Science.gov

Sample records for ferromagnetic insulating state

  1. Interface driven states in ferromagnetic topological insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Lauter, Valeria; Katmis, Ferhat; Moodera, Jagadeesh

    The broken time reversal symmetry (TRS) states can be introduced into a topological insulator (TI) material by ferromagnetic ordering at the interface. Recently we demonstrated a fundamental step towards realization of high temperature magnetization in Bi2Se3-EuS TI-FMI heterostructures through observation of magnetic proximity-induced symmetry breaking on the Bi2Se3 surface via the exchange interaction by depositing EuS film on the top of the Bi2Se3 surface.Here we show that we can independently break the TRS on both surfaces of a TI, which brings the long-range induced magnetism on either or both surfaces of a TI in a controlled way. We provide a depth-sensitive data on details of magnetic proximity effect in hidden interfaces by Polarized Neutron Reflectometry. The proximity coupling strength and penetration depth of magnetism into TI are extracted as functions of temperature, magnetic field and magnetic history. The large neutron absorption of Eu atoms serves as the element sensitivity and enables us to identify such magnetism in TI as proximity magnetism. This provides a next step to realization of complex heterostructures of TI and FMI leading to wide applications in TI-based next generation spintronic devices. Supported by U.S. DOE, Office of Science, BES, MIT MRSEC award DMR-0819762, NSF Grant DMR-1207469, ONR Grant N00014-13-1-0301, NSF Grant DMR-1231319.

  2. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-01

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films—Bi2Se3 and (Bi,Sb ) 2Te3 —deposited by molecular beam epitaxy on Y3 Fe5 O12 thin films. By systematically varying the Bi2 Se3 film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λIREE ), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y3 Fe5 O12 /(Bi,Sb ) 2Te3 heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λIREE.

  3. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures.

    PubMed

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-12

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}. PMID:27563980

  4. Noise signatures of metastable resistivity states in ferromagnetic insulating manganite

    SciTech Connect

    Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Markovich, V.; Jung, G.

    2015-07-28

    Pronounced noise signatures enabling one to discriminate metastable resistivity states in La{sub 0.86}Ca{sub 0.14}MnO{sub 3} single crystals have been observed. The normalized noise spectra for metastable resisitivity differ both in shape and magnitude, indicating that the metastable state is associated with transition of the electronic system into another local minimum of the potential landscape. Such scenario is consistent with freezing of the electronic system into a Coulomb glass state.

  5. Hybridization-induced interface states in a topological insulator - ferromagnetic metal bilayer

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Ting; Jadaun, Priyamvada; Fennie, Craig; Kim, Eun-Ah

    Recent experiments demonstrating large spin-torque in topological insulator(TI)/ferromagnetic metal(FM) bilayer, revealing their potential for spintroics applications raised much excitement. However, there is little understanding on the impact of the bilayer formation on the TI surface state and whether it is possible to represent such bilayer using a simple model. Moreover, due to the large charge-transfer from the FM layer, these Dirac surface states are unlikely to be anywhere near the fermi level to contribute to the observed spin-torque. In order to establish a theoretical starting point, we calculated the band structure of a TI-FM bilayer using density functional theory (DFT) and built a simple effective model that captures the essence of the DFT results. Through this double-pronged approach, we find new surface states we dubbed ``reflection states'' to form close to chemical potential due to level-repulsion between the original Dirac surface states and the energetically close-by FM states with the same momentum. Depending on the coupling strength, the 'reflection' states can carry a large weight of the original surface states and thus inherit not only the spatial localization but also the spin-winding of the original Dirac surface state. This work was supported by the Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-1120296).

  6. Magnetotransport Methods to Probe Surface States of Topological Insulator Thin Films and Topological Insulator/Ferromagnet (TI/FM) Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Raj

    confirmed by the cos(theta) dependence of field titled MR measurements on the Bi2Se3 thin films. No switching in the AMR or hysteresis behavior in the MR was observed in control experiments performed on non TI materials with superconducting electrodes and metal electrodes on Bi2Se3 TI films. The growth and characterization of Bi2Se3/Bi 2Se3/La0.70Sr0.30MnO3 (TI/FM), a topological insulator/ferromagnet heterostructure is discussed in the last part of the thesis. We have grown Bi2Se3/Bi2Se 3/La0.70Sr0.30MnO3 (TI/FM) heterostructures by the method of pulsed laser deposition. Bi2Se3/La 0.70Sr0.30MnO3 (LSMO) is a strong ferromagnetic material with Tc ˜ 350 K and Bi2Se3 is the most studied topological insulator. XRD and phi scan measurements of Bi2Se3/La 0.70Sr0.30MnO3 (TI/FM) heterostructure showed that epitaxial thin films of Bi2Se3 were grown on the LSMO template. Strong in-plane magnetization was confirmed by magnetometry measurements of the Bi2Se3/LSMO heterostructure. Magnetotransport measurements showed a distorted weak anti-localization effect with hysteretic behavior due to interface induced ferromagnetism in the Bi2Se 3 TI films.

  7. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  8. Interface induced states at the boundary between a 3D topological insulator Bi2Se3 and a ferromagnetic insulator EuS

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Men`shov, V. N.; Tugushev, V. V.; Chulkov, E. V.

    2015-06-01

    By means of relativistic density functional theory (DFT) calculations we study electron band structure of the topological insulator (TI) Bi2Se3 thin films deposited on the ferromagnetic insulator (FMI) EuS substrate. In the Bi2Se3/EuS heterostructure, the gap opened in the spectrum of the topological state has a hybridization character and is shown to be controlled by the Bi2Se3 film thickness, while magnetic contribution to the gap is negligibly small. We also analyzed the effect of Eu doping on the magnetization of the Bi2Se3 film and demonstrated that the Eu impurity induces magnetic moments on neighboring Se and Bi atoms an order of magnitude larger than the substrate-induced moments. Recent magnetic and magneto-transport measurements in EuS/Bi2Se3 heterostructure are discussed.

  9. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures

    PubMed Central

    Baker, A. A.; Figueroa, A. I.; Collins-McIntyre, L. J.; van der Laan, G.; Hesjedal, T.

    2015-01-01

    Topological insulators (TIs) are enticing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. However, a means to interact with and exploit the topological surface state remains elusive. Here, we report a study of spin pumping at the TI-ferromagnet interface, investigating spin transfer dynamics in a spin-valve like structure using element specific time-resolved x-ray magnetic circular dichroism, and ferromagnetic resonance. Gilbert damping increases approximately linearly with increasing TI thickness, indicating efficient behaviour as a spin sink. However, layer-resolved measurements suggest that a dynamic coupling is limited. These results shed new light on the spin dynamics of this novel material class, and suggest great potential for TIs in spintronic devices, through their novel magnetodynamics that persist even up to room temperature. PMID:25601364

  10. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    PubMed Central

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  11. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator.

    PubMed

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N Phuan

    2016-07-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T 1 ~ 70 mK and T 2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  12. Interfacing Topological Insulators with Ferromagnetism

    NASA Astrophysics Data System (ADS)

    Richardella, Anthony

    In topological insulators, the surface states arise from strong spin-orbit coupling while the degeneracy of the Dirac point is protected by time reversal symmetry. Introducing magnetism in proximity to the surface states breaks this symmetry, destroying the non-trivial Berry phase at the Dirac point and leads to a hedgehog spin texture near the newly opened magnetic gap. This symmetry broken phase leads to a host of unusual physics, such as the quantum anomalous Hall (QAH) effect. In this talk, we discuss the growth by molecular beam epitaxy and characterization of such magnetically interfaced and magnetically doped topological insulators. Such materials often suffer from structural defects and interfacial layers, as well as from degradation during device fabrication. In particular, it is shown that Cr doped (Bi1-x,Sbx)2Te3 can exhibit perfect Hall quantization at low temperatures despite these defects. However, the magnetic ordering of this material was found to be quite unusual, displaying a super-paramagnetic like character, perhaps reflecting this disorder. Such observations highlight the surprising behavior of such broken symmetry phases in topological materials. This work was performed in collaboration with A. Kandala, M. Liu, W. Wang, N.P. Ong, C.-X. Liu, and N. Samarth, in addition to the authors of the references cited. This work was supported by funding from ARO/MURI, DARPA and ONR.

  13. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    NASA Astrophysics Data System (ADS)

    Hajati, Yaser

    2015-04-01

    We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS) of dx2-y2 + is and dx2-y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X) state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP). In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG) by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  14. Metallic ferromagnetism-insulating charge order transition in doped manganites

    NASA Astrophysics Data System (ADS)

    Phan, Van-Nham; Ninh, Quoc-Huy; Tran, Minh-Tien

    2016-04-01

    We show that an interplay of double exchange and impurity randomness can explain the competition between metal-ferromagnetic and insulating charge ordered states in doped manganites. The double exchange is simplified in the Ising type, whereas the randomness is modeled by the Falicov-Kimball binary distribution. The combined model is considered in a framework of dynamical mean-field theory. Using the Kubo-Greenwood formalism, the transport coefficients are explicitly expressed in terms of single-particle spectral functions. Dividing the system into two sublattices we have pointed out a direct calculation to the checkerboard charge order parameter and the magnetizations. Numerical results show us that the checkerboard charge order can settle inside the ferromagnetic state at low temperature. An insulator-metal transition is also found at the point of the checkerboard charge order-ferromagnetic transition.

  15. Insulating room temperature ferromagnetic SrTiO3

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Mitra, Chandrima; Lin, Chungwei; Dhamdere, Ajit; Smith, David; Tsoi, Maxim; Demkov, Alex

    2013-03-01

    We report the epitaxial growth of ferromagnetic insulating material based on SrTiO3 using molecular beam epitaxy (MBE). SrTi1-xCoxO3-δ films (x = 0.1 to 0.5) were grown on Si(100) substrates via a buffer layer of four unit cells of undoped SrTiO3. The crystalline structure was characterized by reflection high energy electron diffraction, x-ray diffraction, and cross-section transmission electron microscopy. Robust room-temperature ferromagnetism is confirmed in samples with composition 30-40% Co. We also performed in situx-ray photoelectron spectroscopy of the Sr, Co, Ti, and O core levels to determine stoichiometry and cobalt oxidation state. In all single phase samples, an oxygen vacancy concentration of approximately equal to the amount of Co substitution was measured (compensated doping). In order to elucidate the origin of ferromagnetism, we also performed first-principles calculations of SrTiO3 simultaneously doped with Co and an oxygen vacancy. We find that such a configuration at concentrations of ~ 25% can result in a ferromagnetic insulating state with high spin Co2+. The ability to integrate an insulating ferromagnet on silicon in epitaxial form may potentially be useful for spin filtering and spin wave applications in the field of spintronics.

  16. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures. PMID:27124772

  17. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  18. Proximity induced ferromagnetism at the interface between a topological insulator (TI) Bi2Se3 and a ferromagnetic insulator (FI)

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Katmis, Ferhat; Assaf, Badih; Heiman, Don; Jarillo-Herrero, Pablo; Moodera, Jagadeesh

    2012-02-01

    The ferromagnetic phase of the surface states of a TI is predicted to carry many exotic properties, for example quantum anomalous Hall effect, magnetic monopole, and magneto-electric effects etc. In our study, we explore this novel phase utilizing the proximity induced exchange splitting to introduce ferromagnetism close to the surface of the Bi2Se3 film. High quality Bi2Se3 thin films were grown using molecular-beam-epitaxy, and in-situ deposited the ferromagnetic insulator (FI) EuS over this film. Magnetization measurements demonstrated a magnetic moment of more than 7μB per Eu^2+ ion (bulk value), and reaching up to 11μB per Eu^2+ ion for 1nm thick EuS film, showing the unambiguous existence of excess ferromagnetism. The transport studies of these TI/FI bilayers unveiled a clear switching behavior of the magnetoresistance in the Bi2Se3 film. There was significant temperature dependence seen in both MR and the coercivity. Due to the near range nature of the exchange interactions, these extra magnetic moments and the MR results are attributed to come from the induced ferromagnetism at the Bi2Se3 surface.

  19. A high-temperature ferromagnetic topological insulating phase by proximity coupling.

    PubMed

    Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S; Assaf, Badih A; Jamer, Michelle E; Wei, Peng; Satpati, Biswarup; Freeland, John W; Eremin, Ilya; Heiman, Don; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S

    2016-05-26

    Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices. Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena. In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends ~2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies. PMID:27225124

  20. A high-temperature ferromagnetic topological insulating phase by proximity coupling

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.; Assaf, Badih A.; Jamer, Michelle E.; Wei, Peng; Satpati, Biswarup; Freeland, John W.; Eremin, Ilya; Heiman, Don; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.

    2016-05-01

    Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices. Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena. In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin–orbit interaction and the spin–momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends ~2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.

  1. Magnetic proximity effect and interlayer exchange coupling of ferromagnetic/topological insulator/ferromagnetic trilayer

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Cui, Wenping; Yu, Jin; Dai, Zuyang; Wang, Zhe; Katmis, Ferhat; Guo, Wanlin; Moodera, Jagadeesh

    2015-01-01

    The magnetic proximity effect between the topological insulator (TI) and ferromagnetic insulator (FMI) is considered to have great potential in spintronics. However, a complete determination of interfacial magnetic structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of the coupling constant. Such an FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of the FMI/TI interface, but also provides insights in designing the magnetic storage devices with ultrafast response.

  2. Probing the Spin Transfer Efficiency at Topological Insulator/Ferromagnetic Insulator Interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Richardella, Anthony; Kempinger, Susan; Pan, Yu; Kamp, Eric; Samarth, Nitin; Liu, Tao; Chang, Houcheng; Wu, Mingzhong; Reifsnyder-Hickey, Danielle; Mkhoyan, Andre

    The development of next-generation spintronics devices has driven extensive studies of spin-charge conversion through measurement of the inverse spin Hall effect (ISHE) and ferromagnetic resonance (FMR) driven spin pumping of pure spin currents in ferromagnet/non-magnet bilayers. Topological insulators (TIs) such as the Bi-chalcogenides are naturally relevant in this context because the inherent spin-momentum ``locking'' in their surface states promises very efficient spin-charge conversion, although the first experimental studies have involved ferromagnetic metals that provide a shunting current path [e.g. Nature, 511,449 (2014)]. To circumvent the current shunting problem, we are growing and characterizing bilayers of TIs and the ferrimagnetic insulator Y3Fe5O12 (YIG). Here, we report measurements of FMR-driven spin pumping in TI/YIG bilayers, showing robust spin pumping signals at room temperature. Analysis of the ISHE voltages and FMR linewidth broadening show that, as in other studies of spin pumping into TIs [Nano Lett., 15 (10) (2015)], the interface condition presents a critical challenge for enhancing the spin conversion efficiency in these devices. Funded by C-SPIN/SRC/DARPA and ONR.

  3. Quantum Corrections Crossover and Ferromagnetism in Magnetic Topological Insulators

    PubMed Central

    Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian

    2013-01-01

    Revelation of emerging exotic states of topological insulators (TIs) for future quantum computing applications relies on breaking time-reversal symmetry and opening a surface energy gap. Here, we report on the transport response of Bi2Te3 TI thin films in the presence of varying Cr dopants. By tracking the magnetoconductance (MC) in a low doping regime we observed a progressive crossover from weak antilocalization (WAL) to weak localization (WL) as the Cr concentration increases. In a high doping regime, however, increasing Cr concentration yields a monotonically enhanced anomalous Hall effect (AHE) accompanied by an increasing carrier density. Our results demonstrate a possibility of manipulating bulk ferromagnetism and quantum transport in magnetic TI, thus providing an alternative way for experimentally realizing exotic quantum states required by spintronic applications. PMID:23928713

  4. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wei

    2011-04-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength χ in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  5. Weak Delocalization in Graphene on a Ferromagnetic Insulating Film.

    PubMed

    Pietrobon, Luca; Fallarino, Lorenzo; Berger, Andreas; Chuvilin, Andrey; Casanova, Fèlix; Hueso, Luis E

    2015-12-16

    Graphene has been predicted to develop a magnetic moment by proximity effect when placed on a ferromagnetic film, a promise that could open exciting possibilities in the fields of spintronics and magnetic data recording. In this work, the interplay between the magnetoresistance of graphene and the magnetization of an underlying ferromagnetic insulating film is studied in detail. A clear correlation between both magnitudes is observed but through a careful modeling of the magnetization and the weak localization measurements, that such correspondence can be explained by the effects of the magnetic stray fields arising from the ferromagnetic insulator is found. The results emphasize the complexity arising at the interface between magnetic and 2D materials. PMID:26505882

  6. Enhanced Magnetic Proximity Effect at Ferromagnetic Insulator / Magnetic Topological Insulator Interface

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Chang, Cui-Zu; Kirby, Brian; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Zhu, Yimei; Heiman, Don; Li, Ju; Moodera, Jagadeesh; MIT Team; NIST Team; Northeastern University Collaboration; Boston College Collaboration; Brookhaven National Lab Collaboration

    Magnetic proximity effect at magnetic insulator / topological insulator interface provides a promising approach to realize low-dissipation quantum devices. However, the commonly used magnetic insulators have in-plane anisotropy hence cannot magnetize topological insulator. Here we report an enhancement of proximity exchange coupling in ferromagnetic insulator / magnetic topological insulator EuS / Sb2-xVxTe3 hybrid heterostructure, where proximity effect is enhanced by a factor of 3 through the Vanadium doping. Moreover, an artificial antiferromagnetic-like structure is created between two strong ferromagnets, which may account for the proximity effect enhancement. The interplay between the proximity effect and doping in hybrid heterostructure provides insights into the engineering of magnetic ordering.

  7. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle θ, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  8. Spin waves in ferromagnetic insulators coupled via a normal metal

    NASA Astrophysics Data System (ADS)

    Skarsvâg, Hans; Kapelrud, André; Brataas, Arne

    2014-09-01

    Herein, we study spin-wave dispersion and dissipation in a ferromagnetic insulator-normal metal-ferromagnetic insulator system. Long-range dynamic coupling because of spin pumping and spin transfer lead to collective magnetic excitations in the two thin-film ferromagnets. In addition, the dynamic dipolar field contributes to the interlayer coupling. By solving the Landau-Lifshitz-Gilbert-Slonczewski equation for macrospin excitations and the exchange-dipole volume as well as surface spin waves, we compute the effect of the dynamic coupling on the resonance frequencies and linewidths of the various modes. The long-wavelength modes may couple acoustically or optically. In the absence of spin-memory loss in the normal metal, the spin-pumping-induced Gilbert damping enhancement of the acoustic mode vanishes, whereas the optical mode acquires a significant Gilbert damping enhancement, comparable to that of a system attached to a perfect spin sink. The dynamic coupling is reduced for short-wavelength spin waves, and there is no synchronization. For intermediate wavelengths, the coupling can be increased by the dipolar field such that the modes in the two ferromagnetic insulators can couple despite possible small frequency asymmetries. The surface waves induced by an easy-axis surface anisotropy exhibit much greater Gilbert damping enhancement. These modes also may acoustically or optically couple, but they are unaffected by thickness asymmetries.

  9. Superfluid spin transport through easy-plane ferromagnetic insulators.

    PubMed

    Takei, So; Tserkovnyak, Yaroslav

    2014-06-01

    Superfluid spin transport-dissipationless transport of spin-is theoretically studied in a ferromagnetic insulator with easy-plane anisotropy. We consider an open geometry where the spin current is injected into the ferromagnet from one side by a metallic reservoir with a nonequilibrium spin accumulation and ejected into another metallic reservoir located downstream. Spin transport is studied using a combination of magnetoelectric circuit theory, Landau-Lifshitz-Gilbert phenomenology, and microscopic linear-response theory. We discuss how spin superfluidity can be probed in a magnetically mediated negative electron-drag experiment. PMID:24949786

  10. Magnetic proximity effect in the three-dimensional topological insulator/ferromagnetic insulator heterostructure

    NASA Astrophysics Data System (ADS)

    Men'shov, V. N.; Tugushev, V. V.; Eremeev, S. V.; Echenique, P. M.; Chulkov, E. V.

    2013-12-01

    We theoretically study the magnetic proximity effect in the three-dimensional (3D) topological insulator/ferromagnetic insulator (TI/FMI) structures in the context of possibility to manage the Dirac helical state in TI. Within a continual approach based on the k·p Hamiltonian, we predict that, when a 3D TI is brought into contact with a 3D FMI, the ordinary bound state arising at the TI/FMI interface becomes spin polarized due to the orbital mixing at the boundary. Whereas the wave function of FMI decays into the TI bulk on the atomic scale, the induced exchange field, which is proportional to the FMI magnetization, builds up at the scale of the penetration depth of the ordinary interface state. Such an exchange field opens the gap at the Dirac point in the energy spectrum of the topological bound state existing on the TI side of the interface. We estimate the dependence of the gap size on the material parameters of the TI/FMI contact.

  11. Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films

    NASA Astrophysics Data System (ADS)

    Chang, CuiZu; Liu, MinHao; Zhang, ZuoCheng; Wang, YaYu; He, Ke; Xue, QiKun

    2016-03-01

    High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2- x Cr x Te3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2- x Cr x Te3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.

  12. Mixed states in ferromagnetic superconductors

    SciTech Connect

    Matsumoto, H.; Teshima, R.; Umezawa, H.; Tachiki, M.

    1983-01-01

    A detailed study of the mixed state of the ferromagnetic rare-earth compounds RRh/sub 4/B/sub 4/, R/sub x/Mo/sub 6/S/sub 8/, and R/sub x/Mo/sub 6/Se/sub 6/ is presented. The saturation effect of the magnetic moments is taken into account. Depending on the parameters, there are many types of phase transitions between the type-II/2, type-II/1, and type-I mixed states and the paramagnetic Meissner state, ferromagnetic Meissner state, spin-periodic Meissner state, and the self-induced vortex state. It is predicted that the magnetization can exhibit a variety of unusual modes.

  13. Topological insulator in junction with ferromagnets: Quantum Hall effects

    NASA Astrophysics Data System (ADS)

    Chudnovskiy, A. L.; Kagalovsky, V.

    2015-06-01

    The ferromagnet-topological insulator-ferromagnet (FM-TI-FM) junction exhibits thermal and electrical quantum Hall effects. The generated Hall voltage and transverse temperature gradient can be controlled by the directions of magnetizations in the FM leads, which inspires the use of FM-TI-FM junctions as electrical and as heat switches in spintronic devices. Thermal and electrical Hall coefficients are calculated as functions of the magnetization directions in ferromagnets and the spin-relaxation time in TI. Both the Hall voltage and the transverse temperature gradient decrease but are not completely suppressed even at very short spin-relaxation times. The Hall coefficients turn out to be independent of the spin-relaxation time for symmetric configuration of FM leads.

  14. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    NASA Astrophysics Data System (ADS)

    Bhobe, P. A.; Kumar, A.; Taguchi, M.; Eguchi, R.; Matsunami, M.; Takata, Y.; Nandy, A. K.; Mahadevan, P.; Sarma, D. D.; Neroni, A.; Şaşıoǧlu, E.; Ležaić, M.; Oura, M.; Senba, Y.; Ohashi, H.; Ishizaka, K.; Okawa, M.; Shin, S.; Tamasaku, K.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Hasegawa, K.; Isobe, M.; Ueda, Y.; Chainani, A.

    2015-10-01

    Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16 , which exhibits a temperature-dependent (T -dependent) paramagnetic-to-ferromagnetic-metal transition at TC=180 K and transforms into a ferromagnetic insulator below TMI=95 K . We observe clear T -dependent dynamic valence (charge) fluctuations from above TC to TMI , which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4 +∶Cr3 + states in a 3 ∶1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T -dependent BCS-type energy gap, with 2 G (0 )˜3.5 (kBTMI)˜35 meV . First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U ˜4 eV , establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d -electrons/Cr ) and the half-metallic ferromagnetism in the t2 g up-spin band favor a low-energy Peierls metal-insulator transition.

  15. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film.

    PubMed

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; Sun, Cheng-Jun; Yang, Ping; Venkatesan, T; Chen, Jingsheng; Zhu, Yimei; Chow, Gan Moog

    2016-07-13

    Interfaces with subtle differences in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 film on SrTiO3 substrate. The variations in the out-of-plane lattice constant and BO6 octahedral rotation across the Pr0.67Sr0.33MnO3/SrTiO3 interface strongly depend on the thickness of the Pr0.67Sr0.33MnO3 film. In the 12 nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition of SrTiO3, apparently due to the enhanced electron-phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30 nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic-polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form. PMID:27276032

  16. Fabrication and magnetic characterization of nanometer-sized ellipses of the ferromagnetic insulator EuS

    NASA Astrophysics Data System (ADS)

    Wolf, M. J.; Sürgers, C.; Fischer, G.; Scherer, T.; Beckmann, D.

    2014-11-01

    The magnetic properties of ferromagnetic elements can be tailored by making use of the shape anisotropy of finite-size systems. One material class of particular interest are ferromagnetic insulators, which can be used as spin filters for spintronics applications. Here we present a way to fabricate nanoscale ellipses of the ferromagnetic insulator europium sulfide (EuS) and investigate their magnetic properties. We observe a distinct influence of the magnetic field orientation on the shape of the magnetization curve. This could be used to separately control the individual magnetic elements of a magnetoresistive device using a ferromagnetic insulator.

  17. Spin pumping from a ferromagnet into a hopping insulator: Role of resonant absorption of magnons

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail; Zhang, Yue; Pesin, Dmytro

    Motivated by recent experiments on spin pumping from a ferromagnet into organic materials in which the charge transport is due to hopping, we study theoretically the generation and propagation of spin current in a hopping insulator. Unlike metals, the spin polarization at the boundary with ferromagnet is created as a result of magnon absorption within pairs of localized states and it spreads following the current-currying resistor network (although the charge current is absent). We consider a classic resonant mechanism of the ac absorption in insulators and adapt it to the absorption of magnons. A strong enhancement of pumping efficiency is predicted when the Zeeman splitting of the localized states in external magnetic field is equal to the frequency of ferromagnetic resonance. Under this condition the absorption of a magnon takes place within individual sites. This work was supported by the NSF MRSEC program at the University of Utah under Grant No. DMR 1121252 (Z.Y. and M.E.R.) and by the NSF Grant No. DMR 1409089 (D.A.P).

  18. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    SciTech Connect

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.

  19. Magnetization in Intrinsic Topological Insulators Induced by Exchange Interaction with Ferromagnetic Insulator

    NASA Astrophysics Data System (ADS)

    Lauter, Valeria; Katmis, Ferhat; Assaf, Badih; Heiman, Don; Moodera, Jagadeesh

    2015-03-01

    We examine the magnetic proximity-induced symmetry breaking via the exchange interaction in heterostructures of the topological insulator (TI) Bi2Se3 and the ferromagnetic insulator (FMI) EuS. We observed the emergence of a ferromagnetic phase in TI with the excess of magnetic moment at the interface using depth and element sensitive Polarized Neutron Reflectometry (PNR). We find that the magnetization, penetrating into the TI originates through exchange interaction, without structural perturbation at the interface. Due to the different interlayer exchange coupling as well as the properties of the bulk and surface magnetizations, we investigated several different heterostructures after cooling in zero field (ZFC) and in an external magnetic field (FC). The significantly enhanced magnetic properties of the heterostructures as revealed by the PNR studies, as well as the temperature and external magnetic field dependence will be presented. This work was supported by the Scientific User Facilities Division, BES, DOE, NSF ECCS-1402738, DMR-1207469, ONR N00014-13-1-0301.

  20. Manipulating Surface-induced Ferromagnetism in Modulation-doped Topological Insulators

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng; He, Liang; Lang, Murong; Fan, Yabin; Jiang, Ying; Wang, Yong; Xiu, Faxian; Wang, Kang; Device Research Laboratory Team; CenterElectron Microscopy; State Key Laboratory of Silicon Materials Collaboration; ECE Department Collaboration

    2013-03-01

    The manipulation of topological surface states is a key to realize applicable devices of topological insulators. In addition to the direct engineering of time-reversal-symmetry protected surface states, recent work suggests that various physical responses can be obtained from surface helical states by integrating additional ferromagnetism or superconductivity to the original topological order. Here, we report the coexistence and tunability of bulk carrier density-independent and surface-mediated electrically controllable ferromagnetisms in modulation-doped Crx(BiySb1-y)2Te3 epitaxial thin films. We demonstrate for the first time a dramatic enhancement of surface-induced magnetization on TI / Cr-TI bilayer devices. The surface magneto-electric effects can be either enhanced significantly or completely switched-off, by tuning the separation of the surface from the magnetic impurities. The electric-field-modulated ferromagnetism in our modulation-doped TI hetero-structures is fundamentally important for the realization of the quantum anomalous Hall Effect as well as the axion electromagnetic dynamics, and thus provides a new approach for spintronics applications. The authors would also like to acknowledge helpful discussions with Dr. Alexei Fedorov and Dr. Mathew Marcus from the Advanced Light Source at Berkeley.

  1. Persistent Ferromagnetism and Topological Phase Transition at the Interface of a Superconductor and a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Zhang, Zhenyu

    2014-12-01

    At the interface of an s -wave superconductor and a three-dimensional topological insulator, Majorana zero modes and Majorana helical states have been proposed to exist respectively around magnetic vortices and geometrical edges. Here we first show that randomly distributed magnetic impurities at such an interface will induce bound states that broaden into impurity bands inside (but near the edges of) the superconducting gap, which remains open unless the impurity concentration is too high. Next we find that an increase in the superconducting gap suppresses both the oscillation magnitude and the period of the Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities. Within a mean-field approximation, the ferromagnetic Curie temperature is found to be essentially independent of the superconducting gap, an intriguing phenomenon due to a compensation effect between the short-range ferromagnetic and long-range antiferromagnetic interactions. The existence of robust superconductivity and persistent ferromagnetism at the interface allows realization of a novel topological phase transition from a nonchiral to a chiral superconducting state at sufficiently low temperatures, providing a new platform for topological quantum computation.

  2. Zero-bias photocurrent in ferromagnetic topological insulator

    PubMed Central

    Ogawa, N.; Yoshimi, R.; Yasuda, K.; Tsukazaki, A.; Kawasaki, M.; Tokura, Y.

    2016-01-01

    Magnetic interactions in topological insulators cause essential modifications in the originally mass-less surface states. They offer a mass gap at the Dirac point and/or largely deform the energy dispersion, providing a new path towards exotic physics and applications to realize dissipation-less electronics. The nonequilibrium electron dynamics at these modified Dirac states unveil additional functions, such as highly efficient photon to spin-current conversion. Here we demonstrate the generation of large zero-bias photocurrent in magnetic topological insulator thin films on mid-infrared photoexcitation, pointing to the controllable band asymmetry in the momentum space. The photocurrent spectra with a maximal response to the intra-Dirac-band excitations can be a sensitive measure for the correlation between Dirac electrons and magnetic moments. PMID:27435028

  3. Zero-bias photocurrent in ferromagnetic topological insulator.

    PubMed

    Ogawa, N; Yoshimi, R; Yasuda, K; Tsukazaki, A; Kawasaki, M; Tokura, Y

    2016-01-01

    Magnetic interactions in topological insulators cause essential modifications in the originally mass-less surface states. They offer a mass gap at the Dirac point and/or largely deform the energy dispersion, providing a new path towards exotic physics and applications to realize dissipation-less electronics. The nonequilibrium electron dynamics at these modified Dirac states unveil additional functions, such as highly efficient photon to spin-current conversion. Here we demonstrate the generation of large zero-bias photocurrent in magnetic topological insulator thin films on mid-infrared photoexcitation, pointing to the controllable band asymmetry in the momentum space. The photocurrent spectra with a maximal response to the intra-Dirac-band excitations can be a sensitive measure for the correlation between Dirac electrons and magnetic moments. PMID:27435028

  4. Josephson effect in spin-singlet superconductor/ferromagnetic insulator/spin-triplet superconductor junctions with helical p-wave states

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jin, B.

    2016-01-01

    We study the Josephson effect in spin-singlet superconductor/helical p-wave superconductor junctions with a ferromagnetic barrier using the quasiclassical Green function method. It is found that both sin ϕ-type and cos ϕ-type current-phase relations always exist, irrespective of the gap symmetries in superconductors. The indispensable condition for the sin ϕ-type and cos ϕ-type current is that the magnetization must have a component parallel to the crystallographic a- or b-axis, which is distinct from the case of the p-wave superconductor described by a d -vector with a uniform direction. The relation between the condition and the symmetries of the gap functions is analysed. We investigate in detail the symmetries and the sign reversal of the Josephson current when the magnetization is rotated.

  5. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO_{3} Thin Films.

    PubMed

    Tsuyama, T; Chakraverty, S; Macke, S; Pontius, N; Schüßler-Langeheine, C; Hwang, H Y; Tokura, Y; Wadati, H

    2016-06-24

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO_{3} thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (∼150  ps) to fast (<70  ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information. PMID:27391735

  6. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Tsuyama, T.; Chakraverty, S.; Macke, S.; Pontius, N.; Schüßler-Langeheine, C.; Hwang, H. Y.; Tokura, Y.; Wadati, H.

    2016-06-01

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2 p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (˜150 ps ) to fast (<70 ps ) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information.

  7. Spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids

    NASA Astrophysics Data System (ADS)

    Althammer, Matthias

    2014-03-01

    Pure spin currents, i.e. the net flow of spin angular momentum without an accompanying charge current, represent a new paradigm for spin transport and spintronics. We have experimentally studied a new type of magnetoresistance effect, which arises from the interaction of charge and spin current flows in ferromagnetic insulator/normal metal hybrid structures. In more detail, we measured the resistance of yttrium iron garnet(YIG)/Pt, YIG/nonferromagnet/Pt, nickel ferrite/Pt, and magnetite/Pt hybrid structures as a function of the magnitude and the orientation of an external magnetic field. The resistance changes observed can be quantitatively traced back to the combined action of spin Hall and inverse spin Hall effect in the Pt metal layer, and are thus termed spin Hall magnetoresistance (SMR) [ 1 , 2 ] . We show that the SMR is qualitatively different from the conventional anisotropic magnetoresistance effect arising in magnetic metals. From the magnetoresistance measurements in YIG/Au/Pt and YIG/Cu/Pt structures and from x-ray magnetic circular dichroism measurements on YIG/Pt heterostructures we exclude a static proximity magnetization in Pt as the origin of the magnetoresistance, in contrast to the mechanism proposed by Huang et al. [ 3 ] . Furthermore, the SMR enables us to quantify the spin Hall angle as a function of temperature in our Pt layers. In addition, we analyze the anomalous Hall type contribution of the SMR to quantify the imaginary part of the spin mixing conductance. Financial support by the DFG via SPP 1538 (project no. GO 944/4) and the Nanoinitiative Munich (NIM) is gratefully acknowledged.

  8. Manipulating surface-related ferromagnetism in modulation-doped topological insulators.

    PubMed

    Kou, Xufeng; He, Liang; Lang, Murong; Fan, Yabin; Wong, Kin; Jiang, Ying; Nie, Tianxiao; Jiang, Wanjun; Upadhyaya, Pramey; Xing, Zhikun; Wang, Yong; Xiu, Faxian; Schwartz, Robert N; Wang, Kang L

    2013-10-01

    A new class of devices based on topological insulators (TI) can be achieved by the direct engineering of the time-reversal-symmetry (TRS) protected surface states. In the meantime, a variety of interesting phenomena are also expected when additional ferromagnetism is introduced to the original topological order. In this Letter, we report the magnetic responses from the magnetically modulation-doped (Bi(z)Sb(1-z))2Te3/Cr(x)(Bi(y)Sb(1-y))2Te3 bilayer films. By electrically tuning the Fermi level across the Dirac point, we show that the top TI surface carriers can effectively mediate the magnetic impurities and generate robust ferromagnetic order. More importantly, such surface magneto-electric effects can be either enhanced or suppressed, depending on the magnetic interaction range inside the TI heterostructures. The manipulation of surface-related ferromagnetism realized in our modulation-doped TI device is important for the realization of TRS-breaking topological physics, and it may also lead to new applications of TI-based multifunctional heterostructures. PMID:24020459

  9. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  10. Evidence for ferromagnetic coupling at the doped topological insulator/ferrimagnetic insulator interface

    NASA Astrophysics Data System (ADS)

    Liu, Wenqing; He, Liang; Zhou, Yan; Murata, Koichi; Onbasli, Mehmet C.; Ross, Caroline A.; Jiang, Ying; Wang, Yong; Xu, Yongbing; Zhang, Rong; Wang, Kang. L.

    2016-05-01

    One of the major obstacles of the magnetic topological insulators (TIs) impeding their practical use is the low Curie temperature (Tc). Very recently, we have demonstrated the enhancement of the magnetic ordering in Cr-doped Bi2Se3 by means of proximity to the high-Tc ferrimagnetic insulator (FMI) Y3Fe5O12 and found a large and rapidly decreasing penetration depth of the proximity effect, suggestive of a different carrier propagation process near the TI surface. Here we further present a study of the interfacial magnetic interaction of this TI/FMI heterostrucutre. The synchrotron-based X-ray magnetic circular dichroism (XMCD) technique was used to probe the nature of the exchange coupling of the Bi2-xCrxSe3/Y3Fe5O12 interface. We found that the Bi2-xCrxSe3 grown on Y3Fe5O12(111) predominately contains Cr3+ cations, and the spin direction of the Cr3+ is aligned parallel to that of tetrahedral Fe3+ of the YIG, revealing a ferromagnetic exchange coupling between the Bi2-xCrxSe3 and the Y3Fe5O12.

  11. Controllable fully spin-polarized transport in a ferromagnetically doped topological insulator junction

    NASA Astrophysics Data System (ADS)

    Zhou, Benliang; Zhou, Benhu; Tang, Dongsheng; Zhou, Guanghui

    2014-04-01

    We investigate the energy band structure and the spin-dependent transport for a normal/ferromagnetic/normal two-dimension topological insulator (TI) junction. By diagonalizing Hamiltonian for the system, the band structure shows that the edge states on two sides are coupled resulting in a gap opening due to the transverse spatial confinement. Further, the exchange field induced by magnetic impurities can also modulate the band structure with two spin degenerate bands splitting. By using the nonequilibrium Green's function method, the dependence of spin-dependent conductance and spin-polarization on the Fermi energy, the exchange field strength and the ferromagnetic TI (FTI) length are also analyzed, respectively. Interestingly, the degenerate conductance plateaus for spin-up and -down channels are broken, and both the conductances are suppressed by magnetic impurities due to the time-reversal symmetry broken and inelastic scattering. The spin-dependent conductance shows different behaviors when the Fermi energy is tuned into different ranges. Moreover, the conductance can be fully spin polarized by tuning the Fermi energy and the exchange field strength, or by tuning the Fermi energy and the FTI length. Consequently, the junction can transform from a quantum spin Hall state to a quantum anomalous Hall state, which is very important to enable dissipationless charge current for designing perfect spin filter.

  12. Controllable fully spin-polarized transport in a ferromagnetically doped topological insulator junction

    SciTech Connect

    Zhou, Benliang; Tang, Dongsheng; Zhou, Guanghui; Zhou, Benhu

    2014-04-21

    We investigate the energy band structure and the spin-dependent transport for a normal/ferromagnetic/normal two-dimension topological insulator (TI) junction. By diagonalizing Hamiltonian for the system, the band structure shows that the edge states on two sides are coupled resulting in a gap opening due to the transverse spatial confinement. Further, the exchange field induced by magnetic impurities can also modulate the band structure with two spin degenerate bands splitting. By using the nonequilibrium Green's function method, the dependence of spin-dependent conductance and spin-polarization on the Fermi energy, the exchange field strength and the ferromagnetic TI (FTI) length are also analyzed, respectively. Interestingly, the degenerate conductance plateaus for spin-up and -down channels are broken, and both the conductances are suppressed by magnetic impurities due to the time-reversal symmetry broken and inelastic scattering. The spin-dependent conductance shows different behaviors when the Fermi energy is tuned into different ranges. Moreover, the conductance can be fully spin polarized by tuning the Fermi energy and the exchange field strength, or by tuning the Fermi energy and the FTI length. Consequently, the junction can transform from a quantum spin Hall state to a quantum anomalous Hall state, which is very important to enable dissipationless charge current for designing perfect spin filter.

  13. Pulsed laser deposition of high-quality thin films of the insulating ferromagnet EuS

    SciTech Connect

    Yang, Qi I.; Zhao, Jinfeng; Risbud, Subhash H.; Zhang, Li; Dolev, Merav; Fried, Alexander D.; Marshall, Ann F.; Kapitulnik, Aharon

    2014-02-24

    High-quality thin films of the ferromagnetic insulator europium(II) sulfide (EuS) were fabricated by pulsed laser deposition on Al{sub 2}O{sub 3} (0001) and Si (100) substrates. A single orientation was obtained with the [100] planes parallel to the substrates, with atomic-scale smoothness indicates a near-ideal surface topography. The films exhibit uniform ferromagnetism below 15.9 K, with a substantial component of the magnetization perpendicular to the plane of the films. Optimization of the growth condition also yielded truly insulating films with immeasurably large resistance. This combination of magnetic and electric properties opens the gate for future devices that require a true ferromagnetic insulator.

  14. Resistance noise in epitaxial thin films of ferromagnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Semonti; Kandala, Abhinav; Richardella, Anthony; Islam, Saurav; Samarth, Nitin; Ghosh, Arindam

    2016-02-01

    We report detailed temperature and gate-voltage dependence of 1/f resistance noise in magnetically doped topological insulators (TI) Crx(Bi,Sb)2-xTe3. The noise is remarkably sensitive to the gate voltage, increasing rapidly as the chemical potential is moved towards the charge neutrality point. Unlike in identically prepared (Bi,Sb)2Te3 films, where mobility-fluctuations in the surface states is the dominant mechanism, the noise in the magnetic Crx(Bi,Sb)2-xTe3 originates from transport in the localized band tail of the bulk valence band. A strong increase in noise with decreasing temperature supports this scenario. At higher temperature (≥10 K), we observed large noise peaks at gate voltage-dependent characteristic temperature scales. In line with similar observations in other non-magnetic TI systems, we attribute these peaks to generation-recombination in the Cr-impurity band.

  15. Electronic structure and magnetocrystalline anisotropy of the Bi2Se3 topological insulator/ferromagnet interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Velev, Julian P.; Tsymbal, Evgeny Y.

    Interesting spin-dependent phenomena are expected to emerge when a topological insulator is interfaced with a magnetic material. In this work the magnetic properties of the interface between a topological insulator Bi2Se3 and ferromagnetic metals (FM) fcc (111) Ni and Co are investigated by first-principles calculations. Different interface terminations are considered, and the most stable interface termination is identified to be an interface Ni (Co) atom located atop the hollow site of the interfacial Se monolayer. We find that the proximity effect induces a small magnetic moment on the interface Se atom (0.028 μB for Ni and 0.023 μB for Co). The surface state in Bi2Se3 disappears due to the strong interface hybridization between FM and Bi2Se3 and metal induced gap states appear in the bandgap region of Bi2Se3. We find that both the Bi2Se3/Ni(111) and Bi2Se3/Co(111) interfaces exhibit an in-plane easy axis with the magnetic anisotropy energy of around 2 erg/cm2 per interface. An interesting feature resulting from our calculations is a non-collinear k-dependent spin texture at the interface which may have important consequences for the spin-dependent transport properties, such as the spin transfer torque.

  16. Duality in topological superconductors and topological ferromagnetic insulators in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Huang, Shin-Ming; Tsai, Wei-Feng; Chung, Chung-Hou; Mou, Chung-Yu

    2016-02-01

    The ground state of the large Hubbard U limit of a honeycomb lattice near half filling is known to be a singlet d +i d -wave superconductor. It is also known that this d +i d superconductor exhibits a chiral p +i p pairing locally at the Dirac cone, characterized by a 2 Z topological invariant. By constructing a dual transformation, we demonstrate that this 2 Z topological superconductor is equivalent to a collection of two topological ferromagnetic insulators. As a result of the duality, the topology of the electronic structures for a d +i d superconductor is controllable via the change of the chemical potential by tuning the gate voltage. In particular, instead of always being a chiral superconductor, we find that the d +i d superconductor undergoes a topological phase transition from a chiral superconductor to a quasihelical superconductor as the gap amplitude or the chemical potential decreases. The quasihelical superconducting phase is found to be characterized by a topological invariant in the pseudospin charge sector with vanishing both the Chern number and the spin Chern number. We further elucidate the topological phase transition by analyzing the relationship between the topological invariant and the rotation symmetry. Due to the angular momentum carried by the gap function and spin-orbit interactions, we show that by placing d +i d superconductors in proximity to ferromagnets, varieties of chiral superconducting phases characterized by higher Chern numbers can be accessed, providing a platform for hosting large numbers of Majorana modes at edges.

  17. Massive Dirac surface states in topological insulator/magnetic insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Qi, Xiao-Liang

    2013-03-01

    We study the behavior of topological surface states in heterostructures formed by a topological insulator (TI) and a magnetic insulator (MI). Several MIs with compatible magnetic structure and relatively good lattice matching with TIs are identified, and the best candidate material is found to be MnSe, an anti-ferromagnetic insulator. We perform first-principles calculation in Bi2Se3/MnSe superlattices and obtain the surface state bandstructure. The magnetic exchange coupling with MnSe induces a gap of 54 meV at the surface states. In addition we tune the distance between Mn ions and TI surface to study the distance dependence of the exchange coupling. Finally, we study the band bending effect at the Bi2Se3/MnSe interface, and propose possible solutions to avoid band bending. We acknowledge funding support from the Defense Advanced Research Projects Agency (DARPA).

  18. Ferromagnetism in the Mott insulator Ba2NaOsO6

    SciTech Connect

    Erickson, A.S.; Misra, S.; Miller, G.J.; Harrison, W.A.; Kim, J.M.; Fisher, I.R.; /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.

    2010-01-15

    Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba{sub 2}NaOsO{sub 6}. These characterize the material as a 5d1 ferromagnetic Mott insulator with an ordered moment of {approx} 0.2 {micro}B per formula unit and T{sub C} = 6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet groundstate anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.

  19. Ferromagnetism on a paramagnetic host background in cobalt-doped Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Lü, Li; Wei, Zhan-Tao; Yang, Xin-Sheng; Zhao, Yong

    2014-07-01

    Cobalt-doped Bi2Se3 topological insulators have been grown though melt-grown reaction. The Bi2Se3 matrix is diamagnetic and doped sample is a superposition of ferromagnetism (FM) and paramagnetism (PM) behavior at low temperature. The values of MSmol, Hc, and Mr increase as the Co concentration increases. Two possible explanations have been proposed for the origin of ferromagnetism in Co-doped Bi2Se3. One is the magnetic ordering from nanoclusters of Co-Se compound in the crystals, and the other is Ruderman—Kittel—Kasuya—Yosida (RKKY) interaction between magnetic impurities.

  20. Electrically controlled spin polarization and selection in a topological insulator sandwiched between ferromagnetic electrodes

    SciTech Connect

    Guo, Junji; Liao, Wenhu Zhao, Heping; Zhou, Guanghui

    2014-01-14

    We theoretically investigate the electrically controllable spin polarization and selective efficiency of the edge state Dirac electron in a two-dimensional topological insulator (TI) sandwiched between ferromagnetic (FM) electrodes by using the method of Keldysh nonequilibrium Green's function. A nearly full spin polarization of the topological edge state with giant inversion of ∼80% is observed, which is much higher than the value previously reported. Moreover, the selective efficiency for spin-up electrons under the modulation of the parallel configuration of FM electrodes has been demonstrated to be larger than 95% for the first time, while that for spin-down electrons in the antiparallel case is higher than 90% in a wide energy range, owing to the inter-edge spin tunneling induced backscattering and spin dephasing effect. The obtained results may provide a deeper understanding of the TI edge states and a valuable guidance to design spin switch and filter with high on-off speed and selective efficiency based on TIs.

  1. Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Zilong; Chang, Cui-Zu; Tang, Chi; Zheng, Jian-Guo; Moodera, Jagadeesh S.; Shi, Jing

    2016-05-01

    The spontaneously broken time reversal symmetry can lead to the formation of an energy gap in the Dirac spectrum of the surface states of a topological insulator (TI) which can consequently give rise to a variety of interesting phenomena potentially useful for spintronics. In this work, we couple a non-magnetic TI to a high Curie temperature TC magnetic insulator to induce strong exchange interaction via the proximity effect. We have successfully grown 5 quintuple layer thick ternary TI (BixSb1-x)2Te3 films on atomically flat yttrium iron garnet (YIG) film with the combination of molecular beam epitaxy and pulsed laser deposition, in which the Fermi level position relative to the Dirac point is varied by controlling the Bi:Sb ratio. The anomalous Hall effect (AHE) and suppressed weak antilocalization (WAL) measured under out of plane magnetic fields reveal that the TI surface in contact with YIG is magnetized. Our high-quality (BixSb1-x)2Te3/Y IG heterostructure provides a tunable system for exploring the quantum anomalous Hall effect (QAHE) at higher temperatures in TI-based spintronic devices.

  2. Evidence of Spin-Injection-Induced Cooper Pair Breaking in Perovskite Ferromagnet-Insulator-Superconductor Heterostructures via Pulsed Current Measurements

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Samoilov, A. V.; Veasquez, R. P.; Li, Y.

    1998-01-01

    The effect of spin-polarized currents on the critical current densities of cuprate superconductors is investigated in perovskite ferromagnet-insulator-superconductor heterostructures with a pulsed current technique.

  3. Growth and characterization of insulating ferromagnetic semiconductor (Al,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Anh, Le Duc; Kaneko, Daiki; Hai, Pham Nam; Tanaka, Masaaki

    2015-12-01

    We investigate the crystal structure, transport, and magnetic properties of Fe-doped ferromagnetic semiconductor (Al1-x,Fex)Sb thin films up to x = 14% grown by molecular beam epitaxy. All the samples show p-type conduction at room temperature and insulating behavior at low temperature. The (Al1-x,Fex)Sb thin films with x ≤ 10% maintain the zinc blende crystal structure of the host material AlSb. The (Al1-x,Fex)Sb thin film with x = 10% shows intrinsic ferromagnetism with a Curie temperature (TC) of 40 K. In the (Al1-x,Fex)Sb thin film with x = 14%, a sudden drop of the hole mobility and TC was observed, which may be due to the microscopic phase separation. The observation of ferromagnetism in (Al,Fe)Sb paves the way to realize a spin-filtering tunnel barrier that is compatible with well-established III-V semiconductor devices.

  4. Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system

    SciTech Connect

    Agrawal, Milan; Serga, Alexander A.; Lauer, Viktor; Papaioannou, Evangelos Th.; Hillebrands, Burkard; Vasyuchka, Vitaliy I.

    2014-09-01

    A microwave technique is employed to simultaneously examine the spin pumping and the spin Seebeck effect processes in a YIG|Pt bilayer system. The experimental results show that for these two processes, the spin current flows in opposite directions. The temporal dynamics of the longitudinal spin Seebeck effect exhibits that the effect depends on the diffusion of bulk thermal-magnons in the thermal gradient in the ferromagnetic-insulator|normal-metal system.

  5. Modulation of pure spin currents with a ferromagnetic insulator

    NASA Astrophysics Data System (ADS)

    Villamor, Estitxu; Isasa, Miren; Vélez, Saül; Bedoya-Pinto, Amilcar; Vavassori, Paolo; Hueso, Luis E.; Bergeret, F. Sebastián; Casanova, Fèlix

    2015-01-01

    We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3F e5O12 (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the nonlocal resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a path towards the development of spin logics.

  6. Ferromagnetic states of p-type silicon doped with Mn

    NASA Astrophysics Data System (ADS)

    Yunusov, Z. A.; Yuldashev, Sh. U.; Igamberdiev, Kh. T.; Kwon, Y. H.; Kang, T. W.; Bakhadyrkhanov, M. K.; Isamov, S. B.; Zikrillaev, N. F.

    2014-05-01

    In this work, the ferromagnetic states of Mn-doped p-type silicon samples were investigated. Two different types of ferromagnetic states have been observed in Si (Mn, B). The samples with a relatively high concentration of Mn revealed a ferromagnetic state with a Curie temperature above room temperature, and that ferromagnetism was due to the Mn x B y ferromagnetic clusters. The samples with a moderate concentration of Mn at low temperatures revealed a ferromagnetic state that was mediated by carriers (holes). The samples demonstrated the anomalous Hall effect at temperatures below 100 K and had a negative magneto-resistivity peak at a temperature close to the Curie temperature. The thermal diffusivity measurements demonstrated the existence of a second-order phase transition in the samples with a moderate Mn concentration. The specific heat's critical exponent α = 0.5, determined from the thermal diffusivity measurements, confirmed the long-range nature of the magnetic exchange interaction in these samples.

  7. Predicted ferromagnetic insulator CrO2/TiO2 superlattice with the modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2015-11-01

    The ferromagnetic insulator plays a major role in high-performance spintronic applications. So, it is very necessary to search for better ferromagnetic insulators that are compatible with current semiconductor technology. We investigate the electronic structures and magnetic properties of the \\text{Cr}{{\\text{O}}2}/\\text{Ti}{{\\text{O}}2} superlattice by using Tran and Blaha’s modified Becke and Johnson exchange potential. The calculated results show that the \\text{Cr}{{\\text{O}}2}/\\text{Ti}{{\\text{O}}2} superlattice is a ferromagnetic insulator, which combines ferromagnetic properties of \\text{Cr}{{\\text{O}}2} with insulating properties of \\text{Ti}{{\\text{O}}2} . The ferromagnetic stability is proven by magnetic energy differences for a series of lattice constants a. It is very interesting that both the majority-spin channel and spin non-conservation gaps firstly decrease with increasing lattice constants a, and then increase. However, the minority-spin channel gap firstly decreases, then remains nearly steady. These trends of gaps can be understood by changes of electronic band structures. If the \\text{Cr}{{\\text{O}}2}/\\text{Ti}{{\\text{O}}2} superlattice was experimentally synthesized with ferromagnetic insulator properties, it should be used to design high-performance spintronic devices, achieving new functionality.

  8. Predicted ferromagnetic insulator CrO2/TiO2 superlattice with the modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2014-11-01

    The ferromagnetic insulator plays a major role in high-performance spintronic applications. So, it is very necessary to search for better ferromagnetic insulators that are compatible with current semiconductor technology. We investigate the electronic structures and magnetic properties of the \\text{Cr}{{\\text{O}}2}/\\text{Ti}{{\\text{O}}2} superlattice by using Tran and Blaha’s modified Becke and Johnson exchange potential. The calculated results show that the \\text{Cr}{{\\text{O}}2}/\\text{Ti}{{\\text{O}}2} superlattice is a ferromagnetic insulator, which combines ferromagnetic properties of \\text{Cr}{{\\text{O}}2} with insulating properties of \\text{Ti}{{\\text{O}}2} . The ferromagnetic stability is proven by magnetic energy differences for a series of lattice constants a. It is very interesting that both the majority-spin channel and spin non-conservation gaps firstly decrease with increasing lattice constants a, and then increase. However, the minority-spin channel gap firstly decreases, then remains nearly steady. These trends of gaps can be understood by changes of electronic band structures. If the \\text{Cr}{{\\text{O}}2}/\\text{Ti}{{\\text{O}}2} superlattice was experimentally synthesized with ferromagnetic insulator properties, it should be used to design high-performance spintronic devices, achieving new functionality.

  9. Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films.

    PubMed

    Mukherjee, Anamitra; Cole, William S; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-12

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable. PMID:25167302

  10. Heavily Cr-doped (Bi,Sb)2Te3 as a ferromagnetic insulator with electrically tunable conductivity

    NASA Astrophysics Data System (ADS)

    Ou, Yunbo; Liu, Chang; Zhang, Liguo; Feng, Yang; Jiang, Gaoyuan; Zhao, Dongyang; Zang, Yunyi; Zhang, Qinghua; Gu, Lin; Wang, Yayu; He, Ke; Ma, Xucun; Xue, Qi-Kun

    2016-08-01

    With molecular beam epitaxy we have grown Cry(BixSb1-x)2-yTe3 thin films with homogeneous distribution of Cr dopants and Curie temperature up to 77 K. The films with Cr concentration y ≥ 0.39 are found to be topologically trivial, highly insulating ferromagnets, whose conductivity can be tuned over two orders of magnitude by gate voltage. The ferromagnetic insulators with electrically tunable conductivity can be used to realize the quantum anomalous Hall effect at higher temperature in topological insulator heterostructures and to develop field effect devices for spintronic applications.

  11. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124

  12. Nonlocal topological magnetoelectric effect by Coulomb interaction at a topological insulator-ferromagnet interface

    NASA Astrophysics Data System (ADS)

    Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle

    2016-01-01

    The interface between a topological insulator and a ferromagnetic insulator exhibits an interesting interplay of topological Dirac electrons and magnetism. As has been shown recently, the breaking of time-reversal invariance by magnetic order generates a Chern-Simons term in the action, that in turn leads to a Berry phase and a magnetoelectric effect of topological origin. Here, we consider the system in the presence of a long-range Coulomb interaction between the Dirac electrons, and find that the magnetoelectric effect of the fluctuating electric field becomes nonlocal. We derive a Landau-Lifshitz equation for the fluctuation-induced magnetization dynamics and the Euler-Lagrange equation of the Coulomb field by explicit one-loop calculations. Via the Coulomb interaction, divergences in the in-plane magnetization affect the magnetization dynamics over large distances in a topologically protected way.

  13. Proximity-Driven Enhanced Magnetic Order at Ferromagnetic-Insulator-Magnetic-Topological-Insulator Interface

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Chang, Cui-Zu; Kirby, Brian. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Zhu, Yimei; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.

    2015-08-01

    Magnetic exchange driven proximity effect at a magnetic-insulator-topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. Here we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS /Sb2 -xVx Te3 hybrid heterostructure, where V doping is used to drive the TI (Sb2 Te3 ) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  14. Unconventional Fermi surface in an insulating state

    SciTech Connect

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  15. Ultra Low Energy Switching of Ferromagnet with Perpendicular Anisotropy on Topological Insulator by Voltage Controlled Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Ghosh, Bahniman; Pramanik, Tanmoy; Dey, Rik; Roy, Urmimala; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We propose and demonstrate, through simulation, an ultra low energy memory device on a topological insulator thin film. The device consists of a thin layer of Fe deposited on the surface of a topological insulator, Bi2Se3. The top surface of Fe is covered with MgO so that the ferromagnetic layer has perpendicular anisotropy. Current is passed on the surface of the topological insulator which switches the magnetization of the Fe ferromagnet through strong exchange interaction, between electrons contributing to the surface current on the Bi2Se3 and the d electrons in the ferromagnet, and spin transfer torque due to shunting of current through the ferromagnet. Voltage controlled magnetic anisotropy enables ultra low energy switching. Our micromagnetic simulations, predict switching time of the order of 2.4 ns and switching energy of the order of 0.16 fJ for a ferromagnetic bit with thermal stability of 90 kBT. The proposed structure combines the advantages of both large spin torque from topological insulators and those of perpendicular anisotropy materials. This work is supported by NRI SWAN and NSF NASCENT Center.

  16. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  17. Electrical control of the ferromagnetism in Sb2-xCrxTe3 magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Chang, Cuicu; Zhang, Jinsong; Li, Kang; Wang, Lili; Chen, Xi; He, Ke; Xue, Qikun; Ma, Xucun; Wang, Yayu; Tsinghua University Team; Institute of Physics, Chinese Academy of Sciences Collaboration

    2013-03-01

    The spin helical Dirac fermions living on the surface of three-dimensional topological insulators (TIs) provide a platform for exploring the coupling between the charge and spin degrees of freedom. In particular, breaking the time reversal symmetry in TIs is expected to create exotic topological magnetoelectric effects. To realize these phenomena and apply them in TI-based spintronic devices, it is desirable to achieve in situ manipulation of the magnetism in TIs via an electrical field. In this talk we present the fabrication and transport studies of Cr doped Sb2Te3 magnetic TI thin films. By applying a gate voltage in a field effect transistor device, we can control the coercive force and Curie temperature. The ferromagnetic order is found to be enhanced when more hole-type carriers are injected into the sample. This trend suggests the itinerant bulk holes in TIs can mediate ferromagnetic ordering of local moments in a similar manner as that in the diluted magnetic semiconductors. The electrical control of the ferromagnetism in TIs demonstrated here paves the road for realizing the TI-based devices.

  18. Growth and characterization of insulating ferromagnetic semiconductor (Al,Fe)Sb

    SciTech Connect

    Anh, Le Duc Kaneko, Daiki; Tanaka, Masaaki; Hai, Pham Nam

    2015-12-07

    We investigate the crystal structure, transport, and magnetic properties of Fe-doped ferromagnetic semiconductor (Al{sub 1−x},Fe{sub x})Sb thin films up to x = 14% grown by molecular beam epitaxy. All the samples show p-type conduction at room temperature and insulating behavior at low temperature. The (Al{sub 1−x},Fe{sub x})Sb thin films with x ≤ 10% maintain the zinc blende crystal structure of the host material AlSb. The (Al{sub 1−x},Fe{sub x})Sb thin film with x = 10% shows intrinsic ferromagnetism with a Curie temperature (T{sub C}) of 40 K. In the (Al{sub 1−x},Fe{sub x})Sb thin film with x = 14%, a sudden drop of the hole mobility and T{sub C} was observed, which may be due to the microscopic phase separation. The observation of ferromagnetism in (Al,Fe)Sb paves the way to realize a spin-filtering tunnel barrier that is compatible with well-established III-V semiconductor devices.

  19. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    SciTech Connect

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; Moodera, Jagadeesh S.; Katmis, Ferhat

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  20. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE PAGESBeta

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; Kirby, B. J.; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Heiman, Don; Li, Ju; et al

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb2–xVxTe3 hybrid heterostructure, where V doping is used to drive the TI (Sb2Te3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magnetic ordering.

  1. Tunneling conductance in topological insulator ferromagnet/d+id mixed wave superconductor junctions

    NASA Astrophysics Data System (ADS)

    Li, Hong; Yang, Xinjian; Jia, Cuiping

    2014-05-01

    The tunneling conductance in a topological insulator (TI) ferromagnet/d+id mixed wave superconductor (FM/d+id S) junction is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is demonstrated that the conductance strongly depends on the magnetic gap, the superconducting pair symmetry orientation, and the magnitude of the ratio of Δ2/Δ1. Here Δ1(Δ2) is the absolute pair potential of d(d) component. For a large magnetic gap, the tunneling spectrum is characterized by a dip structure. When α=0.25π, the conductance dip appears at eV=±Δ2. Thus, the d+id pairing symmetry as well as the magnitude of the gap can be determined from the experiment of scanning tunneling spectroscopy.

  2. Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect.

    SciTech Connect

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Chang, Houchen; Pearson, John E.; Wu, Mingzhong; Ketterson, John B.; Hoffmann, Axel

    2015-11-06

    We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y3Fe5O12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. We find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.

  3. Thermal spin current and spin accumulation at ferromagnetic insulator/nonmagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Shen, Y. H.; Wang, X. S.; Wang, X. R.

    2016-07-01

    Spin current injection and spin accumulation near a ferromagnetic insulator (FI)/nonmagnetic metal (NM) bilayer film under a thermal gradient is investigated theoretically. By using the Fermi golden rule and the Boltzmann equations, we find that FI and NM can exchange spins via interfacial electron-magnon scattering because of the imbalance between magnon emission and absorption caused by either the deviation of the magnon number from the equilibrium Bose-Einstein distribution or the difference in magnon temperature and electron temperature. A temperature gradient in FI and/or a temperature difference across the FI/NM interface generates a spin current which carries angular momenta parallel to the magnetization of FI from the hotter side to the colder one. Interestingly, the spin current induced by a temperature gradient in NM is negligibly small due to the nonmagnetic nature of the nonequilibrium electron distributions. The results agree well with all existing experiments.

  4. Spin thermoelectric efficiency across a normal-metal/ferromagnetic-insulator interface

    NASA Astrophysics Data System (ADS)

    Yan, Yonghong; Wu, Haifei; Jiang, Feng

    2016-08-01

    We investigate the spin and heat transport across a normal-metal/ferromagnetic-insulator (NM/FI) interface based on the s-d exchange model. Under a certain temperature gradient, the heat current carried by magnons partly flows into the metal, and is partly converted to spin power corresponding to spin current. We find that when the magnon dispersion of the FI (such as yttrium iron garnet) is quadratic, the conversion efficiency of heat current to spin power is about ηs ∼ 0.2ηC with ηC being the Carnot efficiency. The corresponding spin thermopower is roughly Ss ∼ 110 μ V / K . The efficiency and the spin thermopower can be enhanced by opening a gap via, for example, introducing a magnetic field. Effects of temperature in the presence of a gap and dimensionality are also discussed briefly.

  5. Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.

    PubMed

    Song, Yang; Dery, Hanan

    2014-07-25

    We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories. PMID:25105652

  6. Magnetotransport in metal/insulating-ferromagnet heterostructures: Spin Hall magnetoresistance or magnetic proximity effect

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Zheng, Jian-Guo; Evans, R. F. L.; Zhou, S. M.

    2015-08-01

    We study the anomalous Hall-like effect (AHLE) and the effective anisotropic magnetoresistance (EAMR) in antiferromagnetic γ -IrMn3/Y3Fe5O12(YIG ) and Pt/YIG heterostructures. For γ -IrMn3/YIG , the EAMR and the AHLE resistivity change sign with temperature due to the competition between the spin Hall magnetoresistance (SMR) and the magnetic proximity effect (MPE) induced by the interfacial antiferromagnetic uncompensated magnetic moment. In contrast, for Pt/YIG, the AHLE resistivity changes sign with temperature whereas no sign change is observed in the EAMR. This is because the MPE and the SMR play a dominant role in the AHLE and the EAMR, respectively. As different types of galvanomagnetic properties, the AHLE and the EAMR have proved vital in disentangling the MPE and the SMR in metal/insulating-ferromagnet heterostructures.

  7. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3

    PubMed Central

    Ye, Mao; Li, Wei; Zhu, Siyuan; Takeda, Yukiharu; Saitoh, Yuji; Wang, Jiajia; Pan, Hong; Nurmamat, Munisa; Sumida, Kazuki; Ji, Fuhao; Liu, Zhen; Yang, Haifeng; Liu, Zhengtai; Shen, Dawei; Kimura, Akio; Qiao, Shan; Xie, Xiaoming

    2015-01-01

    Magnetically doped topological insulators, possessing an energy gap created at the Dirac point through time-reversal-symmetry breaking, are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. Although several candidates of magnetically doped topological insulators were demonstrated to show long-range magnetic order, the realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)2Te3 system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)2Te3 using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial. Our results are important for material engineering in realizing the quantized anomalous Hall effect at higher temperatures. PMID:26582485

  8. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Li, Wei; Zhu, Siyuan; Takeda, Yukiharu; Saitoh, Yuji; Wang, Jiajia; Pan, Hong; Nurmamat, Munisa; Sumida, Kazuki; Ji, Fuhao; Liu, Zhen; Yang, Haifeng; Liu, Zhengtai; Shen, Dawei; Kimura, Akio; Qiao, Shan; Xie, Xiaoming

    2015-11-01

    Magnetically doped topological insulators, possessing an energy gap created at the Dirac point through time-reversal-symmetry breaking, are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. Although several candidates of magnetically doped topological insulators were demonstrated to show long-range magnetic order, the realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)2Te3 system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)2Te3 using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial. Our results are important for material engineering in realizing the quantized anomalous Hall effect at higher temperatures.

  9. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3.

    PubMed

    Ye, Mao; Li, Wei; Zhu, Siyuan; Takeda, Yukiharu; Saitoh, Yuji; Wang, Jiajia; Pan, Hong; Nurmamat, Munisa; Sumida, Kazuki; Ji, Fuhao; Liu, Zhen; Yang, Haifeng; Liu, Zhengtai; Shen, Dawei; Kimura, Akio; Qiao, Shan; Xie, Xiaoming

    2015-01-01

    Magnetically doped topological insulators, possessing an energy gap created at the Dirac point through time-reversal-symmetry breaking, are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. Although several candidates of magnetically doped topological insulators were demonstrated to show long-range magnetic order, the realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)2Te3 system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)2Te3 using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial. Our results are important for material engineering in realizing the quantized anomalous Hall effect at higher temperatures. PMID:26582485

  10. Half-metallic ferromagnetism on surfaces of insulating and antiferromagnetic LaFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Mishra, Rohan; Kim, Young-Min; He, Qian; Kim, Seong-Keun; Chang, Seohyoung; Bhattacharya, Anand; Pantelides, Sokrates T.; Borisevich, Albina

    The surfaces of perovskite transition metal oxides having correlated electrons show novel electronic and magnetic phenomena. In this work, we combine scanning transmission electron microscopy imaging and electron energy loss spectroscopy (EELS) with density functional theory (DFT) calculations to study the surface of (LaFeO3)m /(SrFeO3)n heterostructure thin films. Using EELS, we observe a reduction in the oxidation state of Fe on moving from the bulk to the surface over a length of ~5 unit cells. Simultaneously acquired STEM images allow us to map the associated changes in their structure, such as cation displacements and changes in oxygen polyhedral tilts. DFT calculations coupled with the STEM results show that by reducing the surface layer of a LaFeO3 film such that the surface is terminated with FeO4 tetrahedra instead of the FeO6 octahedra as present in the bulk, it is possible to stabilize an exotic phase where the surface layer displays a half-metallic ferromagnetic behavior, while the bulk remains antiferromagnetic and insulating, similar to the class of topological insulators. The calculations also predict that the magnetism and conductivity at the surface can be controlled by the partial pressure of oxygen.

  11. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3

    DOE PAGESBeta

    McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; Sales, Brian C.

    2014-12-23

    Here, we examine the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (Rmore » $$\\bar{3}$$, BiI3-type) and the high-temperature structure is monoclinic (C2/m, AlCl3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.« less

  12. One-dimensional edge state transport in a topological Kondo insulator

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasuyuki; Syers, Paul; Wang, Xiangfeng; Wang, Renxiong; Paglione, Johnpierre

    2016-03-01

    Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter, including various excitations of collective modes predicted in particle physics, such as Majorana fermions and axions. According to theoretical predictions, a topological insulating state can emerge from not only a weakly interacting system with strong spin-orbit coupling, but also in insulators driven by strong electron correlations. The Kondo insulator compound SmB6 is an ideal candidate for realizing this exotic state of matter, with hybridization between itinerant conduction electrons and localized f-electrons driving an insulating gap and metallic surface states at low temperatures. Here we exploit the existence of surface ferromagnetism in SmB6 to investigate the topological nature of metallic surface states by studying magnetotransport properties at very low temperatures. We find evidence of one-dimensional surface transport with a quantized conductance value of e2/h originating from the chiral edge channels of ferromagnetic domain walls, providing strong evidence that topologically non-trivial surface states exist in SmB6.

  13. Anomalous Hall and spin Hall conductivities in three-dimensional ferromagnetic topological insulator/normal insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Men'shov, Vladimir N.; Tugushev, Victor V.; Chulkov, Evgueni V.

    2016-05-01

    In this letter we theoretically demonstrate how an interface perturbation and size effect can be used to manipulate the transport properties of semiconductor heterostructures composed of a thin film of a three-dimensional topological insulator (TI) doped with magnetic impurities and sandwiched between topologically normal insulators. In the framework of a continual scheme, we argue that electron states of the TI film are strongly dominated by its thickness and magnetization as well as by an interface potential whose variation can lead to the modification of topological properties of the heterostructure. This opens diverse possibilities to efficiently tune intrinsic Hall conductivity in the system. We calculate a phase diagram of the heterostructure, which demonstrates a series of quantum transitions between distinct regimes of conductivity. We derive the anomalous Hall conductivity and the spin Hall conductivity dependences on the chemical potential. Applicability conditions of the used approach are also discussed.

  14. Nonlocal edge state transport in topological insulators

    NASA Astrophysics Data System (ADS)

    Protogenov, Alexander P.; Verbus, Valery A.; Chulkov, Evgueni V.

    2013-11-01

    We use the N-terminal scheme for studying the edge-state transport in two-dimensional topological insulators. We find the universal nonlocal response in the ballistic transport approach. This macroscopic exhibition of the topological order offers different areas for applications.

  15. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet

    PubMed Central

    Lee, Changmin; Katmis, Ferhat; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.; Gedik, Nuh

    2016-01-01

    When a topological insulator (TI) is in contact with a ferromagnet, both time-reversal and inversion symmetries are broken at the interface. An energy gap is formed at the TI surface, and its electrons gain a net magnetic moment through short-range exchange interactions. Magnetic TIs can host various exotic quantum phenomena, such as massive Dirac fermions, Majorana fermions, the quantum anomalous Hall effect and chiral edge currents along the domain boundaries. However, selective measurement of induced magnetism at the buried interface has remained a challenge. Using magnetic second-harmonic generation, we directly probe both the in-plane and out-of-plane magnetizations induced at the interface between the ferromagnetic insulator (FMI) EuS and the three-dimensional TI Bi2Se3. Our findings not only allow characterizing magnetism at the TI–FMI interface but also lay the groundwork for imaging magnetic domains and domain boundaries at the magnetic TI surfaces. PMID:27344976

  16. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet.

    PubMed

    Lee, Changmin; Katmis, Ferhat; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S; Gedik, Nuh

    2016-01-01

    When a topological insulator (TI) is in contact with a ferromagnet, both time-reversal and inversion symmetries are broken at the interface. An energy gap is formed at the TI surface, and its electrons gain a net magnetic moment through short-range exchange interactions. Magnetic TIs can host various exotic quantum phenomena, such as massive Dirac fermions, Majorana fermions, the quantum anomalous Hall effect and chiral edge currents along the domain boundaries. However, selective measurement of induced magnetism at the buried interface has remained a challenge. Using magnetic second-harmonic generation, we directly probe both the in-plane and out-of-plane magnetizations induced at the interface between the ferromagnetic insulator (FMI) EuS and the three-dimensional TI Bi2Se3. Our findings not only allow characterizing magnetism at the TI-FMI interface but also lay the groundwork for imaging magnetic domains and domain boundaries at the magnetic TI surfaces. PMID:27344976

  17. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Katmis, Ferhat; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.; Gedik, Nuh

    2016-06-01

    When a topological insulator (TI) is in contact with a ferromagnet, both time-reversal and inversion symmetries are broken at the interface. An energy gap is formed at the TI surface, and its electrons gain a net magnetic moment through short-range exchange interactions. Magnetic TIs can host various exotic quantum phenomena, such as massive Dirac fermions, Majorana fermions, the quantum anomalous Hall effect and chiral edge currents along the domain boundaries. However, selective measurement of induced magnetism at the buried interface has remained a challenge. Using magnetic second-harmonic generation, we directly probe both the in-plane and out-of-plane magnetizations induced at the interface between the ferromagnetic insulator (FMI) EuS and the three-dimensional TI Bi2Se3. Our findings not only allow characterizing magnetism at the TI-FMI interface but also lay the groundwork for imaging magnetic domains and domain boundaries at the magnetic TI surfaces.

  18. Bound States of a Ferromagnetic Wire in a Superconductor.

    PubMed

    Sau, Jay D; Brydon, P M R

    2015-09-18

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment. PMID:26431011

  19. Bound States of a Ferromagnetic Wire in a Superconductor

    NASA Astrophysics Data System (ADS)

    Sau, Jay D.; Brydon, P. M. R.

    2015-09-01

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.

  20. Enhancing ferromagnetic resonance absorption for very thin insulating magnetic films with spin plasmonics

    SciTech Connect

    Chui, S. T.

    2015-05-14

    We consider enhancing the ferromagnetic resonance (FMR) absorption of very thin insulating magnetic films by placing it on top of a dielectric. We find that the signal is enhanced by at least an order of magnitude due to a new nonreciprocal interface resonance that is a mixture of the magnetic surface plasmon mode and a wave guide mode. This resonance occurs over a wide range of thicknesses of the dielectric that is still much less than the wavelength and is made possible by the negative magnetic susceptibility of the magnetic layer. The line width of absorption is reduced by an order of magnitude less than the Gilbert damping parameter. At some frequency, the group velocity of this resonance is negative. Experimentally, very thin yttrium iron garnet (YIG) films are grown on a Gadolinium Gallium Garnet (GGG) substrate which can be considered the dielectric. Our model applies to experiments performed in the YIG/GGG system. Indeed, our picture resolves the disagreement on the magnitude of the spin diffusion lengths obtained with the FMR and the Brillouin scattering techniques. It also provides for a way to make new adaptive thin film miniaturized photonic nonreciprocal devices with low loss.

  1. Voltage-Controlled Magnetic Anisotropy in Heavy Metal/Ferromagnet/Insulator-Based Structures

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    Electric-field assisted writing of magnetic memory that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers a great potential for high density and low power applications. Magnetoelectric Random Access Memory (MeRAM) has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. In this thesis, different heavy metal|ferromagnet|insulator-based structures are grown by magnetron sputtering to improve the VCMA effect over the traditional Ta|CoFeB|MgO-based structures. We also established an accurate measurement technique for VCMA characterization. An improved thermal annealing stability of VCMA over 400°C is achieved in Mo|CoFeB|MgO-based structures. In addition, we observed a weak CoFeB thickness dependence of both VCMA coefficient and interfacial perpendicular magnetic anisotropy (PMA) in both Ta|CoFeB|MgO and Mo|CoFeB|MgO-based structures.

  2. Observation of large low field magnetoresistance in ramp-edge tunneling junctions based on doped manganite ferromagnetic electrodes and a SrTiO{sub 3} insulator

    SciTech Connect

    Kwon, C.; Jia, Q.X.; Fan, Y.; Hundley, M.F.; Reagor, D.W.; Hawley, M.E.; Peterson, D.E.

    1998-07-01

    The authors report the fabrication of ferromagnet-insulator-ferromagnet junction devices using a ramp-edge geometry based on (La{sub 0.7}Sr{sub 0.3})MnO{sub 3} ferromagnetic electrodes and a SrTiO{sub 3} insulator. The multilayer thin films were deposited using pulsed laser deposition and the devices were patterned using photolithography and ion milling. As expected from the spin-dependent tunneling, the junction magnetoresistance depends on the relative orientation of the magnetization in the electrodes. The maximum junction magnetoresistance (JMR) of 30% is observed below 300 Oe at low temperatures (T < 100 K).

  3. Breaking time reversal symmetry, quantum anomalous Hall state and dissipationless chiral conduction in topological insulators

    NASA Astrophysics Data System (ADS)

    Moodera, Jagadeesh

    Breaking time reversal symmetry (TRS) in a topological insulator (TI) with ferromagnetic perturbation can lead to many exotic quantum phenomena exhibited by Dirac surface states including the quantum anomalous Hall (QAH) effect and dissipationless quantized Hall transport. The realization of the QAH effect in realistic materials requires ferromagnetic insulating materials and topologically non-trivial electronic band structures. In a TI, the ferromagnetic order and TRS breaking is achievable by conventional way, through doping with a magnetic element, or by ferromagnetic proximity coupling. Our experimental studies by both approaches will be discussed. In doped TI van Vleck ferromagnetism was observed. The proximity induced magnetism at the interface was stable, beyond the expected temperature range. We shall describe in a hard ferromagnetic TI system a robust QAH state and dissipationless edge current flow is achieved,1,2 a major step towards dissipationless electronic applications with no external fields, making such devices more amenable for metrology and spintronics applications. Our study of the gate and temperature dependences of local and nonlocal magnetoresistance, may elucidate the causes of the dissipative edge channels and the need for very low temperature to observe QAH. In close collaboration with: CuiZu Chang,2,3 Ferhat Katmis, 1 . 2 , 3 Peng Wei. 1 , 2 , 3 ; From Nuclear Eng. Dept. MIT, M. Li, J. Li; From Penn State U, W-W. Zhao, D. Y. Kim, C-x. Liu, J. K. Jain, M. H. W. Chan; From Oakridge National Lab, V. Lauter; From Northeastern U., B. A. Assaf, M. E. Jamer, D. Heiman; From Argonne Lab, J. W. Freeland; From Ruhr-Universitaet Bochum (Germany), F. S. Nogueira, I. Eremin; From Saha Institute of Nuclear Physics (India), B. Satpati. Work supported by NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF Grant DMR-1231319.

  4. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters.

    PubMed

    Souza, T X R; Macedo, C A

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh's conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  5. Strongly enhanced spin current in topological insulator/ferromagnetic metal heterostructures by spin pumping

    SciTech Connect

    Wu, C. N.; Hung, H. Y.; Lin, H. Y.; Lin, P. H.; Kwo, J. E-mail: raynien@phys.nthu.edu.tw; Lin, Y. H.; Fanchiang, Y. T.; Hong, M. E-mail: raynien@phys.nthu.edu.tw; Lin, J. G.; Lee, S. F.

    2015-05-07

    Spin pumping effect in Bi{sub 2}Se{sub 3}/Fe{sub 3}Si and Fe/Bi{sub 2}Te{sub 3} heterostructures was studied. High quality films of Bi{sub 2}Se{sub 3}(001) on ferromagnetic Fe{sub 3}Si(111) layer and Fe(111) films on Bi{sub 2}Te{sub 3}(001) layer were grown epitaxially by molecular beam epitaxy. Using a microwave cavity source, large voltages due to the Inverse Spin Hall Effect (V{sub ISHE}) were detected in Bi{sub 2}Se{sub 3}(001)/Fe{sub 3}Si(111) bi-layer at room temperature. V{sub ISHE} of up to 63.4 ± 4.0 μV at 100 mW microwave power (P{sub MW}) was observed. In addition, Fe(111)/Bi{sub 2}Te{sub 3}(001) bi-layer also showed a large V{sub ISHE} of 3.0 ± 0.1 μV at P{sub MW} of 25 mW. V{sub ISHE} of both structures showed microwave linear power dependence in accordance with the theoretical model of spin pumping. The spin Hall angle was calculated to be 0.0053 ± 0.002 in Bi{sub 2}Se{sub 3} and was estimated to be 0.0068 ± 0.003 in Bi{sub 2}Te{sub 3}. The charge current density (J{sub c}) of Bi{sub 2}Se{sub 3}/Fe{sub 3}Si and Fe/Bi{sub 2}Te{sub 3} structures are comparable and are about 2–5 times higher than the Fe{sub 3}Si/normal metal and Fe{sub 3}Si/GaAs results. The significant enhancement of spin current in topological insulator/ferromagnetic metal (TI/FM) and FM/TI bilayers is attributed to strong spin-orbit coupling inherent of TIs and demonstrates the high potential of exploiting TI-based structures for spintronic applications.

  6. Corner states in three dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Medhi, Amal; Banerjee, Abhimanyu; Shenoy, Vijay B.

    2013-03-01

    Localized electronic states appear at the corner formed by the intersection of two surfaces of a topological insulator. By constructing a 3D cubic lattice tight binding model that captures both topological and trivial phases, we study how the corner state evolve as the system changes from trivial to topological. We report the dispersion of the corner states and comment on novel physics and applications. AM acknowledges support from CPDF programme at IISc, Bangalore. VBS thanks DST (Ramanujan grant) and DAE (SRC grant) for generous support.

  7. From helical state to chiral state in ferromagnetic bilayer graphene

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhou, Yuan; Zhang, Jun

    2015-06-01

    We explore topological phases in biased ferromagnetic bilayer graphene, formed by bilayer graphene subjected to an external ferromagnetic exchange field, under a magnetic field. The most likely way to obtain a variety of distinct broken symmetry topological phases is proposed by means of ferromagnetic exchange field. Both spin-filtered quantum Hall and quantum spin Hall (QSH) phases are found. Edge modes in this QSH phase carry charge, spin and valley currents. When both time reversal and inversion symmetries are broken, the QSH phase remains robust against weak disorder. Moreover, topological phase transition from helical phase to chiral phase can be driven by simply tuning bias voltage or Fermi energy. A few possible experimental realizations are also discussed.

  8. Itinerant ferromagnetism to insulating spin glass in SrRu{sub 1-x}Cu{sub x}O{sub 3} (0 {<=} x {<=} 0.3)

    SciTech Connect

    Mangalam, R.V.K.; Sundaresan, A.

    2009-03-05

    The ferromagnetic metallic oxide, SrRuO{sub 3} (T{sub C} {approx} 165 K) undergoes structural, magnetic and metal-insulator transitions upon substitution of Cu at the Ru-site. For x = 0.2 in SrRu{sub 1-x}Cu{sub x}O{sub 3}, the structure becomes a tetragonal with the space group I4/mcm and there is a signature of both ferromagnetic (T{sub C} = 65 K) and antiferromagnetic (T{sub N} = 32 K) ordering due to possible magnetic phase separation. The antiferromagnetism arises due to short range ordering of Cu- and Ru-moments. Jahn-Teller distortion of (Ru,Cu)-O{sub 6} octahedra indicates that the copper ions are in 2+ oxidation state with t{sub 2g}{sup 6}e{sub g}{sup 3} electronic configuration. For x {>=} 0.1, narrowing of Ru-4d bandwidth by the substitution of Cu ions results in semiconducting behavior. For x = 0.3, the ac and dc susceptibility measurements indicate a spin glass behavior. The origin of spin glass behavior has been attributed to competing ferromagnetic and antiferromagnetic interactions.

  9. Damping of confined modes in a ferromagnetic thin insulating film: angular momentum transfer across a nanoscale field-defined interface.

    PubMed

    Adur, Rohan; Du, Chunhui; Wang, Hailong; Manuilov, Sergei A; Bhallamudi, Vidya P; Zhang, Chi; Pelekhov, Denis V; Yang, Fengyuan; Hammel, P Chris

    2014-10-24

    We observe a dependence of the damping of a confined mode of precessing ferromagnetic magnetization on the size of the mode. The micron-scale mode is created within an extended, unpatterned yttrium iron garnet film by means of the intense local dipolar field of a micromagnetic tip. We find that the damping of the confined mode scales like the surface-to-volume ratio of the mode, indicating an interfacial damping effect (similar to spin pumping) due to the transfer of angular momentum from the confined mode to the spin sink of ferromagnetic material in the surrounding film. Though unexpected for insulating systems, the measured intralayer spin-mixing conductance g_↑↓=5.3×10(19)  m(-2) demonstrates efficient intralayer angular momentum transfer. PMID:25379927

  10. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet

    DOE PAGESBeta

    Lee, Changmin; Katmis, Ferhat; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.; Gedik, Nuh

    2016-06-27

    When a topological insulator (TI) is in contact with a ferromagnet, both time-reversal and inversion symmetries are broken at the interface. An energy gap is formed at the TI surface, and its electrons gain a net magnetic moment through short-range exchange interactions. Magnetic TIs can host various exotic quantum phenomena, such as massive Dirac fermions, Majorana fermions, the quantum anomalous Hall effect and chiral edge currents along the domain boundaries. However, selective measurement of induced magnetism at the buried interface has remained a challenge. Using magnetic second-harmonic generation, we directly probe both the in-plane and out-of-plane magnetizations induced at themore » interface between the ferromagnetic insulator (FMI) EuS and the three-dimensional TI Bi2Se3. Furthermore, our findings not only allow characterizing magnetism at the TI–FMI interface but also lay the groundwork for imaging magnetic domains and domain boundaries at the magnetic TI surfaces.« less

  11. Reentrant Insulating State in Ultrathin Manganite Films

    SciTech Connect

    Bell, Christopher

    2011-08-11

    The transport and magnetic properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin-films grown by pulsed laser deposition on (LaAlO{sub 3}){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O{sub 3}){sub 0.7} single crystal substrates have been investigated. A systematic series with various thicknesses of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} was used to establish a phase diagram - which showed a clear difference compared to films grown on SrTiO{sub 3} substrates, highlighting the importance of film thickness and substrate strain. At 8 unit cells, the boundary between the metallic and insulating ground states, a second abrupt metal-insulator transition was observed at low temperatures, which could be tuned with by magnetic field, and is interpreted as a signature of electronic phase separation.

  12. Hopf insulators and their topologically protected surface states

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Tao; Deng, Dong-Ling; Shen, Chao; Duan, Lu-Ming

    2014-03-01

    Three-dimensional (3D) topological insulators in general need to be protected by certain kinds of symmetries other than the presumed U(1) charge conservation. A peculiar exception is the Hopf insulators which are 3D topological insulators characterized by an integer Hopf index. To demonstrate the existence and physical relevance of the Hopf insulators, we construct a class of tight-binding model Hamiltonians which realize all kinds of Hopf insulators with arbitrary integer Hopf index. These Hopf insulator phases have topologically protected surface states and we numerically demonstrate the robustness of these topologically protected states under general random perturbations without any symmetry other than the U(1) charge conservation that is implicit in all kinds of topological insulators. NBR-PC (973 Program) 2011CBA00300 (2011CBA00302), the DARPA OLE program, the IARPA MUSIQC program, the ARO and the AFOSR MURI program.

  13. Self-consistent model of spin accumulation magnetoresistance in ferromagnet/insulator/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Tinkey, Holly N.; Li, Pengke

    2014-12-01

    Spin accumulation in a paramagnetic semiconductor due to voltage-biased current tunneling from a polarized ferromagnet is experimentally manifest as a small additional spin-dependent resistance. We describe a rigorous model incorporating the necessary self-consistency between electrochemical potential splitting, spin-dependent injection current, and applied voltage that can be used to simulate this so-called "3 T " signal as a function of temperature, doping, ferromagnet bulk spin polarization, tunnel barrier features and conduction nonlinearity, and junction voltage bias.

  14. Optical Control of Ferromagnetism in a Magnetically-Doped Topological Insulator

    NASA Astrophysics Data System (ADS)

    Yeats, Andrew L.; Mintun, Peter J.; Pan, Yu; Richardella, Anthony; Samarth, Nitin; Awschalom, David D.

    Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate micron-scale optical control of both magnetization and chemical potential in thin films of Cr-doped (Bi,Sb)2Te3. By optically modulating the coercivity of the films, we write and erase arbitrary spatial configurations of their magnetization, which we then image with Kerr microscopy. Additionally, by optically manipulating a space charge layer in the underlying SrTiO3 substrates, we can control the local chemical potential of the films. This allows us to write and erase p- n junctions in the films, which we image with photocurrent microscopy. Both effects persist for > 16 hours. We will present systematic Kerr microscopy, photocurrent microscopy, and electrical transport studies of these materials and various electronic and magnetic structures patterned on them. We will discuss the prospects for using these optical phenomena to study and control the unique physics of TIs, such as edge-state transport in the quantum anomalous Hall regime. This work is supported by ONR, AFOSR-MURI, ARO, and NSF.

  15. Interaction-enhanced magnetically ordered insulating state at the edge of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Kharitonov, Maxim

    2012-10-01

    We develop a theory of the correlated magnetically ordered insulating state at the edge of a two-dimensional topological insulator. We demonstrate that the gapped spin-polarized state, induced by the application of the magnetic field B, is naturally facilitated by electron interactions, which drive the critical easy-plane ferromagnetic correlations in the helical liquid. As the key manifestation, the gap Δ in the spectrum of collective excitations, which carry both spin and charge, is enhanced and exhibits a scaling dependence Δ∝B1/(2-K), controlled by the Luttinger liquid parameter K. This scaling dependence could be probed through the activation behavior G˜(e2/h)exp(-Δ/T) of the longitudinal conductance of a Hall-bar device at lower temperatures, providing a straightforward way to extract the parameter K experimentally. Our findings thus suggest that the signatures of the interaction-driven quantum criticality of the helical liquid could be revealed already in a standard Hall-bar measurement.

  16. Local magnetoresistance through Si and its bias voltage dependence in ferromagnet/MgO/silicon-on-insulator lateral spin valves

    SciTech Connect

    Saito, Y. Tanamoto, T.; Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Hamaya, K.; Tezuka, N.

    2014-05-07

    Local magnetoresistance (MR) through silicon (Si) and its bias voltage (V{sub bias}) (bias current (I{sub bias})) dependence in ferromagnet (FM)/MgO/silicon-on-insulator lateral spin valves are investigated. From the experimental measurements, we find that the local-MR through Si increases with increasing V{sub bias}. This anomalous increase of local-MR as a function of V{sub bias} can be understood by considering the standard drift-diffusion theory improved by taking into account the difference in the interface resistances and first order quantum effect between FM/MgO/Si (source) and Si/MgO/FM (drain) interfaces. The interface resistance dependence on experimentally obtained local-MR ratios also agrees with the improved standard spin diffusion theory. These results indicate that experimentally observed local-MR is certainly related to the spin signal through the Si bulk band.

  17. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3

    SciTech Connect

    McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; Sales, Brian C.

    2014-12-23

    Here, we examine the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (R$\\bar{3}$, BiI3-type) and the high-temperature structure is monoclinic (C2/m, AlCl3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.

  18. State-of-the-Art Review of Retrofitted Wall Insulation.

    SciTech Connect

    Tsongas, George A.

    1985-09-01

    It appeared worthwhile to review the state of the art of retrofitting wall insulation in residences and to summarize its status as an energy conservation measure. The characteristics of the available insulating materials and approaches have been summarized, including their thermal characteristics. The influence of a variety of factors on the thermal performance of wall insulation as well as on the overall building's energy use has been assessed: insulation density, mean temperature, and moisture content; setting and shrinkage; incomplete filling of wall cavities; air convection within the insulation; south wall solar heating; as well as effects of added wall insulation on infiltration heat loss, on use of lowered indoor temperatures, and on decreased overall building energy use due to the reduction of the outdoor balance point temperature (i.e., length of the heating season). Numerous side effects that may result when retrofitting have also been discussed, including moisture damage, fire hazards, corrosion, health hazards, and indoor air pollution. Other concerns have also been addressed, such as quality control and consumer protection, including the need for infrared thermographic inspection programs and a possible derating of the R-value of insulations to account for the substantial influence of typical void areas. The fact that some insulation types seem preferable to others has been noted. The potential market for retrofitting wall insulation has been assessed, and the advisability of utility wall insulation retrofitting programs has been discussed. Finally, recommendations for further study have been presented. 70 refs., 7 figs., 3 tabs.

  19. Observability of surface Andreev bound states in a topological insulator in proximity to an s-wave superconductor.

    PubMed

    Snelder, M; Golubov, A A; Asano, Y; Brinkman, A

    2015-08-12

    To guide experimental work on the search for Majorana zero-energy modes, we calculate the superconducting pairing symmetry of a three-dimensional topological insulator in combination with an s-wave superconductor. We show how the pairing symmetry changes across different topological regimes. We demonstrate that a dominant p-wave pairing relation is not sufficient to realise a Majorana zero-energy mode useful for quantum computation. Our main result is the relation between odd-frequency pairing and Majorana zero energy modes by using Green functions techniques in three-dimensional topological insulators in the so-called Majorana regime. We discuss thereafter how the pairing relations in the different regimes can be observed in the tunneling conductance of an s-wave proximised three-dimensional topological insulator. We discuss the necessity to incorporate a ferromagnetic insulator to localise the zero-energy bound state to the interface as a Majorana mode. PMID:26189576

  20. Heavy fermions. Unconventional Fermi surface in an insulating state.

    PubMed

    Tan, B S; Hsu, Y-T; Zeng, B; Hatnean, M Ciomaga; Harrison, N; Zhu, Z; Hartstein, M; Kiourlappou, M; Srivastava, A; Johannes, M D; Murphy, T P; Park, J-H; Balicas, L; Lonzarich, G G; Balakrishnan, G; Sebastian, Suchitra E

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. The quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior. PMID:26138105

  1. Resonant valence bond states in zinc vacancies induce the ferromagnetism of ZnO

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye

    2016-05-01

    A theoretical model was proposed to investigate the mechanism of ferromagnetism in ZnO as well as to simulate the experimental result that the ferromagnetism can be enhanced by UV irradiation as UV photon energy is equivalent to the band gap. In the model, the spin moments arise from the trapped electrons in oxygen vacancy states and coexist with the itinerant electrons which reside in zinc vacancy states and fall into resonant valence bond states. Charge exchange between the conduction band of ZnO and both vacancy states makes electrons on both vacancy states delocalized and results in a decrease of the ferromagnetism as well.

  2. Transition states of magnetization reversal in ferromagnetic nanorings

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel; Kent, Andrew; Stein, Daniel

    2008-03-01

    Thin ferromagnetic rings are of interest for fundamental studies of magnetization reversal, in part, because they are a rare example of a geometry for which an analytical solution for the rate of thermally induced switching has been determined [1]. The theoretical model predicts the transition state to be either a global magnetization rotation of constant azimuthal angle or a localized fluctuation, denoted the instanton saddle. Numerically we have confirmed that for a range of values of external magnetic field and ring size the instanton saddle is energetically favored [2]. The model takes the annular width to be small compared to the mean radius of the annulus; in which case the main contribution to the magnetization energy comes from the surface magnetostatic energy. We present numerical micromagnetic calculations of the activation energy for thermally induced magnetization reversal for the two different transition states for the case when the annular width is equal in magnitude to the mean radius of the ring. Results of the total and surface magnetostatic energies are compared for different ring sizes. [1] K. Martens, D.L. Stein, A.D. Kent, PRB 73, 054413 (2006) [2] G.D. Chaves-O'Flynn, K. Xiao, D.L. Stein, A. D. Kent, arXiv:0710.2546 (2007)

  3. Ferromagnetism through Cr doping in topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Maurya, V. K.; Patnaik, S.

    2014-04-01

    In this paper we report the preparation of single crystals of Bi2Te3 and Cr0.05(Bi2Te3)0.95 by modified Bridgman method. XRD, EDX and SEM analysis of these crystals have been done for the confirmation of the purity of the samples. Resistivity measurement from 2 K to 300 K has been done by Vander-Pauw method. We observed 20% increase in resistivity after Cr doping. Hall measurement has been done at 2 K for both the samples and we found that after Cr doping charge carrier density has increased but mobility is decreased by a factor of ˜7.9. We also provide evidence for ferromagnetism with Cr doping onto Bi2Te3.

  4. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO3.

    PubMed

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; Feng, Xiao; Ou, Yunbo; He, Ke; Xue, Qi-Kun

    2015-01-01

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb)2Te3 (CBST) films grown on SrTiO3 (1 1 1) substrates with and without a Te capping layer. We find that both the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures. PMID:26123202

  5. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO3

    PubMed Central

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; Feng, Xiao; Ou, Yunbo; He, Ke; Xue, Qi-Kun

    2015-01-01

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb)2Te3 (CBST) films grown on SrTiO3 (1 1 1) substrates with and without a Te capping layer. We find that both the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures. PMID:26123202

  6. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; Feng, Xiao; Ou, Yunbo; He, Ke; Xue, Qi-Kun

    2015-06-01

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb)2Te3 (CBST) films grown on SrTiO3 (1 1 1) substrates with and without a Te capping layer. We find that both the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.

  7. Nature of Pressure-induced Insulating States in Simple Metals

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Hemley, Russell

    As experimentally established, all the alkali metals and heavy alkaline earth metals (Ca, Sr and Ba) become progressively less conductive on compression, at least up to some critical limit over a broad pressure range. Of these metals, Li and Na clearly undergo pressure-induced metal-insulator transitions, which may also be called reverse Mott transitions. Here, using group theory arguments and first-principles calculations, we show that such transitions can be understood in terms of band representations introduced by Zak. The valence bands in the insulating states are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multi-center chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of semimetallic phases with flat surface states. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been identified or reported (e.g., Li, Na, and Ca). This research was supported by EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DESC0001057.

  8. Cobaltites: Emergence of magnetism and metallicity from a non-magnetic, insulating state

    NASA Astrophysics Data System (ADS)

    Phelan, Daniel Patrick

    In cobalt oxides, the energy splitting between different spin-states of Co3+ ions can be quite small, which means that more than one spin-state can simultaneously co-exist in the same compound and that transitions between different spin-state can occur. This makes understanding the magnetic coupling between cobalt sites rather complex. Such is the case for pure and hole-doped LaCoO3. In its ground state, LaCoO3 is a non-magnetic insulator. The lack of a magnetic moment, is due to the fact that the ground spin-state of Co3+ ions is a low-spin, S=0, state. However, since a spin-state that has a net spin is on the order of 100 K higher in energy than the ground spin-state, a magnetic moment appears as the temperature is increased, and the system behaves as a paramagnet above 100 K. The higher-energy spin-state is either an intermediate-spin (S=1) state of a high-spin (S=2) state - an issue that has been debated for quite some time. When holes are chemically doped into the system, as in La1- xSrxCoO3 (LSCO), the non-magnetic, insulating ground state evolves into a ferromagnetic, metallic state. This evolution is complicated because it occurs due to the convoluted effects of Co4+ ions being doped into the system and the fact that the ground spin-state of Co3+ ions changes as a function of the hole concentration. In this dissertation, the magnetic transitions in pure and hole-doped LaCoO3 are investigated by neutron scattering techniques. In the pure compound, it is shown that thermally excited spins have both fluctuating ferromagnetic and antiferro-magnetic spin-correlations, which is suggested to result from a dynamic orbital ordering of the occupied e. g orbitals of the intermediate-spin state. It is also shown that the thermally excited spin-state is split in energy by 0.6 meV. In the hole-doped compound, LSCO, it is shown that the evolution into a metallic ferromagnet occurs by the percolation of isotropic ferromagnetic droplets. It is also shown that incommensurate

  9. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    NASA Astrophysics Data System (ADS)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  10. Spin-to-charge conversion in lateral and vertical topological-insulator/ferromagnet heterostructures with microwave-driven precessing magnetization

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Nagaosa, Naoto; Nikolić, Branislav K.

    2014-09-01

    Using the charge-conserving Floquet-Green function approach to open quantum systems driven by an external time-periodic potential, we analyze how spin current pumped by the precessing magnetization of a ferromagnetic (F) layer is injected laterally into the interface with strong spin-orbit coupling (SOC) and converted into charge current flowing in the same direction. In the case of a metallic interface with the Rashba SOC used in recent experiments [J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané, J. M. De Teresa, C. Magén, and A. Fert, Nat. Commun. 4, 2944 (2013), 10.1038/ncomms3944], both spin ISα and charge I current flow within the interface where I /ISα≃ 2-8% (depending on the precession cone angle), while for a F/topological-insulator (F/TI) interface employed in related experiments [Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, arXiv:1312.7091] the conversion efficiency is greatly enhanced (I /ISα≃ 40-60%) due to perfect spin-momentum locking on the surface of a TI. The spin-to-charge conversion occurs also when spin current is pumped vertically through the F/TI interface with smaller efficiency (I /ISα˜0.001%), but with the charge current signal being sensitive to whether the Dirac fermions at the interface are massive or massless.

  11. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    DOE PAGESBeta

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; et al

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themore » ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.« less

  12. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    PubMed

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-01

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential. PMID:25605947

  13. In-surface confinement of topological insulator nanowire surface states

    NASA Astrophysics Data System (ADS)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-01

    The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  14. In-surface confinement of topological insulator nanowire surface states

    SciTech Connect

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-21

    The bandstructures of [110] and [001] Bi{sub 2}Te{sub 3} nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  15. Scanning Tunneling Spectroscopy Investigations of Surface States in Three Dimensional Topological Insulators and Topological Crystalline Insulators

    NASA Astrophysics Data System (ADS)

    Okada, Yoshinori

    2014-03-01

    Three dimensional topological insulators (TIs) are a new class of material possessing topologically protected spin-polarized Dirac fermions on their surface. This new material has gathered much attention because of its great potential for realizing novel phenomena that are important for both fundamentals and applications. 3D topological insulators have been extensively probed by surface sensitive tools such as ARPES and spectroscopic imaging scanning tunneling microscopy (STM). In this talk, we will especially focus on STM measurements of Pb1-xSnxSe. This material belongs to a recently discovered new category of topological insulators called topological crystalline insulators (TCIs). In TCIs, topology and crystal symmetry intertwine to create surface states with a unique set of characteristics different from conventional 3D TIs. We have discovered broken mirror symmetry driven states that coexist with massless Dirac electrons in different regions of momentum space. Our findings experimentally demonstrate the unique tunability of surface Dirac electrons which is promising for the future realization of novel electronic states within TCIs. Current address: WPI-AIMR Tohoku University, Japan.

  16. Edge-states ferromagnetism of WS{sub 2} nanosheets

    SciTech Connect

    Huo, Nengjie; Li, Yan; Kang, Jun; Li, Renxiong; Xia, Qinglin; Li, Jingbo

    2014-05-19

    The multilayer WS{sub 2} nanosheets prepared from WO{sub 3} nanowires exhibit strong ferromagnetic behavior with saturation magnetization (M{sub S}) of 0.0058 emu/g and coercive field (H{sub C}) of 92 Oe at room temperature. By decreasing the temperature down to 3 K the H{sub c} is increased up to 1115 Oe, revealing the existence of long-range magnetic ordering. Density functional theory spin-polarized calculations predict that strong ferromagnetic moments in WS{sub 2} nanosheets are attributed to the zigzag edge sulphur S and tungsten W atoms. Our findings also suggest that the WS{sub 2} nanosheets with a high density of edge spins could be used to fabricate spintronics devices, which are circuits utilizing the spin of the electron to process and store information.

  17. Twofold spin-triplet pairing states and tunneling conductance in ferromagnet/ferromagnet/iron pnictide superconductor heterojunctions

    SciTech Connect

    Yang, X.; Tao, Y.C.; Dong, Z.C.; Hu, J.G.

    2013-06-15

    By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energies are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional s-wave SC are also presented, which may help with experimentally probing and identifying the antiphase s-wave pairing symmetry in the iron-based SC. -- Highlights: •An eight-component Bogoliubov–de Gennes (BDG) equation. •Twofold novel ARs and twofold usual ARs. •Conversions of conductance between the zero-bias peak and valley at zero energy. •Conversions of conductance between peaks and dips at two gap energies. •The importance of the interband coupling strength in the SC.

  18. Exchange bias and coercivity for ferromagnets coupled to the domain state and spin glass state

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaozhi; Mao, Zhongquan; Chen, Xi

    2016-05-01

    The exchange bias (EB) effect for systems with a ferromagnetic (FM) layer coupled to bond-diluted pinning layers has been investigated by Monte Carlo simulations. Two bond dilution concentrations are chosen to obtain two kinds of pinning layers: the antiferromagnetic domain state (DS) and the spin glass (SG) state. It is found that when coupled to the more disordered SG state, the ferromagnet shows enhanced EB with higher coercivity due to larger amounts of both frozen and reversible spins at the pinning interface. Spin configurations of the FM/DS interface layer reveal that reversible spins are mostly found in domain boundaries and small domains, while most spins in large domains maintain antiferromagnetic coupling and contribute to the EB effect. The coercivity is linear to the amount of interface reversible spins, but with different slopes in the temperature ranges above or below the blocking temperature t B. This bimodal temperature-dependent coercivity indicates a sudden change in macroscopic interface coupling at the temperature t B.

  19. Insulation.

    ERIC Educational Resources Information Center

    Rhea, Dennis

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with insulation. Its objective is for the student to be able to determine insulation needs of new or existing structures, select type to use, use installation techniques, calculate costs, and apply safety factors. Some topics covered…

  20. Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet / Insulator Interfaces

    SciTech Connect

    Voyles, Paul

    2013-07-24

    We report investigations of the synthesis, structure, and properties of new materials for spintronic applications integrated onto silicon substrates. Our primary focus is materials with very high, negative, intrinsic spin polarization of the density of states at the Fermi level. We have developed a new synthesis method for Fe3O4 thin films through selective oxidation of Fe, resulting in smooth, low-defect density films. We have synthesized Fe4N films and shown that they preferentially oxidize to Fe3O4. When integrated into magnetic tunnel junctions consisting of Fe4N / AlOx / Fe, oxidation at the Fe4N / AlOx interface creates Fe3O4, leading to negative tunneling magnetoresistance (TMR). Oxidation of Fe in nominally symmetric CoFe / AlOx / CoFe also produces Fe3O4 and negative TMR under selected oxidation conditions.

  1. Metal-insulator transition near a superconducting state

    NASA Astrophysics Data System (ADS)

    Kaveh, M.; Mott, N. F.

    1992-03-01

    We show that when the metal-insulation transition occurs near a superconducting state it results in a different critical behavior from that of amorphous metals or uncompensated doped semiconductors. This difference results from the enhancement of the effective electron-electron interaction caused by fluctuations to the superconducting state. This explains the recent experiments of Micklitz and co-workers on amorphous superconducting mixtures Ga-Ar and Bi-Kr.

  2. Ferromagnetic superexchange in insulating Cr2MoO6 by controlling orbital hybridization

    DOE PAGESBeta

    Zhu, M.; Do, D.; Dela Cruz, Clarina R.; Dun, Zhiling; Cheng, J. -G.; Goto, H.; Uwatoko, Yoshiya; Zou, T.; Zhou, Haidon D.; Mahanti, Subhendra D.; et al

    2015-09-11

    We report the magnetic and electronic structures of the newly synthesized inverse-trirutile compound Cr2MoO6. Despite the same crystal symmetry and similar bond-lengths and bond-angles to Cr2TeO6, Cr2MoO6 possesses a magnetic structure of the Cr2MoO6 type, different from that seen in Cr2TeO6. Ab-initio electronic structure calculations show that the sign and strength of the Cr-O-Cr exchange coupling is strongly influenced by the hybridization between Mo 4d and O 2p orbitals. This result further substantiates our recently proposed mechanism for tuning the exchange interaction between two magnetic atoms by modifying the electronic states of the non-magnetic atoms in the exchange path throughmore » orbital hybridization. This approach is fundamentally different from the conventional methods of controlling the exchange interaction by either carrier injection or through structural distortions.« less

  3. Bloch Walls and Macroscopic String States in Bethe's Solution of the Heisenberg Ferromagnetic Linear Chain

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Sriram Shastry, B.

    2000-09-01

    We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1D for any wave vector. These turn out to be string solutions of Bethe's equations with a macroscopic number of particles in them. They are identified as generalized quantum Bloch wall states, and a simple physical picture is provided for the same.

  4. Ferromagnetism and topological surface states of manganese doped Bi{sub 2}Te{sub 3}: Insights from density-functional calculations

    SciTech Connect

    Li, Yuanchang; Zou, Xiaolong; Li, Jia; Zhou, Gang

    2014-03-28

    Based on first-principles calculations, the electronic, magnetic, and topological characters of manganese (Mn) doped topological insulator Bi{sub 2}Te{sub 3} were investigated. The Mn substitutionally doped Bi{sub 2}Te{sub 3}, where Mn atoms tend to be uniformly distributed, was shown to be p-type ferromagnetic, arising from hole-mediated Ruderman-Kittel-Kasuya-Yosida interaction. Mn doping leads to an intrinsic band splitting at Γ point, which is substantially different from that of nonmagnetic dopant. The topological surface state of Bi{sub 2}Te{sub 3} is indeed gapped by Mn doping; however, the bulk conductance limits the appearance of an insulating state. Moreover, the n-type doping behavior of Bi{sub 2}Te{sub 3} is derived from Mn entering into the van der Waals gap of Bi{sub 2}Te{sub 3}.

  5. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  6. Stability of composite fermion states in Chern insulators

    NASA Astrophysics Data System (ADS)

    Potasz, Pawel; Jaworowski, Blazej

    We analyze an existence of composite fermion (CF) states in fractional Chern insulators (FCI) using exact diagonalization. The consider Chern insulator models for spinless fermions exhibit a signature of CF states at 2/5 and 3/7 filling factors. Evidences of fractional quantum Hall type phases for a region in a parameter space with larger energy gap are shown by looking at momenta of the n-fold degenerate ground state, spectral flow, quasihole excitation spectrum, and entanglement spectra. We analyze stability of phases as a function of model parameters showing strong correlation with flatness of Berry curvature. The authors acknowledges partial financial support from the sources Granted for science development in the years 2013-2016, Grant No. IP2012 007372.

  7. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces.

    PubMed

    Di Bernardo, A; Diesch, S; Gu, Y; Linder, J; Divitini, G; Ducati, C; Scheer, E; Blamire, M G; Robinson, J W A

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces. PMID:26329811

  8. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces

    PubMed Central

    Di Bernardo, A.; Diesch, S.; Gu, Y.; Linder, J.; Divitini, G.; Ducati, C.; Scheer, E.; Blamire, M.G.; Robinson, J.W.A.

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces. PMID:26329811

  9. Surface state photoelectrons in topological insulators: Green's function approach.

    PubMed

    Schmeltzer, D; Saxena, A

    2015-12-01

    We compute the photoemission intensity and polarization for the surface states in topological insulators. Due to the chirality and linear energy dispersion the effective electron-photon coupling is normalized by the tunneling amplitude (τ) into the vacuum. We investigate a chiral Dirac Hamiltonian for different cases: helical, Zeeman and warping, allowing us to study spin textures. Using the Green's function formalism we obtain exact results for the emitted photoelectrons to second order in the laser field. The number of emitted photoelectrons is sensitive to the laser coherent state intensity whereas the photoelectron polarization is sensitive to the surface topology of electronic states and incoming photon polarization. PMID:26565417

  10. Gate control of ferromagnetic insulating phase in lightly-doped La0.875Sr0.125MnO3-δ film

    NASA Astrophysics Data System (ADS)

    Kuang, H.; Wang, J.; Hu, F. X.; Zhao, Y. Y.; Liu, Y.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-02-01

    The electric field effect on the lightly doped La0.875Sr0.125MnO3-δ (LSMO) thin film in electric double-layer transistors was investigated by measuring transport properties of the film under various gate voltages. It was found that the positive gate bias leads to an increase of the charge-orbital ordering (COO) transition temperature and a decrease of the Curie temperature TC, indicating the suppression of ferromagnetic metal (FMM) phases and preference of COO/ferromagnetic insulator (FMI) with the hole depletion by gate bias. Such different electric field effects can be ascribed to the weakening of the ferromagnetic interaction and enhancement of Jahn-Teller (JT) distortion caused by the transformation of JT inactive Mn4+-ions to JT active Mn3+-ions. Moreover, a step-like increase in the high temperature region of the ρ-T curve, which is related to the transition of cooperative JT distortion, was found to develop with increasing the positive bias, indicating that the cooperative JT distorted phase is stabilized by the depletion of holes in LSMO film. These results demonstrate that the modulation of holes via electric field strongly affects the balance between energy gains of different interactions and thus produce different effects on the competing FMI, FMM, and cooperative JT distorted phases in LSMO film.

  11. Emergence of magnetic topological states in topological insulators doped with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Hong-Son; Le, Duc-Anh

    2016-04-01

    Emergence of the topological invariant and the magnetic moment in topological insulators doped with magnetic impurities is studied based on a mutual cooperation between the spin-orbit coupling of electrons and the spin exchange of these electrons with magnetic impurity moments. The mutual cooperation is realized based on the Kane-Mele model in the presence of magnetic impurities. The topological invariants and the spontaneous magnetization are self-consistently determined within the dynamical mean-field theory. We find different magnetic topological phase transitions, depending on the electron filling. At half filling an antiferromagnetic topological insulator, which exhibits the quantum spin Hall effect, exists in the phase region between the paramagnetic topological insulator and the trivially topological antiferromagnetic insulator. At quarter and three-quarter fillings, a ferromagnetic topological insulator, which exhibits the quantum anomalous Hall effect, occurs in the strong spin-exchange regime.

  12. Metal-to-insulator switching in quantum anomalous Hall states

    PubMed Central

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei-Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou-Cheng; Wang, Kang L.

    2015-01-01

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications. PMID:26442609

  13. Metal-to-insulator switching in quantum anomalous Hall states

    SciTech Connect

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

  14. Metal-to-insulator switching in quantum anomalous Hall states

    DOE PAGESBeta

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less

  15. Metal-to-insulator switching in quantum anomalous Hall states

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei-Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou-Cheng; Wang, Kang L.

    2015-10-01

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.

  16. Metal-to-insulator switching in quantum anomalous Hall states

    NASA Astrophysics Data System (ADS)

    Pan, Lei; Kou, Xufeng; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Shao, Qiming; Zhang, Shou Cheng; Wang, Kang Lung

    Quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films as a form of dissipationless transport without external magnetic field. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2 Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. The universal QAHE phase diagram is further confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different.

  17. Quantum tunneling between Chern states in a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. P.

    The tunneling of a macroscopic object through a barrier is a quintessentially quantum phenomenon important in field theory, low-temperature physics and quantum computing. Progress has been achieved in experiments on Josephson junctions, molecular magnets, and domain wall dynamics. However, a key feature - rapid expansion of the true vacuum triggered by a tunneling event is virtually unexplored. Here we report the detection of large jumps in the Hall resistance Ryx in a magnetized topological insulator which result from tunneling out of a metastable topological state. In the TI, the conducting electrons are confined to surface Dirac states. When magnetized, the TI enters the quantum anomalous Hall insulator state in which Ryx is strictly quantized. If the magnetic field is reversed, the sample is trapped in a metastable state. We find that, below 145 mK, Ryx exhibits abrupt jumps as large as one quantum unit on time-scales under 1 ms. If the temperature is raised, the escape rate is suppressed consistent with tunneling in the presence of dissipation. The jumps involve expansion of the thermodynamically stable state bubble over macroscopic lengths, but dissipation limits the final size. The results uncover novel effects of dissipation on macroscopic tunneling. We acknowledge support from DARPA SPAWAR (N66001-11-1-4110) and the Gordon and Betty Moore Foundations (GBMF4539).

  18. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    SciTech Connect

    Fridman, Yu. A. Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-12-15

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  19. Topological interface states in multiscale spoof-insulator-spoof waveguides.

    PubMed

    Meng, Yan; Xiang, Hong; Zhang, Ruo-Yang; Wu, Xiaoxiao; Han, Dezhuan; Chan, C T; Wen, Weijia

    2016-08-15

    The spoof-insulator-spoof (SIS) structure can serve as a waveguide for spoof surface plasmon polaritons (spoof SPPs). If a periodic geometry modulation in the wavelength scale is introduced to the SIS waveguide, this multiscale SIS (MSIS) waveguide possesses band gaps for spoof SPPs analogous to the band gaps in a photonic crystal. Inspired by the topological interface states found in photonic crystals, we construct an interface by connecting two MSIS waveguides with different topological properties (inverted Zak phases of bulk bands). The topological interface states in the MSIS waveguides are observed experimentally. The measured decay lengths of the interface states agree excellently with the numerical results. These localized interface states may find potential applications in miniaturized microwave devices. PMID:27519066

  20. Enhanced ferromagnetic and metal insulator transition in Sm0.55Sr0.45MnO3 thin films: Role of oxygen vacancy induced quenched disorder

    NASA Astrophysics Data System (ADS)

    Srivastava, M. K.; Siwach, P. K.; Kaur, A.; Singh, H. K.

    2010-11-01

    Effect of quenched disorder (QD) caused by oxygen vacancy (OV) and substrate induced inhomogeneous compressive strain, on the magnetic and transport properties of oriented polycrystalline Sm0.55Sr0.45MnO3 thin films is investigated. QD is related intimately to the ordering/disordering of the OVs and controls the paramagnetic-ferromagnetic/insulator-metal transition. OV ordered films show enhanced TC/TIM˜165 K, which is depressed by oxygen annealing. OV disordering realized by quenching reduces TC/TIM. The first order IM transition observed in SSMO single crystals is transformed into nonhysteretic and continuous one in the OV ordered films. QD appears to be diluted by OV disorder/annihilation and results in stronger carrier localization.

  1. Gapped Surface States in a Strong-Topological-Insulator Material

    NASA Astrophysics Data System (ADS)

    Weber, A. P.; Gibson, Q. D.; Ji, Huiwen; Caruso, A. N.; Fedorov, A. V.; Cava, R. J.; Valla, T.

    2015-06-01

    A three-dimensional strong-topological insulator or semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi4Se3. Angle-resolved photoemission spectroscopy and ab initio calculations reveal partial gapping of surface bands on the Bi2Se3 termination of Bi4Se3(111 ), where an 85 meV gap along Γ ¯K ¯ closes to zero toward the mirror-invariant Γ ¯M ¯ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin helicity.

  2. Fractional charge and spin states in topological insulator constrictions

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2015-09-01

    We theoretically investigate the properties of two-dimensional topological insulator constrictions both in the integer and fractional regimes. In the presence of a perpendicular magnetic field, the constriction functions as a spin filter with near-perfect efficiency and can be switched by electric fields only. Domain walls between different topological phases can be created in the constriction as an interface between tunneling, magnetic fields, charge density wave, or electron-electron interaction dominated regions. These domain walls host non-Abelian bound states with fractional charge and spin and result in degenerate ground states with parafermions. If a proximity gap is induced bound states give rise to an exotic Josephson current with 8 π periodicity.

  3. Tunneling density of states as a function of thickness in superconductor/ strong ferromagnet bilayers

    SciTech Connect

    Reymond, S.

    2010-04-29

    We have made an experimental study of the tunneling density of states (DOS) in strong ferromagnetic thin films (CoFe) in proximity with a thick superconducting film (Nb) as a function of d{sub F}, the ferromagnetic thickness. Remarkably, we find that as d{sub F} increases, the superconducting DOS exhibits a scaling behavior in which the deviations from the normal-state conductance have a universal shape that decreases exponentially in amplitude with characteristic length d* {approx} 0.4 nm. We do not see oscillations in the DOS as a function of d{sub F}, as expected from predictions based on the Usadel equations, although an oscillation in T{sub c}(d{sub F}) has been seen in the same materials.

  4. Ferromagnetism of magnetically doped topological insulators in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films

    SciTech Connect

    Ni, Y.; Zhang, Z. Hadimani, R. L.; Tuttle, G.; Jiles, D. C.; Nlebedim, I. C.

    2015-05-07

    We investigated the effect of magnetic doping on magnetic and transport properties of Bi{sub 2}Te{sub 3} thin films. Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi{sub 2}Te{sub 3} and increases the magnetization of Cr{sub x}Bi{sub 2−x}Te{sub 3}. When x = 0.14 and 0.29, ferromagnetism appears in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism of the ferromagnetism can be described better with 3D-Heisenberg model than with mean field model. Our work may benefit for the practical applications of magnetic topological insulators in spintronics and magnetoelectric devices.

  5. Frequency mixer having ferromagnetic film

    DOEpatents

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  6. Photoinduced Chern insulating states in semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Saha, Kush

    2016-08-01

    Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.

  7. Coexistence of metallic and insulating-like states in graphene.

    PubMed

    Wu, Fang; Huang, Jing; Li, Qunxiang; Deng, Kaiming; Kan, Erjun

    2015-01-01

    Since graphene has been taken as the potential host material for next-generation electric devices, coexistence of high carrier mobility and an energy gap has the determining role in its real applications. However, in conventional methods of band-gap engineering, the energy gap and carrier mobility in graphene are seemed to be the two terminals of a seesaw, which limit its rapid development in electronic devices. Here we demonstrated the realization of insulating-like state in graphene without breaking Dirac cone. Using first-principles calculations, we found that ferroelectric substrate not only well reserves the Dirac fermions, but also induces pseudo-gap states in graphene. Calculated transport results clearly revealed that electrons cannot move along the ferroelectric direction. Thus, our work established a new concept of opening an energy gap in graphene without reducing the high mobility of carriers, which is a step towards manufacturing graphene-based devices. PMID:25754862

  8. Broken lattice-symmetry influence on electronic anisotropy and interface exchange-coupling-induced ferromagnetic state in TI thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Moodera, Jagadeesh

    2014-03-01

    Inducing an exchange gap locally on the Dirac surface states of a topological insulator (TI) is ideal for observing the predicted unique features such as the quantized topological magnetoelectric effect, half-integer quantized Hall effect, as well as to con?ne Majorana fermions. Our work experimentally demonstrated the proximity-induced interface ferromagnetism in a heterostructure combining a ferromagnetic insulator EuS layer with Bi2Se3, without introducing defects. An exchange gap was observed to be induced on the surface of the TI. Extensive magnetic and magneto-transport (magnetoresistance and anomalous Hall effect) investigation of the heterostructures, including synchrotron interfacial (XAS and XMCD measurements) studies have shown the emergence of a ferromagnetic phase in TI, which is a step forward to unveiling the above exotic properties. Also, to understand the intrinsic properties of TI it is necessary to correlate structure with the exotic electronic properties as well as interaction with other materials. Molecular beam epitaxy (MBE) ideally allows us to engineer the system whereas using synchrotron and electron diffraction based experimental techniques helps us to investigate with atomic resolution. We will elucidate our studies on well-defined TI films and heterostructure, and the role of imperfections on the symmetry of the material that leads to internal atomic ordering by the decoration of the defects. Charge transport and mobility are seen to relate with film growth strain and relaxation as well as display strong directional dependence on the defect geometry. Work done in collaboration with Peng Wei, Ferhat Katmis and others. NSF and ONR grants supported this work.

  9. Thermoelectric transport of edge/surface states of topological insulators

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi; Takahashi, Ryuji

    2011-03-01

    In my talk we theoretically study thermoelectric properties of topological insulators (TI), where novel properties of edge/surface states are expected to appear. As compared to the number of bulk states, the edge/surface states are very few; we therefore consider a narrow ribbon for 2D and a thin slab for 3D TI to make the edge/surface-state transport larger. By considering edge/surface and bulk transport together, we calculate the charge and heat conductivity, and Seebeck coefficient. We find that in 2D TI the bulk and edge transport compete each other in the thermoelectric transport. By lowering temperature, the thermoelectric figure of merit ZT has a minimum, corresponding to the bulk-to-edge crossover, and then increases again at low temperature where the edge state dominates. The crossover is estimated to be at around 5K-10K for 10nm-width ribbon. We also discuss surface state transport for 3D TI as well.

  10. Optical Properties of a Vibrationally Modulated Solid State Mott Insulator

    PubMed Central

    Kaiser, S.; Clark, S. R.; Nicoletti, D.; Cotugno, G.; Tobey, R. I.; Dean, N.; Lupi, S.; Okamoto, H.; Hasegawa, T.; Jaksch, D.; Cavalleri, A.

    2014-01-01

    Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F2TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode. PMID:24448171

  11. Stabilization of Ferromagnetic States by Electron Doping in ZnO-Based Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2001-03-01

    In order to investigate functionality of ZnO as a diluted magnetic semiconductor (DMS), we had studied the magnetism in ZnO doped with 3d transition metal atoms (TM) and showed that it was also a candidate for a new functional magnetic material [1]. In this paper, we develop our previous work and give detailed materials design with ZnO-based DMS based on ab initio calculations. The electronic structure of a TM-doped ZnO was calculated within the local density approximation by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation. Total energies of Zn_1-xTM^\\uparrow_xO and Zn_1-xTM^\\uparrow_x/2TM^downarrow_x/2O, where up and down arrows mean the directions of respective atomic magnetic moments, were compared and appearance of the ferromagnetism was discussed. Effects of carrier doping to these systems were also considered. It was found that their magnetic states were controllable by changing the carrier density. In particular, ferromagnetic states were stabilized by electron doping in the case of Fe, Co or Ni doped ZnO. From the point of practical applications, it is favorable feature to realize high Curie temperature ferromagnet, because n-type ZnO is easily available. [1] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39 (2000) L555.

  12. Ferromagnetic cluster glass state induced by non-magnetic ions in a paramagnetic host

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takafumi D.; Okazaki, Ryuji; Taniguchi, Hiroki; Terasaki, Ichiro

    A paramagnetic metal CaRuO3 has been known to show unique impurity effects, where a magnetic ordering is induced by a partial substitution of transition metal ions for Ru. Since this phenomenon occurs regardless of the magnetism of the substituted ions, it must reflect a magnetic instability of this ruthenate. Understanding such physical properties is one of intriguing issues in condensed matter physics. In this talk, we report an unconventional magnetic state induced by substituting non-magnetic Sc3+ ions. We find that the static magnetic susceptibilities of all Sc-substituted samples show ferromagnetic-like features below 40 K, while the Curie-Weiss temperature dramatically changes with increasing x. This inconsistency is a sign of non-uniform magnetic system. We propose a phenomenological model and show that the static magnetic properties can be described as a volume average of a paramagnetic component originated from Ru4+ ions and a ferromagnetic one driven by Sc substitution [T. D. Yamamoto et al., JPSJ 84, 014708 (2015).]. Furthermore our dynamic magnetic measurements reveal a ferromagnetic cluster glass state embedded in the paramagnetic and metallic host of CaRuO3.

  13. Dynamical splayed ferromagnetic ground state in the quantum spin ice Yb(2)Sn(2)O(7).

    PubMed

    Yaouanc, A; Dalmas de Réotier, P; Bonville, P; Hodges, J A; Glazkov, V; Keller, L; Sikolenko, V; Bartkowiak, M; Amato, A; Baines, C; King, P J C; Gubbens, P C M; Forget, A

    2013-03-22

    From magnetic, specific heat, (170)Yb Mössbauer effect, neutron diffraction, and muon spin relaxation measurements on polycrystalline Yb(2)Sn(2)O(7), we show that below the first order transition at 0.15 K all of the Yb(3+) ions are long-range magnetically ordered and each has a moment of 1.1 μ(B) which lies at ≃ 10° to a common fourfold cubic axis. The four sublattice moments have four different directions away from this axis and are therefore noncoplanar. We term this arrangement splayed ferromagnetism. This ground state has a dynamical component with a fluctuation rate in the megahertz range. The net ferromagnetic exchange interaction has an anisotropy that favors the local threefold axis. We discuss our results in terms of the phase diagram proposed by Savary and Balents [Phys. Rev. Lett. 108, 037202 (2012)] for a pyrochlore lattice of Kramers 1/2 effective spins. PMID:25166842

  14. Steady-state thermal gradient induced by pulsed laser excitation in a ferromagnetic layer

    NASA Astrophysics Data System (ADS)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Duquesne, J.-Y.; Gourdon, C.

    2016-04-01

    In all-optical pump-probe experiments on ferromagnetic layers, the determination of the temperature under the pump laser spot is crucial for a quantitative modeling of the magnetization dynamics. We present here a method to quantify this thermal gradient, exemplified on a (Ga, Mn)(As, P) ferromagnetic semiconductor layer on a GaAs substrate. To estimate the local steady-state temperature, we use the coercive field as a thermometer. The probe records the hysteresis cycle spatially across the hot spot, using the magnetic linear birefringence/dichroism of the sample. Our results are analyzed using the heat diffusion equation with two fitting parameters, the thermal conductivity of the layer/substrate sample and the thermal resistance between the substrate and the thermostat. This opens the way to a quantitative modeling of laser pulse-triggered magnetization dynamics in the presence of transient temperature effects.

  15. Ferromagnetism in ruthenate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Mravlje, Jernej; Millis, Andrew J.

    2014-03-01

    In apparent contrast to the usual rule that stronger correlations favor magnetism and other forms of order, while weaker correlations lead to Fermi liquid metals, it has been experimentally established that CaRuO3, a more correlated material, is a paramagnetic metal with a Fermi liquid ground state while SrRuO3, which is less strongly correlated, is ferromagnetic below a Curie temperature of 160K. We present density functional plus dynamical mean field theory calculations which resolve this conundrum. We show that in these materials ferromagnetism occurs naturally for cubic perovskite systems at moderate correlations but is suppressed both by proximity to the Mott insulating phase and by increasing the amplitude of a GdFeO3 distortion. These factors are strongly related to the differences between Ca and Sr ruthenates and are used as the keys to solve the problem. Placement of the ruthenate materials on the metal-insulator phase diagram and comparison to previous works on the Ruddlesden-Popper materials are also discussed. Supported by the Basic Energy Sciences Program of the US Department of Energy under grant DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program.

  16. Two-dimensional topological insulator edge state backscattering by dephasing

    NASA Astrophysics Data System (ADS)

    Essert, Sven; Krueckl, Viktor; Richter, Klaus

    2015-11-01

    To understand the seemingly absent temperature dependence in the conductance of two-dimensional topological insulator edge states, we perform a numerical study which identifies the quantitative influence of the combined effect of dephasing and elastic scattering in charge puddles close to the edges. We show that this mechanism may be responsible for the experimental signatures in HgTe/CdTe quantum wells if the puddles in the samples are large and weakly coupled to the sample edges. We propose experiments on artificial puddles which allow one to verify this hypothesis and to extract the real dephasing time scale using our predictions. In addition, we present a method to include the effect of dephasing in wave-packet-time-evolution algorithms.

  17. Spatial characters of metallic surface states of topological insulators

    NASA Astrophysics Data System (ADS)

    Han, Jinhee; Lee, Hyungjun; Choi, Hyoung Joon

    2011-03-01

    We study the electronic structure of metallic surface states in Bi 2 Se 3 , Bi 2 Te 3 , and Sb 2 Te 3 using an ab-initio pseudopotential density-functional method. We implemented the spin-orbit interaction into the SIESTA in a form of additional fully non-local projectors. For surface states on (001) surface, we used a supercell containing 10 quintuple layers. We obtained bulk and surface electronic structures of topological insulators Bi 2 Se 3 , Bi 2 Te 3 , and Sb 2 Te 3 , which are close to previous theoretical results and consistent with Dirac-cone band dispersions measured by angle-resolved photoemission spectroscopy. Then, we analyzed the wavefunctions of the metallic surface states near the Fermi level to find out spatial distributions of the surface-state wavefunctions, which turn out to be localized in the surface region with a typical spread of about 2 quintuple layers, and the shapes of the wavefunctions around Bi (or Sb) atoms close to the surface. This work was supported by the NRF of Korea (Grant No. 2009-0081204) and KISTI Supercomputing Center (Project No. KSC-2008-S02-0004).

  18. Fano effect and Andreev bound states in a hybrid superconductor-ferromagnetic nanostructure

    NASA Astrophysics Data System (ADS)

    Siqueira, E. C.; Orellana, P. A.; Cestari, R. C.; Figueira, M. S.; Cabrera, G. G.

    2015-10-01

    In this work, it is considered a hybrid nanostructure composed by a quantum dot coupled to two ferromagnetic leads and a superconductor lead. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents Fano anti-resonances due to the destructive interference between the two spin channels mixing by the relative orientation of the magnetizations in the leads. When the superconductor is coupled to the system, electron-hole correlations between different spin states lead to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two Fano anti-resonances explained by a "leakage" of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current.

  19. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  20. Detection of magnetic state in a nanoscale ferromagnetic ring by using ballistic semiconductor two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Hara, Masahiro; Shibata, Junya; Kimura, Takashi; Otani, Yoshichika

    2006-02-01

    We have developed a method of measuring magnetization process in a ferromagnetic ring by analyzing a characteristic response of a semiconductor two-dimensional electron gas (2DEG) lying beneath the ring. A 2DEG microcross structure is formed underneath a ferromagnetic ring to detect the position of paired domain walls of the onion state. The variation of the bend resistance due to the rotation of the paired domain walls is quantitatively reproduced by a semiclassical billiard model.

  1. Thermodynamic signatures of edge states in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Quelle, Anton; Cobanera, Emilio; Morais Smith, Cristinae

    Topological insulators are states of matter distinguished by the presence of symmetry protected metallic boundary modes. These edge modes have been characterised in terms of transport and spectroscopic measurements, but a thermodynamic description has been lacking. The challenge arises because in conventional thermodynamics the potentials are required to scale linearly with extensive variables like volume, which does not allow for a general treatment of boundary effects. In this paper, we overcome this challenge with Hill thermodynamics. In this extension of the thermodynamic formalism, the grand potential is split into an extensive, conventional contribution, and the subdivision potential, which is the central construct of Hill's theory. For topologically non-trivial electronic matter, the subdivision potential captures measurable contributions to the density of states and the heat capacity: it is the thermodynamic manifestation of the topological edge structure. Furthermore, the subdivision potential reveals phase transitions of the edge even when they are not manifested in the bulk, thus opening a variety of new possibilities for investigating, manipulating, and characterizing topological quantum matter solely in terms of equilibrium boundary physics.

  2. Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2014-02-01

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.

  3. Realization of insulating state and superconductivity in the Rashba semiconductor BiTeCl

    NASA Astrophysics Data System (ADS)

    Ying, Jian-Jun; Struzhkin, Viktor V.; Cao, Zi-Yu; Goncharov, Alexander F.; Mao, Ho-Kwang; Chen, Fei; Chen, Xian-Hui; Gavriliuk, Alexander G.; Chen, Xiao-Jia

    2016-03-01

    Measurements of the resistivity, Hall coefficient, and Raman spectroscopy are performed on a Rashba semiconductor BiTeCl single crystal at high pressures up to 50 GPa. We find that applying pressure first induces a theoretically predicted insulating state, followed by a superconducting phase with an insulating normal state. Upon heavy compression, another different superconducting phase is entered into with a metallic normal state. A domelike evolution of the superconducting transition temperature with pressure is obtained with a crossover from the electron to hole carriers across the boundary of the two superconducting phases. These findings imply the possible realization of a topological state of the insulating and superconducting phases in this material.

  4. Steady-state and transient results on insulation materials

    SciTech Connect

    Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.; Fine, H.A.

    1991-01-01

    The Unguarded Thin-Heater Apparatus (UTHA, ASTM C 1114) was used to determine the thermal conductivity (k), specific heat (C), and thermal diffusivity ({alpha}) of selected building materials from 24 to 50{degree}C. Steady-state and transient measurements yielded data on four types of material: gypsum wall board containing 0, 15, and 30 wt % wax; calcium silicate insulations with densities ({rho}) of 307, 444, and 605 kg/m{sup 3}; three wood products: southern yellow pine flooring (575 kg/m{sup 3}), Douglas fir plywood (501 kg/m{sup 3}), and white spruce flooring (452 kg/m{sup 3}); and two cellular plastic foams: extruded polystyrene (30 kg/m{sup 3}) blown with HCFC-142b and polyisocyanurate rigid board (30.2 kg/m{sup 3}) blown with CFC-11. The extruded polystyrene was measured several times after production (25 days, 45 days, 74 days, 131 days, and 227 days). The UTHA is an absolute technique that yields k with an uncertainty of less than {plus minus}2% as determined by modeling, by determinate error analyses, and by use of Standard Reference Materials SRM-1450b and SRM-1451. 37 refs., 5 figs., 10 tabs.

  5. Brane parity orders in the insulating state of Hubbard ladders

    NASA Astrophysics Data System (ADS)

    Degli Esposti Boschi, Cristian; Montorsi, Arianna; Roncaglia, Marco

    2016-08-01

    The Mott insulating state of the Hubbard model at half filling could be depicted as a spin liquid of singly occupied sites with holon-doublon quantum fluctuations localized in pairs. In one dimension the behavior is captured by a finite value of the charge parity string correlator, which fails to remain finite when generalized to higher dimensions. We recover a definition of parity brane correlator which may remain nonvanishing in the presence of interchain coupling, by assigning an appropriate fractional phase to the parity breaking fluctuations. In the case of Hubbard ladders at half filling, we find that the charge parity brane is nonzero at any repulsive value of interaction. The spin-parity brane instead becomes nonvanishing in the even-leg case, in correspondence to the onset of the spin gapped D-Mott phase, which is absent in the odd-leg case. The behavior of the parity correlators is also analyzed by means of a numerical DMRG analysis of the one- and two-leg ladder.

  6. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    SciTech Connect

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; Davis, J. C. Séamus

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  7. Pressure induced novel-phenomena in Mott insulator Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Yamauchi, Yohei; Nakamura, Fumihiko; Sakaki, Mariko; Takemoto, Tetsuo; Suzuki, Takashi; Alireza, Patricia L.; Maeno, Yoshiteru

    2010-12-01

    In order to explore unconventional superconductivity, we have studied pressure effect on a 4d-electron Mott insulator Ca2RuO4. Pressurisation to Ca2RuO4 above 0.5 GPa transforms it from a Mott insulator to a metal with a ferromagnetic ground state. The itinerancy of the ferromagnetic state at 2 GPa is quantitatively evidenced by the magnetisation process at 2 K. Moreover, the pressure phase diagram of this system suggests the existence of a ferromagnetic quantum phase transition at ˜10 GPa.

  8. Realization of tunable Dirac cone and insulating bulk states in topological insulators (Bi1−xSbx)2Te3

    PubMed Central

    Niu, Chengwang; Dai, Ying; Zhu, Yingtao; Ma, Yandong; Yu, Lin; Han, Shenghao; Huang, Baibiao

    2012-01-01

    The bulk-insulating topological insulators with tunable surface states are necessary for applications in spintronics and quantum computation. Here we present theoretical evidence for modulating the topological surface states and achieving the insulating bulk states in solid-solution (Bi1−xSbx)2Te3. Our results reveal that the band inversion occurs in (Bi1−xSbx)2Te3, indicating the non-triviality across the entire composition range, and the Dirac point moves upwards till it lies within the bulk energy gap accompanying the increase of Sb concentration x. In addition, with increasing x, the formation of prominent native defects becomes much more difficult, resulting in the truly insulating bulk. The solid-solution system is a promising way of tuning the properties of topological insulators and designing novel topologically insulating devices. PMID:23240080

  9. Symmetry-selected spin-split hybrid states in C60/ferromagnetic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Repain, Vincent; Smogunov, Alexander

    2016-02-01

    The understanding of orbital hybridization and spin polarization at the organic-ferromagnetic interface is essential in the search for efficient hybrid spintronic devices. Here, using first-principles calculations, we report a systematic study of spin-split hybrid states of C60 deposited on various ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001), and hcp-Co(0001). We show that the adsorption geometry of the molecule with respect to the surface crystallographic orientation of the magnetic substrate as well as the strength of the interaction play a crucial role in the spin polarization of the hybrid orbitals. We find that a large spin polarization in vacuum above the buckyball can only be achieved if the molecule is adsorbed upon a bcc-(001) surface by its pentagonal ring. Therefore, bcc-Cr(001), bcc-Fe(001), and bcc-Co(001) are the optimal candidates. Spin-polarized scanning tunneling spectroscopy measurements on single C60 adsorbed on Cr(001) and Co/Pt(111) also confirm that the symmetry both of the substrate and of the molecular conformation has a strong influence on the induced spin polarization. Our finding may give valuable insights for further engineering of spin filtering devices through single molecular orbitals.

  10. Non-ferromagnetic overburden casing

    SciTech Connect

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  11. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    SciTech Connect

    Vieira Júnior, D. S.; Leonel, S. A. Dias, R. A. Toscano, D. Coura, P. Z. Sato, F.

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurations—vortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned states—type C—as a function of the shape of each elliptical nano-islands and constructed a phase diagram vortex—type C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  12. Non-Equilibrium Superconductivity and Magnetic Pair Breaking in Perovskite Half-Metallic Ferromagnet-Insulator-Superconductor (F-I-S) Heterostructures

    NASA Technical Reports Server (NTRS)

    Fu, C.-C.; Yeh, N.-C.; Samoilov, A. V.; Vakili, K.; Li, Y.; Vasquez, R. P.

    1999-01-01

    The effect of spin-polarized quasiparticle currents on the critical current density (J-c) of cuprate superconductors is studied in perovskite F-I-S heterostructures as a function of insulator thickness and of underlying magnetic materials. A pulsed current technique is employed to minimize extraneous Joule heating on the superconductor. At temperatures near T-c, F-I-S samples with insulator thicknesses\\1e2nm show precipitous decrease in J_c as current injection (I_m) is increased. In contrast, J_c in a controlled sample with a substituted non-magnetic material (N-I-S) exhibit no dependence on I_m. Similarly, a F-I-S sample with a 10 mn insulating barrier also show little J_c effect versus I_m. At low temperatures with I_m = 0, significant suppression of J-c is observed only in the thin barrier F-I-S samples, although T_c and the normal-state resistivity of all samples are comparable. These phenomena can be attributed to the Cooper pair breaking induced by externally-injected and internally-reflected spin-polarized quasiparticle currents. We estimate an order of magnitude range for the spin diffusion length of 100 nm to 100\\ mum.

  13. Interplay between chemical state, electric properties, and ferromagnetism in Fe-doped ZnO films

    SciTech Connect

    Chen, G.; Peng, J. J.; Song, C.; Zeng, F.; Pan, F.

    2013-03-14

    Valence state of Fe ions plays an important role in the physical properties of Fe doped ZnO films. Here, a series of Zn{sub 1-x}Fe{sub x}O films with different Fe concentrations (x = 0, 2.3, 5.4, 7.1, and 9.3 at. %) were prepared to investigate their structural, piezoelectric, ferroelectric, bipolar resistive switching properties, and electrical-control of ferromagnetism at room temperature. The structure characterizations indicate that the chemical state of Fe ions substituting Zn{sup 2+} site changes from Fe{sup 3+} to Fe{sup 2+} with the increase of Fe dopant concentration. We found enhanced piezoelectric and ferroelectric properties in Zn{sub 0.977}Fe{sub 0.023}O films with more Fe{sup 3+} due to the smaller Fe{sup 3+} ionic size in comparison with Zn{sup 2+} while the increase of Fe{sup 2+} concentration by a larger amount of Fe dopant results in the worse ferroelectric and piezoelectric performance. All Pt/Zn{sub 1-x}Fe{sub x}O/Pt devices show bipolar resistive switching properties. Especially, devices with lower Fe dopant concentration exhibit better endurance properties due to their higher crystalline quality. The variation of oxygen vacancies during resistive switching provides an opportunity to tune ferromagnetism of Fe-doped ZnO films, giving rise to the integration of charge and spin into a simple Pt/Zn{sub 1-x}Fe{sub x}O/Pt devices. The multifunctional properties of Fe-doped ZnO films are promising for communication systems and information storage devices.

  14. Electromagnetic absorption and Kerr effect in quantum Hall ferromagnetic states of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Côté, R.; Barrette, Manuel; Bouffard, Élie

    2015-09-01

    In a quantizing magnetic field, the chiral two-dimensional electron gas in Landau level N =0 of bilayer graphene goes through a series of phase transitions at integer filling factors ν ∈[-3 ,3 ] when the strength of an electric field applied perpendicularly to the layers is increased. At filling factor ν =3 , the electron gas can be described by a simple two-level system where layer and spin degrees of freedom are frozen. The gas then behaves as an orbital quantum Hall ferromagnet. A Coulomb-induced Dzyaloshinskii-Moriya term in the orbital pseudospin Hamiltonian is responsible for a series of transitions first to a Wigner crystal state and then to a spiral state as the electric field is increased. Both states have a nontrivial orbital pseudospin texture. In this work, we study how the phase diagram at ν =3 is modified by an electric field applied in the plane of the layers and then derive several experimental signatures of the uniform and nonuniform states in the phase diagram. In addition to the transport gap, we study the electromagnetic absorption and the Kerr rotation due to the excitations of the orbital pseudospin-wave modes in the broken-symmetry states.

  15. Control of ferromagnetism at room temperature in (Ti,Co)O2-δ via chemical doping of electron carriers

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Fukumura, T.; Ueno, K.; Kawasaki, M.

    2011-12-01

    Ferromagnetism at room temperature in (Ti,Co)O2 - δ was controlled by changing its electron density via chemical doping, where the oxygen vacancy δ served as an electron donor. With increasing the electron density, the ferromagnetic anomalous Hall effect and magnetization emerged from a paramagnetic state, while undergoing an insulator to metal transition. This result supports that the electron carriers mediated the ferromagnetic exchange interaction and is consistent with the electric field effect study on the ferromagnetism recently reported [Y. Yamada, K. Ueno, T. Fukumura, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, and M. Kawasaki, Science 332, 1065 (2011)].

  16. Surface-State Spin Textures and Mirror Chern Numbers in Topological Kondo Insulators

    NASA Astrophysics Data System (ADS)

    Legner, Markus; Rüegg, Andreas; Sigrist, Manfred

    2015-10-01

    The recent discovery of topological Kondo insulators has triggered renewed interest in the well-known Kondo insulator samarium hexaboride, which is hypothesized to belong to this family. In this Letter, we study the spin texture of the topologically protected surface states in such a topological Kondo insulator. In particular, we derive close relationships between (i) the form of the hybridization matrix at certain high-symmetry points, (ii) the mirror Chern numbers of the system, and (iii) the observable spin texture of the topological surface states. In this way, a robust classification of topological Kondo insulators and their surface-state spin texture is achieved. We underpin our findings with numerical calculations of several simplified and realistic models for systems like samarium hexaboride.

  17. Surface-State Spin Textures and Mirror Chern Numbers in Topological Kondo Insulators.

    PubMed

    Legner, Markus; Rüegg, Andreas; Sigrist, Manfred

    2015-10-01

    The recent discovery of topological Kondo insulators has triggered renewed interest in the well-known Kondo insulator samarium hexaboride, which is hypothesized to belong to this family. In this Letter, we study the spin texture of the topologically protected surface states in such a topological Kondo insulator. In particular, we derive close relationships between (i) the form of the hybridization matrix at certain high-symmetry points, (ii) the mirror Chern numbers of the system, and (iii) the observable spin texture of the topological surface states. In this way, a robust classification of topological Kondo insulators and their surface-state spin texture is achieved. We underpin our findings with numerical calculations of several simplified and realistic models for systems like samarium hexaboride. PMID:26550740

  18. Evolution of the local superconducting density of states in ErRh{sub 4}B{sub 4} close to the ferromagnetic transition.

    SciTech Connect

    Crespo, V.; Rodrigo, J. G.; Suderow, H.; Vieira, S.; Hinks, D.; Schuller, I. K.; Materials Science Division; Univ. Autonoma de Madrid; Univ. of California at San Diego

    2009-01-01

    We present local tunneling spectroscopy experiments in the superconducting and ferromagnetic phases of the reentrant superconductor ErRh4B4. The tunneling conductance curves jump from showing normal to superconducting features within a few mK close to the ferromagnetic transition temperature, with a clear hysteretic behavior. Within the ferromagnetic phase, we do not detect any superconducting correlations. Within the superconducting phase we find a peculiar V-shaped density of states at low energies, which is produced by the magnetically modulated phase that coexists with superconductivity just before ferromagnetism sets in.

  19. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    NASA Astrophysics Data System (ADS)

    Sirohi, Anshu; Singh, Chandan K.; Thakur, Gohil S.; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Haque, Zeba; Gupta, L. C.; Kabir, Mukul; Ganguli, Ashok K.; Sheet, Goutam

    2016-06-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (˜47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  20. Ferromagnetic superexchange in insulating Cr2MoO6 by controlling orbital hybridization

    SciTech Connect

    Zhu, M.; Do, D.; Dela Cruz, Clarina R.; Dun, Zhiling; Cheng, J. -G.; Goto, H.; Uwatoko, Yoshiya; Zou, T.; Zhou, Haidon D.; Mahanti, Subhendra D.; Ke, Xianglin

    2015-09-11

    We report the magnetic and electronic structures of the newly synthesized inverse-trirutile compound Cr2MoO6. Despite the same crystal symmetry and similar bond-lengths and bond-angles to Cr2TeO6, Cr2MoO6 possesses a magnetic structure of the Cr2MoO6 type, different from that seen in Cr2TeO6. Ab-initio electronic structure calculations show that the sign and strength of the Cr-O-Cr exchange coupling is strongly influenced by the hybridization between Mo 4d and O 2p orbitals. This result further substantiates our recently proposed mechanism for tuning the exchange interaction between two magnetic atoms by modifying the electronic states of the non-magnetic atoms in the exchange path through orbital hybridization. This approach is fundamentally different from the conventional methods of controlling the exchange interaction by either carrier injection or through structural distortions.

  1. Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators.

    PubMed

    Yoshimi, R; Yasuda, K; Tsukazaki, A; Takahashi, K S; Nagaosa, N; Kawasaki, M; Tokura, Y

    2015-01-01

    By breaking the time-reversal symmetry in three-dimensional topological insulators with the introduction of spontaneous magnetization or application of magnetic field, the surface states become gapped, leading to quantum anomalous Hall effect or quantum Hall effect, when the chemical potential locates inside the gap. Further breaking of inversion symmetry is possible by employing magnetic topological insulator heterostructures that host non-degenerate top and bottom surface states. Here we demonstrate the tailored-material approach for the realization of robust quantum Hall states in the bilayer system, in which the cooperative or cancelling combination of the anomalous and ordinary Hall responses from the respective magnetic and non-magnetic layers is exemplified. The appearance of quantum Hall states at filling factor 0 and +1 can be understood by the relationship of energy band diagrams for the two independent surface states. The designable heterostructures of magnetic topological insulator may explore a new arena for intriguing topological transport and functionality. PMID:26497065

  2. Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators

    NASA Astrophysics Data System (ADS)

    Yoshimi, R.; Yasuda, K.; Tsukazaki, A.; Takahashi, K. S.; Nagaosa, N.; Kawasaki, M.; Tokura, Y.

    2015-10-01

    By breaking the time-reversal symmetry in three-dimensional topological insulators with the introduction of spontaneous magnetization or application of magnetic field, the surface states become gapped, leading to quantum anomalous Hall effect or quantum Hall effect, when the chemical potential locates inside the gap. Further breaking of inversion symmetry is possible by employing magnetic topological insulator heterostructures that host non-degenerate top and bottom surface states. Here we demonstrate the tailored-material approach for the realization of robust quantum Hall states in the bilayer system, in which the cooperative or cancelling combination of the anomalous and ordinary Hall responses from the respective magnetic and non-magnetic layers is exemplified. The appearance of quantum Hall states at filling factor 0 and +1 can be understood by the relationship of energy band diagrams for the two independent surface states. The designable heterostructures of magnetic topological insulator may explore a new arena for intriguing topological transport and functionality.

  3. Edge states and integer quantum Hall effect in topological insulator thin films.

    PubMed

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-01-01

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films. PMID:26304795

  4. Metal-insulator transitions of bulk and domain-wall states in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Ueda, Kentaro

    A family of pyrochlore iridates R2Ir2O7 offers an ideal platform to explore intriguing phases such as topological Mott insulator and Weyl semimetal. Here we report transport and spectroscopic studies on the metal-insulator transition (MIT) induced by the modulations of effective electron correlation and magnetic structures, which is finely tuned by external pressure, chemical substitutions (R = Nd1-x Prx and SmyNd1-y) , and magnetic field. A reentrant insulator-metal-insulator transition is observed near the paramagnetic insulator-metal phase boundary reminiscent of a first-order Mott transition for R = SmyNd1-y compounds (y~0.8). The metallic states on the magnetic domain walls (DWs), which are observed for R = Nd in real space as well as in transport properties, is simultaneously turned into the insulating one. These findings imply that the DW electronic state is intimately linked to the bulk states. For the mixed R = Nd1-x Prx compounds, the divergent behavior of resistivity with antiferromagnetic order is significantly suppressed by applying a magnetic field along [001] direction. It is attributed to the phase transition from the antiferromagnetic insulating state to the novel Weyl (semi-)metal state accompanied by the change of magnetic structure. The present study combined with experiment and theory suggests that there are abundant exotic phases with physical parameters such as electron correlation and Ir-5 d magnetic order pattern. Work performed in collaboration with J. Fujioka, B.-J. Yang, C. Terakura, N. Nagaosa, Y. Tokura (University of Tokyo, RIKEN CEMS), J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji (Tohoku University). 1This work was supported by JSPS FIRST Program and Grant-in-Aid for Scientific Research (Grants No. 80609488 and No. 24224009).

  5. Shot noise in the edge states of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Aseev, P. P.; Nagaev, K. E.

    2016-07-01

    We calculate the resistance and shot noise in the edge states of a two-dimensional topological insulator that result from the exchange of electrons between these states and conducting puddles in the bulk of the insulator. The two limiting cases where the energy relaxation is either absent or very strong are considered. A finite time of spin relaxation in the puddles is introduced phenomenologically. Depending on this time and on the strength of coupling between the edge states and the puddles, the Fano factor F =SI/2 e I ranges from 0 to 1/3, which is in an agreement with the available experimental data.

  6. Nature of the insulating ground state of the 5d postperovskite CaIrO3

    DOE PAGESBeta

    Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; Lee, Jun -Ho; Yao, Yongxin; Ho, Kai -Ming; Cho, Jun -Hyung

    2015-08-26

    In this study, the insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t2g states to open an insulating gap. These results indicate thatmore » CaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.« less

  7. Characterizing Featureless Mott Insulating State by Quasiparticle Interferences - A DMFT Prospect

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Lee, Wei-Cheng

    In this talk we discuss the quasiparticle interferences (QPIs) of a Mott insulator using a T-matrix formalism implemented with the dynamical mean-field theory (T-DMFT). In the Mott insulating state, the DMFT predicts a singularity in the real part of electron self energy s (w) at low frequencies, which completely washes out the QPI at small bias voltage. However, the QPI patterns produced by the non-interacting Fermi surfaces can appear at a critical bias voltage in Mott insulating state. The existence of this non-zero critical bias voltage is a direct consequence of the singular behavior of Re[s (w)] /sim n/w with n behaving as the 'order parameter' of Mott insulating state. We propose that this reentry of non-interacting QPI patterns could serve as an experimental signature of Mott insulating state, and the 'order parameter' can be experimentally measured W.C.L acknowledges financial support from start up fund from Binghamton University.

  8. Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor.

    PubMed

    Yoshimi, R; Tsukazaki, A; Kikutake, K; Checkelsky, J G; Takahashi, K S; Kawasaki, M; Tokura, Y

    2014-03-01

    Topological insulators are a class of semiconductor exhibiting charge-gapped insulating behaviour in the bulk, but hosting a spin-polarized massless Dirac electron state at the surface. The presence of a topologically protected helical edge channel has been verified for the vacuum-facing surface of several topological insulators by means of angle-resolved photoemission spectroscopy and scanning tunnelling microscopy. By performing tunnelling spectroscopy on heterojunction devices composed of p-type topological insulator (Bi1−xSbx)2Te3 and n-type conventional semiconductor InP, we report the observation of such states at the solid-state interface. Under an applied magnetic field, we observe a resonance in the tunnelling conductance through the heterojunction due to the formation of Landau levels of two-dimensional Dirac electrons at the interface. Moreover, resonant tunnelling spectroscopy reveals a systematic dependence of the Fermi velocity and Dirac point energy on the composition x. The successful formation of robust non-trivial edge channels at a solid-state interface is an essential step towards functional junctions based on topological insulators. PMID:24553653

  9. Insulating States in the Integer Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Knighton, Talbot; Serafin, Alessandro; Wu, Zhe; Tarquini, Vinicio; Xia, J. F.; Sullivan, Neil; Pfeiffer, Loren; West, Ken; Huang, Jian

    Quantum Hall measurements are performed at temperatures 20-300 mK in high quality p-type GaAs quantum well systems having mobility μ = 4 ×106 cm2/V .s for density 5 ×1010 cm-2. We report a series of insulating phases appearing at or near integer filling factors ν >= 1 . The DC resistance demonstrates a maximum of 25M Ω, much larger than the quantum resistance h /e2 , with threshold transport behavior at low currents around 10 pA at low temperatures. The threshold diminishes upon heating up to 200 mK, consistent with a finite temperature melting of bubble phases or Wigner crystal. Additionally, these peaks have a complex electrical impedance for AC signals, with large phase shifts down to 1Hz. In this regime, the ac impedance of the two chiral edges show distinct correlated characteristics. NSF DMR-1410302.

  10. Steady-State Thermal Performance Evaluation of Steel-Framed Wall Assembly with Local Foam Insulation

    SciTech Connect

    Kosny, Jan; Biswas, Kaushik; Childs, Phillip W

    2010-01-01

    During January and May, 2009, two configurations of steel-framed walls constructed with conventional 2 4 steel studs insulated with R-19 ~14cm. (5.5-in. thick) and R-13 ~9cm. (3.5-in. thick) fiberglass insulation batts were tested in the Oak Ridge National Laboratory (ORNL) guarded hot-box using ASTM C1363 test procedure. The first test wall used conventional 2 4 steel studs insulated with 2.5-cm. (1-in.) thick foam profiles, called stud snugglers. These stud snugglers converted the 2 4 wall assembly into a 2 6 assembly allowing application of R-19 fiberglass insulation. The second wall tested for comparison was a conventional 2 4 steel stud wall using R-13 insulation batts. Further, numerical simulations were performed in order to evaluate the steady-state thermal performance of various wood- and steel-framed wall assemblies. The effects of adding the stud-snugglers to the wood and steel studs were also investigated numerically. Different combinations of insulation and framing factor were used in the simulations.

  11. Origin of Transitions between Metallic and Insulating States in Simple Metals

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan I.; Hemley, Russell J.

    2015-04-01

    Unifying principles that underlie recently discovered transitions between metallic and insulating states in elemental solids under pressure are developed. Using group theory arguments and first-principles calculations, we show that the electronic properties of the phases involved in these transitions are controlled by symmetry principles. The valence bands in these systems are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms, and which are not necessarily all symmetrical. The character of the Wannier functions is closely related to the degree of s -p (-d ) hybridization and reflects multicenter chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as reentrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of behavior such as phases having band-contact lines. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been reported (e.g., Li, Na, and Ca).

  12. Emergence of superconductivity from the dynamically heterogeneous insulating state in La(2-x)Sr(x)CuO4.

    PubMed

    Shi, Xiaoyan; Logvenov, G; Bollinger, A T; Božović, I; Panagopoulos, C; Popović, Dragana

    2013-01-01

    A central issue for copper oxides is the nature of the insulating ground state at low carrier densities and the emergence of high-temperature superconductivity from that state with doping. Even though this superconductor-insulator transition (SIT) is a zero-temperature transition, measurements are not usually carried out at low temperatures. Here we use magnetoresistance to probe both the insulating state at very low temperatures and the presence of superconducting fluctuations in La(2-x)Sr(x)CuO(4) films, for doping levels that range from the insulator to the superconductor (x  =  0.03-0.08). We observe that the charge glass behaviour, characteristic of the insulating state, is suppressed with doping, but it coexists with superconducting fluctuations that emerge already on the insulating side of the SIT. The unexpected quenching of the superconducting fluctuations by the competing charge order at low temperatures provides a new perspective on the mechanism for the SIT. PMID:23160270

  13. Emergence of superconductivity from the dynamically heterogeneous insulating state in La2-xSrxCuO4

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyan; Logvenov, G.; Bollinger, A. T.; Božović, I.; Panagopoulos, C.; Popović, Dragana

    2013-01-01

    A central issue for copper oxides is the nature of the insulating ground state at low carrier densities and the emergence of high-temperature superconductivity from that state with doping. Even though this superconductor-insulator transition (SIT) is a zero-temperature transition, measurements are not usually carried out at low temperatures. Here we use magnetoresistance to probe both the insulating state at very low temperatures and the presence of superconducting fluctuations in La2-xSrxCuO4 films, for doping levels that range from the insulator to the superconductor (x  =  0.03-0.08). We observe that the charge glass behaviour, characteristic of the insulating state, is suppressed with doping, but it coexists with superconducting fluctuations that emerge already on the insulating side of the SIT. The unexpected quenching of the superconducting fluctuations by the competing charge order at low temperatures provides a new perspective on the mechanism for the SIT.

  14. Energy barriers for bit-encoding states based on 360° domain walls in ultrathin ferromagnetic nanorings

    NASA Astrophysics Data System (ADS)

    Muratov, C. B.; Osipov, V. V.; Vanden-Eijnden, E.

    2015-05-01

    A numerical thermal stability study of the bit-encoding states in a proposed multi-level magnetic storage element based on an ultrathin ferromagnetic nanoring is presented. The material parameters and the ring dimensions for which there are five distinct metastable magnetization configurations separated by energy barriers exceeding 50kBT at room temperature are identified. The results are obtained, using the string method for the study of rare events to locate the transition states separating the metastable states and to identify the most likely thermally activated pathways.

  15. Surface plasmon resonance phenomenon of the insulating state polyaniline

    SciTech Connect

    Umiati, Ngurah Ayu Ketut; Triyana, Kuwat; Kamsul

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  16. Studies on Ferromagnetic and Photoluminescence Properties of ITO and Cu-Doped ITO Nanoparticles Synthesized by Solid State Reaction

    NASA Astrophysics Data System (ADS)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Krishnamoorthi, C.

    2016-07-01

    Cubic structured indium-tin-oxide (ITO) and copper-doped ITO nanoparticles were synthesized by solid state reaction. The structure, morphology, chemical, magnetic, and photoluminescence properties of the synthesized nanoparticles were studied by x-ray diffraction, field emission scanning electron microscopy, x-ray photoelectron spectroscopy, vibrating sample magnetometry, and photoluminescence spectrophotometry, respectively. Magnetic studies confirmed that the ITO nanoparticles were ferromagnetic at room temperature (300 K) and at 100 K, and it was believed that the observed ferromagnetism may be due to oxygen vacancies and defects present in the system. No hysteresis loop was observed in copper-doped ITO nanoparticles at room temperature and 100 K. The ITO and Cu-doped ITO nanoparticles exhibited two broad emission peaks in the visible region of the electromagnetic spectrum.

  17. Ferromagnetic resonance in thin films submitted to multiaxial stress state: application of the uniaxial equivalent stress concept and experimental validation

    NASA Astrophysics Data System (ADS)

    Gueye, M.; Zighem, F.; Belmeguenai, M.; Gabor, M.; Tiusan, C.; Faurie, D.

    2016-07-01

    In this paper a unique expression of the anisotropy field induced by any multiaxial stress state in a magnetic thin film and probed by ferromagnetic resonance is derived. This analytical development has been made using the uniaxial equivalent stress concept, for which correspondances between definitions given by different authors in the literature is found. The proposed model for the anisotropy field has been applied to \\text{C}{{\\text{o}}2}\\text{FeAl} thin films (25 nm) stressed both by piezoelectric actuation (non-equi-biaxial) or by bending tests (uniaxial) and measured with a broadband ferromagnetic resonance technique. The overall exprimental data can be easily plotted on a unique graph from which the magnetostriction coefficient has been estimated.

  18. Magnetic States in Ensemble of Ferromagnetic Nanoparticles in Cu-Mn-Al Alloy.

    PubMed

    Konoplyuk, S M; Kozlova, L E; Kokorin, V V; Perekos, A O; Kolomiets, O V

    2016-12-01

    Two Cu-Mn-Al samples of different compositions were studied: one exhibiting martensitic transformation, another without structural transition. X-ray diffraction and magnetic measurements demonstrate that different magnetic behaviors of alloys originate from different concentrations and sizes of ferromagnetic nanoparticles, which appear after solid solution decomposition.Estimation of magnetic moments of ferromagnetic nanoparticles from magnetization curves was performed using Langevin function and compared to those obtained from X-ray examination. Granular systems are known to show giant magnetoresistance. Therefore, magnetoresistance of Cu-Mn-Al melt-spun ribbons after different aging times was measured. The study has shown that increase in the concentration of Mn atoms and time of aging in Cu-Mn-Al alloy leads to an increase in the amount of precipitated phase appearing as ferromagnetic nanoparticles. PMID:26762264

  19. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  20. Superconducting- and Insulating-Ground States in La2CuO4 Structural Isomers

    NASA Astrophysics Data System (ADS)

    Krockenberger, Yoshiharu; Eleazer, Bennett; Irie, Hiroshi; Yamamoto, Hideki

    2014-11-01

    La2CuO4, with the K2NiF4-structure, is known as the parent compound of hole-doped cuprate superconductors where the Cu ions are octahedrally coordinated and subject to the Jahn-Teller effect. While an octahedral coordination is known for stabilizing an antiferromagnetic and insulating state, we synthesized additional coordination geometries of copper in La2CuO4 where Cu is either square-planar or pyramidal coordinated by a state-of-the-art thin-film growth method. The degeneracy of the Jahn-Teller effect together with rearrangements of the crystal field are expected to have an influence on the electronic states. Indeed, we observed a metallic and superconducting state for La2CuO4 having the Nd2CuO4-structure with square-planar coordinated copper while octahedral and pyramidal coordinations are in favor of the insulating state.

  1. Oxygen-isotope effect of the paramagnetic-insulating to ferromagnetic-metallic transition in La1-xCaxMnO3

    NASA Astrophysics Data System (ADS)

    Franck, J. P.; Isaac, I.; Chen, Weimin; Chrzanowski, J.; Irwin, J. C.

    1998-09-01

    The oxygen-isotope effect of the ferromagnetic transition in La1-xCaxMnO3 was investigated from x=20% to x=43%. This is the range of the conducting ferromagnetic phase. We find that αO=-Δ ln Tc/Δ ln m decreases from 0.36 to 0.14 with increasing Ca concentration. A large value of αO=0.83 was found for x=20%, it is possibly connected with excess oxygen content. The isotope effect decreases with increasing tolerance factor, pointing to the importance of double exchange. The isotope effect at 35% Ca is independent of magnetic field.

  2. Emergence of a Chern-insulating state from a semi-Dirac dispersion

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Liu, Zhirong; Zhang, Hongbin; Duan, Wenhui; Vanderbilt, David

    By combining first-principles calculations with Wannier-based tight-binding modeling, we demonstrate that a TiO2/VO2 heterostructure that was previously proposed as a prototypical semi-Dirac system becomes a Chern insulator (quantum anomalous Hall insulator) in the presence of spin-orbit coupling. We show that this occurs only when the semi-Dirac structure is of a special type that can be formed by the merging of three conventional Dirac points. Our results reveal how the nontrivial topology with nonzero Chern number emerges naturally from this kind of semi-Dirac structure, establishing a general scenario that provides a new route to the formation of Chern-insulating states in practical materials systems.

  3. Robust topological surface state in Kondo insulator SmB{sub 6} thin films

    SciTech Connect

    Yong, Jie Jiang, Yeping; Zhang, Xiaohang; Greene, Richard L.; Usanmaz, Demet; Curtarolo, Stefano; Li, Linze; Pan, Xiaoqing; Shin, Jongmoon; Takeuchi, Ichiro

    2014-12-01

    Fabrication of smooth thin films of topological insulators with true insulating bulk are extremely important for utilizing their novel properties in quantum and spintronic devices. Here, we report the growth of crystalline thin films of SmB{sub 6}, a topological Kondo insulator with true insulating bulk, by co-sputtering both SmB{sub 6} and B targets. X-ray diffraction, Raman spectroscopy, and transmission electron microscopy indicate films that are polycrystalline with a (001) preferred orientation. When cooling down, resistivity ρ shows an increase around 50 K and saturation below 10 K, consistent with the opening of the hybridization gap and surface dominated transport, respectively. The ratio ρ{sub 2K}/ρ{sub 300K} is only about two, much smaller than that of bulk, which indicates a much larger surface-to-bulk ratio. Point contact spectroscopy using a superconductor tip on SmB{sub 6} films shows both a Kondo Fano resonance and Andeev reflection, indicating an insulating Kondo lattice with metallic surface states.

  4. Thermoelectric detection of ferromagnetic resonance of a nanoscale ferromagnet.

    PubMed

    Bakker, F L; Flipse, J; Slachter, A; Wagenaar, D; van Wees, B J

    2012-04-20

    We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a thermocouple connected to the ferromagnet. The observed resonance peak shape is in agreement with the Landau-Lifshitz-Gilbert equation and is compared with thermoelectric finite-element modeling. Unlike other methods, this technique is not restricted to electrically conductive media and is therefore also applicable to for instance ferromagnetic insulators. PMID:22680756

  5. Amperean Pairing at the Surface of Topological Insulators.

    PubMed

    Kargarian, Mehdi; Efimkin, Dmitry K; Galitski, Victor

    2016-08-12

    The surface of a 3D topological insulator is described by a helical electron state with the electron's spin and momentum locked together. We show that in the presence of ferromagnetic fluctuations the surface of a topological insulator is unstable towards a superconducting state with unusual pairing, dubbed Amperean pairing. The key idea is that the dynamical fluctuations of a ferromagnetic layer deposited on the surface of a topological insulator couple to the electrons as gauge fields. The transverse components of the magnetic gauge fields are unscreened and can mediate an effective interaction between electrons. There is an attractive interaction between electrons with momenta in the same direction which makes the pairing to be of Amperean type. We show that this attractive interaction leads to a p-wave pairing instability of the Fermi surface in the Cooper channel. PMID:27563988

  6. Amperean Pairing at the Surface of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Efimkin, Dmitry K.; Galitski, Victor

    2016-08-01

    The surface of a 3D topological insulator is described by a helical electron state with the electron's spin and momentum locked together. We show that in the presence of ferromagnetic fluctuations the surface of a topological insulator is unstable towards a superconducting state with unusual pairing, dubbed Amperean pairing. The key idea is that the dynamical fluctuations of a ferromagnetic layer deposited on the surface of a topological insulator couple to the electrons as gauge fields. The transverse components of the magnetic gauge fields are unscreened and can mediate an effective interaction between electrons. There is an attractive interaction between electrons with momenta in the same direction which makes the pairing to be of Amperean type. We show that this attractive interaction leads to a p -wave pairing instability of the Fermi surface in the Cooper channel.

  7. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    PubMed

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material. PMID:27166762

  8. Mott Insulating Ground State on a Triangular Surface Lattice

    SciTech Connect

    Weitering, H.; Shi, X.; Weitering, H.; Johnson, P.; Chen, J.; DiNardo, N.; DiNardo, N.; Kempa, K.

    1997-02-01

    Momentum-resolved direct and inverse photoemission spectra of the K/Si(111)-({radical}(3){times}{radical}(3))R30{degree}-B interface reveals the presence of strongly localized surface states. The K overlayer remains nonmetallic up to the saturation coverage. This system most likely presents the first experimental realization of a frustrated spin 1/2 Heisenberg antiferromagnet on a two-dimensional triangular lattice. {copyright} {ital 1997} {ital The American Physical Society}

  9. Skyrmion-induced bound states on the surface of three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Andrikopoulos, Dimitrios; Sorée, Bart; De Boeck, Jo

    2016-05-01

    The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number NSk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.

  10. Universal scaling for the spin-electricity conversion on surface states of topological insulators

    NASA Astrophysics Data System (ADS)

    Yamamoto, K. T.; Shiomi, Y.; Segawa, Kouji; Ando, Yoichi; Saitoh, E.

    2016-07-01

    We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin-pumping technique. The sample structure is Ni-Fe ∣Cu ∣TI trilayers, in which magnetic proximity effects on the TI surfaces are negligibly small owing to the inserted Cu layer. Voltage signals produced by the spin-electricity conversion are clearly observed and are enhanced with decreasing temperature, in line with the dominant surface transport at lower temperatures. The efficiency of the spin-electricity conversion is greater for TI samples with a higher resistivity of bulk states and longer mean free path of surface states, consistent with the surface spin-electricity conversion.

  11. Decoupling of the Antiferromagnetic and Insulating States in Tb doped Sr2 IrO4

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Wang, J. C.; Ye, F.; Aswartham, S.; Terzic, J.; Yuan, S. J.; Haskel, D.; Choi, Y.; Chikara, S.; Schlottmann, P.; Custelcean, R.; Cao, G.

    We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4 (0 <=x <=0.03). This study found that mere 3% (x =0.03) tetravalent Tb4+ substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state. Tb doping effectively changes the relative strength of the SOI and the tetragonal CEF and enhances the Hund's rule coupling that competes with the SOI, and destabilizes the AFM state. We observe unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate. This work was supported by NSF through Grant DMR-1265162.

  12. Ferromagnetic ground state for a hypothetical iron-based extended metal atom chain.

    PubMed

    Szarek, Paweł; Wegner, Wojciech; Grochala, Wojciech

    2016-03-01

    Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S = 6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe(2+) sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands. PMID:26910724

  13. Gapless quantum excitations from an icelike splayed ferromagnetic ground state in stoichiometric Yb2Ti2O7

    DOE PAGESBeta

    Gaudet, J.; Ross, K. A.; Kermarrec, E.; Butch, N. P.; Ehlers, G.; Dabkowska, H. A.; Gaulin, B. D.

    2016-02-03

    We know the ground state of the quantum spin ice candidate magnet Yb2Ti2O7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb2Ti2O7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlates with temperatures much higher than T-C.more » The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb2Ti2O7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb2Ti2O7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb2Ti2O7's sister quantum magnet Yb2Ti2O7.« less

  14. Gapless quantum excitations from an icelike splayed ferromagnetic ground state in stoichiometric Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Ross, K. A.; Kermarrec, E.; Butch, N. P.; Ehlers, G.; Dabkowska, H. A.; Gaulin, B. D.

    2016-02-01

    The ground state of the quantum spin ice candidate magnet Yb2Ti2O7 is known to be sensitive to weak disorder at the ˜1 % level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, TC˜0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb2Ti2O7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlates with temperatures much higher than TC. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. The spin dynamics in Yb2Ti2O7 are shown to be gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb2Ti2O7 's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb2Ti2O7 's sister quantum magnet Yb2Sn2O7 .

  15. Ferromagnetic nanorings

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Hayward, T. J.; Llandro, J.; Schackert, F.; Morecroft, D.; Bland, J. A. C.; Kläui, M.; Laufenberg, M.; Backes, D.; Rüdiger, U.; Castaño, F. J.; Ross, C. A.; Heyderman, L. J.; Nolting, F.; Locatelli, A.; Faini, G.; Cherifi, S.; Wernsdorfer, W.

    2007-06-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events.

  16. Observation of Floquet-Bloch states on the surface of a topological insulator.

    PubMed

    Wang, Y H; Steinberg, H; Jarillo-Herrero, P; Gedik, N

    2013-10-25

    The unique electronic properties of the surface electrons in a topological insulator are protected by time-reversal symmetry. Circularly polarized light naturally breaks time-reversal symmetry, which may lead to an exotic surface quantum Hall state. Using time- and angle-resolved photoemission spectroscopy, we show that an intense ultrashort midinfrared pulse with energy below the bulk band gap hybridizes with the surface Dirac fermions of a topological insulator to form Floquet-Bloch bands. These photon-dressed surface bands exhibit polarization-dependent band gaps at avoided crossings. Circularly polarized photons induce an additional gap at the Dirac point, which is a signature of broken time-reversal symmetry on the surface. These observations establish the Floquet-Bloch bands in solids and pave the way for optical manipulation of topological quantum states of matter. PMID:24159040

  17. Andreev bound states and current-phase relations in three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Snelder, M.; Veldhorst, M.; Golubov, A. A.; Brinkman, A.

    2013-03-01

    To guide the search for the Majorana fermion, we theoretically study superconductor/topological-insulator/superconductor (S/TI/S) junctions in an experimentally relevant regime. We find that the striking features present in these systems, including the doubled periodicity of the Andreev bound states (ABSs) due to tunneling via Majorana states, can still be present at high electron densities. We show that via the inclusion of magnetic layers, this 4π periodic ABS can still be observed in three-dimensional (3D) topological insulators, where finite angle incidence usually results in the opening of a gap at zero energy and hence results in a 2π periodic ABS. Furthermore, we study the Josephson-junction characteristics and find that the gap size can be controlled and decreased by tuning the magnetization direction and amplitude. These findings pave the way for designing experiments on S/3DTI/S junctions.

  18. Disorder-induced inhomogeneities of the superconducting state close to the superconductor-insulator transition.

    SciTech Connect

    Sacepe, B.; Chapelier, C.; Baturina, T. I.; Vinokur, V. M.; Baklanov, M. R.; Sanquer, M.; Materials Science Division; CEA, INAC; Inst. Semiconductor Physics; IMEC

    2008-01-01

    Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap {Delta} in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature T{sub c} towards zero, enhancement of spatial fluctuations in {Delta}, and growth of the {Delta}/T{sub c} ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.

  19. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  20. Surface state photoelectrons in topological insulators: Green’s function approach

    NASA Astrophysics Data System (ADS)

    Schmeltzer, D.; Saxena, A.

    2015-12-01

    We compute the photoemission intensity and polarization for the surface states in topological insulators. Due to the chirality and linear energy dispersion the effective electron-photon coupling is normalized by the tunneling amplitude (τ) into the vacuum. We investigate a chiral Dirac Hamiltonian for different cases: helical, Zeeman and warping, allowing us to study spin textures. Using the Green’s function formalism we obtain exact results for the emitted photoelectrons to second order in the laser field. The number of emitted photoelectrons is sensitive to the laser coherent state intensity whereas the photoelectron polarization is sensitive to the surface topology of electronic states and incoming photon polarization.

  1. On the photon-drag effect of photocurrent of surface states of topological insulators

    NASA Astrophysics Data System (ADS)

    Lee, Hyun C.

    2016-05-01

    The photocurrent of surface states of topological insulator due to photon-drag effect is computed, being based on pure Dirac model of surface states. The scattering by disorder is taken into account to provide a relaxation mechanism for the photocurrent. The Keldysh-Schwinger formalism has been employed for the systematic calculation of photocurrent. The helicity dependent photocurrent of sizable magnitude transverse to the in-plane photon momentum is found, which is consistent with experimental data. Other helicity independent photocurrents with various polarization states are also calculated.

  2. Ferromagnetism and manipulation of topological surface states in Bi2Se3 family by 2p light elements

    NASA Astrophysics Data System (ADS)

    Niu, Chengwang; Dai, Ying; Zhang, Zhenkui; Ma, Yandong; Huang, Baibiao

    2012-06-01

    The manipulation effects by doping of 2p light elements X (X = B, C, and N) on topological surface states in V2VI3 (V = Bi and Sb, VI = Se and Te) are systemically explored. Our results unveil that X doping at anion sites can induce magnetic moments and gap opening at the Dirac point. To have a stable magnetic ground state, the dopant 2p states must be sufficiently localized, which closely depends on the X-V bond lengths. The incorporation of 2p dopants paves a promising way of tuning the properties of topological insulators and may find applications in spintronics.

  3. Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene

    PubMed Central

    Grushina, Anya L.; Ki, Dong-Keun; Koshino, Mikito; Nicolet, Aurelien A. L.; Faugeras, Clément; McCann, Edward; Potemski, Marek; Morpurgo, Alberto F.

    2015-01-01

    Close to charge neutrality, the electronic properties of graphene and its multilayers are sensitive to electron–electron interactions. In bilayers, for instance, interactions are predicted to open a gap between valence and conduction bands, turning the system into an insulator. In mono and (Bernal-stacked) trilayers, which remain conducting at low temperature, interactions do not have equally drastic consequences. It is expected that interaction effects become weaker for thicker multilayers, whose behaviour should converge to that of graphite. Here we show that this expectation does not correspond to reality by revealing the occurrence of an insulating state close to charge neutrality in Bernal-stacked tetralayer graphene. The phenomenology—incompatible with the behaviour expected from the single-particle band structure—resembles that observed in bilayers, but the insulating state in tetralayers is visible at higher temperature. We explain our findings, and the systematic even–odd effect of interactions in Bernal-stacked layers of different thickness that emerges from experiments, in terms of a generalization of the interaction-driven, symmetry-broken states proposed for bilayers. PMID:25732058

  4. Photoconductivity oscillations in surface state of three-dimensional topological insulator subjected to a magnetic field

    SciTech Connect

    Shao, J. M.; Yao, J. D.; Yang, G. W.

    2015-05-21

    We describe a theoretical study of the terahertz (THz) radiation field-induced dc transport response of the surface state of a 3D topological insulator that has been subjected to a perpendicular magnetic field. Using the Landau–Floquet state and linear response theory, we obtain the photoconductivity characteristics for various types of polarized THz field. The longitudinal photoconductivity shows a clear oscillatory dependence on ω/ω{sub B}, where ω{sub B}=v{sub F}√(2eB/ℏ). This oscillation occurs because of the oscillatory structure of the Landau density of states and occurs in agreement with the photon-assisted transitions between the different Landau levels. The THz field's polarization has a major influence on the photoconductivity. A linear transverse polarization will lead to the most obvious oscillation, while the circular polarization is next to it, but the longitudinal polarization has no influence. We also discuss the broadening effect on the impurity potential and its influence. The findings with regard to the interactions between topological insulators and THz fields actually open a path toward the development of THz device applications of topological insulators.

  5. Spin-patterned plasmonics: towards optical access to topological-insulator surface states.

    PubMed

    Spektor, Grisha; David, Asaf; Bartal, Guy; Orenstein, Meir; Hayat, Alex

    2015-12-14

    Topological insulators (TI) are new phases of matter with topologically protected surface states (SS) possessing novel physical properties such as spin-momentum locking. Coupling optical angular momentum to the SS is of interest for both fundamental understanding and applications in future spintronic devices. However, due to the nanoscale thickness of the surface states, the light matter interaction is dominated by the bulk. Here we propose and experimentally demonstrate a plasmonic cavity enabling both nanoscale light confinement and control of surface plasmon-polariton (SPP) spin angular momentum (AM)--towards coupling to topological-insulator SS. The resulting SPP field components within the cavity are arranged in a chess-board-like pattern. Each chess-board square exhibits approximately a uniform circular polarization (spin AM) of the local in-plane field interleaved by out-of-plane field vortices (orbital AM). As the first step, we demonstrate the predicted pattern experimentally by near-field measurements on a gold-air interface, with excellent agreement to our theory. Our results pave the way towards efficient optical access to topological-insulator surface states using plasmonics. PMID:26699065

  6. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment

    PubMed Central

    Chen, Chaoyu; He, Shaolong; Weng, Hongming; Zhang, Wentao; Zhao, Lin; Liu, Haiyun; Jia, Xiaowen; Mou, Daixiang; Liu, Shanyu; He, Junfeng; Peng, Yingying; Feng, Ya; Xie, Zhuojin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2012-01-01

    The physical property investigation (like transport measurements) and ultimate application of the topological insulators usually involve surfaces that are exposed to ambient environment (1 atm and room temperature). One critical issue is how the topological surface state will behave under such ambient conditions. We report high resolution angle-resolved photoemission measurements to directly probe the surface state of the prototypical topological insulators, Bi2Se3 and Bi2Te3, upon exposing to various environments. We find that the topological order is robust even when the surface is exposed to air at room temperature. However, the surface state is strongly modified after such an exposure. Particularly, we have observed the formation of two-dimensional quantum well states near the exposed surface of the topological insulators. These findings provide key information in understanding the surface properties of the topological insulators under ambient environment and in engineering the topological surface state for applications. PMID:22355146

  7. Thermodynamically self-consistent non-stochastic micromagnetic model for the ferromagnetic state

    SciTech Connect

    Dvornik, Mykola Vansteenkiste, Arne; Van Waeyenberge, Bartel

    2014-10-20

    In this work, a self-consistent thermodynamic approach to micromagnetism is presented. The magnetic degrees of freedom are modeled using the Landau-Lifshitz-Baryakhtar theory, which separates the different contributions to the magnetic damping, and thereby allows them to be coupled to the electron and phonon systems in a self-consistent way. We show that this model can quantitatively reproduce ultrafast magnetization dynamics in Nickel suggesting that in ferromagnetic metals the ultrafast angular momentum transfer happens via the relativistic spin-electron scattering.

  8. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    SciTech Connect

    Berti, G. Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F.

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  9. Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets

    NASA Astrophysics Data System (ADS)

    Bahri, Yasaman; Potter, Andrew C.

    2015-07-01

    Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi-liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which controlled field theory calculations predict that the non-Fermi-liquid regime will be masked by a superconducting dome, we show that the non-Fermi-liquid phase in spin-orbit coupled ferromagnets is stable.

  10. Stable non-Fermi liquid phase of itinerant spin-orbit coupled ferromagnets

    NASA Astrophysics Data System (ADS)

    Bahri, Yasaman; Potter, Andrew

    2015-03-01

    Direct coupling between gapless bosons and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which the non-Fermi liquid regime is expected to be masked by a superconducting dome, we show that the non-Fermi liquid phase in spin-orbit coupled ferromagnets is stable.