Science.gov

Sample records for ferromagnetism factorization approach

  1. Barkhausen discontinuities and hysteresis of ferromagnetics: New stochastic approach

    SciTech Connect

    Vengrinovich, Valeriy

    2014-02-18

    The magnetization of ferromagnetic material is considered as periodically inhomogeneous Markov process. The theory assumes both statistically independent and correlated Barkhausen discontinuities. The model, based on the chain evolution-type process theory, assumes that the domain structure of a ferromagnet passes successively the steps of: linear growing, exponential acceleration and domains annihilation to zero density at magnetic saturation. The solution of stochastic differential Kolmogorov equation enables the hysteresis loop calculus.

  2. Ferromagnetic bond of Li10 cluster: An alternative approach in terms of effective ferromagnetic sites.

    PubMed

    Donoso, Roberto; Rössler, Jaime; Llano-Gil, Sandra; Fuentealba, Patricio; Cárdenas, Carlos

    2016-09-01

    In this work, a model to explain the unusual stability of atomic lithium clusters in their highest spin multiplicity is presented and used to describe the ferromagnetic bonding of high-spin Li10 and Li8 clusters. The model associates the (lack of-)fitness of Heisenberg Hamiltonian with the degree of (de-)localization of the valence electrons in the cluster. It is shown that a regular Heisenberg Hamiltonian with four coupling constants cannot fully explain the energy of the different spin states. However, a more simple model in which electrons are located not at the position of the nuclei but at the position of the attractors of the electron localization function succeeds in explaining the energy spectrum and, at the same time, explains the ferromagnetic bond found by Shaik using arguments of valence bond theory. In this way, two different points of view, one more often used in physics, the Heisenberg model, and the other in chemistry, valence bond, come to the same answer to explain those atypical bonds. PMID:27608996

  3. Ferromagnetism of magnetic impurities coupled indirectly via conduction electrons: Insights from various theoretical approaches

    NASA Astrophysics Data System (ADS)

    Titvinidze, Irakli; Schwabe, Andrej; Potthoff, Michael

    2014-07-01

    The magnetic ground-state properties of the periodic Anderson model with a regular depletion of the correlated sites are analyzed within different theoretical approaches. We consider the model on the one-dimensional chain and on the two-dimensional square lattice with hopping between nearest neighbors. At half-filling and with correlated impurities present at every second site, the depleted Anderson lattice is the most simple system where the indirect magnetic coupling mediated by the conduction electrons is ferromagnetic. We discuss the underlying electronic structure and the possible mechanisms that result in ferromagnetic long-range order. To this end, different numerical and analytical concepts are applied to the depleted Anderson and also to the related depleted Kondo lattice and are contrasted with each other. This includes numerical approaches, i.e., Hartree-Fock theory, density-matrix renormalization and dynamical mean-field theory, as well as analytical concepts, namely a variant of the Lieb-Mattis theorem and the concept of flat-band ferromagnetism, and, finally, perturbative approaches, i.e., the effective RKKY exchange in the limit of weak coupling and the "inverse indirect magnetic exchange" in the limit of strong coupling between the conduction band and the impurities.

  4. Nonlinear modeling of ferroelectric-ferromagnetic composites based on condensed and finite element approaches (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom

    2015-04-01

    Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.

  5. Conductance and Fano factor in normal/ferromagnetic/normal bilayer graphene junction.

    PubMed

    Rashidian, Z; Mojarabian, F M; Bayati, P; Rashedi, G; Ueda, A; Yokoyama, T

    2014-06-25

    We theoretically investigate the transport properties of bilayer graphene junctions, where the ferromagnetic strips are attached to the middle region of the graphene sheet. In these junctions, we can control the band gap and the band structure of the bilayer graphene by using the bias voltage between the layers and the exchange field induced on the layers. The conductance and Fano factor (F ) are calculated by the Landauer–Büttiker formula. It is found that when the voltage between the layers or the exchange field are tuned, the pseudodiffusive (F = 1/3) transport turns into tunneling (F = 1) or ballistic transport (F = 0). By tuning the potential difference between the layers, one can control the spin polarization of the current. PMID:24891499

  6. An Analytical Approach towards Passive Ferromagnetic Shimming Design for a High-Resolution NMR Magnet

    PubMed Central

    Li, Frank X.; Voccio, John P.; Cheol Ahn, Min; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu

    2015-01-01

    This paper presents a warm bore ferromagnetic shimming design for a high resolution NMR magnet based on spherical harmonic coefficient reduction techniques. The passive ferromagnetic shimming along with the active shimming is a critically important step to improve magnetic field homogeneity for an NMR Magnet. Here, the technique is applied to an NMR magnet already designed and built at the MIT's Francis Bitter Magnet Lab. Based on the actual magnetic field measurement data, a total of twenty-two low order spherical harmonic coefficients is derived. Another set of spherical harmonic coefficients was calculated for iron pieces attached to a 54 mm diameter and 72 mm high tube. To improve the homogeneity of the magnet, a multiple objective linear programming method was applied to minimize unwanted spherical harmonic coefficients. A ferromagnetic shimming set with seventy-four iron pieces was presented. Analytical comparisons are made for the expected magnetic field after Ferromagnetic shimming. The theoretically reconstructed magnetic field plot after ferromagnetic shimming has shown that the magnetic field homogeneity was significantly improved. PMID:26516300

  7. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2016-07-01

    In the current paper, a nonlinear differential algebraic approach is proposed for the modeling of hysteretic dynamics of polycrystalline ferromagnetic materials. The model is constructed by employing a phenomenological theory to the magnetization orientation switching. For the modeling of hysteresis in polycrystalline ferromagnetic materials, the single crystal model is applied to each magnetic domain along its own principal axis. The overall dynamics of the polycrystalline materials is obtained by taking a weighted combination of the dynamics of all magnetic domains. The weight function for the combination is taken as the distribution function of the principal axes. Numerical simulations are performed and comparisons with its experimental counterparts are presented. The hysteretic dynamics caused by orientation switching processes is accurately captured by the proposed model. Minor hysteresis loops associated with partial-amplitude loadings are also captured. Rate dependence of the hysteresis loops are inherently incorporated into the model due to its differential nature.

  8. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach

    SciTech Connect

    He, Lianyi

    2014-12-15

    We investigate the ferromagnetic transition in repulsive Fermi gases at zero temperature with upper branch and effective range effects. Based on a general effective Lagrangian that reproduces precisely the two-body s-wave scattering phase shift, we obtain a nonperturbative expression of the energy density as a function of the polarization by using the Bethe–Goldstone ladder resummation. For hard sphere potential, the predicted critical gas parameter k{sub F}a=0.816 and the spin susceptibility agree well with the results from fixed-node diffusion Monte Carlo calculations. In general, positive and negative effective ranges have opposite effects on the critical gas parameter k{sub F}a: While a positive effective range reduces the critical gas parameter, a negative effective range increases it. For attractive potential or Feshbach resonance model, the many-body upper branch exhibits an energy maximum at k{sub F}a=α with α=1.34 from the Bethe–Goldstone ladder resummation, which is qualitatively consistent with experimental results. The many-body T-matrix has a positive-energy pole for k{sub F}a>α and it becomes impossible to distinguish the bound state and the scattering state. These positive-energy bound states become occupied and therefore the upper branch reaches an energy maximum at k{sub F}a=α. In the zero range limit, there exists a narrow window (0.86ferromagnetic phase. At sufficiently large negative effective range, the ferromagnetic phase disappears. On the other hand, the appearance of positive-energy bound state resonantly enhances the two-body decay rate around k{sub F}a=α and may prevent the study of equilibrium phases and ferromagnetism of the upper branch Fermi gas. - Highlights: • Nonperturbative interaction energy is obtained within the Bethe–Goldstone ladder resummation approach. • Positive and negative effective ranges have opposite effects on the critical gas parameter. • The upper branch Fermi gas exhibits

  9. Wave Function Mixing and g-Factors in Narrow Gap Ferromagnetic III-V Dilute Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Sanders, G. D.; Stanton, C. J.

    2002-03-01

    We present a theory for wave-function mixing and g-factors in ferromagnetic p-doped narrow gap In_1-xMn_xAs dilute magnetic semiconductor alloys in an ultrahigh external magnetic field, B. We generalize an 8 band Pidgeon-Brown model to include (i) the wavevector, k, dependence of the electronic states along B, (ii) s-d and p-d exchange interactions with localized Mn d-electrons, and (iii) finite magnetic moment in the ferromagnetic state. The complex valence band structure at finite k plays an important role in the cyclotron resonance spectra. We look at the band-mixing and spin-dependence of the wave functions as a function of the wavevector, magnetic field (0-100T), temperature (4 K to 290 K), and Mn concentration (0 to 12 %). From this, we can extract magnetic field dependent g-factors. The sensitivity of the band mixing and g-factors to the s-d and p-d exchange interactions is also investigated. Finally, we look at the effect of band-mixing on optical properties such as the polarization dependence of the absorption and luminescence.

  10. The slave-fermion approach of spin fluctuations in ferromagnet metals

    NASA Astrophysics Data System (ADS)

    Hu, C. D.

    2015-11-01

    In this work we propose a method to treat the spin fluctuations in itinerant ferromagnets. It is able to do calculation with a convergent series. The slave fermion method is applied to separate the charge (denoted by fermions) and spin (denoted by bosons) degrees of freedom. The spin operators are then replaced by the Schwinger boson fields. This way, the interaction term in the model can be reduced to a very simple form and can be teated without difficulty. Finally the equations of motion are derived in order to obtain the forms of Green's functions of fermions and bosons. The result is applied to the calculation of resistivity as a function temperature.

  11. Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes: Green's function approach

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou; Zhai, Liang-Jun; Hua, Ling-Ling

    2016-01-01

    The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated.

  12. Two-dimensional magnetic modeling of ferromagnetic materials by using a neural networks based hybrid approach

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    This paper presents a hybrid neural network approach to model magnetic hysteresis at macro-magnetic scale. That approach aims to be coupled together with numerical treatments of magnetic hysteresis such as FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, allowing a complete computer simulation with acceptable run times. The proposed Hybrid Neural System consists of four inputs representing the magnetic induction and magnetic field components at each time step and it is trained by 2D and scalar measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the Hybrid Neural System returns the predicted value of the field H at the same time step. Within the Hybrid Neural System, a suitably trained neural network is used for predicting the hysteretic behavior of the material to be modeled. Validations with experimental tests and simulations for symmetric, non-symmetric and minor loops are presented.

  13. From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetism and Beyond --- An Introduction to Ferromagnetism in the Hubbard Model ---

    NASA Astrophysics Data System (ADS)

    Tasaki, H.

    1998-04-01

    It is believed that strong ferromagnetic interactions in some solids are generated by subtle interplay between quantum many-body effects and spin-independent Coulomb interactions between electrons. It is a challenging problem to verify this scenario in the Hubbard model, which is an idealized model for strongly interacting electrons in a solid. Nagaoka's ferromagnetism is a well-known rigorous example of ferromagnetism in the Hubbard model. It deals with the limiting situation in which there is one fewer electron than in the half-filling and the on-site Coulomb interaction is infinitely large. There are relatively new rigorous examples of ferromagnetism in Hubbard models called flat-band ferromagnetism. Flat-band ferromagnetism takes place in carefully prepared models in which the lowest bands (in the single-electron spectra) are ``flat.'' Usually, these two approaches are regarded as two complimentary routes to ferromagnetism in the Hubbard model. In the present paper we describe Nagaoka's ferromagnetism and flat-band ferromagnetism in detail, giving all the necessary background as well as complete (but elementary) mathematical proofs. By studying an intermediate model called the long-range hopping model, we also demonstrate that there is indeed a deep relation between these two seemingly different approaches to ferromagnetism. We further discuss some attempts to go beyond these approaches. We briefly discuss recent rigorous example of ferromagnetism in the Hubbard model which has neither infinitely large parameters nor completely flat bands. We give preliminary discussion regarding possible experimental realizations of the (nearly-)flat-band ferromagnetism. Finally, we focus on some theoretical attempts to understand metallic ferromagnetism. We discuss three artificial one-dimensional models in which the existence of metallic ferromagnetism can be easily proved. We have tried to make the present paper as self-contained as possible, keeping in mind readers who are

  14. Ferromagnetic Microswimmers

    NASA Astrophysics Data System (ADS)

    Ogrin, Feodor Y.; Petrov, Peter G.; Winlove, C. Peter

    2008-05-01

    We propose a model for a novel artificial low Reynolds number swimmer, based on the magnetic interactions of a pair of ferromagnetic particles: one with hard and the other with soft magnetic properties, connected by a linear spring. Using a computational model, we analyze the behavior of the system and demonstrate that for realistic values of the parameters involved, the swimmer is capable of self-propelling with average speeds of the order of hundreds of micrometers per second.

  15. Ferromagnetic microswimmers.

    PubMed

    Ogrin, Feodor Y; Petrov, Peter G; Winlove, C Peter

    2008-05-30

    We propose a model for a novel artificial low Reynolds number swimmer, based on the magnetic interactions of a pair of ferromagnetic particles: one with hard and the other with soft magnetic properties, connected by a linear spring. Using a computational model, we analyze the behavior of the system and demonstrate that for realistic values of the parameters involved, the swimmer is capable of self-propelling with average speeds of the order of hundreds of micrometers per second. PMID:18518640

  16. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach

    DOE PAGESBeta

    He, Lianyi

    2014-09-19

    In this study, we investigate the ferromagnetic transition in repulsive Fermi gases at zero temperature with upper branch and effective range effects. Based on a general effective Lagrangian that reproduces precisely the two-body ss-wave scattering phase shift, we obtain a nonperturbative expression of the energy density as a function of the polarization by using the Bethe–Goldstone ladder resummation. For hard sphere potential, the predicted critical gas parameter kFa = 0.816 and the spin susceptibility agree well with the results from fixed-node diffusion Monte Carlo calculations. In general, positive and negative effective ranges have opposite effects on the critical gas parametermore » kFa: While a positive effective range reduces the critical gas parameter, a negative effective range increases it. For attractive potential or Feshbach resonance model, the many-body upper branch exhibits an energy maximum at kFa = α with α = 1.34 from the Bethe–Goldstone ladder resummation, which is qualitatively consistent with experimental results. The many-body T-matrix has a positive-energy pole for kFa > α and it becomes impossible to distinguish the bound state and the scattering state. These positive-energy bound states become occupied and therefore the upper branch reaches an energy maximum at kFa = α. In the zero range limit, there exists a narrow window (0.86< kFa < 1.56) for the ferromagnetic phase. At sufficiently large negative effective range, the ferromagnetic phase disappears. On the other hand, the appearance of positive-energy bound state resonantly enhances the two-body decay rate around kFa = α and may prevent the study of equilibrium phases and ferromagnetism of the upper branch Fermi gas.« less

  17. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach

    SciTech Connect

    He, Lianyi

    2014-09-19

    In this study, we investigate the ferromagnetic transition in repulsive Fermi gases at zero temperature with upper branch and effective range effects. Based on a general effective Lagrangian that reproduces precisely the two-body ss-wave scattering phase shift, we obtain a nonperturbative expression of the energy density as a function of the polarization by using the Bethe–Goldstone ladder resummation. For hard sphere potential, the predicted critical gas parameter kFa = 0.816 and the spin susceptibility agree well with the results from fixed-node diffusion Monte Carlo calculations. In general, positive and negative effective ranges have opposite effects on the critical gas parameter kFa: While a positive effective range reduces the critical gas parameter, a negative effective range increases it. For attractive potential or Feshbach resonance model, the many-body upper branch exhibits an energy maximum at kFa = α with α = 1.34 from the Bethe–Goldstone ladder resummation, which is qualitatively consistent with experimental results. The many-body T-matrix has a positive-energy pole for kFa > α and it becomes impossible to distinguish the bound state and the scattering state. These positive-energy bound states become occupied and therefore the upper branch reaches an energy maximum at kFa = α. In the zero range limit, there exists a narrow window (0.86< kFa < 1.56) for the ferromagnetic phase. At sufficiently large negative effective range, the ferromagnetic phase disappears. On the other hand, the appearance of positive-energy bound state resonantly enhances the two-body decay rate around kFa = α and may prevent the study of equilibrium phases and ferromagnetism of the upper branch Fermi gas.

  18. Heterogeneous Factor Analysis Models: A Bayesian Approach.

    ERIC Educational Resources Information Center

    Ansari, Asim; Jedidi, Kamel; Dube, Laurette

    2002-01-01

    Developed Markov Chain Monte Carlo procedures to perform Bayesian inference, model checking, and model comparison in heterogeneous factor analysis. Tested the approach with synthetic data and data from a consumption emotion study involving 54 consumers. Results show that traditional psychometric methods cannot fully capture the heterogeneity in…

  19. A strong ferroelectric ferromagnet created by means of spin-lattice coupling.

    SciTech Connect

    Lee, J. H.; Fang, L.; Vlahos, E.; Ke, X.; Jung, Y.W.; Fitting Kourkaoutis, L.; Kim, J. W.; Ryan, P.; Heeg, T.; Roeckerath, M.; Goian, V.; Bernhagen, M.; Uecker, R.; Hammel, P.C.; Rabe, K. M.; Kamba, S.; Schubert, J.; Freeland, J.W.; Muller, D.A.; Fennie, C.J.; Schiffer, P.; Gopalan, V.; Johnston-Halperin, E.; Schlom, D. G.

    2010-08-19

    Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today. Recently, however, a new route to ferroelectric ferromagnets was proposed by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO{sub 3}, was predicted to exhibit strong ferromagnetism (spontaneous magnetization, {approx}7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, {approx}10 {micro}C cm{sup -2}) simultaneously under large biaxial compressive strain. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high

  20. Verification of modified Jiles-Atherton model for determination of hysteresis behavior of materials with two ferromagnetic phases

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Jiles, David

    2013-03-01

    Robust theoretical models of hysteresis are important for describing the properties of ferromagnetic materials. Of the available hysteresis models, the J-A model is widely studied. Efforts have been made to modify and extend the applicability of this model and to improve its accuracy in accounting for different conditions that affect the magnetic state of ferromagnetic materials, such as stress. Recently, the J-A model has been extended to describe the ferromagnetic hysteresis in two-phase magnetic materials. Modeling hysteresis of multi-phase ferromagnetic materials is crucial especially due to the need to develop high performance composite magnetic structures. In this study, the extension of the J-A to accommodate materials with two ferromagnetic phases is experimentally verified. The approach to extracting of the J-A model parameters including saturation magnetization (Ms) , domain coupling factor (α) , domain density (a), reversibility (c) and pinning coefficient (k) in two-phase materials will be presented.

  1. Ferromagnetic nanorings

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Hayward, T. J.; Llandro, J.; Schackert, F.; Morecroft, D.; Bland, J. A. C.; Kläui, M.; Laufenberg, M.; Backes, D.; Rüdiger, U.; Castaño, F. J.; Ross, C. A.; Heyderman, L. J.; Nolting, F.; Locatelli, A.; Faini, G.; Cherifi, S.; Wernsdorfer, W.

    2007-06-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events.

  2. Ferromagnetism in ruthenate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Mravlje, Jernej; Millis, Andrew J.

    2014-03-01

    In apparent contrast to the usual rule that stronger correlations favor magnetism and other forms of order, while weaker correlations lead to Fermi liquid metals, it has been experimentally established that CaRuO3, a more correlated material, is a paramagnetic metal with a Fermi liquid ground state while SrRuO3, which is less strongly correlated, is ferromagnetic below a Curie temperature of 160K. We present density functional plus dynamical mean field theory calculations which resolve this conundrum. We show that in these materials ferromagnetism occurs naturally for cubic perovskite systems at moderate correlations but is suppressed both by proximity to the Mott insulating phase and by increasing the amplitude of a GdFeO3 distortion. These factors are strongly related to the differences between Ca and Sr ruthenates and are used as the keys to solve the problem. Placement of the ruthenate materials on the metal-insulator phase diagram and comparison to previous works on the Ruddlesden-Popper materials are also discussed. Supported by the Basic Energy Sciences Program of the US Department of Energy under grant DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program.

  3. Ferromagnet / superconductor oxide superlattices

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  4. Turning antiferromagnetic Sm0.34Sr0.66MnO3 into a 140 K ferromagnet using a nanocomposite strain tuning approach

    NASA Astrophysics Data System (ADS)

    Suwardi, Ady; Prasad, Bhagwati; Lee, Shinbuhm; Choi, Eun-Mi; Lu, Ping; Zhang, Wenrui; Li, Leigang; Blamire, Mark; Jia, Quanxi; Wang, Haiyan; Yao, Kui; MacManus-Driscoll, Judith L.

    2016-04-01

    Ferromagnetic insulating thin films of Sm0.34Sr0.66MnO3 (SSMO) on (001) SrTiO3 substrates with a TC of 140 K were formed in self-assembled epitaxial nanocomposite thin films. High TC ferromagnetism was enabled through vertical epitaxy of the SSMO matrix with embedded, stiff, ~40 nm Sm2O3 nanopillars giving a c/a ratio close to 1 in the SSMO. In contrast, bulk and single phase SSMO films of the same composition have much stronger tetragonal distortion, the bulk having c/a >1 and the films having c/a <1, both of which give rise to antiferromagnetic coupling. The work demonstrates a unique and simple route to creating ferromagnetic insulators for spintronics applications where currently available ferromagnetic insulators are either hard to grow and/or have very low TC.

  5. Turning antiferromagnetic Sm(0.34)Sr(0.66)MnO3 into a 140 K ferromagnet using a nanocomposite strain tuning approach.

    PubMed

    Suwardi, Ady; Prasad, Bhagwati; Lee, Shinbuhm; Choi, Eun-Mi; Lu, Ping; Zhang, Wenrui; Li, Leigang; Blamire, Mark; Jia, Quanxi; Wang, Haiyan; Yao, Kui; MacManus-Driscoll, Judith L

    2016-04-21

    Ferromagnetic insulating thin films of Sm(0.34)Sr(0.66)MnO3 (SSMO) on (001) SrTiO3 substrates with a T(C) of 140 K were formed in self-assembled epitaxial nanocomposite thin films. High T(C) ferromagnetism was enabled through vertical epitaxy of the SSMO matrix with embedded, stiff, ∼40 nm Sm2O3 nanopillars giving a c/a ratio close to 1 in the SSMO. In contrast, bulk and single phase SSMO films of the same composition have much stronger tetragonal distortion, the bulk having c/a >1 and the films having c/a <1, both of which give rise to antiferromagnetic coupling. The work demonstrates a unique and simple route to creating ferromagnetic insulators for spintronics applications where currently available ferromagnetic insulators are either hard to grow and/or have very low T(C). PMID:27020599

  6. Intrinsic Gilbert Damping in Metallic Ferromagnets in Ballistic Regime and the Effect of Inelastic Electron Scattering from Magnetic Moments: A Time Dependent Keldysh Green Function Approach

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Kioussis, Nicholas

    Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734

  7. Optically Detected Ferromagnetic Resonance in Metallic Ferromagnets Via Off-Resonant Detection of Nitrogen Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Page, Michael R.; Bhallamudi, Vidya P.; Schulze, Joe; Purser, Carola M.; Manuilov, Sergei; Wolfe, Christopher; Brangham, Jack T.; Yang, Fengyuan; Hammel, P. Chris

    We report optical detection of ferromagnetic resonance in thin film metallic ferromagnets using a recently discovered approach employing nitrogen vacancy centers in nanodiamonds. While conventional optically detected magnetic resonance measures magnetic fields through their impact on the magnetic resonance frequency of the nitrogen vacancy center, we measure a change in the nitrogen vacancy center photoluminescence at the ferromagnet's resonance condition without need to work at the NV resonance frequency. This measurement technique allows sensitive, local detection of ferromagnetic resonance and can enable the study of magnetic dynamics at the nanoscale in a wide range of materials. While this measurement protocol was first reported in the study of ferromagnetic resonance in YIG, here we demonstrate the measurement in commonly used metallic ferromagnets to establish the generality of the technique and open the possibility of measuring nanoscale patterned devices and magnetic textures based on metallic ferromagnets of both commercial and scientific interest.

  8. A Bayesian Approach for Multigroup Nonlinear Factor Analysis.

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2002-01-01

    Developed a Bayesian approach for a general multigroup nonlinear factor analysis model that simultaneously obtains joint Bayesian estimates of the factor scores and the structural parameters subjected to some constraints across different groups. (SLD)

  9. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  10. Assessing Teacher Manageability: A Factor Analytic Approach.

    ERIC Educational Resources Information Center

    Safran, Stephen P.; And Others

    1988-01-01

    This study analyzed 182 educators' beliefs about their ability to manage maladaptive classroom behaviors. A factor analysis of teacher manageability ratings demonstrated that, by changing the method used to group behaviors, the structure of a teacher checklist also changes. The most difficult behavior to manage was "lack of communication."…

  11. Learning Approaches, Demographic Factors to Predict Academic Outcomes

    ERIC Educational Resources Information Center

    Nguyen, Tuan Minh

    2016-01-01

    Purpose: The purpose of this paper is to predict academic outcome in math and math-related subjects using learning approaches and demographic factors. Design/Methodology/Approach: ASSIST was used as the instrumentation to measure learning approaches. The study was conducted in the International University of Vietnam with 616 participants. An…

  12. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    PubMed

    Stamopoulos, D; Aristomenopoulou, E

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  13. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-08-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  14. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  15. Structural factoring approach for analyzing stochastic networks

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  16. Ferromagnetic enhanced inductive plasma sources

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2013-07-01

    The subject of this paper is the review of inductively coupled plasma (ICP) sources enhanced with ferromagnetic cores, FMICP, found in various applications, including plasma fusion, space propulsion, light sources, plasma chemistry and plasma processing of materials. The history of FMICP, early attempts for their realization, some recent developments and examples of successful FMICP devices are given here. A comparative study of FMICPs with conventional ICPs demonstrates their certain advantages in power transfer efficiency, power factor and their ability to operate without rf plasma potentials at low plasma densities and with small gaps, while effectively controlling plasma density profile.

  17. Orbital origin of the electrical conduction in ferromagnetic atomic-size contacts: Insights from shot noise measurements and theoretical simulations

    NASA Astrophysics Data System (ADS)

    Vardimon, R.; Matt, M.; Nielaba, P.; Cuevas, J. C.; Tal, O.

    2016-02-01

    With the goal of elucidating the nature of spin-dependent electronic transport in ferromagnetic atomic contacts, we present here a combined experimental and theoretical study of the conductance and shot noise of metallic atomic contacts made of the 3 d ferromagnetic materials Fe, Co, and Ni. For comparison, we also present the corresponding results for the noble metal Cu. Conductance and shot noise measurements, performed using a low-temperature break-junction setup, show that in these ferromagnetic nanowires, (i) there is no conductance quantization of any kind, (ii) transport is dominated by several partially open conduction channels, even in the case of single-atom contacts, and (iii) the Fano factor of large contacts saturates to values that clearly differ from those of monovalent (nonmagnetic) metals. We rationalize these observations with the help of a theoretical approach that combines molecular dynamics simulations to describe the junction formation with nonequilibrium Green's function techniques to compute the transport properties within the Landauer-Büttiker framework. Our theoretical approach successfully reproduces all the basic experimental results and it shows that all the observations can be traced back to the fact that the d bands of the minority-spin electrons play a fundamental role in the transport through ferromagnetic atomic-size contacts. These d bands give rise to partially open conduction channels for any contact size, which in turn lead naturally to the different observations described above. Thus, the transport picture for these nanoscale ferromagnetic wires that emerges from the ensemble of our results is clearly at variance with the well established conduction mechanism that governs the transport in macroscopic ferromagnetic wires, where the d bands are responsible for the magnetism but do not take part in the charge flow. These insights provide a fundamental framework for ferromagnetic-based spintronics at the nanoscale.

  18. Investigation of the field-induced ferromagnetic phase transition in spin-polarized neutron matter: A lowest order constrained variational approach

    SciTech Connect

    Bordbar, G. H.; Rezaei, Z.; Montakhab, Afshin

    2011-04-15

    In this article, the lowest order constrained variational method is used to investigate the magnetic properties of spin-polarized neutron matter in the presence of strong magnetic field at zero temperature employing the AV{sub 18} potential. Our results indicate that a ferromagnetic phase transition is induced by a strong magnetic field with strength greater than 10{sup 18} G, leading to a partial spin polarization of the neutron matter. It is also shown that the equation of state of neutron matter in the presence of a magnetic field is stiffer than in the absence of a magnetic field.

  19. E-Education Applications: Human Factors and Innovative Approaches

    ERIC Educational Resources Information Center

    Ghaoui, Claude, Ed.

    2004-01-01

    "E-Education Applications: Human Factors and Innovative Approaches" enforces the need to take multi-disciplinary and/or inter-disciplinary approaches, when solutions for e-education (or online-, e-learning) are introduced. By focusing on the issues that have impact on the usability of e-learning, the book specifically fills-in a gap in this area,…

  20. Human factors systems approach to healthcare quality and patient safety

    PubMed Central

    Carayon, Pascale; Wetterneck, Tosha B.; Rivera-Rodriguez, A. Joy; Hundt, Ann Schoofs; Hoonakker, Peter; Holden, Richard; Gurses, Ayse P.

    2013-01-01

    Human factors systems approaches are critical for improving healthcare quality and patient safety. The SEIPS (Systems Engineering Initiative for Patient Safety) model of work system and patient safety is a human factors systems approach that has been successfully applied in healthcare research and practice. Several research and practical applications of the SEIPS model are described. Important implications of the SEIPS model for healthcare system and process redesign are highlighted. Principles for redesigning healthcare systems using the SEIPS model are described. Balancing the work system and encouraging the active and adaptive role of workers are key principles for improving healthcare quality and patient safety. PMID:23845724

  1. A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting

    SciTech Connect

    Li, Xiaoye Sherry; Shao, Meiyue

    2009-06-25

    We present a new supernode-based incomplete LU factorization method to construct a preconditioner for solving sparse linear systems with iterative methods. The new algorithm is primarily based on the ILUTP approach by Saad, and we incorporate a number of techniques to improve the robustness and performance of the traditional ILUTP method. These include the new dropping strategies that accommodate the use of supernodal structures in the factored matrix. We present numerical experiments to demonstrate that our new method is competitive with the other ILU approaches and is well suited for today's high performance architectures.

  2. An extreme comparison of two downscaling approaches using Bayes factors

    NASA Astrophysics Data System (ADS)

    Chun, K.; Wheater, H. S.; Onof, C. J.

    2011-12-01

    Extreme rainfall events are the long-standing hydrological interest of flood defence and water resources management. Although traditional extreme value theory allows stationary extreme assessment, recent development of rainfall downscaling approaches driven by projections of Global Climate models (GCMs) facilitates non-stationary extreme assessments. Additionally, using stochastic downscaling, the downscaled rainfall series can be probabilistic so that the inherent uncertainty of the used approaches can be explicitly presented. However, there is little work on performance benchmarking of extremes simulated by alternative downscaling approaches. In the United Kingdom (UK), two independently developed downscaling methodologies are (1) the UK climate projections (UKCP09) weather generators and (2) the Generalised linear model (GLM) approach. Both downscaling approaches can provide daily rainfall series at catchment scale. As a quantitative benchmark, Bayes factors are proposed as a tool for comparing ensemble extremes generated from the two UK models. Using Monte Carlo Integration and Laplace's approximation, Bayes factors for the 30th largest annual event within a 30 year period of the two methods are approximated for six catchments in the UK. Despite their similar average monthly statistics (i.e. mean, variance, autocorrelation and skewness), results show that the preferred approach for extreme results is catchment specific. The implications and possible interpretations of diverse extreme results from different downscaling approaches are discussed.

  3. Spin-1 J1 -J2 -J3 ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice: A bosonic approach

    NASA Astrophysics Data System (ADS)

    Carvalho, D. C.; Pires, A. S. T.; Mól, L. A. S.

    2016-06-01

    We examine the phase diagram of the spin-1 J1 -J2 -J3 ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice, in which J1 is the ferromagnetic exchange interaction between nearest neighbors, J2 is the antiferromagnetic exchange interaction between next-nearest neighbors and J3 is the antiferromagnetic exchange interaction between next-next-nearest neighbors. Using the bond-operator formalism, we investigate the phase transitions between the disordered paramagnetic phase and the ordered ones. We show that the nature of the quantum phase transitions changes as the frustration parameters (J2/J1, J3/J1) are varied. The zero-temperature phase diagram exhibits second- and first-order transitions, depending on the energy gap behavior. Remarkably, we find a disordered nonmagnetic phase, even in the absence of a crystal field, which is suggested to be a quantum spin liquid candidate. We also depict the phase diagram at finite temperature for some values of crystal field and frustration parameters.

  4. A Transformational Approach to Slip-Slide Factoring

    ERIC Educational Resources Information Center

    Steckroth, Jeffrey

    2015-01-01

    In this "Delving Deeper" article, the author introduces the slip-slide method for solving Algebra 1 mathematics problems. This article compares the traditional method approach of trial and error to the slip-slide method of factoring. Tools that used to be taken for granted now make it possible to investigate relationships visually,…

  5. Safer approaches and landings: A multivariate analysis of critical factors

    NASA Astrophysics Data System (ADS)

    Heinrich, Durwood J.

    The approach-and-landing phases of flight represent 27% of mission time while resulting in 61 of the accidents and 39% of the fatalities. The landing phase itself represents only 1% of flight time but claims 45% of the accidents. Inadequate crew situation awareness (SA), crew resource management (CRM), and crew decision-making (DM) have been implicated in 51%, 63%, and 73% respectively of these accidents. The human factors constructs of SA, CRM, and DM were explored; a comprehensive definition of SA was proposed; and a "proactive defense" safety strategy was recommended. Data from a 1997 analysis of worldwide fatal accidents by the Flight Safety Foundation (FSF) Approach-and-Landing Accident Reduction (ALAR) Task Force was used to isolate crew- and weather-related causal factors that lead to approach-and-landing accidents (ALAs). Logistic regression and decision tree analysis were used on samplings of NASA's Aviation Safety Reporting System (ASRS) incident records ("near misses") and the National Transportation Safety Board's (NTSB) accident reports to examine hypotheses regarding factors and factor combinations that can dramatically increase the opportunity for accidents. An effective scale of risk factors was introduced for use by crews to proactively counter safety-related error-chain situations.

  6. A Quasi-Likelihood Approach to Nonnegative Matrix Factorization.

    PubMed

    Devarajan, Karthik; Cheung, Vincent C K

    2016-08-01

    A unified approach to nonnegative matrix factorization based on the theory of generalized linear models is proposed. This approach embeds a variety of statistical models, including the exponential family, within a single theoretical framework and provides a unified view of such factorizations from the perspective of quasi-likelihood. Using this framework, a family of algorithms for handling signal-dependent noise is developed and its convergence proved using the expectation-maximization algorithm. In addition, a measure to evaluate the goodness of fit of the resulting factorization is described. The proposed methods allow modeling of nonlinear effects using appropriate link functions and are illustrated using an application in biomedical signal processing. PMID:27348511

  7. Standardized approach for developing probabilistic exposure factor distributions

    SciTech Connect

    Maddalena, Randy L.; McKone, Thomas E.; Sohn, Michael D.

    2003-03-01

    The effectiveness of a probabilistic risk assessment (PRA) depends critically on the quality of input information that is available to the risk assessor and specifically on the probabilistic exposure factor distributions that are developed and used in the exposure and risk models. Deriving probabilistic distributions for model inputs can be time consuming and subjective. The absence of a standard approach for developing these distributions can result in PRAs that are inconsistent and difficult to review by regulatory agencies. We present an approach that reduces subjectivity in the distribution development process without limiting the flexibility needed to prepare relevant PRAs. The approach requires two steps. First, we analyze data pooled at a population scale to (1) identify the most robust demographic variables within the population for a given exposure factor, (2) partition the population data into subsets based on these variables, and (3) construct archetypal distributions for each subpopulation. Second, we sample from these archetypal distributions according to site- or scenario-specific conditions to simulate exposure factor values and use these values to construct the scenario-specific input distribution. It is envisaged that the archetypal distributions from step 1 will be generally applicable so risk assessors will not have to repeatedly collect and analyze raw data for each new assessment. We demonstrate the approach for two commonly used exposure factors--body weight (BW) and exposure duration (ED)--using data for the U.S. population. For these factors we provide a first set of subpopulation based archetypal distributions along with methodology for using these distributions to construct relevant scenario-specific probabilistic exposure factor distributions.

  8. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements

    SciTech Connect

    Boero, G.; Rusponi, S.; Kavich, J.; Rizzini, A. Lodi; Piamonteze, C.; Nolting, F.; Tieg, C.; Thiele, J.-U.; Gambardella, P.

    2009-12-15

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni{sub 73}Fe{sub 18}Gd{sub 7}Co{sub 2}) at the L{sub 3}/L{sub 2}-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/{radical}(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  9. A rough set approach to analyze factors affecting landslide incidence

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Zeng, Z. P.; Liu, H. Q.; Wang, H. B.

    2011-09-01

    Landslide incidence can be affected by a variety of environmental factors. Past studies have focused on the identification of these environmental factors, but most are based on statistical analysis. In this paper, spatial information techniques were applied to a case study of landslide occurrence in China by combining remote sensing and geographical information systems with an innovative data mining approach (rough set theory) and statistical analyses. Core and reducts of data attributes were obtained by data mining based on rough set theory. Rules for the impact factors, which can contribute to landslide occurrence, were generated from the landslide knowledge database. It was found that all 11 rules can be classified as both exact and approximate rules. In terms of importance, three main rules were then extracted as the key decision-making rules for landslide predictions. Meanwhile, the relationship between landslide occurrence and environmental factors was statistically analyzed to validate the accuracy of rules extracted by the rough set-based method. It was shown that the rough set-based approach is of use in analyzing environmental factors affecting landslide occurrence, and thus facilitates the decision-making process for landslide prediction.

  10. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  11. Precessing Ferromagnetic Needle Magnetometer

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, Derek F.; Sushkov, Alexander O.; Budker, Dmitry

    2016-05-01

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, N ℏ≫I Ω (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin N ℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t-3 /2. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.

  12. Precessing Ferromagnetic Needle Magnetometer.

    PubMed

    Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry

    2016-05-13

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics. PMID:27232012

  13. Metallic quantum ferromagnets

    NASA Astrophysics Data System (ADS)

    Brando, M.; Belitz, D.; Grosche, F. M.; Kirkpatrick, T. R.

    2016-04-01

    An overview of quantum phase transitions (QPTs) in metallic ferromagnets, discussing both experimental and theoretical aspects, is given. These QPTs can be classified with respect to the presence and strength of quenched disorder: Clean systems generically show a discontinuous, or first-order, QPT from a ferromagnetic to a paramagnetic state as a function of some control parameter, as predicted by theory. Disordered systems are much more complicated, depending on the disorder strength and the distance from the QPT. In many disordered materials the QPT is continuous, or second order, and Griffiths-phase effects coexist with QPT singularities near the transition. In other systems the transition from the ferromagnetic state at low temperatures is to a different type of long-range order, such as an antiferromagnetic or a spin-density-wave state. In still other materials a transition to a state with glasslike spin dynamics is suspected. The review provides a comprehensive discussion of the current understanding of these various transitions and of the relation between experiment and theory.

  14. Screened moments and absence of ferromagnetism in FeAl

    NASA Astrophysics Data System (ADS)

    Galler, A.; Taranto, C.; Wallerberger, M.; Kaltak, M.; Kresse, G.; Sangiovanni, G.; Toschi, A.; Held, K.

    2015-11-01

    While the stoichiometric intermetallic compound FeAl is found to be paramagnetic in experiment, standard band-theory approaches predict the material to be ferromagnetic. We show that this discrepancy can be overcome by a better treatment of electronic correlations with density-functional plus dynamical mean-field theory. Our results show no ferromagnetism down to 100 K and since the susceptibility is decreasing at the lowest temperatures studied we also do not expect ferromagnetism at even lower temperatures. This behavior is found to originate from temporal quantum fluctuations that screen short-lived local magnetic moments of 1.6 μB on Fe.

  15. A Factor Graph Approach to Automated GO Annotation.

    PubMed

    Spetale, Flavio E; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar

    2016-01-01

    As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum. PMID:26771463

  16. A Factor Graph Approach to Automated GO Annotation

    PubMed Central

    Spetale, Flavio E.; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar

    2016-01-01

    As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum. PMID:26771463

  17. Triplet supercurrent in ferromagnetic Josephson junctions by spin injection

    NASA Astrophysics Data System (ADS)

    Mal'shukov, A. G.; Brataas, Arne

    2012-09-01

    We show that injecting nonequilibrium spins into the superconducting leads strongly enhances the stationary Josephson current through a superconductor-ferromagnet-superconductor junction. The resulting long-range supercurrent through a ferromagnet is carried by triplet Cooper pairs that are formed in s-wave superconductors by the combined effects of spin injection and exchange interaction. We quantify the exchange interaction in terms of Landau Fermi-liquid factors. The magnitude and direction of the long-range Josephson current can be manipulated by varying the angles of the injected polarizations with respect to the magnetization in the ferromagnet.

  18. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  19. Ultrafast magnetization dynamics in ferromagnetic thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Guan, Yongfeng

    With the development of magnetic information storage technology, especially when data rates approach 1 GHz and above, new insight into the magnetization dynamics in ferromagnetic materials becomes a more pressing need. In this thesis, our recent studies of the ultrafast magnetization dynamics in ferromagnetic thin films and heterostructures using various measurement techniques are presented. We present our static transmission-mode x-ray magnetic circular dichroism (XMCD) characterization of element-specific moments in ferromagnetic thin films. Sum rules analysis are further used to extract the projected element-specific spin and orbital moments. A very low projected Tb moment in the 6% Tb-doped Ni81Fe19 thin film, which nonetheless reverses with low applied fields, indicates a sperimagnetic alignment with respect to the Fe and Ni elements in the alloy. The nearly unchanged orbital-to-spin moment ratio of Fe over the measured range of 0 ≤ x ≤ 0.15 in the Fe1- xVx thin films, compatible with known magnetization behavior as well as spectroscopic splitting g-factor data in the alloy by means of a two-sublattice model, confirms that the very low Gilbert damping attained through the introduction of V into epitaxial Fe1-xVx thin films does not result from the reduction of orbital moment content in the alloy. We also present our synchrotron-based development of time-resolved x-ray magnetic circular dichroism (TR-XMCD) technique. With this technique, we have demonstrated the first element- and layer-resolved magnetization dynamics with temporal resolution of 2--5 ps and angular resolution down to 0.1°. Coupled motion of Fe and Ni moments is verified in Ni81Fe 19 thin film, indicating a strong exchange coupling between Fe and Ni in the alloy. The influence of weak ferromagnetic interlayer coupling, difficult to identify in conventional FMR measurement, is clearly revealed in a pseudo-spin-valve structure of Ni81Fe19/Cu/Co93Zr7. Lagged phase behavior is observed between

  20. Frequency mixer having ferromagnetic film

    DOEpatents

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  1. Casimir entropy for ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Korikov, C. C.

    2016-01-01

    We describe recent results concerning the compatibility of the Lifshitz theory of dispersion forces with thermodynamics. It is shown that for ferromagnetic metals described by the plasma model and for ferromagnetic dielectrics with omitted dc conductivity the Lifshitz theory satisfies the Nernst heat theorem. At the same time, for magnetic metals described by the Drude model and for ferromagnetic dielectrics with account of dc conductivity the Nernst heat theorem is violated.

  2. Wide band gap ferromagnetic semiconductors and oxides

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Abernathy, C. R.; Overberg, M. E.; Thaler, G. T.; Norton, D. P.; Theodoropoulou, N.; Hebard, A. F.; Park, Y. D.; Ren, F.; Kim, J.; Boatner, L. A.

    2003-01-01

    Recent advances in the theory and experimental realization of ferromagnetic semiconductors give hope that a new generation of microelectronic devices based on the spin degree of freedom of the electron can be developed. This review focuses primarily on promising candidate materials (such as GaN, GaP and ZnO) in which there is already a technology base and a fairly good understanding of the basic electrical and optical properties. The introduction of Mn into these and other materials under the right conditions is found to produce ferromagnetism near or above room temperature. There are a number of other potential dopant ions that could be employed (such as Fe, Ni, Co, Cr) as suggested by theory [see, for example, Sato and Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 (2000)]. Growth of these ferromagnetic materials by thin film techniques, such as molecular beam epitaxy or pulsed laser deposition, provides excellent control of the dopant concentration and the ability to grow single-phase layers. The mechanism for the observed magnetic behavior is complex and appears to depend on a number of factors, including Mn-Mn spacing, and carrier density and type. For example, in a simple Ruderman-Kittel-Kasuya-Yosida carrier-mediated exchange mechanism, the free-carrier/Mn ion interaction can be either ferromagnetic or antiferromagnetic depending on the separation of the Mn ions. Potential applications for ferromagnetic semiconductors and oxides include electrically controlled magnetic sensors and actuators, high-density ultralow-power memory and logic, spin-polarized light emitters for optical encoding, advanced optical switches and modulators and devices with integrated magnetic, electronic and optical functionality.

  3. Monopoles in ferromagnetic metals

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Takeuchi, Akihito; Nakabayashi, Noriyuki; Taguchi, Katsuhisa

    2012-11-01

    The aim of this short review is to give an introduction to monopoles and to present theoretical derivation of two particular monopoles in ferromagnetic metals, a hedgehog monopole and a spin-damping monopole. In electromagnetism in the vacuum, described by Maxwell's equations, the magnetic field and the electric field are not symmetric, because there is no monopole, a particle having a finite magnetic charge. Still the monopole has been an exciting object for a long time and was discussed on phenomenological grounds by Dirac in 1931. A theoretical possibility of monopole generation was first given by' t Hooft and Polyakov in 1974 in the context of symmetry breaking in a grand unified theory (GUT), but a GUT monopole has not been discovered in experiments so far. In contrast to in the vacuum, several kinds of monopoles are expected to emerge in solids associated with various symmetry-breaking mechanisms. Of particular interest is metallic ferromagnetic systems, because a breaking of the symmetry of conduction electron spin, described by an SU(2) algebra, can give rise to monopoles. Indeed, two monopoles are theoretically predicted in ferromagnets; one is a hedgehog monopole arising from a topological spin structure, and the other is a spin-damping monopole arising from spin damping in the presence of the spin-orbit interaction. In this paper, we focus on these monopoles, while other objects similar to monopoles, but not coupled to effective electromagnetic fields, such as spin ice monopoles, are touched only briefly in the introduction. These monopoles are extended objects coupled to effective electromagnetic fields that are described by Maxwell's equations with a monopole contribution. The effective fields are the ones coupled to the spin of a particle such as an electron, muon and neutron; the two monopoles are, thus, detectable by electric measurements. Spin-damping monopoles can be generated in simple systems such as junctions of ferromagnets and heavy elements

  4. Enhanced Magnetic Proximity Effect at Ferromagnetic Insulator / Magnetic Topological Insulator Interface

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Chang, Cui-Zu; Kirby, Brian; Jamer, Michelle E.; Cui, Wenping; Wu, Lijun; Wei, Peng; Zhu, Yimei; Heiman, Don; Li, Ju; Moodera, Jagadeesh; MIT Team; NIST Team; Northeastern University Collaboration; Boston College Collaboration; Brookhaven National Lab Collaboration

    Magnetic proximity effect at magnetic insulator / topological insulator interface provides a promising approach to realize low-dissipation quantum devices. However, the commonly used magnetic insulators have in-plane anisotropy hence cannot magnetize topological insulator. Here we report an enhancement of proximity exchange coupling in ferromagnetic insulator / magnetic topological insulator EuS / Sb2-xVxTe3 hybrid heterostructure, where proximity effect is enhanced by a factor of 3 through the Vanadium doping. Moreover, an artificial antiferromagnetic-like structure is created between two strong ferromagnets, which may account for the proximity effect enhancement. The interplay between the proximity effect and doping in hybrid heterostructure provides insights into the engineering of magnetic ordering.

  5. Two-Dimensional Ferromagnet: 1/N Expansion for SU(N) and O(N) Models

    NASA Astrophysics Data System (ADS)

    Timm, Carsten; Henelius, Patrik; Girvin, Steven M.

    1997-03-01

    In the quantum Hall system the Zeeman interaction between electronic spins and the external magnetic field is typically weak compared to both the Landau-level splitting and the exchange interaction. Therefore, quantum Hall systems at integer filling factors can be ferromagnets. The magnetization and, recently, the nuclear magnetic relaxation rate 1/T1 have been measured for these magnets.(S.E. Barrett et al.), Phys. Rev. Lett. 72, 1368 (1994); 74, 5112 (1995) These quantities have been calculated in a Schwinger-boson mean-field approach.(N. Read and S. Sachdev, Phys. Rev. Lett. 75), 3509 (1995) Going one step further, we calculate the 1/N corrections for these results, for both the SU(N) and the O(N) generalization of the SU \\cong O(3) ferromagnetic symmetry group. The results are compared with Monte Carlo results of our group and with experiment.

  6. Performance of non-conventional factorization approaches for neutron kinetics

    SciTech Connect

    Bulla, S.; Nervo, M.

    2013-07-01

    The use of factorization techniques provides a interesting option for the simulation of the time-dependent behavior of nuclear systems with a reduced computational effort. While point kinetics neglects all spatial and spectral effects, quasi-statics and multipoint kinetics allow to produce results with a higher accuracy for transients involving relevant modifications of the neutron distribution. However, in some conditions these methods can not work efficiently. In this paper, we discuss some possible alternative formulations for the factorization process for neutron kinetics, leading to mathematical models of reduced complications that can allow an accurate simulation of transients involving spatial and spectral effects. The performance of these innovative approaches are compared to standard techniques for some test cases, showing the benefits and shortcomings of the method proposed. (authors)

  7. Quality factors for space radiation: A new approach

    NASA Astrophysics Data System (ADS)

    Borak, Thomas B.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; McBeth, Rafe A.; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA (Z , β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA (Z , β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA (Z , β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The

  8. Quality factors for space radiation: A new approach.

    PubMed

    Borak, Thomas B; Heilbronn, Lawrence H; Townsend, Lawrence W; McBeth, Rafe A; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA(Z,β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA(Z,β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA(Z,β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The revised

  9. Macrospin in ferromagnetic nanojunctions

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu. V.; Zilberman, P. E.; Panas, A. I.; Epshtein, E. M.

    2008-12-01

    We study the passage of transverse current through a ferromagnetic nanojunctions, viz., a layered nanostructure of the spin-valve type containing two ferromagnetic layers separated by a spacer that prevents exchange coupling between the layers in the absence of current, but does not affect spin polarization of the current. The conditions for a high level of injection of spins by current are derived at which the concentration of injected nonequilibrium spins can reach or even exceed their equilibrium concentration. In such conditions, a number of new effects are observed. The threshold of exchange switching by current is lowered by several orders of magnitude due to matching of spin resistances of the layers. The application of an external magnetic field in the vicinity of the orientation phase transition additionally lowers this threshold. This leads to multistability, in which one value of the current corresponds to two (or more) stable noncollinear orientations of magnetization, and switching itself becomes irreversible. A methodical feature of this research is that the calculation is performed in the so-called macrospin approximation, which is in good agreement with most of known experiments. In this approximation, the equations of motion taking into account the torque as well as spin injection are derived for the first time and solved.

  10. Two-Dimensional Ferromagnet: Quantum Monte Carlo results

    NASA Astrophysics Data System (ADS)

    Henelius, Patrik; Timm, Carsten; Girvin, Steven M.; Sandvik, Anders

    1997-03-01

    In the quantum Hall system the Zeeman interaction between electronic spins and the external magnetic field is typically weak compared to both the Landau-level splitting and the exchange interaction. Therefore, quantum Hall systems at integer filling factors can be ferromagnets. The magnetization and, recently, the nuclear magnetic relaxation rate 1/T1 have been measured for these magnets.(S.E. Barrett et al.), Phys. Rev. Lett. 72, 1368 (1994); 74, 5112 (1995) These quantities have been calculated in a Schwinger-boson mean-field approach.(N. Read and S. Sachdev, Phys. Rev. Lett. 75), 3509 (1995) We have calculated these same quantities using a Stochastic Series Expansion Monte Carlo Method. The results are compared with the experimental data, the mean-field results and with 1/N corrections for the mean-field results, calculated by our group.

  11. Thermoelectric detection of ferromagnetic resonance of a nanoscale ferromagnet.

    PubMed

    Bakker, F L; Flipse, J; Slachter, A; Wagenaar, D; van Wees, B J

    2012-04-20

    We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a thermocouple connected to the ferromagnet. The observed resonance peak shape is in agreement with the Landau-Lifshitz-Gilbert equation and is compared with thermoelectric finite-element modeling. Unlike other methods, this technique is not restricted to electrically conductive media and is therefore also applicable to for instance ferromagnetic insulators. PMID:22680756

  12. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    NASA Astrophysics Data System (ADS)

    Bu, K. M.; Kwon, H. Y.; Oh, S. W.; Won, C.

    2012-04-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes.

  13. ρ γ*→π (ρ ) transition form factors in the perturbative QCD factorization approach

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Lan; Cheng, Shan; Hua, Jun; Xiao, Zhen-Jun

    2015-11-01

    In this paper, we studied the ρ γ*→π and ρ γ*→ρ transition processes and made the calculations for the ρ π transition form factor Q4Fρ π(Q2) and the ρ -meson electromagnetic form factors, FLL ,LT ,TT(Q2) and F1 ,2 ,3(Q2), by employing the perturbative QCD (PQCD) factorization approach. For the ρ γ*→π transition, we found that the contribution to form factor Q4Fρ π(Q2) from the term proportional to the distribution amplitude combination ϕρT(x1)ϕπP(x2) is absolutely dominant, and the PQCD predictions for both the size and the Q2-dependence of this form factor Q4Fρ π(Q2) agree well with those from the extended anti-de Sitter/QCD models or the light-cone QCD sum rule. For the ρ γ*→ρ transition and in the region of Q2≥3 GeV2 , furthermore, we found that the PQCD predictions for the magnitude and their Q2-dependence of the F1(Q2) and F2(Q2) form factors agree well with those from the QCD sum rule, while the PQCD prediction for F3(Q2) is much larger than the one from the QCD sum rule.

  14. PREFACE: Half Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  15. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  16. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  17. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors.

    PubMed

    Gayvert, Kaitlyn M; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark A; Tatonetti, Nicholas P; Rickman, David S; Elemento, Olivier

    2016-06-14

    Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity. PMID:27264179

  18. Emerging infectious diseases: vulnerabilities, contributing factors and approaches.

    PubMed

    Lashley, Felissa R

    2004-04-01

    We live in an ever more connected global village linked through international travel, politics, economics, culture and human-human and human-animal interactions. The realization that the concept of globalization includes global exposure to disease-causing agents that were formerly confined to small, remote areas and that infectious disease outbreaks can have political, economic and social roots and effects is becoming more apparent. Novel infectious disease microbes continue to be discovered because they are new or newly recognized, have expanded their geographic range, have been shown to cause a new disease spectrum, have jumped the species barrier from animals to humans, have become resistant to antimicrobial agents, have increased in incidence or have become more virulent. These emerging infectious disease microbes may have the potential for use as agents of bioterrorism. Factors involved in the emergence of infectious diseases are complex and interrelated and involve all classifications of organisms transmitted in a variety of ways. In 2003, outbreaks of interest included severe acute respiratory syndrome, monkeypox and avian influenza. Information from the human genome project applied to microbial organisms and their hosts will provide new opportunities for detection, diagnosis, treatment, prevention, control and prognosis. New technology related not only to genetics but also to satellite and monitoring systems will play a role in weather, climate and the approach to environmental manipulations that influence factors contributing to infectious disease emergence and control. Approaches to combating emerging infectious diseases include many disciplines, such as animal studies, epidemiology, immunology, ecology, environmental studies, microbiology, pharmacology, other sciences, health, medicine, public health, nursing, cultural, political and social studies, all of which must work together. Appropriate financial support of the public health infrastructure

  19. Improving health care systems performance: a human factors approach.

    PubMed

    Silver, Michael P; Geis, Michelle S; Bateman, Kim A

    2004-01-01

    Under contract from the Centers for Medicare & Medicaid Services (CMS), Medicare Quality Improvement Organizations (QIOs) promote improvement in health care system performance. With the QIO contract cycle that began in the fall of 1999, CMS adopted a broad national improvement agenda emphasizing 24 quality measures from 6 clinical topic areas. The Utah QIO developed a human factors and organizational safety management-based intervention strategy for the inpatient clinical topic areas, borrowing approaches and principles previously applied in hospital-based medication systems safety improvement efforts. Evaluation used measures and methods established by CMS to assess the adequacy of QIO performance nationwide. Comparison of statewide inpatient quality indicator performance rates in 1998 and 2000 showed absolute improvement on 15 of the 16 measures used. The average reduction in the failure rate for these clinical topic areas in Utah was 27.3%; this was the highest rate of improvement for any state in the nation. Utah's overall ranking on the combined inpatient clinical topic areas went from 16th at baseline to first at follow-up. The evaluation demonstrates exceptional levels of performance improvement in Utah hospitals when compared with national trends. It is, however, neither possible to uniquely isolate the effects of the QIO intervention from larger trends operating statewide, nor can the contributions of the various facets of the QIO intervention be disaggregated. The application of human factors and organizational safety management principles represents a promising strategy for accelerating the pace of improvement in health care. PMID:15212314

  20. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  1. Effect of Ferromagnetic Spin Correlations on Superconductivity in Ferromagnetic Metals

    SciTech Connect

    Blagoev, K.B.; Engelbrecht, J.R.; Bedell, K.S.

    1999-01-01

    We study the renormalization of quasiparticle properties in weak ferromagnetic metals due to spin fluctuations, away from the quantum critical point for small magnetic moment. We explain the origin of the s -wave superconducting instability in the ferromagnetic phase and find that the vertex corrections are small and that Migdal{close_quote}s theorem is satisfied away from the quantum critical point. {copyright} {ital 1998} {ital The American Physical Society}

  2. Magnetic properties of spin-1/2 Fermi gases with ferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Wang, Baobao; Qin, Jihong; Guo, Huaiming

    2015-10-01

    We investigate the magnetic properties of spin-1/2 charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density bar M increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density bar M decreases smoothly in the high temperature region. The domed shape of the magnetization density bar M variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Landé factor.

  3. Topological properties of ferromagnetic superconductors

    DOE PAGESBeta

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-27

    Here, a variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to themore » phase where superconductivity and ferromagnetism coexist is a first-order transition.« less

  4. Topological properties of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-01

    A variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism coexist is a first-order transition.

  5. Weak ferromagnetism in the cuprates

    NASA Astrophysics Data System (ADS)

    Chovan, J.; Papanicolaou, N.

    2001-02-01

    An effective field theory that describes the low-frequency spin dynamics in the low-temperature orthorhombic phase of La 2CuO 4 is derived. The main features of the inherent covert weak ferromagnetism are thus accounted for in a straightforward manner but some of the finer theoretical predictions would require further experimental investigation. In particular, theory predicts the occurrence of magnetic stripes in undoped La 2CuO 4 which mediate the observed weak-ferromagnetic transition.

  6. Non-ferromagnetic overburden casing

    SciTech Connect

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  7. Approach to Assessment of Risk Factors in Mild Hypertension

    PubMed Central

    Stuart, K. L.; Desai, Patricia; Lalsingh, Adella

    1974-01-01

    Criteria are urgently needed for the early detection of subjects with only mildly raised blood pressure who may be at high risk of developing the complications of hypertension. As a step towards the establishment of such criteria we have examined the association of certain possible “risk” factors—namely, x-ray evidence of cardiac enlargement, high serum cholesterol levels, effort pain, E.C.G. abnormalities, and high systolic blood pressure—with fatal or morbid endpoints in a five-year follow-up study of subjects whose diastolic pressure had been found initially to be between 95 and 114 mm Hg. The index group consisted of 22 patients in whom these end-points occurred. They comprised death from cardiovascular disease, clinical or E.C.G. deterioration, and either an increase in diastolic pressure of at least 10 mm Hg or a diastolic pressure of 115 mm Hg or both. The control group consisted of 22 subjects chosen at random from other respondents with the same range of diastolic pressures and the same age and sex distribution. “Any two or more” of the possible risk factors examined were found to occur significantly more often in the index group than in the controls, suggesting a possible approach to the early detection of high-risk subjects. The value of longterm studies along these lines and the urgent need for them are emphasized. PMID:4275518

  8. Anthropological Approach of Adherence Factors for Antihypertensive Drugs

    PubMed Central

    Sarradon-Eck, Aline; Egrot, Marc; Blance, Marie Anne; Faure, Muriella

    2010-01-01

    Objective: Uncontrolled high blood pressure leads clinicians to wonder about adherence degree among hypertensive patients. In this context, our study aims to describe and analyze patients' experience of antihypertensive drugs in order to shed light on the multiple social and symbolic logics, forming part of the cultural factors shaping personal medication practices. Methods: The medical inductive and comprehensive anthropological approach implemented is based on an ethnographic survey (observations of consultations and interviews). Semi-structured interviews were conducted with 68 hypertensive patients (39 women and 29 men, between the ages of 40 and 95, of whom 52 were over 60) who had been receiving treatment for over a year. Results: Antihypertensive drugs are reinterpreted when filtered through the cultural model of physiopathology (the body as an engine). This symbolic dimension facilitates acceptance of therapy but leads to a hierarchization of other prescribed drugs and of certain therapeutic classes (diuretics). Prescription compliance does not solely depend on the patient's perception of cardiovascular risk, but also on how the patient fully accepts the treatment and integrates it into his or her daily life; this requires identification with the product, building commitment and self-regulation of the treatment (experience, managing treatment and control of side effects, intake and treatment continuity). Following the prescription requires a relationship based on trust between the doctor and patient, which we have identified in three forms: reasoned trust, emotional trust and conceded trust. Conclusion: Consideration and understanding of these pragmatic and symbolic issues by the treating physician should aid practitioners in carrying out their role as medical educators in the management of hypertension. This paper was originally published in French, in the journal Pratiques et organisation des soins 39(1): 3-12. PMID:21532764

  9. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... AGENCY Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was... of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures''...

  10. Elastically driven ferromagnetic resonance in nickel thin films.

    PubMed

    Weiler, M; Dreher, L; Heeg, C; Huebl, H; Gross, R; Brandt, M S; Goennenwein, S T B

    2011-03-18

    Surface acoustic waves (SAWs) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic-ferroelectric (Ni/LiNbO(3)) hybrid device. We measure the SAW magnetotransmission at room temperature as a function of frequency, external magnetic field magnitude, and orientation. Our data are well described by a modified Landau-Lifshitz-Gilbert approach, in which a virtual, strain-induced tickle field drives the magnetization precession. This causes a distinct magnetic field orientation dependence of elastically driven FMR that we observe in both model and experiment. PMID:21469894

  11. Ferromagnetic Fluid as a Model of Social Impact

    NASA Astrophysics Data System (ADS)

    Fronczak, Piotr; Fronczak, Agata; Hołyst, Janusz A.

    The paper proposes a new model of spin dynamics which can be treated as a model of sociological coupling between individuals. Our approach takes into account two different human features: Gregariousness and individuality. We will show how they affect a psychological distance between individuals and how the distance changes the opinion formation in a social group. Apart from its sociological aplications the model displays the variety of other interesting phenomena like self-organizing ferromagnetic state or a second order phase transition and can be studied from different points of view, e.g., as a model of ferromagnetic fluid, complex evolving network or multiplicative random process.

  12. Ferromagnetism in armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau; Hikihara, Toshiya; Jeng, Horng-Tay; Huang, Bor-Luen; Mou, Chung-Yu; Hu, Xiao

    2009-01-01

    Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.

  13. Evaluating risk factor assumptions: a simulation-based approach

    PubMed Central

    2011-01-01

    Background Microsimulation models are an important tool for estimating the comparative effectiveness of interventions through prediction of individual-level disease outcomes for a hypothetical population. To estimate the effectiveness of interventions targeted toward high risk groups, the mechanism by which risk factors influence the natural history of disease must be specified. We propose a method for evaluating these risk factor assumptions as part of model-building. Methods We used simulation studies to examine the impact of risk factor assumptions on the relative rate (RR) of colorectal cancer (CRC) incidence and mortality for a cohort with a risk factor compared to a cohort without the risk factor using an extension of the CRC-SPIN model for colorectal cancer. We also compared the impact of changing age at initiation of screening colonoscopy for different risk mechanisms. Results Across CRC-specific risk factor mechanisms, the RR of CRC incidence and mortality decreased (towards one) with increasing age. The rate of change in RRs across age groups depended on both the risk factor mechanism and the strength of the risk factor effect. Increased non-CRC mortality attenuated the effect of CRC-specific risk factors on the RR of CRC when both were present. For each risk factor mechanism, earlier initiation of screening resulted in more life years gained, though the magnitude of life years gained varied across risk mechanisms. Conclusions Simulation studies can provide insight into both the effect of risk factor assumptions on model predictions and the type of data needed to calibrate risk factor models. PMID:21899767

  14. A Strategic Planning Approach to Technology Integration: Critical Success Factors.

    ERIC Educational Resources Information Center

    Shaw, Sam; Zabudsky, Jeff

    Within most institutions of higher learning, the typical approach to the integration of new information and communications technologies into the teaching and learning process has involved a heavy reliance on early adopters. This path of least resistance approach has provided organizations with the opportunity to quickly claim a presence in the…

  15. Superconducting transition temperature in heterogeneous ferromagnet-superconductor systems

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Valery L.; Wei, Hongduo

    2004-03-01

    We study the superconducting phase transition in two systems: ferromagnet-superconductor bilayer (FSB) and a thin superconducting film with a periodic array of magnetic dots (SFMD) upon it. We show that this transition is of the first order in FSB and of the second order in SFMD. The shift of the transition temperature ΔTc due to the presence of a ferromagnetic layer may be positive or negative in the FSB and is always negative in the SFMD. The dependence of ΔTc on geometrical factors and external magnetic field is found. Theory is extended to multilayers.

  16. Theory of disordered Heisenberg ferromagnets

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.

    1973-01-01

    A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.

  17. Item Factor Analysis: Current Approaches and Future Directions

    ERIC Educational Resources Information Center

    Wirth, R. J.; Edwards, Michael C.

    2007-01-01

    The rationale underlying factor analysis applies to continuous and categorical variables alike; however, the models and estimation methods for continuous (i.e., interval or ratio scale) data are not appropriate for item-level data that are categorical in nature. The authors provide a targeted review and synthesis of the item factor analysis (IFA)…

  18. Adolescent Sexual Activity: An Ecological, Risk-Factor Approach.

    ERIC Educational Resources Information Center

    Small, Stephen A.; Luster, Tom

    1994-01-01

    Examined relationship between adolescent sexual intercourse and history of physical abuse, neighborhood monitoring, and adolescent's attachment to school. Findings from 2,108 adolescents suggest that there are many significant risk factors related to whether adolescents are sexually experienced and that importance of some factors vary by gender.…

  19. Peculiar long-range supercurrent in superconductor-ferromagnet-superconductor junction containing a noncollinear magnetic domain in the ferromagnetic region

    NASA Astrophysics Data System (ADS)

    Meng, Hao; Wu, Xiuqiang; Ren, Yajie

    2015-01-01

    We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.

  20. Peculiar long-range supercurrent in superconductor-ferromagnet-superconductor junction containing a noncollinear magnetic domain in the ferromagnetic region

    SciTech Connect

    Meng, Hao; Wu, Xiuqiang; Ren, Yajie

    2015-01-14

    We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.

  1. Cervical Spondylotic Myelopathy: Factors in Choosing the Surgical Approach

    PubMed Central

    Yalamanchili, Praveen K.; Vives, Michael J.; Chaudhary, Saad B.

    2012-01-01

    Cervical spondylotic myelopathy is a progressive disease and a common cause of acquired disability in the elderly. A variety of surgical interventions are available to halt or improve progression of the disease. Surgical options include anterior or posterior approaches with and without fusion. These include anterior cervical discectomy and fusion, anterior cervical corpectomy and fusion, cervical disc replacement, laminoplasty, laminectomy with and without fusion, and combined approaches. Recent investigation into the ideal approach has not found a clearly superior choice, but individual patient characteristics can guide treatment. PMID:22312563

  2. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  3. Spin Seebeck effect in a weak ferromagnet

    NASA Astrophysics Data System (ADS)

    Arboleda, Juan David; Arnache Olmos, Oscar; Aguirre, Myriam Haydee; Ramos, Rafael; Anadon, Alberto; Ibarra, Manuel Ricardo

    2016-06-01

    We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.

  4. A Bayesian Approach to Identifying New Risk Factors for Dementia

    PubMed Central

    Wen, Yen-Hsia; Wu, Shihn-Sheng; Lin, Chun-Hung Richard; Tsai, Jui-Hsiu; Yang, Pinchen; Chang, Yang-Pei; Tseng, Kuan-Hua

    2016-01-01

    Abstract Dementia is one of the most disabling and burdensome health conditions worldwide. In this study, we identified new potential risk factors for dementia from nationwide longitudinal population-based data by using Bayesian statistics. We first tested the consistency of the results obtained using Bayesian statistics with those obtained using classical frequentist probability for 4 recognized risk factors for dementia, namely severe head injury, depression, diabetes mellitus, and vascular diseases. Then, we used Bayesian statistics to verify 2 new potential risk factors for dementia, namely hearing loss and senile cataract, determined from the Taiwan's National Health Insurance Research Database. We included a total of 6546 (6.0%) patients diagnosed with dementia. We observed older age, female sex, and lower income as independent risk factors for dementia. Moreover, we verified the 4 recognized risk factors for dementia in the older Taiwanese population; their odds ratios (ORs) ranged from 3.469 to 1.207. Furthermore, we observed that hearing loss (OR = 1.577) and senile cataract (OR = 1.549) were associated with an increased risk of dementia. We found that the results obtained using Bayesian statistics for assessing risk factors for dementia, such as head injury, depression, DM, and vascular diseases, were consistent with those obtained using classical frequentist probability. Moreover, hearing loss and senile cataract were found to be potential risk factors for dementia in the older Taiwanese population. Bayesian statistics could help clinicians explore other potential risk factors for dementia and for developing appropriate treatment strategies for these patients. PMID:27227925

  5. Interplay Between Ferromagnetism and Superconductivity

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Sudbø, Asle

    This chapter presents results on transport properties of hybrid structures where the interplay between ferromagnetism and superconductivity plays a central role. In particular, the appearance of so-called odd-frequency pairing in such structures is investigated in detail. The basic physics of superconductivity in such structures is presented, and the quasiclassical theory of Greens functions with appropriate boundary conditions is given. Results for superconductor∣ferromagnet bilayers as well as magnetic Josephson junctions and spin valves are presented. Further phenomena that are studied include transport in the presence of inhomogenous magnetic textures, spin-Josephon effect, and crossed Andreev reflection. We also investigate the possibility of intrinsic coexistence of ferromagnetism and superconductivity, as reported in a series of uranium-based heavy-fermion compounds. The nature of such a coexistence and the resulting superconducting order parameter is discussed along with relevant experimental results. We present a thermodynamic treatment for a model of a ferromagnetic supercondcutor and moreover suggest ways to experimentally determine the pairing symmetry of the superconducting gap, in particular by means of conductance spectroscopy.

  6. Factors influencing tolerance to wind shears in landing approach

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1976-01-01

    Flight simulator studies were conducted to examine the piloting problems resulting from encounters with unusual atmospheric disturbances late in landing approach. Simulated encounters with disturbances, including examples derived from accident data, provided the opportunity to study aircraft and pilot performance. It was observed that substantial delays in pilot response to shear-induced departures from glide slope often seriously amplified the consequences of the encounter. In preliminary assessments, an integrated flight instrument display featuring flight path as the primary controlled element appeared to provide the means to minimize such delays by improving tolerance to disturbances in landing approaches.

  7. Design of psychosocial factors questionnaires: a systematic measurement approach

    PubMed Central

    Vargas, Angélica; Felknor, Sarah A

    2012-01-01

    Background Evaluation of psychosocial factors requires instruments that measure dynamic complexities. This study explains the design of a set of questionnaires to evaluate work and non-work psychosocial risk factors for stress-related illnesses. Methods The measurement model was based on a review of literature. Content validity was performed by experts and cognitive interviews. Pilot testing was carried out with a convenience sample of 132 workers. Cronbach’s alpha evaluated internal consistency and concurrent validity was estimated by Spearman correlation coefficients. Results Three questionnaires were constructed to evaluate exposure to work and non-work risk factors. Content validity improved the questionnaires coherence with the measurement model. Internal consistency was adequate (α=0.85–0.95). Concurrent validity resulted in moderate correlations of psychosocial factors with stress symptoms. Conclusions Questionnaires´ content reflected a wide spectrum of psychosocial factors sources. Cognitive interviews improved understanding of questions and dimensions. The structure of the measurement model was confirmed. PMID:22628068

  8. Carbon p electron ferromagnetism in silicon carbide

    SciTech Connect

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  9. Carbon p electron ferromagnetism in silicon carbide

    DOE PAGESBeta

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; et al

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  10. Carbon p Electron Ferromagnetism in Silicon Carbide

    PubMed Central

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2015-01-01

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin. PMID:25758040

  11. Linking Individual and Institutional Factors to Motivation: A Multilevel Approach

    ERIC Educational Resources Information Center

    Rugutt, John

    2004-01-01

    This study used a Hierarchical Linear Modeling (HLM) approach to investigate relationships between student motivation, higher-order thinking skills, quality of teaching and learning, teacher student relations, student satisfaction with course contribution to their learning, and active learning strategies, with a sample of 2,190 undergraduate…

  12. Factors That Influence Faculty Adoption of Learning-Centered Approaches

    ERIC Educational Resources Information Center

    Blumberg, Phyllis

    2016-01-01

    This article proposes a recommended course of action for faculty development based upon Rogers' theory of Diffusion of Innovations and data collected in a study looking at the prevalence of use of learning-centered teaching practices. Specific faculty development strategies are aligned with Rogers' factors influencing decisions to adopt…

  13. The Relative Importance of Job Factors: A New Measurement Approach.

    ERIC Educational Resources Information Center

    Nealey, Stanley M.

    This paper reports on a new two-phase measurement technique that permits a direct comparison of the perceived relative importance of economic vs. non-economic factors in a job situation in accounting for personnel retention, the willingness to produce, and job satisfaction. The paired comparison method was used to measure the preferences of 91…

  14. The Status of Cognitive Psychology Journals: An Impact Factor Approach

    ERIC Educational Resources Information Center

    Togia, Aspasia

    2013-01-01

    The purpose of this study was to examine the impact factor of cognitive psychology journals indexed in the Science and Social Sciences edition of "Journal Citation Reports" ("JCR") database over a period of 10 consecutive years. Cognitive psychology journals were indexed in 11 different subject categories of the database. Their mean impact factor…

  15. Common and Specific Factors Approaches to Home-Based Treatment: I-FAST and MST

    ERIC Educational Resources Information Center

    Lee, Mo Yee; Greene, Gilbert J.; Fraser, J. Scott; Edwards, Shivani G.; Grove, David; Solovey, Andrew D.; Scott, Pamela

    2013-01-01

    Objectives: This study examined the treatment outcomes of integrated families and systems treatment (I-FAST), a moderated common factors approach, in reference to multisystemic therapy (MST), an established specific factor approach, for treating at risk children and adolescents and their families in an intensive community-based setting. Method:…

  16. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures

    PubMed Central

    Baker, A. A.; Figueroa, A. I.; Collins-McIntyre, L. J.; van der Laan, G.; Hesjedal, T.

    2015-01-01

    Topological insulators (TIs) are enticing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. However, a means to interact with and exploit the topological surface state remains elusive. Here, we report a study of spin pumping at the TI-ferromagnet interface, investigating spin transfer dynamics in a spin-valve like structure using element specific time-resolved x-ray magnetic circular dichroism, and ferromagnetic resonance. Gilbert damping increases approximately linearly with increasing TI thickness, indicating efficient behaviour as a spin sink. However, layer-resolved measurements suggest that a dynamic coupling is limited. These results shed new light on the spin dynamics of this novel material class, and suggest great potential for TIs in spintronic devices, through their novel magnetodynamics that persist even up to room temperature. PMID:25601364

  17. Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    de Melo, C. A. R. Sa

    2001-03-01

    The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).

  18. Approaching Safety through Quality: Factors Influencing College Student Perceptions.

    PubMed

    Ramaswamy, S K; Mosher, G A

    2016-04-01

    Quality management practices have been identified by previous literature as a factor that could potentially reduce the level of safety incidents and hazards in agricultural work environments. The present study used multivariate analysis to examine the effect of independent variables such as quality and safety awareness, work experience, safety and quality management experience, and the perceived importance of safety and quality on the role of quality management practices as a mitigating factor for safety hazards and incidents in agriculture. Variables were measured on a five-point scale using a survey questionnaire. Data were collected from approximately 900 undergraduates enrolled in the College of Agriculture and Life Sciences at a large land grant university in the U.S. The level of student work experience and student perceptions of the importance of quality explained a significant amount of the variance in student views of quality management practices as a mitigating factor for safety hazards and incidents. The findings of this study provide further evidence for using quality management practices as a basis for safety interventions targeted at the agricultural workforce. PMID:27373063

  19. The ergonomics/human factors approach to health sciences libraries.

    PubMed Central

    Bube, J L

    1985-01-01

    A review of the literature reveals scant information on the application of ergonomics to health sciences libraries. Ergonomics research has identified and validated many genuine health hazards in business offices and industrial settings. While appearing innocuous, the library environment is affected by these hazards. As sophisticated technology and machinery are introduced into libraries, the human factors must be considered. This paper examines the hazards of the library environment as identified through ergonomics research and makes recommendations for alleviating or eliminating these dangers. PMID:3161572

  20. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    NASA Astrophysics Data System (ADS)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  1. Factors Mediating the Interactions between Adviser and Advisee during the Master's Thesis Project: A Quantitative Approach

    ERIC Educational Resources Information Center

    Rodrigues Jr., Jose Florencio; Lehmann, Angela Valeria Levay; Fleith, Denise De Souza

    2005-01-01

    Building on previous studies centred on the interaction between adviser and advisee in masters thesis projects, in which a qualitative approach was used, the present study uses factor analysis to identify the factors that determine either a successful or unsuccessful outcome for the masters thesis project. There were five factors relating to the…

  2. Mn-based ferromagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Sawicki, Maciej

    2003-07-01

    The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.

  3. Mixed states in ferromagnetic superconductors

    SciTech Connect

    Matsumoto, H.; Teshima, R.; Umezawa, H.; Tachiki, M.

    1983-01-01

    A detailed study of the mixed state of the ferromagnetic rare-earth compounds RRh/sub 4/B/sub 4/, R/sub x/Mo/sub 6/S/sub 8/, and R/sub x/Mo/sub 6/Se/sub 6/ is presented. The saturation effect of the magnetic moments is taken into account. Depending on the parameters, there are many types of phase transitions between the type-II/2, type-II/1, and type-I mixed states and the paramagnetic Meissner state, ferromagnetic Meissner state, spin-periodic Meissner state, and the self-induced vortex state. It is predicted that the magnetization can exhibit a variety of unusual modes.

  4. Seal device for ferromagnetic containers

    DOEpatents

    Meyer, R.E.; Jason, A.J.

    1994-10-18

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach there through until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity. 10 figs.

  5. Seal device for ferromagnetic containers

    DOEpatents

    Meyer, Ross E.; Jason, Andrew J.

    1994-01-01

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.

  6. In vitro production of alkaloids: Factors, approaches, challenges and prospects

    PubMed Central

    Ahmad, Sayeed; Garg, Madhukar; Tamboli, Ennus Tajuddin; Abdin, M. Z.; Ansari, S. H.

    2013-01-01

    The wide diversity of plant secondary metabolites is largely used for the production of various pharmaceutical compounds. In vitro cell tissue or organ culture has been employed as a possible alternative to produce such industrial compounds. Tissue culture techniques provide continuous, reliable, and renewable source of valuable plant pharmaceuticals and might be used for the large-scale culture of the plant cells from which these secondary metabolites can be extracted. Alkaloids are one of the most important secondary metabolites known to play a vital role in various pharmaceutical applications leading to an increased commercial importance in recent years. The tissue culture techniques may be utilized to improve their production of alkaloids via somaclonal variations and genetic transformations. The focus of this review is toward the application of different tissue culture methods/techniques employed for the in vitro production of alkaloids with a systematic approach to improve their production. PMID:23922453

  7. Non-Convex Multipartite Ferromagnets

    NASA Astrophysics Data System (ADS)

    Genovese, Giuseppe; Tantari, Daniele

    2016-05-01

    We investigate a multipartite ferromagnetic model without self-interactions between spins of the same party, so that the Hamiltonian is not a definite quadratic form of the magnetisations. We find the free energy and study the phase transition for all zero external fields. Moreover in the bipartite case we analyse the fluctuations of the rescaled magnetisations, below and at the critical point, and we study the phase transitions with non-zero magnetic fields.

  8. Molecular approaches for improved clotting factors for hemophilia

    PubMed Central

    Powell, Jerry S.

    2013-01-01

    Hemophilia is caused by a functional deficiency of one of the coagulation proteins. Therapy for no other group of genetic diseases has seen the progress that has been made for hemophilia over the past 40 years, from a life expectancy in 1970 of ∼20 years for a boy born with severe hemophilia to essentially a normal life expectancy in 2013 with current prophylaxis therapy. However, these therapies are expensive and require IV infusions 3 to 4 times each week. These are exciting times for hemophilia because several new technologies that promise extended half-lives for factor products, with potential for improvements in quality of life for persons with hemophilia, are in late-phase clinical development. PMID:24065241

  9. A human factors approach to range scheduling for satellite control

    NASA Technical Reports Server (NTRS)

    Wright, Cameron H. G.; Aitken, Donald J.

    1991-01-01

    Range scheduling for satellite control presents a classical problem: supervisory control of a large-scale dynamic system, with unwieldy amounts of interrelated data used as inputs to the decision process. Increased automation of the task, with the appropriate human-computer interface, is highly desirable. The development and user evaluation of a semi-automated network range scheduling system is described. The system incorporates a synergistic human-computer interface consisting of a large screen color display, voice input/output, a 'sonic pen' pointing device, a touchscreen color CRT, and a standard keyboard. From a human factors standpoint, this development represents the first major improvement in almost 30 years to the satellite control network scheduling task.

  10. HDL in sepsis – risk factor and therapeutic approach

    PubMed Central

    Morin, Emily E.; Guo, Ling; Schwendeman, Anna; Li, Xiang-An

    2015-01-01

    High-density lipoprotein (HDL) is a key component of circulating blood and plays essential roles in regulation of vascular endothelial function and immunity. Clinical data demonstrate that HDL levels drop by 40–70% in septic patients, which is associated with a poor prognosis. Experimental studies using Apolipoprotein A-I (ApoAI) null mice showed that HDL deficient mice are susceptible to septic death, and overexpressing ApoAI in mice to increase HDL levels protects against septic death. These clinical and animal studies support our hypothesis that a decrease in HDL level is a risk factor for sepsis, and raising circulating HDL levels may provide an efficient therapy for sepsis. In this review, we discuss the roles of HDL in sepsis and summarize the efforts of using synthetic HDL as a potential therapy for sepsis. PMID:26557091

  11. [Resistant gram-negative bacteria. Therapeutic approach and risk factors].

    PubMed

    Salgado, P; Gilsanz, F; Maseda, E

    2016-09-01

    The rapid spread of multidrug-resistant bacteria has become a serious threat, especially in critical care units, thereby prolonging the hospital stay. Enterobacteriaceae have a high capacity to adapt to any environment. Plasmids are the reason behind their expansion. The choice of empiric therapy for intra-abdominal or urinary infections requires knowledge of the intrinsic microbiological variability of each hospital or critical care unit, as well as the source of infection, safety or antibiotic toxicity, interaction with other drugs, the dosage regimen and the presence of risk factors. Carbapenems are the drug of choice in the case of suspected infection by ESBL-producing Enterobacteriaceae. The new ceftazidime/avibactam and ceftolozane/tazobactam drugs are opening up promising new horizons in the treatment of multidrug-resistant Enterobacteriaceae. PMID:27608309

  12. Optical patterning of magnetic domains and defects in ferromagnetic liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Hess, Andrew J.; Liu, Qingkun; Smalyukh, Ivan I.

    2015-08-01

    A promising approach in designing composite materials with an unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites can not only inherit properties of their constituents but also can exhibit emergent behavior such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here, we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids, which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematics and ferromagnets alike.

  13. Evolution of critical scaling behavior near a ferromagnetic quantum phase transition.

    PubMed

    Butch, N P; Maple, M B

    2009-08-14

    Magnetic critical scaling in URu(2-x)Re(x)Si(2) single crystals continuously evolves as the ferromagnetic critical temperature is tuned towards zero via chemical substitution. As the quantum phase transition is approached, the critical exponents gamma and (delta-1) decrease to zero in tandem with the critical temperature and ordered moment, while the exponent beta remains constant. This novel trend distinguishes URu(2-x)Re(x)Si(2) from stoichiometric quantum critical ferromagnets and appears to reflect an underlying competition between Kondo and ferromagnetic interactions. PMID:19792669

  14. A holistic approach combining factor analysis, positive matrix factorization, and chemical mass balance applied to receptor modeling.

    PubMed

    Selvaraju, N; Pushpavanam, S; Anu, N

    2013-12-01

    Rapid urbanization and population growth resulted in severe deterioration of air quality in most of the major cities in India. Therefore, it is essential to ascertain the contribution of various sources of air pollution to enable us to determine effective control policies. The present work focuses on the holistic approach of combining factor analysis (FA), positive matrix factorization (PMF), and chemical mass balance (CMB) for receptor modeling in order to identify the sources and their contributions in air quality studies. Insight from the emission inventory was used to remove subjectivity in source identification. Each approach has its own limitations. Factor analysis can identify qualitatively a minimal set of important factors which can account for the variations in the measured data. This step uses information from emission inventory to qualitatively match source profiles with factor loadings. This signifies the identification of dominant sources through factors. PMF gives source profiles and source contributions from the entire receptor data matrix. The data from FA is applied for rank reduction in PMF. Whenever multiple solutions exist, emission inventory identifies source profiles uniquely, so that they have a physical relevance. CMB identifies the source contributions obtained from FA and PMF. The novel approach proposed here overcomes the limitations of the individual methods in a synergistic way. The adopted methodology is found valid for a synthetic data and also the data of field study. PMID:23832184

  15. Magnetic Damping in Ferromagnetic Thin Films

    NASA Astrophysics Data System (ADS)

    Oogane, Mikihiko; Wakitani, Takeshi; Yakata, Satoshi; Yilgin, Resul; Ando, Yasuo; Sakuma, Akimasa; Miyazaki, Terunobu

    2006-05-01

    We determined the Gilbert damping constants of Fe-Co-Ni and Co-Fe-B alloys with various compositions and half-metallic Co2MnAl Heusler alloy films prepared by magnetron sputtering. The ferromagnetic resonance (FMR) technique was used to determine the damping constants of the prepared films. The out-of-plane angular dependences of the resonance field (HR) and line width (Δ Hpp) of FMR spectra were measured and fitted using the Landau-Lifshitz-Gilbert (LLG) equation. The experimental results fitted well, considering the inhomogeneities of the films in the fitting. The damping constants of the metallic films were much larger than those of bulk ferrimagnetic insulators and were roughly proportional to (g-2)2, where g is the Lande g factor. We discuss the origin of magnetic damping, considering spin-orbit and s-d interactions.

  16. An integrated approach to rotorcraft human factors research

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.; Hartzell, E. James; Voorhees, James W.; Bucher, Nancy M.; Shively, R. Jay

    1988-01-01

    As the potential of civil and military helicopters has increased, more complex and demanding missions in increasingly hostile environments have been required. Users, designers, and manufacturers have an urgent need for information about human behavior and function to create systems that take advantage of human capabilities, without overloading them. Because there is a large gap between what is known about human behavior and the information needed to predict pilot workload and performance in the complex missions projected for pilots of advanced helicopters, Army and NASA scientists are actively engaged in Human Factors Research at Ames. The research ranges from laboratory experiments to computational modeling, simulation evaluation, and inflight testing. Information obtained in highly controlled but simpler environments generates predictions which can be tested in more realistic situations. These results are used, in turn, to refine theoretical models, provide the focus for subsequent research, and ensure operational relevance, while maintaining predictive advantages. The advantages and disadvantages of each type of research are described along with examples of experimental results.

  17. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    NASA Astrophysics Data System (ADS)

    Raposo, V.; Zazo, M.; Flores, A. G.; Garcia, J.; Vega, V.; Iñiguez, J.; Prida, V. M.

    2016-04-01

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires' diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al2O3 layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  18. Stabilization and robustness of non-linear unity-feedback system - Factorization approach

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Kabuli, M. G.

    1988-01-01

    The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.

  19. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-05-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga1-x,Fex)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  20. Application of the maximum relative entropy method to the physics of ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Giffin, Adom; Cafaro, Carlo; Ali, Sean Alan

    2016-08-01

    It is known that the Maximum relative Entropy (MrE) method can be used to both update and approximate probability distributions functions in statistical inference problems. In this manuscript, we apply the MrE method to infer magnetic properties of ferromagnetic materials. In addition to comparing our approach to more traditional methodologies based upon the Ising model and Mean Field Theory, we also test the effectiveness of the MrE method on conventionally unexplored ferromagnetic materials with defects.

  1. Microwave excitation of spin wave beams in thin ferromagnetic films.

    PubMed

    Gruszecki, P; Kasprzak, M; Serebryannikov, A E; Krawczyk, M; Śmigaj, W

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  2. Microwave excitation of spin wave beams in thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-03-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency.

  3. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  4. On the Absence of Ferromagnetism in Typical 2D Ferromagnets

    SciTech Connect

    Biskup, Marek

    2010-04-06

    We consider the Ising systems in d dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that decay with power s of the distance. The physical context of such models is discussed; primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form.We prove that when the power of decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with d {ge} 2) magnetic order can occur.

  5. Anomalous Hall Effect in a Kagome Ferromagnet

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  6. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Kotnala, R. K.; Gopal, R.

    2015-08-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  7. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    SciTech Connect

    Singh, S. C. Gopal, R.; Kotnala, R. K.

    2015-08-14

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  8. Analysis of ultra-narrow ferromagnetic domain walls

    SciTech Connect

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  9. Ferromagnetic resonance measurements in sub-nanometer Fe films

    NASA Astrophysics Data System (ADS)

    Mizuno, Hayato; Moriyama, Takahiro; Kawaguchi, Masashi; Nagata, Masaki; Tanaka, Kensho; Koyama, Tomohiro; Chiba, Daichi; Ono, Teruo

    2015-07-01

    We show that our ferromagnetic resonance (FMR) measurement based on the rectification effect is sufficiently sensitive for characterizing various static and dynamic magnetic properties of a sub-nanometer ferromagnetic film where the interfacial effects dominate. The extracted properties, such as the Landé g-factor, the effective demagnetizing field, and the Gilbert damping parameter, are reasonably well scaled with the film thickness, indicating that our measurements clearly capture the interfacial properties of the sub-nanometer-thick film. In particular, the capability of the g-factor extraction in the ultrathin film will be very helpful for characterizing the various interfacial effects involved with interfacial orbit moments and spin-orbit interactions.

  10. An office-based approach to emotional and behavioral risk factor reduction for cardiovascular disease.

    PubMed

    Hochman, Daniel M; Feinstein, Robert E; Stauter, Erinn C

    2013-01-01

    There are many psychological risk factors for cardiovascular disease, and the ability to reduce mortality depends on an ability to integrate care of these risk factors with traditional Framingham cardiovascular risk and use them both in routine practice. The aim of this article is to provide an update of all the major emotional and behavioral cardiovascular risk factors along with a practical treatment model for implementation. First, we provide a review of major emotional and behavioral cardiovascular risk factors, the associated primary effect, and proposed mechanism of action. Second, we provide an office-based approach to cardiovascular risk factor reduction and methods of reducing barriers to implementation, called Prevention Oriented Primary Care-Abridged. The approach integrates several forms of detection, assessment using the 3As (ask, assess, assist), and Stages of Change approaches, and subsequent efficient and targeted treatment with either Motivational Interviewing or further office intervention. A case example is provided to help illustrate this process. PMID:23535528

  11. The Effect of Differentiation Approach Developed on Creativity of Gifted Students: Cognitive and Affective Factors

    ERIC Educational Resources Information Center

    Altintas, Esra; Özdemir, Ahmet S.

    2015-01-01

    The aim of the study is to develop a differentiation approach for the mathematics education of gifted middle school students and to determine the effect of the differentiation approach on creative thinking skills of gifted students based on both cognitive and affective factors. In this context, the answer to the following question was searched:…

  12. Factors Contributing to Changes in a Deep Approach to Learning in Different Learning Environments

    ERIC Educational Resources Information Center

    Postareff, Liisa; Parpala, Anna; Lindblom-Ylänne, Sari

    2015-01-01

    The study explored factors explaining changes in a deep approach to learning. The data consisted of interviews with 12 students from four Bachelor-level courses representing different disciplines. We analysed and compared descriptions of students whose deep approach either increased, decreased or remained relatively unchanged during their courses.…

  13. Factors Influencing Local Communities' Satisfaction Levels with Different Forest Management Approaches of Kakamega Forest, Kenya

    NASA Astrophysics Data System (ADS)

    Guthiga, Paul M.; Mburu, John; Holm-Mueller, Karin

    2008-05-01

    Satisfaction of communities living close to forests with forest management authorities is essential for ensuring continued support for conservation efforts. However, more often than not, community satisfaction is not systematically elicited, analyzed, and incorporated in conservation decisions. This study attempts to elicit levels of community satisfaction with three management approaches of Kakamega forest in Kenya and analyze factors influencing them. Three distinct management approaches are applied by three different authorities: an incentive-based approach of the Forest Department (FD), a protectionist approach of the Kenya Wildlife Service (KWS), and a quasi-private incentive-based approach of Quakers Church Mission (QCM). Data was obtained from a random sample of about 360 households living within a 10-km radius around the forest margin. The protectionist approach was ranked highest overall for its performance in forest management. Results indicate that households are influenced by different factors in their ranking of management approaches. Educated households and those located far from market centers are likely to be dissatisfied with all the three management approaches. The location of the households from the forest margin influences negatively the satisfaction with the protectionist approach, whereas land size, a proxy for durable assets, has a similar effect on the private incentive based approach of the QCM. In conclusion, this article indicates a number of policy implications that can enable the different authorities and their management approaches to gain approval of the local communities.

  14. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors

    SciTech Connect

    Gautam, Bhoj; Parsai, E. Ishmael; Shvydka, Diana; Feldmeier, John; Subramanian, Manny

    2012-04-15

    Purpose: Studies of the curative effects of hyperthermia and radiation therapy on treatment of cancer show a strong evidence of a synergistic enhancement when both radiation and hyperthermia modalities are applied simultaneously. Varieties of tissue heating approaches developed up to date still fail to overcome such essential limitations as an inadequate temperature control, temperature nonuniformity, and prolonged time delay between hyperthermia and radiation treatments. The authors propose a new self-regulating thermobrachytherapy seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. Methods: The proposed seed is based on the BEST Medical, Inc., Seed Model 2301-I{sup 125}, where tungsten marker core and the air gap are replaced with a ferromagnetic material. The ferromagnetic core produces heat when subjected to alternating electromagnetic (EM) field and effectively shuts off after reaching the Curie temperature (T{sub C}) of the ferromagnetic material thus realizing the temperature self-regulation. The authors present a Monte Carlo study of the dose rate constant and other TG-43 factors for the proposed seed. For the thermal characteristics, the authors studied a model consisting of 16 seeds placed in the central region of a cylindrical water phantom using a finite-element partial differential equation solver package ''COMSOL Multiphysics.''Results: The modification of the internal structure of the seed slightly changes dose rate and other TG-43 factors characterizing radiation distribution. The thermal modeling results show that the temperature of the thermoseed surface rises rapidly and stays constant around T{sub C} of the ferromagnetic material. The amount of heat produced by the ferromagnetic core is sufficient to raise the temperature of the surrounding phantom to the therapeutic range. The phantom volume reaching the therapeutic temperature range increases with increase in frequency or

  15. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  16. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  17. Spin waves of ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Arias, Rodrigo

    The spin wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically: initially magnetostatic and later dipole-exchange modes. Theoretically dipole-exchange modes have been solved exactly numerically for some configurations and boundary conditions, and there are approximations of their frequency dispersion relations based on infinite series solutions and perturbation theory, valid for arbitrary orientations of an applied magnetic field, and for boundary conditions that allow varying degrees of pinning. A theoretical method that allows to determine with ease the exact frequency dispersion relations of the dipole-exchange modes is presented: it is required to solve numerically a 6x6 linear eigenvalue problem at each wavevector of interest; the spin wave modes inside or outside the sample may be plotted. Analogous calculations may be done to determine magnetostatic modes in detail. The method corresponds to a generalization of Green's theorem to the problem of determining the dipole-exchange modes of a ferromagnetic film: convolution integral equations for the magnetization and magnetostatic potential are derived on the surfaces of the film that become simple local algebraic equations in Fourier space, or for specific wavevectors. This work was supported by Project ICM FP10-061-F-FIC, Chile, and Center for the Development of Nanoscience and Nanotechnology CEDENNA FB0807 (Chile).

  18. Optical Properties of Ferromagnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Burch, Kenneth

    2006-03-01

    Ferromagnetic semiconductors hold great promise for numerous magneto-optics applications. In this talk I detail recent optical spectroscopic studies of as grown and annealed thin films and digitally doped superlattices of Ga1-xMnxAs, prepared in the group of D.D. Awschalom (UCSB) and annealed in the group of N.Samarth (PSU). Annealing induces a large strengthening of the optical conductivity (σ1(φ)), while the frequency dependence of σ1(φ) remains unchanged. This indicates that the scattering rate and Fermi level have not been effected by annealing, despite the large increase in hole density. Our Infrared work on Digital Ferromagnetic Heterostructures reveals a unique ability to tune their optical properties as well as their intrinsic electronic structure without changing the doping/defect level. This work is in collaboration with D.B. Shrekenhamer, E.J. Singley, D.N. Basov (University of California, San Diego) J. Stephens, R.K. Kawakami, D.D. Awschalom(University of California, Santa Barbara), B.L. Sheu, and N. Samarth (Pennsylvania State University).

  19. Spin Drag in an Ultracold Fermi Gas on the Verge of Ferromagnetic Instability

    SciTech Connect

    Duine, R. A.; Stoof, H. T. C.; Polini, Marco; Vignale, G.

    2010-06-04

    Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase.

  20. Absolute supercurrent switch in ferromagnetic/superconducting/ferromagnetic trilayers operating at T > 4.2 K

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Aristomenopoulou, E.; Manios, E.

    2014-09-01

    Artificial (CoO-)Co/Nb/Co trilayers (TLs) are studied by means of magnetization, transport, and magnetic force microscopy measurements. By using these TLs as a model system, we provide definite means to distinguish the exchange-fields and stray-fields based magnetoresistance effects observed in relevant Ferromagnetic/Superconducting/Ferromagnetic (FM/SC/FM) structures. Accordingly, we isolate and exclusively focus on the stray-fields version, to report a complete supercurrent switch, ΔR/Rnor ≈ 100%, achieved at operating temperature T > 4.2 K. Detailed series of Co(60 nm)/Nb(dNb)/Co(60 nm) TLs are studied, in which all crucial parameters that relate to the outer Co layers and to the Nb interlayer were systematically varied to unveil the factors that motivate and/or promote the observed effect. We propose a compact model that fairly captures the underlying physics of the Co(60 nm)/Nb(dNb)/Co(60 nm) TLs studied here and can be generalized to assist understanding of the relevant processes in every kind of FM/SC/FM TLs. The presented results and accompanying model are both provocative for basic research and attractive for the design of cryogenic devices.

  1. Bound States of a Ferromagnetic Wire in a Superconductor

    NASA Astrophysics Data System (ADS)

    Sau, Jay D.; Brydon, P. M. R.

    2015-09-01

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.

  2. Thermoelectric power quantum oscillations in the ferromagnet UGe2

    NASA Astrophysics Data System (ADS)

    Palacio Morales, A.; Pourret, A.; Knebel, G.; Bastien, G.; Taufour, V.; Aoki, D.; Yamagami, H.; Flouquet, J.

    2016-04-01

    We present thermoelectric power and resistivity measurements in the ferromagnet UGe2 as a function of temperature and magnetic field. At low temperature, huge quantum oscillations are observed in the thermoelectric power as a function of the magnetic field applied along the a axis. The frequencies of the extreme orbits are determined and an analysis of the cyclotron masses is performed following different theoretical approaches for quantum oscillations detected in the thermoelectric power. They are compared to those obtained by Shubnikov-de Haas experiments on the same crystal and previous de Haas-van Alphen experiments. The agreement of the different probes confirms thermoelectric power as an excellent probe to extract simultaneously both microscopic and macroscopic information on the Fermi surface properties. Band structure calculations of UGe2 in the ferromagnetic state are compared to the experiment.

  3. Effect of non-uniform exchange field in ferromagnetic graphene

    SciTech Connect

    Chowdhury, Debashree Basu, B.

    2015-04-15

    We have presented here the consequences of the non-uniform exchange field on the spin transport issues in spin chiral configuration of ferromagnetic graphene. Taking resort to the spin–orbit coupling (SOC) term and non-uniform exchange coupling term we are successful to express the expression of Hall conductivity in terms of the exchange field and SOC parameters through the Kubo formula approach. However, for a specific configuration of the exchange parameter we have evaluated the Berry curvature of the system. We also have paid attention to the study of SU(2) gauge theory of ferromagnetic graphene. The generation of anti damping spin–orbit torque in spin chiral magnetic graphene is also briefly discussed.

  4. Phase ordering dynamics in spin-1 ferromagnetic condensates

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis; Blakie, Peter

    2016-05-01

    Spinor Bose-Einstein condensates present rich phase diagrams for exploring phase transitions between states with different symmetry properties. In this work we simulate the approach to equilibrium of a spin-1 condensate quenched from an unmagnetised phase to three different ferromagnetic phases. The three ferromagnetic phases have Z2, SO(2) and SO(3) symmetries respectively and possess different conservation laws. Following the quench, domains of magnetization form, with each domain making an independent choice of the symmetry breaking order parameter. These domains grow and compete for the global equilibrium state. We find that this growth follows universal scaling laws and identify the dynamic universality class for each of the three quenches. Polar-core spin-vortices play a crucial role in the phase ordering of the SO(2) system and we identify fractal structures in the domain patterns of the SO(2) and SO(3) systems. We acknowledge support from the Marsden Fund of New Zealand.

  5. Bound States of a Ferromagnetic Wire in a Superconductor.

    PubMed

    Sau, Jay D; Brydon, P M R

    2015-09-18

    We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment. PMID:26431011

  6. Prioritizing factors influencing nurses' satisfaction with hospital information systems: a fuzzy analytic hierarchy process approach.

    PubMed

    Kimiafar, Khalil; Sadoughi, Farahnaz; Sheikhtaheri, Abbas; Sarbaz, Masoumeh

    2014-04-01

    Our aim was to use the fuzzy analytic hierarchy process approach to prioritize the factors that influence nurses' satisfaction with a hospital information system. First, we reviewed the related literature to identify and select possible factors. Second, we developed an analytic hierarchy process framework with three main factors (quality of services, of systems, and of information) and 22 subfactors. Third, we developed a questionnaire based on pairwise comparisons and invited 10 experienced nurses who were identified through snowball sampling to rate these factors. Finally, we used Chang's fuzzy extent analysis method to compute the weights of these factors and prioritize them. We found that information quality was the most important factor (58%), followed by service quality (22%) and then system quality (19%). In conclusion, although their weights were not similar, all factors were important and should be considered in evaluating nurses' satisfaction. PMID:24469556

  7. Ferromagnetic resonance line width in magnetic films as a function of temperature

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.

    2015-05-01

    Ferromagnetic resonance (FMR) experiment is considered for the case of a constant field applied in plane of a thin film. Role of temperature is investigated by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch approach. Two important FMR parameters are evaluated: the resonance field and the line width. Although the resonant field has to be calculated numerically, a well working approximating expression is given. In the case of the line width, an analytical formula is obtained. Both the resonance field and the line width grow exponentially with temperature in the whole temperature range. The magnitude of the FMR line broadening is estimated by checking different conditions (microwave frequency and damping) for permalloy showing that increase of temperature from 0% to 90% of the Curie temperature increases the line width roughly by a factor of two.

  8. Structure and magnetic properties of hexagonal arrays of ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo Padrón; Azevedo, A.; Rezende, S. M.

    2009-04-01

    Here we present a model that explains a number of the magnetic properties of arrays of cylindrical ferromagnetic nanowires. The model properly considers the magnetostatic contributions from the wire inhomogeneities, here taken as a chain of ellipsoidal grains, as well as the dipolar interactions summed in the overall array of hexagonal symmetry. Carrying out the complete sum of both the dipolar interactions between the ellipsoidal grains and between the nanowires, we obtain an analytical expression for the magnetostatic energy. The effective anisotropy field extracted from the magnetostatic energy predicts the change in the magnetization easy direction from parallel to perpendicular to the wire axis. The expressions contain information on microscopic parameters such as packing factor, length and diameter of the nanowires, and shape and size of the ellipsoids. The model has been used to interpret ferromagnetic resonance data of Ni nanowires fabricated by electrodeposition in porous anodic aluminum oxide membranes.

  9. Transport Properties in Superconducting Wires Coupled to Ferromagnetic Leads

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Zhang, Ya-Min; Xu, H. Q.; Xu, Ning

    2016-02-01

    We investigate the transport properties of a pair of Majorana bound states in both serial configuration and T-shape configuration with ferromagnetic leads. By using a non-equilibrium Green's function method, the formula of current and shot noise are obtained. The numerical results show that the coupling between the Majorana bounds states at the ends of a wire can be tuned by the polarization P and polarization angle θ intimately in serial configuration. However, this coupling in T-shape configuration is only affected by ferromagnetic leads faintly. In addition, the Fano factor in both configurations is influenced by the polarization P and polarization angle θ intimately at low bias region. Because of the different transport mechanisms, the serial configuration and T-shape configuration show sub-Poissonian and super-Poissonian shot noise at low bias, respectively.

  10. Characteristic Behavior of ESR Linewidth in Cr-doped PbTe-based Diluted Magnetic Semiconductors in the Vicinity of Ferromagnetic Ordering Transition

    NASA Astrophysics Data System (ADS)

    Zvereva, E.; Savelieva, O.; Ibragimov, S.; Slyn'ko, E.; Slyn'ko, V.

    2011-12-01

    Here we report on magnetization (T = 1.8-400 K, B≤7 T) and X-band ESR study (f = 9.1-9.6 GHz, T = 90-450 K) for Pb1-yCryTe ferromagnetic semiconductor and two new PbTe-based semiconductors Pb1-x-ySnxCryTe and Pb1-x-yMgxCryTe in the vicinity of the transition to ferromagnetic state. It was found that these semiconductors demonstrate ferromagnetism at temperatures higher than room temperature. The Curie temperature TC varies in a wide range (150-390 K) depending on the matrix composition and chromium content. In the paramagnetic phase the ESR spectra show a single asymmetrical line of Dysonian shape due to skin effect, typical of conducting materials. Regardless of matrix composition the effective g-factor tends to the saturation value g = 2.08±0.02 and the linewidth is ΔB≈0.08 T at the highest temperature limit. Upon approaching TC from above g-factor slowly increases, while the linewidth falls approximately two times and passes through the minimum at T*≈1.2TC. In the vicinity of TC the ESR parameters show distinct anomalies, which were associated with presence of strong magnetic fluctuation at an onset of FM ordering.

  11. An inclusive model of ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Phelps, Brian Fletcher

    A new inclusive macroscopic model of ferromagnetic hysteresis is proposed. The model is developed from a Stoner-Wohlfarth approach by adding mean field or nearest neighbour dipole-dipole interactions. Pinning of domain rotation is also postulated, and a rotational pinning extension included. The model includes the principal features of the Jiles-Atherton model in the previous Atherton-Beattie extension of the Stoner-Wohlfarth model, but still omits the domain wall energy effects included in the Globus model. The new model describes both reversible and irreversible processes, and hysteresis caused by combinations of interaction, anisotropy, and pinning. Computational approaches to both two and three dimensional calculations are detailed, and examples given. Simulations of hard magnetic materials are done, including major loops to near saturation, minor loops, and demagnetizations. The complete 2 x 2 magnetization tensor response is shown, including fan diagram representations. The minor loop simulations involve complicated sets of field turning points typical of the Preisach model, and the minor loops are seen to exhibit incongruence and eventual closure. The demagnetization simulations are done for both rotating and oscillating applied field cycles. Both isotropic and anisotropic polycrystalline easy axis distributions are treated.

  12. Gilbert damping in noncollinear ferromagnets.

    PubMed

    Yuan, Zhe; Hals, Kjetil M D; Liu, Yi; Starikov, Anton A; Brataas, Arne; Kelly, Paul J

    2014-12-31

    The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearity. We use first-principles scattering theory to investigate transverse domain walls (DWs) of the important ferromagnetic alloy Ni80Fe20 and show that the damping depends not only on the magnetization texture but also on the specific dynamic modes of Bloch and Néel DWs in ways that were not theoretically predicted. Even in the highly disordered Ni80Fe20 alloy, the damping is found to be remarkably nonlocal. PMID:25615368

  13. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  14. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    NASA Astrophysics Data System (ADS)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  15. Factor-Analytic and Individualized Approaches to Constructing Brief Measures of ADHD Behaviors

    ERIC Educational Resources Information Center

    Volpe, Robert J.; Gadow, Kenneth D.; Blom-Hoffman, Jessica; Feinberg, Adam B.

    2009-01-01

    Two studies were performed to examine a factor-analytic and an individualized approach to creating short progress-monitoring measures from the longer "ADHD-Symptom Checklist-4" (ADHD-SC4). In Study 1, teacher ratings on items of the ADHD:Inattentive (IA) and ADHD:Hyperactive-Impulsive (HI) scales of the ADHD-SC4 were factor analyzed in a normative…

  16. Inequivalent Quantizations and Holonomy Factor from the Path-Integral Approach

    NASA Astrophysics Data System (ADS)

    Tanimura, Shogo; Tsutsui, Izumi

    1997-08-01

    A path-integral quantization on a homogeneous spaceG/His proposed, based on the guiding principle "first lift toGand then project toG/H". It is then shown that this principle gives a simple procedure to obtain the inequivalent quantizations (superselection sectors), along with the holonomy factor (induced gauge field) found earlier by algebraic approaches. We also prove that the resulting matrix-valued path-integral is physically equivalent to the scalar-valued path-integral derived in the Dirac approach, and thereby we present a unified viewpoint to discuss the basic features of quantizing onG/Hobtained in various approaches so far.

  17. Competing ferromagnetism in high-temperature copper oxide superconductors

    PubMed Central

    Kopp, Angela; Ghosal, Amit; Chakravarty, Sudip

    2007-01-01

    The extreme variability of observables across the phase diagram of the cuprate high-temperature superconductors has remained a profound mystery, with no convincing explanation for the superconducting dome. Although much attention has been paid to the underdoped regime of the hole-doped cuprates because of its proximity to a complex Mott insulating phase, little attention has been paid to the overdoped regime. Experiments are beginning to reveal that the phenomenology of the overdoped regime is just as puzzling. For example, the electrons appear to form a Landau Fermi liquid, but this interpretation is problematic; any trace of Mott phenomena, as signified by incommensurate antiferromagnetic fluctuations, is absent, and the uniform spin susceptibility shows a ferromagnetic upturn. Here, we show and justify that many of these puzzles can be resolved if we assume that competing ferromagnetic fluctuations are simultaneously present with superconductivity, and the termination of the superconducting dome in the overdoped regime marks a quantum critical point beyond which there should be a genuine ferromagnetic phase at zero temperature. We propose experiments and make predictions to test our theory and suggest that an effort must be mounted to elucidate the nature of the overdoped regime, if the problem of high-temperature superconductivity is to be solved. Our approach places competing order as the root of the complexity of the cuprate phase diagram. PMID:17404239

  18. The critical compressibility factor of fluids from the global isomorphism approach

    NASA Astrophysics Data System (ADS)

    Kulinskii, V. L.

    2013-11-01

    The relation between the critical compressibility factors Zc of the Lennard-Jones fluid and the Lattice Gas (Ising model) is derived within the global isomorphism approach. On this basis, we obtain the alternative form for the value of the critical compressibility factor which is different from widely used phenomenological Timmermans relation. The estimates for the critical pressure Pc and Zc of the Lennard-Jones fluid are obtained in case of two and three dimensions. The extension of the formalism is proposed to include the Pitzer's acentric factor into consideration.

  19. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    SciTech Connect

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-11-02

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated.

  20. An Efficient Approach to Obtain Optimal Load Factors for Structural Design

    PubMed Central

    Bojórquez, Juan

    2014-01-01

    An efficient optimization approach is described to calibrate load factors used for designing of structures. The load factors are calibrated so that the structural reliability index is as close as possible to a target reliability value. The optimization procedure is applied to find optimal load factors for designing of structures in accordance with the new version of the Mexico City Building Code (RCDF). For this aim, the combination of factors corresponding to dead load plus live load is considered. The optimal combination is based on a parametric numerical analysis of several reinforced concrete elements, which are designed using different load factor values. The Monte Carlo simulation technique is used. The formulation is applied to different failure modes: flexure, shear, torsion, and compression plus bending of short and slender reinforced concrete elements. Finally, the structural reliability corresponding to the optimal load combination proposed here is compared with that corresponding to the load combination recommended by the current Mexico City Building Code. PMID:25133232

  1. An efficient approach to obtain optimal load factors for structural design.

    PubMed

    Bojórquez, Juan; Ruiz, Sonia E

    2014-01-01

    An efficient optimization approach is described to calibrate load factors used for designing of structures. The load factors are calibrated so that the structural reliability index is as close as possible to a target reliability value. The optimization procedure is applied to find optimal load factors for designing of structures in accordance with the new version of the Mexico City Building Code (RCDF). For this aim, the combination of factors corresponding to dead load plus live load is considered. The optimal combination is based on a parametric numerical analysis of several reinforced concrete elements, which are designed using different load factor values. The Monte Carlo simulation technique is used. The formulation is applied to different failure modes: flexure, shear, torsion, and compression plus bending of short and slender reinforced concrete elements. Finally, the structural reliability corresponding to the optimal load combination proposed here is compared with that corresponding to the load combination recommended by the current Mexico City Building Code. PMID:25133232

  2. Factors Affecting the Involvement of Teachers in Guidance and Counselling as a Whole-School Approach

    ERIC Educational Resources Information Center

    Lam, Sarah K. Y.; Hui, Eadaoin K. P.

    2010-01-01

    This study explores factors affecting the involvement of regular secondary school teachers in the whole-school approach to guidance and counselling by interviewing 12 secondary school teachers in Hong Kong. Emerging themes include teachers' ownership of their role in student guidance and counselling, the alignment of their disposition with…

  3. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    ERIC Educational Resources Information Center

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…

  4. Taxometric and Factor Analytic Models of Anxiety Sensitivity: Integrating Approaches to Latent Structural Research

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Norton, Peter J.; Schmidt, Norman B.; Taylor, Steven; Forsyth, John P.; Lewis, Sarah F.; Feldner, Matthew T.; Leen-Feldner, Ellen W.; Stewart, Sherry H.; Cox, Brian

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), as indexed by the 16-item Anxiety Sensitivity Index (ASI; S. Reiss, R. A. Peterson, M. Gursky, & R. J. McNally, 1986), by using taxometric and factor-analytic approaches in an integrative manner. Taxometric analyses indicated that AS has a…

  5. Unique correlation between non-linear distortion of tangential magnetic field and magnetic excitation voltage - Unexplored ferromagnetic phenomena and their application for ferromagnetic materials evaluation

    NASA Astrophysics Data System (ADS)

    Moorthy, V.

    2016-01-01

    Unexplored ferromagnetic phenomena of non-linear distortion of tangential magnetic field (HT) and that of excitation voltage (VE) across the electromagnetic (EM) yoke, in the presence of a ferromagnetic material between the poles of the EM yoke, have been uniquely correlated in this study. Both the HT and VE show similar distortion behaviour, but in the opposite direction, with unique shape for each ferromagnetic sample with different microstructural conditions. Interestingly unique correlation between (dVE / dt) and (dHT / dt) profiles and their ability to distinguish different magnetisation behaviour of ferromagnetic material with different microstructures have also been discussed in this study. One to one correlation between the distortion of HT and VE shown in this study is clear evidence that both these parameters are strongly influenced by the same mechanism of magnetisation process, but in different ways. The systematic changes in the height and position of the peak and the trough on the time derivative profiles of VE and HT reflect the subtle differences in the magnetisation process for each microstructural condition of the steel. This study reveals the new scientific insight and good potential of this novel as well as very simple approach of distortion analysis of HT and VE for understanding the influence of material properties on the mechanism of magnetisation process and also their suitability for variety of applications related to materials evaluation of ferromagnetic components and structures.

  6. Conserved momenta of a ferromagnetic soliton

    NASA Astrophysics Data System (ADS)

    Tchernyshyov, Oleg

    2015-12-01

    Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether's theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.

  7. A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds

    NASA Technical Reports Server (NTRS)

    Drinkwater, Fred J., III; Cooper, George E.

    1958-01-01

    The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.

  8. Ferromagnetic microdisks as carriers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rozhkova, E. A.; Novosad, V.; Kim, D.-H.; Pearson, J.; Divan, R.; Rajh, T.; Bader, S. D.

    2009-04-01

    We report the fabrication process, magnetic behavior, as well as the surface modification of ferromagnetic microdisks suspended in aqueous solution. They posses unique properties such as high magnetization of saturation, zero remanence due to spin vortex formation, intrinsic spin resonance at low frequencies, and the capability of delivering various biomolecules at once. Furthermore, because of their anisotropic shape, our magnetic particles rotate under alternating magnetic fields of small amplitude. This can be used to promote the idea of advanced therapies, which include combined drug delivery and magnetomechanical cell destruction when targeting tumor cells. The approach enables us to fabricate suitable magnetic carriers with excellent size tolerances, and then release them from the wafer into solution, ready for surface modification and therapeutic use. The particles have a magnetic core and are covered with few nanometers of gold on each side to provide stability at ambient conditions as well as biocompatibility and selective adhesion functions. A successful attempt to bind thiolates, including SH-modified antibody, to the disk's surface was demonstrated.

  9. Vortex Gyrotropic Motion in patterned Ferromagnetic Dots

    NASA Astrophysics Data System (ADS)

    Ding, Junjia; Lapa, Pavel; Chair, Trupti; Posada, Chrystian; Hoffmann, Axel; Novosad, Valentine

    A vortex state consists of a large region of in-plane curling magnetization and a small core region with out-of-plane magnetization. The gyrotropic oscillation frequency of the vortex core is known to be weakly dependent to the core position (which is adjustable by changing the applied field) and can only be efficiently tuned by changing the dimension of the dots. Here, we demonstrated that the vortex gyrotropic frequency can be stepwise tuned by introducing a vortex barrier to a regular ferromagnetic dot. Systematical investigations of the dynamic response of the engineered dots have been performed as a function of the outer dot diameter, barrier diameter and the barrier profile using both microwave absorption spectroscopy and micromagnetic simulation. We found that the vortex frequency is mostly dependent on the outer diameter of the dot when the core is outside the barrier, while it is more rely on the dimension of the barrier when the core is inside the barrier. This approach certainly gives several additional freedoms to adjust the vortex gyrotopic frequency and opens extra perspectives for spintronic applications. This work at Argonne was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division.

  10. Vortex dynamics in thin elliptic ferromagnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Wysin, G. M.

    2015-10-01

    Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equations, including the demagnetization field calculated with a Green's function approach for thin film problems. At finite temperature the thermalized dynamics is found using a second order Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable only within a limited range of ellipticity, outside of which a quasi-single-domain becomes the preferred minimum energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be described by a Thiele equation.

  11. Rabi nutations in a ferromagnetic film

    NASA Astrophysics Data System (ADS)

    Capua, Amir; Rettner, Charles; Parkin, Stuart

    When electromagnetic radiation interacts with a two-level system, energy is transferred back and forth between the quantum system and the electromagnetic radiation at a rate defined by the Rabi frequency. This process takes place as long as coherence prevails, until steady state is reached. Rabi nutations have been observed in a variety of quantum systems (atomic vapors, semiconductors, superconducting qubits, etc.). Here, we observe Rabi nutations in an ultrathin ~10 Å perpendicularly magnetized CoFeB film. A hybrid ferromagnetic resonance (FMR) - time resolved magneto optical Kerr effect (TRMOKE) system is used for this observation. Namely, a strong optical pump pulse perturbs the precessing spin system after which a weak optical probe pulse is sent at different times to map its recovery until steady precessional motion is reached again. The responses at the different detunings of magnetic field away from resonance conditions readily indicate the occurrence of the Rabi nutations which are initiated by the pump arriving at t =0. Excellent agreement with the prediction given by the Rabi formula is found. The method we report presents a new approach to study dynamical phenomena in magnetic materials.

  12. Finite element modeling of magnetic bias eddy current probe interaction with ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Lei, J.

    2013-01-01

    Requirements to demonstrate eddy current inspection capabilities for inspection of steam generator tubes in nuclear power generation stations are becoming more rigorous. One method to support qualification of an existing, modified, or new eddy current probe design is to model the probe response to various degradation modes and tube artifacts with a finite element approach. Magnetic-bias probes are used to inspect for defects in conditions where material magnetic permeability effects are a concern, such as in the presence of ferromagnetic tubes, deposits, or supports. In this paper, a transient finite element modeling approach was used to model the interaction of magnetic-bias eddy current probes with ferromagnetic materials.

  13. The Structure of Temperament in Preschoolers: A Two-Stage Factor Analytic Approach

    PubMed Central

    Dyson, Margaret W.; Olino, Thomas M.; Durbin, C. Emily; Goldsmith, H. Hill; Klein, Daniel N.

    2012-01-01

    The structure of temperament traits in young children has been the subject of extensive debate, with separate models proposing different trait dimensions. This research has relied almost exclusively on parent-report measures. The present study used an alternative approach, a laboratory observational measure, to explore the structure of temperament in preschoolers. A 2-stage factor analytic approach, exploratory factor analyses (n = 274) followed by confirmatory factor analyses (n = 276), was used. We retrieved an adequately fitting model that consisted of 5 dimensions: Sociability, Positive Affect/Interest, Dysphoria, Fear/Inhibition, and Constraint versus Impulsivity. This solution overlaps with, but is also distinct from, the major models derived from parent-report measures. PMID:21859196

  14. [Induction of myocardial neoangiogenesis by human growth factors. A new therapeutic approach in coronary heart disease].

    PubMed

    Stegmann, T J; Hoppert, T; Schneider, A; Gemeinhardt, S; Köcher, M; Ibing, R; Strupp, G

    2000-09-01

    Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction either by reducing myocardial oxygen demand, preventing further disease progression, restoring coronary blood flow pharmacologically or mechanically, or bypassing the stenotic lesions and obstructed coronary artery segments. Gene therapy, especially using angiogenic growth factors, has emerged recently as a potential new treatment for cardiovascular disease. Following extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease and peripheral vascular lesions have been performed. The polypeptides fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) appear to be particularly effective in initiating neovascularization (neoangiogenesis) in hypoxic or ischemic tissues. The first clinical study on patients with coronary heart disease treated by local intramyocardial injection of FGF-1 showed a 3-fold increase of capillary density mediated by the growth factor. Also, angiogenic growth factor injection intramyocardially as sole therapy for end-stage coronary disease showed an improvement of myocardial perfusion in the target areas as well as a reduction of symptoms and an increase in working capacity. Angiogenic therapy of the human myocardium introduces a new modality of treatment for coronary heart disease in terms of regulation of blood vessel growth. Beyond drug therapy, angioplasty and bypass surgery, this new approach may evolve into a fourth principle of treatment of atherosclerotic cardiovascular disease. PMID:11076317

  15. A holographic quantum Hall ferromagnet

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Pourhasan, R.; Semenoff, G. W.

    2014-02-01

    A detailed numerical study of a recent proposal for exotic states of the D3-probe D5 brane system with charge density and an external magnetic field is presented. The state has a large number of coincident D5 branes blowing up to a D7 brane in the presence of the worldvolume electric and magnetic fields which are necessary to construct the holographic state. Numerical solutions have shown that these states can compete with the the previously known chiral symmetry breaking and maximally symmetric phases of the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with integer quantized Hall conductivities. In the dual superconformal defect field theory, these solutions correspond to states which break the chiral and global flavor symmetries spontaneously. The region of the temperature-density plane where the D7 brane has lower energy than the other known D5 brane solutions is identified. A hypothesis for the structure of states with filling fraction and Hall conductivity greater than one is made and tested by numerical computation. A parallel with the quantum Hall ferromagnetism or magnetic catalysis phenomenon which is observed in graphene is drawn. As well as demonstrating that the phenomenon can exist in a strongly coupled system, this work makes a number of predictions of symmetry breaking patterns and phase transitions for such systems.

  16. An Improved Systematic Approach to Predicting Transcription Factor Target Genes Using Support Vector Machine

    PubMed Central

    Cui, Song; Youn, Eunseog; Lee, Joohyun; Maas, Stephan J.

    2014-01-01

    Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs) makes great contribution to understanding the gene regulatory networks. However, these approaches are based on laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail to consider the structural property of the datasets. We proposed a refined systematic computational approach for predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a classification problem using support vector machine-based classifier. Our approach showed significant improvement compared to other computational methods based on the area under curve value of the receiver operating characteristic curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory results. PMID:24743548

  17. Spatialised fate factors for nitrate in catchments: modelling approach and implication for LCA results.

    PubMed

    Basset-Mens, Claudine; Anibar, Lamiaa; Durand, Patrick; van der Werf, Hayo M G

    2006-08-15

    The challenge for environmental assessment tools, such as Life Cycle Assessment (LCA) is to provide a holistic picture of the environmental impacts of a given system, while being relevant both at a global scale, i.e., for global impact categories such as climate change, and at a smaller scale, i.e., for regional impact categories such as aquatic eutrophication. To this end, the environmental mechanisms between emission and impact should be taken into account. For eutrophication in particular, which is one of the main impacts of farming systems, the fate factor of eutrophying pollutants in catchments, and particularly of nitrate, reflects one of these important and complex environmental mechanisms. We define this fate factor as: the ratio of the amount of nitrate at the outlet of the catchment over the nitrate emitted from the catchment's soils. In LCA, this fate factor is most often assumed equal to 1, while the observed fate factor is generally less than 1. A generic approach for estimating the range of variation of nitrate fate factors in a region of intensive agriculture was proposed. This approach was based on the analysis of different catchment scenarios combining different catchment types and different effective rainfalls. The evolution over time of the nitrate fate factor as well as the steady state fate factor for each catchment scenario was obtained using the INCA simulation model. In line with the general LCA model, the implications of the steady state fate factors for nitrate were investigated for the eutrophication impact result in the framework of an LCA of pig production. A sensitivity analysis to the fraction of nitrate lost as N(2)O was presented for the climate change impact category. This study highlighted the difference between the observed fate factor at a given time, which aggregates both storage and transformation processes and a "steady state fate factor", specific to the system considered. The range of steady state fate factors obtained for

  18. Identifying Risk and Protective Factors in Recidivist Juvenile Offenders: A Decision Tree Approach.

    PubMed

    Ortega-Campos, Elena; García-García, Juan; Gil-Fenoy, Maria José; Zaldívar-Basurto, Flor

    2016-01-01

    Research on juvenile justice aims to identify profiles of risk and protective factors in juvenile offenders. This paper presents a study of profiles of risk factors that influence young offenders toward committing sanctionable antisocial behavior (S-ASB). Decision tree analysis is used as a multivariate approach to the phenomenon of repeated sanctionable antisocial behavior in juvenile offenders in Spain. The study sample was made up of the set of juveniles who were charged in a court case in the Juvenile Court of Almeria (Spain). The period of study of recidivism was two years from the baseline. The object of study is presented, through the implementation of a decision tree. Two profiles of risk and protective factors are found. Risk factors associated with higher rates of recidivism are antisocial peers, age at baseline S-ASB, problems in school and criminality in family members. PMID:27611313

  19. Antiferromagnetic/ferromagnetic nanostructures for multidigit storage units

    NASA Astrophysics Data System (ADS)

    Morales, R.; Kovylina, M.; Schuller, Ivan K.; Labarta, A.; Batlle, X.

    2014-01-01

    The pursuit of higher densities in binary storage media is facing serious operating limitations. In order to overcome these constraints, several multistate techniques have been investigated as alternatives. Here, we report on an approach to define multistate switching memory units based on magnetic nanostructures exhibiting exchange bias. Writing and reading conditions were studied in patterned antiferromagnetic/ferromagnetic thin films. We establish the necessary and sufficient requirements for this multidigit memory concept that might open up new possibilities for the exploration and design of suitable room temperature spintronic devices.

  20. An alternative approach for ζ-factor measurement using pure element nanoparticles.

    PubMed

    Zanaga, Daniele; Altantzis, Thomas; Sanctorum, Jonathan; Freitag, Bert; Bals, Sara

    2016-05-01

    It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called ζ-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy. PMID:26989979

  1. Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach.

    PubMed

    Li, Yuanqing; Cichocki, Andrzej; Amari, Shun-Ichi

    2006-03-01

    In this paper, we use a two-stage sparse factorization approach for blindly estimating the channel parameters and then estimating source components for electroencephalogram (EEG) signals. EEG signals are assumed to be linear mixtures of source components, artifacts, etc. Therefore, a raw EEG data matrix can be factored into the product of two matrices, one of which represents the mixing matrix and the other the source component matrix. Furthermore, the components are sparse in the time-frequency domain, i.e., the factorization is a sparse factorization in the time frequency domain. It is a challenging task to estimate the mixing matrix. Our extensive analysis and computational results, which were based on many sets of EEG data, not only provide firm evidences supporting the above assumption, but also prompt us to propose a new algorithm for estimating the mixing matrix. After the mixing matrix is estimated, the source components are estimated in the time frequency domain using a linear programming method. In an example of the potential applications of our approach, we analyzed the EEG data that was obtained from a modified Sternberg memory experiment. Two almost uncorrelated components obtained by applying the sparse factorization method were selected for phase synchronization analysis. Several interesting findings were obtained, especially that memory-related synchronization and desynchronization appear in the alpha band, and that the strength of alpha band synchronization is related to memory performance. PMID:16566469

  2. Spin-orbit torques in ferromagnets and antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gao, Huawei

    Spintronics is a sub-field of condensed matter physics which explores the physics of electrons involving both their charge and spin, with an emphasis on the active manipulation of the spin degree of freedom in solid state systems. In spin-based memory and storage devices, information ( 0 or 1) is stored based on the magnetization orientation in ferromagnets or layered magnetic structures. We study the utilization of spin-orbit torques in ferromagnets and antiferromagnets as an effective ways of magnetization switching in these nonvolatile memory devices. The method we use is linear response theory and numerical simulation. Our results show that the spin-orbit torques are effective approaches of manipulating magnetization in both ferromagnets and antiferromagnets, which can be used in the future memory device applications. In ferromagnets, we start from a simple two dimensional electron gas ferromagnetic model with Rashba spin-orbit coupling to study the different components of spin-orbit torques and the parameter dependence. The results show the existence of these torques. Then, we study these torques in a realistic material, GaMnAs, with a complex band structure. We confirm that these torques have the same parameter dependence in GaMnAs and the simple two dimensional model. The complex band structure changes the magnitudes of the effective fields and shows more features in the results which unveils the competition between band structure and spin-orbit coupling. In antiferromagnets, by studying the spin-orbit torques in the two dimensional antiferromagneic model and the realistic material Mn2Au, we predict that a lateral electric current in antiferromagnets can induce non-equilibrium Neel-order fields, i.e., fields whose sign alternates between the spin sub lattices, which can trigger ultrafast spin-axis reorientation. Due to the two dimensional nature, the spin-orbit torques can have large magnitudes if we tune the Fermi energy to a certain level. We then extend

  3. The study of charge injection and spin polarization in ferromagnetic metal-polymer-ferromagnetic metal structure

    NASA Astrophysics Data System (ADS)

    Zhao, Hua; Liu, Zhong-Wang; Chen, Shao-Bo; Chang, Liu-An

    2014-10-01

    By using extended SSH Hamiltonian plus long-range electron correlation Hamiltonian model, we calculated charge injection and spin polarization in a ferromagnetic metal/polymer/ferromagnetic metal structure. We adjust relative chemical potential between the ferromagnetic materials and the polymer to control charge transfer. It is found that when spin orientations of two ferromagnetic materials are parallel to each other, spin-polarized single polaron can be formed in the polymer, but when the spin orientations of two ferromagnetic materials are antiparallel to each other, bipolaron is formed and that spin polarization is found to be zero inside the polymer. The influence of the long-range electronic correlation on these polarons in the polymer is discussed.

  4. Factors associated with malnutrition among tribal children in India: a non-parametric approach.

    PubMed

    Debnath, Avijit; Bhattacharjee, Nairita

    2014-06-01

    The purpose of this study is to identify the determinants of malnutrition among the tribal children in India. The investigation is based on secondary data compiled from the National Family Health Survey-3. We used a classification and regression tree model, a non-parametric approach, to address the objective. Our analysis shows that breastfeeding practice, economic status, antenatal care of mother and women's decision-making autonomy are negatively associated with malnutrition among tribal children. We identify maternal malnutrition and urban concentration of household as the two risk factors for child malnutrition. The identified associated factors may be used for designing and targeting preventive programmes for malnourished tribal children. PMID:24415743

  5. Modelling individual differences in the form of Pavlovian conditioned approach responses: a dual learning systems approach with factored representations.

    PubMed

    Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B; Robinson, Terry E; Khamassi, Mehdi

    2014-02-01

    Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself - a lever - more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational

  6. Modelling Individual Differences in the Form of Pavlovian Conditioned Approach Responses: A Dual Learning Systems Approach with Factored Representations

    PubMed Central

    Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B.; Robinson, Terry E.; Khamassi, Mehdi

    2014-01-01

    Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in

  7. Risk Factors for Overweight/Obesity in Preschool Children: An Ecological Approach

    PubMed Central

    McBride, Brent A.; Fiese, Barbara H.; Jones, Blake L.; Cho, Hyunkeun

    2013-01-01

    Abstract Background Identification of risk factors is critical to preventing the childhood obesity epidemic. Risk factors that contribute to obesity are multifactorial. However, limited research has focused on identifying obesity risk factors using an ecological approach. Methods Baseline self-report survey data from the STRONG Kids program were used. The sample consisted of 329 parent-child dyads recruited from childcare programs in east-central Illinois. Child height and weight were measured and converted to age- and sex-specific z-scores using standard growth charts. An ecological model provided the theoretical framework for the selection of 22 previously reported childhood obesity risk factors. Multiple logistic regression analyses were used to identify risk factors. Results Of 22 potential risk factors, three were found to be significantly associated with child overweight/obesity. These included child nighttime sleep duration (χ2=8.56; p=0.003), parent BMI (χ2=5.62; p=0.01), and parental restrictive feeding for weight control (χ2=4.77; p=0.02). Children who slept for 8 hours and less were 2.2 times more likely to be overweight/obese [95% confidence interval (CI): 1.3–3.7), whereas children with an overweight/obese parent were 1.9 times more likely to be overweight/obese (95% CI: 1.12–3.2). Finally, children whose parents used restrictive feeding practices were 1.75 times more likely to be overweight/obese (95% CI: 1.06–2.9). Conclusions Using an ecological approach, we conclude that childhood obesity prevention efforts may benefit from targeting the key risk factors of child sleep duration, parent BMI, and parental restrictive feeding practices as focus areas for obesity prevention. PMID:24020790

  8. Studies of ferromagnetic semiconducting hybrid structures

    NASA Astrophysics Data System (ADS)

    Cheon, Miyeon

    2006-04-01

    Ga1-xMnxSb random and GaSb/Mn digital alloys at low growth temperatures by MBE have been fabricated and studied to investigate effect of Sb/Ga flux ratio on the magnetic and electronic properties. The magnetic and magnetotransport properties of random alloys are strongly dependent on Sb/Ga flux ratio. The coercive field and negative magnetoresistance increase with decreasing Sb/Ga flux ratio, while the Curie temperature remains constant at approximately 23 K, with no systematic dependence on the hole density. In contrast, the Curie temperatures for the GaSb:Mn digital alloys with different Mn surface coverages depend significantly on the Sb/Ga flux ratio, and it is also directly correlated with the hole density. Epitaxial growth of ferromagnetic thin films directly on semiconductors as well as ferromagnetic III-Mn-V semiconductors has attracted much interest of many researchers because hybrid semiconductor-ferromagnet structures are relevant to spintronic applications that rely on spin injection and tunneling from a ferromagnet into a semiconductor. Ferromagnetic metal MnAs has been one of promising magnetic materials because of its high ferromagnetic transition temperature (TC ˜ 320 K), the relatively small coercive field and its structural compatibility with commonly used III-V semiconductors. MnAs thin films with high structural quality were epitaxially grown on GaAs substrates using molecular beam epitaxy (MBE). MnAs films have been found that two structurally distinct phases, alpha- and beta-MnAs coexist in a range near the bulk phase transition temperature TC instead of an abrupt transition. MFM experiments reveal that the stripes of -MnAs have complicated magnetic domain structures at room temperature. Also the magnetic domains are very different when the temperature is decreased. Magnetization studies of MnAs epilayers, mesas without and with a Cr cap layer were carried out to investigate finite-size weakening of ferromagnetism and exchange bias effect for

  9. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  10. NdN: An intrinsic ferromagnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; McNulty, J. F.; Ruck, B. J.; Suzuki, M.; Mizumaki, M.; Antonov, V. N.; Quilty, J. W.; Strickland, N.; Trodahl, H. J.

    2016-02-01

    The rare-earth nitrides have recently regained attention due to findings that most members of the series are intrinsic ferromagnetic semiconductors, a class of materials that is crucial for the development of spintronics devices. Here we present a study of NdN thin films, with films grown via molecular beam epitaxy. Optical transmission measurements revealed a band gap of about 0.9 eV, while resistivity measurements confirmed semiconducting behavior with a negative temperature coefficient of resistance, though semimetallic behavior could not be ruled out. The room temperature resistivity of 0.6 m Ω cm indicates strong doping by nitrogen vacancies. Magnetization measurements show a ferromagnetic moment of 1.0 ±0.2 μB below the Curie temperature TC of 43 ±1 K, strongly suppressed from the Hund's rules value of 3.27 μB per ion. The ferromagnetic moment is strongly quenched and the TC is enhanced compared to previously studied bulk NdN, and crystal field calculations reveal that the quenched moment is likely due to lattice strain. X-ray magnetic circular dichroism measurements show that the magnetic moment is orbital dominant, placing NdN in the same category as SmN, an intrinsic ferromagnetic semiconductor with an orbital-dominant ferromagnetic moment.

  11. Abnormal attentions toward the British Royal Family: factors associated with approach and escalation.

    PubMed

    James, David V; Meloy, J Reid; Mullen, Paul E; Pathé, Michele T; Farnham, Frank R; Preston, Lulu F; Darnley, Brian J

    2010-01-01

    Abnormal approach and escalation from communication to physical intrusion are central concerns in managing risk to prominent people. This study was a retrospective analysis of police files of those who have shown abnormal attentions toward the British Royal Family. Approach (n = 222), compared with communication only (n = 53), was significantly associated with specific factors, most notably serious mental illness and grandiosity. In a sample of those who engaged in abnormal communication (n = 132), those who approached (n = 79) were significantly more likely to evidence mental illness and grandiosity, to use multiple communications, to employ multiple means of communication, and to be driven by motivations that concerned a personal entitlement to the prominent individual. Logistic regression produced a model comprising grandiosity, multiple communications, and multiple means of communication, for which receiver operating characteristic (ROC) analysis gave an area under the curve (AUC) of 0.82. The implications of these findings are discussed in relation to those for other target groups. PMID:20852218

  12. Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Miravet, D.; Proetto, C. R.

    2016-08-01

    When two Landau levels are brought to a close coincidence between them and with the chemical potential in the integer quantum Hall regime, the two Landau levels can just cross or collapse while the external or pseudospin field that induces the alignment changes. In this work, all possible crossings are analyzed theoretically for the particular case of semiconductor trilayer systems, using a variational Hartree-Fock approximation. The model includes tunneling between neighboring layers, bias, intralayer, and interlayer Coulomb interaction among the electrons. We have found that the general pseudospin anisotropy classification scheme used in bilayers applies also to the trilayer situation, with the simple crossing corresponding to an easy-axis ferromagnetic anisotropy analogy, and the collapse case corresponding to an easy-plane ferromagnetic analogy. An isotropic case is also possible, with the levels just crossing or collapsing depending on the filling factor and the quantum numbers of the two nearby levels. While our results are valid for any integer filling factor ν (=1 ,2 ,3 ,... ), we have analyzed in detail the crossings at ν =3 and 4, and we have given clear predictions that will help in their experimental search. In particular, the present calculations suggest that by increasing the bias, the trilayer system at these two filling factors can be driven from an easy-plane anisotropy regime to an easy-axis regime, and then can be driven back to the easy-plane regime. This kind of reentrant behavior is a unique feature of the trilayers, compared with the bilayers.

  13. B to tensor meson form factors in the perturbative QCD approach

    SciTech Connect

    Wang Wei

    2011-01-01

    We calculate the B{sub u,d,s}{yields}T form factors within the framework of the perturbative QCD approach, where T denotes a light tensor meson with J{sup P}=2{sup +}. Because of the similarities between the wave functions of a vector and a tensor meson, the factorization formulas of B{yields}T form factors can be obtained from the B{yields}V transition through a replacement rule. As a consequence, we find that these two sets of form factors have the same signs and correlated q{sup 2}-dependence behaviors. At q{sup 2}=0 point, the B{yields}T form factors are smaller than the B{yields}V ones, in accordance with the experimental data of radiative B decays. In addition, we use our results for the form factors to explore semilteptonic B{yields}Tl{nu}{sub l} decays and the branching fractions can reach the order 10{sup -4}.

  14. Assessment of successful smoking cessation by psychological factors using the Bayesian network approach.

    PubMed

    Yang, Xiaorong; Li, Suyun; Pan, Lulu; Wang, Qiang; Li, Huijie; Han, Mingkui; Zhang, Nan; Jiang, Fan; Jia, Chongqi

    2016-07-01

    The association between psychological factors and smoking cessation is complicated and inconsistent in published researches, and the joint effect of psychological factors on smoking cessation is unclear. This study explored how psychological factors jointly affect the success of smoking cessation using a Bayesian network approach. A community-based case control study was designed with 642 adult male successful smoking quitters as the cases, and 700 adult male failed smoking quitters as the controls. General self-efficacy (GSE), trait coping style (positive-trait coping style (PTCS) and negative-trait coping style (NTCS)) and self-rating anxiety (SA) were evaluated by GSE Scale, Trait Coping Style Questionnaire and SA Scale, respectively. Bayesian network was applied to evaluate the relationship between psychological factors and successful smoking cessation. The local conditional probability table of smoking cessation indicated that different joint conditions of psychological factors led to different outcomes for smoking cessation. Among smokers with high PTCS, high NTCS and low SA, only 36.40% successfully quitted smoking. However, among smokers with low pack-years of smoking, high GSE, high PTCS and high SA, 63.64% successfully quitted smoking. Our study indicates psychological factors jointly influence smoking cessation outcome. According to different joint situations, different solutions should be developed to control tobacco in practical intervention. PMID:26264661

  15. Bridging the gap between biologic, individual, and macroenvironmental factors in cancer: a multilevel approach.

    PubMed

    Lynch, Shannon M; Rebbeck, Timothy R

    2013-04-01

    To address the complex nature of cancer occurrence and outcomes, approaches have been developed to simultaneously assess the role of two or more etiologic agents within hierarchical levels including the: (i) macroenvironment level (e.g., health care policy, neighborhood, or family structure); (ii) individual level (e.g., behaviors, carcinogenic exposures, socioeconomic factors, and psychologic responses); and (iii) biologic level (e.g., cellular biomarkers and inherited susceptibility variants). Prior multilevel approaches tend to focus on social and environmental hypotheses, and are thus limited in their ability to integrate biologic factors into a multilevel framework. This limited integration may be related to the limited translation of research findings into the clinic. We propose a "Multi-level Biologic and Social Integrative Construct" (MBASIC) to integrate macroenvironment and individual factors with biology. The goal of this framework is to help researchers identify relationships among factors that may be involved in the multifactorial, complex nature of cancer etiology, to aid in appropriate study design, to guide the development of statistical or mechanistic models to study these relationships, and to position the results of these studies for improved intervention, translation, and implementation. MBASIC allows researchers from diverse fields to develop hypotheses of interest under a common conceptual framework, to guide transdisciplinary collaborations, and to optimize the value of multilevel studies for clinical and public health activities. PMID:23462925

  16. Strain intensity factor approach for predicting the strength of continuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 to + or - 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Strengths of specimens containing crack-like slits were calculated from predicted failing strains using uniaxial stress-strain curves. Predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only + or - 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.

  17. A human factors analysis of ADL activities: a capability-demand approach.

    PubMed

    Czaja, S J; Weber, R A; Nair, S N

    1993-09-01

    Older adults frequently encounter difficulties performing daily living activities. Often times these difficulties arise because environmental demands create barriers which hinder task performance. Currently, there is little empirical data that relate environmental demands to functional capabilities of older adults. The concepts and methods of Human Factors Engineering can be used to accomplish this goal. Human Factors views task performance within a systems context and maintains that successful task performance is dependent on a match between task demands and human capabilities. This article will discuss how Human Factors methodologies can be used to analyze problems encountered by older adults performing routine activities. Data from a study concerned with identifying physiological demands associated with personal and instrumental activities of daily living will be used to demonstrate the utility of using this approach. PMID:8409240

  18. Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement

    NASA Astrophysics Data System (ADS)

    Soper, A. K.

    2005-09-01

    Neutron and x-ray diffraction are widely used to measure the structure of liquids and disordered solids. Using techniques such as isotope substitution or anomalous dispersion or combining neutron and x-ray data, it is sometimes possible to invert the total diffraction patterns from these materials into a set of partial structure factors, which describe the correlations between specific atom types in the material. However, even in situations where the matrix for performing this inversion appears well determined, there are significant uncertainties in the process and it is rarely possible to achieve a unique set of partial structure factors in practice. Based on the much earlier method of F. G. Edwards and J. E. Enderby [J. Phys. C 8, 3483 (1975)] and extending the reverse Monte Carlo method of McGreevy [J. Phys.: Condens. Matter 13, R877 (2001)] and others, a modified approach is developed here that allows possible atomic distribution functions, which are consistent with the measured data to be explored. The basis of the present approach is that any solution to the inversion process must be derivable from a distribution of nonoverlapping atoms or molecules as in the physical system under investigation. Solutions to the problem of inverting the measured differential cross sections to partial structure factors are then extracted assuming different levels of confidence in the data, confidence being represented by a feedback factor on a scale of 0-1. These different solutions serve to identify where ambiguities exist in the derived partial structure factors, particularly when a particular partial structure factor contributes only weakly to the total diffraction pattern. The method is illustrated using some old diffraction data on molten zinc chloride that have significant uncertainties associated with them, but that have been used extensively as the basis for a number of computer simulations of this material.

  19. Preventable risk factors for noncommunicable diseases in rural Indonesia: prevalence study using WHO STEPS approach.

    PubMed Central

    Ng, Nawi; Stenlund, Hans; Bonita, Ruth; Hakimi, Mohammad; Wall, Stig; Weinehall, Lars

    2006-01-01

    OBJECTIVE: To gain a better understanding of the health transition in Indonesia, we sought to describe the prevalence and distribution of risk factors for noncommunicable diseases and to identify the risk-factor burden among a rural population and an urban population. METHODS: Using the protocol of the WHO STEPwise approach to Surveillance (STEPS), risk factors for noncommunicable diseases were determined for 1502 men and 1461 women aged 15-74 years at the Purworejo Demographic Surveillance Site in 2001. FINDINGS: Smoking prevalence was high among men (913/1539; weighted percentage=53.9.%) in both rural and urban populations; it was almost non-existent among women. A higher proportion of the urban population and the richest quintile of the rural population had high blood pressure and were classified as being overweight or obese when compared with the poorest quintile of the rural population. Those classified as being in the richest quintile who lived in the rural area were 1.5 times more likely to have raised blood pressure and 8 times more likely to be overweight than those classified as being in the poorest quintile and living in the rural area. Clustering of risk factors was higher among those classified as being in the richest quintile of those living in the rural area compared with those classified as being in the poorest quintile; and the risks of clustering were just 20-30% lower compared with the urban population. CONCLUSION: Both the rural and urban populations in Purworejo face an unequally distributed burden of risk factors for noncommunicable diseases. The burden among the most well-off group in the rural area has already reached a level similar to that found in the urban area. The implementation of the WHO STEPS approach was feasible, and it provides a comprehensive picture of the burden of risk factors, allowing appropriate health interventions to be implemented to address health inequities. PMID:16628304

  20. On the relevance of assumptions associated with classical factor analytic approaches.

    PubMed

    Kasper, Daniel; Unlü, Ali

    2013-01-01

    A personal trait, for example a person's cognitive ability, represents a theoretical concept postulated to explain behavior. Interesting constructs are latent, that is, they cannot be observed. Latent variable modeling constitutes a methodology to deal with hypothetical constructs. Constructs are modeled as random variables and become components of a statistical model. As random variables, they possess a probability distribution in the population of reference. In applications, this distribution is typically assumed to be the normal distribution. The normality assumption may be reasonable in many cases, but there are situations where it cannot be justified. For example, this is true for criterion-referenced tests or for background characteristics of students in large scale assessment studies. Nevertheless, the normal procedures in combination with the classical factor analytic methods are frequently pursued, despite the effects of violating this "implicit" assumption are not clear in general. In a simulation study, we investigate whether classical factor analytic approaches can be instrumental in estimating the factorial structure and properties of the population distribution of a latent personal trait from educational test data, when violations of classical assumptions as the aforementioned are present. The results indicate that having a latent non-normal distribution clearly affects the estimation of the distribution of the factor scores and properties thereof. Thus, when the population distribution of a personal trait is assumed to be non-symmetric, we recommend avoiding those factor analytic approaches for estimation of a person's factor score, even though the number of extracted factors and the estimated loading matrix may not be strongly affected. An application to the Progress in International Reading Literacy Study (PIRLS) is given. Comments on possible implications for the Programme for International Student Assessment (PISA) complete the presentation. PMID

  1. A theory of ferromagnetism by Ettore Majorana

    SciTech Connect

    Esposito, S.

    2009-01-15

    We present and analyze in detail an unknown theory of ferromagnetism developed by Ettore Majorana as early as the beginnings of 1930s, substantially different in the methods employed from the well-known Heisenberg theory of 1928 (and from later formulations by Bloch and others). Similarly to this, however, it describes successfully the main features of ferromagnetism, although the key equation for the spontaneous mean magnetization and the expression for the Curie temperature are different from those deduced in the Heisenberg theory (and in the original phenomenological Weiss theory). The theory presented here contains also a peculiar prediction for the number of nearest neighbors required to realize ferromagnetism, which avoids the corresponding arbitrary assumption made by Heisenberg on the basis of known (at that time) experimental observations. Some applications of the theory (linear chain, triangular chain, etc.) are, as well, considered.

  2. Ferromagnetism inside of magnetic tunneling junctions

    NASA Astrophysics Data System (ADS)

    Mesa, Glennie

    2010-10-01

    Over this past summer I performed research with different annealing temperatures cooling rates for Magnetic Tunneling Junctions (MTJ's). The MTJ's were composed of a 3nm FeCoB ferromagnet, a 1.6 nm MgO tunneling barrier, and a 3nm FeCoB ferromagnet pinned by a 15nm IrMn anti-ferromagnet. This speech also includes a review of concepts that include; coercivity (of the free and fixed layer), Tunneling Magneto resistance (TMR), exchange bias, and a basic concept of the parallel/anti-parallel configuration of the sample and how this affects resistance. This particular study was on two things; *How the maximum thermal annealing temperature affects TMR. *How holding the maximum thermal annealing temperature constant and varying the cooling rates (.2 c/sec, 2 c/sec, 137 c/sec) affects the coercivity of the free layer and the exchange bias.

  3. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  4. A multivariate approach to filling gaps in large ecological data sets using probabilistic matrix factorization techniques

    NASA Astrophysics Data System (ADS)

    Schrodt, F. I.; Shan, H.; Kattge, J.; Reich, P.; Banerjee, A.; Reichstein, M.

    2012-12-01

    With the advent of remotely sensed data and coordinated efforts to create global databases, the ecological community has progressively become more data-intensive. However, in contrast to other disciplines, statistical ways of handling these large data sets, especially the gaps which are inherent to them, are lacking. Widely used theoretical approaches, for example model averaging based on Akaike's information criterion (AIC), are sensitive to missing values. Yet, the most common way of handling sparse matrices - the deletion of cases with missing data (complete case analysis) - is known to severely reduce statistical power as well as inducing biased parameter estimates. In order to address these issues, we present novel approaches to gap filling in large ecological data sets using matrix factorization techniques. Factorization based matrix completion was developed in a recommender system context and has since been widely used to impute missing data in fields outside the ecological community. Here, we evaluate the effectiveness of probabilistic matrix factorization techniques for imputing missing data in ecological matrices using two imputation techniques. Hierarchical Probabilistic Matrix Factorization (HPMF) effectively incorporates hierarchical phylogenetic information (phylogenetic group, family, genus, species and individual plant) into the trait imputation. Kernelized Probabilistic Matrix Factorization (KPMF) on the other hand includes environmental information (climate and soils) into the matrix factorization through kernel matrices over rows and columns. We test the accuracy and effectiveness of HPMF and KPMF in filling sparse matrices, using the TRY database of plant functional traits (http://www.try-db.org). TRY is one of the largest global compilations of plant trait databases (750 traits of 1 million plants), encompassing data on morphological, anatomical, biochemical, phenological and physiological features of plants. However, despite of unprecedented

  5. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites.

    PubMed

    Bristowe, N C; Varignon, J; Fontaine, D; Bousquet, E; Ghosez, Ph

    2015-01-01

    In magnetic materials, the Pauli exclusion principle typically drives anti-alignment between electron spins on neighbouring species resulting in antiferromagnetic behaviour. Ferromagnetism exhibiting spontaneous spin alignment is a fairly rare behaviour, but once materialized is often associated with itinerant electrons in metals. Here we predict and rationalize robust ferromagnetism in an insulating oxide perovskite structure based on the popular titanate series. In half-doped layered titanates, the combination of Jahn-Teller and oxygen breathing motions opens a band gap and creates an unusual charge and orbital ordering of the Ti d electrons. It is argued that this intriguingly intricate electronic network favours the elusive inter-site ferromagnetic (FM) ordering, on the basis of intra-site Hund's rules. Finally, we find that the layered oxides are also ferroelectric with a spontaneous polarization approaching that of BaTiO3. The concepts are general and design principles of the technologically desirable FM ferroelectric multiferroics are presented. PMID:25807180

  6. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  7. Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization

    NASA Astrophysics Data System (ADS)

    Cieplak, Marta Z.; Zhu, L. Y.; Adamus, Z.; Kończykowski, M.; Chien, C. L.

    2011-07-01

    We use local and global magnetometry measurements to study the influence of magnetic domain width w on the domain-induced vortex pinning in superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating layer to eliminate the proximity effect. The quasiperiodic domain patterns with different and systematically adjustable width w, as acquired by a special demagnetization procedure, exert tunable vortex pinning on a superconducting layer. The largest enhancement of vortex pinning, by a factor of more than 10, occurs when w≈0.31μm is close to the magnetic penetration depth.

  8. Ferromagnetic behaviour of Fe-doped ZnO nanograined films

    PubMed Central

    Protasova, Svetlana G; Mazilkin, Andrei A; Tietze, Thomas; Goering, Eberhard; Schütz, Gisela; Straumal, Petr B; Baretzky, Brigitte

    2013-01-01

    Summary The influence of the grain boundary (GB) specific area s GB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area s GB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if s GB is higher than a certain threshold value s th = 5 × 104 m2/m3. It corresponds to the effective grain size of about 40 μm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom %) have been investigated. The films were deposited by using the wet chemistry “liquid ceramics” method. The samples demonstrate ferromagnetic behaviour with J s up to 0.10 emu/g (0.025 μB/f.u.ZnO) and coercivity H c ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic “grain boundary foam” responsible for the magnetic properties of pure and doped ZnO. PMID:23844341

  9. Wellhead with non-ferromagnetic materials

    DOEpatents

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  10. Effective dynamics for ferromagnetic thin films

    SciTech Connect

    Garcia-Cervera, Carlos J.; E, Weinan

    2001-07-01

    In a ferromagnetic material, the dynamics of the relaxation process are affected by the presence of a strong shape or material anisotropy. In this article, we systematically explore this fact to derive the effective dynamical equation for a soft ferromagnetic thin film. We show that, as a consequence of the interplay between shape anisotropy and damping, the gyromagnetic term is effectively also a damping term for the in-plane components of the magnetization distribution. We validate our result through numerical simulation of the original Landau{endash}Lifshitz equation and our effective equation. {copyright} 2001 American Institute of Physics.

  11. Magnetic pinning in superconductor-ferromagnet multilayers

    SciTech Connect

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  12. Factors Influencing Implementation of OHSAS 18001 in Indian Construction Organizations: Interpretive Structural Modeling Approach

    PubMed Central

    Rajaprasad, Sunku Venkata Siva; Chalapathi, Pasupulati Venkata

    2015-01-01

    Background Construction activity has made considerable breakthroughs in the past two decades on the back of increases in development activities, government policies, and public demand. At the same time, occupational health and safety issues have become a major concern to construction organizations. The unsatisfactory safety performance of the construction industry has always been highlighted since the safety management system is neglected area and not implemented systematically in Indian construction organizations. Due to a lack of enforcement of the applicable legislation, most of the construction organizations are forced to opt for the implementation of Occupational Health Safety Assessment Series (OHSAS) 18001 to improve safety performance. Methods In order to better understand factors influencing the implementation of OHSAS 18001, an interpretive structural modeling approach has been applied and the factors have been classified using matrice d'impacts croises-multiplication appliqué a un classement (MICMAC) analysis. The study proposes the underlying theoretical framework to identify factors and to help management of Indian construction organizations to understand the interaction among factors influencing in implementation of OHSAS 18001. Results Safety culture, continual improvement, morale of employees, and safety training have been identified as dependent variables. Safety performance, sustainable construction, and conducive working environment have been identified as linkage variables. Management commitment and safety policy have been identified as the driver variables. Conclusion Management commitment has the maximum driving power and the most influential factor is safety policy, which states clearly the commitment of top management towards occupational safety and health. PMID:26929828

  13. 3D tensor factorization approach to single-frame model-free blind-image deconvolution.

    PubMed

    Kopriva, Ivica

    2009-09-15

    By applying a bank of 2D Gabor filters to a blurred image, single-frame blind-image deconvolution (SF BID) is formulated as a 3D tensor factorization (TF) problem, with the key contribution that neither origin nor size of the spatially invariant blurring kernel is required to be known or estimated. Mixing matrix, the original image, and its spatial derivatives are identified from the factors in the Tucker3 model of the multichannel version of the blurred image. Previous approaches to 2D Gabor-filter-bank-based SF BID relied on 2D representation of the multichannel version of the blurred image and matrix factorization methods such as nonnegative matrix factorization (NMF) and independent component analysis (ICA). Unlike matrix factorization-based methods 3D TF preserves local structure in the image. Moreover, 3D TF based on the PARAFAC model is unique up to permutation and scales under very mild conditions. To achieve this, NMF and ICA respectively require enforcement of sparseness and statistical independence constraints on the original image and its spatial derivatives. These constraints are generally not satisfied. The 3D TF-based SF BID method is demonstrated on an experimental defocused red-green-blue image. PMID:19756121

  14. Modeling the Human Kinetic Adjustment Factor for Inhaled Volatile Organic Chemicals: Whole Population Approach versus Distinct Subpopulation Approach

    PubMed Central

    Valcke, M.; Nong, A.; Krishnan, K.

    2012-01-01

    The objective of this study was to evaluate the impact of whole- and sub-population-related variabilities on the determination of the human kinetic adjustment factor (HKAF) used in risk assessment of inhaled volatile organic chemicals (VOCs). Monte Carlo simulations were applied to a steady-state algorithm to generate population distributions for blood concentrations (CAss) and rates of metabolism (RAMs) for inhalation exposures to benzene (BZ) and 1,4-dioxane (1,4-D). The simulated population consisted of various proportions of adults, elderly, children, neonates and pregnant women as per the Canadian demography. Subgroup-specific input parameters were obtained from the literature and P3M software. Under the “whole population” approach, the HKAF was computed as the ratio of the entire population's upper percentile value (99th, 95th) of dose metrics to the median value in either the entire population or the adult population. Under the “distinct subpopulation” approach, the upper percentile values in each subpopulation were considered, and the greatest resulting HKAF was retained. CAss-based HKAFs that considered the Canadian demography varied between 1.2 (BZ) and 2.8 (1,4-D). The “distinct subpopulation” CAss-based HKAF varied between 1.6 (BZ) and 8.5 (1,4-D). RAM-based HKAFs always remained below 1.6. Overall, this study evaluated for the first time the impact of underlying assumptions with respect to the interindividual variability considered (whole population or each subpopulation taken separately) when determining the HKAF. PMID:22523487

  15. Factors Influencing Seasonal Influenza Vaccination Uptake in Emergency Medical Services Workers: A Concept Mapping Approach.

    PubMed

    Subramaniam, Dipti P; Baker, Elizabeth A; Zelicoff, Alan P; Elliott, Michael B

    2016-08-01

    Seasonal influenza has serious impacts on morbidity and mortality and has a significant economic toll through lost workforce time and strains on the health system. Health workers, particularly emergency medical services (EMS) workers have the potential to transmit influenza to those in their care, yet little is known of the factors that influence EMS workers' decisions regarding seasonal influenza vaccination (SIV) uptake, a key factor in reducing potential for transmitting disease. This study utilizes a modified Theory of Planned Behavior (TPB) model as a guiding framework to explore the factors that influence SIV uptake in EMS workers. Concept mapping, which consists of six-stages (preparation, generation, structuring, representation, interpretation, and utilization) that use quantitative and qualitative approaches, was used to identify participants' perspectives towards SIV. This study identified nine EMS-conceptualized factors that influence EMS workers' vaccination intent and behavior. The EMS-conceptualized factors align with the modified TPB model and suggest the need to consider community-wide approaches that were not initially conceptualized in the model. Additionally, the expansion of non-pharmaceutical measures went above and beyond original conceptualization. Overall, this study demonstrates the need to develop customized interventions such as messages highlighting the importance of EMS workers receiving SIV as the optimum solution. EMS workers who do not intend to receive the SIV should be provided with accurate information on the SIV to dispel misconceptions. Finally, EMS workers should also receive interventions which promote voluntary vaccination, encouraging them to be proactive in the health decisions they make for themselves. PMID:26721630

  16. Temperature limited heater utilizing non-ferromagnetic conductor

    DOEpatents

    Vinegar; Harold J. , Harris; Christopher Kelvin

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  17. Itinerant ferromagnetism in a two-dimensional atomic gas

    SciTech Connect

    Conduit, G. J.

    2010-10-15

    Motivated by the first experimental evidence of ferromagnetic behavior in a three-dimensional ultracold atomic gas, we explore the possibility of itinerant ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we develop a formalism that demonstrates how quantum fluctuations drive the ferromagnetic reconstruction first order, and consider the consequences of an imposed population imbalance. Secondly, we adapt this formalism to elucidate the key experimental signatures of ferromagnetism in a realistic trapped geometry.

  18. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  19. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach

    PubMed Central

    Mahajan, Gaurang; Mande, Shekhar C.

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner. PMID:26562430

  20. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens.

    PubMed

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  1. Ferromagnetic Conducting Lignosulfonic Acid-doped Polyaniline Nanocomposites

    NASA Technical Reports Server (NTRS)

    Viswansthan, Tito (Inventor); Berry, Brian (Inventor)

    2004-01-01

    A conductive ferromagnetic composition of matter comprising sulfonated lignin or a sulfonated polyflavonoid, or derivatives thereof, and ferromagnetic iron oxide particles is disclosed. Among the uses of the composition is to shield electromagnetic radiation. The ferromagnetic iron oxide particles of the composition are surprisingly stable to acid, and are easily and inexpensively formed from iron cations in solution.

  2. Ferromagnets as pure spin current generators and detectors

    SciTech Connect

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  3. Factorial Structure and Predictive Validity of Approaches and Study Skills Inventory for Students (ASSIST) in Egypt: A Confirmatory Factor Analysis Approach

    ERIC Educational Resources Information Center

    Gadelrab, Hesham F.

    2011-01-01

    Introduction: The purpose of this study is double. First, to evaluate the factorial structure of Approaches and Study Skills Inventory for Students (ASSIST) as a measure of approaches to learning with bilingual Egyptian higher education students by testing the plausibility of reproducing its intended three-factor structure. Second, the study aimed…

  4. Nuclear transcription factors: a new approach to enhancing cellular responses to ALA-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Sato, Nobuyuki; Moore, Brian; Mack, Judith; Gasbarre, Christopher; Keevey, Samantha; Ortel, Bernhard; Sinha, Alok; Khachemoune, Amor

    2006-02-01

    Photodynamic therapy (PDT) using aminolevulinic acid (ALA) relies upon the uptake of ALA into cancer cells, where it is converted into a porphyrin intermediate, protoporphyrin IX (PpIX) that is highly photosensitizing. For large or resistant tumors, however, ALA/PDT is often not completely effective due to inadequate PpIX levels. Therefore, new approaches to enhance the intracellular production of PpIX are sought. Here, we describe a general approach to improve intracellular PpIX accumulation via manipulations that increase the expression of an enzyme, coproporphyrinogen oxidase (CPO), that is rate-determining for PpIX production. We show that nuclear hormones that promote terminal differentiation, e.g. vitamin D or androgens, can also increase the accumulation of PpIX and the amount of killing of the target cells upon exposure to light. These hormones bind to intracellular hormone receptors that translocate to the nucleus, where they act as transcription factors to increase the expression of target genes. We have found that several other transcription factors associated with terminal differentiation, including members of the CCAAT enhancer binding (C/EBP) family, and a homeobox protein named Hoxb13, are also capable of enhancing PpIX accumulation. These latter transcription factors appear to interact directly with the CPO gene promoter, resulting in enhanced CPO transcriptional activity. Our data in several different cell systems, including epithelial cells of the skin and prostate cancer cells, indicate that enhancement of CPO expression and PpIX accumulation represents a viable new approach toward improving the efficacy of ALA/PDT.

  5. A Multi-Host Approach for the Systematic Analysis of Virulence Factors in Cryptococcus neoformans

    PubMed Central

    Desalermos, Athanasios; Tan, Xiaojiang; Rajamuthiah, Rajmohan; Arvanitis, Marios; Wang, Yan; Li, Dedong; Kourkoumpetis, Themistoklis K.; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2015-01-01

    A multi-host approach was followed to screen a library of 1201 signature-tagged deletion strains of Cryptococcus neoformans mutants to identify previously unknown virulence factors. The primary screen was performed using a Caenorhabditis elegans–C. neoformans infection assay. The hits among these strains were reconfirmed as less virulent than the wild type in the insect Galleria mellonella–C. neoformans infection assay. After this 2-stage screen, and to prioritize hits, we performed serial evaluations of the selected strains, using the C. elegans model. All hit strains identified through these studies were validated in a murine model of systemic cryptococcosis. Twelve strains were identified through a stepwise screening assay. Among them, 4 (CSN1201, SRE1, RDI1, and YLR243W) were previously discovered, providing proof of principle for this approach, while the role of the remaining 8 genes (CKS101, CNC5600, YOL003C, CND1850, MLH3, HAP502, MSL5, and CNA2580) were not previously described in cryptococcal virulence. The multi-host approach is an efficient method of studying the pathogenesis of C. neoformans. We used diverse model hosts, C. elegans, G. mellonella, and mice, with physiological differences and identified 12 genes associated with mammalian infection. Our approach may be suitable for large pathogenesis screens. PMID:25114160

  6. Limitations of the toxic equivalency factor (TEF) approach for risk assessment of halogenated aromatic hydrocarbons

    SciTech Connect

    Safe, S.

    1995-12-31

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are present as complex mixtures of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) in most environmental matrices. Risk management of these mixtures utilize the toxic equivalency factor (TEF) approach in which the TCDD (dioxin) or toxic equivalents of a mixture is a summation of the congener concentration (Ci) times TEF{sub i} (potency relative to TCDD) where. TEQ{sub mixture} = {Sigma}[Cil] {times} TEF{sub i}. TEQs are determined only for those HAHs which are aryl hydrocarbon (Ah) receptor agonists and this approach assumes that the toxic or biochemical effects of individual compounds in a mixture are additive. Several in vivo and in vitro laboratory and field studies with different HAH mixtures have been utilized to validate the TEF approach. For some responses, the calculated toxicities of PCDD/PCDF and PCB mixtures predict the observed toxic potencies. However, for fetal cleft palate and immunotoxicity in mice, nonadditive (antagonistic) responses are observed using complex PCB mixtures or binary mixtures containing an Ah receptor agonist with 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB153). The potential interactive effects of PCBs and other dietary Ah receptor antagonist suggest that the TEF approach for risk management of HAHs requires further refinement and should be used selectively.

  7. Health care expenditure disparities in the European Union and underlying factors: a distribution dynamics approach.

    PubMed

    Villaverde, José; Maza, Adolfo; Hierro, María

    2014-09-01

    This paper examines health care expenditure (HCE) disparities between the European Union countries over the period 1995-2010. By means of using a continuous version of the distribution dynamics approach, the key conclusions are that the reduction in disparities is very weak and, therefore, persistence is the main characteristic of the HCE distribution. In view of these findings, a preliminary attempt is made to add some insights into potentially main factors behind the HCE distribution. The results indicate that whereas per capita income is by far the main determinant, the dependency ratio and female labour participation do not play any role in explaining the HCE distribution; as for the rest of the factors studied (life expectancy, infant mortality, R&D expenditure and public HCE expenditure share), we find that their role falls somewhat in between. PMID:24823964

  8. Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach

    NASA Astrophysics Data System (ADS)

    Luo, Di; Zhao, Bin; Hu, GuangYue; Gong, Tao; Xia, YuQing; Zheng, Jian

    2016-05-01

    A generalized hydrodynamic fluctuation model is proposed to simplify the calculation of the dynamic structure factor S(ω, k) of non-ideal plasmas using the fluctuation-dissipation theorem. In this model, the kinetic and correlation effects are both included in hydrodynamic coefficients, which are considered as functions of the coupling strength (Γ) and collision parameter (kλei), where λei is the electron-ion mean free path. A particle-particle particle-mesh molecular dynamics simulation code is also developed to simulate the dynamic structure factors, which are used to benchmark the calculation of our model. A good agreement between the two different approaches confirms the reliability of our model.

  9. Delineating role of ubiquitination on nuclear factor-kappa B pathway by a computational modeling approach

    SciTech Connect

    Lee, Jungsul; Choi, Kyungsun; Choi, Chulhee; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701; KI for Bio Century, KAIST, Daejeon 305-701

    2010-01-01

    Mutant ubiquitin found in neurodegenerative diseases has been thought to hamper activation of transcription factor nuclear factor-kappa B (NF-{kappa}B) by inhibiting ubiquitin-proteasome system (UPS). It has been reported that ubiquitin also is involved in signal transduction in an UPS-independent manner. We used a modeling and simulation approach to delineate the roles of ubiquitin on NF-{kappa}B activation. Inhibition of proteasome complex increased maximal activation of IKK mainly by decreasing the UPS efficiency. On the contrary, mutant ubiquitin decreased maximal activity of IKK. Computational modeling showed that the inhibition effect of mutant ubiquitin is mainly attributed to decreased activity of UPS-independent function of ubiquitin. Collectively, our results suggest that mutant ubiquitin affects NF-{kappa}B activation in an UPS-independent manner.

  10. An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency

    PubMed Central

    Jo, Junghyun; Hwang, Sohyun; Kim, Hyung Joon; Hong, Soomin; Lee, Jeoung Eun; Lee, Sung-Geum; Baek, Ahmi; Han, Heonjong; Lee, Jin Il; Lee, Insuk; Lee, Dong Ryul

    2016-01-01

    Spermatogonial stem cells (SSCs) can spontaneously dedifferentiate into embryonic stem cell (ESC)-like cells, which are designated as multipotent SSCs (mSSCs), without ectopic expression of reprogramming factors. Interestingly, SSCs express key pluripotency genes such as Oct4, Sox2, Klf4 and Myc. Therefore, molecular dissection of mSSC reprogramming may provide clues about novel endogenous reprogramming or pluripotency regulatory factors. Our comparative transcriptome analysis of mSSCs and induced pluripotent stem cells (iPSCs) suggests that they have similar pluripotency states but are reprogrammed via different transcriptional pathways. We identified 53 genes as putative pluripotency regulatory factors using an integrated systems biology approach. We demonstrated a selected candidate, Positive cofactor 4 (Pc4), can enhance the efficiency of somatic cell reprogramming by promoting and maintaining transcriptional activity of the key reprograming factors. These results suggest that Pc4 has an important role in inducing spontaneous somatic cell reprogramming via up-regulation of key pluripotency genes. PMID:26740582

  11. Human factors evaluation of teletherapy: Identification of problems and alternative approaches. Volume 1

    SciTech Connect

    Henriksen, K.; Kaye, R.D.; Jones, R.; Morisseau, D.S.; Serig, D.I.

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multi-disciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists, assisted by a panel of radiation oncologists, medical physicists, and radiation technologists, conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The final phase of the project focused on identification of the most significant human factors problems with respect to safe and effective operation of the teletherapy system and an identification and assessment of alternative approaches for resolving the problems. This report presents the findings of this final phase.

  12. Colloidal Wormlike Micelles with Highly Ferromagnetic Properties.

    PubMed

    Zhao, Wenrong; Dong, Shuli; Hao, Jingcheng

    2015-10-20

    For the first time, a new fabrication method for manipulating the ferromagnetic property of molecular magnets by forming wormlike micelles in magnetic-ionic-liquid (mag-IL) complexes is reported. The ferromagnetism of the mag-IL complexes was enhanced 4-fold because of the formation of wormlike micelles, presenting new evidence for the essence of magnetism generation at a molecular level. Characteristics such as morphology and magnetic properties of the wormlike micelle gel were investigated in detail by cryogenic transmission electron microscopy (Cryo-TEM), rheological measurements, circular dichroism (CD), FT-IR spectra, and the superconducting quantum interference device method (SQUID). An explanation of ferromagnetism elevation from the view of the molecular (ionic) distribution is also given. For the changes of magnetic properties (ferromagnetism elevation) in the wormlike micelle systems, the ability of CTAFe in magnetizing AzoNa4 (or AzoH4) can be ascribed to an interplay of the magnetic [FeCl3Br](-) ions both in the Stern layer and in the cores of the wormlike micelles. Formation of colloidal aggregates, i.e., wormlike micelles, provides a new strategy to tune the magnetic properties of novel molecular magnets. PMID:26411638

  13. Apparent diamagnetic response of an inhomogeneous ferromagnet

    SciTech Connect

    Claus, H.; Veal, B.W.

    1997-07-01

    We present magnetization measurements on a weakly ferromagnetic Pd 0.5 at.{percent} Fe alloy (T{sub c}=15 K). Due to the preparation technique for the sample, it has a thin surface layer with slightly enhanced T{sub c}. In fields above 200 mG, the magnetization is typical of a ferromagnet. However, when cooling in very small fields ({ital H}{lt}25 mG), the magnetization reverses its direction at low temperatures, apparently becoming diamagnetic. The effect is very similar, but of opposite sign, to that observed in some high-T{sub c} superconducting samples where the magnetization becomes paramagnetic on field cooling (paramagnetic Meissner effect, PME). Whereas the origin of the PME in superconductors is controversial, the effect in our ferromagnetic sample is explained in terms of dipolar polarization of the interior of the sample by the surface layer with enhanced T{sub c}. Removing the surface layer eliminates this anomalous effect and the sample behaves like an ordinary ferromagnet, down to the lowest fields. {copyright} {ital 1997} {ital The American Physical Society}

  14. Measurment Of Residual Stress In Ferromagnetic Materials

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.

    1992-01-01

    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  15. Finding the Curie Temperature for Ferromagnetic Materials

    ERIC Educational Resources Information Center

    Kizowski, Czeslaw; Budzik, Sylwia; Cebulski, Jozef

    2007-01-01

    The laboratory exercise described in this paper is based on a well-known qualitative demonstration of Curie temperature. A long ferromagnetic wire, in the form of a spiral, is attracted to a strong permanent magnet placed near its midpoint (see Fig. 1). The temperature of the wire is increased by passing a current through it. When the temperature…

  16. Ferromagnetic resonance probe liftoff suppression apparatus

    DOEpatents

    Davis, Thomas J.; Tomeraasen, Paul L.

    1985-01-01

    A liftoff suppression apparatus utilizing a liftoff sensing coil to sense the amount a ferromagnetic resonance probe lifts off the test surface during flaw detection and utilizing the liftoff signal to modulate the probe's field modulating coil to suppress the liftoff effects.

  17. Robust ferromagnetism in monolayer chromium nitride

    PubMed Central

    Zhang, Shunhong; Li, Yawei; Zhao, Tianshan; Wang, Qian

    2014-01-01

    Design and synthesis of two-dimensional (2D) materials with robust ferromagnetism and biocompatibility is highly desirable due to their potential applications in spintronics and biodevices. However, the hotly pursued 2D sheets including pristine graphene, monolayer BN, and layered transition metal dichalcogenides are nonmagnetic or weakly magnetic. Using biomimetic particle swarm optimization (PSO) technique combined with ab initio calculations we predict the existence of a 2D structure, a monolayer of rocksalt-structured CrN (100) surface, which is both ferromagnetic and biocompatible. Its dynamic, thermal and magnetic stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Analyses of its band structure and density of states reveal that this material is half-metallic, and the origin of the ferromagnetism is due to p-d exchange interaction between the Cr and N atoms. We demonstrate that the displayed ferromagnetism is robust against thermal and mechanical perturbations. The corresponding Curie temperature is about 675 K which is higher than that of most previously studied 2D monolayers. PMID:24912562

  18. Advanced electron microscopy of novel ferromagnetic materials and ferromagnet/oxide interfaces in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Shi, Fengyuan

    We have studied novel ferromagnetic (FM) materials and FM electrode/tunnel barrier interfaces in magnetic tunnel junctions (MTJs) by advanced electron microscopy including scanning transmission electron microscopy (HRSTEM) and electron energy loss spectroscopy (EELS). MTJs are one of the prototypical spintronic devices, with applications in magnetic random access memory, sensors and read heads. The performance of MTJs depends on several factors, including the FM electrodes and the FM/tunnel barrier interfaces. Therefore, to realize the high performance of MTJs, we first need high quality ferromagnetic electrodes with high spin polarization. High-quality Fe3O4 and Fe4N electrodes with theoretically predicted -100% spin polarization were fabricated by various methods and investigated by HRSTEM and STEM EELS. The Fe3O4 and Fe4N thin films have low defect density and good crystallinity, but when integrated as electrodes in a MTJ, problems emerged. In a Fe4N/AlOx/Fe MTJ, the magnetoresistance was negative, but relatively small, due to a defective Fe 3O4 reaction layer formed at the Fe4N/tunnel barrier interface revealed by HRSTEM and EELS. The interfacial reaction layer was thin and discontinuous which made direct imaging difficult. Therefore, STEM EELS was used to map out the reaction layer. A Fe3O4 reaction layer was also found in a nominally symmetric CoFe/AlOx/CoFe MTJs after annealing, which also exhibited inverse TMR and a non-symmetric bias dependence. We also investigated the MTJs with the Heusler alloy Co2MnSi as one or both electrode and crystalline MgO as the tunnel barrier, which exhibit quite high TMR due to coherent tunneling. We showed that the Co2MnSi/MgO interface in these junctions is dominated by a configuration of a pure Mn plane bonded across the interface to O. This was the first observation of that interface termination. HRSTEM images also show that the fraction of MnMn/O interface termination increases with increasing Mn concentration in the CMS

  19. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  20. Human Factors Assessment: The Passive Final Approach Spacing Tool (pFAST) Operational Evaluation

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Sanford, Beverly D.

    1998-01-01

    Automation to assist air traffic controllers in the current terminal and en route air traff ic environments is being developed at Ames Research Center in conjunction with the Federal Aviation Administration. This automation, known collectively as the Center-TRACON Automation System (CTAS), provides decision- making assistance to air traffic controllers through computer-generated advisories. One of the CTAS tools developed specifically to assist terminal area air traffic controllers is the Passive Final Approach Spacing Tool (pFAST). An operational evaluation of PFAST was conducted at the Dallas/Ft. Worth, Texas, Terminal Radar Approach Control (TRACON) facility. Human factors data collected during the test describe the impact of the automation upon the air traffic controller in terms of perceived workload and acceptance. Results showed that controller self-reported workload was not significantly increased or reduced by the PFAST automation; rather, controllers reported that the levels of workload remained primarily the same. Controller coordination and communication data were analyzed, and significant differences in the nature of controller coordination were found. Controller acceptance ratings indicated that PFAST was acceptable. This report describes the human factors data and results from the 1996 Operational Field Evaluation of Passive FAST.

  1. Psychopathy Factor Interactions and Co-Occurring Psychopathology: Does Measurement Approach Matter?

    PubMed Central

    Hunt, Elizabeth; Bornovalova, Marina A.; Kimonis, Eva R.; Lilienfeld, Scott O.; Poythress, Norman G.

    2014-01-01

    The two dimensions of psychopathy as operationalized by various measurement tools show differential associations with psychopathology; however, evidence suggests that the statistical interaction of Factor 1 (F1) and Factor 2 (F2) may be important in understanding associations with psychopathology. Findings regarding the interactive effects of F1 and F2 are mixed, as both potentiating and protective effects have emerged. Moreover, approaches to measuring F1 (e.g. clinical interview versus self-report) are based on different conceptualizations of F1, which may influence the interactive effects. The current study aims to 1) elucidate the influence of F1 and F2 on psychopathology by using both variable-centered and person-centered approaches and 2) determine if the measurement of F1 influences the interactive effects of F1 and F2 by comparing the strength of interactive effects across F1 measures in a sample of over 1,500 offenders. Across analytic methods, there were very few cases in which F1 statistically influenced the association between F2 and psychopathology, such that F1 failed to evidence either potentiating or protective effects on F2. Furthermore, the conceptualization of F1 across psychopathy measures did not impact the interactive effects of F1 and F2. These findings suggest that F2 is probably driving the relations between psychopathy and other forms of psychopathology, and that F1 may play less of a role in interacting with F2 than previously believed. PMID:25580612

  2. Factors influencing the decision-making of parental HIV disclosure: a socio-ecological approach

    PubMed Central

    Qiao, Shan; Li, Xiaoming; Zhou, Yuejiao; Shen, Zhiyong; Tang, Zhenzhu; Stanton, Bonita

    2015-01-01

    Objectives Using the socio-ecological approach, the current study aims to identify facilitators and barriers to decision-making regarding parental HIV disclosure or nondisclosure at intrapersonal, interpersonal, and sociocultural levels; and examine the unique contribution of factors at different level of influences to the decision of disclosure or nondisclosure. Design A cross-sectional survey was conducted among people living with HIV in Guangxi, China. A sub-sample of 1254 participants, who had children aged 5–16 years, was included in the data analysis in the current study. Methods Multivariate models using hierarchical logistic regression were employed to assess the association of parental decision regarding HIV disclosure to children with various factors at intrapersonal, interpersonal, and sociocultural levels controlling background characteristics, and detect the level-specific influence on disclosure decision. Results Positive coping with HIV infection and a good parent–child relationship facilitated parental HIV disclosure; whereas high level of resilience and fears of parental HIV disclosure impeded their decisions to talk about HIV status to their children. In addition, the current study recognized specific contribution of multiple ecological levels to parental decisions regarding disclosure to children. Conclusion The socio-ecological model is a promising theoretical framework to guide further studies and interventions related to parental HIV disclosure. Directions for further studies using socio-ecological approach were also discussed. PMID:26049536

  3. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    EPA Science Inventory

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...

  4. Spin Funneling for Enhanced Spin Injection into Ferromagnets.

    PubMed

    Sayed, Shehrin; Diep, Vinh Q; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  5. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  6. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  7. Infrared spectroscopy and the ferromagnetic transition in Gd.

    PubMed

    Obied, L H; Crandles, D A; Antonov, V N; Bose, S K; Jepsen, O

    2013-01-23

    The low energy electronic structure of Gd has been investigated experimentally by infrared reflectance spectroscopy, and theoretically from first principles, using the fully relativistic Dirac linear-muffin-tin-orbital (LMTO) method in the local spin density approximation (LSDA) as well as within the LSDA + U approach. The reflectance of a Gd single crystal was measured with the electric field in the plane perpendicular to the c-axis for temperatures between 50 K and slightly above the Curie temperature (293 K) in the frequency range between 100 and 12 000 cm(-1) (0.013-1.5 eV). As Gd enters the ferromagnetic state, the dissipative part of the optical conductivity exhibits interesting spectral weight transfers over the whole spectral range measured. It is shown that the ab initio calculations reproduce well the experimental spectra for the ferromagnetic state and allow one to explain the microscopic origin of the optical response of Gd in terms of interband transitions. PMID:23221360

  8. Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension.

    PubMed

    Ilg, Patrick; Kröger, Martin

    2002-08-01

    The rheological properties of a dilute suspension of ellipsoidal ferromagnetic particles in the presence of a magnetic field are studied on the basis of a kinetic model, where the flow and magnetic external fields couple in qualitatively different ways to the orientational behavior of the suspension. In the uniaxial phase the stress tensor is found to be of the same form as in the Ericksen-Leslie theory for nematic liquid crystals in the steady state. Expressions for a complete set of viscosity coefficients in terms of orientational order parameters are worked out. In the low Péclet number regime, the viscosity coefficients are given as explicit functions of the magnetic field and a particle shape factor, where the shape factor may equally represent a nonspherical unit (agglomerate, chain) composed of spherical particles. Effects due to possible flow-induced breakup of units are not covered in this work. Further, by considering the magnetization as the only relevant variable, a magnetization equation within an effective field approach is derived from the kinetic equation and compared to existing magnetization equations. The alignment angle of the magnetization and the first and second normal stress coefficient are studied for the special case of plane Couette flow. The assumptions employed are tested against a Brownian dynamics simulation of the full kinetic model, and a few comparisons with experimental data are made. PMID:12241181

  9. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    NASA Astrophysics Data System (ADS)

    Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A.

    2014-09-01

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr0.5Ti0.5)O3-FeGaB and BaTiO3-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

  10. Ferroelectric-ferromagnetic multilayers: A magnetoelectric heterostructure with high output charge signal

    SciTech Connect

    Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A.

    2014-09-21

    Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

  11. A Generalized Adjoint Approach for Quantifying Reflector Assembly Discontinuity Factor Uncertainties

    SciTech Connect

    Yankov, Artem; Collins, Benjamin; Jessee, Matthew Anderson; Downar, Thomas

    2012-01-01

    Sensitivity-based uncertainty analysis of assembly discontinuity factors (ADFs) can be readily performed using adjoint methods for infinite lattice models. However, there is currently no adjoint-based methodology to obtain uncertainties for ADFs along an interface between a fuel and reflector region. To accommodate leakage effects in a reflector region, a 1D approximation is usually made in order to obtain the homogeneous interface flux required to calculate the ADF. Within this 1D framework an adjoint-based method is proposed that is capable of efficiently calculating ADF uncertainties. In the proposed method the sandwich rule is utilized to relate the covariance of the input parameters of 1D diffusion theory in the reflector region to the covariance of the interface ADFs. The input parameters covariance matrix can be readily obtained using sampling-based codes such as XSUSA or adjoint-based codes such as TSUNAMI. The sensitivity matrix is constructed using a fixed-source adjoint approach for inputs characterizing the reflector region. An analytic approach is then used to determine the sensitivity of the ADFs to fuel parameters using the neutron balance equation. A stochastic approach is used to validate the proposed adjoint-based method.

  12. Room temperature ferromagnetism in Teflon due to carbon dangling bonds

    NASA Astrophysics Data System (ADS)

    Ma, Y. W.; Lu, Y. H.; Yi, J. B.; Feng, Y. P.; Herng, T. S.; Liu, X.; Gao, D. Q.; Xue, D. S.; Xue, J. M.; Ouyang, J. Y.; Ding, J.

    2012-03-01

    The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.

  13. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Krauzina, Marina T.; Bozhko, Alexandra A.; Putin, Gennady F.; Suslov, Sergey A.

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days.

  14. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids.

    PubMed

    Krauzina, Marina T; Bozhko, Alexandra A; Putin, Gennady F; Suslov, Sergey A

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days. PMID:25679711

  15. Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach.

    PubMed

    Kudryavtsev, Oleg

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments. PMID:24489518

  16. Finite Difference Methods for Option Pricing under Lévy Processes: Wiener-Hopf Factorization Approach

    PubMed Central

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments. PMID:24489518

  17. Tandem immunoprecipitation approach to identify HIV-1 Gag associated host factors.

    PubMed

    Gao, Wei; Li, Min; Zhang, Jingxin

    2014-07-01

    HIV-1 Gag by itself is able to assemble and release from host cells and thus serves as a simplified model to identify host factors involved in this stage of the HIV-1 life cycle. In this study, a tandem immunoprecipitation approach is taken to immunoprecipitate Gag-interacting host proteins from transfected 293T cells. It is demonstrated that with the tandem immunoprecipitation method Gag-interacting host factors can be precipitated more efficiently than by single-step immunoprecipitation. Gag proteins are found to interact with multiple RNA-binding proteins such as hnRNPs, nucleolin, EF1a and ribosomal proteins. Such interactions are mediated by cellular RNAs and the Gag Nuclear Capsid (NC) domain. Deletion of the NC domain results in removal of most of the RNA-binding proteins, as well as a reduction of the Gag releasing capability, which can be restored by replacing the deleted NC domain with another multimerization motif. Importantly, interactions between Gag and host factors are relevant functionally, as evidenced by significantly increased nucleolin protein in the cytoplasm where it is recruited into the Gag complex, and enhanced Gag release when nucleolin is over-expressed. PMID:24690621

  18. Multi-factor challenge/response approach for remote biometric authentication

    NASA Astrophysics Data System (ADS)

    Al-Assam, Hisham; Jassim, Sabah A.

    2011-06-01

    Although biometric authentication is perceived to be more reliable than traditional authentication schemes, it becomes vulnerable to many attacks when it comes to remote authentication over open networks and raises serious privacy concerns. This paper proposes a biometric-based challenge-response approach to be used for remote authentication between two parties A and B over open networks. In the proposed approach, a remote authenticator system B (e.g. a bank) challenges its client A who wants to authenticate his/her self to the system by sending a one-time public random challenge. The client A responds by employing the random challenge along with secret information obtained from a password and a token to produce a one-time cancellable representation of his freshly captured biometric sample. The one-time biometric representation, which is based on multi-factor, is then sent back to B for matching. Here, we argue that eavesdropping of the one-time random challenge and/or the resulting one-time biometric representation does not compromise the security of the system, and no information about the original biometric data is leaked. In addition to securing biometric templates, the proposed protocol offers a practical solution for the replay attack on biometric systems. Moreover, we propose a new scheme for generating a password-based pseudo random numbers/permutation to be used as a building block in the proposed approach. The proposed scheme is also designed to provide protection against repudiation. We illustrate the viability and effectiveness of the proposed approach by experimental results based on two biometric modalities: fingerprint and face biometrics.

  19. Correction: Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach.

    PubMed

    Sivanesan, Arumugam; Adamkiewicz, Witold; Kalaivani, Govindasamy; Kamińska, Agnieszka; Waluk, Jacek; Hołyst, Robert; Izake, Emad L

    2015-01-21

    Correction for 'Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach' by Arumugam Sivanesan et al., Analyst, 2015, DOI:10.1039/c4an01778a PMID:25453040

  20. Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    McCann, Edward; Fal'Ko, Vladimir I.

    2002-10-01

    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower SAP depends on the difference between the size Π↑,↓ of the majority- and minority-band Fermi surfaces and it is proportional to a temperature-dependent factor (kBT/ωD)3/2 where ωD is the magnon Debye energy. The latter factor reflects the fractional change in the net magnetization of the reservoirs due to thermal magnons at temperature T (Bloch's T3/2 law). In contrast, the contribution of magnon-assisted tunneling to the thermopower SP of a junction with parallel polarizations is negligible. As the relative polarizations of ferromagnetic layers can be manipulated by an external magnetic field, a large difference ΔS=SAP-SP~SAP~- (kB/e)f(Π↑,Π↓)(kBT/ωD)3/2 results in a magnetothermopower effect. This magnetothermopower effect becomes giant in the extreme case of a junction between two half-metallic ferromagnets, ΔS~-kB/e.

  1. SU-E-T-469: A Practical Approach for the Determination of Small Field Output Factors Using Published Monte Carlo Derived Correction Factors

    SciTech Connect

    Calderon, E; Siergiej, D

    2014-06-01

    Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detector (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.

  2. Electrically-induced ferromagnetism at room temperature in (Ti,Co)O2: carrier-mediated ferromagnetism

    NASA Astrophysics Data System (ADS)

    Fukumura, Tomoteru

    2013-03-01

    Oxide-diluted magnetic semiconductors (DMS) is expected to have high Curie temperature via carrier-mediated ferromagnetism through heavy electron mass and large electron carrier density. We have studied various oxide-DMS such as (Zn,Mn)O, and discovered room temperature ferromagnetism in (Ti,Co)O2. The origin of ferromagnetism has been discussed for a decade. Previously, the control of ferromagnetism was demonstrated through carrier control by chemical doping. But it was difficult to exclude the defect-mediated ferromagnetism, since the electron donor was the oxygen vacancy. In order to evidence the carrier-mediated ferromagnetism, the electric field control of ferromagnetism is useful. The control of ferromagnetism at room temperature is also important for implementation of spintronic devices. By gating with electric double layer transistor, the ferromagnetism was induced at room temperature, representing electron carrier-mediated ferromagnetism. Chemical doping study in (Ti,Co)O2 for wider range of carrier density exhibited clearer paramagnetic insulator to ferromagnetic metal transition with increasing carrier density. At a medium carrier density, a ferromagnetic insulator phase appeared possibly related with a phase separation between ferromagnetic and paramagnetic phases. Also, a superparamagnetic phase appeared for excessively reduced sample. Taking all these results into account, previously proposed extrinsic mechanisms such as oxygen vacancy-mediated mechanism, metal segregation, and superparamagnetism are not correct picture of the ferromagnetism. This study was in collaboration with Y. Yamada, K. Ueno, M. Kawasaki, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, A. Fujimori, and T. Mizokawa. This research was in part supported by JSPS through NEXT Program initiated by CSTP.

  3. The decay of Λ _b→ p~K^- in QCD factorization approach

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ke, Hong-Wei; Wei, Zheng-Tao

    2016-05-01

    With only the tree-level operator, the decay of Λ _b→ pK is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ _b→ pK within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ _b and p are calculated in the light-front quark model. The branching ratio of Λ _b→ pK is predicted to be about 4.85× 10^{-6}, which is consistent with experimental data (4.9± 0.9)× 10^{-6}. The CP violation is about 5 % in theory.

  4. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    PubMed Central

    Khanam Irin, Afroza; Tom Kodamullil, Alpha; Gündel, Michaela; Hofmann-Apitius, Martin

    2015-01-01

    Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL). This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson's disease (PD) and Multiple Sclerosis (MS). PMID:26636108

  5. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity

    PubMed Central

    D’Alessio, Ana C.; Fan, Zi Peng; Wert, Katherine J.; Baranov, Petr; Cohen, Malkiel A.; Saini, Janmeet S.; Cohick, Evan; Charniga, Carol; Dadon, Daniel; Hannett, Nancy M.; Young, Michael J.; Temple, Sally; Jaenisch, Rudolf; Lee, Tong Ihn; Young, Richard A.

    2015-01-01

    Summary Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types. PMID:26603904

  6. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity.

    PubMed

    D'Alessio, Ana C; Fan, Zi Peng; Wert, Katherine J; Baranov, Petr; Cohen, Malkiel A; Saini, Janmeet S; Cohick, Evan; Charniga, Carol; Dadon, Daniel; Hannett, Nancy M; Young, Michael J; Temple, Sally; Jaenisch, Rudoff; Lee, Tong Ihn; Young, Richard A

    2015-11-10

    Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types. PMID:26603904

  7. Factors affecting handling qualities of a lift-fan aircraft during steep terminal area approaches

    NASA Technical Reports Server (NTRS)

    Gerdes, R. M.; Hynes, C. S.

    1975-01-01

    The XV-5B lift-fan aircraft was used to explore the factors affecting handling qualities in the terminal area. A 10 deg ILS approach task was selected to explore these problems. Interception of the glide slope at 457.2 m, glide slope tracking, deceleration along the glide slope to a spot hover were considered. Variations in airplane deck angle, deceleration schedule, and powered-lift management were studied. The overall descent performance envelope was identified on the basis of fan stall, maximum comfortable descent rate, and controllability restrictions. The collective-lift stick provided precise glide slope tracking capability. The pilot preferred a deck-parallel attitude for which he used powered lift to control glide slope and pitch attitude to keep the angle of attack near zero. Workload was reduced when the deceleration schedule was delayed until the aircraft was well established on the glide slope, since thrust vector changes induced flight path disturbances.

  8. Ferroelectric polarization in antiferromagnetically coupled ferromagnetic film

    NASA Astrophysics Data System (ADS)

    Gareeva, Z. V.; Mazhitova, F. A.; Doroshenko, R. A.

    2016-09-01

    We report the influence of interface antiferromagnetic coupling on magnetoelectric properties of ferromagnetic bi-layers. Electric polarization arising at magnetic ingomogeneity in bi-layered ferromagnetic structure with antiferromagnetic coupling at interface in applied magnetic field has been explored. Diagrams representing dependences of electric polarization on magnetic field P(H) have been constructed for two magnetic field geometries (in-plane and out-of plane fields). It has been found out that P(H) dependences demonstrate non-monotonic behavior. Peculiarities of polarization in an in-plane-oriented magnetic field have been explained by magnetization processes. It has been shown that a variety of magnetic configurations of Bloch, Neel and mixed Bloch-Neel types can be realized in antiferromagnetically coupled film due to cubic anisotropy contribution. In the area of Bloch magnetic configuration electric polarization vanishes. The critical values of magnetic fields suppressing polarization have been estimated.

  9. Anomalous quantum criticality in an itinerant ferromagnet.

    PubMed

    Huang, C L; Fuchs, D; Wissinger, M; Schneider, R; Ling, M C; Scheurer, M S; Schmalian, J; Löhneysen, H V

    2015-01-01

    The dynamics of continuous phase transitions is governed by the dynamic scaling exponent relating the correlation length and correlation time. For transitions at finite temperature, thermodynamic critical properties are independent of the dynamic scaling exponent. In contrast, at quantum phase transitions where the transition temperature becomes zero, static and dynamic properties are inherently entangled by virtue of the uncertainty principle. Consequently, thermodynamic scaling equations explicitly contain the dynamic exponent. Here we report on thermodynamic measurements (as a function of temperature and magnetic field) for the itinerant ferromagnet Sr1-xCaxRuO3 where the transition temperature becomes zero for x=0.7. We find dynamic scaling of the magnetization and specific heat with highly unusual quantum critical dynamics. We observe a small dynamic scaling exponent of 1.76 strongly deviating from current models of ferromagnetic quantum criticality and likely being governed by strong disorder in conjunction with strong electron-electron coupling. PMID:26348932

  10. Combinatorial investigation of ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro; Famodu, Olugbenga; Aronova, Maria; Jaworski, Allan; Craciunescu, Corneliu; Wuttig, Manfred; Wellstood, Fred

    2002-03-01

    We have established a comprehensive methodology for rapidly exploring and mapping novel materials phases of ferromagnetic shape memory alloys. A UHV multi-gun magnetron co-sputtering system designed for fabricating composition spreads is used to map out different regions of a variety of ternary phase diagrams on 3 inch Si wafers. A scanning SQUID microscope is used to identify composition regions displaying strong ferromagnetism at room temperature on the spread samples, and magnetization mapping is obtained. In order to quickly characterize the martensitic transition temperatures, composition spreads are directly fabricated on micromachined cantilever libraries. All wafers are deposited at 400 450 C. A novel optical detection method is used to rapidly identify cantilevers undergoing martensitic transitions by visual inspection as a function of temperature. A scanning x-ray microdiffractometer is also used to detect regions displaying structural phase transitions. We have mapped out the ternary phase diagram of the Ni-Mn-Ga system.

  11. Power absorption in acoustically driven ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Labanowski, D.; Jung, A.; Salahuddin, S.

    2016-01-01

    Surface acoustic waves (SAWs) have recently been used to drive ferromagnetic resonance by exploiting the coupling between strain and magnetization in magnetostrictive materials in a technique called acoustically driven ferromagnetic resonance (ADFMR). In this work, we quantitatively examine the power absorbed by the magnetic elements in such systems. We find that power absorption scales exponentially with the length of the magnetic element in the direction of SAW propagation, with the rate of scaling set by the thickness of magnetic material. In addition, we find that ADFMR behaves consistently across a wide range of input power values (>65 dB). Our results indicate that devices such as filters, oscillators, and sensors can be designed that operate with very low power, yet provide high tunability.

  12. A Confirmatory Approach to Examining the Factor Structure of the Strengths and Difficulties Questionnaire (SDQ): A Large Scale Cohort Study

    ERIC Educational Resources Information Center

    Niclasen, Janni; Skovgaard, Anne Mette; Andersen, Anne-Marie Nybo; Somhovd, Mikael Julius; Obel, Carsten

    2013-01-01

    The aim of this study was to examine the factor structure of the Strengths and Difficulties Questionnaire (SDQ) using a Structural Confirmatory Factor Analytic approach. The Danish translation of the SDQ was distributed to 71,840 parents and teachers of 5-7 and 10-12-year-old boys and girls from four large scale cohorts. Three theoretical models…

  13. Using Student-Centred Learning Environments to Stimulate Deep Approaches to Learning: Factors Encouraging or Discouraging Their Effectiveness

    ERIC Educational Resources Information Center

    Baeten, Marlies; Kyndt, Eva; Struyven, Katrien; Dochy, Filip

    2010-01-01

    This review outlines encouraging and discouraging factors in stimulating the adoption of deep approaches to learning in student-centred learning environments. Both encouraging and discouraging factors can be situated in the context of the learning environment, in students' perceptions of that context and in characteristics of the students…

  14. An approach using multi-factor combination to evaluate high rocky slope safety

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Yang, Meng; Wen, Zhiping

    2016-06-01

    A high rocky slope is an open complex giant system for which there is contradiction among different influencing factors and coexistence of qualitative and quantitative information. This study presents a comprehensive intelligent evaluation method of high rocky slope safety through an integrated analytic hierarchy process, extension matter element model and entropy weight to assess the safety behavior of the high rocky slope. The proposed intelligent evaluation integrates subjective judgments derived from the analytic hierarchy process with the extension matter model and entropy weight into a multiple indexes dynamic safety evaluation approach. A combined subjective and objective comprehensive evaluation process, a more objective study, through avoiding subjective effects on the weights, and a qualitative safety assessment and quantitative safety amount are presented in the proposed method. The detailed computational procedures were also provided to illustrate the integration process of the above methods. Safety analysis of one high rocky slope is conducted to illustrate that this approach can adequately handle the inherent imprecision and contradiction of the human decision-making process and provide the flexibility and robustness needed for the decision maker to better monitor the safety status of a high rocky slope. This study was the first application of the proposed integrated evaluation method in the safety assessment of a high rocky slope. The study also indicated that it can also be applied to other similar problems.

  15. Ferromagnetism in doped or undoped spintronics nanomaterials

    NASA Astrophysics Data System (ADS)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  16. Magnetic relaxation in uranium ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2013-12-01

    There is proposed a phenomenological description of quasielastic neutron scattering in the ferromagnetic metals UGe2 and UCoGe based on their property that magnetization supported by the moments located at uranium atoms is not a conserved quantity relaxing to equilibrium by the interaction with an itinerant electron subsystem. As a result the linewidth of quasielastic neutron scattering at q→0 acquires nonvanishing value at all temperatures but the Curie temperature.

  17. Phase diagram of superconductor-ferromagnet superlattices

    SciTech Connect

    Radovic, Z.; Dobrosavljevic-Grujic, L.

    1994-12-31

    Recent progress in the proximity effect theory of superconductor-ferromagnet superlattices is reviewed. The phase diagram calculations, transition temperature {Tc} and upper critical fields H{sub c2}, are presented. Characteristic features in {Tc} and H{sub c2}(T) dependence on layers thicknesses, including the predicted unusual oscillatory variations and new inhomogeneous superconducting state with nontrivial phase difference between neighboring superconducting layers, are discussed and compared with experimental data for V/Fe and Nb/Gd superlattices.

  18. Ferromagnetic nanoparticles suspensions in twisted nematic

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina

    2016-05-01

    Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.

  19. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  20. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    NASA Astrophysics Data System (ADS)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  1. Prosthetic Tool For Holding Small Ferromagnetic Parts

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Carden, James R.; Belcher, Jewell G., Jr.; Vest, Thomas W.

    1995-01-01

    Tool attached to prosthetic hand or arm enables user to hold nails, screws, nuts, rivets, and other small ferromagnetic objects on small magnetic tip. Device adjusted to hold nail or screw at proper angle for hammering or for use of screwdriver, respectively. Includes base connector with threaded outer surface and lower male member inserted in standard spring-action, quick-connect/quick-disconnect wrist adapter on prosthetic hand or arm.

  2. Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women's artistic gymnastics.

    PubMed

    Bradshaw, Elizabeth J; Hume, Patria A

    2012-09-01

    Targeted injury prevention strategies, based on biomechanical analyses, have the potential to help reduce the incidence and severity of gymnastics injuries. This review outlines the potential benefits of biomechanics research to contribute to injury prevention strategies for women's artistic gymnastics by identification of mechanisms of injury and quantification of the effects of injury risk factors. One hundred and twenty-three articles were retained for review after searching electronic databases using key words, including 'gymnastic', 'biomech*', and 'inj*', and delimiting by language and relevance to the paper aim. Impact load can be measured biomechanically by the use of instrumented equipment (e.g. beatboard), instrumentation on the gymnast (accelerometers), or by landings on force plates. We need further information on injury mechanisms and risk factors in gymnastics and practical methods of monitoring training loads. We have not yet shown, beyond a theoretical approach, how biomechanical analysis of gymnastics can help reduce injury risk through injury prevention interventions. Given the high magnitude of impact load, both acute and accumulative, coaches should monitor impact loads per training session, taking into consideration training quality and quantity such as the control of rotation and the height from which the landings are executed. PMID:23072044

  3. Factors Affecting Adherence to Osteoporosis Medications: A Focus Group Approach Examining Viewpoints of Patients and Providers

    PubMed Central

    Iversen, Maura D; Vora, Ruchita R; Servi, Amber; Solomon, Daniel H

    2011-01-01

    This is a qualitative study using a focus group approach, conducted to determine factors influencing adherence to osteoporosis medications among older adults. Thirty-two patients aged 65 to 85 years from the greater Boston area who were prescribed an osteoporosis medication, 11 general medicine physicians and 1 nurse practitioner were recruited from Boston based hospitals affiliated with a large healthcare system. Focus groups consisting of 6 to 8 subjects including males and females were held separately for providers and patients and conducted until thematic saturation was reached. Responses were obtained from patients and providers during the focus group interviews conducted by a trained focus group moderator. All interviews were audio taped and transcribed by a medical transcriptionist. According to patients, factors affecting adherence to osteoporosis drugs included lack of knowledge about osteoporosis, dissatisfaction with their doctor visits, side effects, and difficulty or failure to remember instructions for taking medications. Physicians reported lack of patient knowledge, structural barriers, medication side effects, and the inability to track patients’ adherence to their medications as barriers to adherence. This study identifies the extent of and reasons for non-adherence as perceived by patients and providers, and provides insights into strategies to modify treatment plans to address non-adherence. The results from this study were used to develop a RCT to conduct and evaluate patient and physician targeted interventions to improve adherence to osteoporosis medications and to examine cost effectiveness of alternative strategies. PMID:21937896

  4. Awareness of music therapy practices and factors influencing specific theoretical approaches.

    PubMed

    Choi, Byung-Chuel

    2008-01-01

    The investigator identified music therapists' theoretical awareness of their practices and analyzed factors influencing their specific theoretical orientations and models. A 2-page survey was mailed to 500 board-certified music therapists in the United States; 272 returned surveys were analyzed. Data analysis revealed that respondents': (a) adoption of current theoretical approaches is contingent on the attended college, area of practice, and their age groups; (b) work satisfaction is not a function of involvement with theoretical orientations but rather of their area of practice and attendance at national music therapy conferences; (c) involvement in music making is not a function of theoretical orientations but of academic degrees; (d) emphasis on client's musical growth and aesthetic quality of music was not a function of theoretical orientations or any other investigated factor; (e) satisfaction with past education was not a function of involvement with theoretical orientations but of the area of practice; (f) desire to expand their theoretical knowledge was not a function of theoretical orientations but of academic degrees. PMID:18447575

  5. The Kondo effect in ferromagnetic atomic contacts.

    PubMed

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures. PMID:19407797

  6. Spin polarization in half-metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Biasini, M.; Mills, A. P., Jr.

    2005-03-01

    Ferromagnetic contacts for spin injection and analysis are key components determining the performance of spintronic devices. For practical applications the materials for these contacts should have a high electron spin polarization at the Fermi surface (FS) at room temperature. We need to develop suitable new high Curie-temperature ferromagnets from the class of half metallic compounds that are theoretically ideal for spintronics [1]. We point out that a polarized slow positron probe combined with the two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique [2] would allow unambiguous, direct, room-temperature determinations of the spin polarization of the conducting electrons at the FS of important candidate spintronic ferromagnetic thin films and single crystals. The electron spin polarization at the FS may be deduced directly from the amplitudes of the discontinuities in the electron occupation number at the Fermi momentum for two directions of the polarization of a positron probe relative to the saturating magnetic field direction [3]. Work supported in part by NSF grants DMR 0216927 and PHY 0140382 and by DOD/DARPA/DMEA, Award DMEA90-02-2-0216. [1] I. Zutic et al., Rev. Mod. Phys. 76, 323 (2004).[2] S. Berko, in Positron Solid-State Physics, Brant and Dupasquier, eds. (North-Holland, 1983) p. 64.[3] K. E. H. M. Hanssen et al., Phys. Rev. B 42, 1533 (1990).

  7. Nonlinear ferromagnetic resonance shift in nanostructures

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Belova, Lyuba; McMichael, Robert

    2014-03-01

    In dynamic magnetic systems, various experiments have shown that the ferromagnetic resonance frequency can shift up or down with increasing driving power in the nonlinear regime. The resonance shift is important in understanding nonlinear physics in nanomagnets and for applications of spin-torque oscillators. Here, we present a systematic study on the sign of the nonlinear coefficient, i.e. the direction of the resonance field/frequency shift. We use ferromagnetic resonance force microscopy (FMRFM) to measure the ferromagnetic resonance of a series of submicron NiFe ellipses with varying aspect ratios. We find the sign of the resonance shift is determined by both the applied field and the anisotropy field. Our measurement and micromagnetic modeling results are in qualitative agreement with a macro-spin analysis developed by Slavin and Tiberkevich. However, both measurement and modeling results exhibit values of the nonlinear coefficient that are more positive (meaning that the resonance tends to shift toward low field direction) than are predicted by the macrospin model. We attribute the difference to the non-uniformity of the precession modes in the ellipses. By analogy with standing spin waves, we show that nonuniform precession tends to increase the nonlinear frequency coefficient through a magnetostatic mechanism.

  8. Biocompatible Ferromagnetic Cr-Trihalide Monolayers

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.

  9. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  10. Rapid characterizing of ferromagnetic materials using spin rectification

    SciTech Connect

    Fan, Xiaolong Wang, Wei; Wang, Yutian; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Gao, Cunxu; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-12-29

    Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constants of the Fe crystals but also the principle of spin rectification in this method.

  11. Dynamics of magnetic field penetration into soft ferromagnets

    NASA Astrophysics Data System (ADS)

    Ducharne, B.; Sebald, G.; Guyomar, D.; Litak, G.

    2015-06-01

    We propose an approach to solve the coupled problem of the magnetic field penetration into soft ferromagnets and a frequency dependent magnetic hysteresis. The magnetic field diffusion is related to the macroscopic eddy currents. The hysteresis model is related to the microscopic eddy currents derived from the magnetic domain wall movements, and is responsible for the frequency dependence of hysteresis loops. In this paper, based on a lumped model and fractional derivative operators, we demonstrate that it is possible to replace the coupled diffusion/dynamic hysteresis in a simplest formulation using fractional operators. Such a formulation can be solved easily. Instead of solving a 1D problem of diffusion, we show here that a lumped model with appropriate fractional time derivative operator can be an exact formulation of the problem. In addition, we confirm that the model is using experimental available information, obtained by standard single sheet tester measuring bench (the tangential surface excitation field, and the cross section average induction).

  12. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  13. Millimeter wave ferromagnetic resonance in gallium-substituted ε-iron oxide

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2014-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz-150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  14. Ferromagnetic resonance shifts from electric fields: Field-enhanced screening charge in ferromagnet/ferroelectric multilayers

    NASA Astrophysics Data System (ADS)

    Gunawan, V.; Stamps, R. L.

    2012-03-01

    We calculate standing spin wave frequencies in a multilayer which unit cell is a trilayer comprised of a ferromagnet, a ferroelectric, and a normal metal. An applied voltage enhances the polarization of the ferroelectric and increases the magnetic moment at one interface through spin polarization and charge transfer. We show that the induced surface magnetism results in shifts of resonance and standing spin wave mode frequencies. A new resonance peak is predicted, associated with a strongly localized surface moment. Estimates are provided using parameters appropriate to the ferroelectric BaTiO3 and four different ferromagnetic metals, including a Heusler alloy (Fe, CrO2, permalloy, and Co2MnGe). The calculations use an entire-cell effective-medium approximation that takes into account the polarization profile in the ferroelectric. The metallic ferromagnetic electrode is treated as a real metal, and the depolarization field is included in the determination of polarization in the ferroelectric.

  15. Spin-wave excitations in arrays of asymmetric ferromagnetic nanorings

    NASA Astrophysics Data System (ADS)

    Nguyen, T. M.; Cottam, M. G.

    2008-04-01

    Calculations are reported for the spin-wave excitations in asymmetric ferromagnetic nanorings using a Hamiltonian-based formalism. Both the exchange and dipole-dipole interactions are included, as well as an external magnetic field and single-ion anisotropy. The equilibrium configurations of the nanorings are found by minimizing numerically the energy functional with respect to the spin orientation. Depending on the geometry, particularly the degree of asymmetry and the in-plane applied magnetic field, the nanorings can be in a vortex, onion, or other inhomogeneous state. Spin-dependent Green's functions are calculated to deduce the dispersion spectra and the mode profiles of the spin waves, and the dependence of the spin-wave properties on the asymmetry factor is studied. The effects of inter-ring dipolar coupling on the spin-wave spectrum are also investigated by considering small arrays (e.g., a 3×3 square array) of nanorings.

  16. Electronic transport in the ferromagnetic pyrochlore L u2V2O7 : Role of magnetization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohang; Zhou, Haidong; Yu, Liuqi; Gardner, H. Jeffery; von Molnár, Stephan; Wiebe, Christopher; Xiong, Peng

    2015-05-01

    This paper reports on a study of the resistivity and Hall effect of the ferromagnetic pyrochlore L u2V2O7 . The temperature dependence of the resistivity of single crystalline L u2V2O7 exhibits overall activation behavior with a metalliclike exception at intermediate temperatures near the Curie temperature (TC). This temperature dependence bears a surprising resemblance to that of doped semiconductors. The ferromagnetic oxide shows a negative magnetoresistance (MR) which scales quadratically with the reduced magnetization at temperatures above TC; however, the scaling factor is significantly smaller than the value expected for a ferromagnetic system in the pure spin scattering regime, which suggests that other scattering processes may be at work. Concomitant with the negative MR, a distinct switch in the Hall resistivity slope is observed at temperatures near TC. Our analysis suggests that the nonlinear Hall effect is associated with a change in the effective carrier density at a constant critical magnetization induced by an external magnetic field. We argue that within a picture that incorporates high temperature activation transport with a magnetization-driven charge percolation transition, the observed complex electronic transport in the ferromagnetic pyrochlore can be quantitatively described.

  17. Ferromagnetic states of p-type silicon doped with Mn

    NASA Astrophysics Data System (ADS)

    Yunusov, Z. A.; Yuldashev, Sh. U.; Igamberdiev, Kh. T.; Kwon, Y. H.; Kang, T. W.; Bakhadyrkhanov, M. K.; Isamov, S. B.; Zikrillaev, N. F.

    2014-05-01

    In this work, the ferromagnetic states of Mn-doped p-type silicon samples were investigated. Two different types of ferromagnetic states have been observed in Si (Mn, B). The samples with a relatively high concentration of Mn revealed a ferromagnetic state with a Curie temperature above room temperature, and that ferromagnetism was due to the Mn x B y ferromagnetic clusters. The samples with a moderate concentration of Mn at low temperatures revealed a ferromagnetic state that was mediated by carriers (holes). The samples demonstrated the anomalous Hall effect at temperatures below 100 K and had a negative magneto-resistivity peak at a temperature close to the Curie temperature. The thermal diffusivity measurements demonstrated the existence of a second-order phase transition in the samples with a moderate Mn concentration. The specific heat's critical exponent α = 0.5, determined from the thermal diffusivity measurements, confirmed the long-range nature of the magnetic exchange interaction in these samples.

  18. Understanding factors associated with the translation of cardiovascular research: a multinational case study approach

    PubMed Central

    2014-01-01

    Background Funders of health research increasingly seek to understand how best to allocate resources in order to achieve maximum value from their funding. We built an international consortium and developed a multinational case study approach to assess benefits arising from health research. We used that to facilitate analysis of factors in the production of research that might be associated with translating research findings into wider impacts, and the complexities involved. Methods We built on the Payback Framework and expanded its application through conducting co-ordinated case studies on the payback from cardiovascular and stroke research in Australia, Canada and the United Kingdom. We selected a stratified random sample of projects from leading medical research funders. We devised a series of innovative steps to: minimize the effect of researcher bias; rate the level of impacts identified in the case studies; and interrogate case study narratives to identify factors that correlated with achieving high or low levels of impact. Results Twenty-nine detailed case studies produced many and diverse impacts. Over the 15 to 20 years examined, basic biomedical research has a greater impact than clinical research in terms of academic impacts such as knowledge production and research capacity building. Clinical research has greater levels of wider impact on health policies, practice, and generating health gains. There was no correlation between knowledge production and wider impacts. We identified various factors associated with high impact. Interaction between researchers and practitioners and the public is associated with achieving high academic impact and translation into wider impacts, as is basic research conducted with a clinical focus. Strategic thinking by clinical researchers, in terms of thinking through pathways by which research could potentially be translated into practice, is associated with high wider impact. Finally, we identified the complexity of

  19. Nonlinear motion of coupled magnetic vortices in ferromagnetic/non-magnetic/ferromagnetic trilayer

    SciTech Connect

    Jun, Su-Hyeong; Shim, Je-Ho; Oh, Suhk-Kun; Yu, Seong-Cho; Kim, Dong-Hyun; Mesler, Brooke; Fischer, Peter

    2009-07-05

    We have investigated a coupled motion of two vortex cores in ferromagnetic/nonmagnetic/ferromagnetic trilayer cynliders by means of micromagnetic simulation. Dynamic motion of two vortex with parallel and antiparallel relative chiralities of curling spins around the vortex cores have been examined after excitation by 1-ns pulsed external field. With systematic variation in non-magnetic spacer layer thickness from 0 to 20 nm, the coupling between two cores becomes significant as the spacer becomes thinner. Significant coupling leads to a nonlinear chaotic coupled motion of two vortex cores for the parallel chiralities and a faster coupled gyrotropic oscillation for the antiparallel chiralities.

  20. Observation of Room Temperature Ferromagnetism in InN Nanostructures.

    PubMed

    Roul, Basanta; Kumar, Mahesh; Bhat, Thirumaleshwara N; Rajpalke, Mohana K; Krupanidhi, S B; Kumar, Nitesh; Sundaresan, A

    2015-06-01

    The room temperature ferromagnetic behavior of InN nanostructures grown by molecular beam epitaxy (MBE) is explored by means of magnetization measurements. The saturation magnetization and remanent magnetization are found to be strongly dependent on the size of the nanostructures. This suggests that the ferromagnetism is essentially confined to the surface of the nanostructures due to the possible defects. Raman spectroscopy shows the existence of indium vacancies which could be the source of ferromagnetic ordering in InN nanostructures. PMID:26369060

  1. Thermodynamic properties of the itinerant-boson ferromagnet

    SciTech Connect

    Tao Chengjun; Wang Peilin; Qin Jihong; Gu Qiang

    2008-10-01

    Thermodynamics of a spin-1 Bose gas with ferromagnetic interactions is investigated via the mean-field theory. It is apparently shown in the specific-heat curve that the system undergoes two phase transitions, the ferromagnetic transition and Bose-Einstein condensation, with the Curie point above the condensation temperature. Above the Curie point, the susceptibility fits the Curie-Weiss law perfectly. At a fixed temperature, the reciprocal susceptibility is also in a good linear relationship with the ferromagnetic interaction.

  2. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    NASA Astrophysics Data System (ADS)

    Shi, Pengpeng; Jin, Ke; Zheng, Xiaojing

    2016-04-01

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress-strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress-magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  3. Activation and enhancement of room-temperature ferromagnetism in Cu-doped anatase TiO₂ films by bound magnetic polaron and oxygen defects.

    PubMed

    Zheng, Jian-Yun; Bao, Shan-Hu; Lv, Yan-Hong; Jin, Ping

    2014-12-24

    Cu-doped anatase TiO2 films grown by magnetron sputtering at room temperature showed the unexpected observation of room-temperature ferromagnetism, which was enhanced or destroyed corresponding to low or high impurity concentration via vacuum annealing. On the basis of the analysis of composition and structure, the most important factor for activating ferromagnetism can be identified as the creation of grain boundary defects. In addition, oxygen defects can be the dominating factor for increasing the saturation moment of the 0.19 at. % Cu-doped TiO2 film from 0.564 to 26.41 emu/cm(3). These results help elucidate the origin of ferromagnetism and emphasize the role of oxygen defects for the application of ferromagnetic films. PMID:25437752

  4. An instantaneous approach for determining the infrared emissivity of swine surface and the influencing factors.

    PubMed

    Zhang, Kun; Jiao, Leizi; Zhao, Xiande; Dong, Daming

    2016-04-01

    Infrared thermal imaging technology has been widely employed in temperature measurements of human and animals and its accuracy relies on the determination process of the emissivity of the target to a large extent. However, common used methods were unable to determine the emissivity of the surface of living animals and thus lower the accuracy. In this paper, we suggested a new approach to acquire the infrared emissivity of living swine in real time. In the approach, the surface temperature of swine and reference body were measured to compute the emissivity and the measurement process was completed in a non-contact and non-invasive manner. We changed the surface reflection energy of animals and reference body by changing the ambient radiant energy and obtain the surface emissivity in real time without confirming the actual temperature of animal surface. In this way, the infrared emissivity of the animal surface can be determined instantaneously and without knowing the real temperature. Both swine specimen and a living swine were used in this study. Using this method, we measured the emissivity of different body sites of the swine. The results showed that the emissivity values at different body sites show the significant differences. The emissivity values at trotter and eye were respectively 0.895 and 0.930 and the emissivity on swine surface varied from 0.945 to 0.978. More important, the distribution of the infrared emissivity on a living swine was explored and the detailed differences of the emissivity on a swine surface can be cleanly seen. Furthermore, we studied the influencing factors on the emissivity of animal surface, through measuring the emissivity distribution on swine surface when pig specimens were sprayed with water on the surface or heated using this method. This study is of great significance for the accurate measurement of swine surface temperature. PMID:27033042

  5. Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins

    NASA Astrophysics Data System (ADS)

    Wolfe, C. S.; Manuilov, S. A.; Purser, C. M.; Teeling-Smith, R.; Dubs, C.; Hammel, P. C.; Bhallamudi, V. P.

    2016-06-01

    We demonstrate optical detection of a broad spectrum of ferromagnetic excitations using nitrogen-vacancy (NV) centers in an ensemble of nanodiamonds. Our recently developed approach exploits a straightforward CW detection scheme using readily available diamond detectors, making it easily implementable. The NV center is a local detector, giving the technique spatial resolution, which here is defined by our laser spot, but in principle can be extended far into the nanoscale. Among the excitations, we observe the propagating dipolar and dipolar-exchange spinwaves, as well as dynamics associated with the multi-domain state of the ferromagnet at low fields. These results offer an approach, distinct from commonly used optically detected magnetic resonance techniques, for spatially resolved spectroscopic study of magnetization dynamics at the nanoscale.

  6. Spin-triplet supercurrent in planar geometry ferromagnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Martinez, William M.; Pratt, W. P., Jr.; Birge, Norman O.

    2013-03-01

    The spin-triplet supercurrent in ferromagnetic Josephson junctions is obtained by surrounding the central ferromagnet with noncollinear ferromagnetic layers, F'. In metallic ferromagnets, the long-range nature of the spin-triplet supercurrent has only been tested to lengths of a few tens of nm. In this work, we are fabricating and measuring S/F'/F/F'/S junctions where the central F layer has a lateral geometry with lengths up to a few hundred nm. We will report on our recent progress. Supported by the DOE under grant DE-FG-02-06ER46341.

  7. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    SciTech Connect

    Gustafson, William I.; Yu, Shaocai

    2012-10-23

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations of these metrics are only valid for datasets with positive means. This paper presents a methodology to use and interpret the metrics with datasets that have negative means. The updated formulations give identical results compared to the original formulations for the case of positive means, so researchers are encouraged to use the updated formulations going forward without introducing ambiguity.

  8. Reexamining charmless B{yields}PV decays in the QCD factorization approach

    SciTech Connect

    Li Xinqiang; Yang Yadong

    2006-06-01

    Using the QCD factorization approach, we reexamine the two-body hadronic charmless B-meson decays to final states involving a pseudoscalar (P) and a vector (V) meson, with inclusion of the penguin contractions of spectator-scattering amplitudes induced by the b{yields}Dg*g* (where D=d or s, and g* denotes an off-shell gluon) transitions, which are of order {alpha}{sub s}{sup 2}. Their impacts on the CP-averaged branching ratios and CP-violating asymmetries are examined. We find that these higher order penguin contraction contributions have significant impacts on some specific decay modes. Since B{yields}{pi}K*, K{rho} decays involve the same electroweak physics as B{yields}{pi}K puzzles, we present a detailed analysis of these decays and find that the five R-ratios for the B{yields}{pi}K*, K{rho} system are in agreement with experimental data except for R({pi}K*). Generally, these new contributions are found to be important for penguin-dominated B{yields}PV decays.

  9. Fault-tolerant control of large space structures using the stable factorization approach

    NASA Technical Reports Server (NTRS)

    Razavi, H. C.; Mehra, R. K.; Vidyasagar, M.

    1986-01-01

    Large space structures are characterized by the following features: they are in general infinite-dimensional systems, and have large numbers of undamped or lightly damped poles. Any attempt to apply linear control theory to large space structures must therefore take into account these features. Phase I consisted of an attempt to apply the recently developed Stable Factorization (SF) design philosophy to problems of large space structures, with particular attention to the aspects of robustness and fault tolerance. The final report on the Phase I effort consists of four sections, each devoted to one task. The first three sections report theoretical results, while the last consists of a design example. Significant results were obtained in all four tasks of the project. More specifically, an innovative approach to order reduction was obtained, stabilizing controller structures for plants with an infinite number of unstable poles were determined under some conditions, conditions for simultaneous stabilizability of an infinite number of plants were explored, and a fault tolerance controller design that stabilizes a flexible structure model was obtained which is robust against one failure condition.

  10. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  11. Diagnosis of Endometrial-Factor Infertility: Current Approaches and New Avenues for Research

    PubMed Central

    Katzorke, N.; Vilella, F.; Ruiz, M.; Krüssel, J.-S.; Simón, C.

    2016-01-01

    Over the last decade, research to improve success rates in reproductive medicine has focused predominantly on the understanding and optimization of embryo quality. However, the emergence of personalized medicine in ovulation induction and embryology has shifted the focus to assessing the individual status of the endometrium. The endometrium is considered receptive during an individually defined period, the window of implantation (WOI), when the mother permits a blastocyst to attach and implant. This individual receptivity status can now be objectively diagnosed using the endometrial receptivity array (ERA) developed in 2011. The ERA, together with a computational algorithm, detects the unique transcriptomic signature of endometrial receptivity by analyzing 238 differentially expressed genes and reliably predicting the WOI. We and others have illustrated the utility of this personalized diagnostic approach to discriminate between individual physiological variation in endometrial receptivity and unknown endometrial pathology, deemed as causal in recurrent implantation failure (RIF). An international randomized controlled trial (“The ERA as a diagnostic guide for personalized embryo transfer.” ClinicalTrials.gov Identifier: NCT01954758) is underway to determine the clinical value of this endometrial diagnostic intervention in the work-up for reproductive care. In this review, we analyse the current clinical practice in the diagnosis of the endometrial factor together with new avenues of research. PMID:27365540

  12. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes.

    PubMed

    Gissi, Andrea; Gadaleta, Domenico; Floris, Matteo; Olla, Stefania; Carotti, Angelo; Novellino, Ettore; Benfenati, Emilio; Nicolotti, Orazio

    2014-01-01

    The REACH (Registration, Evaluation, Authorization and restriction of Chemicals) and BPR (Biocide Product Regulation) regulations strongly promote the use of non-animal testing techniques to evaluate chemical risk. This has renewed the interest towards alternative methods such as QSAR in the regulatory context. The assessment of Bioconcentration Factor (BCF) required by these regulations is expensive, in terms of costs, time, and laboratory animal sacrifices. Herein, we present QSAR models based on the ANTARES dataset, which is a large collection of known and verified experimental BCF data. Among the models developed, the best results were obtained from a nine-descriptor highly predictive model. This model was derived from a training set of 608 chemicals and challenged against a validation and blind set containing 152 and 76 chemicals. The model's robustness was further controlled through several validation strategies and the implementation of a multi-step approach for the applicability domain. Suitable safety margins were used to increase sensitivity. The easy interpretability of the model is ensured by the use of meaningful biokinetics descriptors. The satisfactory predictive power for external compounds suggests that the new models could represent a reliable alternative to the in vivo assay, helping the registrants to fulfill regulatory requirements in compliance with the ethical and economic necessity to reduce animal testing. PMID:24247988

  13. Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets

    NASA Astrophysics Data System (ADS)

    Hsu, Chin-Jui

    Due to the increased demand for clean energy in recent years, there is a need for the scientific community to develop technology to harvest thermal energy which is ubiquitous but mostly wasted in our environment. However, there is still no efficient approach to harvest thermal energy to date. In this study, the theory of thermomagnetic energy harvesting is reviewed and unique applications of multiferroics (ferromagnetic plus ferroelectric) are introduced. Based on an efficiency analysis using experimentally measured magneto-thermal properties of 3d transitional and 4f rare earth ferromagnetic elements, the idea of using single domain ferromagnetic elements to obtain higher thermomagnetic conversion efficiencies is proposed. In order to fabricate a ferromagnetic single domain, the magnetic anisotropy of gadolinium (Gd) and nickel (Ni) is engineered at the nanoscale. Both thin films and nanostructures are fabricated and characterized with a focus on the change of magnetic anisotropy governed by shape, crystal structure, and strain. The fabrication processes include sputtering, e-beam lithography (writing and evaporation), and focused ion beam milling. Characterization techniques involving atomic/magnetic force microscopy, energy dispersive X-ray spectroscopy, magneto-optical Kerr effect magnetometry, superconducting quantum interference device magnetometry, scanning/transmission electron microscopy, and X-ray diffraction will also be discussed. Experimental results show that the magnetic domain structure of nanostructured Ni can be stably controlled with geometric constraints or by strain induced via electric field. The magnetic properties of nanostructured Gd, on the other hand, is sensitive to crystal structure. These results provide critical information toward the use of ferromagnetic nanostructures in thermomagnetic energy harvesting and multiferroic applications.

  14. An Ecological Risk/Protective Factor Approach to Understanding Depressive Symptoms in Adolescents

    ERIC Educational Resources Information Center

    Olson, Jonathan; Goddard, H. Wallace

    2010-01-01

    We applied an ecological multiple risk/protective factor model to study factors related to depressive symptoms among adolescents. Participants were 39,740 adolescents who self-reported risk factors, protective factors, and depressive symptoms on a school-based survey. Results indicate that an index of multiple risk was related to increased…

  15. π-π Stacking and ferromagnetic coupling mechanism on a binuclear Cu(II) complex.

    PubMed

    Chi, Yan-Hui; Yu, Li; Shi, Jing-Min; Zhang, Yi-Quan; Hu, Tai-Qiu; Zhang, Gui-Qiu; Shi, Wei; Cheng, Peng

    2011-02-21

    The ferromagnetic couplings were observed in an unpublished crystal that consists of binuclear copper(II) complexes, namely, [Cu(2)(μ(1,3)-SCN)(2)(PhenOH)(OCH(3))(2)(HOCH(3))(2)] (PhenOH = 2-hydroxy-1,10-phenanthroline), and in the binuclear complex Cu(ii) ion assumes a distorted octahedral geometry and thiocyanate anion functions as a μ(1,3)-SCN(-) equatorial-axial (EA) bridging ligand. The analysis for the crystal structure indicates that there are three types of magnetic coupling pathways, in which two pathways involve π-π stacking between the adjacent complexes and the third one is the μ(1,3)-SCN(-) bridged pathway. The fitting for the data of the variable-temperature magnetic susceptibilities shows that there is a ferromagnetic coupling between adjacent Cu(II) ions with J = 50.02 cm(-1). Theoretical calculations reveal that the two types of π-π stacking resulted in ferromagnetic couplings with J = 4.16 cm(-1) and J = 2.75 cm(-1), respectively, and the bridged thiocyanate anions pathway led to a weaker ferromagnetic interaction with J = 0.88 cm(-1). The theoretical calculations also indicate that the ferromagnetic coupling sign from the two types of π-π stacking does not accord with McConnell I spin-polarization mechanism. The analysis for the Wiberg bond indexes that originate from the π-π stacking atoms indicates that the Wiberg bond indexes are relevant to the associated magnetic coupling magnitude and the Wiberg bond index is one of the key factors that dominates the associated magnetic coupling magnitude. PMID:21212898

  16. Thermodynamics of spin- 1/2 antiferromagnet-antiferromagnet-ferromagnet and ferromagnet-ferromagnet-antiferromagnet trimerized quantum Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Su, Gang; Gao, Song

    2006-04-01

    The magnetization process, the susceptibility, and the specific heat of the spin- 1/2 antiferromagnet (AF)-AF-ferromagnet (F) and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.

  17. Ferromagnetic Fe2CrAl Nanowires

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra; Dahal, Bishnu; Pegg, Ian L.; Philip, John

    Heusler alloy Fe2CrAl (FCA) nanowires were grown on silicon substrates. Nanowires have diameters in the range 50 to 200 nm and lengths up to 100 µm. They exhibit cubic L21 and A2 type structure with a space group, Pm m. Magnetic characterization reveals that they display ferromagnetic behavior and has a Curie temperature above 400 K. Magnetic behavior of FCA nanowires is different from the reported bulk behavior. Bulk FCA with L21 structure has a Curie temperature around 274 K. National Science Foundation under ECCS-0845501 and NSF-MRI, DMR-0922997.

  18. Ferromagnetism in metals at finite temperatures

    SciTech Connect

    Gyorffy, B.L.; Staunton, J.B.; Stocks, G.M.

    1984-01-01

    The conventional spin-polarized band theory is well known to give a reasonable description of the magnetic ground states of metals. Here it is generalized to finite temperatures. The resulting theory is the first first-principles theory of the ferromagnetic phase transition in metals. It is a mean-field theory. For iron we find T/sub c/ = 1250 K and chi/sup -1/(q = 0) follows a Curie-Weiss law. We also report on our results for the wave-vector dependent susceptibility chi(q) which is a measure of magnetic short-range order above T/sub c/.

  19. A hybrid empirical-mechanistic modeling approach for extrapolating biota-sediment accumulation factors and bioaccumulation factors across species, time, and/or ecosystems.

    PubMed

    Burkhard, Lawrence P; Cook, Philip M; Lukasewycz, Marta T

    2006-07-01

    An approach is presented for extrapolating field-measured biota-sediment accumulation factors (BSAFs) and bioaccumulation factors (BAFs) across species, time, and/or ecosystems. This approach, called the hybrid bioaccumulation modeling approach, uses mechanistic bioaccumulation models to extrapolate field-measured bioaccumulation data (i.e., BSAFs and BAFs) to new sets of ecological conditions. The hybrid approach predicts relative differences in bioaccumulation using food web models with two sets of ecological conditions and parameters: One set for the ecosystem where the BSAFs and/or BAFs were measured, and the other set for the ecological conditions and parameters for which the extrapolated BSAFs and/or BAFs are desired. The field-measured BSAF (or BAF) is extrapolated by adjusting the measured BSAF (or BAF) by the predicted relative difference, which is derived from two separate solutions of the food web model. Extrapolations of polychlorinated biphenyl BSAFs and BAFs for lake trout (Salvelinus namaycush) from southern Lake Michigan to Green Bay of Lake Michigan (Green Bay, WI, USA) walleye (Stizostedion vitreum) and brown trout (Salmo trutta), as well as Hudson River largemouth bass (Micropterus salmoides) and yellow perch (Perca flavescens), resulted in generally better agreement between measured and predicted BSAFs and BAFs with the hybrid approach. PMID:16833159

  20. Suppression of the ferromagnetic order in the Heusler alloy Ni50Mn35In15 by hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Salazar Mejía, C.; Mydeen, K.; Naumov, P.; Medvedev, S. A.; Wang, C.; Hanfland, M.; Nayak, A. K.; Schwarz, U.; Felser, C.; Nicklas, M.

    2016-06-01

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni50Mn35In15. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to the magnetic properties.

  1. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    SciTech Connect

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.

  2. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    DOE PAGESBeta

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less

  3. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    PubMed

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  4. A decision support system prototype including human factors based on the TOGA meta-theory approach

    SciTech Connect

    Cappelli, M.; Memmi, F.; Gadomski, A. M.; Sepielli, M.

    2012-07-01

    The human contribution to the risk of operation of complex technological systems is often not negligible and sometimes tends to become significant, as shown by many reports on incidents and accidents occurred in the past inside Nuclear Power Plants (NPPs). An error of a human operator of a NPP can derive by both omission and commission. For instance, complex commission errors can also lead to significant catastrophic technological accidents, as for the case of the Three Mile Island accident. Typically, the problem is analyzed by focusing on the single event chain that has provoked the incident or accident. What is needed is a general framework able to include as many parameters as possible, i.e. both technological and human factors. Such a general model could allow to envisage an omission or commission error before it can happen or, alternatively, suggest preferred actions to do in order to take countermeasures to neutralize the effect of the error before it becomes critical. In this paper, a preliminary Decision Support System (DSS) based on the so-called (-) TOGA meta-theory approach is presented. The application of such a theory to the management of nuclear power plants has been presented in the previous ICAPP 2011. Here, a human factor simulator prototype is proposed in order to include the effect of human errors in the decision path. The DSS has been developed using a TRIGA research reactor as reference plant, and implemented using the LabVIEW programming environment and the Finite State Machine (FSM) model The proposed DSS shows how to apply the Universal Reasoning Paradigm (URP) and the Universal Management Paradigm (UMP) to a real plant context. The DSS receives inputs from instrumentation data and gives as output a suggested decision. It is obtained as the result of an internal elaborating process based on a performance function. The latter, describes the degree of satisfaction and efficiency, which are dependent on the level of responsibility related to

  5. Magnetization boundary conditions at a ferromagnetic interface of finite thickness.

    PubMed

    Kruglyak, V V; Gorobets, O Yu; Gorobets, Yu I; Kuchko, A N

    2014-10-01

    We develop a systematic approach to derive boundary conditions at an interface between two ferromagnetic materials in the continuous medium approximation. The approach treats the interface as a two-sublattice material, although the final equations connect magnetizations outside of the interface and therefore do not explicitly depend on its structure. Instead, the boundary conditions are defined in terms of some average properties of the interface, which may also have a finite thickness. In addition to the interface anisotropy and symmetric exchange coupling, this approach allows us to take into account coupling resulting from inversion symmetry breaking in the vicinity of the interface, such as the Dzyaloshinskii-Moriya antisymmetric exchange interaction. In the case of negligible interface anisotropy and Dzyaloshinskii-Moriya exchange parameters, the derived boundary conditions represent a generalization of those proposed earlier by Barnaś and Mills and are therefore named 'generalized Barnaś-Mills boundary conditions'. We demonstrate how one could use the boundary conditions to extract parameters of the interface via fitting of appropriate experimental data. The developed theory could be applied to modeling of both linear and non-linear spin waves, including exchange, dipole-exchange, magnetostatic, and retarded modes, as well as to calculations of non-uniform equilibrium micromagnetic configurations near the interface, with a direct impact on the research in magnonics and micromagnetism. PMID:25219663

  6. Magnetization boundary conditions at a ferromagnetic interface of finite thickness

    NASA Astrophysics Data System (ADS)

    Kruglyak, V. V.; Gorobets, O. Yu; Gorobets, Yu I.; Kuchko, A. N.

    2014-10-01

    We develop a systematic approach to derive boundary conditions at an interface between two ferromagnetic materials in the continuous medium approximation. The approach treats the interface as a two-sublattice material, although the final equations connect magnetizations outside of the interface and therefore do not explicitly depend on its structure. Instead, the boundary conditions are defined in terms of some average properties of the interface, which may also have a finite thickness. In addition to the interface anisotropy and symmetric exchange coupling, this approach allows us to take into account coupling resulting from inversion symmetry breaking in the vicinity of the interface, such as the Dzyaloshinskii-Moriya antisymmetric exchange interaction. In the case of negligible interface anisotropy and Dzyaloshinskii-Moriya exchange parameters, the derived boundary conditions represent a generalization of those proposed earlier by Barnaś and Mills and are therefore named ‘generalized Barnaś-Mills boundary conditions’. We demonstrate how one could use the boundary conditions to extract parameters of the interface via fitting of appropriate experimental data. The developed theory could be applied to modeling of both linear and non-linear spin waves, including exchange, dipole-exchange, magnetostatic, and retarded modes, as well as to calculations of non-uniform equilibrium micromagnetic configurations near the interface, with a direct impact on the research in magnonics and micromagnetism.

  7. Workplace System Factors of Obstetric Nurses in Northeastern Ontario, Canada: Using a Work Disability Prevention Approach

    PubMed Central

    Nowrouzi, Behdin; Lightfoot, Nancy; Carter, Lorraine; Larivère, Michel; Rukholm, Ellen; Belanger-Gardner, Diane

    2015-01-01

    Background The purpose of this study was to examine the relationship nursing personal and workplace system factors (work disability) and work ability index scores in Ontario, Canada. Methods A total of 111 registered nurses were randomly selected from the total number of registered nurses on staff in the labor, delivery, recovery, and postpartum areas of four northeastern Ontario hospitals. Using a stratified random design approach, 51 participants were randomly selected in four northeastern Ontario cities. Results A total of 51 (45.9% response rate) online questionnaires were returned and another 60 (54.1% response rate) were completed using the paper format. The obstetric workforce in northeastern Ontario was predominately female (94.6%) with a mean age of 41.9 (standard deviation = 10.2). In the personal systems model, three variables: marital status (p = 0.025), respondent ethnicity (p = 0.026), and mean number of patients per shift (p = 0.049) were significantly contributed to the variance in work ability scores. In the workplace system model, job and career satisfaction (p = 0.026) had a positive influence on work ability scores, while work absenteeism (p = 0.023) demonstrated an inverse relationship with work ability scores. In the combined model, all the predictors were significantly related to work ability scores. Conclusion Work ability is closely related to job and career satisfaction, and perceived control at work among obstetric nursing. In order to improve work ability, nurses need to work in environments that support them and allow them to be engaged in the decision-making processes. PMID:26929842

  8. Dissecting the Critical Factors for Thermodynamic Stability of Modular Proteins Using Molecular Modeling Approach

    PubMed Central

    Lee, Sang-Chul; Han, Jieun; Heu, Woosung; Park, Keunwan; Kim, Hyun Jung; Cheong, Hae-Kap; Kim, Dongsup; Kim, Hak-Sung; Lee, Keun Woo

    2014-01-01

    Repeat proteins have recently attracted much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural and biophysical features. In particular, repeat proteins show high stability against temperature and chaotic agents. Despite many studies, structural features for the stability of repeat proteins remain poorly understood. Here we present an interesting result from in silico analyses pursuing the factors which affect the stability of repeat proteins. Previously developed repebody structure based on variable lymphocytes receptors (VLRs) which consists of leucine-rich repeat (LRR) modules was used as initial structure for the present study. We constructed extra six repebody structures with varying numbers of repeat modules and those structures were used for molecular dynamics simulations. For the structures, the intramolecular interactions including backbone H-bonds, van der Waals energy, and hydrophobicity were investigated and then the radius of gyration, solvent-accessible surface area, ratio of secondary structure, and hydration free energy were also calculated to find out the relationship between the number of LRR modules and stability of the protein. Our results show that the intramolecular interactions lead to more compact structure and smaller surface area of the repebodies, which are critical for the stability of repeat proteins. The other features were also well compatible with the experimental results. Based on our observations, the repebody-5 was proposed as the best structure from the all repebodies in structure optimization process. The present study successfully demonstrated that our computer-based molecular modeling approach can significantly contribute to the experiment-based protein engineering challenge. PMID:24849801

  9. Magneto-optical studies of ultrathin ferromagnetic films

    SciTech Connect

    Bader, S.D.

    1992-01-01

    The focus of this paper is on surface magnetic anisotropy of 3d ferromagnetic transition metals. While the exchange interaction is responsible for the net magnetization associated with ferromagnetism, it is the magnetic anisotropy energetics that determine the direction of that magnetization with respect to the crystallographic axes and to the shape of the sample.

  10. Levitation properties of maglev systems using soft ferromagnets

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  11. Magnetization dissipation in ferromagnets from scattering theory

    NASA Astrophysics Data System (ADS)

    Brataas, Arne; Tserkovnyak, Yaroslav; Bauer, Gerrit E. W.

    2011-08-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping tensor. We formulate a scattering theory for the magnetization dynamics and map this description on the linearized LLG equation by attaching electric contacts to the ferromagnet. The reactive part can then be expressed in terms of the static scattering matrix. The dissipative contribution to the low-frequency magnetization dynamics can be described as an adiabatic energy pumping process to the electronic subsystem by the time-dependent magnetization. The Gilbert damping tensor depends on the time derivative of the scattering matrix as a function of the magnetization direction. By the fluctuation-dissipation theorem, the fluctuations of the effective fields can also be formulated in terms of the quasistatic scattering matrix. The theory is formulated for general magnetization textures and worked out for monodomain precessions and domain-wall motions. We prove that the Gilbert damping from scattering theory is identical to the result obtained by the Kubo formalism.

  12. Synthesis and characterization of ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Tsai, Poching

    Ferromagnetic nanocrystals with shape anisotropy have drawn great attention in the past decades because of their unique magnetic properties and for their potential applications in ultra-high-density magnetic recording media, exchange-coupled nanocomposite magnets and related nanodevices. In this thesis, synthesis and characterixation of ferromagnetic CoNi and CoFe nanowires are reported. CoNi nanocrystals with different size, shape and composition were successfully synthesized via a catalyst chemical solution method. It was found out that the structure and morphology can be controlled by altering the NaOH concentration, and the elongation of the nanowires can be adjusted by changing surfactants ratio and catalyst amount. Unlike the CoNi, CoFe nanocrystals were prepared by a non-catalyst chemistry solution method. The particle size and shape are controlled by varying parameters such as solvent amount, surfactant ratio, reducing agent and heating rate. Morphological, structural, and compositional characterizations of the nanoparticles were performed by using Transmission Electron Microscopy (TEM), high resolution TEM (HRTEM), and X-Ray Diffractometer (XRD). Magnetic properties of nanoparticles of different size were studied by Alternating Gradiant Magnetometer (AGM).

  13. Applications of a theory of ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Hodgdon, M. L.

    The differential equation dB/dt = alpha times the absolute value of dH/dt (f(H) - B) + dH/dt g(H) and a set of restrictions on the material functions f and g yield a theory of rate independent hysteresis for isoperm ferromagnetic materials. A modification based on exchanging the positions of B and H in the differential equation and on allowing for the dependence of the material functions on dH/dt extends the theory to rate dependent, nonisoperm materials. The theory and its extension exhibit all of the important features of ferromagnetic hysteresis, including the existence and stability of minor loops. Both are well suited for use in numerical field solving codes. Examples in which the material functions are simple combinations of analytic functions are presented here for Mn-Zn ferrite, Permalloy, CMD5005, and CoCr thin film. Also presented is a procedure for constructing a two dimensional vector model that yields bell-shaped and M-shaped curves for graphs of the angular variation of the coercive field.

  14. Testing system for ferromagnetic shape memory microactuators.

    PubMed

    Ganor, Y; Shilo, D; Messier, J; Shield, T W; James, R D

    2007-07-01

    Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of microscale ferromagnetic shape memory specimens. The system is comprised of an alternating magnetic field generator (AMFG) and a mechanical loading and sensing system. The AMFG generates a dynamic magnetic field that periodically alternates between two orthogonal directions to facilitate martensitic variant switching and to remotely achieve a full magnetic actuation cycle, without the need of mechanical resetting mechanisms. Moreover, the AMFG is designed to produce a magnetic field that inhibits 180 degrees magnetization domain switching, which causes energy loss without strain generation. The mechanical loading and sensing system maintains a constant mechanical load on the measured specimen by means of a cantilever beam, while the displacement is optically monitored with a resolution of approximately 0.1 microm. Preliminary measurements using Ni(2)MnGa single crystal specimens, with a cross section of 100x100 microm(2), verified their large actuation strains and established their potential to become a material of great importance in microactuation technology. PMID:17672773

  15. EXPERIMENTAL APPROACHES TO EVALUATING THE ROLE OF ENVIRONMENTAL FACTORS IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASE

    EPA Science Inventory

    Epidemiologic studies have suggested factors in drinking water influence on the human cardiovascular system. A clear identification of the factors involved requires more invasive techniques and more strict experimental controls than can usually be applied in epidemiologic studies...

  16. Factor Structure of Children's Locus of Control Beliefs: A Cross-Cultural Approach.

    ERIC Educational Resources Information Center

    Barling, Julian

    1980-01-01

    Nowicki characterized children's locus of control beliefs in terms of three factors: helplessness, luck, and achievement. This study investigated whether these factors are sufficiently consistent or invariant to be used in further analyses. (Author/DB)

  17. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.

  18. Heat-driven spin transport in a ferromagnetic metal

    SciTech Connect

    Xu, Yadong; Yang, Bowen; Tang, Chi; Jiang, Zilong; Shi, Jing; Schneider, Michael; Whig, Renu

    2014-12-15

    As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect (SSE). If the ferromagnet is a metal, this voltage is also accompanied by voltages from two other sources, i.e., the anomalous Nernst effect in both the ferromagnet and the proximity-induced ferromagnetic boundary layer. By properly identifying and carefully separating those different effects, we find that in this pure spin current circuit the additional spin current drawn by the heavy metal generates another significant voltage by the ferromagnetic metal itself which should be present in all relevant experiments.

  19. Room-temperature ferromagnetism in cerium dioxide powders

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, R. M.; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-01

    Room-temperature ferromagnetism is detected in a CeO2 powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO2 sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  20. Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    NASA Astrophysics Data System (ADS)

    von Keyserlingk, C. W.; Conduit, G. J.

    2011-05-01

    We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.

  1. Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    SciTech Connect

    Keyserlingk, C. W. von; Conduit, G. J.

    2011-05-15

    We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.

  2. Superconductivity and Ferromagnetic Quantum Criticality in Uranium Compounds

    NASA Astrophysics Data System (ADS)

    Aoki, Dai; Flouquet, Jacques

    2014-06-01

    We review our recent studies on ferromagnetic superconductors, UGe2, URhGe, and UCoGe, together with the ferromagnetic quantum criticality and paramagnetic singularity on the Ising 5f-itinerant system UCoAl. Thanks to the variety of ordered moment in ferromagnetic superconductors from 1.5 μB to 0.05 μB, interesting systematic changes or similarities are clarified. All ferromagnetic superconductors show large upper critical field Hc2, and the field-reentrant (-reinforced) phenomena are observed in the field-temperature phase diagram, when the pressure or field direction is tuned for particular conditions. These phenomena are well explained by the ferromagnetic longitudinal fluctuations, which are induced by the magnetic field in transverse configurations. The large Hc2 might be also associated with possible additional effects of Fermi surface instabilities, such as Lifshitz-type singularities.

  3. Room-temperature ferromagnetism in cerium dioxide powders

    SciTech Connect

    Rakhmatullin, R. M. Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  4. Macroscopic modeling of anisotropic magnetostriction and magnetization in soft ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Mbengue, Serigne Saliou; Buiron, Nicolas; Lanfranchi, Vincent

    2016-04-01

    Magnetic and magnetoelastic properties of soft ferromagnetic materials, used as laminated sheets, are sensitive to manufacturing processes such as rolling, cutting and coating. One of the effects of these processes is to induce an anisotropic behavior of materials. Therefore, an anhysteretic magnetostriction and magnetization calculation taking into account the anisotropy effect at macroscopic scale is presented. This model is based on the expression and then the minimization of the total energy in order to determine magnetization and magnetostriction at equilibrium. The total energy to minimize depends on energy terms identified from measurements of the magnetization and magnetostriction at a scale large enough to neglect the heterogeneity due to grains. Therefore, this approach attempts to reproduce ferromagnetic polycrystal behavior at macroscopic without knowing texture (Orientation Density Function) nor grain properties.

  5. Charge-magnetic interference resonant scattering studies of ferromagnetic crystals and thin films

    SciTech Connect

    Haskel, D.; Kravtsov, E.; Choi, Y.; Lang, J.C.; Islam, Z.; Srajer, G.; Jiang, J.S.; Bader, S.D.; Canfield, Paul C.

    2012-06-15

    The element- and site-specificity of X-ray resonant magnetic scattering (XRMS) makes it an ideal tool for furthering our understanding of complex magnetic systems. In the hard X-rays, XRMS is readily applied to most antiferromagnets where the relatively weak resonant magnetic scattering (10 −2–10 −6Ic) is separated in reciprocal space from the stronger, Bragg charge scattered intensity, Ic. In ferro(ferri)magnetic materials, however, such separation does not occur and measurements of resonant magnetic scattering in the presence of strong charge scattering are quite challenging. We discuss the use of charge-magnetic interference resonant scattering for studies of ferromagnetic (FM) crystals and layered films. We review the challenges and opportunities afforded by this approach, particularly when using circularly polarized X-rays.We illustrate current capabilities at the Advanced Photon Source with studies aimed at probing site-specific magnetism in ferromagnetic crystals, and interfacial magnetism in films.

  6. Soft magnetic lithography and giant magnetoresistance in superconducting/ferromagnetic hybrids.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Imre, A.; Rosenmann, D.; Pearson, J.; Kwok, W. K.

    2008-01-01

    We demonstrate an approach to create a tunable pinning potential in a superconducting/ferromagnetic (SC/FM) hybrid, allowing the switching of their electronic properties through the application of a small magnetic field. Using direct magneto-optical imaging, macroscopic transport, and magnetic measurements, we show that the alignment of stripe domains in the ferromagnet provides a remarkable directionality for the superconducting vortex motion. An analysis of the anisotropic flux motion demonstrates a substantial critical current anisotropy in the superconductor. The possibility of aligning stable lattices of stripe domains in select directions using in-plane magnetic fields allows the realization of soft magnetic lithography for efficient manipulation of supercurrent flow in SC/FM bilayers. Furthermore, in our samples we observed a pronounced magnetoresistance effect yielding 4 orders of magnitude resistivity change in a few millitesla in-plane field.

  7. From ferromagnetic{endash}ferromagnetic to ferromagnetic{endash}antiferromagnetic exchange coupling in NiFe/MnNi bilayers

    SciTech Connect

    Spenato, David; Youssef, Jamal Ben; Le Gall, Henri; Ostorero, Jean

    2001-06-01

    The effect of the growth conditions and the Mn concentration on the exchange coupling between a ferromagnetic (F) NiFe and an antiferromagnetic (AF) MnNi layers were studied. We found that an F/AF coupling appears in the bilayers when the Mn concentration is more than 45%. Beyond this critical concentration the exchange field shows a maximum then decreases. The correlation between the exchange field and the microstructure of the film is discussed. We show that: (1) the enhancement of the exchange field is associated with the enhancement of the antiferromagnetic grain size and (2) the existence of the exchange field is associated with a third x-ray peak which may be an FeMnNi ternary allow type. This result was associated with interfacial diffusion confirmed by magnetization variation measurements before and after annealing. {copyright} 2001 American Institute of Physics.

  8. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1–xFex

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yuki K.; Sakamoto, Shoya; Takeda, Yuki-Haru; Ishigami, Keisuke; Takahashi, Yukio; Saitoh, Yuji; Yamagami, Hiroshi; Fujimori, Atsushi; Tanaka, Masaaki; Ohya, Shinobu

    2016-03-01

    We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge1‑xFex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20–100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature.

  9. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1-xFex.

    PubMed

    Wakabayashi, Yuki K; Sakamoto, Shoya; Takeda, Yuki-Haru; Ishigami, Keisuke; Takahashi, Yukio; Saitoh, Yuji; Yamagami, Hiroshi; Fujimori, Atsushi; Tanaka, Masaaki; Ohya, Shinobu

    2016-01-01

    We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge1-xFex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20-100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature. PMID:26996202

  10. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1–xFex

    PubMed Central

    Wakabayashi, Yuki K.; Sakamoto, Shoya; Takeda, Yuki-haru; Ishigami, Keisuke; Takahashi, Yukio; Saitoh, Yuji; Yamagami, Hiroshi; Fujimori, Atsushi; Tanaka, Masaaki; Ohya, Shinobu

    2016-01-01

    We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge1−xFex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20–100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature. PMID:26996202

  11. Optical determination of the spin polarization of a quantum Hall ferromagnet

    NASA Astrophysics Data System (ADS)

    Manfra, M. J.; Goldberg, B. B.; Pfeiffer, L.; West, K.

    Recent experimental and theoretical investigations have resulted in a shift in our understanding of the ν=1 quantum Hall state. There now exists a wealth of evidence that the excitation gap and the resulting quasi-particle spectrum at ν=1 are due predominately to the ferromagnetic many-body exchange interaction. A great variety of experimentally observed correlations at ν=1 cannot be incorporated into a perturbative expansion around the single-particle model, a scheme long thought to describe the integral quantum Hall effect (IQHE) at filling factor 1. Theorists now refer to the ν=1 state as the quantum Hall ferromagnet. In this paper, we review recent theoretical and experimental progress and detail our own optical investigations of the ν=1 quantum Hall regime.

  12. Optical determination of the spin polarization of a quantum Hall ferromagnet

    NASA Astrophysics Data System (ADS)

    Manfra, M. J.; Goldberg, B. B.; Pfeiffer, L.; West, K.

    1998-01-01

    Recent experimental and theoretical investigations have resulted in a shift in our understanding of the ν=1 quantum Hall state. There now exists a wealth of evidence that the excitation gap and the resulting quasi-particle spectrum at ν=1 are due predominately to the ferromagnetic many-body exchange interaction. A great variety of experimentally observed correlations at ν=1 cannot be incorporated into a perturbative expansion around the single-particle model, a scheme long thought to describe the integral quantum Hall effect (IQHE) at filling factor 1. Theorists now refer to the ν=1 state as the quantum Hall ferromagnet. In this paper, we review recent theoretical and experimental progress and detail our own optical investigations of the ν=1 quantum Hall regime.

  13. Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach.

    PubMed

    Tay, Franklin R; Loushine, Robert J; Lambrechts, Paul; Weller, R Norman; Pashley, David H

    2005-08-01

    Cavity configuration factor (C-factor) is the ratio of the bonded surface area in a cavity to the unbonded surface area. In a box-like class I cavity, there may be five times more bonded surface area than the unbonded surface area. During polymerization, the volume of monomers is reduced, which creates sufficient shrinkage stresses to debond the material from dentin, thereby decreasing retention and increasing leakage. The important variables influencing bonding adhesive root-filling materials to canals was examined using a truncated inverted cone model. C-factors in bonded root canals exhibit a negative correlation with sealer thickness. For a 20 mm-long canal prepared with a size 25 file, calculated C-factors ranged from 46 to 23,461 with decreasing sealer thickness (500-1 microm), compared to a C-factor of 32 when the canal was filled only with sealer. As the thickness of the adhesive is reduced, the volummetric shrinkage is reduced, which results in a reduction in shrinkage stress (S-factor). C-factors above 954 calculated with sealer thickness smaller than 25 microm are partially compensated by increases in bonding area and decreases in shrinkage volume. However, the interaction of these two geometrically related factors (C- and S-factors) predicts that bonding of adhesive root-filling materials to root canals is highly unfavorable when compared with indirect intracoronal restorations with a similar resin film thickness. PMID:16044041

  14. Sex of Client as a Factor in Preference for an Approach to Counseling.

    ERIC Educational Resources Information Center

    Cashen, Valjean M.

    1979-01-01

    After viewing tapes of two simulated vocational-educational counseling sessions, one using a behavioral and the other a client-centered approach, college students were asked which counseling style they preferred. Both males and females preferred the behavioral approach, apparently for the "structure" it offers. (SJL)

  15. Expression, Purification, and Analysis of Unknown Translation Factors from "Escherichia Coli": A Synthesis Approach

    ERIC Educational Resources Information Center

    Walter, Justin D.; Littlefield, Peter; Delbecq, Scott; Prody, Gerry; Spiegel, P. Clint

    2010-01-01

    New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described…

  16. Factors Influencing the Adoption of a Health Promoting School Approach in the Province of Quebec, Canada

    ERIC Educational Resources Information Center

    Deschesnes, M.; Trudeau, F.; Kebe, M.

    2010-01-01

    This study examined a prediction model that integrated three categories of predictors likely to influence adoption of the Quebec Healthy Schools (HS) approach, i.e. attributes of the approach, individual and contextual characteristics. HS receptivity was considered as a potential mediator. For this study, 141 respondents representing 96 schools…

  17. Manipulating the ferromagnetism in narrow-bandwidth Pr1-xCaxMnO3 (0 ≤ x ≤ 0.6) by means of the Mn-Ru t2g ferromagnetic super-exchanges

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Liu, M. F.; Xie, Y. L.; Yan, Z. B.; Dong, S.; Liu, J.-M.

    2015-09-01

    The concurrent ferromagnetic and metal-insulator transitions via the double-exchange route and electronic phase separation scenario represent the core ingredients of the physics of manganites. In this work, a Ca2+ and Ru4+ co-substitution of Pr3+ and Mn3+ in narrow-bandwidth and insulating PrMnO3, namely, Pr1-xCaxMn1-xRuxO3 (PCMRO, x ≤ 0.6), is carried out in order to investigate an alternative approach to effectively manipulate the ferromagnetism of PrMnO3-based manganites. It is revealed that PCMRO over the whole substitution range is homogeneous solid solution with increased lattice distortion. The preference of Ru4+ valence state and the absence of Mn4+ valence state disable the Mn3+-Mn4+ eg-orbital double-exchange, and the random occupation of Ru4+ in the lattice excludes the charge ordering and electronic phase separation. While all these consequences should favor antiferromagnetic insulating states, nevertheless, a high-temperature ferromagnetic transition is triggered by the co-substitution and the magnetization can reach up to ˜1.0 μB/f.u. at x ˜ 0.2-0.3, much bigger than the moment (<0.1 μB/f.u.) of Pr1-xCaxMnO3 in the weak ferromagnetic insulator state. It is suggested that this strong ferromagnetism is substantially ascribed to the Mn3+-Ru4+ t2g-orbital ferromagnetic super-exchange, and a simple geometric network illustration of the magnetism and electrical transport is presented.

  18. Production of two charm quark-antiquark pairs in single-parton scattering within the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    van Hameren, Andreas; Maciuła, Rafał; Szczurek, Antoni

    2015-09-01

    We present first results for the 2 → 4 single-parton scattering gg → c c bar c c bar subprocess for the first time fully within the kt-factorization approach. In this calculation we have used the Kimber-Martin-Ryskin unintegrated gluon distribution which effectively includes some class of higher-order gluon emissions, and an off-shell matrix element squared calculated using recently developed techniques. The results are compared with our earlier result obtained within the collinear-factorization approach. Only slightly larger cross sections are obtained than in the case of the collinear approach. Inclusion of transverse momenta of gluons entering the hard process leads to a much stronger azimuthal decorrelation between cc and c bar c bar than in the collinear-factorization approach. A comparison to predictions of double parton scattering (DPS) results and the LHCb data strongly suggests that the assumption of two fully independent DPS (gg → c c bar ⊗ gg → c c bar) may be too approximate.

  19. Dynamics of ferromagnetic spin glass: randomly canted ferromagnet versus skewed spin glass

    NASA Astrophysics Data System (ADS)

    Janutka, Andrzej

    2003-12-01

    A ferromagnetic spin glass (FSG) is one of the three isotropic and homogeneous phases of the long-range partially ordered magnets with spin and atomic disorder which are selected by symmetry (Andreev 1978 Sov. Phys.—JETP 47 411) (the others are genuine and antiferromagnetic spin glasses). The linear dynamical response to a magnetic field of two sub-phases of a FSG with drastically different dynamics, a randomly canted ferromagnet, in which the component spins create an acute angle with the summary magnetic moment, and a less-ordered skewed spin glass is analysed in the spin-wave approximation in the framework of phenomenological theory. The spin-wave damping coefficients and frequency shifts due to a magnon-magnon interaction are evaluated as functions of temperature and wavevector as well as the spectral-weight functions of the linear response to a magnetic field and the neutron scattering cross section which provides the possibility for experimental verification of the results. Substantial differences in the spin-wave characteristics of the FSG compared to those of the Heisenberg spin glass and the Heisenberg ferromagnet are found to be due to non-linear anisotropy effects in a FSG.

  20. A rigorous two-dimensional model for the stripline ferromagnetic resonance response of metallic ferromagnetic films

    SciTech Connect

    Lin, Z.; Kostylev, M.

    2015-02-07

    In this work, we constructed a two-dimensional numerical model for calculation of the stripline ferromagnetic resonance (FMR) response of metallic ferromagnetic films. We also conducted numerical calculations by using this software. The calculations demonstrated that the eddy current contribution to the FMR response decreases with a decrease in the stripline width. The most important manifestations of the conductivity (eddy current) effect are excitation of the higher-order standing spin waves across the film thickness in the materials for which the standing spin wave peaks would be absent in cavity FMR measurements and strong dependence of the off-resonance series conductance of the stripline on the stripline width. Whereas the contribution of the eddy currents to the stripline FMR response can be very significant, because wide striplines (100 μm+) are conventionally used for the FMR measurements, it is negligible in the case of excitation of spin waves, just because very narrow stripline transducers (0.5–5 μm wide) are required in order to excite spin waves in metallic ferromagnetic films in a noticeable frequency/applied field range.

  1. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    SciTech Connect

    Avila, J. I. Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C.

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  2. Creep turns linear in narrow ferromagnetic nanostrips

    PubMed Central

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  3. Thermoelectric spin transport through ferromagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Bender, Scott A.

    2015-10-01

    We study how spin is transferred by ferromagnetic dynamics in a charge insulator in response to a thermoelectric bias, which is established by supplying heat and/or spin accumulation via normal leads. At zero temperature, magnetic anisotropies pin the macroscopic order, which necessitates a finite threshold bias to induce a spin current in a steady state of unpinned dynamics. At finite temperatures, however, thermal spin waves provide a spin transport channel in response to a linear thermoelectric bias. The theoretical description is rooted in the Landau-Lifshitz-Gilbert phenomenology both for the macroscopic dynamics of the magnetic order and quantum kinetics of thermal magnons. In this paper we connect the classical and quantum aspects of the underlying magnetic dynamics and spin transport, as well as provide a unified view of the exchange mediated bias of spin See-beck physics of the magnetic interface and bulk.

  4. Creep turns linear in narrow ferromagnetic nanostrips.

    PubMed

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  5. Creep turns linear in narrow ferromagnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Leliaert, Jonathan; van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; van Waeyenberge, Bartel

    2016-02-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.

  6. ''Soft'' Anharmonic Vortex Glass in Ferromagnetic Superconductors

    SciTech Connect

    Radzihovsky, Leo; Ettouhami, A. M.; Saunders, Karl; Toner, John

    2001-07-09

    Ferromagnetic order in superconductors can induce a spontaneous vortex (SV) state. For external field H=0 , rotational symmetry guarantees a vanishing tilt modulus of the SV solid, leading to drastically different behavior than that of a conventional, external-field-induced vortex solid. We show that quenched disorder and anharmoinc effects lead to elastic moduli that are wave-vector dependent out to arbitrarily long length scales, and non-Hookean elasticity. The latter implies that for weak external fields H , the magnetic induction scales universally like B(H){approx}B(0)+cH{sup {alpha}} , with {alpha}{approx}0.72 . For weak disorder, we predict the SV solid is a topologically ordered glass, in the ''columnar elastic glass'' universality class.

  7. Ferromagnetism in exfoliated tungsten disulfide nanosheets

    PubMed Central

    2013-01-01

    Two-dimensional-layered transition metal dichalcogenides nanosheets have attracted tremendous attention for their promising applications in spintronics because the atomic-thick nanosheets can not only enhance the intrinsic properties of their bulk counterparts, but also give birth to new promising properties. In this paper, ultrathin tungsten disulfide (WS2) nanosheets were gotten by liquid exfoliation route from its bulk form using dimethylformamide (DMF). Compared to the antiferromagnetism bulk WS2, ultrathin WS2 nanosheets show intrinsic room-temperature ferromagnetism (FM) with the maximized saturation magnetization of 0.004 emu/g at 10 K, where the appearance of FM in the nanosheets is partly due to the presence of zigzag edges in the magnetic ground state at the grain boundaries. PMID:24134699

  8. Vortex Dynamics in Ferromagnetic/Superconducting Bilayers

    NASA Astrophysics Data System (ADS)

    Cieplak, M. Z.; Adamus, Z.; Kończykowski, M.; Zhu, L. Y.; Chien, C. L.

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferrromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w ≥ qλ) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w ≫ λ) enhance pinning less effectively and result in flux jumps during flux motion.

  9. Spin dynamics with inertia in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toru; Tatara, Gen

    2015-11-01

    The nonadiabatic contribution of environmental degrees of freedom yields an effective inertia of spin in the effective spin dynamics. In this paper, we study several aspects of the inertia of spin in metallic ferromagnets: (i) a concrete expression of the spin inertia ms: ms=ℏ Sc/(2 gsd) , where Sc is the spin polarization of conduction electrons and gsd is the s d coupling constant; (ii) a dynamical behavior of spin with inertia, discussed from the viewpoints of a spinning top and of a particle on a sphere; (iii) the behavior of spin waves and domain walls in the presence of inertia and the behavior of spin with inertia under a time-dependent magnetic field.

  10. A Market Segmentation Approach for Higher Education Based on Rational and Emotional Factors

    ERIC Educational Resources Information Center

    Angulo, Fernando; Pergelova, Albena; Rialp, Josep

    2010-01-01

    Market segmentation is an important topic for higher education administrators and researchers. For segmenting the higher education market, we have to understand what factors are important for high school students in selecting a university. Extant literature has probed the importance of rational factors such as teaching staff, campus facilities,…

  11. A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

    ERIC Educational Resources Information Center

    Edwards, Michael C.

    2010-01-01

    Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…

  12. Design of exchange-correlation functionals through the correlation factor approach

    SciTech Connect

    Pavlíková Přecechtělová, Jana E-mail: Matthias.Ernzerhof@UMontreal.ca

    2015-10-14

    The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlation factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.

  13. A Comparison of Component and Factor Patterns: A Monte Carlo Approach.

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; And Others

    1982-01-01

    Factor analysis, image analysis, and principal component analysis are compared with respect to the factor patterns they would produce under various conditions. The general conclusion that is reached is that the three methods produce results that are equivalent. (Author/JKS)

  14. WISC-IV and Clinical Validation of the Four- and Five-Factor Interpretative Approaches

    ERIC Educational Resources Information Center

    Weiss, Lawrence G.; Keith, Timothy Z.; Zhu, Jianjun; Chen, Hsinyi

    2013-01-01

    The purpose of this study was to determine the constructs measured by the WISC-IV and the consistency of measurement across large normative and clinical samples. Competing higher order four- and five-factor models were analyzed using the WISC-IV normative sample and clinical subjects. The four-factor solution is the model published with the test…

  15. Factors Affecting Perceived Learning, Satisfaction, and Quality in the Online MBA: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Sebastianelli, Rose; Swift, Caroline; Tamimi, Nabil

    2015-01-01

    The authors examined how six factors related to content and interaction affect students' perceptions of learning, satisfaction, and quality in online master of business administration (MBA) courses. They developed three scale items to measure each factor. Using survey data from MBA students at a private university, the authors estimated structural…

  16. Evaluating Effective Teaching in College Level Economics Using Student Ratings of Instruction: A Factor Analytic Approach

    ERIC Educational Resources Information Center

    Agbetsiafa, Douglas

    2010-01-01

    This paper explores the factors that affect students' evaluation of economic instruction using a sample of 1300 completed rating instruments at a comprehensive four-year mid-western public university. The study uses factor analysis to determine the validity and reliability of the evaluation instrument in assessing instructor or course…

  17. Optimization of healthcare supply chain in context of macro-ergonomics factors by a unique mathematical programming approach.

    PubMed

    Azadeh, A; Motevali Haghighi, S; Gaeini, Z; Shabanpour, N

    2016-07-01

    This study presents an integrated approach for analyzing the impact of macro-ergonomics factors in healthcare supply chain (HCSC) by data envelopment analysis (DEA). The case of this study is the supply chain (SC) of a real hospital. Thus, healthcare standards and macro-ergonomics factors are considered to be modeled by the mathematical programming approach. Over 28 subsidiary SC divisions with parallel missions and objectives are evaluated by analyzing inputs and outputs through DEA. Each division in this HCSC is considered as decision making unit (DMU). This approach can analyze the impact of macro-ergonomics factors on supply chain management (SCM) in healthcare sector. Also, this method ranks the relevant performance efficiencies of each HCSC. In this study by using proposed method, the most effective macro-ergonomics factor on HCSC is identified as "teamwork" issue. Also, this study would help managers to identify the areas of weaknesses in their SCM system and set improvement target plan for the related SCM system in healthcare industry. To the best of our knowledge, this is the first study for macro-ergonomics optimization of HCSC. PMID:26995035

  18. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    PubMed

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth. PMID:22327377

  19. A structure-based Multiple-Instance Learning approach to predicting in vitro transcription factor-DNA interaction

    PubMed Central

    2015-01-01

    Background Understanding the mechanism of transcriptional regulation remains an inspiring stage of molecular biology. Recently, in vitro protein-binding microarray experiments have greatly improved the understanding of transcription factor-DNA interaction. We present a method - MIL3D - which predicts in vitro transcription factor binding by multiple-instance learning with structural properties of DNA. Results Evaluation on in vitro data of twenty mouse transcription factors shows that our method outperforms a method based on simple-instance learning with DNA structural properties, and the widely used k-mer counting method, for nineteen out of twenty of the transcription factors. Our analysis showed that the MIL3D approach can utilize subtle structural similarities when a strong sequence consensus is not available. Conclusion Combining multiple-instance learning and structural properties of DNA has promising potential for studying biological regulatory networks. PMID:25917392

  20. Problematic eating behaviors among bariatric surgical candidates: a psychometric investigation and factor analytic approach.

    PubMed

    Gelinas, Bethany L; Delparte, Chelsea A; Wright, Kristi D; Hart, Regan

    2015-01-01

    Psychological factors (e.g., anxiety, depression) are routinely assessed in bariatric pre-surgical programs, as high levels of psychopathology are consistently related to poor program outcomes (e.g., failure to lose significant weight pre-surgery, weight regain post-surgery). Behavioral factors related to poor program outcomes and ways in which behavioral and psychological factors interact, have received little attention in bariatric research and practice. Potentially problematic behavioral factors are queried by Section H of the Weight and Lifestyle Inventory (WALI-H), in which respondents indicate the relevance of certain eating behaviors to obesity. A factor analytic investigation of the WALI-H serves to improve the way in which this assessment tool is interpreted and used among bariatric surgical candidates, and subsequent moderation analyses serve to demonstrate potential compounding influences of psychopathology on eating behavior factors. Bariatric surgical candidates (n =362) completed several measures of psychopathology and the WALI-H. Item responses from the WALI-H were subjected to principal axis factoring with oblique rotation. Results revealed a three-factor model including: (1) eating in response to negative affect, (2) overeating/desirability of food, and (3) eating in response to positive affect/social cues. All three behavioral factors of the WALI-H were significantly associated with measures of depression and anxiety. Moderation analyses revealed that depression did not moderate the relationship between anxiety and any eating behavior factor. Although single forms of psychopathology are related to eating behaviors, the combination of psychopathology does not appear to influence these problematic behaviors. Recommendations for pre-surgical assessment and treatment of bariatric surgical candidates are discussed. PMID:25464064

  1. Cleared for the visual approach: Human factor problems in air carrier operations

    NASA Technical Reports Server (NTRS)

    Monan, W. P.

    1983-01-01

    The study described herein, a set of 353 ASRS reports of unique aviation occurrences significantly involving visual approaches was examined to identify hazards and pitfalls embedded in the visual approach procedure and to consider operational practices that might help avoid future mishaps. Analysis of the report set identified nine aspects of the visual approach procedure that appeared to be predisposing conditions for inducing or exacerbating the effects of operational errors by flight crew members or controllers. Predisposing conditions, errors, and operational consequences of the errors are discussed. In a summary, operational policies that might mitigate the problems are examined.

  2. Ferromagnetism in defect-ridden oxides and related materials

    NASA Astrophysics Data System (ADS)

    Coey, J. M. D.; Stamenov, P.; Gunning, R. D.; Venkatesan, M.; Paul, K.

    2010-05-01

    The existence of high-temperature ferromagnetism in thin films and nanoparticles of oxides containing small quantities of magnetic dopants remains controversial. Some regard these materials as dilute magnetic semiconductors, while others think they are ferromagnetic only because the magnetic dopants form secondary ferromagnetic impurity phases such as cobalt metal or magnetite. There are also reports in d0 systems and other defective oxides that contain no magnetic ions. Here, we investigate TiO2 (rutile) containing 1-5% of iron cations and find that the room temperature ferromagnetism of films prepared by pulsed-laser deposition is not due to magnetic ordering of the iron. The films are neither dilute magnetic semiconductors nor hosts to an iron-based ferromagnetic impurity phase. A new model is developed for defect-related ferromagnetism, which involves a spin-split defect band populated by charge transfer from a proximate charge reservoir—in the present case a mixture of Fe2+ and Fe3+ ions in the oxide lattice. The phase diagram for the model shows how inhomogeneous Stoner ferromagnetism depends on the total number of electrons Ntot, the Stoner exchange integral I and the defect bandwidth W; the band occupancy is governed by the d-d Coulomb interaction U. There are regions of ferromagnetic metal, half-metal and insulator as well as non-magnetic metal and insulator. A characteristic feature of the high-temperature Stoner magnetism is an anhysteretic magnetization curve, which is practically temperature independent below room temperature. This is related to a wandering ferromagnetic axis, which is determined by local dipole fields. The magnetization is limited by the defect concentration, not by the 3d doping. Only 1-2% of the volume of the films is magnetically ordered.

  3. Low temperature ferromagnetism in chemically ordered FeRh nanocrystals.

    PubMed

    Hillion, A; Cavallin, A; Vlaic, S; Tamion, A; Tournus, F; Khadra, G; Dreiser, J; Piamonteze, C; Nolting, F; Rusponi, S; Sato, K; Konno, T J; Proux, O; Dupuis, V; Brune, H

    2013-02-22

    In sharp contrast to previous studies on FeRh bulk, thin films, and nanoparticles, we report the persistence of ferromagnetic order down to 3 K for size-selected 3.3 nm diameter nanocrystals embedded into an amorphous carbon matrix. The annealed nanoparticles have a B2 structure with alternating atomic Fe and Rh layers. X-ray magnetic dichroism and superconducting quantum interference device measurements demonstrate ferromagnetic alignment of the Fe and Rh magnetic moments of 3 and 1μ(B), respectively. The ferromagnetic order is ascribed to the finite-size induced structural relaxation observed in extended x-ray absorption spectroscopy. PMID:23473198

  4. Low Temperature Ferromagnetism in Chemically Ordered FeRh Nanocrystals

    NASA Astrophysics Data System (ADS)

    Hillion, A.; Cavallin, A.; Vlaic, S.; Tamion, A.; Tournus, F.; Khadra, G.; Dreiser, J.; Piamonteze, C.; Nolting, F.; Rusponi, S.; Sato, K.; Konno, T. J.; Proux, O.; Dupuis, V.; Brune, H.

    2013-02-01

    In sharp contrast to previous studies on FeRh bulk, thin films, and nanoparticles, we report the persistence of ferromagnetic order down to 3 K for size-selected 3.3 nm diameter nanocrystals embedded into an amorphous carbon matrix. The annealed nanoparticles have a B2 structure with alternating atomic Fe and Rh layers. X-ray magnetic dichroism and superconducting quantum interference device measurements demonstrate ferromagnetic alignment of the Fe and Rh magnetic moments of 3 and 1μB, respectively. The ferromagnetic order is ascribed to the finite-size induced structural relaxation observed in extended x-ray absorption spectroscopy.

  5. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    PubMed Central

    Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas

    2015-01-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. PMID:25937693

  6. Flux Penetration in a Ferromagnetic/Superconducting Bilayer

    NASA Astrophysics Data System (ADS)

    Adamus, Z.; Cieplak, M. Z.; Abal-Oshev, A.; Kończykowski, M.; Cheng, X. M.; Zhu, L. Y.; Chien, C. L.

    2007-01-01

    An array of miniature Hall sensors is used to study the magnetic flux penetration in a ferromagnetic/superconducting bilayer consisting of Nb as a superconducting layer and Co/Pt multilayer with perpendicular magnetic anisotropy as a ferromagnetic layer, separated by an amorphous Si layer to avoid the proximity effect. It is found that the magnetic domains in the ferromagnetic layer create a large edge barrier in the superconducting layer which delays flux penetration. The smooth flux profiles observed in the absence of magnetic pinning change into terraced profiles in the presence of domains.

  7. Ferromagnetic resonance in exchange coupled bilayer films with stress anisotropy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Rong, Jianhong; Yun, Guohong; Wang, Dong; Bao, Lingbo

    2016-07-01

    Ferromagnetic resonance frequency and magnetic susceptibility in ferromagnetic/antiferromagnetic bilayer films with stress anisotropy are investigated using a ferromagnetic resonance method. In-plane anisotropy, weak and strong perpendicular anisotropy are taken into account in this theoretical model. The effect of stress anisotropy has been investigated; it was found that the resonance frequencies all increase for in-plane and weak perpendicular anisotropy, as the stress anisotropy field increases. In addition, the stress anisotropy field does not obviously affect the magnetic susceptibility for saturation field.

  8. A method for measuring exchange stiffness in ferromagnetic films

    SciTech Connect

    Girt, Erol; Huttema, W.; Montoya, E.; Kardasz, B.; Eyrich, C.; Heinrich, B.; Mryasov, O. N.; Dobin, A. Yu.; Karis, O.

    2011-04-01

    An exchange stiffness, A{sub ex}, in ferromagnetic films is obtained by fitting the M(H) dependence of two ferromagnetic layers antiferromagnetically coupled across a nonmagnetic spacer layer with a simple micromagnetic model. In epitaxial and textured structures this method allows measuring A{sub ex} between the crystallographic planes perpendicular to the growth direction of ferromagnetic films. Our results show that A{sub ex} between [0001] planes in textured Co grains is 1.54 {+-} 0.12 x 10{sup -11} J/m.

  9. Ferromagnetic behavior and exchange bias effect in akaganeite nanorods

    NASA Astrophysics Data System (ADS)

    Tadic, Marin; Milosevic, Irena; Kralj, Slavko; Saboungi, Marie-Louise; Motte, Laurence

    2015-05-01

    We report ferromagnetic-like properties and exchange bias effect in akaganeite (β-FeOOH) nanorods. They exhibit a Néel temperature TN = 259 K and ferromagnetic-like hysteresis behavior both below and above TN. An exchange bias effect is observed below TN and represents an interesting behavior for akaganeite nanorods. These results are explained on the basis of a core-shell structure in which the core has bulk akaganeite magnetic properties (i.e., antiferromagnetic ordering) while the shell exhibits a disordered spin state. Thus, the nanorods show ferromagnetic properties and an exchange bias effect at the same time, increasing their potential for use in practical applications.

  10. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas

    2015-05-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau-Lifshitz-Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed.

  11. Characterization of ferromagnetic/dielectric systems for metamaterials applications

    NASA Astrophysics Data System (ADS)

    Bates, Brittany; Greene, Nicole; Noginova, Natalia

    2014-09-01

    Incorporation of ferromagnetic materials into metamaterial systems provides an opportunity to tune microwave permeability with an external magnetic field, strongly affecting wave propagation. We characterize microwave properties of several soft magnetic materials with high permeability as possible candidates for such applications. In the range of the ferromagnetic resonance, the permeability of ferromagnetic/dielectric composites varies from positive to negative values. In addition, a low field absorption peak provides an additional possibility of tuning with low fields. Microwave propagation through metal-dielectric multilayered systems shows

  12. Ramp-edge structured tunneling devices using ferromagnet electrodes

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi

    2002-09-03

    The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.

  13. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    SciTech Connect

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  14. Risk factors for suicidal behaviors among Filipino Americans: a data mining approach.

    PubMed

    Kuroki, Yusuke

    2015-01-01

    Filipino Americans have lower suicide rates than other Asian ethnic groups. The present study examined risk factors for suicide ideation and attempt among Filipino Americans with random forest. The data were from the Filipino American Community Epidemiological Study (Takeuchi, 2011). The results showed that the important predictors for suicide ideation were depressive disorder, substance use disorder, and years in the United States. The important predictors for suicide attempt were the number of family relatives and family conflict. Clinicians are advised to investigate familial and cultural factors among Filipino Americans. How family and cultural factors may affect suicidal behaviors were further discussed. PMID:25110976

  15. Epitaxial ferromagnetic thin films and heterostructures of Mn-based metallic and semiconducting compounds on GaAs

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki

    1998-07-01

    We present two approaches to integrate magnetic materials with III-V semiconductors. One is epitaxial ferromagnetic metallic films and heterostructures on GaAs (0 0 1) substrates. Although crystal structure, lattice constant, chemical bonding and other properties are dissimilar, ferromagnetic hexagonal MnAs thin films and MnAs/NiAs ferromagnet/nonmagnet heterostructures (HSs) are grown on GaAs by molecular beam epitaxy (MBE). Multi-stepped magnetic hysteresis are controllably realized in MnAs/NiAs HSs, making this material promising for the application to multi-level nonvolatile recording on semiconductors. The other approach is to prepare a new class of GaAs based magnetic semiconductor, GaMnAs, by low-temperature molecular beam epitaxy (LT-MBE) on GaAs (0 0 1). New III-V based superlattices consisting of ferromagnetic semiconductor GaMnAs and nonmagnetic semiconductor AlAs are also successfully grown. Structural and magnetic properties of these new heterostructures are presented.

  16. Evaluating Potential Response-Modifying Factors for Associations between Ozone and Health Outcomes: A Weight-of-Evidence Approach

    PubMed Central

    Owens, Elizabeth O.; Nichols, Jennifer L.; Ross, Mary; Brown, James S.; Sacks, Jason D.

    2014-01-01

    Background: Epidemiologic and experimental studies have reported a variety of health effects in response to ozone (O3) exposure, and some have indicated that certain populations may be at increased or decreased risk of O3-related health effects. Objectives: We sought to identify potential response-modifying factors to determine whether specific groups of the population or life stages are at increased or decreased risk of O3-related health effects using a weight-of-evidence approach. Methods: Epidemiologic, experimental, and exposure science studies of potential factors that may modify the relationship between O3 and health effects were identified in U.S. Environmental Protection Agency’s 2013 Integrated Science Assessment for Ozone and Related Photochemical Oxidants. Scientific evidence from studies that examined factors that may influence risk were integrated across disciplines to evaluate consistency, coherence, and biological plausibility of effects. The factors identified were then classified using a weight-of-evidence approach to conclude whether a specific factor modified the response of a population or life stage, resulting in an increased or decreased risk of O3-related health effects. Discussion: We found “adequate” evidence that populations with certain genotypes, preexisting asthma, or reduced intake of certain nutrients, as well as different life stages or outdoor workers, are at increased risk of O3-related health effects. In addition, we identified other factors (i.e., sex, socioeconomic status, and obesity) for which there was “suggestive” evidence that they may increase the risk of O3-related health effects. Conclusions: Using a weight-of-evidence approach, we identified a diverse group of factors that should be considered when characterizing the overall risk of health effects associated with exposures to ambient O3. Citation: Vinikoor-Imler LC, Owens EO, Nichols JL, Ross M, Brown JS, Sacks JD. 2014. Evaluating potential response

  17. Influence of Li-N and Li-F co-doping on defect-induced intrinsic ferromagnetic and photoluminescence properties of arrays of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamsundar; Gopal Khan, Gobinda; Varma, Shikha; Mandal, Kalyan

    2012-08-01

    The role of N/F co-doping on the defect-driven room-temperature d0 ferromagnetism in group-I element Li doped ZnO nanowire arrays has been investigated. The ferromagnetic signature of pristine ZnO nanowires has enhanced significantly after Li doping but the Li-N co-doping has found to be more effective in the stabilization and enhancement in room-temperature ferromagnetism in ZnO nanowires. Saturation magnetization in Li-doped ZnO nanowires found to increase from 0.63 to 2.52 emu/g and the Curie temperature rises up to 648 K when 10 at. % N is co-doped with 6 at. % Li. On the other hand, Li-F co-doping leads to exhibit much poor room-temperature ferromagnetic as well as visible luminescence properties. The valance state of the different dopants is estimated by x-ray photoelectron spectroscopy while the photoluminescence spectra indicate the gradual stabilization of Zn vacancy defects or defect complexes in presence of No acceptor states, which is found to be responsible for the enhancement of intrinsic ferromagnetism in ZnO:Li matrix. Therefore, the Li-N co-doping can be an effective parameter to stabilize, enhance, and tune zinc vacancy-induced room-temperature d0 ferromagnetism in ZnO nanowires, which can be an exciting approach to prepare new class of spintronic materials.

  18. The Scree Test and the Number of Factors: a Dynamic Graphics Approach.

    PubMed

    Ledesma, Rubén Daniel; Valero-Mora, Pedro; Macbeth, Guillermo

    2015-01-01

    Exploratory Factor Analysis and Principal Component Analysis are two data analysis methods that are commonly used in psychological research. When applying these techniques, it is important to determine how many factors to retain. This decision is sometimes based on a visual inspection of the Scree plot. However, the Scree plot may at times be ambiguous and open to interpretation. This paper aims to explore a number of graphical and computational improvements to the Scree plot in order to make it more valid and informative. These enhancements are based on dynamic and interactive data visualization tools, and range from adding Parallel Analysis results to "linking" the Scree plot with other graphics, such as factor-loadings plots. To illustrate our proposed improvements, we introduce and describe an example based on real data on which a principal component analysis is appropriate. We hope to provide better graphical tools to help researchers determine the number of factors to retain. PMID:26055575

  19. Youth violence in the United States. Major trends, risk factors, and prevention approaches.

    PubMed

    Dahlberg, L L

    1998-05-01

    Violence among youths is an important public health problem. Between 1985 and 1991, homicide rates among youths 15-19 years of age increased 154% and remain, today, at historically high levels. This paper reviews the major trends in homicide victimization and perpetration among youths over the last decade, the key risk factors associated with violence, and summarizes the many primary prevention efforts under way to reduce violence. Previous research points to a number of factors that increase the probability of violence during adolescence and young adulthood. Some of these factors include the early onset of aggressive behavior in childhood, social problem-solving skill deficits, exposure to violence, poor parenting practices and family functioning, negative peer influences, access to firearms, and neighborhoods characterized by high rates of poverty, transiency, family disruption, and social isolation. Efforts to address some of the primary risk factors for violence are under way across the United States, but evaluations to confirm program effectiveness are needed. PMID:9635070

  20. Comparison of the color-evaporation model and the nonrelativistic QCD factorization approach in charmonium production

    SciTech Connect

    Bodwin, Geoffrey T.; Braaten, Eric; Lee, Jungil

    2005-07-01

    We compare the color-evaporation model (CEM) and nonrelativistic QCD (NRQCD) factorization predictions for inclusive quarkonium production. Using the NRQCD factorization formulas for quarkonium production and for perturbative QQ production, we deduce relationships that are implied by the CEM between the nonperturbative NRQCD matrix elements that appear in the factorization formula for quarkonium production. These relationships are at odds with the phenomenological values of the matrix elements that have been extracted from the Tevatron data for charmonium production at large transverse momentum. A direct comparison of the CEM and NRQCD factorization predictions with the CDF charmonium production data reveals that the CEM fits to the data are generally unsatisfactory, while the NRQCD factorization fits are generally compatible with the data. The inclusion of k{sub T} smearing improves the CEM fits substantially, but significant incompatibilities remain. The NRQCD factorization fits to the {chi}{sub c} data indicate that multiple gluon radiation is an essential ingredient in obtaining the correct shape of the cross section as a function of p{sub T}.

  1. Manipulating Surface-induced Ferromagnetism in Modulation-doped Topological Insulators

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng; He, Liang; Lang, Murong; Fan, Yabin; Jiang, Ying; Wang, Yong; Xiu, Faxian; Wang, Kang; Device Research Laboratory Team; CenterElectron Microscopy; State Key Laboratory of Silicon Materials Collaboration; ECE Department Collaboration

    2013-03-01

    The manipulation of topological surface states is a key to realize applicable devices of topological insulators. In addition to the direct engineering of time-reversal-symmetry protected surface states, recent work suggests that various physical responses can be obtained from surface helical states by integrating additional ferromagnetism or superconductivity to the original topological order. Here, we report the coexistence and tunability of bulk carrier density-independent and surface-mediated electrically controllable ferromagnetisms in modulation-doped Crx(BiySb1-y)2Te3 epitaxial thin films. We demonstrate for the first time a dramatic enhancement of surface-induced magnetization on TI / Cr-TI bilayer devices. The surface magneto-electric effects can be either enhanced significantly or completely switched-off, by tuning the separation of the surface from the magnetic impurities. The electric-field-modulated ferromagnetism in our modulation-doped TI hetero-structures is fundamentally important for the realization of the quantum anomalous Hall Effect as well as the axion electromagnetic dynamics, and thus provides a new approach for spintronics applications. The authors would also like to acknowledge helpful discussions with Dr. Alexei Fedorov and Dr. Mathew Marcus from the Advanced Light Source at Berkeley.

  2. Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures

    NASA Astrophysics Data System (ADS)

    Lei, Yuxiong; Chen, Zheng; Li, Liangliang

    2015-05-01

    Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures were investigated in this study. The periodic and quasi-periodic structures were designed based on Fibonacci sequence and golden ratio. Ni nanowires arrays were electrodeposited in anodic aluminum oxide (AAO) templates with patterned Cu electrodes, and then the AAO templates were attached to the coplanar waveguide lines fabricated on quartz substrate for measurement. The S21 of both periodic and quasi-periodic structure-patterned Ni nanowire arrays showed an extra absorption peak besides the absorption peak due to the ferromagnetic resonance of Ni nanowires. The frequency of the absorption peak caused by the patterned structure could be higher than 40 GHz when the length and arrangement of the structural units were modified. In addition, the frequency of the absorption peak due to the quasi-periodic structure was calculated based on a simple analytical model, and the calculated value was consistent with the measured one. The experimental data showed that it could be a feasible approach to tune the performance of microwave devices by patterning ferromagnetic nanowires.

  3. Microscopic model versus systematic low-energy effective field theory for a doped quantum ferromagnet

    SciTech Connect

    Gerber, U.; Wiese, U.-J.; Hofmann, C. P.; Kaempfer, F.

    2010-02-01

    We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast to antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case, both the microscopic and the effective theory can be solved analytically. In this way, the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.

  4. Quantum criticality in the Itinerant Ferromagnets Zr1-xNbxZn2

    NASA Astrophysics Data System (ADS)

    Sokolov, D.; Fisk, Z.

    2005-03-01

    We report the results of magnetization measurements performed on the family itinerant ferromagnets Zr1-xNbxZn2, (0 <=x <=0.14). Nb doping reduces the moment M0 and also the Curie temperature Tc, which simultaneously disappear at the critical Nb concentration xc=0.084. We find that Tc (x- xc)^3/4, as predicted for a 3d ferromagnet, while M0 Tc (x), as expected for a Stoner ferromagnet. For all Nb concentrations and for temperatures which approach 100 K, the extrapolated zero field susceptibility χ can be expressed with a modified Curie Weiss expression χ=C/(T^γ+θ). θ is finite in the paramagnetic state (x>xC), but vanishes as the system becomes critical at x=xC, evidenced by the T=0 divergence of χ in this system. We find that γ is near one in paramagnetic regimes for xTc), and for xxc. However, γ is substantially enhanced in the vicinity of the quantum critical point (0.08

  5. Magnetic relaxation due to spin pumping in thick ferromagnetic films in contact with normal metals

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2013-07-01

    Spin pumping is the most important magnetic relaxation channel in ultrathin ferromagnetic layers in contact with normal metals (NMs). Recent experiments indicate that in thick films of insulating yttrium iron garnet (YIG) there is a large broadening of the ferromagnetic resonance (FMR) lines with deposition of a thin Pt layer which cannot be explained by the known damping processes. Here we present a detailed study of the magnetic relaxation due to spin pumping in bilayers made of a ferromagnetic material (FM) and a NM. Two alternative approaches are used to calculate the transverse and longitudinal relaxation rates used in the Bloch-Bloembergen formulation of damping. In one we consider that the dynamic exchange coupling at the interface transfers magnetic relaxation from the heavily damped conduction electron spins in the NM layer to the magnetization of the FM layer while the other utilizes spin currents and the concept of the spin-mixing conductance at the interface. While in thin FM films, the relaxation rates vary with the inverse of the FM layer thickness; in thick films, they become independent of the thickness because in the FM/NM structure the FMR excitation has a surface mode character. Regardless of the thickness range the longitudinal relaxation rate is twice the transverse rate resulting in damping of the magnetization with constant amplitude characterizing a Gilbert process. The enhanced spin-pumping damping explains the experimental observations in YIG/Pt bilayers.

  6. Misalignment of ferromagnetic and antiferromagnetic easy axes in exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Roberto; Oliveira, Alexandre; Vega, Henrry; Michea, Sebastian; Azevedo, Antonio

    2014-03-01

    In this work we studied the exchange bias phenomenon existing at ferromagnetic (FM)/ antiferromagnetic (AF) bilayers, which were fabricated by oblique sputtering deposition. Sputtering deposition induces strong uniaxial anisotropy in ferromagnetic films with its easy axis perpendicular to the plane of incidence. Sputtering deposition of magnetic thin films with a magnetic field applied parallel to the substrate can also produce a high uniaxial anisotropy. Our samples were grown with a magnetic field applied perpendicular to the easy axis created by the oblique deposition. For this reason, we created a competition between both anisotropy mechanisms: sputtering shadowing effects and magnetic field applied during deposition. A misalignment between the FM and AF easy axes was investigated using Magneto Optical Kerr Effect (MOKE) and Ferromagnetic Resonance techniques. In order to interpret MOKE results we used a phenomenological approach, based on Stoner-Wohlfarth model, which takes into account all relevant free energy contributions. Thus, we compared results from two different techniques. By means of our model it was possible to use the theoretical angular dependence of hysteresis loop shift to explain the experimental one. It should be stated that in MOKE measurements we found out hysteresis loops similar to the usual uniaxial anisotropy hard axis, but shifted by a field value.

  7. An operational approach to long-duration mission behavioral health and performance factors

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher F.

    2005-01-01

    NASA's participation in nearly 10 yr of long-duration mission (LDM) training and flight confirms that these missions remain a difficult challenge for astronauts and their medical care providers. The role of the astronaut's crew surgeon is to maximize the astronaut's health throughout all phases of the LDM: preflight, in flight, and postflight. In support of the crew surgeon, the NASA-Johnson Space Center Behavioral Health and Performance Group (JSC-BHPG) has focused on four key factors that can reduce the astronaut's behavioral health and performance. These factors are defined as: sleep and circadian factors; behavioral health factors; psychological adaptation factors; and human-to-system interface (the interface between the astronaut and the mission workplace) factors. Both the crew surgeon and the JSC-BHPG must earn the crewmember's trust preflight to encourage problem identification and problem solving in these four areas. Once on orbit, the crew medical officer becomes a valuable extension of the crew surgeon and BHPG on the ground due to the crew medical officer's constant interaction with crewmembers and preflight training in these four factors. However, the crew surgeon, BHPG, and the crew medical officer need tools that will help predict, prevent, monitor, and respond to developing problems. Objective data become essential when difficult mission termination decisions must be made. The need for behavioral health and performance tool development creates an environment rich for collaboration between operational healthcare providers and researchers. These tools are also a necessary step to safely complete future, more autonomous exploration-class space missions.

  8. Materials-based control of ultrafast relaxation in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Cheng, Lili

    As data rates in magnetic information storage approach 1GHz and above, strategies to control the magnetization dynamics in films become a more pressing need. Materials-based techniques to control relaxation can offer a straightforward implementation for this purpose. Strategies to both increase and decrease the damping constant in ferromagnetic thin films are described in this thesis. By doping rare earth elements, both damping constant and precessional frequency of Ni81Fe19 (Permalloy) can be widely tuned. Sm, Tb, Dy, and Ho all contribute to damping in Ni81Fe19, among which the contribution of relaxation rate from Ho (1.9GHz/%) is the most, which is four times of that from Tb. The increased damping correlates well to the magnetic states of the rare earths. One element, Eu, does not contribute to damping, but it boosts the precessional frequency over a large range (>500 MHz) in Ni 81Fe19. Fe has the lowest damping constant of all elemental ferromagnets. We demonstrate that by doping V into pure Fe, the damping constant can be further reduced. High quality MgO(100)/Fe1-xV x epitaxial thin films are deposited by UHV deposition, with the 35 GHz FMR linewidth (42 Oe) of MgO(100)/Fe film even smaller than the narrowest linewidth of Fe ever reported. As V is doped in, Gilbert damping G decreases. The minimum G value observed is only 14% of that of undoped Fe film, and is even only 34% of the lowest G value ever reported on metallic ferromagnets. The decrease in the Gilbert damping G is closely related to the reduced magnetic anisotropy in the system. The results of this thesis will help advance the understanding of the damping mechanisms in ferromagnets and provide more freedom in engineering the GHz response of the magnetoelectronic devices.

  9. Ferromagnetism and Conductivity in Hydrogen Irradiated Co-Doped ZnO Thin Films.

    PubMed

    Di Trolio, A; Alippi, P; Bauer, E M; Ciatto, G; Chu, M H; Varvaro, G; Polimeni, A; Capizzi, M; Valentini, M; Bobba, F; Di Giorgio, C; Amore Bonapasta, A

    2016-05-25

    Impressive changes in the transport and ferromagnetic properties of Co-doped ZnO thin films have been obtained by postgrowth hydrogen irradiation at temperatures of 400 °C. Hydrogen incorporation increases the saturation magnetization by one order of magnitude (up to ∼1.50 μB/Co) and increases the carrier density and mobility by about a factor of two. In addition to the magnetic characterization, the transport and structural properties of hydrogenated ZnO:Co have been investigated by Hall effect, local probe conductivity measurements, micro-Raman, and X-ray absorption spectroscopy. Particular care has been given to the detection of Co oxides and metal Co nanophases, whose influence on the increase in the transport and ferromagnetic properties can be excluded on the ground of the achieved results. The enhancement in ferromagnetism is directly related to the dose of H introduced in the samples. On the contrary, despite the shallow donor character of H atoms, the increase in carrier density n is not related to the H dose. These apparently contradictory effects of H are fully accounted for by a mechanism based on a theoretical model involving Co-VO (Co-O vacancy) pairs. PMID:27123761

  10. Passersby attracted by infants and mothers' acceptance of their approaches: A proximate factor for human cooperative breeding.

    PubMed

    Nishiyama, Kumiko; Oishi, Kouji; Saito, Atsuko

    2015-01-01

    Humans have engaged in unique cooperative breeding insofar as multiple in-group members help mothers. Two psychological-proximate factors maintain such a breeding system--various individuals' interest in infants and mothers' positive reactions toward individuals approaching their infants--which we investigated in the present study. In Study 1, we conducted field observations to examine the first factor: what types of passersby in Japan reacted to the mother and infant. This replicated studies conducted in Western countries more than 30 years ago, allowing for the examination of the influence of culture and time. The results confirmed the differences among age groups in frequency of looking at mother and infant, and predicted its universality, especially the rise in older adults. The sex difference was not significant. In Study 2, we gathered data via questionnaires and interviews using hypothetical scenarios to investigate the second factor: how mothers felt when their infants were approached by strangers. The results revealed that mothers received strangers' approaches positively. The present study showed that humans engaged in unique cooperative breeding in the Environment of Evolutionary Adaptedness (EEA), where mothers in modern society see strangers as potential helpers as part of the EEA. PMID:26093216

  11. Role of superexchange interactions in the ferromagnetism of manganites

    SciTech Connect

    Troyanchuk, I. O. Bushinsky, M. V.; Volkov, N. V.; Sikolenko, V.; Efimova, E. A.; Ritter, C.

    2015-01-15

    Compound La{sub 0.7}Sr{sub 0.3}Mn{sub 0.85}Nb{sub 0.15}O{sub 3}, in which manganese ions are in an oxidation state close to 3+, are studied by neutron diffraction and magnetic measurements. This compound is shown to be a ferromagnet with T{sub C} = 145 K and a magnetic moment of 3.1 μ{sub B}/Mn at T = 10 K. No signs of cooperative orbital ordering are detected. When Mg{sup 2+} ions substitute for some Nb{sup 5+} ions, Mn{sup 4+} ions appear but ferromagnetism is not enhanced. An increase in the structural distortions leads to a decrease in the ferromagnetic component. The ferromagnetic state is assumed to be caused by substantial hybridization of the e{sub g} orbitals of manganese and oxygen, which increases the positive part of the superexchange interactions.

  12. Ferromagnetism in Cu 3-thiosemicarbazone- 2,3-dioxoindole complexes

    NASA Astrophysics Data System (ADS)

    Zentková, M.; Kováč, J.; Zentko, A.; Košturiak, A.

    1991-12-01

    We report evidence for ferromagnetic ordering in Cu-chelates of 3-thiosemicarbazone-2,3-dioxoindole (isatine). It has been found that the Curie temperature is 16.8 K and is independent of the Cu content.

  13. Simple Experiment for Studying the Properties of a Ferromagnetic Material.

    ERIC Educational Resources Information Center

    Sood, B. R.; And Others

    1980-01-01

    Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)

  14. Room-temperature ferromagnetism in graphitic petal arrays.

    PubMed

    Rout, Chandra Sekhar; Kumar, Anurag; Kumar, Nitesh; Sundaresan, A; Fisher, Timothy S

    2011-03-01

    We report room-temperature ferromagnetism of graphitic petal arrays grown on Si substrates by microwave plasma chemical vapor deposition without catalyst. The samples have been characterized by Raman and X-ray photoelectron spectroscopy to confirm the absence of possible ferromagnetic impurities. The petals exhibit ferromagnetic hysteresis with saturation magnetization of ∼4.67 emu cm(-3) and coercivity of ∼105 Oe at 300 K, comparable to the reported behavior of few-layer graphene. Upon O2 annealing the saturation magnetization and coercivity decreased to 2.1 emu cm(-3) and ∼75 Oe respectively. The origin of ferromagnetism is believed to arise from the edge defects and vacancies in the petals. PMID:21264436

  15. Room-temperature ferromagnetism in graphitic petal arrays

    NASA Astrophysics Data System (ADS)

    Rout, Chandra Sekhar; Kumar, Anurag; Kumar, Nitesh; Sundaresan, A.; Fisher, Timothy S.

    2011-03-01

    We report room-temperature ferromagnetism of graphitic petal arrays grown on Si substrates by microwave plasma chemical vapor deposition without catalyst. The samples have been characterized by Raman and X-ray photoelectron spectroscopy to confirm the absence of possible ferromagnetic impurities. The petals exhibit ferromagnetic hysteresis with saturation magnetization of ~4.67 emu cm-3 and coercivity of ~105 Oe at 300 K, comparable to the reported behavior of few-layer graphene. Upon O2 annealing the saturation magnetization and coercivity decreased to 2.1 emu cm-3 and ~75 Oe respectively. The origin of ferromagnetism is believed to arise from the edge defects and vacancies in the petals.

  16. Emergent vortices at a ferromagnetic superconducting oxide interface

    NASA Astrophysics Data System (ADS)

    Petrović, A. P.; Paré, A.; Paudel, T. R.; Lee, K.; Holmes, S.; Barnes, C. H. W.; David, A.; Wu, T.; Tsymbal, E. Y.; Panagopoulos, C.

    2014-10-01

    Understanding the cohabitation arrangements of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface remains an open challenge. Probing this coexistence with sub-Kelvin magnetotransport experiments, we demonstrate that a hysteretic in-plane magnetoresistance develops below the superconducting transition for ≤ft| {{H}//} \\right| \\lt 0.15 T, independently of the carrier density or oxygen annealing. This hysteresis is argued to arise from vortex depinning within a thin (\\lt 20 nm) superconducting layer, mediated by discrete ferromagnetic dipoles located solely above the layer. The pinning strength may be modified by varying the superconducting channel thickness via electric field-effect doping. No evidence is found for bulk magnetism or finite-momentum pairing, and we conclude that ferromagnetism is strictly confined to the interface, where it competes with superconductivity. Our work indicates that oxide interfaces are ideal candidate materials for the growth and analysis of nanoscale superconductor/ferromagnet hybrids.

  17. A Direct Method for Viewing Ferromagnetic Phase Transition.

    ERIC Educational Resources Information Center

    Lue, Chin-Shan

    1994-01-01

    Provides a method, using the Rowland ring as a specimen, to observe the phase transition process directly on the oscilloscope and even extract the critical exponent of ferromagnetic transition. Includes theory, experimental setup, and results. (MVL)

  18. An integrated approach to identify the influential priority of the factors governing anaerobic H2 production by mixed cultures.

    PubMed

    Fang, Fang; Zeng, Raymond J; Sheng, Guo-Ping; Yu, Han-Qing

    2010-05-01

    An integrated approach incorporating response surface methodology, grey relational entropy, and fuzzy analytic hierarchy process is established to prioritize the influence of main factors governing the anaerobic H(2) production process and their influential priority. Response surface methodology is employed to design experiments, and the grey relational entropy is used to evaluate the influential grade of the three input factors, i.e., pH, temperature and initial substrate concentration (S(ini)), on the H(2) yield, maximum H(2) production rate and volatile fatty acid yield. In addition, through a combination of grey relational entropy, fuzzy analytic hierarchy process, which is used to determine the weight, and accelerating genetic algorithm, which is employed to minimize the nonlinear function in fuzzy analytic hierarchy process, the overall H(2) production process performance could be comprehensively evaluated. The results show that pH is the most important factor influencing the yields of H(2) and volatile fatty acids, while S(ini) has the most significant effect on the maximum H(2) production rate. Compared to pH and S(ini), temperature has a less important effect on the overall H(2) production reactor performance. This approach provides an appropriate way to identify the influential priority of input factors and to evaluate the overall performance for the anaerobic H(2) production process, and it can also be used for other complex biological and non-biological wastewater treatment systems. PMID:20347115

  19. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    SciTech Connect

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-21

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  20. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  1. A Study of Factors that Influence College Academic Achievement: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Rugutt, John K.; Chemosit, Caroline C.

    2005-01-01

    The authors of this study used the structural equation model (SEM) approach to test a model that hypothesized the influence of student learning strategies, internet and campus technology, quality of instruction and overall college experience, and student-faculty interaction on student academic achievement. Further a SEM model was developed to link…

  2. Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models with Factor Structures

    ERIC Educational Resources Information Center

    Jeon, Minjeong; Rabe-Hesketh, Sophia

    2012-01-01

    In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…

  3. School Violence: Associations with Control, Security/Enforcement, Educational/Therapeutic Approaches, and Demographic Factors

    ERIC Educational Resources Information Center

    Nickerson, Amanda B.; Martens, Matthew P.

    2008-01-01

    This study examined the extent to which three approaches to violence prevention and response were associated with the incidence of school crime and disruption after accounting for the influence of demographic variables. Secondary data analyses were conducted with four subsets of the sample of principals who completed the National Center for…

  4. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  5. Theory of carrier mediated ferromagnetism in dilute magnetic oxides

    SciTech Connect

    Calderon, M.J. Das Sarma, S.

    2007-11-15

    We analyze the origin of ferromagnetism as a result of carrier mediation in diluted magnetic oxide semiconductors in the light of the experimental evidence reported in the literature. We propose that a combination of percolation of magnetic polarons at lower temperature and Ruderman-Kittel-Kasuya-Yosida ferromagnetism at higher temperature may be the reason for the very high critical temperatures measured (up to {approx}700 K)

  6. Increasing ferromagnetic resonance frequency using lamination and shape

    NASA Astrophysics Data System (ADS)

    El-Ghazaly, A.; White, R. M.; Wang, S. X.

    2015-05-01

    The magnetic permeability frequency spectrum is one of the most critical properties for the operation of high frequency magnetic devices in the gigahertz regime. Permeability is fairly constant up to the ferromagnetic resonance (FMR) frequency, at which point the relative permeability drops to unity. Extending FMR to higher frequencies is thus imperative for developing GHz-range magnetic devices. The simulation and experimental investigations presented in this paper demonstrate how stacking layers to form a laminated film increases the FMR frequency by allowing flux closure between layers along the induced easy-axis direction. This flux closure reduces the demagnetization factor along the easy-axis direction by two orders of magnitude. This effect, however, is only observable in patterned films where the shape anisotropy is enough to result in variation of the FMR frequency. Experiments using patterned magnetic cores were performed to illustrate this effect. Through detailed investigation of the permeability spectra of both single layer and laminated CoTaZr magnetic films patterned into 500 μm × L films (where L ranged from 200 μm to 1000 μm), the FMR frequency was extracted and proven to increase as a result of lamination. The degree to which the frequency is boosted by lamination increases exponentially as the length of the film is decreased. Through a combination of lamination and shape demagnetization, the effective anisotropy, which directly relates to FMR frequency, was shown to increase by about 100%.

  7. Combinatorial investigation of ferromagnetic shape memory materials

    NASA Astrophysics Data System (ADS)

    Famodu, Olugbenga O.

    2005-07-01

    Combinatorial synthesis is research methodology which allows one to systemically study a large number of compositionally varying samples simultaneously. We apply this technique to the investigation of multifunctional materials. Different designs of combinatorial libraries and various characterization tools are implemented in order to rapidly map composition-structure-property relationships in a variety of materials systems. In this thesis, I will discuss combinatorial investigation of various shape memory alloys. We have utilized the combinatorial magnetron co-sputtering deposition technique for fabricating composition spreads of ternary alloy systems containing ferromagnetic shape memory alloys (FSMAs) and thermoelastic shape memory alloys (SMAs). Magnetic properties of the composition spreads were rapidly characterized using a room temperature scanning semiconducting quantum interference device (SQUID) microscope which provides mapping of the magnetic field emanating from different parts of the composition spreads. By applying the inversion technique to the mapping of the magnetic field distribution, we have mapped the magnetic phase diagram of the Ni-Mn-Ga and Ni-Mn-Al systems whose Heusler compositions Ni2MnGa and Ni2MnAl are well known ferromagnetic shape memory alloys (FSMAs). In addition, a rapid visual inspection technique was developed for detection of reversible martensites using arrays of micromachined cantilevers. A large, previously unexplored compositional region of FSMAs outside the Heusler composition was found. In search of novel FSMAs, we have also investigated a number of other ternary alloys systems. These systems included Ni-Mn-In, Gd-Ge-Si, Co-Mn-Ga, Ni-Fe-Al, and Co-Ni-Ga. A summary of the results from the investigation of these systems is presented. We have used the combinatorial technique to search for "ideal" SMAs with minimal hysteresis. For pursuing this, we had first set out to verify the geometric non-linear theory of martensites which

  8. Engaged Reading: A Multilevel Approach to Considering Sociocultural Factors with Diverse Learners. CIERA Report.

    ERIC Educational Resources Information Center

    Rueda, Robert; MacGillivray, Laurie; Monzo, Lilia; Arzubiaga, Angela

    This report explores how sociocultural factors affect reading engagement, literacy learning, and achievement among a diverse group of learners. The report examines previous theory and research on motivation in the area of reading (reading engagement) from a sociocultural perspective. It describes a study that examined the issue of reading…

  9. A Pedagogical Approach to the Boltzmann Factor through Experiments and Simulations

    ERIC Educational Resources Information Center

    Battaglia, O. R.; Bonura, A.; Sperandeo-Mineo, R. M.

    2009-01-01

    The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to…

  10. Psychometric Evaluation of the Student Authorship Questionnaire: A Confirmatory Factor Analysis Approach

    ERIC Educational Resources Information Center

    Ballantine, Joan; Guo, Xin; Larres, Patricia

    2015-01-01

    This research provides new insights into the measurement of students' authorial identity and its potential for minimising the incidence of unintentional plagiarism by providing evidence about the psychometric properties of the Student Authorship Questionnaire (SAQ). Exploratory and confirmatory factor analyses (EFA and CFA) are employed to…

  11. Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach.

    PubMed

    Mörk, Anna-Karin; Johanson, Gunnar

    2010-07-01

    Human health risk assessment has begun to depart from the traditional methods by replacement of the default assessment factors by more reasonable, data-driven, so-called chemical-specific adjustment factors (CSAFs). This study illustrates a scheme for deriving CSAFs in the general and occupationally exposed populations by quantifying the intraspecies toxicokinetic variability in surrogate dose using probabilistic methods. Acetone was used as a model substance. The CSAFs were derived by Monte Carlo simulation, combining a physiologically based pharmacokinetic model for acetone, probability distributions of the model parameters from a Bayesian analysis of male volunteer experimental data, and published distributions of physiological and anatomical parameters for females and children. The simulations covered how factors such as age, gender, endogenous acetone production, and fluctuations in workplace air concentration and workload influence peak and average acetone levels in blood, used as surrogate doses. According to the simulations, CSAFs of 2.1, 2.9, and 3.8 are sufficient to cover the differences in surrogate dose at the upper 90th, 95th, and 97.5th percentile, respectively, of the general population. However, higher factors were needed to cover the same percentiles of children. The corresponding CSAFs for the occupationally exposed population were 1.6, 1.8, and 1.9. The methodology presented herein allows for derivation of CSAFs not only for populations as a whole but also for subpopulations of interest. Moreover, various types of experimental data can readily be incorporated in the model. PMID:20400482

  12. Objective Measurement of Fear of Success and Fear of Failure: A Factor Analytic Approach.

    ERIC Educational Resources Information Center

    Sadd, Susan; And Others

    1978-01-01

    Fear of success and failure scales were administered. Scores were intercorrelated. Results indicated fear of success is not unidimensional. Measures of fear of success and fear of failure were highly related. Stable orthogonal factors were obtained: fear of success, test anxiety, sex-role-related attitudes, neurotic insecurity, and the value of…

  13. Factors Concomitant with Approach and Avoidance Behavior with Respect to Enrollment in High School Physics Courses.

    ERIC Educational Resources Information Center

    Laurence, J. Parker

    Reported is a study designed to examine potential explanations for the decline in the percentage of students who enroll in high school physics. Two kinds of factors were assessed: students' stated perceptions of science teaching and teachers and the difficulty components of the science curriculum (particularly the reading level of textbooks and…

  14. A Transfer Learning Approach for Applying Matrix Factorization to Small ITS Datasets

    ERIC Educational Resources Information Center

    Voß, Lydia; Schatten, Carlotta; Mazziotti, Claudia; Schmidt-Thieme, Lars

    2015-01-01

    Machine Learning methods for Performance Prediction in Intelligent Tutoring Systems (ITS) have proven their efficacy; specific methods, e.g. Matrix Factorization (MF), however suffer from the lack of available information about new tasks or new students. In this paper we show how this problem could be solved by applying Transfer Learning (TL),…

  15. The relationships between WAIS-IV factor index scores and educational level: A bifactor model approach.

    PubMed

    Abad, Francisco J; Sorrel, Miguel A; Román, Francisco J; Colom, Roberto

    2016-08-01

    IQ summary scores may not involve equivalent psychological meaning for different educational levels. Ultimately, this relates to the distinction between constructs and measurements. Here, we explore this issue studying the standardization of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) for Spain. A representative sample of 743 individuals (374 females and 369 males) who completed the 15 subtests comprising this intelligence battery was considered. We analyzed (a) the best latent factor structure for modeling WAIS-IV subtest performance, (b) measurement invariance across educational levels, and (c) the relationships of educational level/attainment with latent factors, Full Scale IQ (FSIQ), and index factor scores. These were the main findings: (a) the bifactor model provides the best fit; (b) there is partial invariance, and therefore it is concluded that the battery is a proper measure of the constructs of interest for the educational levels analyzed (nevertheless, the relevance of g decreases at high educational levels); (c) at the latent level, g and, to a lesser extent, Verbal Comprehension and Processing Speed, are positively related to educational level/attainment; (d) despite the previous finding, we find that Verbal Comprehension and Processing Speed factor index scores have reduced incremental validity beyond FSIQ; and (e) FSIQ is a slightly biased measure of g. (PsycINFO Database Record PMID:26322798

  16. The WAIS-R Number-of-Factors Quandary: A Cluster Analytic Approach to Construct Validation.

    ERIC Educational Resources Information Center

    Fraboni, Maryann; Saltstone, Robert

    1992-01-01

    Six hierarchical clustering methods were applied to subtest intercorrelations for each of the nine age groups in the Wechsler Adult Intelligence Scale-Revised (WAIS-R) standardization sample. Results point to the possibility of three simultaneously plausible solutions as they support each of the traditional factor structures in varying degrees.…

  17. Psychometric Structure of a Comprehensive Objective Structured Clinical Examination: A Factor Analytic Approach

    ERIC Educational Resources Information Center

    Volkan, Kevin; Simon, Steven R.; Baker, Harley; Todres, I. David

    2004-01-01

    Problem Statement and Background: While the psychometric properties of Objective Structured Clinical Examinations (OSCEs) have been studied, their latent structures have not been well characterized. This study examines a factor analytic model of a comprehensive OSCE and addresses implications for measurement of clinical performance. Methods: An…

  18. Approaches for Strengthening Causal Inference Regarding Prenatal Risk Factors for Childhood Behavioural and Psychiatric Disorders

    ERIC Educational Resources Information Center

    Lewis, Sarah J.; Relton, Caroline; Zammit, Stanley; Smith, George Davey

    2013-01-01

    Background: The risk of childhood behavioural and psychiatric diseases could be substantially reduced if modifiable risk factors for these disorders were identified. The critical period for many of these exposures is likely to be in utero as this is the time when brain development is most rapid. However, due to confounding and other limitations of…

  19. Approaching the Affective Factors of Information Seeking: The Viewpoint of the Information Search Process Model

    ERIC Educational Resources Information Center

    Savolainen, Reijo

    2015-01-01

    Introduction: The article contributes to the conceptual studies of affective factors in information seeking by examining Kuhlthau's information search process model. Method: This random-digit dial telephone survey of 253 people (75% female) living in a rural, medically under-serviced area of Ontario, Canada, follows-up a previous interview study…

  20. Motivation: Approaching an Elusive Concept through the Factors That Shape It

    ERIC Educational Resources Information Center

    Jang, Bong Gee; Conradi, Kristin; McKenna, Michael C.; Jones, Jill S.

    2015-01-01

    The main purpose of this article is to provide educators with clear definitions of motivational factors in reading so that instructional planning can capitalize on important distinctions. The authors present definitions of a small set of related motivational concepts (including attitudes, interests, self-efficacy, self-concept, goals, and value)…

  1. A Factor Analytic Approach to the Study of Spatial Density Effects on Preschoolers.

    ERIC Educational Resources Information Center

    Loo, Chalsa M.

    1979-01-01

    Behavior of preschoolers was studied with respect to five factors: verbally-abusive interaction, activity-toy play, avoidance, negative affect-agression, and desire-to-leave-a-crowded-room. Under high density conditions, more girls exhibited reduced activity level and toy involvement, along with increased negative feelings, than boys. (MA)

  2. A molecular diagnostic approach able to detect the recurrent genetic prognostic factors typical of presenting myeloma

    PubMed Central

    Boyle, Eileen M; Proszek, Paula Z; Kaiser, Martin F; Begum, Dil; Dahir, Nasrin; Savola, Suvi; Wardell, Christopher P; Leleu, Xavier; Ross, Fiona M; Chiecchio, Laura; Cook, Gordon; Drayson, Mark T; Owen, Richard G; Ashcroft, John M; Jackson, Graham H; Anthony Child, James; Davies, Faith E; Walker, Brian A; Morgan, Gareth J

    2015-01-01

    Risk stratification in myeloma requires an accurate assessment of the presence of a range of molecular abnormalities including the differing IGH translocations and the recurrent copy number abnormalities that can impact clinical behavior. Currently, interphase fluorescence in situ hybridization is used to detect these abnormalities. High failure rates, slow turnaround, cost, and labor intensiveness make it difficult and expensive to use in routine clinical practice. Multiplex ligation-dependent probe amplification (MLPA), a molecular approach based on a multiplex polymerase chain reaction method, offers an alternative for the assessment of copy number changes present in the myeloma genome. Here, we provide evidence showing that MLPA is a powerful tool for the efficient detection of copy number abnormalities and when combined with expression assays, MLPA can detect all of the prognostically relevant molecular events which characterize presenting myeloma. This approach opens the way for a molecular diagnostic strategy that is efficient, high throughput, and cost effective. PMID:25287954

  3. Factors that affect micro-tooling features created by direct printing approach

    NASA Astrophysics Data System (ADS)

    Kumbhani, Mayur N.

    Current market required faster pace production of smaller, better, and improved products in shorter amount of time. Traditional high-rate manufacturing process such as hot embossing, injection molding, compression molding, etc. use tooling to replicate feature on a products. Miniaturization of many product in the field of biomedical, electronics, optical, and microfluidic is occurring on a daily bases. There is a constant need to produce cheaper, and faster tooling, which can be utilize by existing manufacturing processes. Traditionally, in order to manufacture micron size tooling features processes such as micro-machining, Electrical Discharge Machining (EDM), etc. are utilized. Due to a higher difficulty to produce smaller size features, and longer production cycle time, various additive manufacturing approaches are proposed, e.g. selective laser sintering (SLS), inkjet printing (3DP), fused deposition modeling (FDM), etc. were proposed. Most of these approaches can produce net shaped products from different materials such as metal, ceramic, or polymers. Several attempts were made to produce tooling features using additive manufacturing approaches. Most of these produced tooling were not cost effective, and the life cycle of these tooling was reported short. In this research, a method to produce tooling features using direct printing approach, where highly filled feedstock was dispensed on a substrate. This research evaluated different natural binders, such as guar gum, xanthan gum, and sodium carboxymethyl cellulose (NaCMC) and their combinations were evaluated. The best binder combination was then use to evaluate effect of different metal (316L stainless steel (3 mum), 316 stainless steel (45 mum), and 304 stainless steel (45 mum)) particle size on feature quality. Finally, the effect of direct printing process variables such as dispensing tip internal diameter (500 mum, and 333 mum) at different printing speeds were evaluated.

  4. Psychopathy from a Basic Trait Perspective: The Utility of a Five-Factor Model Approach.

    PubMed

    Lynam, Donald R; Miller, Joshua D

    2015-12-01

    The present article argues that psychopathy is best understood as a collection of traits from the Five-Factor Model of personality (FFM). We demonstrate that specific FFM traits involved in psychopathy are well delineated; the same personality profile emerges across methods. We review research demonstrating that this FFM profile can be used to assess psychopathy, including the development of a psychopathy-specific FFM assessment that appears to do an even better job of assessing psychopathy than the NEO PI-R while remaining true to the basic structural model. We demonstrate the advantages to understanding psychopathy in this way. The FFM provides an assay of extant inventories, accounts for the epidemiology of psychopathy, and explains the factor structure of various inventories. The elemental view of psychopathy allows psychopathy to be built from the ground up, trait by trait. Perhaps most importantly, the FFM is unique in providing a connection to basic research in personality. PMID:25204751

  5. Turning the tide on medical errors in intensive care units: a human factors approach.

    PubMed

    Rogerson, William T; Tremethick, Mary Jane

    2004-01-01

    Errors occur in all nursing settings. The current healthcare climate tends to focus on individuals as the cause of errors rather than addressing issues that may be inherently wrong with the healthcare system that predisposes the individual to make errors. Human factors engineering (HFE), which is focused on removing human factors as much as possible from errors, has the potential to greatly impact medical errors in intensive care units. Applied in other high-risk industries, HFE has been critical in understanding and preventing errors at a systems level. Knowledge concerning the role systems play in errors and improvements to medical systems using HFE is intended to empower nurses to be advocates for systems change, resulting in a safer work environment and a safer healthcare delivery system. PMID:15273483

  6. The possibilities of suicide prevention in adolescents. A holistic approach to protective and risk factors.

    PubMed

    Kalmár, Sándor

    2013-03-01

    There is no other such complex physical, biological, somatic, mental, psychological, psychiatric, cultural, social and spiritual phenomenon and general public health problem, so much unexplained, meaningless, so tragic, painful, and unreasonable, so difficult, contradictory and mystified like suicide. In spite of the several already identified background factors, we do not and we can not know the real reasons behind suicide, because suicide is multi-causal, and can never be traced back to one single cause, but there are always many biological, psychological-psychiatric, historical, social and cultural factors involved in its development. However, the strongest suicide risk factor is an unrecognized and untreated mental disorder. Suicide among young people is one of the most serious public health problems. In Hungary 1395 young people lost their lives due to suicide in the 24> age group between 2000-2010, 1150 males and 245 females. According to epidemiological studies, 24.7% of children and adolescents suffer from some form of behaviour-, conduct- or other psychiatric disorders. Among adolescents (aged 15-24) suicide was the first leading cause of death in 2010. Despite great advances in the psychopharmacology and psychotherapy of mental disorders, suicides persist as a major cause of mortality, especially among the 15-24-year old population. Victims of suicide are not healthy individuals. They always suffer from psychiatric or mental, physical or somatic, cultural (social, historical, mythological) and spiritual disorders. The author tries to classify suicide protective and risk factors according to physical-biological, mental-psychological, cultural-social, and spiritual aspects. However, it must be remembered that these factors are not necessarily present in each and every case and may vary from one country to another, one person to another, depending on cultural, political, (spiritual) and economical features. Risk and protective factors can occur (1) at the

  7. Independent Verification and Validation of Complex User Interfaces: A Human Factors Approach

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Berman, Andrea; Chmielewski, Cynthia

    1996-01-01

    The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center has identified and evaluated a potential automated software interface inspection tool capable of assessing the degree to which space-related critical and high-risk software system user interfaces meet objective human factors standards across each NASA program and project. Testing consisted of two distinct phases. Phase 1 compared analysis times and similarity of results for the automated tool and for human-computer interface (HCI) experts. In Phase 2, HCI experts critiqued the prototype tool's user interface. Based on this evaluation, it appears that a more fully developed version of the tool will be a promising complement to a human factors-oriented independent verification and validation (IV&V) process.

  8. Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach

    NASA Astrophysics Data System (ADS)

    Ding, Qiaoqiao; Zan, Yunlong; Huang, Qiu; Zhang, Xiaoqun

    2015-02-01

    The reconstruction of dynamic images from few projection data is a challenging problem, especially when noise is present and when the dynamic images are vary fast. In this paper, we propose a variational model, sparsity enforced matrix factorization (SEMF), based on low rank matrix factorization of unknown images and enforced sparsity constraints for representing both coefficients and bases. The proposed model is solved via an alternating iterative scheme for which each subproblem is convex and involves the efficient alternating direction method of multipliers (ADMM). The convergence of the overall alternating scheme for the nonconvex problem relies upon the Kurdyka-Łojasiewicz property, recently studied by Attouch et al (2010 Math. Oper. Res. 35 438) and Attouch et al (2013 Math. Program. 137 91). Finally our proof-of-concept simulation on 2D dynamic images shows the advantage of the proposed method compared to conventional methods.

  9. Key factors contributing to accident severity rate in construction industry in Iran: a regression modelling approach.

    PubMed

    Soltanzadeh, Ahmad; Mohammadfam, Iraj; Moghimbeigi, Abbas; Ghiasvand, Reza

    2016-03-01

    Construction industry involves the highest risk of occupational accidents and bodily injuries, which range from mild to very severe. The aim of this cross-sectional study was to identify the factors associated with accident severity rate (ASR) in the largest Iranian construction companies based on data about 500 occupational accidents recorded from 2009 to 2013. We also gathered data on safety and health risk management and training systems. Data were analysed using Pearson's chi-squared coefficient and multiple regression analysis. Median ASR (and the interquartile range) was 107.50 (57.24- 381.25). Fourteen of the 24 studied factors stood out as most affecting construction accident severity (p<0.05). These findings can be applied in the design and implementation of a comprehensive safety and health risk management system to reduce ASR. PMID:27092639

  10. Functional genomics approach for the identification of human host factors supporting dengue viral propagation

    PubMed Central

    Barrows, Nicholas J.; Jamison, Sharon F.; Bradrick, Shelton S.; Le Sommer, Caroline; Kim, So Young; Pearson, James; Garcia-Blanco, Mariano A.

    2014-01-01

    Dengue virus (DENV) is endemic throughout tropical regions around the world and there are no approved treatments or anti-transmission agents currently available. Consequently, there exists an enormous unmet need to treat the human diseases caused by DENV and block viral transmission by the mosquito vector. RNAi screening represents an efficient method to expand the pool of known host factors that could become viable targets for treatments or provide rationale to consider available drugs as anti-DENV treatments. We developed a high throughput siRNA-based screening protocol that can identify human DENV host factors. The protocol herein describes the materials and the procedures necessary to screen a human cell line in order to identify genes which are either necessary for or restrict DENV propagation at any stage in the viral life cycle. PMID:24696344

  11. An Approach to Adaptive Correction Factors in Depth-Averaged Model for Debris Flows

    NASA Astrophysics Data System (ADS)

    Tai, Yih-Chin; Cheng, Chin-Kai; Lai, Guan-Cen

    2016-04-01

    In modeling the debris flows, the governing equations are often given in depth-averaged form, where scaling analysis is employed to reduce the complexity and expense in computation. As a result, the non-uniform distributions of the sediment concentration and velocity along the flow thickness bring the correction parameters into the equation system. Since the flows are generally not at steady state, these distributions vary dynamically, so that the values of the correction factors should not be given by constant values. With the concept of two-phase mixture, we revisit the depth-averaged balance equations, where four correction factors are present and inevitable in the resultant model equations if the distributions of the sediment concentration and velocity along the flow thickness are non-uniform. Through theoretical analysis and experimental investigation, we found that a piecewise-linear distribution for velocity and a linear distribution of sediment concentration in the immature debris flows (where the clear water exists) seem plausible. This assumption may significantly simplify the complicated determination of the correction factors. In the resultant model equations, the correcting parameters due to the non-uniform distributions are present, which are of significant impacts on the characteristic of the equation system, and play crucial roles in performing the numerical simulation. In this study, the values of these factors with respect to the corresponding profiles are investigated. By means of numerical examples, we shall illustrate their impacts on the flow behaviors, such as the concentration variation, the geometry of the deposit and the maximum run-out distance.

  12. Human factors in E&P facility design, a participatory approach

    SciTech Connect

    Dekker, G.F.; Bergen, E.A. van den

    1996-11-01

    To ensure that ergonomics are taken into account in the conceptual design phases of engineering projects, NAM has introduced the {open_quote}Ergonomics in design{close_quote} workshop. This paper describes the general format, timing and techniques used in these workshops. An example of a case study is presented together with a cost benefit analysis. Finally, a concluding summary of the workshop success factors is given together with the areas for further improvement.

  13. Ferromagnetic resonance studies of lunar core stratigraphy

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Cirlin, E. H.; Goldberg, I. B.; Crowe, H.

    1976-01-01

    We first review the evidence which links the characteristic ferromagnetic resonance observed in lunar fines samples with agglutinatic glass produced primarily by micrometeorite impacts and present new results on Apollo 15, 16, and 17 breccias which support this link by showing that only regolith breccias contribute significantly to the characteristic FMR intensity. We then provide a calibration of the amount of Fe metal in the form of uniformly magnetized spheres required to give our observed FMR intensities and discuss the theoretical magnetic behavior to be expected of Fe spheres as a function of size. Finally, we present FMR results on samples from every 5 mm interval in the core segments 60003, 60009, and 70009. These results lead us to suggest: (1) that secondary mixing may generally be extensive during regolith deposition so that buried regolith surfaces are hard to recognize or define; and (2) that local grinding of rocks and pebbles during deposition may lead to short scale fluctuations in grain size, composition, and apparent exposure age of samples.

  14. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  15. Ferromagnetic CaRuO3

    PubMed Central

    Tripathi, Shivendra; Rana, Rakesh; Kumar, Sanjay; Pandey, Parul; Singh, R. S.; Rana, D. S.

    2014-01-01

    The non-magnetic and non-Fermi-liquid CaRuO3 is the iso-structural analog of the ferromagnetic (FM) and Fermi-liquid SrRuO3. We show that an FM order in the orthorhombic CaRuO3 can be established by the means of tensile epitaxial strain. The structural and magnetic property correlations in the CaRuO3 films formed on SrTiO3 (100) substrate establish a scaling relation between the FM moment and the tensile strain. The strain dependent crossover from non-magnetic to FM CaRuO3 was observed to be associated with switching of non-Fermi liquid to Fermi-liquid behavior. The intrinsic nature of this strain-induced FM order manifests in the Hall resistivity too; the anomalous Hall component realizes in FM tensile-strained CaRuO3 films on SrTiO3 (100) whereas the non-magnetic compressive-strained films on LaAlO3 (100) exhibit only the ordinary Hall effect. These observations of an elusive FM order are consistent with the theoretical predictions of scaling of the tensile epitaxial strain and the magnetic order in tensile CaRuO3. We further establish that the tensile strain is more efficient than the chemical route to induce FM order in CaRuO3. PMID:24464302

  16. Majorana Fermions in Chiral Topological Ferromagnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Eugen; Roberts, Brenden; Tewari, Sumanta; Sau, Jay D.

    2015-03-01

    Motivated by a recent experiment in which zero-bias peaks have been observed in STM experiments performed on chains of magnetic atoms on a superconductor, we show that a multichannel ferromagnetic wire deposited on a spin-orbit coupled superconducting substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes and the prediction of a multiple Majorana based fractional Josephson effect. Co-author: S. Das Sarma. Work supported by AFOSR (FA9550-13-1-0045) at Clemson University and by LPS-CMTC and JQI-NSF-PFC at the University of Maryland.

  17. Very large thermophase in ferromagnetic Josephson junctions.

    PubMed

    Giazotto, F; Heikkilä, T T; Bergeret, F S

    2015-02-13

    The concept of thermophase refers to the appearance of a phase gradient inside a superconductor originating from the presence of an applied temperature bias across it. The resulting supercurrent flow may, in suitable conditions, fully counterbalance the temperature-bias-induced quasiparticle current therefore preventing the formation of any voltage drop, i.e., a thermovoltage, across the superconductor. Yet, the appearance of a thermophase is expected to occur in Josephson-coupled superconductors as well. Here, we theoretically investigate the thermoelectric response of a thermally biased Josephson junction based on a ferromagnetic insulator. In particular, we predict the occurrence of a very large thermophase that can reach π/2 across the contact for suitable temperatures and structure parameters; i.e., the quasiparticle thermal current can reach the critical current. Such a thermophase can be several orders of magnitude larger than that predicted to occur in conventional Josephson tunnel junctions. In order to assess experimentally the predicted very large thermophase, we propose a realistic setup realizable with state-of-the-art nanofabrication techniques and well-established materials, based on a superconducting quantum interference device. This effect could be of strong relevance in several low-temperature applications, for example, for revealing tiny temperature differences generated by coupling the electromagnetic radiation to one of the superconductors forming the junction. PMID:25723238

  18. Lattice dynamics of cubic Laves phase ferromagnets

    NASA Astrophysics Data System (ADS)

    Paolasini, L.; Hennion, B.; Panchula, A.; Myers, K.; Canfield, P.

    1998-11-01

    The phonon dispersion curves have been measured in YFe2, UFe2, and CeFe2 Laves phases by inelastic neutron scattering. The phonon dispersion curves and the generalized phonon densities of states are calculated by a Born-von Kármán model taking into account longitudinal and transverse forces up to the fifth-nearest neighbors. Many differences in the phonon spectrum are found in the itinerant ferromagnet UFe2 with respect to the isostructural REFe2 compounds (RE=rare earth). The most surprising effects are the negative transverse forces acting between the first neighbors, a situation not encountered in the isostructural systems, and probably responsible for the magnetoelastic anomalies found in UFe2. The strong reduction of U-U longitudinal forces between the uranium atoms is attributed to the collapse of the U-metallic radius induced by the itineracy of uranium outer electron clouds. Our results are compared with the available phonon data on ZrFe2 and the isostructural MAl2 compounds (M=Y,Ca,Ce,La).

  19. A novel approach for long-term determination of indoor 222Rn progeny equilibrium factor using nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Font, Ll.; Baixeras, C.

    2003-06-01

    A detailed study of the measurement principles of airborne 222Rn decay products by means of nuclear track detectors (NTDs), taking into account the range of variation of the parameters influencing their concentration indoors, has shown that it is not possible for the existing methods to obtain the associated long-term equilibrium factor with an appropriate accuracy. For this reason, we have established a novel approach based on the new concept of reduced equilibrium factor, which can be obtained from the only measurement of airborne 222Rn and its α-emitter daughter ( 218Po and 214Po) concentrations using a passive, integrating and multi-component system of NTDs. We have found that the equilibrium factor has a linear dependence on the reduced equilibrium factor regardless the values taken for the rates of ventilation, of aerosol attachment and of surface deposition. By using well-controlled exposures in a reference laboratory, we have shown that the equilibrium factor values determined with our system agree with those obtained by active monitors. Finally, as a pilot test, several dosimeters were exposed in an inhabited Swedish single-family house. The results of this exposure suggest the usefulness of this method to perform routine surveys in private homes and in workplaces in order to estimate the annual effective dose received by the general public and the workers due to the presence of 222Rn daughters.

  20. Intrapartum Cesarean Delivery in Nulliparas: Risk Factors Compared by Two Analytical Approaches

    PubMed Central

    Kominiarek, Michelle A.; VanVeldhuisen, Paul; Gregory, Kimberly; Fridman, Moshe; Kim, Hajwa; Hibbard, Judith U.

    2014-01-01

    Objective To determine risk factors for cesarean delivery in nulliparas at labor admission. Study Design Nulliparas with liveborn, singleton gestations ≥37 weeks in spontaneous or induced labor were analyzed from the Consortium on Safe Labor database in a retrospective observational study. Classification and regression tree (CART) and multivariate logistic regression analysis determined risk factors for cesarean delivery. Result Of the 66,539 nulliparas, 22% had a cesarean delivery. In the CART analysis, the first cervical dilation exam was the first branch followed by body mass index (BMI). Cesarean deliveries occurred in 45%, 25%, 14%, and 10% of deliveries at <1cm, 1-3cm, 4cm, and ≥5cm dilated respectively. The BMI influence was most evident in the <1cm dilation category with 26% of BMI<25 and 66% of BMI≥40 having a cesarean delivery. The fewest cesarean deliveries (5%) occurred in those ≥5cm and BMI<25. In the multivariate regression analysis, first cervical dilation exam <1cm (OR 5.1, 95%CI 4.5-5.7; reference ≥5cm) and BMI≥40 (OR 5.1, 95%CI 4.6-5.7; reference BMI<25.0) had the highest odds for cesarean delivery. Conclusion Cervical dilation on admission followed by BMI were the two most important risk factors for cesarean delivery identified in both CART and multivariate regression analysis. PMID:25254334

  1. A clinical approach to obstructive sleep apnea as a risk factor for cardiovascular disease

    PubMed Central

    Maeder, Micha T; Schoch, Otto D; Rickli, Hans

    2016-01-01

    Obstructive sleep apnea (OSA) is associated with cardiovascular risk factors, cardiovascular diseases, and increased mortality. Epidemiological studies have established these associations, and there are now numerous experimental and clinical studies which have provided information on the possible underlying mechanisms. Mechanistic proof-of-concept studies with surrogate endpoints have been performed to demonstrate that treatment of OSA by continuous positive airway pressure (CPAP) has the potential to reverse or at least to attenuate not only OSA but also the adverse cardiovascular effects associated with OSA. However, no randomized studies have been performed to demonstrate that treatment of OSA by CPAP improves clinical outcomes in patients with cardiovascular risk factors and/or established cardiovascular disease and concomitant OSA. In the present review, we summarize the current knowledge on the role of OSA as a potential cardiovascular risk factor, the impact of OSA on cardiac function, the role of OSA as a modifier of the course of cardiovascular diseases such as coronary artery disease, atrial fibrillation, and heart failure, and the insights from studies evaluating the impact of CPAP therapy on the cardiovascular features associated with OSA. PMID:27051291

  2. Infant mortality -- critical analysis of factors and new approach for calculation of I.M.R.

    PubMed

    Gupta, R; Gupta, B D; Singh, R N; Mehta, S C

    1991-01-01

    In India, researchers conducted a household survey of 1050 infants in an urban slum and rural and urban areas of Jodhpur Region to determine the infant mortality rate (IMR) and its correlation with various socioeconomic and demographic factors. They used the data to develop a concrete formula intended to allow precise estimation of IMR, given knowledge of these factors. Overall IMR was 106/1000 live births. The IMR for the slum, rural, and urban areas was 137, 123, and 57, respectively. The 4 most significant quantifiable factors that could be changed to reduce IMR were maternal age (IMR increases with maternal age of 30 years and older), parity (IMR increases with parity, especially at parity 5), literacy (IMR is higher among illiterates than literates), and low socioeconomic status [SES] (IMR increases as SES decreases). Based on the data from the survey, the researchers used regression analysis and other calculations to determine the values of the coefficients and constants. The results of their formula compared favorably with those of the household survey. For example, the IMR for the slum, rural area, urban area, and overall were actually 137, 123, 57, and 106, respectively. The respective IMRs based on the formula were 140, 120, 54, and 100. Assuming that all infant deaths are recorded, the formula allows one to estimate IMR of any area, country, or region. PMID:12346052

  3. Understanding factors influencing Latina women’s screening behavior: a qualitative approach

    PubMed Central

    Torres, Essie; Erwin, Deborah O.; Treviño, Michelle; Jandorf, Lina

    2013-01-01

    The purpose of this qualitative study was to understand influential factors associated with decisions to obtain breast or cervical cancer screening by diverse Latinas after attending a community-based educational program. Forty-five interviews were conducted in Arkansas, New York City and Buffalo, New York. Thematic data analyses were conducted to understand influential factors following from the intervention. Four major themes emerged from the interviews: Social Capital, Screening Utilization, Health Care Provider (HCP) Communication and Social Networks. Social Capital included resources, access or screening knowledge women had prior to participation in the program and new resources and contacts gained through the program that influenced care seeking. Screening Utilization factors included past health experiences and participation in the program. HCP Communication included perceptions of quality of care and communication issues with HCPs that positively and negatively impacted screening. Social Networks included women’s networks regarding emotional support, encouragement to discuss health issues, overall family network and how these may influence health-seeking behaviors. These findings suggest that participating in group-based health outreach programs empowered women by increasing their knowledge and awareness about the health care system and enabled them, with the tools provided, to become proactive in their health care-seeking behaviors. PMID:23131588

  4. Study on the influential factors of Cd(2+) on the earthworm Eisenia fetida in oxidative stress based on factor analysis approach.

    PubMed

    Zhou, Dongxing; Ning, Yucui; Wang, Bing; Wang, Guangdong; Su, Ye; Li, Lei; Wang, Ye

    2016-08-01

    When earthworms are exposed to pollutants, their antioxidant system will have responses immediately. Consequently earthworms are widely used to monitor various pollutants as a sensitive bio-indicator. However, there are a large number of indices associated with the oxidative stress response. Finding out the key monitoring indices in the stress process becomes a practical demand of the pollution monitoring and warning process. Factor analysis approach is a statistical method that uses a few factors to replace many original factors. This paper is aimed at analyzing and sorting factors related to Cd(2+) on the earthworm Eisenia fetida in oxidative stress. We studied two groups, the short-term test and the long-term test. The former test lasted for ten days, removing an earthworm every day for analysis; The latter test lasted for 30 days, taking out an earthworm every ten days. The Cd(2+) concentration was set at 0, 50, 100, 125, 250 and 500 mg kg(-1), post-clitellum segments of earthworms were chosen to determine SOD, POD, GPX, GST, CAT, VE, MDA and AChE. The results showed that in the short-term group, the main bioindicator associated with oxidative stress reaction was CAT at the exposure time of 1-3 days, at 4-5 days MDA, 6-7 days POD, and GST and GPX at 8th day, CAT at 9-10 days. While with the long-term test, the main bioindicator associated with oxidative stress reaction was GPX. PMID:27219294

  5. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy.

    PubMed

    Xi, Sichuan; Gooding, William E; Grandis, Jennifer Rubin

    2005-02-01

    The development of more effective prevention and treatment strategies for solid tumors is limited by an incomplete understanding of the critical growth pathways that are activated in carcinogenesis. Signal transducers and activators of transcription (STAT) proteins have been linked to transformation and tumor progression. Several approaches have been used to block STAT3 in cancer cells resulting in reduced proliferation and apoptosis. We tested the hypothesis that blocking STAT3 activation using a transcription factor decoy approach would decrease tumor growth and STAT3 target gene expression in vivo. In a xenograft model of squamous cell carcinoma of the head and neck (SCCHN), daily administration of the STAT3 decoy (25 microg) resulted in decreased tumor volumes, abrogation of STAT3 activation, and decreased expression of STAT3 target genes (VEGF, Bcl-xL, and cyclin D1) compared to treatment with a mutant control decoy. Blockade of STAT3 with the STAT3 decoy also induced apoptosis and decreased proliferation, an effect that was augmented when the STAT3 decoy was combined with cisplatin, both in vitro and in vivo. These results suggest that a transcription factor decoy approach may be used to target STAT3 in cancers that demonstrate increased STAT3 activation including SCCHN. PMID:15592503

  6. Factors Affecting Definitions of and Approaches to Integrative Medicine: A Mixed Methods Study Examining China's Integrative Medicine Development

    PubMed Central

    Zhang, Weijun; Pritzker, Sonya E.; Hui, Ka-Kit

    2015-01-01

    Aim. This study identifies existing definitions and approaches among China's integrative medicine (IM) experts and examines relationships with key characteristics distinguishing individual experts. Methods. Snowball sampling was used to select 73 IM experts for semistructured interviews. In this mixed methods study, we first identified definitions and approaches through analyzing core statements. Four key factors, including age, education, practice type, and working environment, were then chosen to evaluate the associations with the definitions. Results. Four unique definitions were identified, including IM as a “new medicine” (D1), as a combination of western medicine (WM) and Chinese medicine (CM) (D2), as a modernization of CM (D3), and as a westernization of CM (D4). D4 was mostly supported by those working in WM organizations, while D3 was more prominent from individuals working in CM organizations (P = 0.00004). More than 64% clinicians had D2 while only 1 (5.9%) nonclinician had D2. Only 1 clinician (1.8%) had D4 while almost 30% nonclinicians had D4 (P = 0.0001). Among nonclinicians working in WM organizations, 83.3% of them had D4 (P = 0.001). Conclusion. Findings indicate that institutional structure and practice type are factors affecting IM approaches. These results carry implications for the ways in which western countries move forward with the definition and implementation of IM. PMID:25792999

  7. Factors Affecting Definitions of and Approaches to Integrative Medicine: A Mixed Methods Study Examining China's Integrative Medicine Development.

    PubMed

    Zhang, Weijun; Pritzker, Sonya E; Hui, Ka-Kit

    2015-01-01

    Aim. This study identifies existing definitions and approaches among China's integrative medicine (IM) experts and examines relationships with key characteristics distinguishing individual experts. Methods. Snowball sampling was used to select 73 IM experts for semistructured interviews. In this mixed methods study, we first identified definitions and approaches through analyzing core statements. Four key factors, including age, education, practice type, and working environment, were then chosen to evaluate the associations with the definitions. Results. Four unique definitions were identified, including IM as a "new medicine" (D1), as a combination of western medicine (WM) and Chinese medicine (CM) (D2), as a modernization of CM (D3), and as a westernization of CM (D4). D4 was mostly supported by those working in WM organizations, while D3 was more prominent from individuals working in CM organizations (P = 0.00004). More than 64% clinicians had D2 while only 1 (5.9%) nonclinician had D2. Only 1 clinician (1.8%) had D4 while almost 30% nonclinicians had D4 (P = 0.0001). Among nonclinicians working in WM organizations, 83.3% of them had D4 (P = 0.001). Conclusion. Findings indicate that institutional structure and practice type are factors affecting IM approaches. These results carry implications for the ways in which western countries move forward with the definition and implementation of IM. PMID:25792999

  8. Analysis of two-body charmed B meson decays in factorization-assisted topological-amplitude approach

    NASA Astrophysics Data System (ADS)

    Zhou, Si-Hong; Wei, Yan-Bing; Qin, Qin; Li, Ying; Yu, Fu-Sheng; Lü, Cai-Dian

    2015-11-01

    Within the factorization-assisted topological-amplitude approach, we study the two-body charmed B meson decays Bu ,d ,s→D(*)M , with M denoting a light pseudoscalar (or vector) meson. The meson decay constants and transition form factors are factorized out from the hadronic matrix element of topological diagrams. Therefore, the effect of SU(3) symmetry breaking is retained, which is different from the conventional topological diagram approach. The number of free nonperturbative parameters to be fitted from experimental data is also much less. Only four universal nonperturbative parameters χC, ϕC, χE and ϕE are introduced to describe the contribution of the color-suppressed tree and W -exchanged diagrams for all the decay channels. With the fitted parameters from 31 decay modes induced by b →c transition, we then predict the branching fractions of 120 decay modes induced by both b →c and b →u transitions. Our results are well consistent with the measured data or to be tested in the LHCb and Belle-II experiments in the future. Besides, the SU(3) symmetry breaking, isospin violation and C P asymmetry are also investigated.

  9. Modeling the Interplay of Multilevel Risk Factors for Future Academic and Behavior Problems: A Person-Centered Approach

    PubMed Central

    Lanza, Stephanie T.; Rhoades, Brittany L.; Nix, Robert L.; Greenberg, Mark T.

    2010-01-01

    This study identified profiles of 13 risk factors across child, family, school, and neighborhood domains in a diverse sample of children in kindergarten from 4 US locations (n = 750; 45% minority). It then examined the relation of those early risk profiles to externalizing problems, school failure, and low academic achievement in Grade 5. A person-centered approach, latent class analysis, revealed four unique risk profiles, which varied considerably across urban African American, urban white, and rural white children. Profiles characterized by several risks that cut across multiple domains conferred the highest risk for negative outcomes. Compared to a variable-centered approach, such as a cumulative risk index, these findings provide a more nuanced understanding of the early precursors to negative outcomes. For example, results suggested that urban children in single-parent homes that have few other risk factors (i.e., show at least average parenting warmth and consistency and report relatively low stress and high social support) are at quite low risk for externalizing problems, but at relatively high risk for poor grades and low academic achievement. These findings provide important information for refining and targeting preventive interventions to groups of children who share particular constellations of risk factors. PMID:20423544

  10. Modeling the interplay of multilevel risk factors for future academic and behavior problems: a person-centered approach.

    PubMed

    Lanza, Stephanie T; Rhoades, Brittany L; Nix, Robert L; Greenberg, Mark T

    2010-05-01

    This study identified profiles of 13 risk factors across child, family, school, and neighborhood domains in a diverse sample of children in kindergarten from four US locations (n = 750; 45% minority). It then examined the relation of those early risk profiles to externalizing problems, school failure, and low academic achievement in Grade 5. A person-centered approach, latent class analysis, revealed four unique risk profiles, which varied considerably across urban African American, urban White, and rural White children. Profiles characterized by several risks that cut across multiple domains conferred the highest risk for negative outcomes. Compared to a variable-centered approach, such as a cumulative risk index, these findings provide a more nuanced understanding of the early precursors to negative outcomes. For example, results suggested that urban children in single-parent homes that have few other risk factors (i.e., show at least average parenting warmth and consistency and report relatively low stress and high social support) are at quite low risk for externalizing problems, but at relatively high risk for poor grades and low academic achievement. These findings provide important information for refining and targeting preventive interventions to groups of children who share particular constellations of risk factors. PMID:20423544

  11. Contextual approach to technology assessment: Implications for one-factor fix solutions to complex social problems

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The contextual approach is discussed which undertakes to demonstrate that technology assessment assists in the identification of the full range of implications of taking a particular action and facilitates the consideration of alternative means by which the total affected social problem context might be changed by available project options. It is found that the social impacts of an application on participants, institutions, processes, and social interests, and the accompanying interactions may not only induce modifications in the problem contest delineated for examination with respect to the design, operations, regulation, and use of the posited application, but also affect related social problem contexts.

  12. Risk factors of early onset of MS in women in reproductive age period: survival analysis approach.

    PubMed

    Mohammadbeigi, Abolfazl; Kazemitabaee, Maryamsadat; Etemadifar, Masoud

    2016-08-01

    The incidence of multiple sclerosis (MS) has doubled in over the last decades in women, whereas it has been almost unchanged in men. The purpose of this study was to investigate the risk factors of early onset multiple sclerosis in women during reproductive years. A retrospective longitudinal study conducted on 200 women aged 15 to 50 years with MS, registered by the MS Society in Isfahan. Data gathering was fulfilled by standard questionnaire including variables about reproductive period, demographic characteristics, and history of diseases. Kaplan-Mayer with log-rank test and Cox regression models were used in predicting of the age of effective factors in onset of MS. P values less than 0.05 were considered statistically significant. The mean age of studied women was 31.77 ± 8.13 years and the mean and median age of onset the symptoms of MS was 26.79 ± 7.77 and 26 years, respectively. Based on the cox results occurring menarche at 15 years and higher increase the risk of MS 2.8-fold than those their menarche occurred at 12 years and lower (HR: 2.81, 95 % CI; 1.58-4.98).In addition, having only one pregnancy is related to higher risk of MS than other parities and increase the risk of MS 4.5-fold comparing to without parities. Age of menarche and parity numbers was the most important reproductive factors of MS in women. Nevertheless, history of autoimmune diseases, animal bite, childhood disease, family history of MS, regional area (tropical), and living in rural area were not related to early onset of MS. PMID:26790684

  13. Factors contributing to attrition behavior in diabetes self-management programs: A mixed method approach

    PubMed Central

    Gucciardi, Enza; DeMelo, Margaret; Offenheim, Ana; Stewart, Donna E

    2008-01-01

    Background Diabetes self-management education is a critical component in diabetes care. Despite worldwide efforts to develop efficacious DSME programs, high attrition rates are often reported in clinical practice. The objective of this study was to examine factors that may contribute to attrition behavior in diabetes self-management programs. Methods We conducted telephone interviews with individuals who had Type 2 diabetes (n = 267) and attended a diabetes education centre. Multivariable logistic regression was performed to identify factors associated with attrition behavior. Forty-four percent of participants (n = 118) withdrew prematurely from the program and were asked an open-ended question regarding their discontinuation of services. We used content analysis to code and generate themes, which were then organized under the Behavioral Model of Health Service Utilization. Results Working full and part-time, being over 65 years of age, having a regular primary care physician or fewer diabetes symptoms were contributing factors to attrition behaviour in our multivariable logistic regression. The most common reasons given by participants for attrition from the program were conflict between their work schedules and the centre's hours of operation, patients' confidence in their own knowledge and ability when managing their diabetes, apathy towards diabetes education, distance to the centre, forgetfulness, regular physician consultation, low perceived seriousness of diabetes, and lack of familiarity with the centre and its services. There was considerable overlap between our quantitative and qualitative results. Conclusion Reducing attrition behaviour requires a range of strategies targeted towards delivering convenient and accessible services, familiarizing individuals with these services, increasing communication between centres and their patients, and creating better partnerships between centres and primary care physicians. PMID:18248673

  14. Breast cancer subtypes and previously established genetic risk factors: A Bayesian approach

    PubMed Central

    O’Brien, Katie M.; Cole, Stephen R.; Engel, Lawrence S.; Bensen, Jeannette T.; Poole, Charles; Herring, Amy H.; Millikan, Robert C.

    2013-01-01

    Background Gene expression analyses indicate that breast cancer is a heterogeneous disease with at least 5 immunohistologic subtypes. Despite growing evidence that these subtypes are etiologically and prognostically distinct, few studies have investigated whether they have divergent genetic risk factors. To help fill in this gap in our understanding, we examined associations between breast cancer subtypes and previously established susceptibility loci among white and African-American women in the Carolina Breast Cancer Study. Methods We used Bayesian polytomous logistic regression to estimate odds ratios (ORs) and 95% posterior intervals (PIs) for the association between each of 78 single nucleotide polymorphisms (SNPs) and 5 breast cancer subtypes. Subtypes were defined using 5 immunohistochemical markers: estrogen receptors (ER), progesterone receptors (PR), human epidermal growth factor receptors 1 and 2 (HER1/2) and cytokeratin (CK) 5/6. Results Several SNPs in TNRC9/TOX3 were associated with luminal A (ER/PR+, HER2−) or basal-like breast cancer (ER−, PR−, HER2−, HER1 or CK 5/6+), and one SNP (rs3104746) was associated with both. SNPs in FGFR2 were associated with luminal A, luminal B (ER/PR+, HER2+), or HER2+/ER− disease, but none were associated with basal-like disease. We also observed subtype differences in the effects of SNPs in 2q35, 4p, TLR1, MAP3K1, ESR1, CDKN2A/B, ANKRD16, and ZM1Z1. Conclusion and Impact We found evidence that genetic risk factors for breast cancer vary by subtype and further clarified the role of several key susceptibility genes. PMID:24177593

  15. A unified approach to quantum and classical TTW systems based on factorizations

    NASA Astrophysics Data System (ADS)

    Celeghini, E.; Kuru, Ş.; Negro, J.; del Olmo, M. A.

    2013-05-01

    A unifying method based on factorization properties is introduced for finding symmetries of quantum and classical superintegrable systems using the example of the Tremblay-Turbiner-Winternitz (TTW) model. It is shown that the symmetries of the quantum system can be implemented in a natural way to its classical version. Besides, by this procedure we get also other type of constants of motion depending explicitly on time that allow to find directly the motion of the system whose corresponding trajectories coincide with those obtained previously by using its symmetries.

  16. A unified approach to quantum and classical TTW systems based on factorizations

    NASA Astrophysics Data System (ADS)

    Celeghini, E.; Kuru, Ş.; Negro, J.; del Olmo, M. A.

    2012-05-01

    A unifying method based on factorization properties is introduced for finding symmetries of quantum and classical superintegrable systems using the example of the Tremblay-Turbiner-Winternitz (TTW) model. It is shown that the symmetries of the quantum system can be implemented in a natural way to its classical version. Besides, by this procedure we get also other type of constants of motion depending explicitly on time that allow to find directly the motion of the system whose corresponding trajectories coincide with those obtained previously by using its symmetries.

  17. Epidermal growth factor receptor and glioblastoma multiforme: molecular basis for a new approach.

    PubMed

    Belda-Iniesta, Cristóbal; de Castro Carpeño, Javier; Sereno, María; González-Barón, Manuel; Perona, Rosario

    2008-02-01

    High-grade gliomas are the most common primary malignant brain tumours. Surgery, radiotherapy and chemotherapy are the cornerstone of actual treatment. In spite of large therapeutic efforts, overall survival is still poor. New molecular data allow a new molecular classification for high-grade gliomas and open a therapeutic window for targeted therapy. Molecular diagnostic tools may provide a basis for receptor-based therapies and enough information to personalise future treatments. In this regard, epidermal growth factor receptor (EGFR) is a target that will play a critical role in the management of glioma patients. This review summarises basic and preclinical data that support future use of therapies against EGFR. PMID:18258505

  18. Analyzing the impact of social factors on homelessness: a Fuzzy Cognitive Map approach

    PubMed Central

    2013-01-01

    Background The forces which affect homelessness are complex and often interactive in nature. Social forces such as addictions, family breakdown, and mental illness are compounded by structural forces such as lack of available low-cost housing, poor economic conditions, and insufficient mental health services. Together these factors impact levels of homelessness through their dynamic relations. Historic models, which are static in nature, have only been marginally successful in capturing these relationships. Methods Fuzzy Logic (FL) and fuzzy cognitive maps (FCMs) are particularly suited to the modeling of complex social problems, such as homelessness, due to their inherent ability to model intricate, interactive systems often described in vague conceptual terms and then organize them into a specific, concrete form (i.e., the FCM) which can be readily understood by social scientists and others. Using FL we converted information, taken from recently published, peer reviewed articles, for a select group of factors related to homelessness and then calculated the strength of influence (weights) for pairs of factors. We then used these weighted relationships in a FCM to test the effects of increasing or decreasing individual or groups of factors. Results of these trials were explainable according to current empirical knowledge related to homelessness. Results Prior graphic maps of homelessness have been of limited use due to the dynamic nature of the concepts related to homelessness. The FCM technique captures greater degrees of dynamism and complexity than static models, allowing relevant concepts to be manipulated and interacted. This, in turn, allows for a much more realistic picture of homelessness. Through network analysis of the FCM we determined that Education exerts the greatest force in the model and hence impacts the dynamism and complexity of a social problem such as homelessness. Conclusions The FCM built to model the complex social system of homelessness

  19. Mayaro Virus Infection in Amazonia: A Multimodel Inference Approach to Risk Factor Assessment

    PubMed Central

    de Paula, Vanessa S.; Figueiredo, Luiz T. M.; Braga, Wornei S. M.; Luz, Sérgio L. B.

    2012-01-01

    Background Arboviral diseases are major global public health threats. Yet, our understanding of infection risk factors is, with a few exceptions, considerably limited. A crucial shortcoming is the widespread use of analytical methods generally not suited for observational data – particularly null hypothesis-testing (NHT) and step-wise regression (SWR). Using Mayaro virus (MAYV) as a case study, here we compare information theory-based multimodel inference (MMI) with conventional analyses for arboviral infection risk factor assessment. Methodology/Principal Findings A cross-sectional survey of anti-MAYV antibodies revealed 44% prevalence (n = 270 subjects) in a central Amazon rural settlement. NHT suggested that residents of village-like household clusters and those using closed toilet/latrines were at higher risk, while living in non-village-like areas, using bednets, and owning fowl, pigs or dogs were protective. The “minimum adequate” SWR model retained only residence area and bednet use. Using MMI, we identified relevant covariates, quantified their relative importance, and estimated effect-sizes (β±SE) on which to base inference. Residence area (βVillage = 2.93±0.41; βUpland = −0.56±0.33, βRiverbanks = −2.37±0.55) and bednet use (β = −0.95±0.28) were the most important factors, followed by crop-plot ownership (β = 0.39±0.22) and regular use of a closed toilet/latrine (β = 0.19±0.13); domestic animals had insignificant protective effects and were relatively unimportant. The SWR model ranked fifth among the 128 models in the final MMI set. Conclusions/Significance Our analyses illustrate how MMI can enhance inference on infection risk factors when compared with NHT or SWR. MMI indicates that forest crop-plot workers are likely exposed to typical MAYV cycles maintained by diurnal, forest dwelling vectors; however, MAYV might also be circulating in nocturnal, domestic-peridomestic cycles in village-like areas

  20. An analytical approach for the calculation of stress-intensity factors in transformation-toughened ceramics

    NASA Astrophysics Data System (ADS)

    Müller, W. H.

    1990-12-01

    Stress-induced transformation toughening in Zirconia-containing ceramics is described analytically by means of a quantitative model: A Griffith crack which interacts with a transformed, circular Zirconia inclusion. Due to its volume expansion, a ZrO2-particle compresses its flanks, whereas a particle in front of the crack opens the flanks such that the crack will be attracted and finally absorbed. Erdogan's integral equation technique is applied to calculate the dislocation functions and the stress-intensity-factors which correspond to these situations. In order to derive analytical expressions, the elastic constants of the inclusion and the matrix are assumed to be equal.