0.25Zn0.75Fe2O4 samples showed superparamagnetic behavior, according to hysteresis loop results. Taking in mind that the Co-Zn ferrite hysteresis loop is very small, our magnetic nanoparticles can be considered soft magnetic material with interesting technological applications. In addition, by using the plane-wave expansion method, we studied the photonic band structure of 2D photonic crystals made of ferrofluids with the same nanoparticles. Previous experimental results show that a magnetic field applied perpendicular to the ferrofluid plane agglomerates the magnetic nanoparticles in parallel rods to form a hexagonal 2D photonic crystal. We calculated the photonic band structure of photonic crystals by means of the effective refractive index of the magnetic fluid, basing the study on the Maxwell-Garnett theory, finding that the photonic band structure does not present any band gaps under the action of applied magnetic field strengths used in our experimental conditions.
Generalized hydrodynamics in the transient regime and irreversible thermodynamics.
Eu, Byung Chan
2004-08-15
In this article the thermodynamically consistent formulation of generalized hydrodynamics is reviewed and applications to shock-wave structures, ultrasonic wave absorption and dispersion and microchannel flows of the generalized hydrodynamics so formulated are discussed. The kinematic terms of the constitutive equations in the generalized hydrodynamic equations for liquids, which have been calculated by means of non-equilibrium grand canonical ensemble, are also presented. PMID:15306429
Seo, Hyeon-Seok; Boo, Jin-Hyo; Kim, Youn-Jea
2015-10-01
This study numerically investigated the flow characteristics in a rectangular enclosure filled with oil-based ferrofluid (EFH-1, Ferrotec.) under the influence of external magnetic fields. The rectangular enclosure contained obstacles with different shapes, such as a rectangle and a triangle mounted on the top and bottom wall surfaces. In order to generate external magnetic fields, a permanent magnet was located in the lower part of the rectangular enclosure, and its direction was selected to be either horizontal or vertical. Our results showed that the ferrofluid flow fields were affected by the applied external magnetic field direction and eddy flow phenomena in the working fluid were generated in the vicinity of high magnetic flux density distributions, such as at the edge of the permanent magnet. It was also confirmed that the magnetophoretic force distributions in the analysis model played a significant role in the development of the ferrofluid flow fields. PMID:26726349
Investigating the energy harvesting potential of ferro-fluids sloshing in base-excited containers
NASA Astrophysics Data System (ADS)
Bibo, A.; Masana, R.; King, A.; Li, G.; Daqaq, M. F.
2012-04-01
This paper investigates the potential of designing a vibratory energy harvester which utilizes a ferrofluid sloshing in a seismically excited tank to generate electric power. Mechanical vibrations change the orientational order of the magnetic dipoles in the ferrofluid and create a varying magnetic flux which induces an electromotive force in a coil wound around the tank, thereby generating an electric current according to Faraday's law. Several experiments are performed on a cylindrical container of volume 5x10-5 m3 carrying a ferrofluid and subjected to different base excitation levels. Initial results illustrate that the proposed device can be excited at one or multiple modal frequencies depending on the container's size, can exhibit tunable characteristics by adjusting the external magnetic field, and currently produces 28 mV of open-circuit voltage using a base excitation of 2.5 m/s2 at a frequency of 5.5 Hz.
Paul, Nibedita; Devi, Manasi; Mohanta, Dambarudhar; Saha, Abhijit
2012-02-15
The present work reports on magnetically induced optical activity (such as Faraday rotation and linear dichroism) of pristine and gamma-irradiated gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle-based ferrofluids. The ferrofluids were produced by dispersing N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-coated {approx}9-nm-sized Gd{sub 2}O{sub 3} particles in a carrier fluid of ethanol. The ferrofluids were then irradiated with 1.25 MeV energetic gamma rays (dose: 868 Gy and 2.635 kGy). Irradiation-led formation of a number of point defects was revealed through high resolution electron microscopy. The interaction of light with the ionized point defects is believed to have caused substantial improvement in the magneto-optic response of irradiated magnetic fluids.
NASA Astrophysics Data System (ADS)
Sena, C.; Bailey, C.; Godinho, M. H.; Figueirinhas, J. L.; Palffy-Muhoray, P.; Figueiredo Neto, A. M.
2006-05-01
Magnetic nanoparticles from magnetic colloidal suspensions were incorporated in the urethane/urea elastomer (PU/PBDO) by adding to the prepolymers solution in toluene diverse amounts of magnetite grains. It is shown that ferrofluid grains can be efficiently incorporated into the elastomer according to this procedure. Mechanical and optical experiments performed show that the elastomer preparation procedure (casting) introduces a structural anisotropy on the optically isotropic sample. This fact is put in evidence by the measurements of the Young's moduli and orientation of the sample's optical axis under stress. The dependence of the phase shift of both the pure and ferrofluid-doped elastomer samples under strain is linear, and the strain-optic coefficient is show to be linear with the ferrofluid concentration.
A new method to prepare water based Fe3O4 ferrofluid with high stabilization
NASA Astrophysics Data System (ADS)
Guo, Tongxiao; Bian, Xiufang; Yang, Chuncheng
2015-11-01
A new method to prepare water based Fe3O4 ferrofluid with high stabilization has been reported in this paper. Oleic acid/ polyethylene glycol 4000 (PEG 4000)/agar/oleic acid have been used as surfactants and added to the fluid one after another. X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) method, Fourier transform infrared (FT-IR) spectra and thermogravimetric analysis (TGA) have been used to characterize the structure, component and morphology of magnetic nanoparticles, respectively. We have observed the microstructure of chain-like (or stick-like) structure under applied magnetic field, which composes of several nanoparticles in the width direction and hundreds of nanoparticles in the length direction. Vibrating sample magnetometer (VSM) and Gouy magnetic balance (GMB) have been used to measure the magnetic properties and stability of the ferrofluid. The result shows that the magnetic nanoparticles have high saturation magnetization and the ferrofluid has high stability under magnetic and gravitational field.
Optical properties in one-dimensional graded soft photonic crystals with ferrofluids
NASA Astrophysics Data System (ADS)
Fan, Chunzhen; Wang, Junqiao; Zhu, Shuangmei; He, Jinna; Ding, Pei; Liang, Erjun
2013-05-01
We theoretically investigate the optical properties in one-dimensional graded soft photonic crystals (1D GSPCs). The proposed structure is constituted of the stacked ferrofluids layer and the dielectric layer. Due to the supermagnetic response of the ferromagnetic nanoparticles, they will align in a line under the influence of the initiated magnetic field, thereby modulating the refractive index of the ferrofluids layer. By resorting to the transfer matrix method, the dispersion relation, transmittance and reflectance in 1D GSPCs were calculated. Numerical results show that a broad photonic band gap appears in such systems, which can even be broadened by increasing the volume fraction of ferromagnetic nanoparticles. Moreover, perfect transmittance of our proposed structure can be realized with an increased number of ferrofluid layers. In comparison with conventional PCs materials, 1D GSPCs composed of liquid material offer a very flexible route to implementation, which can be widely used in the application of optical filters, waveguides, reflectors and so on.
NASA Astrophysics Data System (ADS)
Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena
2014-03-01
Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia
NASA Astrophysics Data System (ADS)
Viallet, M.; Goffrey, T.; Baraffe, I.; Folini, D.; Geroux, C.; Popov, M. V.; Pratt, J.; Walder, R.
2016-02-01
This work is a continuation of our efforts to develop an efficient implicit solver for multidimensional hydrodynamics for the purpose of studying important physical processes in stellar interiors, such as turbulent convection and overshooting. We present an implicit solver that results from the combination of a Jacobian-free Newton-Krylov method and a preconditioning technique tailored to the inviscid, compressible equations of stellar hydrodynamics. We assess the accuracy and performance of the solver for both 2D and 3D problems for Mach numbers down to 10-6. Although our applications concern flows in stellar interiors, the method can be applied to general advection and/or diffusion-dominated flows. The method presented in this paper opens up new avenues in 3D modeling of realistic stellar interiors allowing the study of important problems in stellar structure and evolution.
Magnetic-field-induced structural transitions in a ferrofluid emulsion
NASA Astrophysics Data System (ADS)
Ivey, Mark; Liu, Jing; Zhu, Yun; Cutillas, Serge
2001-01-01
A ferrofluid emulsion, subjected to a slowly increasing magnetic field, exhibits a complicated structural behavior: a gas of Brownian particles changes to columnar solid structures due to induced dipole interaction. Two transition (intermediate) structural regimes are observed: (i) randomly distributed chains and particles and (ii) distinct thin columns and randomly distributed chains and particles. Three structural transition magnetic fields are found, one marking each structural transition, from the initial to the final structural regime. A structural diagram of the structural transition magnetic fields, HC, versus particle volume fractions, φ, is constructed experimentally. Theoretical models of scaling calculations, based upon the dominant magnetic interaction in each structural regime, give the three structural transition magnetic-field relations as HC1~φ-1/2, HC2~φ-1/4, and HC3~(φγ/G2)exp(πG/ φ(γ/2)), where γ=0.39 and G=0.29 for our sample. The final end shape of columns and the relative position between columns show that the end-end repulsion between chains is important in the structural formation.
An experimental study on Rosensweig instability of a ferrofluid droplet
NASA Astrophysics Data System (ADS)
Chen, Ching-Yao; Cheng, Z.-Y.
2008-05-01
We experimentally investigate the interfacial morphologies of Rosensweig instability on an extremely thin layer of ferrofluid droplets under a constant perpendicular magnetic field. Striking patterns consisting of numerous subscale droplets that developed from Rosensweig instability are observed. For a dry plate, on which surface tension dominates, the breaking pattern of subscale droplets can be characterized by a dimensionless magnetic Bond number Bom. In general, a more pronounced instability, which is evident by a greater number of breaking subscale droplets N, arises with a higher Bom. For a magnetic Bond number that is larger than a critical value, we identify a new mode of interfacial breakup pattern, where the central droplet is torn apart with major mass loss. In addition, we found that the volume fractions of breaking subscale droplets are strongly affected by the height variation of the initial fluid surface and appear unevenly distributed with dominance of a central droplet. On the other hand, for a prewetted plate, a nearly flat fluid surface is achieved due to a smaller contact angle, which then leads to virtually evenly distributed subscale droplets. A global size for all breaking subscale droplets is observed regardless of their initial diameters. The number of breaking subscale droplets (N) and the diameter of the initial droplet (D) can be approximated by a quadratic proportionality of N ˜D2.
Magnetic field tunability of optical microfiber taper integrated with ferrofluid.
Miao, Yinping; Wu, Jixuan; Lin, Wei; Zhang, Kailiang; Yuan, Yujie; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan
2013-12-01
Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element. PMID:24514542
Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids
NASA Astrophysics Data System (ADS)
Mestrom, Luuk; Lenders, Jos J. M.; de Groot, Rick; Hooghoudt, Tonnis; Sommerdijk, Nico A. J. M.; Vilaplana Artigas, Marcel
2015-07-01
Ferrofluids (FFs) of metal oxide nanoparticles in ionic liquids (ILs) are a potentially useful class of magnetic materials for many applications because of their properties related to temperature/pressure stability, hydrophobicity, viscosity and recyclability. In this work, the screening of several designer surfactants for their stabilizing capabilities has resulted in the synthesis of stable FFs of superparamagnetic 7 ± 2 nm magnetite (Fe3O4) nanoparticles in the hydrophobic IL 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CRMIM][NTf2]). The designed and synthesized 1-butyl-3-(10-carboxydecyl)-1H-imidazol-3-ium bromide (ILC10-COOH) surfactant that combines the same imidazole moiety as the IL with a long alkyl chain ensured compatibility with the IL and increased the steric repulsion between the magnetite nanoparticles sufficiently such that stable dispersions of up to 50 wt% magnetite were obtained according to stability tests in the presence of a magnetic field (0.5-1 Tesla). Cryo-transmission electron microscopy (cryo-TEM) of the IL-based FFs allowed direct visualization of the surfactant-stabilized nanoparticles in the ILs and the native, hardly aggregated state of their dispersion.
Perspectives in coral reef hydrodynamics
NASA Astrophysics Data System (ADS)
Hearn, Clifford J.
2011-06-01
Some developments in coral reef hydrodynamics over the last decade are reviewed with an overview of papers in this special issue. Advances in hydrodynamics based on improved understanding of topographic complexity are illustrated for the reef at Kilo Nalu Observatory and Kaneohe Bay (both in Hawaii). Models of the roughness layer are discussed as a background to numerical models of reef hydrodynamics for Molokai and Guam. Topographic complexity produces spatial temperature variability over reefs creating thermal microclimates which are reported in this issue for the Red Sea. Uptake of ocean nutrients by reefs is controlled by hydrodynamics, and papers in this issue show its critical role in the ecology of a fringing reef at La Réunion Island; nutrient uptake rates are discussed here using new data for Hearn Roughness and Decadal Rugosity. The role of upwelled water by large amplitude internal waves on reefs is reported for the Similan Islands, providing major new evidence for the role of hydrodynamics in the ecology of reefs and its importance to climate change. The review suggests some important areas for new research including simulated corals used in flumes and the field. Major new modeling based on measured roughness maps combined with small scale lattice Boltzmann simulations should be possible in the next decade.
Mössbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain
NASA Astrophysics Data System (ADS)
Polikarpov, D.; Cherepanov, V.; Chuev, M.; Gabbasov, R.; Mischenko, I.; Nikitin, M.; Vereshagin, Y.; Yurenia, A.; Panchenko, V.
2014-04-01
The ferrofluid, based on 57Fe isotope enriched Fe3O4 nanoparticles, was synthesized, investigated by Mössbauer spectroscopy method and injected transcranially in the ventricle of the rat brain. The comparison of the Mössbauer spectra of the initial ferrofluid and the rat brain measured in two hours and one week after the transcranial injection allows us to state that the synthesized magnetic 57Fe3O4 nanoparticles undergo intensive biodegradation in live brain and, therefore, they can be regarded as a promising target for a new method of radionuclide-free Mössbauer brachytherapy.
Meniscus of a ferrofluid around a vertical cylindrical wire carrying electric current.
John, Thomas; May, Kathrin; Stannarius, Ralf
2011-05-01
We study the meniscus profiles of ferrofluids in the magnetic field of a vertical current-carrying wire. Measurements of the free ferrofluid surface profile are quantitatively compared with numerical calculations. The theoretical model leads to a second-order ordinary differential equation. All material parameters are determined in independent experiments, therefore no fitting parameters are involved in the calculations. The experimental results can be modeled by the equilibrium of magnetic, gravitational, and interface tension forces. The classical model that neglects interface tension yields significant deviations from the experimental profiles in the parameter range studied. PMID:21728648
Visualizing complex hydrodynamic features
NASA Astrophysics Data System (ADS)
Kempf, Jill L.; Marshall, Robert E.; Yen, Chieh-Cheng
1990-08-01
The Lake Erie Forecasting System is a cooperative project by university, private and governmental institutions to provide continuous forecasting of three-dimensional structure within the lake. The forecasts will include water velocity and temperature distributions throughout the body of water, as well as water level and wind-wave distributions at the lake's surface. Many hydrodynamic features can be extracted from this data, including coastal jets, large-scale thermocline motion and zones of upwelling and downwelling. A visualization system is being developed that will aid in understanding these features and their interactions. Because of the wide variety of features, they cannot all be adequately represented by a single rendering technique. Particle tracing, surface rendering, and volumetric techniques are all necessary. This visualization effortis aimed towards creating a system that will provide meaningful forecasts for those using the lake for recreational and commercial purposes. For example, the fishing industry needs to know about large-scale thermocline motion in order to find the best fishing areas and power plants need to know water intAke temperatures. The visualization system must convey this information in a manner that is easily understood by these users. Scientists must also be able to use this system to verify their hydrodynamic simulation. The focus of the system, therefore, is to provide the information to serve these diverse interests, without overwhelming any single user with unnecessary data.
Moridis, G.J.; Borglin, S.E.; Oldenburg, C.M.; Becker, A.
1998-03-01
Ferrofluids are stable colloidal suspensions of magnetic particles in various carrier liquids with high saturation magnetizations, which can be manipulated in virtually any fashion, defying gravitational or viscous forces in response to external magnetic fields. In this report, the authors review the results of their investigation of the potential of ferrofluids (1) to accurately and effectively guide reactants (for in-situ treatment) or barrier liquids (low-viscosity permeation grouts) to contaminated target zones in the subsurface using electromagnetic forces, and (2) to trace the movement and position of liquids injected in the subsurface using geophysical methods. They investigate the use of ferrofluids to enhance the efficiency of in-situ treatment and waste containment through (a) accurate guidance and delivery of reagent liquids to the desired subsurface contamination targets and/or (b) effective sweeping of the contaminated zone as ferrofluids move from the application point to an attracting magnet/collection point. They also investigate exploiting the strong magnetic signature of ferrofluids to develop a method for monitoring of liquid movement and position during injection using electromagnetic methods. The authors demonstrated the ability to induce ferrofluid movement in response to a magnetic field, and measured the corresponding magnetopressure. They demonstrated the feasibility of using conventional magnetometry for detecting subsurface zones of various shapes containing ferrofluids for tracing liquids injected for remediation or barrier formation. Experiments involving spherical, cylindrical and horizontal slabs showed a very good agreement between predictions and measurements.
Analysis of galaxy formation with hydrodynamics
NASA Astrophysics Data System (ADS)
Tissera, Patricia B.; Lambas, Diego G.; Abadi, Mario G.
1997-04-01
We present a hydrodynamical code based on the smoothed particle hydrodynamics (SPH) technique implemented in an AP_3M code that is aimed at solving the hydrodynamical and gravitational equations in a cosmological frame. We analyse the ability of the code to reproduce standard tests and perform numerical simulations to study the formation of galaxies in a typical region of a cold dark matter (CDM) model. These numerical simulations include gas and dark matter particles and take into account physical processes such as shock waves, radiative cooling and a simplified model of star formation. We analyse the astrophysical properties of the galactic objects in different models.
Hydrodynamic compressibility of high-strength ceramics
Grady, D.E.
1993-08-01
In this study we have developed the techniques to investigate the hydrodynamic response of high-strength ceramics by mixing these powders with copper powder, preparing compacts, and performing shock compression tests on these mixtures. Hydrodynamics properties of silicon carbide, titanium diboride, and boron carbide to 30 GPa were examined by this method, and hydrodynamic compression data for these ceramics have been determined. We have concluded, however, that the measurement method is sensitive to sample preparation and uncertainties in shock wave measurements. Application of the experimental technique is difficult and further efforts are needed.
Direct observations of field-induced assemblies in magnetite ferrofluids
Mousavi, N. S. Susan; Khapli, Sachin D.; Kumar, Sunil
2015-03-14
Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05–0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity.
Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application.
Beeran, Ansar Ereath; Fernandez, Francis Boniface; Nazeer, Shaiju S; Jayasree, Ramapurath S; John, Annie; Anil, Sukumaran; Vellappally, Sajith; Al Kheraif, Abdul Aziz A; Varma, P R Harikrishna
2015-12-01
Ferrofluid-based manganese (Mn(2+)) substituted superparamagnetic iron oxide nanoparticles stabilized by surface coating with trisodium citrate (MnIOTCs) were synthesized for enhanced hyperthermic activity and use as negative magnetic resonance imaging (MRI) contrast media intended for applications in theranostics. The synthesized MnIOTC materials were characterized based on their physicochemical and biological features. The crystal size and the particle size at the nano level were studied using XRD and TEM. The presence of citrate molecules on the crystal surface of the iron oxide was established by FTIR, TGA, DLS and zeta potential measurements. The superparamagnetic property of MnIOTCs was measured using a vibrating sample magnetometer. Superparamagnetic iron oxide substituted with Mn(2+) with a 3:1 molar concentration of Mn(2+) to Fe(2+) and surface modified with trisodium citrate (MnIO75TC) that exhibited a high T2 relaxivity of 184.6mM(-1)s(-1) and showed excellent signal intensity variation in vitro. Hyperthermia via application of an alternating magnetic field to MnIO75TC in a HeLa cell population induced apoptosis, which was further confirmed by FACS and cLSM observations. The morphological features of the cells were highly disrupted after the hyperthermia experiment, as evidenced from E-SEM images. Biocompatibility evaluation was performed using an alamar blue assay and hemolysis studies, and the results indicated good cytocompatibility and hemocompatibility for the synthesized particles. In the current study, the potential of MnIO75TC as a negative MRI contrast agent and a hyperthermia agent was demonstrated to confirm its utility in the burgeoning field of theranostics. PMID:26595389
Direct observations of field-induced assemblies in magnetite ferrofluids
Mousavi, N. S. Susan
2015-01-01
Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05–0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity. PMID:25829566
Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications
NASA Astrophysics Data System (ADS)
Pal, Souvik; Datta, Amitava; Sen, Swarnendu; Mukhopdhyay, Achintya; Bandopadhyay, Kallol; Ganguly, Ranjan
2011-11-01
We experimentally characterize the performance of a miniature thermomagnetic pump, where suitably imposed temperature and magnetic field gradients are used to drive ferrofluid in a 2 mm diameter glass capillary tube, without application of any external pressure gradient. Such a pump can operate in a hermetically sealed micro electromechanical system configuration without any moving part, and is thus capable of handling microfluidic samples with little risk of contamination. In the experiment, the ferrofluid in the capillary is exposed to a magnetic field using a solenoid; a small resistive heater wrapped on the tube wall is used to create temperature gradient in such a way that the Kelvin body force in the medium produces a net unbalanced axial component. This causes a thermomagnetic pumping action, transporting the ferrofluid in the capillary tube from the colder end to the warmer end. Performance of the thermomagnetic pump is investigated experimentally to characterize the pump pressure head and discharge under different working conditions, namely, the magnetic field strength, heating power, and ferrofluid properties. A comparison with two other field actuation pumps at comparable length scales is also presented. The pump produces higher output at lower power supplies and magnetic field compared to the other two pumps.
NASA Astrophysics Data System (ADS)
Velásquez, A. A.; Urquijo, J. P.
2016-01-01
This work presents the design, assembly and automation of a Faraday experiment for use in characterization of the magneto-optical response of fluids and ferrofluids. The magneto-optical Faraday experiment was automated using programmable equipment, controlled through the IEEE-488 port via Standard Commands for Programmable Instruments executed from a graphical interface developed in LabVIEW software. To calibrate the system the Verdet constants of distilled water and isopropyl alcohol were measured, obtaining an error percentage less than 2% for both fluids. Subsequently we used the system for measuring the Verdet constant of a ferrofluid of iron oxide nanoparticles diluted in distilled water, which was synthesized and, before its dilution, characterized by scanning electron microscopy, room temperature Mössbauer spectroscopy and vibrating sample magnetometry. We found that the Verdet constant of the diluted ferrofluid was smaller than that of distilled water, indicating opposite contributions of the effects of the diamagnetic and paramagnetic phases present in the ferrofluid to the magneto-optical effect. Details of the assembly, control of the experiment and development of the measurements are presented in this paper.
Magnetization and stability study of a cobalt-ferrite-based ferrofluid
NASA Astrophysics Data System (ADS)
Kamali, Saeed; Pouryazdan, Mohsen; Ghafari, Mohammad; Itou, Masayoshi; Rahman, Masoud; Stroeve, Pieter; Hahn, Horst; Sakurai, Yoshiharu
2016-04-01
In this study the structural and magnetization properties of a CoFe2O4-based ferrofluid was investigated using x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), Mössbauer spectroscopy, and magnetic Compton scattering (MCS) measurements. The XRD diagram indicates that the nanoparticles in the ferrofluid are inverse spinel and TEM graph shows that the ferrofluid consists of spherical nanoparticles with an average diameter of 18± 1 nm, in good agreement with the size, 19.4 nm, extracted from line broadening of the XRD peaks. According to EDS measurements the composition of the nanoparticles is CoFe2O4. Mössbauer spectroscopy shows that the cation distributions are (Co0.38Fe0.62)[Co0.62Fe1.38]O4. The MCS measurement, performed at 10 K, indicates that the magnetization of the nanoparticles is similar to magnetization of maghemite and magnetite. While the magnetization of the inverse spinels are in [111] direction, interestingly, the magnetization deduced from MCS is in [100] direction. The CoFe2O4-based ferrofluid is found to be stable at ambient conditions, which is important for applications.
Waves in Radial Gravity Using Magnetic Fluid
NASA Technical Reports Server (NTRS)
Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.
1999-01-01
Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.
NASA Astrophysics Data System (ADS)
Soto-Aquino, D.; Rosso, D.; Rinaldi, C.
2011-11-01
Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe≪2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear rates the Cox-Merz rule ceases to apply.
Algorithm refinement for fluctuating hydrodynamics
Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.
2007-07-03
This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.
NASA Astrophysics Data System (ADS)
Cookman, Janette L.; Flemings, Peter B.
2001-07-01
STORMSED1.0 is a MATLAB TM program that solves the steady-state, linearized, horizontal momentum equations in the along-shelf and cross-shelf directions for a linear shoreline given a constant wind stress and waves of constant amplitude and period. The model provides a quantitative link between storms and sedimentation that may assist geologists interpreting the stratigraphic record. It provides a rapid analytical approach to quantify the sedimentation that results from coastal circulation that may be extended to long time scales and linked to other sedimentation models. In the northern hemisphere, shore-parallel wind, where flow is to the right as the viewer faces the ocean, produces downwelling as the Coriolis force rotates bottom flow from shore-parallel to slightly offshore with increasing water depth. In the shallow and intermediate zones, cross-shelf flow velocities and sediment flux increase offshore and erosion occurs. Seaward, in the deep zone, velocities are constant, wave-effect declines with depth, cross-shelf sediment flux decreases offshore, and deposition results. Shore-parallel winds oriented in the opposite direction produce upwelling and the sedimentation pattern is reversed. The model solves for the current distribution, the sediment concentration profile, the bedload and suspended load, and the sedimentation rate at any node along a continental shelf. The circulation model is based on a wind-driven circulation model derived by Jeffries (1923). Waves are included using Airy wave theory, and the wave-current interaction is quantified using the bottom boundary layer model of Grant and Madsen (1979).
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
Ejection of ferrofluid grains using nonlinear acoustic impulses[emdash] A particle dynamical study
Sen, S.; Manciu, M.; Manciu, F.S. )
1999-09-01
We consider a model dilute ferrofluid with the grains suspended in water (e.g.,[gamma]-Fe[sub 2]O[sub 3]) and subject the system to a strong, homogeneous magnetic field directed perpendicular to the surface such that there is chain formation along the field direction. We show that an appropriate impulse initiated at the base of the container might travel as a nondispersive soliton pulse with sufficient energy to overcome surface tension and eject the ferrofluid grain nearest to the liquid[endash]air interface. The proposed mechanism, if successfully realized in the laboratory, could help design a nozzle-free, ink-jet printer of unparalleled resolution. [copyright] [ital 1999 American Institute of Physics.
Wavelength dependence of the Faraday effect and magnetobirefringence in ferrofluid thin films
NASA Astrophysics Data System (ADS)
Pan, Y. T.; Du, C. W.; Liu, X. D.; Li, Z. G.; Birngruber, R.
1993-05-01
An enhancement of negative Faraday rotation in a dilute ferrofluid was reported near the wavelength of 0.5 μm by Yusuf. The observed phenomenon was explained in terms of a ``small particle resonance.'' The premise of the above explanation is debatable. In order to give a more detailed explanation, measurements of Faraday rotation and magnetobirefringence spectra in dense ferrofluid thin films are reported from 0.5 to 2.7 μm, and a mathematical model is derived taking into account a skew-symmetric dielectric tensor for ferrite particles. The experiments confirm that the negative Faraday rotation is predominantly caused by the wavelength dependence of the off-diagonal elements ɛfxy(λ) of the dielectric tensor of the magnetic particles themselves.
An analytical description of hydrodynamic instabilities
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Sasorov, P. V.
The proper approach to the investigation of the nonlinear stage of hydrodynamic instabilities in a plasma has been discussed. Both the Buneman instability and the beam instability have been considered. A similarity between the nonlinear stage of the beam plasma instability and the process of self-modulation and self-focusing of nonlinear waves is revealed.
Bruners, Philipp Hodenius, Michael Baumann, Martin Oversohl, Jessica; Guenther, Rolf W.; Schmitz-Rode, Thomas Mahnken, Andreas H.
2008-11-15
The purpose of this study was to compare the effects of magnetic thermal ablation in different porcine tissues using either a singular injection or a continuous infusion of superparamagnetic iron oxide nanoparticles. In the first setting samples of three ferrofluids containing different amounts of iron (1:171, 2:192, and 3:214 mg/ml) were singularly interstitially injected into specimens of porcine liver, kidney, and muscle (n = 5). Then the specimens were exposed to an alternating magnetic field (2.86 kA/m, 190 kHz) generated by a circular coil for 5 min. In the second experimental setup ferrofluid samples were continuously interstitially infused into the tissue specimens during the exposure to the magnetic field. To measure the temperature increase two fiber-optic temperature probes with a fixed distance of 0.5 cm were inserted into the specimens along the puncture tract of the injection needle and the temperature was measured every 15 s. Finally, the specimens were dissected, the diameters of the created thermal lesions were measured, and the volumes were calculated and compared. Compared to continuous infusion, a single injection of ferrofluids resulted in smaller coagulation volumes in all tissues. Significant differences regarding coagulation volume were found in kidney and muscle specimens. The continuous infusion technique led to more elliptically shaped coagulation volumes due to larger diameters along the puncture tract. Our data show the feasibility of magnetic thermal ablation using either a single interstitial injection or continuous infusion for therapy of lesions in muscle, kidney, and liver. Continuous infusion of ferrofluids results in larger zones of necrosis compared to a single injection technique.
Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun
2015-07-01
Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197
NASA Astrophysics Data System (ADS)
Alexiou, Ch.; Schmid, R.; Jurgons, R.; Bergemann, Ch.; Arnold, W.; Parak, F.G.
The difference between success or failure of chemotherapy depends not only on the drug itself but also on how it is delivered to its target. Biocompatible ferrofluids (FF) are paramagnetic nanoparticles, that may be used as a delivery system for anticancer agents in locoregional tumor therapy, called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment (tumor) using an external magnetic field, which is focused on the area of the tumor. Through this form of target directed drug application, one attempts to concentrate a pharmacological agent at its site of action in order to minimize unwanted side effects in the organism and to increase its locoregional effectiveness. Tumor bearing rabbits (VX2 squamous cell carcinoma) in the area of the hind limb, were treated by a single intra-arterial injection (A. femoralis) of mitoxantrone bound ferrofluids (FF-MTX), while focusing an external magnetic field (1.7 Tesla) onto the tumor for 60 minutes. Complete tumor remissions could be achieved in these animals in a dose related manner (20% and 50% of the systemic dose of mitoxantrone), without any negative side effects, like e.g. leucocytopenia, alopecia or gastrointestinal disorders. The strong and specific therapeutic efficacy in tumor treatment with mitoxantrone bound ferrofluids may indicate that this system could be used as a delivery system for anticancer agents, like radionuclids, cancer-specific antibodies, anti-angiogenetic factors, genes etc.
Optical and rheological study of gamma irradiated rare-earth nanoparticle based ferrofluids
NASA Astrophysics Data System (ADS)
Paul, Nibedita; Mohanta, Dambarudhar; Saha, Abhijit
2012-12-01
The present work reports on the optical and rheological properties of unexposed and gamma irradiated rare-earth (RE) oxide nanoparticle-based ferrofluids (FF). The ferrofluids were prepared by dispersing surfactant coated gadolinium oxide (Gd2O3) nanoparticles in ethanol medium and later on subjected to energetic gamma irradiation (1.25 MeV) at select doses. As predicted from transmission electron microscopy and X-ray diffraction (XRD) studies, the synthesized nanoparticles are of 7 nm size which crystallize into cubic crystal structure. The photoluminescence response reveals creation of defect states on nanoparticle surfaces when FFs are subjected to gamma irradiation. Whereas, rheology measurements showed unusual shear thinning behavior of the ferrofluids. The flow behavior of all the samples can be correlated to the bi-exponential decay curve fitting which reveals that decay phenomenon is governed by two independent mechanism: fast and slow events. The variation of the decay parameter with irradiation dose is attributed to the creation of point defects and weakening of inter nanoparticle bonding.
Macrostatistics and Fluctuating Hydrodynamics
NASA Astrophysics Data System (ADS)
Sewell, Geoffrey L.
2012-10-01
We extend our earlier macrostatistical treatment of hydrodynamical fluctuations about nonequilibrium steady states to viscous fluids. Since the scale dependence of the Navier-Stokes equations precludes the applicability of any infinite scale (hydrodynamical) limit, this has to based on the generic model of a large but finite system, rather than an infinite one. On this basis, together with the assumption of Onsager's regression hypothesis and conditions of local equilibrium and chaoticity, we show that the hydrodynamical fluctuations of a reservoir driven fluid about a nonequilibrium steady state execute a Gaussian Markov process that constitutes a mathematical structure for a generalised version of Landau's fluctuating hydrodynamics and generically carries long range spatial correlations.
Characterization of intertidal flat hydrodynamics
NASA Astrophysics Data System (ADS)
Le Hir, P.; Roberts, W.; Cazaillet, O.; Christie, M.; Bassoullet, P.; Bacher, C.
2000-09-01
The paper reviews the different physical forcings that control tidal flat hydrodynamics. Tidal propagation and cross-shore or long-shore currents, tidal asymmetry, wind-induced circulation, wave propagation and drainage processes are successively considered. Some simple methods are described for estimating cross-shore currents and wave-induced bottom shear stresses, and the results obtained are compared to field measurements on three contrasted sites in Europe. In particular the cross-shore current is shown uniform in the lower part of the flat, and decreasing towards the shore. Bottom friction-induced wave attenuation is simply formulated on gently sloping beds, leading to a maximum wave height that a flat can experience; it is proportional to the water height according to the ratio between the slope and the wave friction factor. The maximum related shear stress occurs at high water and is also proportional to the water depth. Maximum tidal velocities are very similar in the three sites where bottom sediment is muddy, suggesting a relationship between physical stresses and sediment characteristics. The consequences of physical forcings on sediment transport are listed. The bottom shear stress is suggested as the relevant parameter for comparing tidal and wave effects. In general, tide induces onshore sediment transport, whereas waves and drainage favour offshore transport. The processes leading to a possible tidal equilibrium profile are analysed: they involve the intrinsic asymmetry that favours net deposition at high water, and an ebb dominance generated by the resulting bottom profile convexity. Eroding waves are likely to upset such a balance; this equilibrium then reduces to a trend for the system.
NASA Astrophysics Data System (ADS)
Cristaldo, C. F. C.; Fachini, F. F.
2013-03-01
In this work, heating and vaporization of a liquid droplet with dispersed magnetic nanoparticles (ferrofluid) are analyzed. The ferrofluid droplet is in a quiescent inert gas phase with a temperature which is set down equal to, higher and lower than the liquid boiling temperature. Under these conditions, an alternating magnetic field is applied and, as a result, the magnetic nanoparticles generate heat by the Brownian relaxation mechanism. In this mechanism, the magnetic dipoles present a random orientation due to collisions between the fluid molecules and nanoparticles. The magnetic dipoles tend to align to the magnetic field causing rotation of the nanoparticles. Consequently the temperature increases due to the energy dissipated by the friction between the resting fluid and the rotating nanoparticles. Assuming a very large magnetic power and a uniform distribution of nanoparticles, the droplet core is uniformly heated. A thermal boundary layer is established in the liquid-phase adjacent to the droplet surface due to heat flux from the ambient atmosphere. The temperature profile inside the thermal boundary layer is obtained in appropriate time and length scales. In the present model, the ferrofluid droplet is heated up to its boiling temperature in a very short time. In addition, the combination of the heat generated by magnetic nanoparticles and heat conduction from gas phase results in a higher vaporization rate. Under specific conditions, the boiling temperature is achieved not at the surface but inside the thermal boundary layer. Moreover, the results point out that the thermal boundary layer depends directly on the vapor Lewis number but the vaporization rate reciprocally on it.
Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.
2014-03-17
We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.
NASA Astrophysics Data System (ADS)
Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.
2012-08-01
We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.
FROM THE CURRENT LITERATURE: Hydrodynamic cumulative processes in plasma physics
NASA Astrophysics Data System (ADS)
Sokolov, Ivan V.
1990-11-01
This review is devoted to cumulative hydrodynamic processes in a plasma and to the possibility of using them for controlled thermonuclear fusion. The cumulation of convergent shock waves and the mechanisms of their limitation are discussed in greatest detail. Results are presented of study of non-one-dimensional cumulative shock waves, which had practically not yielded to analysis until recently.
Hydrodynamic Instabilities in Blast-Driven Systems
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc; Johnsen, Eric
2014-11-01
Mixing from hydrodynamics instabilities such as Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz, occurs in a wide range of engineering applications such as inertial confinement fusion, supernova collapse, and scramjet combustion. The success of these applications depends on an accurate understanding of these phenomena. Following previous work investigating hydrodynamic mixing from the interaction of a perturbed interface with a planar blast wave, we model the perturbation growth by analyzing the different acceleration phases of a blast wave: an instantaneous acceleration (a pressure increase) followed by a gradual, time-dependent deceleration (a pressure decrease). Depending on the characteristics of these phases, the instability will be dominated by Richtmyer-Meshkov or Rayleigh-Taylor growth. We use a high-order accurate Discontinuous Galerkin method that prevents pressure errors at interfaces with variable specific heats ratios to simulate these systems and understand the different growth regimes.
Hydrodynamics of ultra-relativistic bubble walls
NASA Astrophysics Data System (ADS)
Leitao, Leonardo; Mégevand, Ariel
2016-04-01
In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.
Hydrodynamical evolution of coalescing binary neutron stars
NASA Technical Reports Server (NTRS)
Rasio, Frederic A.; Shapiro, Stuart L.
1992-01-01
The hydrodynamics of the final merging of two neutron stars and the corresponding gravitational wave emission is studied in detail. Various test calculations are presented, including the compressible Roche and Darwin problems and the head-on collision of two polytropes. A complete coalescence calculation is presented for the simplest case of two identical neutron stars, represented by Gamma = 2 polytropes, in a circular orbit, with their spins aligned and synchronized with the orbital rotation.
Torres-Diaz, I.; Cortes, A.; Rinaldi, C.; Cedeño-Mattei, Y.; Perales-Perez, O.
2014-01-15
Ferrofluid flow in cylindrical and annular geometries under the influence of a uniform rotating magnetic field was studied experimentally using aqueous ferrofluids consisting of low concentrations (<0.01 v/v) of cobalt ferrite nanoparticles with Brownian relaxation to test the ferrohydrodynamic equations, elucidate the existence of couple stresses, and determine the value of the spin viscosity in these fluids. An ultrasound technique was used to measure bulk velocity profiles in the spin-up (cylindrical) and annular geometries, varying the intensity and frequency of the rotating magnetic field generated by a two pole stator winding. Additionally, torque measurements in the cylindrical geometry were made. Results show rigid-body like velocity profiles in the bulk, and no dependence on the axial direction. Experimental velocity profiles were in quantitative agreement with the predictions of the spin diffusion theory, with a value of the spin viscosity of ∼10{sup −8} kg m/s, two orders of magnitude larger than the value estimated earlier for iron oxide based ferrofluids, and 12 orders of magnitude larger than estimated using dimensional arguments valid in the infinite dilution limit. These results provide further evidence of the existence of couple stresses in ferrofluids and their role in driving the spin-up flow phenomenon.
Spreading of a ferrofluid core in three-stream micromixer channels
NASA Astrophysics Data System (ADS)
Wang, Zhaomeng; Varma, V. B.; Xia, Huan Ming; Wang, Z. P.; Ramanujan, R. V.
2015-05-01
Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.
NASA Astrophysics Data System (ADS)
Bellizzi, G.; Bucci, O. M.; Capozzoli, A.
2010-10-01
This paper presents the results of a broadband spectroscopy study, over the frequency range 1 MHz-2 GHz, of the electromagnetic properties of a ferrofluid consisting of magnetite nanoparticles, with a mean magnetic size of 10 nm, dispersed in water. An innovative measurement approach and apparatus, allowing an accurate determination of the permeability, even in presence of a large permittivity, have been developed to characterize the suspension. The results obtained show a significant magnetic response over the whole analyzed frequency range, with a good agreement with the theoretical models describing the magnetization dynamics of these systems. Moreover, a strong dielectric response has been detected, which is in satisfactory agreement with the models developed to describe the dielectric behavior of charged nanoparticles suspended in aqueous solution. This result implies that measurement techniques able to determine both the permittivity and permeability become mandatory for a reliable determination of the magnetic properties of aqueous ferrofluids. The accuracy of the determined permeability spectrum is estimated to be of the order of few percent, so these results provide a reliable experimental basis to estimate how fruitful the use of magnetic nanoparticles can be in relevant biomedical applications.
Sun, Yi; Kwok, Yien-Chian; Foo-Peng Lee, Peter; Nguyen, Nam-Trung
2009-07-01
The use of genetically modified organisms (GMOs) as food and in food products is becoming more and more widespread. Polymerase chain reaction (PCR) technology is extensively used for the detection of GMOs in food products in order to verify compliance with labeling requirements. In this paper, we present a novel close-loop ferrofluid-driven PCR microchip for rapid amplification of GMOs. The microchip was fabricated in polymethyl methacrylate by CO2 laser ablation and was integrated with three temperature zones. PCR solution was contained in a circular closed microchannel and was driven by magnetic force generated by an external magnet through a small oil-based ferrofluid plug. Successful amplification of genetically modified soya and maize were achieved in less than 13 min. This PCR microchip combines advantages of cycling flexibility and quick temperature transitions associated with two existing microchip PCR techniques, and it provides a cost saving and less time-consuming way to conduct preliminary screening of GMOs. PMID:19399482
Elfimova, Ekaterina A; Ivanov, Alexey O; Lakhtina, Ekaterina V; Pshenichnikov, Alexander F; Camp, Philip J
2016-05-14
The sedimentation equilibrium of dipolar particles in a ferrofluid is studied using experiment, theory, and computer simulation. A theory of the particle-concentration profile in a dipolar hard-sphere fluid is developed, based on the local-density approximation and accurate expressions from a recently introduced logarithmic free energy approach. The theory is tested critically against Monte Carlo simulation results for monodisperse and bidisperse dipolar hard-sphere fluids in homogeneous gravitational fields. In the monodisperse case, the theory is very accurate over broad ranges of gravitational field strength, volume fraction, and dipolar coupling constant. In the bidisperse case, with realistic dipolar coupling constants and compositions, the theory is excellent at low volume fraction, but is slightly inaccurate at high volume fraction in that it does not capture a maximum in the small-particle concentration profile seen in simulations. Possible reasons for this are put forward. Experimental measurements of the magnetic-susceptibility profile in a real ferrofluid are then analysed using the theory. The concentration profile is linked to the susceptibility profile using the second-order modified mean-field theory. It is shown that the experimental results are not consistent with the sample being monodisperse. By introducing polydispersity in the simplest possible way, namely by assuming the system is a binary mixture, almost perfect agreement between theory and experiment is achieved. PMID:27042815
Spreading of a ferrofluid core in three-stream micromixer channels
Wang, Zhaomeng; Varma, V. B.; Ramanujan, R. V.; Xia, Huan Ming; Wang, Z. P.
2015-05-15
Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.
A ferrofluid-based neural network: design of an analogue associative memory
NASA Astrophysics Data System (ADS)
Palm, R.; Korenivski, V.
2009-02-01
We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a training phase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input- output magnetic field pattern pair, the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated into the output pads. The actual memory consists of spin distributions that are dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system, we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.
Relativistic hydrodynamics of semiclassical quantum fluids
NASA Astrophysics Data System (ADS)
Debbasch, Fabrice; Brachet, Marc E.
The description in terms of hydrodynamical variables of a relativistic superfluid, modeled by a semiclassical wave equation, is given using a generalized Madelung transformation. The Galilean limit is shown (for both wavefunction and fluid variables) to be the well known Landau-Pitaevski model of superflows at T = 0 K. The special relativistic elementary classical acoustic and vortex excitations are explicited. A model for a relativistic self-gravitating superfluid is obtained by minimally coupling the wave equation to Einstein's gravity. The equations corresponding to a static star (using fluid variables) and an isotropic cosmology are derived.
Klein-Gordon Equation in Hydrodynamical Form
Wong, Cheuk-Yin
2010-01-01
We follow and modify the Feshbach-Villars formalism by separating the Klein-Gordon equation into two coupled time-dependent Schroedinger equations for the particle and antiparticle wave functions with positive probability densities. We find that the equation of motion for the probability densities is in the form of relativistic hydrodynamics where various forces have their physical and classical counterparts. An additional element is the presence of the quantum stress tensor that depends on the derivatives of the amplitude of the wave function.
Ion holes in the hydrodynamic regime in ultracold neutral plasmas
McQuillen, P.; Castro, J.; Strickler, T.; Bradshaw, S. J.; Killian, T. C.
2013-04-15
We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma.
Resurgence in extended hydrodynamics
NASA Astrophysics Data System (ADS)
Aniceto, Inês; Spaliński, Michał
2016-04-01
It has recently been understood that the hydrodynamic series generated by the Müller-Israel-Stewart theory is divergent and that this large-order behavior is consistent with the theory of resurgence. Furthermore, it was observed that the physical origin of this is the presence of a purely damped nonhydrodynamic mode. It is very interesting to ask whether this picture persists in cases where the spectrum of nonhydrodynamic modes is richer. We take the first step in this direction by considering the simplest hydrodynamic theory which, instead of the purely damped mode, contains a pair of nonhydrodynamic modes of complex conjugate frequencies. This mimics the pattern of black brane quasinormal modes which appear on the gravity side of the AdS/CFT description of N =4 supersymmetric Yang-Mills plasma. We find that the resulting hydrodynamic series is divergent in a way consistent with resurgence and precisely encodes information about the nonhydrodynamic modes of the theory.
NASA Astrophysics Data System (ADS)
Sansom, C. L.; Jones, P.; Dorey, R. A.; Beck, C.; Stanhope-Bosumpim, A.; Peterson, J.
2013-06-01
Ferrofluids containing nanoparticles of Mn0.5Zn0.5Fe2O4 (MZ5) and Fe3O4 (magnetite) have been examined as potential thermal transport media and energy harvesting materials. The ferrofluids were synthesized by chemical co-precipitation and characterized by EDX to determine composition and by TEM to determine particle size and agglomeration. A range of particle coatings and carrier fluids were used to complete the fluid preparation. Commercially available ferrofluids were tested in custom built rigs to demonstrate both thermal pumping (for waste heat removal applications) and power induction (for power conversion and energy harvesting applications). The results indicate that simple ferrofluids possess the necessary properties to remove waste heat, either into thermal storage or for conversion to electrical power.
Hydrodynamics of spin-polarized transport and spin pendulum
Gurzhi, R. N. Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.
2007-07-15
The dynamics of a nonequilibrium spin system dominated by collisions preserving the total quasimomentum of the interacting electrons and quasiparticles is considered. An analysis of the derived hydrodynamic equations shows that weakly attenuated spin-polarization waves associated with an oscillating drift current can exist in a magnetically inhomogeneous conducting ring. Spin-polarized transport in a ballistic regime of wave propagation through a conductor is also considered, and a simple method is proposed for distinguishing these waves from spin and current oscillations that develop in the hydrodynamic regime. It is shown that a potential difference arises between the leads of an open nonuniformly spin-polarized conductor as a manifestation of spin polarization of electron density. This spin-mediated electrical phenomenon occurs in both hydrodynamic and diffusive limits.
Blast-Driven Hydrodynamic Instability
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Johnsen, Eric
2013-11-01
Accurate characterization of mixing from hydrodynamic instabilities, such as Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz, is important to many multi-fluid applications, particularly, inertial confinement fusion, supernova collapse, and scramjet combustion. We investigate the dynamics of a perturbed interface between two fluids subjected to a planar blast wave. An initial point source explosion initiates a blast, which can be described as a shock front followed by a rarefaction wave. The interface, therefore, experiences an instantaneous acceleration (a pressure increase) followed by a gradual, time-dependent deceleration (a pressure decrease). The resulting interaction gives rise to Richtmyer-Meshkov and Rayleigh-Taylor growth, depending on the shock strength and blast profile. Using a high-order accurate numerical method that prevents pressure errors at interfaces when simulating variable specific heats ratios, we identify regimes in which one or the other instability dominates. This research was supported by the DOE NNSA/ASC under the predictive Science Academic Alliance Program by Grant No. DEFC52-08NA28616.
Skew resisting hydrodynamic seal
Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.
2001-01-01
A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.
NASA Astrophysics Data System (ADS)
Lin, Jing-Fung; Sheu, Jer-Jia
2016-06-01
Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.
Ju, D Y; Bian, P; Kumazawa, T; Nakano, M; Matsuura, H; Umetani, K; Komdo, T; Uozumi, Y; Makino, K; Noda, N; Koide, K; Akutsu, M; Masuyama, K
2011-10-01
In this study, the composite magnetic nanoparticles of coated SiO nano film with about 8 nm size and high saturation magnetization value, were synthesized by liquid phase precipitation method. The magnetic nanoparticles can be dispersed in various liquid media, widely known as magnetic fluids or ferrofluids with both magnetic and liquid properties. The materials been collected great interests and more and more attentions to focus into Drug Delivery System (DDS) as a new technology in this paper. We use the composite nanoparticles to disperse H2O and inject the solutions into rat's in-vivo organs. And, in the experiments by using a strong photon beam of SPring-8 Synchrotron Radiation facility, the distribution stat and the effects of magnetic field as well as drug delivery behaviour of nanoparticles in the rat' kidney are verified by the in-vivo observations. PMID:22400252
Investigation of temperature dependent magnetic hyperthermia in Fe3O4 ferrofluids
NASA Astrophysics Data System (ADS)
Nemala, Humeshkar Bhaskar
Magnetic nanoparticles (MNPs) of Fe3O4 and gamma-Fe2O3 have been exploited in the biomedical fields for imaging, targeted drug delivery and magnetic hyperthermia. Magnetic hyperthermia (MHT), the production of heat using ferrofluids, colloidal suspensions of MNPs, in an external AC magnetic field (amplitude, 100-500 Oe and frequency 50 kHz -1MHz), has been explored by many researchers, both in vitro and in vivo, as an alternative viable option to treat cancer. The heat energy generated by Neel and Brownian relaxation processes of the internal magnetic spins could be used to elevate local tissue temperature to about 46 ˚C to arrest cancerous growth. MHT, due to its local nature of heating, when combined with other forms of treatment such as chemotherapy and/or radiation therapy, it could become an effective therapy for cancer treatment. The efficiency of heat production in MHT is quantified by specific absorption rate (SAR), defined as the power output per gram of the MNPs used. In this thesis, ferrofluids consisting of Fe3O4 MNPs of three different sizes (˜ 10 - 13 nm) coated with two different biocompatible surfactants, dextran and polyethylene glycol (PEG), have been investigated. The structural and magnetic characterization of the MNPs were done using XRD, TEM, and DC magnetization measurements. While XRD revealed the crystallite size, TEM provided the information about morphology and physical size distribution of the MNPs. Magnetic measurements of M-vs-H curves for ferrofluids provided information about the saturation magnetization (Ms) and magnetic core size distribution of MNPs. Using MHT measurements, the SAR has been studied as a function of temperature, taking into account the heat loss due to non-adiabatic nature of the experimental set-up. The observed SAR values have been interpreted using the theoretical framework of linear response theory (LRT). We found the SAR values depend on particle size distribution of MNPs, Ms (65-80 emu/g) and the magnetic anisotropy energy density (K: 12-20 KJ/m3), as well as the amplitude and frequency of the applied AC field (amplitude, 150-250 Oe and frequency, 180-380 kHz). In general, Ms and magnetic core diameter of MNPs increased with the increase in particle size. However, our detailed analysis of MHT data show that although SAR increased with the particle size, the polydispersity of the particles as well as the magnetic anisotropy energy density significantly affected the SAR values. Dextran and PEG coatings essentially yielded similar SAR values ~ 100 W/g using ferrofluids of Fe3O4 MNPs with an average crystallite size of 11.6 +/- 2.1 nm, in AC field of 245 Oe and 375 KHz.
Influence of nanoparticle size on the nonlinear optical properties of magnetite ferrofluids.
Espinosa, D; Carlsson, L B; Neto, A M Figueiredo; Alves, S
2013-09-01
The nonlinear index of refraction (n_{2}) and the two-photon absorption coefficient (β) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n_{2} and β. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n_{2} and β depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of β as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect. PMID:24125263
X-ray microtomography of field-induced macro-structures in a ferrofluid.
Lee, W.; X-Ray Science Division
2010-09-01
X-ray microtomography is used to visualize, in-situ, the three-dimensional nature of the magnetic field induced macro-structures (>1 ?m) inside a bulk (not, vert, similar1 mm diameter) magnetite-particle-mineral oil ferrofluid sample. Columnar structures of not, vert, similar10 ?m diameter were seen under a 0.35 kG applied magnetic field, while labyrinth type structures not, vert, similar4 ?m in width were seen at 0.55 kG. The structures have height/width aspect ratios >100. The results show that the magnetite volume fraction is not constant within the structures and on average is considerably less than a random sphere packing model.
Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions
NASA Astrophysics Data System (ADS)
Lira, Sérgio A.; Miranda, José A.
2016-01-01
We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N -fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.
Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.
Lira, Sérgio A; Miranda, José A
2016-01-01
We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable. PMID:26871176
NASA Astrophysics Data System (ADS)
Linke, J. M.; Odenbach, S.
2015-05-01
The anisotropy of the magnetoviscous effect of a ferrofluid has been studied in a specially designed slit die viscometer, which allows three distinct orientations of the magnetic field with respect to the fluid flow. The corresponding Miesowicz viscosity coefficients were determined in dependence of the shear rate and the magnetic field intensity to gain a comprehensive magnetorheological characterization of the fluid. The particles in the fluid have a mean diameter of 13 nm corresponding to an interaction parameter of λ ≈ 1.3 for magnetite. Thus, the fluid can be expected to show a transition from non-interacting individual particles to microstructures with chain-like associated particles when the magnetic field intensity is increased and the shear rate is decreased. The observed field and shear dependent anisotropy of the magnetoviscous effect is explained coherently in terms of these microstructural changes in the fluid.
Linke, J M; Odenbach, S
2015-05-01
The anisotropy of the magnetoviscous effect of a ferrofluid has been studied in a specially designed slit die viscometer, which allows three distinct orientations of the magnetic field with respect to the fluid flow. The corresponding Miesowicz viscosity coefficients were determined in dependence of the shear rate and the magnetic field intensity to gain a comprehensive magnetorheological characterization of the fluid. The particles in the fluid have a mean diameter of 13 nm corresponding to an interaction parameter of λ ≈ 1.3 for magnetite. Thus, the fluid can be expected to show a transition from non-interacting individual particles to microstructures with chain-like associated particles when the magnetic field intensity is increased and the shear rate is decreased. The observed field and shear dependent anisotropy of the magnetoviscous effect is explained coherently in terms of these microstructural changes in the fluid. PMID:25837303
NASA Astrophysics Data System (ADS)
Mendoza Zélis, P.; Pasquevich, G. A.; Stewart, S. J.; Fernández van Raap, M. B.; Aphesteguy, J.; Bruvera, I. J.; Laborde, C.; Pianciola, B.; Jacobo, S.; Sánchez, F. H.
2013-03-01
Cubic-like shaped ZnxFe3-xO4 particles with crystallite mean sizes D between 15 and 117 nm were obtained by co-precipitation. Particle size effects and preferential occupation of spinel tetrahedral site by Zn2+ ions led to noticeable changes of physical properties. D ⩾ 30 nm particles displayed nearly bulk properties, which were dominated by Zn concentration. For D ⩽ 30 nm, dominant magnetic relaxation effects were observed by Mössbauer spectroscopy, with the mean blocking size DB ˜ 13 to 15 nm. Saturation magnetization increased with x up to x ˜ 0.1-0.3 and decreased for larger x. Power absorbed by water and chitosan-based ferrofluids from a 260 kHz radio frequency field was measured as a function of x, field amplitude H0 and ferrofluid concentration. For H0 = 41 kA m-1 the maximum specific absorption rate was 367 W g-1 for D = 16 nm and x = 0.1. Absorption results are interpreted within the framework of the linear response theory for H0 ⩽ 41 kA m-1. A departure towards a saturation regime was observed for higher fields. Simulations based on a two-level description of nanoparticle magnetic moment relaxation qualitatively agree with these observations. The frequency factor of the susceptibility dissipative component, derived from experimental results, showed a sharp maximum at D ˜ 16 nm. This behaviour was satisfactorily described by simulations based on moment relaxation processes, which furthermore indicated a crossover from Néel to Brown mechanisms at D ˜ 18 nm. Hints for further improvement of magnetite particles as nanocalefactors for magnetic hyperthermia are discussed.
Fluctuations in relativistic causal hydrodynamics
NASA Astrophysics Data System (ADS)
Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.
2014-05-01
Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.
Fundamental hydrodynamics research
NASA Astrophysics Data System (ADS)
Abdallah, S. A.; Billet, M. L.; Petrie, H. L.; Morris, P. J.; Deutsch, S.
1989-12-01
The hydrodynamics research conducted under this program falls into two basic thrust areas: (1) Turbomachinery - To develop an improved understanding of the fluid mechanics and acoustics associated with low speed turbomachines and marine propulsors. To employ this knowledge to the development of improved propulsor and turbomachine design methods; and (2) Drag Reduction - To develop fundamental understanding of the mechanisms that cause drag on bodies and surfaces and to explore novel methods to reduce drag.
Hydrodynamics of fossil fishes.
Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert
2014-08-01
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377
Blaedel, Kenneth L. (Dublin, CA); Davis, Pete J. (Pleasanton, CA); Landram, Charles S. (Livermore, CA)
2000-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Generalized hydrodynamics and microflows.
Al-Ghoul, Mazen; Chan Eu, Byung
2004-01-01
In this paper, a mathematical model within the framework of generalized hydrodynamics is developed for the description of flows in microsystems where the Knudsen number is large and the aspect ratio [(width)/(length)] is not so small. The model is based on a set of empirical generalized hydrodynamic equations, which are fashioned from the steady-state generalized hydrodynamic equations derived from the Boltzmann equation in a manner consistent with the laws of thermodynamics. The constitutive equations used for the model are highly nonlinear, unlike the Newtonian law of viscosity and the Fourier law of heat conduction, but they are thermodynamically consistent. In the absence of heat conduction, the model yields exact solutions for the velocity components and a nonlinear differential equation for the pressure distribution in the rectangular microchannel. The Langmuir adsorption model for surface-gas interaction is used for boundary conditions for the velocity. The calculated flow rate exhibits a Knudsen minimum with respect to the Knudsen number. The longitudinal velocity profile is also non-Poiseuille. The differential equation for pressure distribution is also solved approximately in order to obtain an analytic formula for the flow rate, which exhibits a Knudsen minimum. The formula, although approximate, provides considerable insights into the Knudsen flow phenomena in microchannels. PMID:15324163
Hannon, L.; Lie, G.C.; Clementi, E.
1988-06-01
Micro-hydrodynamics is a term used to describe the search for and study of hydrodynamic phenomena at microscopic scales. The principal method used to accomplish this research is molecular dynamic (MD) simulations. Computational limits on MD models restrict the size of the system and simulation time. Typically, the length scales are on the order of 10-1000 A and time scales 10-1000 psec (thus the qualifier micro). We review the results of our research in this area. We use MD to model channel flow, flow past a plate, flow past a cylinder, and Rayleigh-Benard convection. In general, we find that the behavior in these models agrees with results obtained from experiment and more traditional theoretical approaches, such as solving the Navier-Stokes equations. In addition to the appearance of spatial and temporal patterns, we observe scaling relations in agreement with those predicted by macroscopic hydrodynamics. In some specific situations, we can see the breakdown of Navier-Stokes theory and estimate its limits.
Hydrodynamics of fossil fishes
Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert
2014-01-01
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377
Synthesis and characterization of iron-rich FexPt1-x ferrofluid for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Jha, Deepak K.; Deb, P.; Kalita, E.; Shameem, M.; Patel, Anant B.
2012-03-01
Iron-rich FexPt1-x ultrafine nanodots were prepared by a simple and versatile polyol process using a combinatorial strategy of introducing a strong reducing agent and decreasing the synthesis temperature. The native hydrophobic nanodots were converted into a wettable dispersion by ligand exchange-mediated phase transformation using tetramethyl ammonium hydroxide. The microstructural study confirmed the formation of Fe-rich FePt nanodots having an average particle size of ~3.5 nm with a narrow size distribution. An MTT (methylthiazolyldiphenyl-tetrazolium bromide [3- (4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) study on mammalian leukocyte cultures confirmed the high degree of biocompatibility for the ferrofluid. The ferrofluid, when studied for its concentration-dependent transverse relaxation time and contrast properties, was found to exhibit promising properties as a magnetic resonance imaging T2 contrast agent.
NASA Astrophysics Data System (ADS)
Wang, Siqi; Li, Decai
2015-09-01
This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.
Modeling of textural changes in beef loins subjected to hydrodynamic pressure
Technology Transfer Automated Retrieval System (TEKTRAN)
High hydrodynamic pressure has been considered as a new novel food processing technique to impart favorable textural changes in meat. It is believed that a hydrodynamic pressure wave could be used to tenderize otherwise unacceptably tough cuts of beef, and allow them to be used in more valuable prod...
HYDRODYNAMIC AND MORPHOLOGIC MODELING AT CAPE FEAR INLET, NC
NASA Astrophysics Data System (ADS)
Kashlan, L. R.; Dennis, W. A.; Wutkowski, M. J.
2009-12-01
The Coastal Modeling System (CMS) was applied to compute tidal hydrodynamics, wave transformation, sediment transport and morphology change in the Cape Fear Inlet area. Measured water level, current and wave data in the Cape Fear area were collected from gauges maintained by Wilmington Harbor Monitoring Program. The models were calibrated by comparing simulated and measured water level, current and wave data. Numerical simulations of coupled circulation, wave and sediment transport models were used to estimate the morphology change for a surveyed area during a three month period. The agreement between predicted and measured topographic changes were acceptable. Morphology change analysis will be used in the future to examine different channel alignment scenarios.
Hydrodynamic interactions of cilia on a spherical body
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Elfring, Gwynn J.
2015-11-01
The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin
NASA Astrophysics Data System (ADS)
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-01
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2 +1 )D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2 +1 )D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin.
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-29
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2+1)D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2+1)D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena. PMID:27176522
Operational oceanographic system for coastal hydrodynamics in Korea
NASA Astrophysics Data System (ADS)
Lim, H.; Kim, C. S.; Park, K.
2011-12-01
We have developed an operational oceanographic system for the coastal waters of Korea using ROMS. The operational oceanographic modeling system consists of atmospheric and hydrodynamic models coupled with three-dimensional hydrodynamics, wave, sediment transport and water quality modules. We forecast the results two times a day in the 72 hours base including sea surface elevation, currents, temperature, salinity, and wave information etc. for the coastal waters of Korea. The predicted results are exported to the web-GIS based coastal information system for the application of various coastal activities and problems and the real-time dissemination to the public. The modeling system for the coastal waters of Korea uses operational ocean model ROMS coupled with wave model SWAN for the hydrodynamics and waves, meteorological model WRF for the atmospheric surface forcing, regional tide model NAO.99jb for the tides, and eutrophication model CE-QUAL-ICM for the water quality. The predicted results of WRF and ROMS for the Yellow Sae are nested for the boundary condition of the model. The model ROMS was calibrated with tidal surface data, then the model was verified with current data observed near the coastal waters of Korea with bottom mounted ADCP and AWAC. To validate the operational model we use real-time monitoring data obtained by Buoy, HF-Radar, stationary Satellite, and observatory tower system installed by KORDI and KHOA funded by Korean government for the observation of hydrodynamics in Korea. In this study, we have developed an operational oceanographic system for the coastal hydrodynamics in Korea. The operational model ROMS predicts the information of coastal waters of Korea twice a day for 72 hours. The predicted result is visualized effectively through the web-GIS system to provide predicted coastal hydrodynamics in Korea to the public. This high-resolution coastal operational oceanographic system will be used as a part of the development of Korea Operational Oceanographic System (KOOS) with other operational oceanographic system.
Postexplosion hydrodynamics of supernovae in red supergiants
NASA Technical Reports Server (NTRS)
Herant, Marc; Woosley, S. E.
1994-01-01
Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.
Consistent Hydrodynamics for Phase Field Crystals
NASA Astrophysics Data System (ADS)
Heinonen, V.; Achim, C. V.; Kosterlitz, J. M.; Ying, See-Chen; Lowengrub, J.; Ala-Nissila, T.
2016-01-01
We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission.
Newtonian hydrodynamics with general relativistic pressure
Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr
2013-10-01
We present the general relativistic pressure correction terms in Newtonian hydrodynamic equations to the nonlinear order: these are equations (1.1)–(1.3). The derivation is made in the zero-shear gauge based on the fully nonlinear formulation of cosmological perturbation in Einstein's gravity. The correction terms differ from many of the previously suggested forms in the literature based on hand-waving manners. We confirm our results by comparing with (i) the nonlinear perturbation theory, (ii) the first order post-Newtonian approximation, and (iii) the special relativistic limit, and by checking (iv) the consistency with full Einstein's equation.
Hydrodynamic Phase Locking of Swimming Microorganisms
NASA Astrophysics Data System (ADS)
Elfring, Gwynn J.; Lauga, Eric
2009-08-01
Some microorganisms, such as spermatozoa, synchronize their flagella when swimming in close proximity. Using a simplified model (two infinite, parallel, two-dimensional waving sheets), we show that phase locking arises from hydrodynamics forces alone, and has its origin in the front-back asymmetry of the geometry of their flagellar waveform. The time evolution of the phase difference between coswimming cells depends only on the nature of this geometrical asymmetry, and microorganisms can phase lock into conformations which minimize or maximize energy dissipation.
Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics
NASA Astrophysics Data System (ADS)
Mendoza, M.; Boghosian, B. M.; Herrmann, H. J.; Succi, S.
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451
Consistent Hydrodynamics for Phase Field Crystals.
Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T
2016-01-15
We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543
Inactivation and injury of pathogenic bacteria by hydrodynamic pressure treatment
Technology Transfer Automated Retrieval System (TEKTRAN)
Hydrodynamic pressure processing (HDP) is an innovative non-thermal technology developed for improving meat tenderness. The shock waves generated in the HDP process cause significant disruption of myofibrillar proteins in muscle tissue resulting in improved tenderness of various beef cuts. The same ...
Effect of hydrodynamic pressure processing on chevon quality characteristics
Technology Transfer Automated Retrieval System (TEKTRAN)
Hydrodynamic pressure processing (HDP) technology, which involves exposure of packaged meat to a supersonic shock wave under water created by a small amount of explosive, has been shown to improve meat tenderness, but its effect on chevon tenderness has not been studied so far. The objective of this...
NASA Astrophysics Data System (ADS)
Marchetti, M. Cristina; Nelson, David R.
1990-12-01
A hydrodynamic theory of both isotropic and hexatic flux liquids in high-Tc superconductors is presented. Weak microscopic pinning centers are described within the flux-flow model of Bardeen and Stephen, while strong macroscopic pinning centers set the boundary conditions for the flow. This model is relevant for understanding recent transport measurements by Worthington et al. in bulk Y-Ba-Cu-O single crystals. Flux-line entanglement leads to a large intrinsic viscosity, which increases at the isotropic-to-hexatic transition.
Modeling multiphase flow using fluctuating hydrodynamics.
Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar
2014-09-01
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches. PMID:25314536
Hydrodynamic Forces on Microbubbles under Ultrasound Excitation
NASA Astrophysics Data System (ADS)
Clark, Alicia; Aliseda, Alberto
2014-11-01
Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.
EUNHA: a New Cosmological Hydrodynamic Simulation Code
NASA Astrophysics Data System (ADS)
Shin, Jihye; Kim, Juhan; Kim, Sungsoo S.; Park, Changbom
2014-06-01
We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature fluctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.
Modeling multiphase flow using fluctuating hydrodynamics
NASA Astrophysics Data System (ADS)
Chaudhri, Anuj; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar
2014-09-01
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.
Propagating hydrodynamic modes in confined fluids
NASA Astrophysics Data System (ADS)
Porcheron, Fabien; Schoen, Martin
2002-10-01
In molecular dynamics simulations in the microcanonical ensemble (MEMD) we calculate the intermediate scattering function F(k||,t) for a ``simple'' fluid confined to nanoscopic slit pores with chemically homogeneous, planar substrate surfaces. Since system properties are translationally invariant in the x-y plane, we focus on the propagation of density modes parallel with the confining substrates by choosing a two-dimensional wave vector |k|||=k||=(kx,ky) for our analysis. Within the framework of classical hydrodynamics, we develop conservation laws for z-averaged fluxes of heat and momentum. Using in-plane versions of the macroscopic stress tensor and internal-energy current as constitutive equations we derive an expression for F(k||,t) in the hydrodynamic limit depending on the thermal diffusivity DT, the sound attenuation coefficient Γ, the in-plane adiabatic velocity of sound v||, and the ratio of heat capacities at constant transverse stress and volume γ. Through a fit of F(k||,t) in the hydrodynamic limit and its associated memory function M(k||,t) to MEMD data, reliable values for the set {DT,Γ,v||,γ} of material coefficients can be obtained. Variations in {DT,Γ,v||,γ} with sz may be correlated with variations in the solvation pressure -τzz-Pb with sz (τzz is the stress exerted by the fluid along the surface normal and Pb is the bulk pressure) and therefore linked to stratification of the confined fluid.
Inertial coupling for point particle fluctuating hydrodynamics
NASA Astrophysics Data System (ADS)
Usabiaga, F. Balboa; Pagonabarraga, I.; Delgado-Buscalioni, R.
2013-02-01
A method for particle hydrodynamics based on an hybrid Eulerian-Lagrangian approach is presented. Particle dynamics are solved in continuum space while the fluid equations are solved in an Eulerian mesh, and described by finite volume fluctuating hydrodynamics. This set-up is particularly suited for micron-size devices where the Reynolds number is small but thermal fluctuations are important. The particle-fluid coupling force is obtained by imposing zero relative (particle-fluid) velocity at a local average over the particle volume. In doing so the momentum exchanged between fluid and particle is transferred instantaneously ensuring a correct treatment of inertia and correct particle velocity fluctuations uniquely driven by fluid thermal forces. Consistency between the Eulerian and Lagrangian momentum balance is shown to be essential. The scheme is applied to compressible fluids at low Mach number and moderate Reynolds number. A series of tests show that the near velocity field around the particle is correctly captured up to distances of about one particle hydrodynamic diameter. Also, acoustic forces measured under ultrasound waves are in excellent agreement with the theoretical expressions.
Hydrodynamic Instabilities at an Oblique Interface
NASA Astrophysics Data System (ADS)
Kuranz, Carolyn; di Stefano, Carlos; Wan, W. C.; Drake, R. P.; Malamud, G.; Shimony, A.; Shvarts, D.
2015-11-01
Hydrodynamic instabilities are an important phenomenon that have consequences in many high-energy-density systems, including astrophysical systems and inertial confinement fusion experiments. Using the Omega EP laser we have created a sustained shock platform to drive a steady shock wave using a ~ 30 ns laser pulse. Coupled with a Spherical Crystal Imager we have created high-resolution x-ray radiographs to diagnose the evolution of complex hydrodynamic structures. This experiment involves a hydrodynamically unstable interface at an oblique angle so that the Richtmyer-Meshkov and Kelvin-Helmholtz processes are present. A dual-mode perturbation is machined onto the interface and we seek to observe the merging of vertical structures. Preliminary data from recent experiments and simulations results will be shown. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, and the National Laser User Facility Program, grant number DE-NA0002032 and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944.
Molecular Hydrodynamics from Memory Kernels
NASA Astrophysics Data System (ADS)
Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin
2016-04-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t-3 /2 . We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius.
Molecular Hydrodynamics from Memory Kernels.
Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin
2016-04-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius. PMID:27104730
Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector
NASA Astrophysics Data System (ADS)
Yousif, Ahmed S.
The electrical functionality of an avionics chassis is limited due to heat dissipation limits. The limits arise due to the fact that components in an avionic computer boxes are packed very compactly, with the components mounted onto plug-in cards, and the harsh environment experienced by the chassis limits how heat can be dissipated from the cards. Convective and radiative heat transfer to the ambient are generally not possible. Therefore it is necessary to have heat transferred from the components conducted to the edge of the plug-in cards. The heat then needs to conduct from the card edge to a cold block that not only holds the card in place, but also removes the generated heat by some heat transfer fluid that is circulated through the cold block. The interface between the plug-in card and the cold block typically has a high thermal resistance since it is necessary for the card to have the capability to be re-workable, meaning that the card can be removed and then returned to the chassis. Reducing the thermal resistance of the interface is the objective of the current study and the topic of this thesis. The current design uses a pressure interface between the card and cold block. The contact pressure is increased through the addition of a wedgelock, which is a field-reversible mechanical connector. To use a wedgelock, the cold block has channels milled on the surface with widths that are larger than the thickness of the plug-in card and the un-expanded wedgelock. The card edge is placed in the channel and placed against one of the channel walls. A wedgelock is then placed between the card and the other channel wall. The wedgelock is then expanded by using either a screw or a lever. As the wedgelock expands it fills in the remaining channel gap and bears against the other face of the plug-in card. The majority of heat generated by the components on the plug-in card is forced to conduct from the card into the wall of the cold block, effectively a single sided, dry conduction heat transfer path. Having started as a student design competition named RevCon Challenge, work was performed to evaluate the use of new field-reversible thermal connectors. The new design proposed by the University of Missouri utilized oil based iron nanoparticles, commonly known as a ferrofluid, as a thermal interface material. By using a liquid type of interface material the channel gap can be reduced to a few micrometers, within machining tolerances, and heat can be dissipated off both sides of the card. The addition of nanoparticles improves the effective thermal conductivity of base fluid. The use of iron nanoparticles allows magnets to be used to hold the fluid in place, so the electronic cards may be easily inserted and removed while keeping the ferrofluid in the cold block channel. The ferrofluid-based design which was investigated has shown lower thermal resistance than the current wedgelock design. These results open the door for further development of electronic cards by using higher heat emitting components without compromising the simplicity of attaching/detaching cards from cooling plates.
Hydrodynamic interactions between flagella
NASA Astrophysics Data System (ADS)
Janssen, Pieter; Graham, Michael
2009-11-01
Many bacteria, such as E. coli, use several rotating flagella to propel themselves at low-Reynolds numbers. If the flagella are all rotating counter-clockwise, they bundle up, and the cell moves at great speed. However, if one flagellum starts to rotate clockwise, it disentangles from the bundle, and the cell starts to rotate randomly. After a while, the rotation of all flagella becomes counter-clockwise again, and the cell starts moving again, now in a different direction. The bundling and disentangling is poorly understood from a fluid mechanics point of view. We investigate the hydrodynamic interactions between flagella that may lead to the bundling. Flagella are modeled as series of spheres connected through hinges with bending and twisting resistance. Hydrodynamic interaction between the spheres is incorporated through standard expressions. The cell body is described with a boundary-integral method. Synchronization between the flagella is shown, and we investigate the effect of stiffness, pitch and length of the flagella, and of the hook connecting the flagellum to the cell. Furthermore, we show the effect on the orientation, rotation and speed of the cell body under the influence of multiple flagella.
Hydrodynamics of pronuclear migration
NASA Astrophysics Data System (ADS)
Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael
2014-11-01
Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.
Hydrodynamics of Bacterial Cooperation
NASA Astrophysics Data System (ADS)
Petroff, A.; Libchaber, A.
2012-12-01
Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generallyas in the case of quorum sensingcooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communitiescalled veils which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.
Load responsive hydrodynamic bearing
Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.
2002-01-01
A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.
Simulating hydrodynamics on tidal mudflats
NASA Astrophysics Data System (ADS)
Cook, S.; Lippmann, T. C.
2014-12-01
Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by winds and wave processes at the shallow edges of the estuary. This research was supported by UNH College of Engineering and Physical Sciences fellowship and ONR.
Sprenger, Lisa Lange, Adrian; Odenbach, Stefan
2014-02-15
Ferrofluids consist of magnetic nanoparticles dispersed in a carrier liquid. Their strong thermodiffusive behaviour, characterised by the Soret coefficient, coupled with the dependency of the fluid's parameters on magnetic fields is dealt with in this work. It is known from former experimental investigations on the one hand that the Soret coefficient itself is magnetic field dependent and on the other hand that the accuracy of the coefficient's experimental determination highly depends on the volume concentration of the fluid. The thermally driven separation of particles and carrier liquid is carried out with a concentrated ferrofluid (? = 0.087) in a horizontal thermodiffusion cell and is compared to equally detected former measurement data. The temperature gradient (1 K/mm) is applied perpendicular to the separation layer. The magnetic field is either applied parallel or perpendicular to the temperature difference. For three different magnetic field strengths (40 kA/m, 100 kA/m, 320 kA/m) the diffusive separation is detected. It reveals a sign change of the Soret coefficient with rising field strength for both field directions which stands for a change in the direction of motion of the particles. This behaviour contradicts former experimental results with a dilute magnetic fluid, in which a change in the coefficient's sign could only be detected for the parallel setup. An anisotropic behaviour in the current data is measured referring to the intensity of the separation being more intense in the perpendicular position of the magnetic field: S{sub T?} = ?0.152 K{sup ?1} and S{sub T?} = ?0.257 K{sup ?1} at H = 320 kA/m. The ferrofluiddynamics-theory (FFD-theory) describes the thermodiffusive processes thermodynamically and a numerical simulation of the fluid's separation depending on the two transport parameters ?{sub ?} and ?{sub ?} used within the FFD-theory can be implemented. In the case of a parallel aligned magnetic field, the parameter can be determined to ?{sub ?} = (2.8;?9.1;?11.2)??10{sup ?11}??D{sub ?} kg/(A{sup 2}m) for the different field strengths and in dependence on the magnetic diffusion coefficient D{sub ?}. An adequate fit in the perpendicular case is not possible, by ?{sub ?} = 1??10{sup ?17} kg/(Am{sup 2}) a rather good agreement between numerical and experimental data can be found for a field strength of 40 kA/m, a change in the coefficient's sign in the perpendicular setup is not numerically determinable via this theory. The FFD-theory is only partly applicable to calculate the concentration profile in concentrated magnetic fluids established due to a temperature gradient and magnetic field applied.
The Quantum Hydrodynamic Description of Tunneling
Kendrick, Brian K.
2012-06-15
The quantum hydrodynamic approach is based on the de Broglie-Bohm formulation of quantum mechanics. The resulting fluid-like equations of motion describe the flow of probability and an accurate solution to these equations is equivalent to solving the time-dependent Schroedinger equation. Furthermore, the hydrodynamic approach provides new insight into the mechanisms as well as an alternative computational approach for treating tunneling phenomena. New concepts include well-defined 'quantum trajectories', 'quantum potential', and 'quantum force' all of which have classical analogues. The quantum potential and its associated force give rise to all quantum mechanical effects such as zero point energy, tunneling, and interference. A new numerical approach called the Iterative Finite Difference Method (IFDM) will be discussed. The IFDM is used to solve the set of non-linear coupled hydrodynamic equations. It is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a 'smart' Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is also capable of treating anharmonic potentials. Example calculations using the IFDM will be presented which include: a one-dimensional Gaussian wave packet tunneling through an Eckart barrier, a one-dimensional bound-state Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. Approximate treatments of the quantum hydrodynamic equations will also be discussed which could allow scaling of the calculations to hundreds of degrees of freedom which is important for treating tunneling phenomena in condensed phase systems.
Relationship between Estuary Shape and Hydrodynamics in Alluvial Estuaries
NASA Astrophysics Data System (ADS)
Gisen, J. I. A.; Savenije, H. H. G.
2012-04-01
Generally research on morphology and hydrodynamics in estuaries is done separately: the hydrodynamics is studied for a given geometry, and the morphology is studied for given hydrodynamics. 3-D morphological models indeed integrate morphology and hydrodynamics, but this is forward modelling, not aimed at understanding why certain relations in nature exist. Until now, little research has been done on identifying the relationship between estuary shape and hydrodynamics in alluvial estuaries. In this research, the aim is to develop an analytical model to relate tidal characteristics and flood discharge signatures to estuary shape. By this, engineers would be able to estimate flood discharge characteristics in an estuary from estuary shape indicators. This could be very useful to predict flood the discharge in ungauged estuaries. Data from 16 estuaries around the world have been analyzed to develop and test the analytical relationship. From the analysis, it shows that the shape of estuaries indeed depends on a characteristic flood discharge, the tidal range, the depth and the celerity of the tidal wave. Besides that, other parameter such as sediment sizes will also be included into analysis which also affects the morphodynamics of the estuary. In order to verify the accuracy and reliability of the model, more data on the morphology and hydrodynamics are required. Thus, in this research, about 18 estuaries in Malaysia will be studied and included into the analysis to validate the model. Meanwhile, existing available data from other estuaries worldwide will be collected simultaneously to expend the database. Keywords: morphology, hydrodynamics, estuary shape, tidal range, wave celerity, analytical model
Hydrodynamic effects in the atmosphere of variable stars
NASA Technical Reports Server (NTRS)
Davis, C. G., Jr.; Bunker, S. S.
1975-01-01
Numerical models of variable stars are established, using a nonlinear radiative transfer coupled hydrodynamics code. The variable Eddington method of radiative transfer is used. Comparisons are for models of W Virginis, beta Doradus, and eta Aquilae. From these models it appears that shocks are formed in the atmospheres of classical Cepheids as well as W Virginis stars. In classical Cepheids, with periods from 7 to 10 days, the bumps occurring in the light and velocity curves appear as the result of a compression wave that reflects from the star's center. At the head of the outward going compression wave, shocks form in the atmosphere. Comparisons between the hydrodynamic motions in W Virginis and classical Cepheids are made. The strong shocks in W Virginis do not penetrate into the interior as do the compression waves formed in classical Cepheids. The shocks formed in W Virginis stars cause emission lines, while in classical Cepheids the shocks are weaker.
Study of Angular Momentum Transport in Hydrodynamic and Magnetohydrodynamic Experiments
NASA Astrophysics Data System (ADS)
Ji, H.; Edlund, E.; Spence, E.; Roach, A.
2010-11-01
Rapid angular momentum transport has been observed to occur in both laboratory fusion plasmas and astrophysical plasmas, but its physical mechanisms still remain illusive. In this paper, we describe a series of laboratory fluid experiments in order to investigate a variety of the proposed mechanisms either in hydrodynamics or magnetohydrodynamics (MHD). They include (1) hydrodynamic turbulence for Keplerian flows. (2) Magnetocoriolis (MC) waves, (3) Magnetorotational Instability (MRI), (4) Rossby waves, and (5) Magneto-Rossby waves. The first three mechanisms have been or are being investigated on the ongoing Princeton MRI experiment (http://mri.pppl.gov) while the last two mechanisms will be investigated on a newly built experiment, this mini-conference and on a further modified Princeton MRI experiments. Implications of these experimental results for the astrophysical problems will be discussed.
Central Amazon Floodplain Hydrodynamics
NASA Astrophysics Data System (ADS)
Wilson, M. D.; Vega, M. C.; Forsberg, B. R.
2012-12-01
Amazon floodplain wetlands contain high biological diversity for which the flow regime, particularly the flood-pulse, provides the driving force. Surface water flow is recognized as the key factor in the establishment and maintenance of wetland ecosystems and their functioning, exerting a strong control on channel formation and determining the spatial and temporal complexity of wetland habitats. However, the hydrodynamics of seasonally flooded wetlands in the Amazon basin remains poorly quantified through ground observations, satellite observations or modelling. In this research, fieldwork was conducted between March and August 2012 for 850 km^{2} of vrzea floodplain to the south of a 75 km reach of the Rio Solimes, downstream (east) of the confluence with the Rio Purus. The primary aim of this was to collect ground-based measurements of surface water flows from mid-rising, through high-water to mid-falling flood conditions to allow a detailed picture of floodplain hydrodynamics to be constructed. Four 10-day periods of fieldwork were completed, during which measurements were taken at 42 locations along the floodplain channel network and in floodplain lakes, together with main channel measurements on the Solimes and Purus. Measurements were obtained of: (i) flow rates along floodplain channels, using an Acoustic Current Doppler Profiler (ADCP); (ii) runoff from terra firma via measurement of flows out of ria lakes at the southern edge of the floodplain; (iii) water conductivity; and (iv) suspended sediment concentrations. Overbank flow rates from the Rio Solimes and Rio Purus into the floodplain forest were also obtained using a current meter at several locations during high water. In addition, floodplain channel and lake depths were obtained using continuous recording of sonar connected to a Global Positioning System, enabling the estimation of bathymetry. Using these measurements, detailed hydrodynamic maps of the floodplain were produced from mid-rising to mid-falling flood stages. Initial results show that floodplain channels play an important role in floodplain hydrodynamics, carrying the bulk of flood water into the floodplain during rising water. Once main-channel water levels are above-bankfull, overbank flow directly into the floodplain forest becomes significant. At high-water, the flow rate out of the Purus along the major floodplain channel was 2,200 m^{3}s^{-1}, representing around 10% of the total Purus channel flow ( 23,000 m^{3}s^{-1} at Beruri). In addition, an estimated 2,000 - 4,000 m^{3}s^{-1} of overbank flow occurred from the lower Purus into the floodplain. Floodplain channel flow from the Solimes was less significant than from the Purus at less than 1,000 m^{3}s^{-1}, under 1% of Solimes channel flow ( 116,000 m^{3}s^{-1} upstream of the Purus); however overbank flow into the floodplain forest may have been as much as 10,000 m^{3}s^{-1} along the study reach. Terra firma runoff, measured at the outflows of ria lakes, contributed an insignificant amount of flow during the measurement periods. The first-order estimate of flow through the floodplain area during high water was 15,000 to 17,000 m^{3}s^{-1} (an average of 17.6 to 20.0 m^{3}s^{-1} per km^{2}), with 30-40% of the flow contributed by the Purus.
Synchronization and hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Powers, Thomas; Qian, Bian; Breuer, Kenneth
2008-03-01
Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.
Hydrodynamic effects on coalescence.
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael; Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Hydrodynamics, resurgence, and transasymptotics
NASA Astrophysics Data System (ADS)
Başar, Gökçe; Dunne, Gerald V.
2015-12-01
The second order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost-invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the nonhydrodynamic modes that are exponentially suppressed at late times, analogous to the quasinormal modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semiclassical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these nonhydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with initial conditions.
Hydrodynamics of Peristaltic Propulsion
NASA Astrophysics Data System (ADS)
Athanassiadis, Athanasios; Hart, Douglas
2014-11-01
A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.
Analytical solutions of Landau (1+1)-dimensional hydrodynamics
NASA Astrophysics Data System (ADS)
Wong, Cheuk-Yin; Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Kenneth
2014-12-01
To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and discuss the full evolution of the dynamics from the very beginning. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution, at the earliest times and in the edge regions at later times. These analytical solutions collected and developed here serve well as a useful guide and cross-check in the development of complicated numerically intensive relativistic hydrodynamical Monte Carlo simulations.
Probing magnetic properties of ferrofluids using temperature dependent magnetic hyperthermia studies
NASA Astrophysics Data System (ADS)
Nemala, Humeshkar; Thakur, Jagdish; Naik, Vaman; Naik, Ratna
2014-03-01
Tuning the properties of magnetic nanoparticles is essential for biomedical and technological applications. An important phenomenon displayed by these nanoparticles is the generation of heat in the presence of an external oscillating magnetic field and is known as magnetic hyperthermia (MHT). The heat dissipation by the magnetic nanoparticles occurs via Neel relaxation (the flip of the internal magnetic moment of the nanoparticles) and Brownian relaxation (the physical rotation of the nanoparticles in the suspended media). Dextran coated iron oxide (Fe3O4) nanoparticles were synthesized using the co-precipitation method and characterized using XRD, TEM and DC magnetometry measurements. Roughly spherical in shape the particles have an average size of 13nm and a saturation magnetization of 65 emu/g. The MHT properties of these nanoparticles suspended in a weakly basic solution (ferrofluid) have been investigated as a function of the frequency and amplitude of magnetic field by incorporating a complete thermodynamical analysis of the experimental set-up. The heat generation is quantified using the specific power loss (SPL) and compared with the predictions of linear response theory. This analysis sheds light on important physical and magnetic properties of the nanoparticles.
Sosnick, T.; Charles, S.; Stubbs, G.; Yau, P.; Bradbury, E. M.; Timmins, P.; Trewhella, J.
1991-01-01
Small-angle scattering from macromolecules in solution is widely used to study their structures, but the information content is limited because the molecules are generally randomly oriented and hence the data are spherically averaged. The use of oriented rodlike structures for scattering, as in fiber diffraction, greatly increases the amount of structural detail that can be obtained. A new technique using a ferromagnetic fluid has been developed to align elongated structures independent of their intrinsic magnetic properties. This technique is ideal for small-angle neutron scattering because the scattering from the ferrofluid particles can be reduced significantly by matching the neutron scattering length density of the particles to a D2O solvent (“contrast matching”). The net result is scattering primarily from the ordered biological assembly in a solution environment that can be adjusted to physiological pH and ionic strength. Scattering results from ordered tobacco mosaic virus, tobacco rattle virus, and chromain fibers are presented. ImagesFIGURE 4FIGURE 4 PMID:19431809
Self-similar pinch-off mechanism and scaling of ferrofluid drops
NASA Astrophysics Data System (ADS)
Jiang, Xiao F.; Li, Huai Z.
2015-12-01
The pinch off of heterogeneous ferrofluid drops at a nozzle in air was experimentally investigated with a magnetic field (downward or upward) and without a magnetic field. Compared to homogeneous drops, the self-similarity and universal scaling law were verified through modifying the initial conditions, such as the nozzle diameter, flow rate, and magnitude and direction of the magnetic fields. Two pinch-off points were observed, and the two consecutive pinch-off dynamics were characterized through scaling laws. Here our scaling exponent remains within the scope of (0.70-0.80) for the primary whereas it remains within the scope of (0.60-0.70) for the secondary pinch off, respectively, comparable to the classic range from 2/3 to 1 for homogeneous drops. The gravity-compensating and gravity-superimposing magnetic fields display a negligible effect on the exponent but determine the sequence of double pinch offs. The universal character of the self-similar pinch off is extended to a heterogeneous fluid.
Enhanced magneto-optic activity of magnetite-based ferrofluids subjected to gamma irradiation
NASA Astrophysics Data System (ADS)
Devi, Manasi; Das, Rupali; Mohanta, Dambarudhar; Baruah, Kishor Kumar; Saha, Abhijit
2012-03-01
We report here the effect of γ-irradiation on the particle size and size distribution dependent spectroscopic and magneto-optic properties of ferrofluids, synthesized by a co-precipitation method. The X-ray diffraction (XRD) study exhibits magnetite (Fe3O4) phase of the particles while electron microscopic and dynamic light scattering (DLS) studies have predicted particle growth upon γ-irradiation. Further, Fourier transform infrared (FT-IR) spectroscopy studies ensured that no dissociation has occurred due to irradiation effect. As a consequence of magneto-optic behavior reflected in the Faraday rotation (FR) measurement, the Verdet constant increased from a value of 0.64×10-2 for the pristine sample to 5.6×10-2 deg/Gauss-cm for the sample irradiated with the highest dose (2.635 kGy). The substantial enhancement in the FR is assigned to the improvement in associated chaining effect owing to adequate particle growth where an increased stoichiometry variation of Fe2+/Fe3+ is assured.
Investigation of the Magnetic Behavior in Fe3O4 Ferrofluid Functionalized by Carapa Guianensis Oil
NASA Astrophysics Data System (ADS)
López, Jorge Luis; Rodriguez, Anselmo Fortunato Ruiz; de Jesus Nascimento Pontes, Maria; de Morais, Paulo Cesar; de Azevedo, Ricardo Bentes; Pfannes, Hans Dieter; Dias Filho, José Higino
2010-12-01
A ferrofluid based on Fe3O4 has been synthesized using the condensation method by coprecipitating aqueous solutions of FeSO4 and FeCl3 mixtures in NH4OH and treated further in order to obtain colloidal sols by creating a charge density on their surface and functionalized by carapa guianensis (andiroba oil). Aqueous sample with an average particle diameter ˜7 nm were studied by Mössbauer spectroscopy and dc magnetization measurements in the range of 4.2-250 K. The saturation magnetization (Ms) at 4.2 K was determined from M vs 1/H plots by extrapolating the value of magnetizations to infinite fields, to 5.6 emu/g and coercivity to 344 Oe. The low saturation magnetization value was attributed to spin noncollinearity predominantly at the surface. From the magnetization measurements a magnetic anisotropy energy constant (K) of 1×104 J/m3 was calculated. Fe3O4 spectra at room temperature showed a singlet due to superparamagnetic relaxation and a sextet at low temperature.
On the self-assembly of net-like nanostructures in ferrofluids
NASA Astrophysics Data System (ADS)
Elkady, Ashraf S.; Iskakova, Larisa; Zubarev, Andrey
2015-06-01
Understanding the physical forces that govern nanoparticles self-assembly is central to the ability to engineer super-nanostructures for advanced nanotechnology applications. Magnetic force represents one of such important forces that is responsible for structural transformations and condensation in ferrofluids (FF). In this work, we study internal structural transformations in FF in the absence of external magnetic field by introducing the first direct statistical model that takes into account formation of linear chains, Y-forks and net-like nanostructures. The results show that, in agreement with experiments, when the concentration of the magnetic nanoparticles and their magnetic interaction energy are small enough, majority of the particles are united in individual linear chains. But, when these parameters exceed some threshold magnitude, the main particles population switches to net-like nanostructures. These results highlight the importance of magnetic dipole interactions in the absence of external magnetic field, and their essential role in the bottom-up construction of hierarchical nano-architectures of viable fundamental and practical implications.
Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan
2014-09-01
An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field. PMID:25314449
Lobaz, Volodymyr; Klupp Taylor, Robin N; Peukert, Wolfgang
2012-05-15
The formation of spherical superparamagnetic colloidal aggregates of magnetite nanoparticles by emulsification of a ferrofluid and subsequent solvent evaporation has been systematically studied. The colloidal aggregates occur as a dense sphere with magnetite nanoparticles randomly packed and preserved particle-particle separation due to chemisorbed oleic acid. The voids between nanoparticles are filled with solvent and free oleic acid. The latter was found to influence the formation of colloidal aggregates and their surface properties. The choice of surfactant, whether low molecular weight or polymeric, was shown to lead to the colloidal aggregates having tailored interfacial behavior. Magnetization measurements at ambient temperature revealed that the magnetite colloidal aggregates preserve the superparamagnetic properties of the starting nanoparticle units and show high saturation magnetization values up to 57 emu/g. The size distribution of magnetite nanoparticle colloidal aggregates produced by such an approach was found to be a function of emulsion droplet breakup-coalescence and stabilization kinetics and therefore is influenced by the emulsification process conditions and concentrations of the emulsion compounds. PMID:22365838
The Use of Ferrofluids to Model Materials Processing (MSFC Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Leslie, F.; Ramachandran, N.
2000-01-01
Many crystals grown in space have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. To study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received recent, growing interest. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Although any range of concentrations can be realized, photometric constraints impose some limitations on measurements. Results of the ground-based experiments indicate that the species distribution is within 3 percent of the predicted value.
Sprenger, Lisa Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison of the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.
NASA Astrophysics Data System (ADS)
Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.
2015-05-01
Laminar forced convection heat transfer of water based Fe3O4 ferrofluid in a mini channel in the presence of constant and alternating magnetic fields is studied numerically. The hot ferrofluid flows into the 20 mm (l)×2 mm (h) mini channel with isothermal top and bottom cold surfaces and is subjected to a transverse non-uniform magnetic field produced by current carrying wires. Two-phase mixture model is implemented and the governing equations are solved using the finite volume approach. Primarily, the effects of the constant magnetic field location and intensity on the convective heat transfer are investigated. Simulation results show that the heat transfer is enhanced due to the disruption of the thermal boundary layer. However, this effect is more pronounced when the magnetic field source is placed in the fully developed region. In the next section, an alternating magnetic field with frequencies ranging from 0 to 10 Hz is imposed to the ferrofluid at different Reynolds numbers of Re=10, 25 and 50. A 16.48% heat transfer enhancement is obtained with a constant magnetic field at Re=25 and magnetic field intensity, Mn=1.07×108. This value is increased up to 27.72% by applying an alternating magnetic field with the same intensity at f=4 Hz. Results also indicate that the heat transfer enhancement due to the magnetic field is more significant at lower Reynolds numbers. The optimum frequency for heat transfer enhancement has been obtained for all the cases which shows that it has an increasing trend with the Reynolds number.
Hydrodynamical noise and Gubser flow
NASA Astrophysics Data System (ADS)
Yan, Li; Grönqvist, Hanna
2016-03-01
Hydrodynamical noise is introduced on top of Gubser's analytical solution to viscous hydrodynamics. With respect to the ultra-central collision events of Pb-Pb, p-Pb and p-p at the LHC energies, we solve the evolution of noisy fluid systems and calculate the radial flow velocity correlations. We show that the absolute amplitude of the hydrodynamical noise is determined by the multiplicity of the collision event. The evolution of azimuthal anisotropies, which is related to the generation of harmonic flow, receives finite enhancements from hydrodynamical noise. Although it is strongest in the p-p systems, the effect of hydrodynamical noise on flow harmonics is found to be negligible, especially in the ultra-central Pb-Pb collisions. For the short-range correlations, hydrodynamical noise contributes to the formation of a near-side peak on top of the correlation structure originated from initial state fluctuations. The shape of the peak is affected by the strength of hydrodynamical noise, whose height and width grow from the Pb-Pb system to the p-Pb and p-p systems.
NASA Astrophysics Data System (ADS)
Aursand, Eskil; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor
2016-03-01
A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions.
NASA Astrophysics Data System (ADS)
Ulrich, Elaine Schmid
Microfluidic networks and microporous materials have long been of interest in areas such as hydrology, petroleum engineering, chemical and electrochemical engineering, medicine and biochemical engineering. With the emergence of new processes in gas separation, cell sorting, ultrafiltration, and advanced materials synthesis, the importance of building a better qualitative and quantitative understanding of these key technologies has become apparent. However, microfluidic measurement and theory is still relatively underdeveloped, presenting a significant obstacle to the systematic design of microfluidic devices and materials. Theoretical challenges arise from the breakdown of classical viscous flow models as the flow dimensions approach the mean free path of individual molecules. Experimental challenges arise from the lack of flow profilometry techniques at sub-micron length scales. Here we present an extension of scanning probe microscopy techniques, which we have termed Hydrodynamic Force Microscopy (HFM). HFM exploits fluid drag to profile microflows and to map the permeability of microporous materials. In this technique, an atomic force microscope (AFM) cantilever is scanned close to a microporous sample surface. The hydrodynamic interactions arising from a pressure-driven flow through the sample are then detected by mapping the deflection of an AFM cantilever. For gas flows at atmospheric pressure, HFM has been shown to achieve a velocity sensitivity of 1 cm/s with a spatial resolution of ˜ 10 nm. This compares very favorably to established techniques such as hot-wire and laser Doppler anemometry, whose spatial resolutions typically exceed 1 mum and which may rely on the use of tracer particles or flow markers1. We demonstrate that HFM can successfully profile Poiseuille flows inside pores as small as 100 nm and can distinguish Poiseuille flow from uniform flow for short entry lengths. HFM detection of fluid jets escaping from porous samples can also reveal a "permeability map" of a sample's pore structure, allowing us to distinguish between clear and blocked pores, even in cases where the subsurface fouling is undetectable by conventional AFM. The experimental data is discussed in context with theoretical aspects of HFM microflow measurement and practical limits of this technique. Finally, we conclude with variations of standard HFM techniques that show some promise for investigation of smaller nanometer-scale flows of gases and liquids.
Constraining relativistic viscous hydrodynamical evolution
Martinez, Mauricio; Strickland, Michael
2009-04-15
We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We demonstrate this explicitly for (0+1)-dimensional viscous hydrodynamics and discuss how the constraint extends to higher dimensions. Additionally, we present an analytic approximation to the solution of (0+1)-dimensional second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an ultrarelativistic heavy-ion collision.
NASA Astrophysics Data System (ADS)
Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.
2016-01-01
Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.
Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties.
Li, Weiyang; Liang, Zheng; Lu, Zhenda; Tao, Xinyong; Liu, Kai; Yao, Hongbin; Cui, Yi
2015-11-11
Large-scale energy storage systems are of critical importance for electric grids, especially with the rapid increasing deployment of intermittent renewable energy sources such as wind and solar. New cost-effective systems that can deliver high energy density and efficiency for such storage often involve the flow of redox molecules and particles. Enhancing the mass and electron transport is critical for efficient battery operation in these systems. Herein, we report the design and characterization of a novel proof-of-concept magnetic field-controlled flow battery using lithium metal-polysulfide semiliquid battery as an example. A biphasic magnetic solution containing lithium polysulfide and magnetic nanoparticles is used as catholyte, and lithium metal is used as anode. The catholyte is composed of two phases of polysulfide with different concentrations, in which most of the polysulfide molecules and the superparamagnetic iron oxide nanoparticles can be extracted together to form a high-concentration polysulfide phase, in close contact with the current collector under the influence of applied magnetic field. This unique feature can help to maximize the utilization of the polysulfide and minimize the polysulfide shuttle effect, contributing to enhanced energy density and Coulombic efficiency. Additionally, owing to the effect of the superparamagnetic nanoparticles, the concentrated polysulfide phase shows the behavior of a ferrofluid that is flowable with the control of magnetic field, which can be used for a hybrid flow battery without the employment of any pumps. Our innovative design provides new insight for a broad range of flow battery chemistries and systems. PMID:26422674
Propagating hydrodynamic modes in confined fluids.
Porcheron, Fabien; Schoen, Martin
2002-10-01
In molecular dynamics simulations in the microcanonical ensemble (MEMD) we calculate the intermediate scattering function F(k(||),t) for a "simple" fluid confined to nanoscopic slit pores with chemically homogeneous, planar substrate surfaces. Since system properties are translationally invariant in the x-y plane, we focus on the propagation of density modes parallel with the confining substrates by choosing a two-dimensional wave vector |k(||)|=k(||)=(k(x),k(y)) for our analysis. Within the framework of classical hydrodynamics, we develop conservation laws for z-averaged fluxes of heat and momentum. Using in-plane versions of the macroscopic stress tensor and internal-energy current as constitutive equations we derive an expression for F(k(||),t) in the hydrodynamic limit depending on the thermal diffusivity D(T), the sound attenuation coefficient Gamma, the in-plane adiabatic velocity of sound v(||), and the ratio of heat capacities at constant transverse stress and volume gamma. Through a fit of F(k(||),t) in the hydrodynamic limit and its associated memory function M(k(||),t) to MEMD data, reliable values for the set [D(T),Gamma,v(||),gamma] of material coefficients can be obtained. Variations in [D(T),Gamma,v(||),gamma] with s(z) may be correlated with variations in the solvation pressure -tau(zz)-P(b) with s(z) (tau(zz) is the stress exerted by the fluid along the surface normal and P(b) is the bulk pressure) and therefore linked to stratification of the confined fluid. PMID:12443189
Slurry bubble column hydrodynamics
NASA Astrophysics Data System (ADS)
Rados, Novica
Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids shear stress radial profiles are correlated using several widely used empirical correlations that are modified and improved to better represent present data.
NASA Astrophysics Data System (ADS)
Vales-Pinzón, C.; Alvarado-Gil, J. J.; Medina-Esquivel, R.; Martínez-Torres, P.
2014-11-01
Magneto-optic phenomena in ferrofluids have been shown to be related to the formation of chain structures, due to the arrangement of the ferromagnetic particles, induced by an applied magnetic field. In this work, the effects on transmission of polarized light due to anisotropic effects induced by an external magnetic field in ferrofluids with carbon nanotubes are studied. The time response of the system presents two well defined stages, in the first one, which is very short, the fluid behaves as a polarizer. In contrast in the second stage, the effects of light transmission dominate. In this stage the transmitted light intensity grows with time and after a long time reaches a constant stable value. It is shown that these phenomena depend on the carbon nanotubes concentration as well as on the strength of the applied magnetic field. Using a simple model that considers a chain-like structure formation, it is possible to determine the rate of agglomeration of the formed structures and the attenuation coefficient of the transmitted light. The formation of nanostructures leads to variation in the transmitted light, depending on the polarization of the incident light. These magnetic nanostructures can find numerous applications in nanotechnology, optical devices and medicine.
Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.; Warr, G. G.; Hamilton, William A
2014-01-01
The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements in the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.
Polarized seismic and solitary waves run-up at the sea bed
Dennis, L. C.C.; Zainal, A. A.; Faisal, S. Y.
2012-09-26
The polarization effects in hydrodynamics are studied. Hydrodynamic equation for the nonlinear wave is used along with the polarized solitary waves and seismic waves act as initial waves. The model is then solved by Fourier spectral and Runge-Kutta 4 methods, and the surface plot is drawn. The output demonstrates the inundation behaviors. Consequently, the polarized seismic waves along with the polarized solitary waves tend to generate dissimilar inundation which is more disastrous.
Conservative regularization of ideal hydrodynamics and magnetohydrodynamics
Thyagaraja, A.
2010-03-15
Inviscid, incompressible hydrodynamics and incompressible ideal magnetohydrodynamics (MHD) share many properties such as time-reversal invariance of equations, conservation laws, and certain topological features. In three dimensions, these systems may lead to singular solutions (involving vortex and current sheets). While dissipative (viscoresistive) effects can regularize the equations leading to bounded solutions to the initial-boundary value (Cauchy) problem which presumably exist uniquely, the time-reversal symmetry and associated conservation properties are certainly destroyed. The present work is analogous to (and suggested by) the Korteweg-de Vries regularization of the one-dimensional, nonlinear kinematic wave equation. Thus the regularizations applied to the original equations of hydrodynamics and ideal MHD retain conservation properties and the symmetries of the original equations. Integral invariants which generalize those known for the original systems are shown to imply bounded enstrophy. The regularization developed can also be applied to the corresponding dissipative models (such as the Navier-Stokes equations and the viscoresistive MHD equations) and may imply interesting regularity properties for the solutions of the latter as well. The models developed thus have intrinsic mathematical interest as well as possible applications to large-scale numerical simulations in systems where dissipative effects are extremely small or even absent.
Quantum hydrodynamics: capturing a reactive scattering resonance.
Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K
2005-08-01
The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system. PMID:16108631
Hydrodynamic interactions of cilia on a spherical body
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Elfring, Gwynn J.
2016-03-01
Microorganisms develop coordinated beating patterns on surfaces lined with cilia known as metachronal waves. For a chain of cilia attached to a flat ciliate, it has been shown that hydrodynamic interactions alone can lead the system to synchronize. However, several microorganisms possess a curve-shaped ciliate body and so to understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the natural periodicity in the geometry leads the system to synchronize. We also report an emergent wavelike behavior when an asymmetry is introduced to the system.
Universal hydrodynamic flow in holographic planar shock collisions
NASA Astrophysics Data System (ADS)
Chesler, Paul M.; Kilbertus, Niki; van der Schee, Wilke
2015-11-01
We study the collision of planar shock waves in AdS5 as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shock profiles, we find universal behavior in the subsequent hydrodynamic evolution. Additionally, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.
Hydrodynamic escape from planetary atmospheres
NASA Astrophysics Data System (ADS)
Tian, Feng
Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere. Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ~3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.
Polariton superfluids reveal quantum hydrodynamic solitons.
Amo, A; Pigeon, S; Sanvitto, D; Sala, V G; Hivet, R; Carusotto, I; Pisanello, F; Leménager, G; Houdré, R; Giacobino, E; Ciuti, C; Bramati, A
2011-06-01
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies. PMID:21636766
A new hydrodynamic analysis of double layers
NASA Technical Reports Server (NTRS)
Hora, Heinrich
1987-01-01
A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.
Phonon hydrodynamics in two-dimensional materials
NASA Astrophysics Data System (ADS)
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-01
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-01-01
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane. PMID:25744932
Formulating viscous hydrodynamics for large velocity gradients
NASA Astrophysics Data System (ADS)
Pratt, Scott
2008-02-01
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τij. By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τij. Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time.
Plane-symmetric cosmology with relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Anninos, Peter
1998-09-01
A numerical code, developed for cosmology and to investigate fully nonlinear behavior in the plane-symmetric Einstein equations, is described in detail. The field equations are solved self-consistently with the general relativistic hydrodynamical conservation equations, using artificial viscosity methods for shock capturing and an ideal fluid stress-energy tensor with a cosmological constant. Several tests of the code are presented, including anisotropically expanding vacuum and isotropically expanding de Sitter, dust-filled and radiation-filled cosmologies, gravitational waves in flat and anisotropically expanding background models, sub- and super-horizon scale density perturbations in an expanding FLRW background, and both Newtonian and relativistic shock tube evolutions. Also discussed is a gauge drift instability that can appear in near-geodesic evolutions of density perturbations when the dynamical time scale of collapse becomes smaller than the cosmological expansion rate.
Toward a hydrodynamic theory of sonoluminescence
Loefstedt, R.; Barber, B.P.; Putterman, S.J. )
1993-11-01
For small Mach numbers the Rayleigh--Plesset equations (modified to include acoustic radiation damping) provide the hydrodynamic description of a bubble's breathing motion. Measurements are presented for the bubble radius as a function of time. They indicate that in the presence of sonoluminescence the ratio of maximum to minimum bubble radius is about 100. Scaling laws for the maximum bubble radius and the temperature and duration of the collapse are derived in this limit. Inclusion of mass diffusion enables one to calculate the ambient radius. For audible sound fields these equations yield picosecond hot spots, such as are observed experimentally. However, the analysis indicates that a detailed description of sonoluminescence requires the use of parameters for which the resulting motion reaches large Mach numbers. Therefore the next step toward explaining sonoluminescence will require the extension of bubble dynamics to include nonlinear effects such as shock waves.
Analytical Solutions of Landau (1+1)-Dimensional Hydrodynamics
Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Jr, Kenneth F
2014-01-01
To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.
The hydrodynamics of colloidal gelation.
Varga, Zsigmond; Wang, Gang; Swan, James
2015-12-14
Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions. PMID:26406284
Investigation of Hydrodynamic Behavior in Cyclone Separators
NASA Astrophysics Data System (ADS)
Chan, Wen-Hsin
This work concerns the investigation of hydrodynamic instability and instability induced wave formation in a cyclone. The existence of instability and the nature of the wave motion have been studied by a combined use of various experimental methods--such as flow visualization, pressure drop measurement, and flow spectral analysis- -over a range of Reynolds number. The flow visualization revealed a radial oscillatory vortex along the circular fluid motion with wave numbers of 4 at Re equal to 500. The pressure drop data across a cyclone measured by a pressure transducer shows two distinctive characteristics which correspond to two different flow patterns. The transition regime of these two patterns showed the dual pressure drop state with random alternation. The flow spectral analysis, by using hot-wire anemometry and FFT analyzer, confirmed that these two states correspond to the wave motion (periodic in time domain) and transition to turbulence (non-periodic with broad band spectrum), respectively. Experimental results indicate that the cyclone flow experiences four flow regimes, namely: stationary flow (0 < Re < 200), periodic motion with specific frequencies (200 < 1000), dual pressure drop state (1000 < Re < 2000), and non-periodic pre-turbulence flow (Re > 2000). The theoretical analysis of the onset of instability induced wave motion is studied by linear theory. The criterion of destabilization of the flow involves the pressure profile, angular velocity profile in a cyclone, and Reynolds number as well. This theory has a good agreement with the experimental observations. The effect of the wave components on the particle collection in a cyclone is then evaluated by a numerical method. For particles with 8 micron in diameter, the collection efficiency can be improved up to 30% in the wave motion compared with that of pure circular motion. The mechanism of the dual state, which is the transition from the wave motion to non-periodic motion, is similar to that of the intermittent turbulence in pipe flow. For the design of a cyclone and the development of a scaling law, these four regimes have to be distinguished.
Hydrodynamic modeling of QGP expansion using an exact solution of Riemann problem
NASA Astrophysics Data System (ADS)
Fecková, Zuzana; Tomášik, Boris
2016-01-01
Hydrodynamic modelling of quark-gluon plasma requires sophisticated numerical schemes that have low numerical viscosity and are able to cope with high gradients of energy density that may appear in initial conditions. We propose to use the Godunov method with an exact Riemann solver for ideal hydrodynamic modelling to meet these conditions. We present the results of numerical tests of the method, such as the sound wave propagation and the shock tube problem, which show both high precision and low numerical viscosity.
Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine
Roald, L.; Jonkman, J.; Robertson, A.
2014-05-01
The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.
NASA Astrophysics Data System (ADS)
Jones, S.; Benson, P.; Meredith, P.
2005-12-01
We present results from an experimental and theoretical study of pore fabric anisotropy using the method of anisotropy of magnetic susceptibility (AMS) and synthetic pore spaces of known geometry. AMS has traditionally been used to measure the magnetic anisotropy of a dry rock matrix. Here we use the technique to determine the anisotropy of the void space. We provide the voids with an artificial magnetic susceptibility by saturating them with magnetic ferrofluid. AMS measurements are made in the normal manner, and interpreted using the theoretical equivalent pore concept (EPC) proposed by Hrouda et al. (2000). This theory attempts to relate the magnetic measurements of lineation, foliation and anisotropy to the lineation, foliation and anisotropy of the real, physical pore fabric. Essentially, an average physical pore space shape and alignment is modeled that will produce the same magnetic properties as those measured on the real sample. In order to test the theory, we prepared a range of synthetic samples with known pore geometries from cylindrical polycarbonate blanks 25mm in diameter by 22mm long. Firstly, a set of "special fabrics" were machined axially into the sample blanks: (a) a set of 19 equally spaced holes, 2mm in diameter by 12mm long, (b); a row of 5 holes, 3.3mm in diameter by 16mm long; and (c) a tier of four disks, 18mm in diameter by 1.4mm thick. The total bulk susceptibility of each "special fabric" was approximately the same. Secondly, a set of seven samples were machined with quasi-ellipsoidal voids with axial to radial axis ratios of: 0.75, 0.83, 0.92, 1.0, 1.1, 1.2, and 1.3. All of the special-fabric samples showed high magnetic anisotropy, with a maximum foliation of 1.41 and lineation of 1.29. The results are as expected intuitively, with the 19 hole sample exhibiting a highly prolate fabric and the 5 hole sample exhibiting a highly oblate fabric. For the quasi-ellipsoids, the foliation decreases and the lineation increases as the axial to radial axis ratio increases from 0.75 to 1.3; i.e. as we move from an oblate to a prolate void. The measured magnetic foliations and lineations are then used to estimate the pore fabric via the EPC, for direct comparison with the known geometry. We find that the EPC method underestimates the anisotropy of the void space, especially for low ferrofluid concentration. As we increase the concentration this discrepancy decreases, but does not disappear even for the highest concentration (undiluted ferrofluid with an intrinsic susceptibility of 3.34).
Isogeometric analysis of Lagrangian hydrodynamics
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Akkerman, I.; Benson, D. J.; Scovazzi, G.; Shashkov, M. J.
2013-06-01
Isogeometric analysis of Lagrangian shock hydrodynamics is proposed. The Euler equations of compressible hydrodynamics in the weak form are discretized using Non-Uniform Rational B-Splines (NURBS) in space. The discretization has all the advantages of a higher-order method, with the additional benefits of exact symmetry preservation and better per-degree-of-freedom accuracy. An explicit, second-order accurate time integration procedure, which conserves total energy, is developed and employed to advance the equations in time. The performance of the method is examined on a set of standard 2D and 3D benchmark examples, where good quality of the computational results is attained.
Relativistic hydrodynamics of cosmological sheets
NASA Astrophysics Data System (ADS)
Anninos, Peter; McKinney, Jonathan
1999-09-01
We have extended previous numerical calculations of Newtonian cosmological sheets to include self-consistent interactions with the background metric by solving the complete Einstein field equations together with the relativistic perfect fluid hydrodynamics equations. The initial data are parametrized and constructed using the gauge invariant perturbation formalism to specify the free conformal variables for the constraints. Numerical evolutions of initially horizon scale fluctuations are compared with results from perturbation theory and the Zel'dovich solution for a range of gravitational field strengths, and we discuss the nonlinear hydrodynamic, optical, and geometric characteristics of the sheet structures.
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
What Controls the Hydrodynamics of the Central Congo River?
NASA Astrophysics Data System (ADS)
O'Loughlin, F.; Bates, P. D.
2014-12-01
Despite being the second largest river basin in the world, with a drainage area greater than 3.7 million square kilometres, little is known about the hydraulics of the Congo River. This lack of knowledge is mainly due to a mixture of conflicts and the difficulty of accessing existing data. We present results of studies which have focused primarily on the middle reach of the Congo River, located between Kisangani and Kinshasa, and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami rivers). Through a combination of remotely sensed datasets and a hydrodynamic model we investigated what factors control the hydrodynamics of the middle reach. From the analysis of the remotely sensed datasets, we discover that variability in river width of the middle reach of the Congo is large and cannot be represented by empirical equations which relate channel geometry to basin area and discharge. Water surface slopes vary from 3.5 cm/km to 9 cm/km, which is far more than previous studies suggest. The remote datasets indicate that there exist 5 large constrictions in the river width which may result in backwater affecting between 11 and 33 percent of middle reach at low and high water respectively. These results were corroborated by the hydrodynamic model. In fact, when all constrictions caused by a narrowing in width of 1 km or more are considered, water levels along 43 percent of the middle reach change by at least 0.5 m. Using the hydrodynamic model we also investigated the importance of the wetlands to the attenuation of the flood wave through the system. Initial results suggest that for the Congo River, floodplains have far more impact on the peak magnitude than the timing of the flood wave. When the model was run with no floodplain interactions an increase in the magnitude of flood peak was observed, with the timing of the waves being consistent with observed measurements.
Drozdov, Andrey S; Ivanovski, Vladimir; Avnir, David; Vinogradov, Vladimir V
2016-04-15
A facile method to produce highly stable magnetite magnetic fluid at neutral pH without any stabilizing agents, resulting in pure Fe3O4 nanoparticles dispersed in water is described. The hydrosol which consists of only two components - magnetite and water - behaves as a typical ferrofluid, that is, although it responds to a magnetic field, the magnetic particles cannot be phase-separated from the water by that field. No such pure magnetic fluid have been described before, making it a universal carrier which can be easliy modified for any application in materials science and chemistry, and in particular for a range of applications where non-corrosivity, low viscosity, and mild conditions are needed, such as in most bioapplications and in nano electro-mechanical systems. Under optimal conditions the hydrosol is stable for at least three months. PMID:26852355
NASA Astrophysics Data System (ADS)
Kandelousi, Mohsen Sheikholeslami
2014-11-01
Ferrofluid flow and heat transfer in the presence of an external variable magnetic field is studied. The inner cylinder is maintained at uniform heat flux and the outer cylinder has constant temperature. The Control Volume based Finite Element Method (CVFEM) is applied to solve the governing equations. Combined magnetohydrodynamic and ferrohydrodynamic effects have been taken into account. The effects of magnetic number, Hartmann number, Rayleigh number and nanoparticle volume fraction on hydrothermal behavior have been examined. Results show that the Nusselt number is an increasing function of Magnetic number, Rayleigh number and nanoparticle volume fraction while it is a decreasing function of the Hartmann number. Also, it can be concluded that the enhancement in heat transfer decreases with an increase in the Rayleigh number and magnetic number but it increases with an increase in the Hartmann number.
NASA Astrophysics Data System (ADS)
Petrenko, V. I.; Avdeev, M. V.; Bulavin, L. A.; Almasy, L.; Grigoryeva, N. A.; Aksenov, V. L.
2016-01-01
The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.
Hydrodynamic slip in silicon nanochannels
NASA Astrophysics Data System (ADS)
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-03-01
Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.
Meat Products, Hydrodynamic Pressure Processing
Technology Transfer Automated Retrieval System (TEKTRAN)
The hydrodynamic pressure process (HDP) has been shown to be very effective at improving meat tenderness in a variety of meat cuts. When compared to conventional aging for tenderization, HDP was more effective. The HDP process may offer the meat industry a new alternative for tenderizing meat in add...
Effective hydrodynamic field theory and condensation picture of topological insulators
NASA Astrophysics Data System (ADS)
Chan, AtMa P. O.; Kvorning, Thomas; Ryu, Shinsei; Fradkin, Eduardo
2016-04-01
While many features of topological band insulators are commonly discussed at the level of single-particle electron wave functions, such as the gapless Dirac boundary spectrum, it remains elusive to develop a hydrodynamic or collective description of fermionic topological band insulators in 3+1 dimensions. As the Chern-Simons theory for the 2+1-dimensional quantum Hall effect, such a hydrodynamic effective field theory provides a universal description of topological band insulators, even in the presence of interactions, and that of putative fractional topological insulators. In this paper, we undertake this task by using the functional bosonization. The effective field theory in the functional bosonization is written in terms of a two-form gauge field, which couples to a U (1 ) gauge field that arises by gauging the continuous symmetry of the target system [the U (1 ) particle number conservation]. Integrating over the U (1 ) gauge field by using the electromagnetic duality, the resulting theory describes topological band insulators as a condensation phase of the U (1 ) gauge theory (or as a monopole condensation phase of the dual gauge field). The hydrodynamic description of the surface of topological insulators and the implication of its duality are also discussed. We also touch upon the hydrodynamic theory of fractional topological insulators by using the parton construction.
NASA Astrophysics Data System (ADS)
Lemmer, Aaron J.; Groff, Tyler D.; Kasdin, N. Jeremy; Echeverri, Daniel; Cleff, Isabel R.
2015-09-01
The success of a space-borne direct-imaging mission pursuing earth-sized exoplanets in the habitable zone hinges on the ability to achieve high contrast over a maximum field of view. Coronagraphic instruments designed to address this challenge suffer from optical aberrations and rely on focal-plane wavefront control to suppress the resulting speckles and widen the search area. Even small-featured quasi-static speckles--which may obscure or be confused with a planet--must be suppressed to the order of 10-10 over the search region, placing extreme demands on the deformable mirrors (DMs) used to implement the closed-loop control, both in wavefront requirements and actuation resolution. The ideal DM for focal-plane wavefront control has high surface quality and is capable of high-precision, low-stroke actuation. Conventional mirror technologies such as MEMS DMs, with heritage in ground-based adaptive optics instruments that correct for dynamic atmosphere-induced aberrations, are nominally at and provide high-stroke, high-resolution control but at a cost of precision and surface quality. We present a new technology currently under development at Princeton, which features a ferrofluid-supported optical surface with local magnetic actuation. The actuation is transferred to the optical surface through a liquid medium which continuously supports it, decoupling the nominal surface profile from the actuator configuration and eliminating quilting. Additionally, the device carries tunable nominal optical power via regulation of the ferrofluid pressure, permitting a degree of high-fidelity low-order wavefront control impossible with current instrumentation. We report on the continuing technological growth of the prototype device, including progress with actuation, metrology, and modeling of the DM response.
Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine
NASA Astrophysics Data System (ADS)
Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan
2014-03-01
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
Axially symmetric pseudo-Newtonian hydrodynamics code
NASA Astrophysics Data System (ADS)
Kim, Jinho; Kim, Hee Il; Choptuik, Matthew William; Lee, Hyung Mok
2012-08-01
We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak-field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with high-resolution shock-capturing techniques. We implement several different slope limiters for second-order reconstruction schemes and also investigate higher order reconstructions such as the piecewise parabolic method, essentially non-oscillatory method (ENO) and weighted ENO. We use the method of lines to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using second- and third-order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method, and to simplify the boundary condition, we use compactified coordinates which map spatial infinity to a finite computational coordinate using a tangent function. In order to confirm the validity of our code, we carry out four different tests including one- and two-dimensional shock tube tests, stationary star tests of both non-rotating and rotating models, and radial oscillation mode tests for spherical stars. In the shock tube tests, the code shows good agreement with analytic solutions which include shocks, rarefaction waves and contact discontinuities. The code is found to be stable and accurate: for example, when solving a stationary stellar model the fractional changes in the maximum density, total mass, and total angular momentum per dynamical time are found to be 3 × 10-6, 5 × 10-7 and 2 × 10-6, respectively. We also find that the frequencies of the radial modes obtained by the numerical simulation of the steady-state star agree very well with those obtained by linear analysis.
NASA Astrophysics Data System (ADS)
Cuppo, F. L. S.; Gómez, S. L.; Figueiredo Neto, A. M.
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
NASA Astrophysics Data System (ADS)
Hennenberg, M.; Slavtchev, S.; Valchev, G.
2013-12-01
When an isothermal ferrofluid is submitted to an oscillating magnetic field, the initially motionless liquid free surface can start to oscillate. This physical phenomenon is similar to the Faraday instability for usual Newtonian liquids subjected to a mechanical oscillation. In the present paper, we consider the magnetic field as a sum of a constant part and a time periodic part. Two different cases for the constant part of the field, being vertical in the first one or horizontal in the second one are studied. Assuming both ferrofluid magnetization and magnetic field to be collinear, we develop the linear stability analysis of the motionless reference state taking into account the Kelvin magnetic forces. The Laplace law describing the free surface deformation reduces to Hill's equation, which is studied using the classical method of Ince and Erdelyi. Inside this framework, we obtain the transition conditions leading to the free surface oscillations.
Hydrodynamics of maneuvering bodies: LDRD final report
Kempka, S.N.; Strickland, J.H.
1994-01-01
The objective of the ``Hydrodynamics of Maneuvering Bodies`` LDRD project was to develop a Lagrangian, vorticity-based numerical simulation of the fluid dynamics associated with a maneuvering submarine. Three major tasks were completed. First, a vortex model to simulate the wake behind a maneuvering submarine was completed, assuming the flow to be inviscid and of constant density. Several simulations were performed for a dive maneuver, each requiring less than 20 cpu seconds on a workstation. The technical details of the model and the simulations are described in a separate document, but are reviewed herein. Second, a gridless method to simulate diffusion processes was developed that has significant advantages over previous Lagrangian diffusion models. In this model, viscous diffusion of vorticity is represented by moving vortices at a diffusion velocity, and expanding the vortices as specified by the kinematics for a compressible velocity field. This work has also been documented previously, and is only reviewed herein. The third major task completed was the development of a vortex model to describe inviscid internal wave phenomena, and is the focus of this document. Internal wave phenomena in the stratified ocean can affect an evolving wake, and thus must be considered for naval applications. The vortex model for internal wave phenomena includes a new formulation for the generation of vorticity due to fluid density variations, and a vortex adoption algorithm that allows solutions to be carried to much longer times than previous investigations. Since many practical problems require long-time solutions, this new adoption algorithm is a significant step toward making vortex methods applicable to practical problems. Several simulations are described and compared with previous results to validate and show the advantages of the new model. An overview of this project is also included.
The Hydrodynamics of Iceberg Capsize Near a Glacier Terminus
NASA Astrophysics Data System (ADS)
Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W. W.; Amundson, J. M.; Correa-Legisos, S.
2012-11-01
Marine-terminating glaciers lose most of their mass into the ocean by calving icebergs. The largest icebergs are frequently observed to capsize as they calve, releasing enormous amounts of gravitational potential energy. During this process they may collide with the glaciers' terminius, producing teleseismic ``glacial earthquakes'' which can be detected by the Global Seismic Network. We use a combination of laboratory wave-tank experiments and numerical modeling to show that the contact and pressure forces exerted on the glacier terminus are strongly influenced by the hydrodynamics of the capsize process. In particular, we find that hydrodynamics can significantly increase the magnitude and duration of the contact force with the terminus, and that the earthquake magnitude, expressed as a twice-integrated force history, is not simply proportional to iceberg size. Our results highlight the difficulty of interpreting seismograms due to iceberg collisions.
Hydrodynamic fluctuations in confined particle-laden fluids.
Desreumaux, Nicolas; Caussin, Jean-Baptiste; Jeanneret, Raphael; Lauga, Eric; Bartolo, Denis
2013-09-13
We address the collective dynamics of non-Brownian particles cruising in a confined microfluidic geometry and provide a comprehensive characterization of their spatiotemporal density fluctuations. We show that density excitations freely propagate at all scales, and in all directions even though the particles are neither affected by potential forces nor by inertia. We introduce a kinetic theory which quantitatively accounts for our experimental findings, demonstrating that the fluctuation spectrum of this nonequilibrium system is shaped by the combination of truly long-range hydrodynamic interactions and local collisions. We also demonstrate that the free propagation of density waves is a generic phenomenon which should be observed in a much broader range of hydrodynamic systems. PMID:24074122
Low torque hydrodynamic lip geometry for rotary seals
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
A hydrodynamic approach to non-equilibrium conformal field theories
NASA Astrophysics Data System (ADS)
Bernard, Denis; Doyon, Benjamin
2016-03-01
We develop a hydrodynamic approach to non-equilibrium conformal field theory. We study non-equilibrium steady states in the context of one-dimensional conformal field theory perturbed by the T\\bar{T} irrelevant operator. By direct quantum computation, we show, to first order in the coupling, that a relativistic hydrodynamic emerges, which is a simple modification of one-dimensional conformal fluids. We show that it describes the steady state and its approach, and we provide the main characteristics of the steady state, which lies between two shock waves. The velocities of these shocks are modified by the perturbation and equal the sound velocities of the asymptotic baths. Pushing this approach further, we are led to conjecture that the approach to the steady state is generically controlled by the power law t -1/2, and that the widths of the shocks increase with time according to t 1/3.
Hyperbolic self-gravity solver for large scale hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Hirai, Ryosuke; Nagakura, Hiroki; Okawa, Hirotada; Fujisawa, Kotaro
2016-04-01
A new computationally efficient method has been introduced to treat self-gravity in Eulerian hydrodynamical simulations. It is applied simply by modifying the Poisson equation into an inhomogeneous wave equation. This roughly corresponds to the weak field limit of the Einstein equations in general relativity, and as long as the gravitation propagation speed is taken to be larger than the hydrodynamical characteristic speed, the results agree with solutions for the Poisson equation. The solutions almost perfectly agree if the domain is taken large enough, or appropriate boundary conditions are given. Our new method cannot only significantly reduce the computational time compared with existent methods, but is also fully compatible with massive parallel computation, nested grids, and adaptive mesh refinement techniques, all of which can accelerate the progress in computational astrophysics and cosmology.
Hydrodynamic simulations of microjetting from shock-loaded grooves
NASA Astrophysics Data System (ADS)
Roland, Caroline; de Resseguier, Thibaut; Sollier, Arnaud; Lescoute, Emilien; Soulard, Laurent; Loison, Didier
2015-06-01
The interaction of a shock wave with a free surface presenting geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s order. This process can be involved in many applications, like pyrotechnics or industrial safety. Laser shock experiments reported in this conference (T. de Resseguier, C. Roland et al., abstract ref.000066) provide insight into jet formation and peak velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particles hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is investigated. Finally, the possibility to simulate the late stages of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.
Anomalous hydrodynamics of fractional quantum Hall states
Wiegmann, P.
2013-09-15
We propose a comprehensive framework for quantum hydrodynamics of the fractional quantum Hall (FQH) states. We suggest that the electronic fluid in the FQH regime can be phenomenologically described by the quantized hydrodynamics of vortices in an incompressible rotating liquid. We demonstrate that such hydrodynamics captures all major features of FQH states, including the subtle effect of the Lorentz shear stress. We present a consistent quantization of the hydrodynamics of an incompressible fluid, providing a powerful framework to study the FQH effect and superfluids. We obtain the quantum hydrodynamics of the vortex flow by quantizing the Kirchhoff equations for vortex dynamics.
NASA Astrophysics Data System (ADS)
Lin, Yue-qiang; Li, Jian; Liu, Xiao-dong; Zhang, Ting-zhen; Wen, Bang-cai; Zhang, Qing-mei; Miao, Hua
2010-06-01
The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magnetization is less than the theoretical value for the ferrofluids. In the high field range from 5 kOe to 10 kOe, the higher the particle volume fraction is, the steeper the slope of the magnetization curves is when it approaches saturation. The behavior of the saturation magnetization and the law of approach to saturation are due to the presence of self-assembled aggregates of ring-like micelle structures which form in the absence of the magnetic field and field-induced aggregates, respectively. The field-induced aggregates have a dissipative structure, so that at high field, the law of approach to saturation magnetization is different from the one described using Langevin paramagnetism theory. The large particles in the ferrofluids result in apparent hysteresis.
NASA Astrophysics Data System (ADS)
Chen, Bai-yi; Qiu, Jian-hui; Feng, Hui-xia
2016-02-01
Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization (85 emu·g-1) and high crystallinity were synthesized using polyethylene glycol-4000 (PEG (4000)) as a carbon source. Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG (4000) as dispersants. Analyses using X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG (4000). Transmission electron microscopy, vibrating sample magnetometry, and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4 (79.6 emu·g-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm, which is substantially smaller than that of the unmodified Fe3O4 nanoparticles (486.2 nm). UV-vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L-1, which indicates that the ferrofluids are highly stable.
Brain vascular and hydrodynamic physiology.
Tasker, Robert C
2013-11-01
Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery, and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high we can let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics. Alternatively, in almost all such cases, we have to address the question of how low can we let the blood pressure drop before we should be concerned about brain perfusion. This review provides a basic understanding of brain bioenergetics, hemodynamics, hydrodynamics, autoregulation, and vascular homeostasis to changes in blood gases, which is fundamental to our thinking about bedside care and monitoring. PMID:24331089
Hydrodynamics of cold holographic matter
NASA Astrophysics Data System (ADS)
Davison, Richard A.; Parnachev, Andrei
2013-06-01
We show that at any temperature, the low-energy (with respect to the chemical potential) collective excitations of the transverse components of the energy-momentum tensor and the global U(1) current in the field theory dual to the planar RN-AdS4 black hole are simply those of hydrodynamics. That is, hydrodynamics is applicable even at energy scales much greater than the temperature. It is applicable even at zero temperature. Specifically, we find that there is always a diffusion mode with diffusion constant proportional to the ratio of entropy density to energy density. At low temperatures, the leading order momentum and temperature dependences of the dispersion relation of this mode are controlled by the dimension of an operator in the thermal CFT1 dual to the near-horizon Schwarzschild-AdS2 geometry.
Hydrodynamic interactions between rotating helices
NASA Astrophysics Data System (ADS)
Kim, Munju; Powers, Thomas R.
2004-06-01
Escherichia coli bacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia, and there are significant hydrodynamic interactions between nearby helices. These interactions cause the flagella to bundle during the “runs” of bacterial chemotaxis. Here we use slender-body theory to solve for the flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or repulsive force between the helices.
Brain vascular and hydrodynamic physiology
Tasker, Robert C.
2013-01-01
Protecting the brain in vulnerable infants undergoing surgery is a central aspect of perioperative care. Understanding the link between blood flow, oxygen delivery and oxygen consumption leads to a more informed approach to bedside care. In some cases, we need to consider how high can we let the partial pressure of carbon dioxide go before we have concerns about risk of increased cerebral blood volume and change in intracranial hydrodynamics? Alternatively, in almost all such cases, we have to address the question of how low can we let the blood pressure drop before we should be concerned about brain perfusion? This review, provides a basic understanding of brain bioenergetics, hemodynamics, hydrodynamics, autoregulation and vascular homeostasis to changes in blood gases that is fundamental to our thinking about bedside care and monitoring. PMID:24331089
Hydrodynamics from Landau initial conditions
NASA Astrophysics Data System (ADS)
Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Kenneth; Wong, Cheuk-Yin
2015-07-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 — 30%) expected at freeze out for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Hydrodynamic damage to animal cells.
Chisti, Y
2001-01-01
Animal cells are affected by hydrodynamic forces that occur in culture vessel, transfer piping, and recovery operations such as microfiltration. Depending on the type, intensity, and duration of the force, and the specifics of the cell, the force may induce various kinds of responses in the subject cells. Both biochemical and physiological responses are observed, including apoptosis and purely mechanical destruction of the cell. This review examines the kinds of hydrodynamic forces encountered in bioprocessing equipment and the impact of those forces on cells. Methods are given for quantifying the magnitude of the specific forces, and the response thresholds are noted for the common types of cells cultured in free suspension, supported on microcarriers, and anchored to stationary surfaces. PMID:11451047
Soliton propagation in relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Fogaça, D. A.; Navarra, F. S.
2007-06-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Particle hydrodynamics with tessellation techniques
NASA Astrophysics Data System (ADS)
Heß, Steffen; Springel, Volker
2010-08-01
Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. We find that the new `Voronoi Particle Hydrodynamics' (VPH) described here produces comparable results to SPH in shocks, and better ones in turbulent regimes of pure hydrodynamical simulations. We also discuss formulations of the artificial viscosity needed in this scheme and how judiciously chosen correction forces can be derived in order to maintain a high degree of particle order and hence a regular Voronoi mesh. This is especially helpful in simulating self-gravitating fluids with existing gravity solvers used for N-body simulations.
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Jonkman, J. M.; Sclavounos, P. D.
2006-01-01
Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.
Hydrodynamic instability mechanism for rip currents
NASA Astrophysics Data System (ADS)
Yu, Jie
2015-04-01
On re-examining the hydrodynamic instability, Yu (J. Fluid Mech., vol. 549, 2006, pp. 403-428) showed that when the fully dynamical interactions are duly accounted for, and proper mathematical analysis is carried out, the positive feedback between the wave and evolving current can initiate and sustain rip current circulations with scales comparable to field observations on alongshore uniform beaches. In this study, we extend that analysis to consider non-planar beaches, and to include a new branch of unstable modes that correspond to alongshore propagating horizontal circulations with the magnitudes of the flow growing in time. This latter has not previously been studied. These propagating unstable modes have typical time periods of tens of minutes and alongshore propagation speeds of a few cm/sec. The physical implications of their spatial and slow time oscillations are discussed, as of relevance to occurrence and recurrence of transient rips, alongshore migration of rip currents and very low frequency pulsations in surf zone eddy circulations.
Advances in the hydrodynamics solver of CO5BOLD
NASA Astrophysics Data System (ADS)
Freytag, Bernd
Many features of the Roe solver used in the hydrodynamics module of CO5BOLD have recently been added or overhauled, including the reconstruction methods (by adding the new second-order ``Frankenstein's method''), the treatment of transversal velocities, energy-flux averaging and entropy-wave treatment at small Mach numbers, the CTU scheme to combine the one-dimensional fluxes, and additional safety measures. All this results in a significantly better behavior at low Mach number flows, and an improved stability at larger Mach numbers requiring less (or no) additional tensor viscosity, which then leads to a noticeable increase in effective resolution.
Hydrodynamic modeling of tsunamis from the Currituck landslide
Geist, E.L.; Lynett, P.J.; Chaytor, J.D.
2009-01-01
Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Forced wetting and hydrodynamic assist
NASA Astrophysics Data System (ADS)
Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël
2015-11-01
Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I.
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Quasi-Static Hydrodynamic Limits
NASA Astrophysics Data System (ADS)
De Masi, Anna; Olla, Stefano
2015-12-01
We consider hydrodynamic limits of interacting particles systems with open boundaries, where the exterior parameters change in a time scale slower than the typical relaxation time scale. The limit deterministic profiles evolve quasi-statically. These limits define rigorously the thermodynamic quasi static transformations also for transitions between non-equilibrium stationary states. We study first the case of the symmetric simple exclusion, where duality can be used, and then we use relative entropy methods to extend to other models like zero range systems. Finally we consider a chain of anharmonic oscillators in contact with a thermal Langevin bath with a temperature gradient and a slowly varying tension applied to one end.
Progress in smooth particle hydrodynamics
Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.
1998-07-01
Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to solving SPH problems, pioneered by Randles and Libersky, is to use a different SPH equation and to renormalize the kernel gradient sums. Finally the authors present results using the SPH statistical fracture model (SPHSFM). It has been applied to a series of ball on plate impacts performed by Grady and Kipp. A description of the model and comparison with the experiments will be given.
Hydrodynamics of post CHF region
Ishii, M.; De Jarlais, G.
1984-04-01
Among various two-phase flow regimes, the inverted flow in the post-dryout region is relatively less well understood due to its special heat transfer conditions. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formations, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail both analytically and experimentally. Criteria for initial flow regimes in the post-dryout region are given. Preliminary models for subsequent flow regime transition criteria are derived together with correlations for a mean droplet diameter based on the adiabatic simulation data.
Flame front as hydrodynamic discontinuity
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide; Abarzhi, Snezhana
2012-11-01
We applied generalized Rankine-Hugoniot conditions to study the dynamics of unsteady and curved fronts as a hydrodynamic discontinuity. It is shown that the front is unstable and Landau-Darrieus instability develops only if three conditions are satisfied (1) large-scale vorticity is generated in the fluid bulk; (2) energy flux across the front is imbalanced; (3) the energy imbalance is large. The structure of the solution is studied in details. Flows with and without gravity and thermal diffusion are analyzed. Stabilization mechanisms are identified. NSF 1004330.
Relativistic hydrodynamics causality and stability
NASA Astrophysics Data System (ADS)
Ván, P.; Biró, T. S.
2008-03-01
Causality and stability in relativistic dissipative hydrodynamics are important conceptual issues. We argue that causality is not restricted to hyperbolic set of differential equations. E.g. heat conduction equation can be causal considering the physical validity of the theory. Furthermore we propose a new concept of relativistic internal energy that clearly separates the dissipative and non-dissipative effects. We prove that with this choice we remove all known instabilities of the linear response approximation of viscous and heat conducting relativistic fluids. In this paper the Eckart choice of the velocity field is applied.
Hydrodynamic instability experiments and simulations
Dimonte, G.; Schneider, M.; Frerking, C.E.
1995-07-01
Richtmyer-Meshkov experiments are conducted on the Nova laser with strong radiatively driven shocks (Mach > 20) in planar, two-fluid targets with Atwood number A < 0. Single mode interfacial perturbations are used to test linear theory and 3D random perturbations are used to study turbulent mix. Rayleigh-Taylor experiments are conducted on a new facility called the Linear Electric Motor (LEM) in which macroscopic fluids are accelerated electromagnetically with arbitrary acceleration profiles. The initial experiments are described. Hydrodynamic simulations in 2D are in reasonable agreement with the experiments, but these studies show that simulations in 3D with good radiation transport and equation of state are needed.
Problems in astrophysical radiation hydrodynamics
Castor, J.I.
1983-09-14
The basic equations of radiation hydrodynamics are discussed in the regime that the radiation is dynamically as well as thermally important. Particular attention is paid to the question of what constitutes an acceptable approximate non-relativistic system of dynamical equations for matter and radiation in this regime. Further discussion is devoted to two classes of application of these ideas. The first class consists of problems dominated by line radiation, which is sensitive to the velocity field through the Doppler effect. The second class is of problems in which the advection of radiation by moving matter dominates radiation diffusion.
Foundation of Hydrodynamics of Strongly Interacting Systems
Wong, Cheuk-Yin
2014-01-01
Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.
Towards Hydrodynamics without an Entropy Current
NASA Astrophysics Data System (ADS)
Jensen, Kristan; Kaminski, Matthias; Kovtun, Pavel; Meyer, René; Ritz, Adam; Yarom, Amos
2012-09-01
We present a generating functional which describes the equilibrium thermodynamic response of a relativistic system to external sources. A variational principle gives rise to constraints on the response parameters of relativistic hydrodynamics without making use of an entropy current. Our method reproduces and extends results available in the literature. It also provides a technique for efficiently computing n-point zero-frequency correlation functions within the hydrodynamic derivative expansion without the need to explicitly solve the equations of hydrodynamics.
Towards hydrodynamics without an entropy current.
Jensen, Kristan; Kaminski, Matthias; Kovtun, Pavel; Meyer, René; Ritz, Adam; Yarom, Amos
2012-09-01
We present a generating functional which describes the equilibrium thermodynamic response of a relativistic system to external sources. A variational principle gives rise to constraints on the response parameters of relativistic hydrodynamics without making use of an entropy current. Our method reproduces and extends results available in the literature. It also provides a technique for efficiently computing n-point zero-frequency correlation functions within the hydrodynamic derivative expansion without the need to explicitly solve the equations of hydrodynamics. PMID:23005277
Direct evidence of flagellar synchronization through hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Brumley, Douglas; Polin, Marco; Wan, Kirsty; Goldstein, Raymond
2013-11-01
Eukaryotic cilia and flagella exhibit striking coordination, from the synchronous beating of two flagella in Chlamydomonas to the metachronal waves and large-scale flows displayed by carpets of cilia. However, the precise mechanisms responsible for flagellar synchronization remain unclear. We perform a series of experiments involving two individual flagella in a quiescent fluid. Cells are isolated from the colonial alga Volvox carteri, held in place at a fixed distance d, and oriented so that their flagellar beating planes coincide. In this fashion, we are able to explicitly assess the role of hydrodynamics in achieving synchronization. For closely separated cells, the flagella are capable of exhibiting a phase-locked state for thousands of beats at a time, despite significant differences in their intrinsic frequencies. For intermediate values of d, synchronous periods are interrupted by brief phase slips, while for d >> 1 the flagellar phase difference drifts almost linearly with time. The coupling strength extracted through analysis of the synchronization statistics exhibits excellent agreement with hydrodynamic predictions. This study unambiguously reveals that flagella coupled only through hydrodynamics are capable of exhibiting robust synchrony.
Balance equations in semi-relativistic quantum hydrodynamics
NASA Astrophysics Data System (ADS)
Ivanov, A. Yu.; Andreev, P. A.; Kuz'menkov, L. S.
2014-05-01
Method of the quantum hydrodynamics has been applied in quantum plasmas studies. As the first step in our consideration, derivation of classical semi-relativistic (i.e., described by the Darwin Lagrangian on microscopic level) hydrodynamical equations is given after a brief review of method development. It provides better distinguishing between classic and quantum semi-relativistic effects. Derivation of the classical equations is interesting since it is made by a natural, but not very widespread method. This derivation contains explicit averaging of the microscopic dynamics. Derivation of corresponding quantum hydrodynamic equations is presented further. Equations are obtained in the five-momentum approximation including the continuity equation, Euler and energy balance equations. It is shown that relativistic corrections lead to presence of new quantum terms in expressions for a force field, a work field etc. The semi-relativistic generalization of the quantum Bohm potential is obtained. Quantum part of the energy current, which is an analog of the quantum Bohm potential for the energy evolution equation, is derived. The Langmuir wave dispersion in semi-relativistic quantum plasmas, corresponding to the Darwin Lagrangian, is also considered to demonstrate contribution of semi-relativistic effects on basic plasma phenomenon.
A hydrodynamic sensory antenna used by killifish for nocturnal hunting
Schwarz, Jason S.; Reichenbach, Tobias; Hudspeth, A. J.
2011-01-01
SUMMARY The perception of sensory stimuli by an animal requires several steps, commencing with the capture of stimulus energy by an antenna that, as the interface between the physical world and the nervous system, modifies the stimulus in ways that enhance the animal's perception. The mammalian external ear, for example, collects sound and spectrally alters it to increase sensitivity and improve the detection of directionality. In view of the morphological diversity of the lateral-line system across species and its accessibility to observation and experimental intervention, we sought to investigate the role of antennal structures on the response characteristics of the lateral line. The surface-feeding killifish Aplocheilus lineatus is able to hunt in darkness by detecting surface capillary waves with the lateral-line system atop its head. This cephalic lateral line consists of a stereotyped array of 18 mechanosensitive neuromasts bordered by fleshy ridges. By recording microphonic potentials, we found that each neuromast has a unique receptive field defined by its sensitivity to stimulation of the water's surface. The ridges help determine these receptive fields by altering the flow of water over each neuromast. Modification of the hydrodynamic environment by the addition of a supplemental ridge changes the pattern of water movement, perturbs the receptive fields of adjacent neuromasts and impairs the fish's localization ability. On the basis of electrophysiological, hydrodynamic and behavioral evidence, we propose that the ridges constitute a hydrodynamic antenna for the cephalic lateral line. PMID:21562172
Collision-dominated nonlinear hydrodynamics in graphene
NASA Astrophysics Data System (ADS)
Briskot, U.; Schütt, M.; Gornyi, I. V.; Titov, M.; Narozhny, B. N.; Mirlin, A. D.
2015-09-01
We present an effective hydrodynamic theory of electronic transport in graphene in the interaction-dominated regime. We derive the emergent hydrodynamic description from the microscopic Boltzmann kinetic equation taking into account dissipation due to Coulomb interaction and find the viscosity of Dirac fermions in graphene for arbitrary densities. The viscous terms have a dramatic effect on transport coefficients in clean samples at high temperatures. Within linear response, we show that viscosity manifests itself in the nonlocal conductivity as well as dispersion of hydrodynamic plasmons. Beyond linear response, we apply the derived nonlinear hydrodynamics to the problem of hot-spot relaxation in graphene.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Hydrodynamic dispersion within porous biofilms.
Davit, Y; Byrne, H; Osborne, J; Pitt-Francis, J; Gavaghan, D; Quintard, M
2013-01-01
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. PMID:23410370
Hydrodynamics of Copepods: A Review
NASA Astrophysics Data System (ADS)
Jiang, Houshuo; Osborn, Thomas R.
2004-07-01
This paper reviews the hydrodynamics of copepods, guided by results obtained from recent theoretical and numerical studies of this topic to highlight the key concepts. First, we briefly summarize observational studies of the water flows (e.g., the feeding currents) created by copepods at their body scale. It is noticed that the water flows at individual copepod scale not only determine the net currents going around and through a copepod’s hair-bearing appendages but also set up a laminar flow field around the copepod. This laminar flow field interacts constantly with environmental background flows. Theoretically, we explain the creation of the laminar flow field in terms of the fact that a free-swimming copepod is a self-propelled body. This explanation is able to relate the various flow fields created by copepods to their complex swimming behaviors, and relevant results obtained from numerical simulations are summarized. Finally, we review the role of hydrodynamics in facilitating chemoreception and mechanoreception in copepods. As a conclusion, both past and current research suggests that the fluid mechanical phenomena occurring at copepod body scale play an important role in copepod feeding, sensing, swarming, mating, and predator avoidance.
The hydrodynamics of lamprey locomotion
NASA Astrophysics Data System (ADS)
Leftwich, Megan C.
The lamprey, an anguilliform swimmer, propels itself by undulating most of its body. This type of swimming produces flow patterns that are highly three-dimensional in nature and not very well understood. However, substantial previous work has been done to understand two-dimensional unsteady propulsion, the possible wake structures and thrust performance. Limited studies of three-dimensional propulsors with simple geometries have displayed the importance of the third dimension in designing unsteady swimmers. Some of the results of those studies, primarily the ways in which vorticity is organized in the wake region, are seen in lamprey swimming as well. In the current work, the third dimension is not the only important factor, but complex geometry and body undulations also contribute to the hydrodynamics. Through dye flow visualization, particle induced velocimetry and pressure measurements, the hydrodynamics of anguilliform swimming are studied using a custom built robotic lamprey. These studies all indicate that the undulations of the body are not producing thrust. Instead, it is the tail which acts to propel the animal. This conclusion led to further investigation of the tail, specifically the role of varying tail flexibility on hydrodymnamics. It is found that by making the tail more flexible, one decreases the coherence of the vorticity in the lamprey's wake. Additional flexibility also yields less thrust.
An introduction to relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Font, José A.
2007-11-01
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Hydromechanical transmission with hydrodynamic drive
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2005-01-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2004-12-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Hydrodynamics of internal solitons and a comparison of SIR-A and SIR-B data with ocean measurements
NASA Technical Reports Server (NTRS)
Apel, J. R.; Gasparovic, R. F.; Thompson, D. R.
1986-01-01
Large internal solitary waves have been observed by Shuttle SIR-A and SIR-B at locations in the Andaman Sea and the New York Bight. Satellite imagery and oceanographic measurements are used in conjunction with hydrodynamic interaction and electromagnetic scattering models to estimate the expected SAR image intensity modulations associated with the internal waves. There is reasonable agreement between the predicted and observed internal wave signatures.
Pulsed power hydrodynamics : a new application of high magnetic fields.
Reinovsky, R. E.; Anderson, W. E.; Atchison, W. L.; Faehl, R. J.; Keinigs, R. K.; Lindemuth, I. R.; Scudder, D. W.; Shlachter, Jack S.; Taylor, Antoinette J.,
2002-01-01
Pulsed Power Hydrodynamics is a new application of high magnetic fields recently developed to explore advanced hydrodynamics, instabilities, fluid turbulences, and material properties in a highly precise, controllable environment at the extremes of pressure and material velocity. The Atlas facility at Los Alamos is the world's first and only laboratory pulsed power system designed specifically to explore this relatively new family of megagauss magnetic field applications. Constructed in 2000 and commissioned in August 2001, Atlas is a 24-MJ high-performance capacitor bank delivering up to 30 MA with a current risetime of 5-6 {micro}sec. The high-precision, cylindrical, imploding liner is the tool most frequently used to convert electrical energy into the hydrodynamic (particle kinetic) energy needed to drive the experiments. For typical liner parameters including initial radius of 5 cm, the peak current of 30 MA delivered by Atlas results in magnetic fields just over 1 MG outside the liner prior to implosion. During the 5 to 10-{micro}sec implosion, the field outside the liner rises to several MG in typical situations. At these fields the rear surface of the liner is melted and it is subject to a variety of complex behaviors including: diffusion dominated andor melt wave field penetration and heating, magneto Raleigh-Taylor sausage mode behavior at the liner/field interface, and azimuthal asymmetry due to perturbations in current drive. The first Atlas liner implosion experiments were conducted in September 2000 and 10-15 experiments are planned in the: first year of operation. Immediate applications of the new pulsed power hydrodynamics techniques include material property topics including: exploration of material strength at high rates of strain, material failure including fracture and spall, and interfacial dynamics at high relative velocities and high interfacial pressures. A variety of complex hydrodynamic geometries will be explored and experiments will be designed to explore uristable perturbation growth and transition to turbulence. This paper will provide an overview of the range of problems to which pulsed power hydrodynamics can be applied and the issues associated with these techniques. Other papers at this Conference will present specifics of individual experiments and elaborate on the liner physics issues.
Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat
2014-01-01
This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer. PMID:24465388
NASA Astrophysics Data System (ADS)
Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna
Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.
Fasih Ramandi, Negin; Shemirani, Farzaneh
2015-10-15
Surfacted ferrofluid (S-FF) is a stable colloid dispersion of magnetic nanoparticles in a carrier liquid which possesses magnetic properties and fluidity simultaneously. Specifically in S-FF coating magnetic nanoparticles with a suitable surfactant provides steric repulsions to prevent particles agglomeration. Selecting the function of surfactant can be engineered according to its application. In the present study, for the first time the application of S-FF in dispersive solid phase extraction of methylene blue (as a cationic dye model) in water and shrimp samples was investigated. For this purpose, in order to use ionic liquid as carrier fluid, the surface of Fe3O4 nanoparticles was coated by an anionic surfactant in a polar medium to form a hydrophilic layer around magnetic nanoparticles. In addition to hydrophobic interactions between the analyte and carbonic chain of surfactant, the retention of cationic dye was mainly governed by attractive electrostatic interactions between polar head of surfactant and dye. Under optimized conditions, the relative standard deviation is 2.9%, the limit of detection is 2.5 μg L(-1), and the preconcentration factor is 135. PMID:25952885
NASA Astrophysics Data System (ADS)
Nair, Swapna. S.; Rajesh, S.; Abraham, V. S.; Anantharaman, M. R.; Nampoori, V. P. N.
2006-10-01
Fine magnetic particles (size≅100 Å) belonging to the series Zn xFe 1-xFe 2O 4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.
Nonlinear density waves in the single-wave model
Marinov, Kiril B.; Tzenov, Stephan I.
2011-03-15
The single-wave model equations are transformed to an exact hydrodynamic closure by using a class of solutions to the Vlasov equation corresponding to the waterbag model. The warm fluid dynamic equations are then manipulated by means of the renormalization group method. As a result, amplitude equations for the slowly varying wave amplitudes are derived. Since the characteristic equation for waves has in general three roots, two cases are examined. If all the three roots of the characteristic equation are real, the amplitude equations for the eigenmodes represent a system of three coupled nonlinear equations. In the case where the dispersion equation possesses one real and two complex conjugate roots, the amplitude equations take the form of two coupled equations with complex coefficients. The analytical results are then compared to the exact system dynamics obtained by solving the hydrodynamic equations numerically.
Nonlinear waves and shocks in relativistic two-fluid hydrodynamics
NASA Astrophysics Data System (ADS)
Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.
2012-06-01
Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.
Pilot-wave hydrodynamics in a rotating frame: Exotic orbits
Oza, Anand U.; Harris, Daniel M.; Rosales, Rodolfo R.; Bush, John W. M.; Wind-Willassen, Øistein
2014-08-15
We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop's trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, stable circular orbits give way to wobbling orbits, which are succeeded in turn by instabilities of the orbital center characterized by steady drifting then discrete leaping. In the limit of large vibrational forcing, the walker's trajectory becomes chaotic, but its statistical behavior reflects the influence of the unstable orbital solutions. The study results in a complete regime diagram that summarizes the dependence of the walker's behavior on the system parameters. Our predictions compare favorably to the experimental observations of Harris and Bush [“Droplets walking in a rotating frame: from quantized orbits to multimodal statistics,” J. Fluid Mech. 739, 444–464 (2014)].
Constructing higher-order hydrodynamics: The third order
NASA Astrophysics Data System (ADS)
Grozdanov, Sašo; Kaplis, Nikolaos
2016-03-01
Hydrodynamics can be formulated as the gradient expansion of conserved currents in terms of the fundamental fields describing the near-equilibrium fluid flow. In the relativistic case, the Navier-Stokes equations follow from the conservation of the stress-energy tensor to first order in derivatives. In this paper, we go beyond the presently understood second-order hydrodynamics and discuss the systematization of obtaining the hydrodynamic expansion to an arbitrarily high order. As an example of the algorithm that we present, we fully classify the gradient expansion at third order for neutral fluids in four dimensions, thus finding the most general next-to-leading-order corrections to the relativistic Navier-Stokes equations in curved space-time. In doing so, we list 20 new transport coefficient candidates in the conformal case and 68 in the nonconformal case. As we do not consider any constraints that could potentially arise from the local entropy current analysis, this is the maximal possible set of neutral third-order transport coefficients. To investigate the physical implications of these new transport coefficients, we obtain the third-order corrections to the linear dispersion relations that describe the propagation of diffusion and sound waves in relativistic fluids. We also compute the corrections to the scalar (spin-2) two-point correlation function of the third-order stress-energy tensor. Furthermore, as an example of a nonlinear hydrodynamic flow, we calculate the third-order corrections to the energy density of a boost-invariant Bjorken flow. Finally, we apply our field theoretic results to the N =4 supersymmetric Yang-Mills fluid at infinite 't Hooft coupling and an infinite number of colors to find the values of five new linear combinations of the conformal transport coefficients.
Dynamics of galloping detonations: inert hydrodynamics with pulsed energy release
NASA Astrophysics Data System (ADS)
Radulescu, Matei I.; Shepherd, Joseph E.
2015-11-01
Previous models for galloping and cellular detonations of Ulyanitski, Vasil'ev and Higgins assume that the unit shock decay or cell can be modeled by Taylor-Sedov blast waves. We revisit this concept for galloping detonations, which we model as purely inert hydrodynamics with periodically pulsed energy deposition. At periodic time intervals, the chemical energy of the non-reacted gas accumulating between the lead shock and the contact surface separating reacted and non reacted gas is released nearly instantaneously. In between these pulses, the gas evolves as an inert medium. The resulting response of the gas to the periodic forcing is a sudden gain in pressure followed by mechanical relaxation accompanied by strong shock waves driven both forward and backwards. It is shown that the decay of the lead shock in-between pulses follows an exponential decay, whose time constant is controlled by the frequency of the energy deposition. More-over, the average speed of the lead shock is found to agree within 2 percent to the ideal Chapman-Jouguet value, while the large scale dynamics of the wave follows closely the ideal wave form of a CJ wave trailed by a Taylor expansion. When friction and heat losses are accounted for, velocity deficits are predicted, consistent with experiment. Work performed while MIR was on sabbatical at Caltech.
The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine
NASA Astrophysics Data System (ADS)
Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.
2014-06-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.
Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint
Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.
2014-07-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.
Hydrodynamics, Fungal Physiology, and Morphology.
Serrano-Carreón, L; Galindo, E; Rocha-Valadéz, J A; Holguín-Salas, A; Corkidi, G
2015-01-01
Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most common morphologies exhibited by filamentous microorganisms; (b) how hydrodynamic conditions affect morphology and physiology in filamentous cultures; and (c) techniques using digital image analysis to characterize the viability of filamentous microorganisms and mass transfer in multiphase dispersions. Representative case studies of fungi (Trichoderma harzianum and Pleurotus ostreatus) exhibiting different typical morphologies (disperse mycelia and pellets) are discussed. PMID:25652005
Two dimensional hydrodynamic modeling of a high latitude braided river
NASA Astrophysics Data System (ADS)
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
Modified hydrodynamics in canopies with longitudinal gaps exposed to oscillatory flows
NASA Astrophysics Data System (ADS)
El Allaoui, Nazha; Serra, Teresa; Soler, Marianna; Colomer, Jordi; Pujol, Dolors; Oldham, Carolyn
2015-12-01
Longitudinal gaps are commonly found in aquatic canopies. While the ecological significance of gaps may be large, we know little about their impact on the hydrodynamics within the canopy. We used laboratory experiments to investigate the effect of longitudinal gaps within canopies exposed to a wave field. In rigid submerged and emergent vegetation, wave velocities were reduced compared to the case without vegetation. Flexible canopies also attenuated waves, but this attenuation was lower than for rigid canopies. The presence of the gap modified the mean current associated with the waves in both the gap and the lateral vegetation. A gap within a canopy of 5% solid plant fraction did not show differences in the wave attenuation between the gap and the lateral vegetation. In contrast, gaps within canopies of 10% solid plant fraction resulted in large differences between the gap and the lateral vegetation. In all the experiments, the effect of a gap within a canopy reduced the wave attenuation within the lateral vegetation adjacent to the gap when compared with a canopy without a gap. In canopies with rigid plants, the lateral vegetation modified the wave attenuation in the nearby gap. In contrast, the lateral flexible vegetation did not produce any effect on the wave attenuation of the adjacent gap. Canopy density, plant height and plant flexibility were critical for determining the hydrodynamics throughout the canopy and in the gap.
A Generalized Hydrodynamics Model for Strongly Coupled Plasmas
NASA Astrophysics Data System (ADS)
Diaw, Abdourahmane; Murillo, Michael Sean
2015-11-01
Starting with the equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum and stress tensor-moment equations. The closure proceeds in two steps. The first that guarantees an equilibrium state is given by density functional theory. It ensures self consistency in the equation-of-state properties of the plasma. The second involves modifying the two-body distribution function to include collisions in the relaxation of the stress tensor. The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasi-localized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).
Three-Dimensional Hydrodynamic Experiments on the National Ignition Facility
Blue, B E; Robey, H F; Glendinning, S G; Bono, M J; Dixit, S N; Foster, J M; Haynam, C A; Holder, J P; Hsing, W W; Kalantar, D H; Lanier, N E; MacGowan, B J; Moses, E I; Nikitin, A J; Perry, T S; Rekow, V V; Rosen, P A; Stry, P E; Van Wonterghem, B M; Wallace, R; Weber, S V; Wilde, B H; Woods, D T
2005-02-09
The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster et. al, Phys. Plasmas 9, 2251 (2002)]. In three-dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.
Three-dimensional hydrodynamic experiments on the National Ignition Facility
Blue, B.E.; Robey, H.F.; Glendinning, S.G.; Bono, M.J.; Burkhart, S.C.; Celeste, J.R.; Costa, R.L.; Dixit, S.N.; Hansen, J.F.; Haynam, C.A.; Hermann, M.R.; Holder, J.P.; Hsing, W.W.; Kalantar, D.H.; Latray, D.A.; Louis, H.; MacGowan, B.J.; Marshall, C.D.; Moses, E.I.; Nikitin, A.J.
2005-05-15
The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster, B. H. Wilde, P. A. Rosen, T. S. Perry, M. Fell, M. J. Edwards, B. F. Lasinski, R. E. Turner, and M. L. Gittings, Phys. Plasmas 9, 2251 (2002)]. In three dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. Sorem, Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.
Three-Dimensional Hydrodynamics Experiments on the National Ignition Facility
Blue, B E; Weber, S V; Glendinning, S; Lanier, N; Woods, D; Bono, M; Dixit, S; Haynam, C; Holder, J; Kalantar, D; MacGowan, B; Moses, E; Nikitin, A; Rekow, V; Wallace, R; Van Wonterghem, B; Rosen, P; Foster, J; Stry, P; Wilde, B; Hsing, W; Robey, H
2004-11-12
The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster et. al, Phys. Plasmas 9, 2251 (2002)]. In three-dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.
Relativistic Hydrodynamics for Heavy-Ion Collisions
ERIC Educational Resources Information Center
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Hydrodynamic description for ballistic annihilation systems
Garcia de Soria, Maria Isabel; Trizac, Emmanuel; Maynar, Pablo; Schehr, Gregory; Barrat, Alain
2009-01-21
The problem of the validity of a hydrodynamic description for a system in which there are no collisional invariants is addressed. Hydrodynamic equations have been derived and successfully tested against simulation data for a system where particles annihilate with a probability p, or collide elastically otherwise. The response of the system to a linear perturbation is analyzed as well.
Relativistic Hydrodynamics for Heavy-Ion Collisions
ERIC Educational Resources Information Center
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed
Why Ultrarelativistic Numerical Hydrodynamics is Difficult
NASA Astrophysics Data System (ADS)
Norman, M. L.; Winkler, K.-H. A.
The authors address the numerical difficulties associated with solving the equations of ultrarelativistic hydrodynamics in a flat background spacetime, i.e. special relativistic hydrodynamics, although their findings have relevance to numerical techniques for studying general relativistic fluid flows as well.
Radiation hydrodynamics in solar flares
Fisher, G.H.
1985-10-18
Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.
The hydrodynamic theory of detonation
NASA Technical Reports Server (NTRS)
Langweiler, Heinz
1939-01-01
This report derives equations containing only directly measurable constants for the quantities involved in the hydrodynamic theory of detonation. The stable detonation speed, D, is revealed as having the lowest possible value in the case of positive material velocity, by finding the minimum of the Du curve (u denotes the speed of the gases of combustion). A study of the conditions of energy and impulse in freely suspended detonating systems leads to the disclosure of a rarefaction front traveling at a lower speed behind the detonation front; its velocity is computed. The latent energy of the explosive passes into the steadily growing detonation zone - the region between the detonation front and the rarefaction front. The conclusions lead to a new definition of the concept of shattering power. The calculations are based on the behavior of trinitrotoluene.
Hydrodynamic model for drying emulsions.
Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper
2015-08-01
We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings. PMID:26382507
Hydrodynamic enhanced dielectrophoretic particle trapping
Miles, Robin R.
2003-12-09
Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.
Hydrodynamic model for drying emulsions
NASA Astrophysics Data System (ADS)
Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper
2015-08-01
We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.
Deterministic hydrodynamics: Taking blood apart
NASA Astrophysics Data System (ADS)
Davis, John A.; Inglis, David W.; Morton, Keith J.; Lawrence, David A.; Huang, Lotien R.; Chou, Stephen Y.; Sturm, James C.; Austin, Robert H.
2006-10-01
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 μm/sec and volume rates up to 1 μl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma. cells | plasma | separation | microfabrication
Effect of Surface Roughness on Hydrodynamic Bearings
NASA Technical Reports Server (NTRS)
Majumdar, B. C.; Hamrock, B. J.
1981-01-01
A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.
Stellar Explosions: Hydrodynamics and Nucleosynthesis
NASA Astrophysics Data System (ADS)
José, Jordi
2015-12-01
Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.
The hydrodynamics of dolphin drafting
Weihs, Daniel
2004-01-01
Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris) is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members. PMID:15132740
Reliable estimation of shock position in shock-capturing compressible hydrodynamics codes
Nelson, Eric M
2008-01-01
The displacement method for estimating shock position in a shock-capturing compressible hydrodynamics code is introduced. Common estimates use simulation data within the captured shock, but the displacement method uses data behind the shock, making the estimate consistent with and as reliable as estimates of material parameters obtained from averages or fits behind the shock. The displacement method is described in the context of a steady shock in a one-dimensional lagrangian hydrodynamics code, and demonstrated on a piston problem and a spherical blast wave.The displacement method's estimates of shock position are much better than common estimates in such applications.
Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light.
Morandi, Omar; Zamanian, Jens; Manfredi, Giovanni; Hervieux, Paul-Antoine
2014-07-01
We develop a semirelativistic quantum fluid theory based on the expansion of the Dirac Hamiltonian to second order in 1/c. By making use of the Madelung representation of the wave function, we derive a set of hydrodynamic equations that comprises a continuity equation, an Euler equation for the mean velocity, and an evolution equation for the electron spin density. This hydrodynamic model is then applied to study the dynamics of a dense and weakly relativistic electron plasma. In particular, we investigate the impact of the quantum-relativistic spin effects on the Faraday rotation in a one-dimensional plasma slab irradiated by an x-ray laser source. PMID:25122397
NASA Astrophysics Data System (ADS)
Belyakov, Vladimir; Makarov, Vladimir; Zezyulin, Denis; Kurkin, Andrey; Pelinovsky, Efim
2015-04-01
Hazardous phenomena in the coastal zone lead to the topographic changing which are difficulty inspected by traditional methods. It is why those autonomous robots are used for collection of nearshore topographic and hydrodynamic measurements. The robot RTS-Hanna is well-known (Wubbold, F., Hentschel, M., Vousdoukas, M., and Wagner, B. Application of an autonomous robot for the collection of nearshore topographic and hydrodynamic measurements. Coastal Engineering Proceedings, 2012, vol. 33, Paper 53). We describe here several constructions of mobile systems developed in Laboratory "Transported Machines and Transported Complexes", Nizhny Novgorod State Technical University. They can be used in the field surveys and monitoring of wave regimes nearshore.
Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light
NASA Astrophysics Data System (ADS)
Morandi, Omar; Zamanian, Jens; Manfredi, Giovanni; Hervieux, Paul-Antoine
2014-07-01
We develop a semirelativistic quantum fluid theory based on the expansion of the Dirac Hamiltonian to second order in 1/c. By making use of the Madelung representation of the wave function, we derive a set of hydrodynamic equations that comprises a continuity equation, an Euler equation for the mean velocity, and an evolution equation for the electron spin density. This hydrodynamic model is then applied to study the dynamics of a dense and weakly relativistic electron plasma. In particular, we investigate the impact of the quantum-relativistic spin effects on the Faraday rotation in a one-dimensional plasma slab irradiated by an x-ray laser source.
Conservative, special-relativistic smoothed particle hydrodynamics
Rosswog, Stephan
2010-11-01
We present and test a new, special-relativistic formulation of smoothed particle hydrodynamics (SPH). Our approach benefits from several improvements with respect to earlier relativistic SPH formulations. It is self-consistently derived from the Lagrangian of an ideal fluid and accounts for the terms that stem from non-constant smoothing lengths, usually called 'grad-h terms'. In our approach, we evolve the canonical momentum and the canonical energy per baryon and thus circumvent some of the problems that have plagued earlier formulations of relativistic SPH. We further use a much improved artificial viscosity prescription which uses the extreme local eigenvalues of the Euler equations and triggers selectively on (a) shocks and (b) velocity noise. The shock trigger accurately monitors the relative density slope and uses it to fine-tune the amount of artificial viscosity that is applied. This procedure substantially sharpens shock fronts while still avoiding post-shock noise. If not triggered, the viscosity parameter of each particle decays to zero. None of these viscosity triggers is specific to special relativity, both could also be applied in Newtonian SPH. The performance of the new scheme is explored in a large variety of benchmark tests where it delivers excellent results. Generally, the grad-h terms deliver minor, though worthwhile, improvements. As expected for a Lagrangian method, it performs close to perfect in supersonic advection tests, but also in strong relativistic shocks, usually considered a particular challenge for SPH, the method yields convincing results. For example, due to its perfect conservation properties, it is able to handle Lorentz factors as large as {gamma} = 50,000 in the so-called wall shock test. Moreover, we find convincing results in a rarely shown, but challenging test that involves so-called relativistic simple waves and also in multi-dimensional shock tube tests.
Early hydrodynamic evolution of a stellar collision
Kushnir, Doron; Katz, Boaz
2014-04-20
The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient {sup 56}Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M {sub ☉}) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.
A parsimonious hydrodynamic model for colloidal gelation
NASA Astrophysics Data System (ADS)
Varga, Zsigmond; Swan, James W.
2015-11-01
Colloidal gels are formed during arrested phase separation. Models for microstructural evolution during gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamics. We hypothesize that long-ranged hydrodynamic interactions between the suspended particles are key for colloidal gelation. A simplified hydrodynamic model tests this hypothesis by including only long-ranged interactions via the Rotne-Prager-Yamakawa tensor. We show simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking. The hydrodynamic simulations agree with experimental observations, however. These results suggest that long-ranged hydrodynamic interactions are sufficient for establishing the gel boundary, structure and coarsening kinetics observed in experiments and more sophisticated simulation methods. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for coagulation is greatly accelerated, leading to a shift in the gel boundary when compared to models that neglect hydrodynamic interactions.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
NASA Astrophysics Data System (ADS)
Donev, Aleksandar; Nonaka, Andy; Bhattacharjee, Amit Kumar; Garcia, Alejandro L.; Bell, John B.
2015-03-01
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., "Fluctuating hydrodynamics of multispecies nonreactive mixtures," Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., "Low mach number fluctuating hydrodynamics of diffusively mixing fluids," Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a "solvent" species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., "Low mach number fluctuating hydrodynamics of binary liquid mixtures," arXiv:1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., "Mixed-mode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes," Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
Donev, Aleksandar Bhattacharjee, Amit Kumar; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.
2015-03-15
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes,” Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.
Typical geometry of rogue waves
NASA Astrophysics Data System (ADS)
Yudin, Alexander; Shamin, Roman
2015-04-01
Our talk presents geometry results of numerical modeling of rogue waves based on the full nonlinear equations of hydrodynamics. We describe the widespread types of rogue waves in computational experiments. We received a lot of rogue waves in our computing experiments. About 95% of these waves have the typical form of steep ridge ("wall of water"). Other rogue waves have the form of deepest depression ("hole in the sea") or represent several waves of very big height ("three sisters"). Rogue waves from our experiments are one of such individual waves. The most widespread rogue waves have the form of wall of water. Both parts of this wave from the left minimum to the maximum and from the maximum to the right minimum are well-approximated by three-degree polynomials. It gets the follow type after linear transformation when the ordinate of maximum point is transferred to the point with coordinates. References Zakharov V.E., Shamin R.V and Yudin A.V.: Energy Portrait of Rogue Waves, JETP Letters, 2014, Vol. 99, No. 9, pp. 514-517, DOI: 10.1134/S0021364014090136
Non abelian hydrodynamics and heavy ion collisions
Calzetta, E.
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Non abelian hydrodynamics and heavy ion collisions
NASA Astrophysics Data System (ADS)
Calzetta, E.
2014-01-01
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
A hybrid level set/volume-of-fluid approach for simulation of nearshore hydrodynamics
NASA Astrophysics Data System (ADS)
Bakhtyar, R.; Kees, C. E.; Miller, C. T.; Farthing, M. W.
2013-12-01
Wave breaking can play an important role in hydrodynamics near the coast and subsequently can be a factor in beach morphodynamics. However, an accurate understanding of the wave breaking and mixing of water and air at the free surface has yet to be achieved. Numerical models, based on single phase flow, have been used to study the nearshore hydrodynamics, but air-water two-phase flow is not well understood, and so there is a need for additional investigation into the details of this type of flow. The main objective of this study was to de¬velop further understanding of surf-swash zone hydrodynamics under a variety of wave forcing conditions. The main tool used was a com-prehensive two-phase numerical model - combining two-dimensional wave solver with the state-of-the-art 'Eulerian' technique for free surface modeling- of nearshore hydrodynamics. Surf-swash zone hydrodynamics were modeled using the Navier-Stokes equations, combined with turbulence closure model and a hybrid level set/volume-of-fluid approach. The hybrid level set/volume-of-fluid approach combines the accuracy and conceptual simplicity of front-tracking using level set methods with the conservation properties of volume-of fluid methods. The solver was discretized using a finite element method. The model's grid convergence and refinement were investigated in order to obtain high accuracy at an acceptable computational cost while retain robustness. The numerical set-up was tested against the well-known experimental data, with good agreement found. The numerical results showed that the maximum turbulent kinetic energy, turbulence dissipation rate, and velocity components are located near the free surface in the wave breaking area. The model is appropriate for the simulation of air-water mixing flow, undertow distribution, and turbulence characteristics in the nearshore zone. Generally, the analysis shows that, with reasonable hypotheses, it is possible to simulate the surf-swash zone hydrodynamics under wave breaking, consistent with existing understanding of this area.
Global hydrodynamics of the sun
NASA Astrophysics Data System (ADS)
Monin, A. S.
1980-09-01
A review of studies (1960's-1970's) on solar global hydrodynamics is presented, the main areas discussed being differential rotation and generation of the 11-year solar cycle, which seem to be related. A summary of current knowledge about the sun is given, including dimensions, rotation, radiation, solar atmosphere, and solar interior (neutrinos, convection zone). Solar atmospheric inhomogeneities with relatively short lifetimes are discussed, the most important perturbations being spots, faculae, chromospheric flares, prominences, and coronal streamers and holes. Data on solar rotation are reviewed: Solar differential rotation is accompanied by the expenditure of energy to overcome the viscous forces, and without some mechanism which would replenish this energy, the angular rotation velocities, at various heliographic latitudes, would become equal after a few solar rotations. It is thought that the replenishment mechanism is the meridional and radial transport of angular momentum in the convection zone by giant convection cells and of the parameterized turbulent viscosity. Familiar and undisputed effects of the 11-yr solar cycle include auroras, and magnetic storms. Less familiar effects include variations in the level of atmospheric radioactive carbon, and correlations between solar activity and earth climatic variations.
Hydrodynamic repulsion of elastic dumbbells
NASA Astrophysics Data System (ADS)
Ekiel-Jezewska, Maria L.; Bukowicki, Marek; Gruca, Marta
2015-11-01
Dynamics of two identical elastic dumbbells, settling under gravity in a viscous fluid at low Reynolds number are analyzed within the point-particle model. Initially, the dumbbells are vertical, their centers are aligned horizontally, and the springs which connect the dumbbell's beads are at the equilibrium. The motion of the beads is determined numerically with the use of the Runge-Kutta method. After an initial relaxation phase, the system converges to a universal time-dependent solution. The elastic dumbbells tumble while falling, but their relative motion is not periodic (as in case of rigid dumbbells or pairs of separated beads). The elastic constraints break the time-reversal symmetry of the motion. As the result, the horizontal distance between the dumbbells slowly increases - they are hydrodynamically repelled from each other. This effect can be very large even though the elastic forces are always much smaller than gravity. The dynamics described above are equivalent to the motion of a single elastic dumbbell under a constant external force which is parallel to a flat free surface. The dumbbell migrates away from the interface and its tumbling time increases.
Hydrodynamic aspects of fish olfaction
Cox, Jonathan P.L
2008-01-01
Flow into and around the olfactory chamber of a fish determines how odorant from the fish's immediate environment is transported to the sensory surface (olfactory epithelium) lining the chamber. Diffusion times in water are long, even over comparatively short distances (millimetres). Therefore, transport from the external environment to the olfactory epithelium must be controlled by processes that rely on convection (i.e. the bulk flow of fluid). These include the beating of cilia lining the olfactory chamber and the relatively inexpensive pumping action of accessory sacs. Flow through the chamber may also be induced by an external flow. Flow over the olfactory epithelium appears to be laminar. Odorant transfer to the olfactory epithelium may be facilitated in several ways: if the olfactory organs are mounted on stalks that penetrate the boundary layer; by the steep velocity gradients generated by beating cilia; by devices that deflect flow into the olfactory chamber; by parallel arrays of olfactory lamellae; by mechanical agitation of the chamber (or olfactory stalks); and by vortices. Overall, however, our knowledge of the hydrodynamics of fish olfaction is far from complete. Several areas of future research are outlined. PMID:18184629
Hydrodynamic gradient expansion in gauge theory plasmas.
Heller, Michal P; Janik, Romuald A; Witaszczyk, Przemysław
2013-05-24
We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description, we calculate numerically the form of the stress tensor for a boost-invariant flow in a hydrodynamic expansion up to terms with 240 derivatives. We observe a factorial growth of gradient contributions at large orders, which indicates a zero radius of convergence of the hydrodynamic series. Furthermore, we identify the leading singularity in the Borel transform of the hydrodynamic energy density with the lowest nonhydrodynamic excitation corresponding to a 'nonhydrodynamic' quasinormal mode on the gravity side. PMID:23745858
Maximum entropy principle and relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
van Weert, Ch. G.
1982-04-01
A relativistic theory of hydrodynamics applicable beyond the hydrodynamic regime is developed on the basis of the maximum entropy principle. This allows the construction of a unique statistical operator representing the state of the system as specified by the values of the hydrodynamical densities. Special attention is paid to the thermodynamic limit and the virial theorem which leads to an expression for the pressure in terms of the field-theoretic energymomentum tensor of Coleman and Jackiw. It is argued that outside the hydrodynamic regime the notion of a local Gibbs relation, as usually postulated, must be abandoned in general. In the nontext of the linear approximation, the memory-retaining and non-local generalizations of the relativistic Navier-Stokes equations are derived from the underlying Heisenberg equations of motion. The formal similarity to the Zwanzig-Mori description of non-relativistic fluids is expounded.
NASA Astrophysics Data System (ADS)
Boyer, Germain; Piot, Estelle; Brazier, Jean-Philippe
2011-04-01
A spectral collocation method is used to solve the linearized Euler equations in a duct with shear flow and lined walls in order to identify a possible hydrodynamic instability observed in published experiments. This method is first checked against a reference test case in a cylindrical duct. Then a theoretical test case in a plane bi-dimensional duct with no-slip flow is considered: the Briggs-Bers stability criterion is proved to be valid and it shows that the hydrodynamic instability does correspond to a right-running amplified wave. Eigenmode analyses are then performed on the experimental configuration. An unstable hydrodynamic surface mode is found, with an axial wavenumber and velocity eigenfunctions which are in good agreement with the experimental ones. Acoustic energy calculations show that the hydrodynamic instability paradoxically carries noticeable levels of acoustic energy in the upstream direction. Finally, the influence of Mach number and frequency is investigated.
Numerical analysis of the wave force acting on a cylinder in regular waves using the MPS method
NASA Astrophysics Data System (ADS)
Song, Xuemin; Shibata, Kazuya; Nihei, Yasunori; Koshizuka, Seiichi
2016-03-01
We simulated the interactions between a second-order Stokes wave and vertical circular cylinder in a three-dimensional numerical wave tank using the moving particle semi-implicit method. The numerical wave tank was modified to generate a series of Stokes waves. Fluid-structure interactions were simulated under the same wave conditions as the model experiments. We compared the hydrodynamic coefficients obtained by the simulations with those of the experiment to validate this method. We also simulated the wave force around a free surface using the developed method in different wave conditions.
Flagellar Synchronization Independent of Hydrodynamic Interactions
NASA Astrophysics Data System (ADS)
Friedrich, Benjamin M.; Jülicher, Frank
2012-09-01
Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a revolving motion of a pair of spheres. We show that perfect synchronization between these two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for this free-moving swimmer.
Application of practical hydrodynamics to airship design
NASA Technical Reports Server (NTRS)
Upson, Ralph H; Klikoff, W A
1933-01-01
The purpose of the first two parts of this report is to present in concise format all the formulas required for computation of the hydrodynamic forces, so that they can be easily computed for either straight or curvilinear flight. Improved approximations are also introduced having a high degree of accuracy throughout the entire range of practical proportions. The remaining two parts of the report are devoted respectively to stability and skin friction, as functions of the same hydrodynamic forces.
Improvements to SOIL: An Eulerian hydrodynamics code
Davis, C.G.
1988-04-01
Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
Implementing fully relativistic hydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Baumgarte, T. W.; Hughes, S. A.; Rezzolla, L.; Shapiro, S. L.; Shibata, M.
1999-11-01
We report on our numerical implementation of fully relativistic hydrodynamics coupled to Einstein's field equations in three spatial dimensions. We briefly review several steps in our code development, including our recasting of Einstein's equations and several tests which demonstrate its advantages for numerical integrations. We outline our implementation of relativistic hydrodynamics, and present numerical results for the evolution of both stable and unstable Oppenheimer-Volkov equilibrium stars, which represent a very promising first test of our code.
Relativistic Hydrodynamics with Spontaneous Chiral Symmetry Breaking
NASA Astrophysics Data System (ADS)
ZHANG, SUN; WANG, FAN
We study the hydrodynamics of the nuclear matter of two flavors of light quarks with spontaneous chiral symmetry breaking based on the Poisson bracket method. The effects of mass are included and the full hydrodynamic equation for pions is given. The in-medium dispersion relation of pions in the neutron rich background state and the possibility of the phase transition to pion condensation are also discussed.
Relativistic Radiation Hydrodynamics of Spherical Accretion
NASA Astrophysics Data System (ADS)
Park, Myeong-Gu
2001-12-01
Radiation hydrodynamics in high velocity or high optical-depth flow should be treated under rigorous relativistic formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the flow even when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic effects correctly.
Prediction of hydrodynamic performance of an FLNG system in side-by-side offloading operation
NASA Astrophysics Data System (ADS)
Zhao, Wenhua; Yang, Jianmin; Hu, Zhiqiang; Tao, Longbin
2014-04-01
Floating liquefied natural gas (FLNG) is a type of liquefied natural gas (LNG) production system that shows prospects in exploitation of stranded offshore gas fields. The dynamic performance of an FLNG system in side-by-side configuration with a LNG carrier under the combined actions of wave, current and wind can be quite complex. This paper presents a comprehensive study on the hydrodynamics of an FLNG system with a focus on the nonlinear coupling effects of vessels and connection systems based on the concept FLNG prototype recently designed for South China Sea. In this study, the hydrodynamic characteristics of the two floating vessels connected through hawsers and fenders are investigated using a state-of-the-art time-domain simulation code SIMO, considering their mechanical and hydrodynamic coupling effects. The simulation model consisting of FLNG and LNG carrier is developed and calibrated by a series of model tests including a tuned damping and viscous levels. The hydrodynamic performances of the two floating vessels under an extreme sea state during side-by-side offloading operation are obtained, and their relative motions and the force responses of the connection hawsers and fenders are analyzed. Sensitivity studies are conducted to clarify contributions from the pretension and the stiffness of the connection hawsers. The effects on the hydrodynamic performance of the vessels and on the loads of the connection system are also investigated.
78 FR 9907 - Hydrodynamics, Inc.; Notice Denying Late Intervention
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Energy Regulatory Commission Hydrodynamics, Inc.; Notice Denying Late Intervention On June 24, 2010, Commission staff issued a three-year preliminary permit to Hydrodynamics, Inc. (Hydrodynamics) to study the... Rosebud) filed a late motion to intervene in the proceeding. \\1\\ Hydrodynamics, Inc., 131 FERC ]...
RAMSES: A new N-body and hydrodynamical code
NASA Astrophysics Data System (ADS)
Teyssier, Romain
2010-11-01
A new N-body and hydrodynamical code, called RAMSES, is presented. It has been designed to study structure formation in the universe with high spatial resolution. The code is based on Adaptive Mesh Refinement (AMR) technique, with a tree based data structure allowing recursive grid refinements on a cell-by-cell basis. The N-body solver is very similar to the one developed for the ART code (Kravtsov et al. 97), with minor differences in the exact implementation. The hydrodynamical solver is based on a second-order Godunov method, a modern shock-capturing scheme known to compute accurately the thermal history of the fluid component. The accuracy of the code is carefully estimated using various test cases, from pure gas dynamical tests to cosmological ones. The specific refinement strategy used in cosmological simulations is described, and potential spurious effects associated to shock waves propagation in the resulting AMR grid are discussed and found to be negligible. Results obtained in a large N-body and hydrodynamical simulation of structure formation in a low density LCDM universe are finally reported, with 256^3 particles and 4.1 10^7 cells in the AMR grid, reaching a formal resolution of 8192^3. A convergence analysis of different quantities, such as dark matter density power spectrum, gas pressure power spectrum and individual haloes temperature profiles, shows that numerical results are converging down to the actual resolution limit of the code, and are well reproduced by recent analytical predictions in the framework of the halo model.
NASA Astrophysics Data System (ADS)
Kovtun, Pavel; Moore, Guy D.; Romatschke, Paul
2011-07-01
Hydrodynamics predicts long-lived sound and shear waves. Thermal fluctuations in these waves can lead to the diffusion of momentum density, contributing to the shear viscosity and other transport coefficients. Within viscous hydrodynamics in 3+1 dimensions, this leads to a positive contribution to the shear viscosity, which is finite but inversely proportional to the microscopic shear viscosity. Therefore the effective infrared viscosity is bounded from below. The contribution to the second-order transport coefficient τπ is divergent, which means that second-order relativistic viscous hydrodynamics is inconsistent below some frequency scale. We estimate the importance of each effect for the quark-gluon plasma, finding them to be minor if η/s=0.16 but important if η/s=0.08.
``Oenodynamic'': hydrodynamic of wine swirling
NASA Astrophysics Data System (ADS)
Reclari, Martino; Dreyer, Matthieu; Tissot, Stephanie; Obreschkow, Danail; Wurm, Florian; Farhat, Mohamed
2011-11-01
A crucial step in wine tasting is the so called ``swirling,'' necessary to release the bouquet of the wine: a gentle circular movement of the glass generates a wave propagating along the glass walls, enhancing oxygenation and mixing. Although being used in a large variety of other applications (e.g. cells cultures in orbital shaken bioreactors) this motion is not yet well understood. Using a simplified model we experimentally investigated the shape of the free surface and the mixing, and we identified a group of dimensionless parameters governing the flow. SNSF Grant CRSII2_125444.
Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.
Tytell, Eric D
2004-12-22
The kinematics and hydrodynamics of routine linear accelerations were studied in American eels, Anguilla rostrata, using high-speed video and particle image velocimetry. Eels were examined both during steady swimming at speeds from 0.6 to 1.9 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s(-2). Multiple regression of the acceleration and steady swimming speed on the body kinematics suggests that eels primarily change their tail-tip velocity during acceleration. By contrast, the best predictor of steady swimming speed is body wave speed, keeping tail-tip velocity an approximately constant fraction of the swimming velocity. Thus, during steady swimming, Strouhal number does not vary with speed, remaining close to 0.32, but during acceleration, it deviates from the steady value. The kinematic changes during acceleration are indicated hydrodynamically by axial fluid momentum in the wake. During steady swimming, the wake consists of lateral jets of fluid and has minimal net axial momentum, which reflects a balance between thrust and drag. During acceleration, those jets rotate to point downstream, adding axial momentum to the fluid. The amount of added momentum correlates with the acceleration, but is greater than the necessary inertial force by 2.8+/-0.6 times, indicating a substantial acceleration reaction. PMID:15615678
A Variational approach to thin film hydrodynamics of binary mixtures
NASA Astrophysics Data System (ADS)
Xu, Xinpeng; Thiele, Uwe; Qian, Tiezheng
2015-03-01
In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager's variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager's reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.
The use of wind tunnel facilities to estimate hydrodynamic data
NASA Astrophysics Data System (ADS)
Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale
2016-03-01
Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.
Verification for ALEGRA using magnetized shock hydrodynamics problems.
Rider, William J.; Niederhaus, John H.; Robinson, Allen Conrad; Gardiner, Thomas Anthony
2008-10-01
Two classical verification problems from shock hydrodynamics are adapted for verification in the context of ideal magnetohydrodynamics (MHD) by introducing strong transverse magnetic fields, and simulated using the finite element Lagrange-remap MHD code ALEGRA for purposes of rigorous code verification. The concern in these verification tests is that inconsistencies related to energy advection are inherent in Lagrange-remap formulations for MHD, such that conservation of the kinetic and magnetic components of the energy may not be maintained. Hence, total energy conservation may also not be maintained. MHD shock propagation may therefore not be treated consistently in Lagrange-remap schemes, as errors in energy conservation are known to result in unphysical shock wave speeds and post-shock states. That kinetic energy is not conserved in Lagrange-remap schemes is well known, and the correction of DeBar has been shown to eliminate the resulting errors. Here, the consequences of the failure to conserve magnetic energy are revealed using order verification in the two magnetized shock-hydrodynamics problems. Further, a magnetic analog to the DeBar correction is proposed and its accuracy evaluated using this verification testbed. Results indicate that only when the total energy is conserved, by implementing both the kinetic and magnetic components of the DeBar correction, can simulations in Lagrange-remap formulation capture MHD shock propagation accurately. Additional insight is provided by the verification results, regarding the implementation of the DeBar correction and the advection scheme.
General relativistic hydrodynamics and magnetohydrodynamics and their applications
NASA Astrophysics Data System (ADS)
Font, José A.
2005-12-01
Upon the choice of an Eulerian observer adapted to a 3 + 1 spacetime foliation and suitable fluid and magnetic field variables, it is possible to cast the equations of both general relativistic (inviscid) hydrodynamics (GRHD) and (ideal) magneto-hydrodynamics (GRMHD) as first-order, hyperbolic systems of conservation laws for state-vectors comprising the densities of mass, momentum, energy and magnetic field components. Hyperbolicity allows the use of the flux-vector Jacobians wave structure to build up stable and accurate numerical schemes for their solution. In recent years, the so-called Godunov-type schemes, based upon approximate Riemann solvers, have been successfully extended from classical to relativistic fluid dynamics (both special and general). While such advances also hold true in the case of the MHD equations, the development still awaits here for a thorough numerical exploration. This paper reports formulations of the GRHD/GRMHD equations amenable to numerical investigations using Godunov-type schemes. A number of relevant applications in the field of relativistic astrophysics is also covered.
Hydrodynamics of rapidly rotating superfluid neutron stars with mutual friction
NASA Astrophysics Data System (ADS)
Passamonti, A.; Andersson, N.
2011-05-01
We study the hydrodynamics of superfluid neutron stars, focusing on the nature of the oscillation spectrum, the effect of mutual friction force on the oscillations and the spin-up phase of pulsar glitches. We linearize the dynamical equations of a Newtonian two-fluid model for rapidly rotating backgrounds. In the axisymmetric equilibrium configurations, the two-fluid components corotate and are in β-equilibrium. We use analytical equations of state that generate stratified and non-stratified stellar models, which enable us to study the coupling between the dynamical degrees of freedom of the system. By means of time-evolutions of the linearized dynamical equations, we determine the spectrum of axisymmetric and non-axisymmetric oscillation modes, accounting for the contribution of the gravitational potential perturbations, that is, without adopting the Cowling approximation. We study the mutual friction damping of the superfluid oscillations and consider the effects of the non-dissipative part of the mutual friction force on the mode frequencies. We also provide technical details and relevant tests for the hydrodynamical model of pulsar glitches discussed by Sidery, Passamonti & Andersson. In particular, we describe the method used to generate the initial data that mimic the pre-glitch state and derive the equations that are used to extract the gravitational-wave signal.
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
[A hydrodynamic model of a cochlea with a discrete basilar membrane].
Popov, Iu V
1997-01-01
The hydrodynamic model of a cochlea (dimensions 520 x 120 x 100 (mm)), with the basilar membrane (BM) consisting of 50 discrete resonance links in the frequency band from 1 Hz to 128 Hz was constructed. Two ways of giving harmonic and impulse's signals at the model were used; a) through the membrane of the vestibular window (directly through the filled model liquid along the BM) and b) through the thread fastened to the basal part of the BM (by the travelling wave on the BM). It was shown that in the first case the transmission's time to apical part of the BM equals 0.8 ms and in the second--several seconds. The conclusion is that the main hydrodynamic processes of sound's coding in a cochlea are the processes according to the Helmholtz's resonance theory, but not Bksy's travelling wave theory. PMID:9303801
Transition from hydrodynamic to viscoelastic propagation of sound in molten RbBr
NASA Astrophysics Data System (ADS)
Demmel, F.; Szubrin, D.; Pilgrim, W. C.; De Francesco, A.; Formisano, F.
2015-07-01
Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics.
Transition from hydrodynamic to viscoelastic propagation of sound in molten RbBr.
Demmel, F; Szubrin, D; Pilgrim, W C; De Francesco, A; Formisano, F
2015-07-01
Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics. PMID:26274162
NASA Astrophysics Data System (ADS)
Kulkarni, Manas; Kolmakov, German
2015-03-01
Given recent remarkable experimental success on capturing hydrodynamic features of exciton-polariton condensates in optical microcavities and their potential implications for quantum and optical computing and information technologies, we present an effective chiral description for such systems. This description captures the fingerprints of hydrodynamics, namely, nonlinearity, dispersion and dissipation in the exciton-polariton system. The resulting chiral equation for the condensate perturbation wave dynamics is found to be of Burgers-type thereby providing a more transparent understanding of the complicated underlying coupled exciton-photon dynamics. By using analytical calculations and numerical simulations, we describe the phenomenon of polariton shock waves, solitons and defects in such systems. Our mapping is expected to have broad implications for other polariton and photon systems including dipolar exciton and magnon condensates. This mapping can further help one in engineering a delicate balance between the pump and damping to produce stable optical signals propagating in polariton circuits.