Science.gov

Sample records for ferromagnetic colloid microprobe

  1. Colloidal Wormlike Micelles with Highly Ferromagnetic Properties.

    PubMed

    Zhao, Wenrong; Dong, Shuli; Hao, Jingcheng

    2015-10-20

    For the first time, a new fabrication method for manipulating the ferromagnetic property of molecular magnets by forming wormlike micelles in magnetic-ionic-liquid (mag-IL) complexes is reported. The ferromagnetism of the mag-IL complexes was enhanced 4-fold because of the formation of wormlike micelles, presenting new evidence for the essence of magnetism generation at a molecular level. Characteristics such as morphology and magnetic properties of the wormlike micelle gel were investigated in detail by cryogenic transmission electron microscopy (Cryo-TEM), rheological measurements, circular dichroism (CD), FT-IR spectra, and the superconducting quantum interference device method (SQUID). An explanation of ferromagnetism elevation from the view of the molecular (ionic) distribution is also given. For the changes of magnetic properties (ferromagnetism elevation) in the wormlike micelle systems, the ability of CTAFe in magnetizing AzoNa4 (or AzoH4) can be ascribed to an interplay of the magnetic [FeCl3Br](-) ions both in the Stern layer and in the cores of the wormlike micelles. Formation of colloidal aggregates, i.e., wormlike micelles, provides a new strategy to tune the magnetic properties of novel molecular magnets. PMID:26411638

  2. Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.

    PubMed

    Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I

    2015-08-28

    We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1  mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings. PMID:26371682

  3. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates.

    PubMed

    Shuai, M; Klittnick, A; Shen, Y; Smith, G P; Tuchband, M R; Zhu, C; Petschek, R G; Mertelj, A; Lisjak, D; Čopič, M; Maclennan, J E; Glaser, M A; Clark, N A

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823

  4. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    DOE PAGESBeta

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; et al

    2016-01-28

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less

  5. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    NASA Astrophysics Data System (ADS)

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field.

  6. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    PubMed Central

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823

  7. Optical patterning of magnetic domains and defects in ferromagnetic liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Hess, Andrew J.; Liu, Qingkun; Smalyukh, Ivan I.

    2015-08-01

    A promising approach in designing composite materials with an unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites can not only inherit properties of their constituents but also can exhibit emergent behavior such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here, we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids, which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematics and ferromagnets alike.

  8. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  9. Three-Dimensional Topological Solitons in Chiral Liquid Crystals and Ferromagnetic Colloids

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan

    Three-dimensional knotted solitons - often called ``hopfions'' - have continuous physical fields classified by the Hopf index topological invariant and behave like particles. These hopfions arise in theories in many branches of physics, but their structure and stability are rarely accessible to direct experimental studies. We realize and characterize such static solitons in the molecular alignment fields of chiral liquid crystals and in the magnetization field of colloids with long-range ferromagnetic ordering. Our experiments agree with predictions of numerical modeling based on free energy minimization. By exploiting facile response of the soft matter host media, we demonstrate exquisite control of structure and tunable self-assembly of such solitonic ``particles''. This lecture will discuss how liquid crystals and colloids can serve as soft matter model systems in studies of structure, topology and dynamics of three-dimensional topological solitons. Gsoft Early Career.

  10. Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal.

    PubMed

    Prodanov, Maksym F; Buluy, Oleksandr G; Popova, Ekaterina V; Gamzaeva, Saniyat A; Reznikov, Yuriy O; Vashchenko, Valerii V

    2016-08-21

    We report the development of a highly stable nanomaterial based on ferromagnetic nanoparticles dispersed in a thermotropic liquid crystal. The long-term colloidal stability and homogeneity were achieved through surface modification of the nanoparticles with a mixture of a dendritic oligomesogenic surfactant and hexylphosphonic acid and confirmed by optical and electron microscopy. The nanomaterial has an increased sensitivity to the magnetic field possessing collective and non-collective magneto-optical responses in contrast to the undoped LC. The effective coupling of the spherical particles with the LC director is due to the arrangement of the nanoparticles in chains. PMID:27439890

  11. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    NASA Astrophysics Data System (ADS)

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.

  12. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid.

    PubMed

    Ruder, Warren C; Hsu, Chia-Pei D; Edelman, Brent D; Schwartz, Russell; Leduc, Philip R

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures. PMID:22952408

  13. Thermal Analog of Gimbal Lock in a Colloidal Ferromagnetic Janus Rod

    NASA Astrophysics Data System (ADS)

    Gao, Yongxiang; Balin, Andrew Kaan; Dullens, Roel P. A.; Yeomans, Julia M.; Aarts, Dirk G. A. L.

    2015-12-01

    We report an entropy-driven orientational hopping transition in a magnetically confined colloidal Janus rod. In a magnetic field, the sedimented rod randomly hops between horizontal and vertical states: the latter state comes at a substantial gravitational cost at no reduction of magnetic potential energy. The probability distribution over the angles of the rod shows that the presence of an external magnetic field leads to the emergence of a metastable vertical state separated from the ground state by an effective barrier. This barrier does not come from the potential energy but rather from the vast gain in phase space available to the rod as it approaches the vertical state. The loss of rotational degree of freedom that gives rise to this effect is a statistical mechanical analogue of the phenomenon of gimbal lock from classical mechanics.

  14. Thermal Analog of Gimbal Lock in a Colloidal Ferromagnetic Janus Rod.

    PubMed

    Gao, Yongxiang; Balin, Andrew Kaan; Dullens, Roel P A; Yeomans, Julia M; Aarts, Dirk G A L

    2015-12-11

    We report an entropy-driven orientational hopping transition in a magnetically confined colloidal Janus rod. In a magnetic field, the sedimented rod randomly hops between horizontal and vertical states: the latter state comes at a substantial gravitational cost at no reduction of magnetic potential energy. The probability distribution over the angles of the rod shows that the presence of an external magnetic field leads to the emergence of a metastable vertical state separated from the ground state by an effective barrier. This barrier does not come from the potential energy but rather from the vast gain in phase space available to the rod as it approaches the vertical state. The loss of rotational degree of freedom that gives rise to this effect is a statistical mechanical analogue of the phenomenon of gimbal lock from classical mechanics. PMID:26705660

  15. Mars Microprobe Entry Analysis

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    1998-01-01

    The Mars Microprobe mission will provide the first opportunity for subsurface measurements, including water detection, near the south pole of Mars. In this paper, performance of the Microprobe aeroshell design is evaluated through development of a six-degree-of-freedom (6-DOF) aerodynamic database and flight dynamics simulation. Numerous mission uncertainties are quantified and a Monte-Carlo analysis is performed to statistically assess mission performance. Results from this 6-DOF Monte-Carlo simulation demonstrate that, in a majority of the cases (approximately 2-sigma), the penetrator impact conditions are within current design tolerances. Several trajectories are identified in which the current set of impact requirements are not satisfied. From these cases, critical design parameters are highlighted and additional system requirements are suggested. In particular, a relatively large angle-of-attack range near peak heating is identified.

  16. Intracochlear microprobe analysis

    SciTech Connect

    Bone, R.C.; Ryan, A.F.

    1982-04-01

    Energy dispersive x-ray analysis (EDXA) or microprobe analysis provides cochlear physiologists with a means of accurately assessing relative ionic concentrations in selected portions of the auditory mechanism. Rapid freezing followed by lyophilization allows the recovery of fluid samples in crystalline form not only from perilymphatic and endolymphatic spaces, but also from much smaller subregions of the cochlea. Because samples are examined in a solid state, there is no risk of diffusion into surrounding or juxtaposed fluids. Samples of cochlear tissues may also be evaluated without the danger of intercellular ionic diffusion. During direct visualization by scanning electron microscopy, determination of the biochemical makeup of the material being examined can be simultaneously, assuring the source of the data collected. Other potential advantages and disadvantages of EDXA are reviewed. Initial findings as they relate to endolymph, perilymph, stria vascularis, and the undersurface of the tectorial membrane are presented.

  17. Positron microprobe at LLNL

    SciTech Connect

    Asoka, P; Howell, R; Stoeffl, W

    1998-11-01

    The electron linac based positron source at Lawrence Livermore National Laboratory (LLNL) provides the world's highest current beam of keV positrons. We are building a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with sub-micron resolution. The widely spaced and intense positron packets from the tungsten moderator at the end of the 100 MeV LLNL linac are captured and trapped in a magnetic bottle. The positrons are then released in 1 ns bunches at a 20 MHz repetition rate. With a three-stage re-moderation we will compress the cm-sized original beam to a 1 micro-meter diameter final spot on the target. The buncher will compress the arrival time of positrons on the target to less than 100 ps. A detector array with up to 60 BaF2 crystals in paired coincidence will measure the annihilation radiation with high efficiency and low background. The energy of the positrons can be varied from less than 1 keV up to 50 keV.

  18. Electron microprobe mineral analysis guide

    NASA Technical Reports Server (NTRS)

    Brown, R. W.

    1980-01-01

    Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.

  19. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  20. Microprobe analysis of chlorpromazine pigmentation

    SciTech Connect

    Benning, T.L.; McCormack, K.M.; Ingram, P.; Kaplan, D.L.; Shelburne, J.D.

    1988-10-01

    We describe the histochemical, ultrastructural, and microanalytical features of a skin biopsy specimen obtained from a patient with chlorpromazine pigmentation. Golden-brown pigment granules were present in the dermis, predominantly in a perivascular arrangement. The granules stained positively with the Fontana-Masson stain for silver-reducing substances and negatively with Perl's stain for iron. Electron microscopy revealed dense inclusion bodies in dermal histiocytes, pericytes, endothelial cells, and Schwann cells, as well as lying free in the extracellular matrix. These ''chlorpromazine bodies'' were quite dense even in unosmicated, unstained ultrathin sections, indicating that the pigmentation is related, at least in part, to the inclusions. Microprobe analysis of the chlorpromazine bodies revealed a striking peak for sulfur, which strongly suggests the presence of the drug or its metabolite within these inclusions.

  1. Ferromagnetic Microswimmers

    NASA Astrophysics Data System (ADS)

    Ogrin, Feodor Y.; Petrov, Peter G.; Winlove, C. Peter

    2008-05-01

    We propose a model for a novel artificial low Reynolds number swimmer, based on the magnetic interactions of a pair of ferromagnetic particles: one with hard and the other with soft magnetic properties, connected by a linear spring. Using a computational model, we analyze the behavior of the system and demonstrate that for realistic values of the parameters involved, the swimmer is capable of self-propelling with average speeds of the order of hundreds of micrometers per second.

  2. Ferromagnetic microswimmers.

    PubMed

    Ogrin, Feodor Y; Petrov, Peter G; Winlove, C Peter

    2008-05-30

    We propose a model for a novel artificial low Reynolds number swimmer, based on the magnetic interactions of a pair of ferromagnetic particles: one with hard and the other with soft magnetic properties, connected by a linear spring. Using a computational model, we analyze the behavior of the system and demonstrate that for realistic values of the parameters involved, the swimmer is capable of self-propelling with average speeds of the order of hundreds of micrometers per second. PMID:18518640

  3. Materials analysis with a nuclear microprobe

    SciTech Connect

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given.

  4. Hexadecapolar Colloids

    DOE PAGESBeta

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  5. Colloidal polypyrrole

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  6. Hexadecapolar colloids

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  7. Hexadecapolar colloids

    PubMed Central

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  8. Hexadecapolar colloids.

    PubMed

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M; Chernyshuk, Stanislav B; Smalyukh, Ivan I

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of 'colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  9. Electron microprobe analysis of cryolite

    NASA Astrophysics Data System (ADS)

    Guimarães, F.; Bravo Silva, P.; Ferreira, J.; Piedade, A. P.; Vieira, M. T. F.

    2014-03-01

    A sample of cryolite was studied with a JEOL JXA 8500-F electron microprobe under several operating conditions. A TAP crystal was used to analyse Na and Al and a LDE1 crystal to analyse F. As F and Na are both highly "volatile" elements, special care must be taken during analysis. The measurement order of Na, F and Al is not irrelevant and optimum conditions may also result in different combinations of accelerating voltage, beam current, beam size or counting times. Relevant X-ray signals were recorded in order to investigate the behaviour of the Na Ka and F Ka counts with elapsed time. The incident beam current was also recorded at the same time. In a clear contrast to what has normally been reported in the EPMA analysis of aluminosilicates and silicate glasses, we found that the Na X-ray counts increase with time. This increment of X-rays intensities for sodium in cryolite depends on the operating conditions and is accompanied by a strong migration of fluorine from the beam excitation volume, leading to a decrease in F X-ray counting rates. It was also observed that higher incident beam currents induce higher radiation damage in the mineral. The current instability is consistent with possible electron induced dissociation in the cryolite structure. An analytical protocol was achieved for 6 kV and 15kV accelerating voltage for the correct EPMA analysis of cryolite.

  10. Topological colloids.

    PubMed

    Senyuk, Bohdan; Liu, Qingkun; He, Sailing; Kamien, Randall D; Kusner, Robert B; Lubensky, Tom C; Smalyukh, Ivan I

    2013-01-10

    Smoke, fog, jelly, paints, milk and shaving cream are common everyday examples of colloids, a type of soft matter consisting of tiny particles dispersed in chemically distinct host media. Being abundant in nature, colloids also find increasingly important applications in science and technology, ranging from direct probing of kinetics in crystals and glasses to fabrication of third-generation quantum-dot solar cells. Because naturally occurring colloids have a shape that is typically determined by minimization of interfacial tension (for example, during phase separation) or faceted crystal growth, their surfaces tend to have minimum-area spherical or topologically equivalent shapes such as prisms and irregular grains (all continuously deformable--homeomorphic--to spheres). Although toroidal DNA condensates and vesicles with different numbers of handles can exist and soft matter defects can be shaped as rings and knots, the role of particle topology in colloidal systems remains unexplored. Here we fabricate and study colloidal particles with different numbers of handles and genus g ranging from 1 to 5. When introduced into a nematic liquid crystal--a fluid made of rod-like molecules that spontaneously align along the so-called 'director'--these particles induce three-dimensional director fields and topological defects dictated by colloidal topology. Whereas electric fields, photothermal melting and laser tweezing cause transformations between configurations of particle-induced structures, three-dimensional nonlinear optical imaging reveals that topological charge is conserved and that the total charge of particle-induced defects always obeys predictions of the Gauss-Bonnet and Poincaré-Hopf index theorems. This allows us to establish and experimentally test the procedure for assignment and summation of topological charges in three-dimensional director fields. Our findings lay the groundwork for new applications of colloids and liquid crystals that range from

  11. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  12. Sonochemical synthesis of iron colloids

    SciTech Connect

    Suslick, K.S.; Fang, M.; Hyeon, T.

    1996-11-27

    We present here a new method for the preparation of stable ferromagnetic colloids of iron using high-intensity ultrasound to sonochemically decompose volatile organometallic compounds. These colloids have narrow size distributions centered at a few nanometers and are found to be superparamagnetic. In conclusion, a simple synthetic method has been discovered to produce nanosized iron colloid using high-intensity ultrasound. Nanometer iron particles dispersed in polyvinylpyrrolidone (PVP) matrix or stabilized by adsorption of oleic acid have been synthesized by sonochemical decomposition of Fe(CO){sub 5}. Transmission electron micrographs show that the iron particles have a relatively narrow range in size from 3 to 8 nm for polyvinylpyrrolidone, while oleic acid gives an even more uniform distribution at 8 nm. magnetic measurements revealed that these nanometer iron particles are superparamagnetic with a saturation magnetization of 101 emu/g (Fe) at 290 K. This work is easily extended to colloids of other metals and to alloys of two or more metals, simply by using multiple volatile precursors. 29 refs., 4 figs.

  13. Ferromagnetic nanorings

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Hayward, T. J.; Llandro, J.; Schackert, F.; Morecroft, D.; Bland, J. A. C.; Kläui, M.; Laufenberg, M.; Backes, D.; Rüdiger, U.; Castaño, F. J.; Ross, C. A.; Heyderman, L. J.; Nolting, F.; Locatelli, A.; Faini, G.; Cherifi, S.; Wernsdorfer, W.

    2007-06-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events.

  14. Soil colloidal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  15. Self-replication with magnetic dipolar colloids.

    PubMed

    Dempster, Joshua M; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids. PMID:26565238

  16. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  17. Data acquisition with a nuclear microprobe

    SciTech Connect

    Maggiore, C.

    1980-01-01

    Spatially resolved information from the near surfaces of materials can be obtained with a nuclear microprobe. The spatial resolution is determined by the optics of the instrument and radiation damage in the specimen. Two- and three-dimensional maps of elemental concentration may be obtained from the near surfaces of materials. Data are acquired by repeated scans of a constantly moving beam over the region of interest or by counting for a preset integrated charge at each specimen location.

  18. The second Mars microprobe is unloaded

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars.

  19. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  20. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  1. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  2. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  3. Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  4. The first Mars microprobe is unloaded

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers from the Jet Propulsion Laboratory open the drums containing the Mars microprobes that will hitchhike on the Mars Polar Lander. From left, they are Satish Krishnan, Charles Cruzan, Chris Voorhees and Arden Acord. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars.

  5. Design and characterization of a resonant triaxial microprobe

    NASA Astrophysics Data System (ADS)

    Goj, Boris; Dressler, Lothar; Hoffmann, Martin

    2015-12-01

    A new trend for tactile microprobes leads to oscillating microprobes in order to overcome the drawbacks resulting from high Hertzian stress and disturbing surface forces. Thin water films on the measurement surface result in the so-called sticking effect which causes measurement faults such as snap-back and false triggering. This leads to measurement errors and low measurement speeds. We present an innovative oscillating triaxial microprobe which safely avoids sticking in all Cartesian measurement directions. The system design as well as the characterization of the microprobe are presented in this work. The low number of coupling elements, the batch-capable design and the low contact forces are the key features of the microprobe.

  6. Colloidal Silver Products

    MedlinePlus

    ... can be dangerous to your health. What the Science Says About the Safety and Side Effects of ... homemade and commercial colloidal silver products. What the Science Says About the Effectiveness of Colloidal Silver Scientific ...

  7. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  8. Microprobe and oxygen fugacity study of armalcolite

    NASA Technical Reports Server (NTRS)

    Friel, J. J.

    1976-01-01

    The stability of synthetic armalcolite was determined as a function of oxygen fugacity with particular regard to the oxidation state of iron and titanium. The equilibrium pseudobrookite (armalcolite) composition was measured at 1200 C under various conditions of oxidation typical of the lunar environment. These data, when compared with published descriptions of mare basalts, provide information about the conditions of crystallization of armalcolite-bearing lunar rocks. Some information about the crystal chemistry of armalcolite was obtained from X-ray diffraction and electron microprobe analyses of synthetic armalcolite and Zr-armalcolite. Further data were gathered from a comparison of the Mossbauer spectra of a phase pure stoichiometric armalcolite and one containing appreciable amounts of trivalent titanium.

  9. The electron microprobe as a metallographic tool

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1974-01-01

    The electron microprobe (EMP) is shown to represent one of the most powerful techniques for the examination of the microstructure of materials. It is an electron optical instrument in which compositional and topographic information is obtained from regions smaller than 1 micron in diameter on a specimen. Photographs of compositional and topographic changes in 1-sq-mm to 20-sq-micron areas on various types of specimens can also be obtained. These photographs are strikingly similar to optical photomicrographs. Various signals measured in the EMP (X-rays, secondary electrons, backscattered electrons, etc.) are discussed, along with their resolution and the type of information they may help obtain. In addition to elemental analysis, solid state detecting and scanning techniques are reviewed. Various techniques extending the EMP instrument capabilities, such as deconvolution and soft X-ray analysis, are also described.

  10. Aerodynamics of the Mars Microprobe Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Moss, J. N.; Cheatwood, F. M.; Greene, F. A.; Braun, R. D.

    1997-01-01

    The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic and transonic flow regimes is then presented. This description is based on Direct Simulation Monte Carlo analyses in the rarefied-flow regime, thermochemical nonequilibrium Computational Fluid Dynamics in the hypersonic regime, existing wind tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and finally, ballistic range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric-interface into the desired surface-impact orientation and velocity.

  11. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  12. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  13. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  14. Saturated Zone Colloid Transport

    SciTech Connect

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  15. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer" - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  16. Dynamics of magnetic assembly of binary colloidal structures

    NASA Astrophysics Data System (ADS)

    Nogueras-Lara, F.; Rodríguez-Arco, L.; López-López, M. T.

    2015-08-01

    Magnetic field (MF)-directed assembly of colloidal particles provides a step towards the bottom-up manufacturing of smart materials whose properties can be precisely modulated by non-contact forces. Here, we study the MF-directed assembly in binary colloids made up of strong ferromagnetic and diamagnetic microparticles dispersed in ferrofluids. We present observations of the aggregation of pairs and small groups of particles to build equilibrium assemblies. We also develop a theoretical model capable of solving the aggregation dynamics and predicting the particle trajectories, a key factor to understand the physics governing the MF-directed assembly.

  17. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  18. A noncontact thermal microprobe for local thermal conductivity measurement.

    PubMed

    Zhang, Yanliang; Castillo, Eduardo E; Mehta, Rutvik J; Ramanath, Ganpati; Borca-Tasciuc, Theodorian

    2011-02-01

    We demonstrate a noncontact thermal microprobe technique for measuring the thermal conductivity κ with ∼3 μm lateral spatial resolution by exploiting quasiballistic air conduction across a 10-100 nm air gap between a joule-heated microprobe and the sample. The thermal conductivity is extracted from the measured effective thermal resistance of the microprobe and the tip-sample thermal contact conductance and radius in the quasiballistic regime determined by calibration on reference samples using a heat transfer model. Our κ values are within 5%-10% of that measured by standard steady-state methods and theoretical predictions for nanostructured bulk and thin film assemblies of pnictogen chalcogenides. Noncontact thermal microprobing demonstrated here mitigates the strong dependence of tip-sample heat transfer on sample surface chemistry and topography inherent in contact methods, and allows the thermal characterization of a wide range of nanomaterials. PMID:21361625

  19. A noncontact thermal microprobe for local thermal conductivity measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Yanliang; Castillo, Eduardo E.; Mehta, Rutvik J.; Ramanath, Ganpati; Borca-Tasciuc, Theodorian

    2011-02-01

    We demonstrate a noncontact thermal microprobe technique for measuring the thermal conductivity κ with ˜3 μm lateral spatial resolution by exploiting quasiballistic air conduction across a 10-100 nm air gap between a joule-heated microprobe and the sample. The thermal conductivity is extracted from the measured effective thermal resistance of the microprobe and the tip-sample thermal contact conductance and radius in the quasiballistic regime determined by calibration on reference samples using a heat transfer model. Our κ values are within 5%-10% of that measured by standard steady-state methods and theoretical predictions for nanostructured bulk and thin film assemblies of pnictogen chalcogenides. Noncontact thermal microprobing demonstrated here mitigates the strong dependence of tip-sample heat transfer on sample surface chemistry and topography inherent in contact methods, and allows the thermal characterization of a wide range of nanomaterials.

  20. Aerothermal Heating Predictions for Mars Microprobe

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; DiFulvio, M.; Horvath, T. J.; Braun, R. D.

    1998-01-01

    A combination of computational predictions and experimental measurements of the aerothermal heating expected on the two Mars Microprobes during their entry to Mars are presented. The maximum, non-ablating, heating rate at the vehicle's stagnation point (at alpha = 0 degrees) is predicted for an undershoot trajectory to be 194 Watts per square centimeters with associated stagnation point pressure of 0.064 atm. Maximum stagnation point pressure occurs later during the undershoot trajectory and is 0.094 atm. From computations at seven overshoot-trajectory points, the maximum heat load expected at the stagnation point is near 8800 Joules per square centimeter. Heat rates and heat loads on the vehicle's afterbody are much lower than the forebody. At zero degree angle-of-attack, heating over much of the hemi-spherical afterbody is predicted to be less than 2 percent of the stagnation point value. Good qualitative agreement is demonstrated for forebody and afterbody heating between CFD calculations at Mars entry conditions and experimental thermographic phosphor measurements from the Langley 20-Inch Mach 6 Air Tunnel. A novel approach which incorporates six degree-of-freedom trajectory simulations to perform a statistical estimate of the effect of angle-of-attack, and other off-nominal conditions, on heating is included.

  1. Stand-alone microprobe at Livermore

    SciTech Connect

    Antolak, A J; Bench, G S; Brown, T A; Frantz, B R; Grant, P G; Morse, D H; Roberts, M L

    1998-10-02

    Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories/California have jointly constructed a new stand-alone microprobe facility. Although the facility was built to develop a method to rapidly locate and determine elemental concentrations of micron scale particulates on various media using PIXE, the facility has found numerous applications in biology and materials science. The facility is located at LLNL and uses a General Ionex Corporation Model 358 duoplasmatron negative ion source, a National Electrostatics Corporation 5SDH-2 tandem accelerator, and an Oxford triplet lens. Features of the system include complete computer control of the beam transport using LabVIEWTM for Macintosh, computer controlled beam collimating and divergence limiting slits, automated sample positioning to micron resolution, and video optics for beam positioning and sample observation. Data collection is accomplished with the simultaneous use of as many as four EG&G Ortec IGLET-XTM X-Ray detectors, digital amplifiers made by X-Ray Instruments and Associates (XIA), and LabVIEWTM for Macintosh acquisition software.

  2. Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe

    NASA Technical Reports Server (NTRS)

    Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.

    1993-01-01

    A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.

  3. Ring around the colloid

    NASA Astrophysics Data System (ADS)

    Cavallaro, Marcello, Jr.; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Kamien, Randall D.; Yang, Shu; Baumgart, Tobias; Stebe, Kathleen J.

    In this work, we show that Janus washers, genus-one colloids with hybrid anchoring conditions, form topologically required defects in nematic liquid crystals. Experiments under crossed polarizers reveal the defect structure to be a rigid disclination loop confined within the colloid, with an accompanying defect in the liquid crystal. When confined to a homeotropic cell, the resulting colloid-defect ring pair tilts relative to the far field director, in contrast to the behavior of toroidal colloids with purely homeotropic anchoring. We show that this tilting behavior can be reversibly suppressed by the introduction of a spherical colloid into the center of the toroid, creating a new kind of multi-shape colloidal assemblage.

  4. Analysis of colloid transport

    SciTech Connect

    Travis, B.J.; Nuttall, H.E.

    1985-12-31

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab.

  5. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  6. Magnetic nanostructures by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Zhu, Frank Qing

    Structural, magnetic and in some cases magneto-transport properties of (1) symmetric and asymmetric ferromagnetic nanorings and (2) single layer, multilayer, and exchange biased ferromagnetic nanodots prepared by colloidal lithography are presented. A fast, reliable and cost effective method has been developed to fabricate large number (˜ 109) of magnetic nanorings over macroscopic areas (˜ cm2) with large areal densities (up to 45 rings/mum 2). Cobalt nanorings with diameters ranging from 100 nm to 500 nm have been fabricated by sputtering Co onto nanosphere-coated substrates followed by ion beam etching. X-ray diffraction verifies that the Co nanorings still have hexagonal close-packed (hcp) structure. Scanning electron microscopy reveals that the cross-section of the symmetric nanoring is tapered and uniform along the circumference, and the cross-section of the asymmetric nanoring changes progressively along the circumference. Two magnetic reversal processes have been found in magnetic nanorings---the vortex formation process and the onion rotation process. The co-existence of these two processes is the manifestation of the competition between the exchange energy and the magnetostatic energy in the nanorings. Micromagnetics simulations have been carried out to reveal the details of the magnetic reversals. The experimental and the computed hysteresis loops agree both qualitatively and quantitatively. For the 100 nm symmetric Co nanorings, the vortex formation process has a probability of about 40%, while the onion rotation process has 60% chances. To increase the probability of vortex formation process, a desirable process for application, asymmetric nanorings have been fabricated by ion beam etching at oblique angles. Unlike the symmetric nanorings, the probability of the vortex formation process in asymmetric nanorings can be controlled by the direction of the external field. For the 100 nm asymmetric nanorings, the fraction of the vortex formation process

  7. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by

  8. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  9. Driving magnetic colloidal polymers

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua; Olvera de La Cruz, Monica

    Magnetic colloids are of growing interest for applications such as drug delivery and in vitro tissue growth. Recent experiments have synthesized 1D chains of magnetic colloids into permanent colloidal polymers. We study magnetic colloidal polymers theoretically and computationally under the influence of time-varying external fields and find a rich set of controllable, dynamic conformations. By iterating through a sequence of conformations, these polymers can perform mechanical functions. We discuss possible roles for these polymers beyond those considered for single colloids. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  10. Ferromagnetic resonance in a topographically modulated permalloy film

    NASA Astrophysics Data System (ADS)

    Sklenar, J.; Tucciarone, P.; Lee, R. J.; Tice, D.; Chang, R. P. H.; Lee, S. J.; Nevirkovets, I. P.; Heinonen, O.; Ketterson, J. B.

    2015-04-01

    A major focus within the field of magnonics involves the manipulation and control of spin-wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broadband, ferromagnetic resonance studies on a 100-nm-thick permalloy film sputtered onto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, sixfold-symmetric underlying colloidal crystal were studied as a function of the in-plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary modes; the ratio of the intensities of these two modes exhibits a sixfold dependence. Detailed micromagnetic modeling shows that both modes are quasiuniform and nodeless in the unit cell but that they reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification of magnetic thin films opens additional directions for manipulating ferromagnetic resonant excitations.

  11. Lock and key colloids.

    PubMed

    Sacanna, S; Irvine, W T M; Chaikin, P M; Pine, D J

    2010-03-25

    New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly. PMID:20336142

  12. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  13. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  14. Precessing Ferromagnetic Needle Magnetometer.

    PubMed

    Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry

    2016-05-13

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics. PMID:27232012

  15. Precessing Ferromagnetic Needle Magnetometer

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, Derek F.; Sushkov, Alexander O.; Budker, Dmitry

    2016-05-01

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, N ℏ≫I Ω (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin N ℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t-3 /2. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.

  16. Metallic quantum ferromagnets

    NASA Astrophysics Data System (ADS)

    Brando, M.; Belitz, D.; Grosche, F. M.; Kirkpatrick, T. R.

    2016-04-01

    An overview of quantum phase transitions (QPTs) in metallic ferromagnets, discussing both experimental and theoretical aspects, is given. These QPTs can be classified with respect to the presence and strength of quenched disorder: Clean systems generically show a discontinuous, or first-order, QPT from a ferromagnetic to a paramagnetic state as a function of some control parameter, as predicted by theory. Disordered systems are much more complicated, depending on the disorder strength and the distance from the QPT. In many disordered materials the QPT is continuous, or second order, and Griffiths-phase effects coexist with QPT singularities near the transition. In other systems the transition from the ferromagnetic state at low temperatures is to a different type of long-range order, such as an antiferromagnetic or a spin-density-wave state. In still other materials a transition to a state with glasslike spin dynamics is suspected. The review provides a comprehensive discussion of the current understanding of these various transitions and of the relation between experiment and theory.

  17. Colloidal pen lithography.

    PubMed

    Xue, Mianqi; Cai, Xiaojing; Chen, Ghenfu

    2015-02-01

    Colloidal pen lithography, a low-cost, high-throughput scanning probe contact printing method, has been developed, which is based on self-assembled colloidal arrays embedded in a soft elastomeric stamp. Patterned protein arrays are demonstrated using this method, with a feature size ranging from 100 nm to several micrometers. A brief study into the specificity reorganization of protein gives evidence for the feasibility of this method for writing protein chips. PMID:25288364

  18. RAMAN MICROPROBE ANALYSIS OF STATIONARY SOURCE PARTICULATE POLLUTANTS

    EPA Science Inventory

    The application of Raman spectroscopy to the molecular characterization of individual particles from stationary sources is described. The NBS-developed Raman microprobe has been used to characterize microparticles of oil- and coal-fired power plant emissions and boiler samples co...

  19. NMR spectroscopy and perfusion of mammalian cells using surface microprobes.

    PubMed

    Ehrmann, Klaus; Pataky, Kristopher; Stettler, Matthieu; Wurm, Florian Maria; Brugger, Jürgen; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50,000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells' response to environmental change. PMID:17330170

  20. Frequency mixer having ferromagnetic film

    DOEpatents

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  1. Casimir entropy for ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Korikov, C. C.

    2016-01-01

    We describe recent results concerning the compatibility of the Lifshitz theory of dispersion forces with thermodynamics. It is shown that for ferromagnetic metals described by the plasma model and for ferromagnetic dielectrics with omitted dc conductivity the Lifshitz theory satisfies the Nernst heat theorem. At the same time, for magnetic metals described by the Drude model and for ferromagnetic dielectrics with account of dc conductivity the Nernst heat theorem is violated.

  2. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  3. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    NASA Astrophysics Data System (ADS)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor–liquid–solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  4. Monopoles in ferromagnetic metals

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Takeuchi, Akihito; Nakabayashi, Noriyuki; Taguchi, Katsuhisa

    2012-11-01

    The aim of this short review is to give an introduction to monopoles and to present theoretical derivation of two particular monopoles in ferromagnetic metals, a hedgehog monopole and a spin-damping monopole. In electromagnetism in the vacuum, described by Maxwell's equations, the magnetic field and the electric field are not symmetric, because there is no monopole, a particle having a finite magnetic charge. Still the monopole has been an exciting object for a long time and was discussed on phenomenological grounds by Dirac in 1931. A theoretical possibility of monopole generation was first given by' t Hooft and Polyakov in 1974 in the context of symmetry breaking in a grand unified theory (GUT), but a GUT monopole has not been discovered in experiments so far. In contrast to in the vacuum, several kinds of monopoles are expected to emerge in solids associated with various symmetry-breaking mechanisms. Of particular interest is metallic ferromagnetic systems, because a breaking of the symmetry of conduction electron spin, described by an SU(2) algebra, can give rise to monopoles. Indeed, two monopoles are theoretically predicted in ferromagnets; one is a hedgehog monopole arising from a topological spin structure, and the other is a spin-damping monopole arising from spin damping in the presence of the spin-orbit interaction. In this paper, we focus on these monopoles, while other objects similar to monopoles, but not coupled to effective electromagnetic fields, such as spin ice monopoles, are touched only briefly in the introduction. These monopoles are extended objects coupled to effective electromagnetic fields that are described by Maxwell's equations with a monopole contribution. The effective fields are the ones coupled to the spin of a particle such as an electron, muon and neutron; the two monopoles are, thus, detectable by electric measurements. Spin-damping monopoles can be generated in simple systems such as junctions of ferromagnets and heavy elements

  5. Macrospin in ferromagnetic nanojunctions

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu. V.; Zilberman, P. E.; Panas, A. I.; Epshtein, E. M.

    2008-12-01

    We study the passage of transverse current through a ferromagnetic nanojunctions, viz., a layered nanostructure of the spin-valve type containing two ferromagnetic layers separated by a spacer that prevents exchange coupling between the layers in the absence of current, but does not affect spin polarization of the current. The conditions for a high level of injection of spins by current are derived at which the concentration of injected nonequilibrium spins can reach or even exceed their equilibrium concentration. In such conditions, a number of new effects are observed. The threshold of exchange switching by current is lowered by several orders of magnitude due to matching of spin resistances of the layers. The application of an external magnetic field in the vicinity of the orientation phase transition additionally lowers this threshold. This leads to multistability, in which one value of the current corresponds to two (or more) stable noncollinear orientations of magnetization, and switching itself becomes irreversible. A methodical feature of this research is that the calculation is performed in the so-called macrospin approximation, which is in good agreement with most of known experiments. In this approximation, the equations of motion taking into account the torque as well as spin injection are derived for the first time and solved.

  6. Ferromagnetism in ruthenate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Mravlje, Jernej; Millis, Andrew J.

    2014-03-01

    In apparent contrast to the usual rule that stronger correlations favor magnetism and other forms of order, while weaker correlations lead to Fermi liquid metals, it has been experimentally established that CaRuO3, a more correlated material, is a paramagnetic metal with a Fermi liquid ground state while SrRuO3, which is less strongly correlated, is ferromagnetic below a Curie temperature of 160K. We present density functional plus dynamical mean field theory calculations which resolve this conundrum. We show that in these materials ferromagnetism occurs naturally for cubic perovskite systems at moderate correlations but is suppressed both by proximity to the Mott insulating phase and by increasing the amplitude of a GdFeO3 distortion. These factors are strongly related to the differences between Ca and Sr ruthenates and are used as the keys to solve the problem. Placement of the ruthenate materials on the metal-insulator phase diagram and comparison to previous works on the Ruddlesden-Popper materials are also discussed. Supported by the Basic Energy Sciences Program of the US Department of Energy under grant DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program.

  7. Microprobe analysis of brine shrimp grown on meteorite extracts

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Mautner, M. N.; Barry, B.; Markwitz, A.

    2007-07-01

    Nuclear microprobe methods have been used to investigate the uptake and distribution of various elements by brine shrimps and their unhatched eggs when grown in extracts of the Murchison and Allende carbonaceous meteorites, which were selected as model space resources. Measurements were carried out using a focussed 2 MeV proton beam raster scanned over the samples in order to obtain the average elemental concentrations. Line scans across the egg and shrimp samples show uptake of elements such as Mg, Ni, S and P which are present in the meteorites. The results confirmed that carbonaceous chondrite materials can provide nutrients, including high levels of the essential nutrient phosphate. The concentrations of these elements varied significantly between shrimp and eggs grown in extracts of the two meteorite types, which can help in identifying optimal growth media. Our results illustrate that nuclear microprobe techniques can determine elemental concentrations in organisms exposed to meteorite derived media and thus help in identifying useful future resources.

  8. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  9. High brightness sources for MeV microprobe applications

    SciTech Connect

    Read, P.M.; Alton, G.D.; Maskrey, J.T.

    1987-01-01

    State of the art MeV ion microprobe facilities are now approaching current density limitations on targets imposed by the fundamental nature of conventional gaseous ion sources. With a view to addressing this problem efforts are under way which have the ultimate objective of developing high brightness Li liquid metal ion sources suitable for MeV ion microprobe applications. Prototype Li/sup +/ and Ga/sup +/ liquid metal ion sources have been designed, fabricated and are undergoing preliminary testing. This paper describes the first total emittance and brightness measurements of a Ga liquid metal ion source. The effect of the geometry of the ion extraction system is investigated and the brightness data are compared to those of a radio frequency ion source.

  10. Wavelength dispersive μPIXE setup for the ion microprobe

    NASA Astrophysics Data System (ADS)

    Fazinić, S.; Božičević Mihalić, I.; Tadić, T.; Cosic, D.; Jakšić, M.; Mudronja, D.

    2015-11-01

    We have developed a small wavelength dispersive X-ray spectrometer to explore the possibility of performing chemical speciation on microscopic samples utilizing focused ion beams available at the Rudjer Boskovic Institute ion microprobe. Although PIXE spectra are in principle chemically invariant, small influence of chemical effects could be observed even with Si(Li) or SDD detectors. Such chemical effects can be clearly seen with high resolution crystal X-ray spectrometers having energy resolution of several eV. A dedicated vacuum chamber, housing the diffraction crystal, sample holder and CCD X-ray detector, was constructed and positioned behind the main ion microprobe vacuum chamber. Here we will briefly describe the spectrometer, and illustrate its capabilities on measured K X-ray spectra of selected sulfur compounds. We will also demonstrate its abilities to resolve K and M X-ray lines irresolvable by solid state ED detectors usually used in PIXE.

  11. Microprobe analyses of glasses and minerals from Luna-16 soil

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Harmon, R. S.; Jakes, P.; Reid, A. M.; Ridley, W. I.; Warner, J. L.

    1971-01-01

    Electron microprobe analyses are presented for nine elements in 250 glasses and 434 pyroxenes, eight elements in 113 olivines, and six elements in 354 feldspars, 35 spinels, and 159 ilmenites. All grains are from the 125-425 micron fraction of horizon A and horizon D soil from the Luna 16 sample. A norm is presented for each glass analysis and the structural formula is calculated for each mineral analysis.

  12. Submicron elemental mapping with the oxford scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Grime, G. W.; Watt, F.; Chapman, J. R.

    1987-03-01

    Following recent modifications to the Oxford scanning proton microprobe (SPM) a beam spot diameter of 0.5 μm has been achieved at a beam current of 20-30 pA of 4 MeV protons. This has been confirmed by scanning both a copper test grid and microcrystals of barium sulphate. The potential of using high spatial resolutions in microbiology has been explored by scanning a single mouse cell.

  13. Production of a positron microprobe using a transmission remoderator.

    PubMed

    Fujinami, Masanori; Jinno, Satoshi; Fukuzumi, Masafumi; Kawaguchi, Takumi; Oguma, Koichi; Akahane, Takashi

    2008-01-01

    A production method for a positron microprobe using a beta+-decay radioisotope (22Na) source has been investigated. When a magnetically guided positron beam was extracted from the magnetic field, the combination of an extraction coil and a magnetic lens enabled us to focus the positron beam by a factor of 10 and to achieve a high transport efficiency (71%). A 150-nm-thick Ni(100) thin film was mounted at the focal point of the magnetic lens and was used as a remoderator for brightness enhancement in a transmission geometry. The remoderated positrons were accelerated by an electrostatic lens and focused on the target by an objective magnetic lens. As a result, a 4-mm-diameter positron beam could be transformed into a microprobe of 60 microm or less with 4.2% total efficiency. The S parameter profile obtained by a single-line scan of a test specimen coincided well with the defect distribution. This technique for a positron microprobe is available to an accelerator-based high-intensity positron source and allows 3-dimensional vacancy-type defect analysis and a positron source for a transmission positron microscope. PMID:18187852

  14. The Fudan nuclear microprobe set-up and performance

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Zhuang, W.; Shen, H.; Mi, Y.; Wu, Y.; Liu, B.; Yang, M.; Cheng, H.

    2007-07-01

    A new scanning nuclear microprobe has been constructed at the Institute of Modern Physics in Fudan University, to replace the old microbeam system which had been running for more than ten years. The key parts were purchased from Oxford Microbeams Ltd., including triplet quadrupole lens (model OM-150), collimator slits, scanning system, target chamber, and data acquisition system. Ion beams are provided from a NEC 9SDH-2 Tandem accelerator. Three CCD cameras and multiple monitors were installed to assist beam adjust. The design of beam line and beam monitors is described. Beam optics calculations were carried out based on the specific Fudan microprobe system geometry, and the results regarding beam line performance and limitations of the spacial resolution are presented and discussed here. A comparison with experimental results is given as well. About 1.5 μm beam spot size could be achieved with a 3 MeV proton beam at a current of around 10 pA. Recently, the new microprobe is applied to obtain information of fly ash particle, algae cell and otoliths.

  15. Melting and Frustration in Temperature-Sensitive Colloids

    NASA Astrophysics Data System (ADS)

    Yodh, Arjun

    2009-03-01

    I will review experiments from my laboratory that employ temperature-sensitive microgel particles to induce novel phase behavior in suspension. This phenomenon offers a fantastic new variable for control of lyotropic suspensions. Recent experiments, for example, have enabled us to learn how three-dimensional crystals first begin to melt [1], to directly observe melting in 2-D wherein intermediate hexatic phases form [2], and to create geometrically frustrated colloidal ``anti-ferromagnets'' [3]. [4pt] References: [0pt] [1] Alsayed, A.M., Islam, M.F., Zhang, J., Collings, P.J., Yodh, A.G., Science 309, 1207-1210, (2005). [0pt] [2] Han Y, Ha NY, Alsayed AM and Yodh AG, Phys. Rev. E, Vol. 77 (2008). [0pt] [3] Y. Han, Y. Shokef, A. M. Alsayed, P. Yunker, T. C. Lubensky, and A. G. Yodh, ``Geometric frustration in buckled colloidal monolayers,'' to be published in Nature (2008).

  16. Ferromagnet / superconductor oxide superlattices

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  17. Thermoelectric detection of ferromagnetic resonance of a nanoscale ferromagnet.

    PubMed

    Bakker, F L; Flipse, J; Slachter, A; Wagenaar, D; van Wees, B J

    2012-04-20

    We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a thermocouple connected to the ferromagnet. The observed resonance peak shape is in agreement with the Landau-Lifshitz-Gilbert equation and is compared with thermoelectric finite-element modeling. Unlike other methods, this technique is not restricted to electrically conductive media and is therefore also applicable to for instance ferromagnetic insulators. PMID:22680756

  18. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    NASA Astrophysics Data System (ADS)

    Bu, K. M.; Kwon, H. Y.; Oh, S. W.; Won, C.

    2012-04-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes.

  19. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  20. PREFACE: Half Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  1. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  2. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  3. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  4. Correlated petrographic, electron microprobe, and ion microprobe studies of selected primitive and processed phase assemblages in meteorites

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1993-01-01

    During the past three years we have received support to continue our research in elucidating the formation and alteration histories of selected meteoritic materials by a combination of petrographic, trace element, and isotopic analyses employing optical and scanning electron microscopes and electron and ion microprobes. The awarded research funds enabled the P.I. to attend the annual LPSC, the co-I to devote approximately 15 percent of his time to the research proposed in the grant, and partial support for a visiting summer post-doctoral fellow to conduct electron microprobe analyses of meteoritic samples in our laboratory. The research funds, along with support from the NASA Education Initiative awarded to P.I. G. Wasserburg, enabled the co-I to continue a mentoring program with inner-city minority youth. The support enabled us to achieve significant results in the five projects that we proposed (in addition to the Education Initiative), namely: studies of the accretional and post-accretional alteration and thermal histories in CV meteorites, characterization of periclase-bearing Fremdlinge in CV meteorites, characterization of Ni-Pt-Ge-Te-rich Fremdlinge in CV meteorites in an attempt to determine the constraints they place on the petrogenetic and thermal histories of their host CAI's, correlated electron and ion microprobe studies of silicate and phosphate inclusions in the Colomera meteorite in an attempt to determine the petrogenesis of the IE iron meteorites, and development of improved instrumental and correction procedures for improved accuracy of analysis of meteoritic materials with the electron microprobe. This grant supported, in part or whole, 18 publications so far by our research team, with at least three more papers anticipated. The list of these publications is included. The details of the research results are briefly summarized.

  5. Magnetorheology of hybrid colloids obtained by spin-coating and classical rheometry

    NASA Astrophysics Data System (ADS)

    Aslam, Raheema; Shahrivar, Keshvad; de Vicente, Juan; González-Viñas, Wenceslao

    2016-07-01

    Hybrid colloids composed of micron-sized ferromagnetic (carbonyl iron) and diamagnetic (silica) particles suspended in cyclohexanone, behave as, non-Newtonian, magnetorheological fluids. We measure and compare the magnetic field-dependent viscosity of hybrid diluted colloids using spin-coating and conventional magnetorheometry. We extend a previously developed model for simple colloids to this kind of hybrid colloids. As in the previous model, the viscosity of the colloidal suspension under applied fields can be derived from the surface coverage of the dry spin-coated deposits for each type of particles, and from the viscosity of the colloid at zero field. Also, our results allow us to obtain the evaporation rate of the solvent as a function of the rotation speed. Finally, we also measure the viscosity of the same suspension with a torsional parallel plate magnetorheometer under uniaxial DC magnetic fields aligned in the velocity gradient direction of a steady shearing flow. The experimental results under different conditions and the effect of each component on the magnetorheological properties of the resulting colloid are discussed. Standard spin-coating technique can be used both to characterize smart materials—complex fluids as well as to fabricate films with arbitrary solvents by tuning their viscosity by means of external fields.

  6. COLLOIDS. Colloidal matter: Packing, geometry, and entropy.

    PubMed

    Manoharan, Vinothan N

    2015-08-28

    Colloidal particles with well-controlled shapes and interactions are an ideal experimental system for exploring how matter organizes itself. Like atoms and molecules, these particles form bulk phases such as liquids and crystals. But they are more than just crude analogs of atoms; they are a form of matter in their own right, with complex and interesting collective behavior not seen at the atomic scale. Their behavior is affected by geometrical or topological constraints, such as curved surfaces or the shapes of the particles. Because the interactions between the particles are often short-ranged, we can understand the effects of these constraints using geometrical concepts such as packing. The geometrical viewpoint gives us a window into how entropy affects not only the structure of matter, but also the dynamics of how it forms. PMID:26315444

  7. Effect of Ferromagnetic Spin Correlations on Superconductivity in Ferromagnetic Metals

    SciTech Connect

    Blagoev, K.B.; Engelbrecht, J.R.; Bedell, K.S.

    1999-01-01

    We study the renormalization of quasiparticle properties in weak ferromagnetic metals due to spin fluctuations, away from the quantum critical point for small magnetic moment. We explain the origin of the s -wave superconducting instability in the ferromagnetic phase and find that the vertex corrections are small and that Migdal{close_quote}s theorem is satisfied away from the quantum critical point. {copyright} {ital 1998} {ital The American Physical Society}

  8. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  9. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  10. Topological properties of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-01

    A variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism coexist is a first-order transition.

  11. Topological properties of ferromagnetic superconductors

    DOE PAGESBeta

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-27

    Here, a variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to themore » phase where superconductivity and ferromagnetism coexist is a first-order transition.« less

  12. Weak ferromagnetism in the cuprates

    NASA Astrophysics Data System (ADS)

    Chovan, J.; Papanicolaou, N.

    2001-02-01

    An effective field theory that describes the low-frequency spin dynamics in the low-temperature orthorhombic phase of La 2CuO 4 is derived. The main features of the inherent covert weak ferromagnetism are thus accounted for in a straightforward manner but some of the finer theoretical predictions would require further experimental investigation. In particular, theory predicts the occurrence of magnetic stripes in undoped La 2CuO 4 which mediate the observed weak-ferromagnetic transition.

  13. Non-ferromagnetic overburden casing

    SciTech Connect

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  14. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  15. Elemental mapping of biological samples using a scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.

    1988-03-01

    Elemental mapping using a scanning proton microprobe (SPM) can be a powerful technique for probing trace elements in biology, allowing complex interfaces to be studied in detail, identifying contamination and artefacts present in the specimen, and in certain circumstances obtaining indirect chemical information. Examples used to illustrate the advantages of the technique include the elemental mapping of growing pollen tubes, honey bee brain section, a mouse macrophage cell, human liver section exhibiting primary biliary cirrhosis, and the attack by a mildew fungus on a pea leaf.

  16. Rapid correction of electron microprobe data for multicomponent metallic systems

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Sivakumar, R.

    1973-01-01

    This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.

  17. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  18. Electrostatic microprobe for determining charge domains on surfaces.

    PubMed

    Fletcher, Robert A

    2015-11-01

    An electrostatic microprobe was developed to measure charge on wipes and various test surfaces. The device is constructed on an optical microscope platform utilizing a computer controlled XY stage. Test surfaces can be optically imaged to identify microscopic features that can be correlated to the measured charge domain maps. The ultimate goal is to quantify charge on wipe cloths to determine the influence of electrostatic forces on wipe sampling efficiency. We found that certain wipe materials do not extensively charge while others accumulate charge by making contact with other surfaces (through the triboelectric effect). Charge domains are found to be nonuniform. PMID:26628139

  19. Electrostatic microprobe for determining charge domains on surfaces

    NASA Astrophysics Data System (ADS)

    Fletcher, Robert A.

    2015-11-01

    An electrostatic microprobe was developed to measure charge on wipes and various test surfaces. The device is constructed on an optical microscope platform utilizing a computer controlled XY stage. Test surfaces can be optically imaged to identify microscopic features that can be correlated to the measured charge domain maps. The ultimate goal is to quantify charge on wipe cloths to determine the influence of electrostatic forces on wipe sampling efficiency. We found that certain wipe materials do not extensively charge while others accumulate charge by making contact with other surfaces (through the triboelectric effect). Charge domains are found to be nonuniform.

  20. Colloid migration in fractured media

    SciTech Connect

    Hunt, J.R. . Dept. of Civil Engineering)

    1989-09-15

    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs.

  1. Superconductive microprobes for eddy current evaluation of materials

    NASA Astrophysics Data System (ADS)

    Podney, Walter N.

    1989-07-01

    Superconductive quantum interference devices (SQUIDS) offer new technology for locating materials flaws electromagnetically that promises to increase sensitivity, depth of magnetic flux enables use of microscopic pickup loops in a gradiometer configuration to give high resolution. A cryogenic umbilical connects pickup loops to a remote cryostat housing SQUID sensors to ease scanning. A pair of drive coils a few millimeters in radius that encircle pickup loops forming a coplanar gradiometer 1 mm or less in radius comprise a superconductive microprobe. It provides a depth of field of several millimeters to a 0.1 mm flaw in an aluminum plate, when operating with a drive current a 1 A oscillating at a frequency of 1kHz. Its field of view ranges to several millimeters, for flaws a few millimeters deep, and its horizontal resolution is 1 mm or so, for flaw depths out to its depth of field. An array of microprobes form receptors much like rods in the retina of a magnetic eye. The eye leads to an electromagnetic microscope for imaging internal flaws in aluminum plates. It gives multiple images that enable resolving depth of a 0.1 mm flaw to a few tenths of a millimeter with a horizontal resolution of one millimeter or so.

  2. Friction microprobe investigation of particle layer effects on sliding friction

    SciTech Connect

    Blau, P.J.

    1993-01-01

    Interfacial particles (third-bodies), resulting from wear or external contamination, can alter and even dominate the frictional behavior of solid-solid sliding in the absence of effective particle removal processes (e.g., lubricant flow). A unique friction microprobe, developed at Oak Ridge National Laboratory, was used to conduct fine- scale friction studies using 1.0 mm diameter stainless steel spheres sliding on several sizes of loose layers of fine aluminum oxide powders on both aluminum and alumina surfaces. Conventional, pin-on-disk experiments were conducted to compare behavior with the friction microprobe results. The behavior of the relatively thick particle layers was found to be independent of the nature of underlying substrate, substantiating previous work by other investigators. The time-dependent behavior of friction, for a spherical macrocontact starting from rest, could generally be represented by a series of five rather distinct phases involving static compression, slider breakaway, transition to steady state, and dynamic layer instability. A friction model for the steady state condition, which incorporates lamellar powder layer behavior, is described.

  3. Microprobe analysis of teeth by synchrotron radiation: environmental contamination

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Carvalho, M. L.; Casaca, C.; Barreiros, M. A.; Cunha, A. S.; Chevallier, P.

    1999-10-01

    An X-ray fluorescence set-up with microprobe capabilities, installed at the Laboratoire pour l'Utilisation du Rayonnement Électromagnétique (LURE) synchrotron (France) was used for elemental determination in teeth. To evaluate the influence of living habits in dental elemental composition nine teeth collected post-mortem were analysed, five from a miner and four from a fisherman. All teeth from the fisherman were healthy. From the miner some teeth were carious and one of them was filled with metallic amalgam. Teeth were sliced under the vertical plane and each slice was scanned from the root to the enamel for elemental profile determination. The synchrotron microprobe resolution was of 100 μm and incident photons of 18 keV energy were used. The elemental concentration values found suggest heterogeneity of the teeth material. Moreover, the distinct profiles for Mn, Sr, Br and Pb were found when teeth from the miner and from the fisherman are compared which can be associated with dietary habits and environmental influence. Higher concentrations of Mn and Sr were found for the fisherman teeth. In addition, Br was only observed in this group of teeth. Pb levels are higher for the miner teeth in particular for dentine regions. The influence of amalgam, such as, increase of Zn and Hg contents in the teeth material, is only noticed for the immediate surroundings of the treated cavity.

  4. Magnetorheology of hybrid colloids measured by spin coating and classical rheometry

    NASA Astrophysics Data System (ADS)

    Muhammad Aslam, Raheema; Shahrivar, Keshwad; Álvarez-Manzaneda, Juan De Vicente; González-Viñas, Wenceslao

    Hybrid colloids composed of micron-sized ferromagnetic and diamagnetic particles constitute a promising category of magnetorheological fluids with enhanced field-induced apparent yield stress. However, the physical mechanism explaining this stress enhancement is currently lacking. For the first time, we measure and compare the magnetic field-dependent viscosity of hybrid diluted colloids using spin-coating and magnetorheometry. In the former technique, a magnetic field is applied during the spin coating of the colloidal suspension involving evaporation of the solvent. The viscosity of the colloidal suspension at applied field can be derived from the surface coverage of the dry spin-coated deposits and from the viscosity of the colloid at zero field. In the latter, its viscosity is measured with a torsional parallel plate magnetorheometer under uniaxial magnetic fields aligned in the gradient direction of a steady shearing flow. The experimental results under different conditions and the effect of each component on the magnetorheological properties of the resulting colloid will be discussed. This work is partly supported by the Spanish MINECO (FIS201454101-P).

  5. Control of Ferromagnetic Resonance in Thin Films through Nanostructuring and Interfacial Torques

    NASA Astrophysics Data System (ADS)

    Sklenar, Joseph

    Ferromagnetic resonance and associated spin wave resonant excitations are studied in two different contexts. In the first context, magnetic excitations are studied in magnetic thin films that have periodic perturbations produced by by patterning nanostructured hole arrays on, or within the magnetic thin film, or by depositing a magnetic thin film on a colloidal crystal. In either scenario, it is found that the ferromagnetic resonant excitations can be modified by the imprinted periodicities. The second area of study focuses on new ways to drive ferromagnetic thin films into resonance through interfacial spin-transfer-torque. The interfacial torque studied here is from the spin Hall effect. The films are magnetized in an arbitrary orientation both within and out of the plane of the film. By studying the ferromagnetic resonance in arbitrarily magnetized states it is found that the interfacial torques may have unexpected field-angular dependencies. This work also develops a simple model based on previously existing ideas to understand the out-of-plane angular dependence of ferromagnetic resonance driven by spin Hall effects.

  6. RABBIT: an electron microprobe data-reduction program using empirical corrections

    USGS Publications Warehouse

    Goff, Fraser E.

    1977-01-01

    RABBIT is a FORTRAN IV computer Program that uses Bence-Albee empirical corrections for the reduction of electron microprobe data of silicates, oxides, sulphates, carbonates, and phosphates. RABBIT efficiently reduces large volumes of data collected on 3-11 channel microprobes.

  7. Ferromagnetism in armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau; Hikihara, Toshiya; Jeng, Horng-Tay; Huang, Bor-Luen; Mou, Chung-Yu; Hu, Xiao

    2009-01-01

    Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.

  8. Magnetofluidic Tweezing of Nonmagnetic Colloids.

    PubMed

    Timonen, Jaakko V I; Demirörs, Ahmet F; Grzybowski, Bartosz A

    2016-05-01

    Magnetofluidic tweezing based on negative magnetophoresis and microfabricated core-shell magnetic microtips allows controlled on-demand assembly of colloids and microparticles into various static and dynamic structures such as colloidal crystals (as shown for 3.2 μm silica particles). PMID:26990182

  9. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  10. Theory of disordered Heisenberg ferromagnets

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.

    1973-01-01

    A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.

  11. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  12. Spin Seebeck effect in a weak ferromagnet

    NASA Astrophysics Data System (ADS)

    Arboleda, Juan David; Arnache Olmos, Oscar; Aguirre, Myriam Haydee; Ramos, Rafael; Anadon, Alberto; Ibarra, Manuel Ricardo

    2016-06-01

    We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.

  13. The Oxford scanning proton microprobe: A medical diagnostic application

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.; Takacs, J.; Vaux, D. J. T.

    1984-04-01

    Primary biliary cirrhosis (PBC) is a disease characterised by progressive destruction of small intrahepatic bile ducts, cholestasis, and high levels of copper within the liver. The Oxford 1 μm scanning proton microprobe (SPM) has been used to construct elemental maps of a 7 μm section of diseased liver at several different magnifications. The results of these investigations have shown that the copper is distributed in small deposits ( < 5 μm) at specific locations in the liver. Further there appears to be a 1:1 atomic correlation between copper and sulphur, indicating the presence of an inorganic salt or a protein with approximately equal numbers of copper and sulphur atoms.

  14. Implementation of ionoluminescence in the AGLAE scanning external microprobe

    NASA Astrophysics Data System (ADS)

    Pichon, L.; Calligaro, T.; Gonzalez, V.; Lemasson, Q.; Moignard, B.; Pacheco, C.

    2015-04-01

    The scope of this work is to present the implementation of an IBIL imaging system in the scanning external microprobe of the AGLAE facility so as to correlate luminescence and composition maps provided by PIXE, RBS and PIGE. The challenging integration of the optical spectrometer, due to incompatibility of acquisition timings and data formats with the other IBA channels has motivated the development of a specific acquisition system. This article details the IBIL setup and explains the technical solutions retained for the coupling of IBIL with IBA techniques in order to produce fast and large IBIL-IBA maps. The IBIL maps stored in the same format as the PIXE, RBS and PIGE ones can be visualised and compared using the dedicated AGLAEmap program or the PyMCA processing package. An example of such a coupled mapping on Mesoamerican jade is presented to emphasise the interest of performing simultaneously IBA and IBIL large mappings.

  15. Ion microprobe mass spectrometry using sputtering atomization and resonance ionization

    SciTech Connect

    Donohue, D.L.; Christie, W.H.; Goeringer, D.E.

    1985-01-01

    Resonance ionization mass spectrometry (RIMS) has recently been developed into a useful technique for isotope ratio measurements. Studies performed in our laboratory (1-6) have been reported for a variety of elements using thermal vaporization sources to produce the atom reservoir for laser-induced resonance ionization. A commercial ion microprobe mass analyzer (IMMA) has been interfaced with a tunable pulsed dye laser for carrying out resonance ionization mass spectrometry of sputtered atoms. The IMMA instrument has many advantages for this work, including a micro-focused primary ion beam (2 ..mu..m in diameter) of selected mass, complete sample manipulation and viewing capability, and a double-focusing mass spectrometer for separation and detection of the secondary or laser-generated ions. Data were obtained demonstrating the number and type of ions formed along with optical spectral information showing the wavelengths at which resonance ionization occurs. 7 refs.

  16. Nuclear microprobe and optical investigation of sparkling wine bottles

    NASA Astrophysics Data System (ADS)

    Padayachee, J.; Prozesky, V. M.; Pineda, C. A.

    1999-10-01

    Glass bottles, used for sparkling wine, are treated with freon during manufacturing to harden the inside surface. Although this type of treatment normally improves the properties of the glass, in this case the occurrence of "egg" formations (egg-shaped rough areas) on distinct areas of bottles, as well as yeast sticking to the insides of bottles at specific areas pointed to the possibility of different areas showing different properties in the same bottle. The question was whether the correct gas was used for the treatment, and secondly, whether the process was controlled well enough to obtain the correct properties for the inside of the glass. We present results of an optical microscopy and nuclear microprobe (NMP) investigation.

  17. Thin film characterization using a mechanical properties microprobe

    NASA Astrophysics Data System (ADS)

    Oliver, W. C.; McHargue, C. J.; Zinkle, S. J.

    A new ultra-low load microindentation system has been acquired in the ORNL Metals and Ceramics Division. The system's spatial resolution and its data acquisition capabilities allow the determination of several mechanical properties from volumes of material with submicron dimension; hence, the term Mechanical Properties Microprobe (MPM). Research with the MPM at Oak Ridge has led to improved techniques for determining the plastic and elastic properties of materials using microindentation experiments. The techniques have been applied to thin films created by ion implanting metals and ceramics, radiation damaged materials, and thin hard coatings of TiN. Changes in the strength (hardness) and modulus have been measured in films as thin as 200 nm.

  18. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  19. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  20. Nuclear microprobe analysis of lead profile in crocodile bones

    NASA Astrophysics Data System (ADS)

    Orlic, I.; Siegele, R.; Hammerton, K.; Jeffree, R. A.; Cohen, D. D.

    2003-09-01

    Elevated concentrations of lead were found in Australian free ranging saltwater crocodile ( Crocodylus porosus) bone and flesh. Lead shots were found as potential source of lead in these animals. ANSTO's heavy ion nuclear microprobe was used to measure the distribution of Pb in a number of bones and osteoderms. The aim was to find out if elevated Pb concentration remains in growth rings and if the concentration is correlated with the blood levels recorded at the time. Results of our study show a very distinct distribution of accumulated Pb in bones and osteoderms as well as good correlation with the level of lead concentration in blood. To investigate influence of ion species on detection limits measurements of the same sample were performed by using 3 MeV protons, 9 MeV He ions and 20 MeV carbon ions. Peak to background ratios, detection limits and the overall 'quality' of obtained spectra are compared and discussed.

  1. Analysis of biological materials using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  2. Deep Space 2: The Mars Microprobe Project and Beyond

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Gavit, S. A.

    1998-01-01

    The Mars Microprobe Project, or Deep Space 2 (DS2), is the second of the New Millennium Program planetary missions and is designed to enable future space science network missions through flight validation of new technologies. A secondary goal is the collection of meaningful science data. Two micropenetrators will be deployed to carry out surface and subsurface science. The penetrators are being carried as a piggyback payload on the Mars Polar Lander cruise ring and will be launched in January 1999. The microprobe has no active control, attitude determination, or propulsive systems. It is a single stage from separation until landing and will passively orient itself due to its aerodynamic design. The aeroshell will be made of a nonerosive heat shield material, Silicon impregnated Reusable Ceramic Ablator(SIRCA), developed at Ames Research Center. The aeroshell shatters on impact, at which time the probe separates into an aftbody that remains at the surface and a forebody that penetrates into the subsurface. Each probe has a total mass of up to 3 kg, including the aeroshell. The impact velocity will be about 180 meters per second. The forebody will experience up to 30,000 g's and penetrate between 0.3 and 2 meters, depending on the ice content of the soil. The aftbody deceleration will be up to 80,000 g. The penetrators arrive in December 1999. The landing ellipse latitude range is 73 deg-77 deg S. The longitude will be selected by the Mars Surveyor Project to place the lander on the polar layered deposits in the range of 180 deg -230 deg W. The two micropenetrators are likely to land within 100 km of the Mars Surveyor Lander, on the polar deposits. The likely arrival date is L(sub s) = 256, late southern spring. The nominal mission lasts 2 days. A science team was selected in April 1998.

  3. Deep Space 2: The Mars Microprobe Project and Beyond

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Gavit, S. A.

    1998-01-01

    The Mars Microprobe Project, or Deep Space 2 (DS2), is the second of the New Millennium Program planetary missions and is designed to enable future space science network missions through flight validation of new technologies. A secondary goal is the collection of meaningful science data. Two micropenetrators will be deployed to carry out surface and subsurface science. The penetrators are being carried as a piggyback payload on the Mars Polar Lander cruise ring and will be launched in January 1999. The microprobe has no active control, attitude determination, or propulsive systems. It is a single stage from separation until landing and will passively orient itself due to its aerodynamic design. The aeroshell will be made of a nonerosive heat shield material, Silicon impregnated Reusable Ceramic Ablator(SIRCA), developed at Ames Research Center. The aeroshell shatters on impact, at which time the probe separates into an aftbody that remains at the surface and a forebody that penetrates into the subsurface. Each probe has a total mass of up to 3 kg, including the aeroshell. The impact velocity will be about 180 meters per second. The forebody will experience up to 30,000 g's and penetrate between 0.3 and 2 meters, depending on the ice content of the soil. The aftbody deceleration will be up to 80,000 g. The penetrators arrive in December 1999. The landing ellipse latitude range is 73 deg-77 deg S. The longitude will be selected by the Mars Surveyor Project to place the lander on the polar layered deposits in the range of 180 deg -230 deg W. The two micropenetrators are likely to land within 100 km of the Mars Surveyor Lander, on the polar deposits. The likely arrival date is Ls = 256, late southern spring. The nominal mission lasts 2 days. A science team was selected in April 1998.

  4. Interplay Between Ferromagnetism and Superconductivity

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Sudbø, Asle

    This chapter presents results on transport properties of hybrid structures where the interplay between ferromagnetism and superconductivity plays a central role. In particular, the appearance of so-called odd-frequency pairing in such structures is investigated in detail. The basic physics of superconductivity in such structures is presented, and the quasiclassical theory of Greens functions with appropriate boundary conditions is given. Results for superconductor∣ferromagnet bilayers as well as magnetic Josephson junctions and spin valves are presented. Further phenomena that are studied include transport in the presence of inhomogenous magnetic textures, spin-Josephon effect, and crossed Andreev reflection. We also investigate the possibility of intrinsic coexistence of ferromagnetism and superconductivity, as reported in a series of uranium-based heavy-fermion compounds. The nature of such a coexistence and the resulting superconducting order parameter is discussed along with relevant experimental results. We present a thermodynamic treatment for a model of a ferromagnetic supercondcutor and moreover suggest ways to experimentally determine the pairing symmetry of the superconducting gap, in particular by means of conductance spectroscopy.

  5. From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond --- An Introduction to Ferromagnetism in the Hubbard Model ---

    NASA Astrophysics Data System (ADS)

    Tasaki, H.

    1998-04-01

    It is believed that strong ferromagnetic interactions in some solids are generated by subtle interplay between quantum many-body effects and spin-independent Coulomb interactions between electrons. It is a challenging problem to verify this scenario in the Hubbard model, which is an idealized model for strongly interacting electrons in a solid. Nagaoka's ferromagnetism is a well-known rigorous example of ferromagnetism in the Hubbard model. It deals with the limiting situation in which there is one fewer electron than in the half-filling and the on-site Coulomb interaction is infinitely large. There are relatively new rigorous examples of ferromagnetism in Hubbard models called flat-band ferromagnetism. Flat-band ferromagnetism takes place in carefully prepared models in which the lowest bands (in the single-electron spectra) are ``flat.'' Usually, these two approaches are regarded as two complimentary routes to ferromagnetism in the Hubbard model. In the present paper we describe Nagaoka's ferromagnetism and flat-band ferromagnetism in detail, giving all the necessary background as well as complete (but elementary) mathematical proofs. By studying an intermediate model called the long-range hopping model, we also demonstrate that there is indeed a deep relation between these two seemingly different approaches to ferromagnetism. We further discuss some attempts to go beyond these approaches. We briefly discuss recent rigorous example of ferromagnetism in the Hubbard model which has neither infinitely large parameters nor completely flat bands. We give preliminary discussion regarding possible experimental realizations of the (nearly-)flat-band ferromagnetism. Finally, we focus on some theoretical attempts to understand metallic ferromagnetism. We discuss three artificial one-dimensional models in which the existence of metallic ferromagnetism can be easily proved. We have tried to make the present paper as self-contained as possible, keeping in mind readers who are

  6. Colloidal aggregation in polymer blends.

    PubMed

    Benhamou, M; Ridouane, H; Hachem, E-K; Derouiche, A; Rahmoune, M

    2005-06-22

    We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids. PMID:16035822

  7. Carbon p electron ferromagnetism in silicon carbide

    SciTech Connect

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  8. Carbon p electron ferromagnetism in silicon carbide

    DOE PAGESBeta

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; et al

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  9. Carbon p Electron Ferromagnetism in Silicon Carbide

    PubMed Central

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2015-01-01

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin. PMID:25758040

  10. Colloids in Acute Burn Resuscitation.

    PubMed

    Cartotto, Robert; Greenhalgh, David

    2016-10-01

    Colloids have been used in varying capacities throughout the history of formula-based burn resuscitation. There is sound experimental evidence that demonstrates colloids' ability to improve intravascular colloid osmotic pressure, expand intravascular volume, reduce resuscitation requirements, and limit edema in unburned tissue following a major burn. Fresh frozen plasma appears to be a useful and effective immediate burn resuscitation fluid but its benefits must be weighed against its costs, and risks of viral transmission and acute lung injury. Albumin, in contrast, is less expensive and safer and has demonstrated ability to reduce resuscitation requirements and possibly limit edema-related morbidity. PMID:27600123

  11. Two-dimensional dipolar nematic colloidal crystals.

    PubMed

    Skarabot, M; Ravnik, M; Zumer, S; Tkalec, U; Poberaj, I; Babic, D; Osterman, N; Musevic, I

    2007-11-01

    We study the interactions and directed assembly of dipolar nematic colloidal particles in planar nematic cells using laser tweezers. The binding energies for two stable configurations of a colloidal pair with homeotropic surface alignment are determined. It is shown that the orientation of the dipolar colloidal particle can efficiently be controlled and changed by locally quenching the nematic liquid crystal from the laser-induced isotropic phase. The interaction of a single colloidal particle with a single colloidal chain is determined and the interactions between pairs of colloidal chains are studied. We demonstrate that dipolar colloidal chains self-assemble into the two-dimensional (2D) dipolar nematic colloidal crystals. An odd-even effect is observed with increasing number of colloidal chains forming the 2D colloidal crystal. PMID:18233658

  12. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  13. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  14. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  15. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures

    PubMed Central

    Baker, A. A.; Figueroa, A. I.; Collins-McIntyre, L. J.; van der Laan, G.; Hesjedal, T.

    2015-01-01

    Topological insulators (TIs) are enticing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. However, a means to interact with and exploit the topological surface state remains elusive. Here, we report a study of spin pumping at the TI-ferromagnet interface, investigating spin transfer dynamics in a spin-valve like structure using element specific time-resolved x-ray magnetic circular dichroism, and ferromagnetic resonance. Gilbert damping increases approximately linearly with increasing TI thickness, indicating efficient behaviour as a spin sink. However, layer-resolved measurements suggest that a dynamic coupling is limited. These results shed new light on the spin dynamics of this novel material class, and suggest great potential for TIs in spintronic devices, through their novel magnetodynamics that persist even up to room temperature. PMID:25601364

  16. Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    de Melo, C. A. R. Sa

    2001-03-01

    The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).

  17. Emergent behavior in active colloids

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2016-06-01

    Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk and in confinement, as well as in the presence of gravity, field gradients, and fluid flow. In the third section, we review the emergent collective behavior of active colloidal suspensions, focusing on their structural and dynamic properties. After summarizing experimental observations, we give an overview of the progress in modeling collectively moving active colloids. While active Brownian particles are heavily used to study collective dynamics on large scales, more advanced methods are necessary to explore the importance of hydrodynamic and phoretic particle interactions. Finally, the relevant physical approaches to quantify the emergent collective behavior are presented.

  18. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-08-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  19. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  20. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    PubMed

    Stamopoulos, D; Aristomenopoulou, E

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  1. Biological Effects in Coral Biomineralization: The Ion-Microprobe Revolution

    NASA Astrophysics Data System (ADS)

    Meibom, A.

    2004-12-01

    Scleractinian corals are among the most prolific biomineralizing organisms on Earth and massive, reef-building corals are used extensively as proxies for past variations in the global climate. It is therefore of wide interest to understand the degree to which biological versus inorganic processes control the chemistry of the coral skeleton. Early workers considered aragonitic coral skeleton formation to be a purely physiochemical process. More recent studies have increasingly emphasized the role of a skeletal organic matrix, or intercalated organic macro-molecules that control the macroscopic shape and size of the growing crystals. It is now well established that organic compounds play a key role in controlling the morphology of crystals in a wide variety of calcium carbonate biomineralization processes by binding to specific sites, thereby causing direction-specific binding energies on the crystal surfaces. Macro-molecules, such as aspartic acid-rich or glutamic proteins and sulfated polysaccharides, are known to be embedded within the aragonitic skeletal components of coral. In addition, endosymbiotic algae and the layer of cells adjacent to the mineralizing surface, the calicoblastic ectoderm, are believed to play important roles in driving and controlling hermatypic coral skeletogenesis. However, until recently, further progress has been somewhat limited because it was not possible to obtain chemical analyses of the coral skeleton with sufficiently high spatial resolution and sensitivity to correlate chemical variations with the micrometer scale organization of its different structural components. The recent emergence of new ion microprobe technology is changing this situation radically. Conventional ion microprobe and laser ablation techniques have already contributed substantially to our knowledge about the micro-distribution of key trace elements such as B, Mg, Sr, Ba and U. However, with the development of the NanoSIMS, a newly designed ion microprobe

  2. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  3. Colloidal Suspended Iron in Rivers

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.

    2009-12-01

    Iron is transported in most rivers predominantly in two physical-chemical forms: a) organic complexes of Fe(III) and b) crystalline or poorly-ordered suspended phases frequently dominated by iron oxides. These two forms have different properties with respect to transport, bioavailability, and sorption. For the suspended phase iron, the fraction in the colloidal size range may be especially important given the interactions of ferric oxide surfaces with dissolved metal ions and organic compounds. We report the concentrations of colloidal (20 - 450 nm) suspended particulate iron in a wide variety of rivers. Goals of this effort are to ascertain the ubiquity of this material and also to examine other fluvial variables as indicators of its sources and nature. This, in turn, should lead to an understanding of how landscape/climate change could affect fluvial colloidal suspended iron. Possible sources of suspended colloidal iron include ferric oxides precipitated from the oxidation of ferrous iron derived from reducing environments, alumino-silicates derived from physical weathering, products of chemical weathering, and flushing of soils. We observe most commonly that increasing concentrations of colloidal suspended iron follow indicators of reducing sources (e.g., higher dissolved Mn and Ce anomaly close to 1), suggesting that this material is dominated by freshly precipitated iron oxides. Only in glacial watersheds do we find colloidal suspended iron instead correlating with colloidal suspended Si, and hence, likely to be associated with alumino-silicates. We also observe that colloidal suspended iron correlates well with the UV absorbance associated with this size range (20 - 450 nm).

  4. Re-shaping colloidal clusters

    NASA Astrophysics Data System (ADS)

    Kraft, Daniela

    2015-03-01

    Controlling the geometry and yield of anisotropic colloidal particles remains a challenge for hierarchical self-assembly. I will discuss a synthetic strategy for fabricating colloidal clusters by creating order in randomly aggregated polymer spheres using surface tension and geometrical constraints. The technique can be extended to a variety of charge-stabilized polymer spheres and offers control over the cluster size distribution. VENI grant from The Netherlands Organization for Scientific Research (NWO).

  5. Laser Microprobe (U-Th)/He Thermochronology of Detrital Minerals

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.; van Soest, M. C.

    2007-12-01

    A persistent concern in detrital mineral geochronology is the need to obtain a representative sampling of crystallization or cooling ages in the source region. Methods with high throughput --- e.g., laser microprobe 40Ar/39Ar thermochronology of muscovite and U-Pb thermochronology of zircon --- have a distinct advantage in this regard. Both techniques have advanced to the point that the dozens of analyses necessary to obtain a representative sampling can be done quickly and with sufficiently precision for high-quality research. Datasets obtained using methods that are far more labor intensive --- e.g., single-grain (U-Th)/He and fission track dating of minerals such as zircon --- typically include many fewer analyses. Consequently, we have less confidence that the cooling age distribution in the dataset represents the cooling age distribution in the source region. Of greater concern are analytical protocols that increase the probability of non-representative sampling. One example is the practice of picking zircon grains that are inclusion-free and euhedral (or nearly so) for conventional (U-Th)/He dating. While this practice is essential for successful conventional (U-Th)/He dating, it unavoidably leads to the systematic exclusion of grains that actually may represent significant portions of the source terrain. We describe a new approach to detrital mineral (U-Th)/He thermochronology that, in principle, provides a higher- fidelity record of the source region cooling history than the conventional technique. It involves the use of an excimer laser microprobe to ablate portions of the grain interiors from detrital zircons in a polished grain mount. (Prior to analyses, the grains can be mapped using backscattered electron and cathodoluminesence imagery.) The amounts of evolved 4He are typically so small that they are best measured using a magnetic-sector mass spectrometer rather than a quadrupole mass spectrometer of the type typically used for conventional (U- Th

  6. Aggregation of Heterogeneously Charged Colloids.

    PubMed

    Dempster, Joshua M; Olvera de la Cruz, Monica

    2016-06-28

    Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size. PMID:27253725

  7. Mixed states in ferromagnetic superconductors

    SciTech Connect

    Matsumoto, H.; Teshima, R.; Umezawa, H.; Tachiki, M.

    1983-01-01

    A detailed study of the mixed state of the ferromagnetic rare-earth compounds RRh/sub 4/B/sub 4/, R/sub x/Mo/sub 6/S/sub 8/, and R/sub x/Mo/sub 6/Se/sub 6/ is presented. The saturation effect of the magnetic moments is taken into account. Depending on the parameters, there are many types of phase transitions between the type-II/2, type-II/1, and type-I mixed states and the paramagnetic Meissner state, ferromagnetic Meissner state, spin-periodic Meissner state, and the self-induced vortex state. It is predicted that the magnetization can exhibit a variety of unusual modes.

  8. Seal device for ferromagnetic containers

    DOEpatents

    Meyer, R.E.; Jason, A.J.

    1994-10-18

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach there through until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity. 10 figs.

  9. Mn-based ferromagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Sawicki, Maciej

    2003-07-01

    The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.

  10. Seal device for ferromagnetic containers

    DOEpatents

    Meyer, Ross E.; Jason, Andrew J.

    1994-01-01

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.

  11. Non-Convex Multipartite Ferromagnets

    NASA Astrophysics Data System (ADS)

    Genovese, Giuseppe; Tantari, Daniele

    2016-05-01

    We investigate a multipartite ferromagnetic model without self-interactions between spins of the same party, so that the Hamiltonian is not a definite quadratic form of the magnetisations. We find the free energy and study the phase transition for all zero external fields. Moreover in the bipartite case we analyse the fluctuations of the rescaled magnetisations, below and at the critical point, and we study the phase transitions with non-zero magnetic fields.

  12. Dating Archean zircon by ion microprobe: New light on an old problem

    NASA Technical Reports Server (NTRS)

    Williams, I. S.; Kinny, P. D.; Black, L. P.; Compston, W.; Froude, D. O.; Ireland, T. R.

    1985-01-01

    Ion microprobe analysis of zircons from three sites (Watersmeet Dome in northern Michigan, Mount Sones in eastern Antarctica, and Mount Narryer in western Australia) is discussed. Implications of the results to Archean geochronology and early Earth crust composition are addressed.

  13. Laser microprobe facility used in the elemental analysis of small feature of a sample

    NASA Technical Reports Server (NTRS)

    Baldwin, J. M.

    1969-01-01

    Laser microprobe facility is effective in the elemental analysis of small areas of heterogeneous samples. The instrument uses the focused beam of a pulsed laser to evaporate a small volume of material from a relatively massive sample.

  14. Viscosity control of the dynamic self-assembly in ferromagnetic suspensions.

    PubMed

    Piet, D L; Straube, A V; Snezhko, A; Aranson, I S

    2013-05-10

    Recent studies of dynamic self-assembly in ferromagnetic colloids suspended in liquid-air or liquid-liquid interfaces revealed a rich variety of dynamic structures ranging from linear snakes to axisymmetric asters, which exhibit novel morphology of the magnetic ordering accompanied by large-scale hydrodynamic flows. Based on controlled experiments and first principles theory, we argue that the transition from snakes to asters is governed by the viscosity of the suspending liquid where less viscous liquids favor snakes and more viscous, asters. By obtaining analytic solutions of the time-averaged Navier-Stokes equations, we gain insight into the role of mean hydrodynamic flows and an overall balance of forces governing the self-assembly. Our results illustrate that the viscosity can be used to control the outcome of the dynamic self-assembly in magnetic colloidal suspensions. PMID:23705741

  15. Viscosity Control of the Dynamic Self-Assembly in Ferromagnetic Suspensions

    NASA Astrophysics Data System (ADS)

    Piet, D. L.; Straube, A. V.; Snezhko, A.; Aranson, I. S.

    2013-05-01

    Recent studies of dynamic self-assembly in ferromagnetic colloids suspended in liquid-air or liquid-liquid interfaces revealed a rich variety of dynamic structures ranging from linear snakes to axisymmetric asters, which exhibit novel morphology of the magnetic ordering accompanied by large-scale hydrodynamic flows. Based on controlled experiments and first principles theory, we argue that the transition from snakes to asters is governed by the viscosity of the suspending liquid where less viscous liquids favor snakes and more viscous, asters. By obtaining analytic solutions of the time-averaged Navier-Stokes equations, we gain insight into the role of mean hydrodynamic flows and an overall balance of forces governing the self-assembly. Our results illustrate that the viscosity can be used to control the outcome of the dynamic self-assembly in magnetic colloidal suspensions.

  16. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    NASA Astrophysics Data System (ADS)

    Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.

    2003-09-01

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.

  17. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  18. Raman microprobe spectroscopic studies of solid DNA-CTMA films

    NASA Astrophysics Data System (ADS)

    Yaney, Perry P.; Ahmad, Faizan; Grote, James G.

    2008-08-01

    Extensive studies have been carried out on developing the new biopolymer, deoxyribonucleic acid (DNA) derived from salmon, that has been complexed with a surfactant to make it water insoluble for application to bioelectronic and biophotonic devices. One of the key issues associated with the properties and behavior of solid films of this material is the extreme size of the >8 MDa molecular weight of the virgin, as-received material. Reduction of this molecular weight by factors of up to 40 is achieved by high power sonication. To support the various measurements that have been made to confirm that the sonicated material is still double strand DNA and to look for other effects of sonication, Raman studies were carried out to compare the spectra over a wide range of molecular weights and to develop baseline data that can be used in intercolation studies where various dopants are added to change the electrical, mechanical or optical properties. Raman microprobe spectra from solid, dry thin films of DNA with molecular weights ranging from 200 kDa to >8 MDa complexed with cetyltrimethyl-ammonium chloride (CTMA) are reported and compared to the as-received spectrum and to published DNA spectra in aqueous solutions. In addition, microscopy and measurements on macro-molecular structures of DNA-CTMA are reported.

  19. Identification of cosmogenic argon components in Allende by laser microprobe

    NASA Technical Reports Server (NTRS)

    Kirschbaum, C.

    1986-01-01

    New techniques are presented for using a laser microprobe to determine the spallation argon systematics of calcium-aluminum inclusions. The Ar-38(s) amounts determined for melilite and anorthite in a coarse-grained inclusion from Allende are 2.9 x 10 to the -8th and 1.3 x 10 to the -8th cc/g, respectively. The ratio of the amounts is consistent with the calcium contents of these two minerals. The Ar-38(s) amount determined for a fine-grained inclusion from Allende is 1.1 x 10 to the -8th cc/g. Calcium and potassium amounts were determined from irradiated samples of the same inclusions so that production of Ar-38 from calcium during the cosmic ray exposure of Allende could be determined for these samples. The production observed was 12.4 + or - 2.1 x 10 to the -8th cc STP Ar-38/g Ca for the coarse-grained inclusion and 9.9 + or - 2.4 cc STP Ar-38/g Ca for the fine-grained inclusion. No evidence of unusual exposure was observed in the two inclusions studied.

  20. Application of the Karlsruhe proton microprobe to medical samples

    NASA Astrophysics Data System (ADS)

    Heck, D.; Rokita, E.

    1984-04-01

    The Karlsruhe nuclear microprobe was used in the investigation of healthy and malign tissue of animals and men. Target preparation tests showed that cryofixation of the tissue before cutting with a microtome and succeeding lyophilization of the slices gave reliable results. The slices were mounted on backing foils of Formvar the thickness of which varied between 30 and 50 {μg}/{cm 2}. For irradiation we tested various patterns generated by the 3 MeV proton beam by sweeping in one or two dimensions. Most of the data were collected in line-scan mode, where 256 equidistant irradiation dots of 3 × 10 μm 2 formed a line of 750 μm length at beam currents of 250 pA. The target thickness was determined simultaneously by proton elastic scattering in all cases. Radial concentration profiles of degenerated human arteries (atherosclerosis) showed a remarkable increase of Ca, partly correlated with local maxima of the Zn content, when compared with non-degenerated capillaries. Microtome cuts across a Morris Hepatoma 7777 cancer grown in a rat leg were investigated to correlate the concentration shifts of some trace elements in malign tissue with single cells.

  1. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    PubMed

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles. PMID:27078933

  2. An integrated computer system for Fudan nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Zou, Degang; Ren, Chigang; Tang, Jiayong; Yang, Fujia

    1995-09-01

    With the help of modern personal computer (PC) and object oriented programming (OOP) technology, we have recently developed a compact, integrated, user-friendly computer system for Fudan nuclear microprobe, which was originally modeled after the SUNY/Albany system. The system software has been thoroughly rewritten so as to take advantage of today's high-performance PC and facilitate easy upgrading and expansion in the case of future development of both hardware and software. Most functions of this system such as sample searching, scanning control, data acquisition, image processing and displaying, are based on a single 80386 IBM style PC with a 1-MB DRAM TVGA high-resolution monitor. Data from up to 4 ADCs, 4 sensors and a CCD camera can be acquired simultaneously. Two stepper motors are employed to move the target; a CCD camera system is also included to locate the area of interest on the sample; the secondary electron image could act as a reference to fine adjustment. Rectangular raster scanning or irregular scanning is facilitated with beam motion triggered either by a timer or by pulses from a current integrator. A variety of built-in image displaying, processing and printing methods have also been implemented in order to make the maps easier to interpret for the eyes. All of these functions are administrated by an integrated, completely menu-driven software package-MBSYS.

  3. Light stable isotope analysis of meteorites by ion microprobe

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.

  4. Microprobe PIXE analysis of aluminium in the brains of patients with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Kakimi, S.; Fujii, K.

    1996-04-01

    To investigate the cause of Alzheimer's disease (senile dementia), we examined aluminium (Al) in the rat liver, and in the brains (hippocampus) of Alzheimer's disease patients using heavy ion (5 MeV Si 3+) microprobe and proton (2 MeV) microprobe PIXE analysis. Heavy ion microprobes (3 MeV Si 2+) have several time's higher sensitivity for Al detection than 2 MeV proton microprobes. (1) In the rat liver, Al was detected in the cell nuclei, where phosphorus (P) was most densely distributed. (2) We also demonstrated Al in the cell nuclei isolated from Alzheimer's disease brains using heavy ion (5 MeV Si 3+) microprobes. Al spectra were detected using 2 MeV proton microprobes in the isolated brain cell nuclei. Al could not be observed in areas where P was present in relatively small amounts, or was absent. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of Al in the nuclei of brain cells.

  5. An x-ray microprobe beam line for trace element analysis

    SciTech Connect

    Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1987-01-01

    The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.

  6. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-05-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga1-x,Fex)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  7. Anomalous Hall Effect in a Kagome Ferromagnet

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  8. On the Absence of Ferromagnetism in Typical 2D Ferromagnets

    SciTech Connect

    Biskup, Marek

    2010-04-06

    We consider the Ising systems in d dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that decay with power s of the distance. The physical context of such models is discussed; primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form.We prove that when the power of decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with d {ge} 2) magnetic order can occur.

  9. Dielectrophoresis force of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Ou-Yang, Daniel

    Dielectrophoresis (DEP) is the motion of a polarizable colloidal particle in a non­uniform electric field. The magnitude of the DEP force is known to be proportional to the gradient of E2. The DEP force also depends on the relative polarizability of the particle to that of the surrounding medium. Due to its ease of use, DEP has been proposed for a variety of applications to manipulate colloidal particles in a microfluidic setting. However, accurate measurements of the DEP force on colloidal nanoparticles are lacking. A new method is proposed to measure accurately the DEP potential force of colloidal nanoparticles by using confocal fluorescence imaging to determine the density distributions of dilute colloidal nanoparticle in a DEP potential force field. The DEP potential field can be calculated from the particle density distributions since the spatial distribution of the particle number density follows the Boltzmann distribution of the DEP potential energy. The validity of the measured DEP force is tested by examining the force as a function of the E field strength and particle size. The classic Maxwell­Wagner­O'Konski is found to be inadequate to fully describe the frequency dependence of the DEP force. NSF 0928299, Emulsion Polymer Institute, Department of Physics of Lehigh University.

  10. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes.

    PubMed

    Pokki, Juho; Ergeneman, Olgaç; Sevim, Semih; Enzmann, Volker; Torun, Hamdi; Nelson, Bradley J

    2015-10-01

    Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy. PMID:26238733

  11. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  12. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  13. Crack formation and prevention in colloidal drops.

    PubMed

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  14. Gel transitions in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Bergenholtz, J.; Fuchs, M.

    1999-12-01

    The idealized mode-coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures, MCT predicts a slowing down of the local dynamics and ergodicity-breaking transitions. The non-ergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the non-ergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical non-ergodicity parameters; this is motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low-temperature MCT non-ergodicity transitions.

  15. Polymeric stabilization of colloidal asphaltenes

    NASA Astrophysics Data System (ADS)

    Hashmi, Sara; Firoozabadi, Abbas

    2010-03-01

    Asphaltenes, the heaviest component of crude oil, cause many problems in petroleum extraction and recovery. Operationally defined as insoluble in long chain alkanes but soluble in toluene, asphaltenes have been described by bulk thermodynamic models such as the Flory-Huggins theory. However, bulk models work well only for asphaltenes in good solvents. Characterization of asphaltenes in poor solvents remains elusive: molecular scale asphaltenes readily aggregate to the colloidal scale and become highly unstable in solution. We investigate the ability of polymers to stabilize colloidal asphaltene suspensions in heptane. In the absence of added polymer, sedimentation measurements reveal dynamics reminiscent of collapsing gels. Adding polymers to colloidal asphaltene suspensions can delay the characteristic sedimentation time by orders of magnitude. Light scattering results suggest that the mechanism of stabilization may be related to a decrease in both particle size and polydispersity as a function of added polymer.

  16. Entropy favours open colloidal lattices

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  17. Doped colloidal artificial spin ice

    NASA Astrophysics Data System (ADS)

    Libál, A.; Olson Reichhardt, C. J.; Reichhardt, C.

    2015-10-01

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  18. Ferromagnetic enhanced inductive plasma sources

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2013-07-01

    The subject of this paper is the review of inductively coupled plasma (ICP) sources enhanced with ferromagnetic cores, FMICP, found in various applications, including plasma fusion, space propulsion, light sources, plasma chemistry and plasma processing of materials. The history of FMICP, early attempts for their realization, some recent developments and examples of successful FMICP devices are given here. A comparative study of FMICPs with conventional ICPs demonstrates their certain advantages in power transfer efficiency, power factor and their ability to operate without rf plasma potentials at low plasma densities and with small gaps, while effectively controlling plasma density profile.

  19. Colloidal particle assembly using piezoelectric inkjet printing of polystyrene colloidal ink formulations.

    PubMed

    Kwon, Younghwan

    2014-10-01

    We report the feasibility of piezoelectric inkjet printing of colloidal dispersion inks for geometrical patterning to arrange colloids in desired locations. Polystyrene colloid (dia. = 3 μm) inks dispersed with thermally curable binder in organic solvents are explored for fundamental study on colloidal patterning. The inkjet printability of colloidal inks is systematically investigated with different ink formulations and inkjet process variables. In addition, in order to maintain the structural stability of colloidal patterns fabricated on the substrate from externally applied forces such as mechanical, chemical and thermal stimuli, thermally curable binder was formulated into the colloidal ink formulations. PMID:25942838

  20. Colloid cyst: a case report.

    PubMed

    Grasu, Beatrice L; Alberico, Anthony M

    2011-01-01

    Colloid cysts are a rare clinical finding with a unique clinical presentation: non-specific paroxysmal headaches. The current recommended treatment is microsurgery, which poses the greatest risk to the patient but allows complete removal of the cyst to prevent recurrence. A 41-year old man presented with a colloid cyst located in the foramen of Monro causing obstructive hydrocephalus. He had paroxysmal headaches and memory and personality changes. Transcortical transventricle microsurgery was performed to remove the entire cyst. A temporary shunt was placed to prevent post-operative hydrocephalus. Normal neurological function returned upon cyst removal. PMID:22034805

  1. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-01-01

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer. PMID:27168201

  2. Colloids and Nucleation

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  3. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  4. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  5. Spin waves of ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Arias, Rodrigo

    The spin wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically: initially magnetostatic and later dipole-exchange modes. Theoretically dipole-exchange modes have been solved exactly numerically for some configurations and boundary conditions, and there are approximations of their frequency dispersion relations based on infinite series solutions and perturbation theory, valid for arbitrary orientations of an applied magnetic field, and for boundary conditions that allow varying degrees of pinning. A theoretical method that allows to determine with ease the exact frequency dispersion relations of the dipole-exchange modes is presented: it is required to solve numerically a 6x6 linear eigenvalue problem at each wavevector of interest; the spin wave modes inside or outside the sample may be plotted. Analogous calculations may be done to determine magnetostatic modes in detail. The method corresponds to a generalization of Green's theorem to the problem of determining the dipole-exchange modes of a ferromagnetic film: convolution integral equations for the magnetization and magnetostatic potential are derived on the surfaces of the film that become simple local algebraic equations in Fourier space, or for specific wavevectors. This work was supported by Project ICM FP10-061-F-FIC, Chile, and Center for the Development of Nanoscience and Nanotechnology CEDENNA FB0807 (Chile).

  6. Optical Properties of Ferromagnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Burch, Kenneth

    2006-03-01

    Ferromagnetic semiconductors hold great promise for numerous magneto-optics applications. In this talk I detail recent optical spectroscopic studies of as grown and annealed thin films and digitally doped superlattices of Ga1-xMnxAs, prepared in the group of D.D. Awschalom (UCSB) and annealed in the group of N.Samarth (PSU). Annealing induces a large strengthening of the optical conductivity (σ1(φ)), while the frequency dependence of σ1(φ) remains unchanged. This indicates that the scattering rate and Fermi level have not been effected by annealing, despite the large increase in hole density. Our Infrared work on Digital Ferromagnetic Heterostructures reveals a unique ability to tune their optical properties as well as their intrinsic electronic structure without changing the doping/defect level. This work is in collaboration with D.B. Shrekenhamer, E.J. Singley, D.N. Basov (University of California, San Diego) J. Stephens, R.K. Kawakami, D.D. Awschalom(University of California, Santa Barbara), B.L. Sheu, and N. Samarth (Pennsylvania State University).

  7. Electron Microprobe Techniques for Use in Tephrochronological Analyses

    NASA Astrophysics Data System (ADS)

    Fournelle, J.; Severin, K.; Wallace, K.; Beget, J.; Larsen, J.

    2006-12-01

    (1992) which followed the 1990 INQUA InterCongress Committee on Tephrochronology Workshop, e.g., use of particular standards, documentation of instrument conditions and analytical procedures, particularly volatile element treatment and matrix correction, and presentation of both tephra and standard compositional data and statistics. We suggest some modification to the recommendations regarding standards and volatile element correction. We recommend the tephra analytical community discuss and make use of this set of standardized procedures for optimizing electron microprobe analysis of volcanic glass and for reporting the data. We also recognize that no single analytical protocol may necessarily be correct for all tephra analyses, but emphasize that all relevant analytical parameters should be explicitly reported so that other laboratories could reproduce similar data on the same tephra.

  8. Colloid characterization and quantification in groundwater samples

    SciTech Connect

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  9. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  10. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  11. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  12. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  13. Towards Structural Complexity with Colloids

    NASA Astrophysics Data System (ADS)

    Engel, Michael

    2012-02-01

    Colloids rather easily assemble into simple crystal structures like the face-centered cubic lattice or the body-centered cubic lattice. More complex phases are harder to achieve, but have recently been reported using a number of approaches. Yet, assembling complex structures often results from trial-and-error and is not well understood. In this presentation, we show how novel crystals, quasicrystals, and liquid crystals can be achieved with colloidal building blocks by varying the interactions and the shapes of the building blocks. Using computer simulations, we demonstrate the formation of unusually ordered phases both with isotropic pair potentials, as well as with facetted shapes like polyhedra. We describe new tools we have developed to perform complex structural analysis on simulated systems and show how they may be used to analyze real space images from colloid experiments. We also compare the assembled structures with densest packings of the building blocks and show that good packings can often be distinct from what is observed to assemble from the disordered state. This suggests that dense packings may not be illustrative of what is achievable in colloid experiments.

  14. Amorphous RE–Fe–B–Na colloidal nanoparticles: High temperature solution synthesis and magnetic properties

    SciTech Connect

    Jia, Li-Ping; Yan, Bing

    2015-04-15

    Graphical abstract: RE–Fe–B–Na (RE = Nd–Er) colloidal nanoparticles by high-temperature solution synthesis are ultra-small monodisperse and air-stable amorphous, whose size and magnetic dependence are studied. - Highlights: • RE–Fe–B–Na nanoparticles are obtained by high-temperature solution synthesis. • These colloidal nanoparticles are monodisperse and size controlled. • The magnetism dependence and possible magnetic coupling mechanism are studied. - Abstract: RE–Fe–B–Na (RE = Nd–Er) colloidal nanoparticles are prepared by high-temperature solution synthesis. These nanoparticles are ultra-small monodisperse, air-stable and amorphous, whose particle size and magnetic property are characterized by transmission electron microscope and superconducting quantum interference device. Taking Nd–Fe–B–Na nanoparticle as an example, it is found that the particle size can be controlled in less than 7 nm. Besides, the magnetic properties of RE–Fe–B–Na colloidal nanoparticles can be compared for different rare earth elements. Based on the bulk ferromagnetic coupling, other possible magnetic coupling mechanism is discussed.

  15. Effective Forces Between Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel

    1999-01-01

    Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two

  16. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  17. Distorted colloidal arrays as designed template

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Zhou, Ziwei; Möhwald, Helmuth; Ai, Bin; Zhao, Zhiyuan; Ye, Shunsheng; Zhang, Gang

    2015-01-01

    In this paper, a novel type of colloidal template with broken symmetry was generated using commercial, inductively coupled plasma reactive ion etching (ICP-RIE). With proper but simple treatment, the traditional symmetric non-close-packed colloidal template evolves into an elliptical profile with high uniformity. This unique feature can add flexibility to colloidal lithography and/or other lithography techniques using colloidal particles as building blocks to fabricate nano-/micro-structures with broken symmetry. Beyond that the novel colloidal template we developed possesses on-site tunability, i.e. the transformability from a symmetric into an asymmetric template. Sandwich-type particles with eccentric features were fabricated utilizing this tunable template. This distinguishing feature will provide the possibility to fabricate structures with unique asymmetric features using one set of colloidal template, providing flexibility and broad tunability to enable nano-/micro-structure fabrication with colloidal templates.

  18. Colloid particle size-dependent dispersivity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Katzourakis, V. E.

    2014-12-01

    Laboratory and field studies have demonstrated that dispersion coefficients evaluated by fitting advection-dispersion transport models to nonreactive tracer breakthrough curves do not adequately describe colloid transport under the same flow field conditions. Here an extensive laboratory study was undertaken to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size and interstitial velocity. A total of 49 colloid transport experiments were performed in columns packed with glass beads under chemically unfavorable colloid attachment conditions. Nine different colloid diameters, and various flow velocities were examined. The breakthrough curves were successfully simulated with a mathematical model describing colloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity is positively correlated with colloid particle size, and increases with increasing velocity.

  19. Technical aspects of nuclear microprobe analysis of senile plaques from alzheimer patients

    NASA Astrophysics Data System (ADS)

    Larsson, N. P.-O.; Tapper, U. A. S.; Sturesson, K.; Odselius, R.; Brun, A.

    1990-04-01

    Alzheimer's disease, a common form of senile dementia, has been proposed to be caused by aluminium. One of the interesting structures to be studied, senile plaque cores in the brain, have centres of only about 10 μm. We have investigated the possibility of applying nuclear microprobes to sections containing senile plaques. An alternative staining procedure, TMToluidin blue staining using a spray technique, is also presented. An outline is given of a procedure for preparing senile plaque specimens for nuclear microprobe analysis. This includes a technique for accurate ion beam positioning, utilizing electron microscopy-grids. The subject may be of general interest since sample preparation is one of the most important aspects in microprobe analysis of biological matter.

  20. A novel approach to the examination of soil evidence: mineral identification using infrared microprobe analysis.

    PubMed

    Weinger, Brooke A; Reffner, John A; De Forest, Peter R

    2009-07-01

    Identification of minerals using the infrared microprobe with a diamond internal reflection objective is a rapid and reliable method for forensic soil examinations. Ninety-six mineral varieties were analyzed, and 77 were differentiated by their attenuated total reflection (ATR) spectra. Mineral grains may be mounted in oil for conventional polarized light microscope characterization and their ATR spectrum obtained with little or no interference by the liquid. This infrared microprobe method can be used to identify silicates, phosphates, nitrates, carbonates, and other covalent minerals; however, ionic minerals, metal oxide and sulfide minerals, and minerals with refractive indexes greater than diamond do not produce identifiable spectra, but the lack of a spectrum or one with high absorbance values does provide useful information. This research demonstrates the overall utility that infrared microprobe analysis brings mineral identification in soil evidence. PMID:19467138

  1. Boron analysis by electron microprobe using MoB4C layered synthetic crystals

    USGS Publications Warehouse

    McGee, J.J.; Slack, J.F.; Herrington, C.R.

    1991-01-01

    Preliminary electron microprobe studies of B distribution in minerals have been carried out using MoB4C-layered synthetic crystals to improve analytical sensitivity for B. Any microprobe measurements of the B contents of minerals using this crystal must include analyses for Cl to assess and correct for the interference of Cl X-rays on the BK?? peak. Microprobe analyses for B can be made routinely in tourmaline and other B-rich minerals, and minor B contents also can be determined in common rock-forming minerals. Incorporation of unusually high B contents in minerals other than borosilicates has been discovered in prograde and retrograde minerals in tourmalinites from the Broken Hill district, Australia, and may reflect high B activities produced during the metamorphism of tourmaline-rich rocks. -from Authors

  2. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  3. Gilbert damping in noncollinear ferromagnets.

    PubMed

    Yuan, Zhe; Hals, Kjetil M D; Liu, Yi; Starikov, Anton A; Brataas, Arne; Kelly, Paul J

    2014-12-31

    The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearity. We use first-principles scattering theory to investigate transverse domain walls (DWs) of the important ferromagnetic alloy Ni80Fe20 and show that the damping depends not only on the magnetization texture but also on the specific dynamic modes of Bloch and Néel DWs in ways that were not theoretically predicted. Even in the highly disordered Ni80Fe20 alloy, the damping is found to be remarkably nonlocal. PMID:25615368

  4. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  5. Recent advances in laser microprobe mass analysis (LAMMA) of inner ear tissue

    SciTech Connect

    Meyer zum Gottesberge-Orsulakova, A.; Kaufmann, R.

    1985-01-01

    Maintenance of ionic gradients within the various fluids compartments of the inner ear requires transport active cellular systems at different locations. LAMMA analysis is ideally suited for detection of ions in microquantity on cellular levels overcoming many technical difficulties. The present paper summarizes the results of microprobe analysis obtained with laser induced mass spectrometry (LAMMA) supplemented by X-ray microprobe analysis of epithelial cell layers adjacent to the endolymphatic space in the cochlear duct, in the vestibular organ and in the endolymphatic sac. The possible role of inner ear as well as ocular melanin in the mechanisms of active ion transport is discussed.

  6. Polymer SU-8 Based Microprobes for Neural Recording and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Altuna, Ane; Fernandez, Luis; Berganzo, Javier

    2015-06-01

    This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a) minimize injury in neural tissue, b) obtain high-quality electrical signals and c) deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  7. Core Community Specifications for Electron Microprobe Operating Systems: Software, Quality Control, and Data Management Issues

    NASA Technical Reports Server (NTRS)

    Fournelle, John; Carpenter, Paul

    2006-01-01

    Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.

  8. Colloidal aspects of texture perception.

    PubMed

    van Vliet, Ton; van Aken, George A; de Jongh, Harmen H J; Hamer, Rob J

    2009-08-30

    Recently, considerable attention has been given to the understanding of texture attributes that cannot directly be related to physical properties of food, such as creamy, crumbly and watery. The perception of these attributes is strongly related to the way the food is processed during food intake, mastication, swallowing of it and during the cleaning of the mouth after swallowing. Moreover, their perception is modulated by the interaction with other basic attributes, such as taste and aroma attributes (e.g. sourness and vanilla). To be able to link the composition and structure of food products to more complicated texture attributes, their initial physical/colloid chemical properties and the oral processing of these products must be well understood. Understanding of the processes in the mouth at colloidal length scales turned out to be essential to grasp the interplay between perception, oral physiology and food properties. In view of the huge differences in physical chemical properties between food products, it is practical to make a distinction between solid, semi-solid, and liquid food products. The latter ones are often liquid dispersions of emulsion droplets or particles in general. For liquid food products for instance flow behaviour and colloidal stability of dispersed particles play a main role in determining their textural properties. For most solid products stiffness and fracture behaviour in relation to water content are essential while for semi-solids a much larger range of mechanical properties will play a role. Examples of colloidal aspects of texture perception will be discussed for these three categories of products based on selected sensory attributes and/or relevant colloidal processes. For solid products some main factors determining crispness will be discussed. For crispiness of dry cellular solid products these are water content and the architecture of the product at mesoscopic length scales (20-1000 microm). In addition the distribution of

  9. Statistical Physics of Colloidal Dispersions.

    NASA Astrophysics Data System (ADS)

    Canessa, E.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis is concerned with the equilibrium statistical mechanics of colloidal dispersions which represent useful model systems for the study of condensed matter physics; namely, charge stabilized colloidal dispersions and polymer stabilized colloidal dispersions. A one-component macroparticle approach is adopted in order to treat the macroscopic and microscopic properties of these systems in a simple and comprehensive manner. The thesis opens with the description of the nature of the colloidal state before reviewing some basic definitions and theory in Chapter II. In Chapter III a variational theory of phase equilibria based on the Gibbs-Bogolyobov inequality is applied to sterically stabilized colloidal dispersions. Hard spheres are chosen as the reference system for the disordered phases while an Einstein model is used for the ordered phases. The new choice of pair potential, taken for mathematical convenience, is a superposition of two Yukawa functions. By matching a double Yukawa potential to the van der Waals attractive potential at different temperatures and introducing a purely temperature dependent coefficient to the repulsive part, a rich variety of observed phase separation phenomena is qualitatively described. The behaviour of the potential is found to be consistent with a small decrease of the polymer layer thickness with increasing temperature. Using the same concept of a collapse transition the non-monotonic second virial coefficient is also explained and quantified. It is shown that a reduction of the effective macroparticle diameter with increasing temperature can only be partially examined from the point of view of a (binary-) polymer solution theory. This chapter concludes with the description of the observed, reversible, depletion flocculation behaviour. This is accomplished by using the variational formalism and by invoking the double Yukawa potential to allow

  10. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems). PMID:26427370

  11. Preparatiion of metal colloids in inverse micelles

    SciTech Connect

    Wilcoxon, J.P.

    1990-11-23

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g., gold, palladium, silver, rhodium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogenous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst.

  12. Chancellor Water Colloids: Characterization and Radionuclide Association

    SciTech Connect

    Abdel-Fattah, Amr I.

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  13. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  14. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  15. Predicting crystals of Janus colloids.

    PubMed

    Vissers, Teun; Preisler, Zdenek; Smallenburg, Frank; Dijkstra, Marjolein; Sciortino, Francesco

    2013-04-28

    We present a numerical study on the phase diagram for a simple model of Janus colloids, including ordered and disordered structures. Using a range of techniques, we generate a set of crystal structures and investigate their relative stability field in the pressure-temperature and temperature-density planes by means of free-energy calculations and thermodynamic integration schemes. We find that despite the Janus colloids' simple architecture, they form stable crystal structures with complicated bond-topologies on an underlying face-centered-cubic or hexagonal-close-packed lattice. In addition, we find a phase consisting of wrinkled bilayer sheets, competing with both the fluid and the crystal phases. We detect a metastable gas-liquid coexistence which displays a micellization-driven re-entrant behavior. PMID:23635155

  16. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    SciTech Connect

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-11-02

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated.

  17. Phases transitions and interfaces in temperature-sensitive colloidal systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Schall, Peter

    2013-03-01

    Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.

  18. Superconductivity in colloidal lead nanocrystals

    NASA Astrophysics Data System (ADS)

    Zolotavin, Pavlo

    Monodisperse colloidal lead nanoparticles with diameters ranging from 4.4 to 20 nm were prepared by a self-limiting growth method. The nanoparticles are protected from oxidation by an amorphous lead-tin oxide shell of 1.5-2 nm thickness. The magnetic susceptibility of the particles was measured as a function of size, temperature and magnetic field. The Meissner effect was observed indicating the superconducting transition. For the 20 and 16 nm particles, the critical temperature is suppressed to 6.9 K from the bulk value of 7.2 K and is further reduced for smaller particles. Depending on the size of the particles, the critical field is enhanced by 60 to 140 times. The coupling between particles was in situ controlled through the conversion of the oxides present on the surface of the nanoparticles to chalcogenides. This transformation allows for a 109-fold increase in the conductivity. The temperature of the onset of the superconductivity was found to depend upon the degree of coupling of the nanoparticles in the vicinity of the insulator - superconductor transition. The critical current density of the best sample of Pb/PbSe nanocrystals at zero magnetic field was determined to be 4 x 103 A/cm 2. In turn, the critical field of the sample shows 50-fold enhancement compared to bulk Pb. A method to convert the original Pb/PbO nanocrystals into colloidal Pb/PbS (Se, Te) particle was developed. This alleviates the necessity of chemical post processing and provides a truly colloidal superconductor. Paramagnetic Meissner effect of abnormally large amplitude is observed for Pb/PbTe nanocrystal assemblies. The material described in this manuscript is the first nanostructured superconductor prepared by the bottom-up approach starting from colloidal nanoparticles.

  19. Linear viscoelasticity of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cichocki, B.; Felderhof, B. U.

    1992-12-01

    We develop a phenomenological theory of the dynamic viscosity of colloidal suspensions, based on an extrapolation of the low-frequency behavior by use of a continued-fraction representation. In lowest approximation the dynamic viscosity depends on a small number of parameters, which may be determined experimentally. For semidilute suspensions the parameters may be found by theoretical calculation. The theory is tested by comparison with an exactly soluble model.

  20. Solid colloidal optical wavelength filter

    NASA Astrophysics Data System (ADS)

    Alvarez, J. L.

    1990-05-01

    A method for constructing a solid colloidal optical wavelength filter is discussed. The device was developed to filter optical wavelengths for spectroscopy, protection from intense radiation, monochromatizing, and analyzing optical radiation. The filter is formed by suspending spherical particles in a coagulable medium (such as setting plastic); agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  1. Conserved momenta of a ferromagnetic soliton

    NASA Astrophysics Data System (ADS)

    Tchernyshyov, Oleg

    2015-12-01

    Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether's theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.

  2. Colloidal assembly by ice templating.

    PubMed

    Kumaraswamy, Guruswamy; Biswas, Bipul; Choudhury, Chandan Kumar

    2016-04-12

    We investigate ice templating of aqueous dispersions of polymer coated colloids and crosslinkers, at particle concentrations far below that required to form percolated monoliths. Freezing the aqueous dispersions forces the particles into close proximity to form clusters, that are held together as the polymer chains coating the particles are crosslinked. We observe that, with an increase in the particle concentration from about 10(6) to 10(8) particles per ml, there is a transition from isolated single particles to increasingly larger clusters. In this concentration range, most of the colloidal clusters formed are linear or sheet like particle aggregates. Remarkably, the cluster size distribution for clusters smaller than about 30 particles, as well as the size distribution of linear clusters, is only weakly dependent on the dispersion concentration in the range that we investigate. We demonstrate that the main features of cluster formation are captured by kinetic simulations that do not consider hydrodynamics or instabilities at the growing ice front due to particle concentration gradients. Thus, clustering of colloidal particles by ice templating dilute dispersions appears to be governed only by particle exclusion by the growing ice crystals that leads to their accumulation at ice crystal boundaries. PMID:26780838

  3. Colloidal thermoresponsive gel forming hybrids.

    PubMed

    Liu, Ruixue; Tirelli, Nicola; Cellesi, Francesco; Saunders, Brian R

    2010-09-15

    Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three different cationic PNIPAm (N-isopropylacrylamide) graft copolymers and two inorganic nanoparticle types (laponite and Ludox silica) were used to prepare a range of hybrids. Anisotropic microsheets only formed when laponite particles were added to the copolymer implying directed self-assembly. Aqueous dispersions of the microsheets spontaneously formed gels at room temperature and these gels were thermoresponsive. They represent a new class of gel forming colloid and are termed thermoresponsive gel forming hybrids. The compositions of the hybrids were determined from thermogravimetric analysis and those that gave gel forming behaviour identified. Variable-temperature rheology experiments showed that the elasticity of the gels increased linearly with temperature. The reversibility of the thermally-triggered changes in gel elasticity was investigated. The concentration dependence of the rheology data was well described by elastic percolation scaling theory and the data could be collapsed onto a master curve. The concentration exponent for the elastic modulus was 2.5. The strong attractive interactions that exist between the dispersed gel forming hybrids was demonstrated by the formation of stable thermoresponsive hybrid hydrogels through casting of hybrid dispersions. PMID:20561633

  4. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  5. Crystallization of DNA-coated colloids.

    PubMed

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  6. Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe

    NASA Technical Reports Server (NTRS)

    Chodos, A. A.; Devaney, J. R.; Evens, K. C.

    1972-01-01

    Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.

  7. On the analysis of neonatal hamster tooth germs with the photon microprobe at Daresbury, UK

    NASA Astrophysics Data System (ADS)

    Tros, G. H. J.; Van Langevelde, F.; Vis, R. D.

    1990-04-01

    Complementary to the micro-PIXE experiments performed on hamster tooth germs to elucidate the role of fluoride during the growth, the photon microprobe at Daresbury was used to obtain information on the distribution of Zn. The germs of fluoride-administered hamsters, together with a control group, were analyzed with the micro-synchrotron radiation fluorescence method (micro-SXRF).

  8. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    NASA Technical Reports Server (NTRS)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  9. Binodal Colloidal Aggregation Test - 4: Polydispersion

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.

    2008-01-01

    Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  10. Binary Colloidal Alloy Test Conducted on Mir

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and