Science.gov

Sample records for ferrous bisglycinate chelate

  1. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates.

    PubMed

    Huang, Saibo; Lin, Huimin; Deng, Shang-Gui

    2015-01-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl? treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  2. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    PubMed Central

    Huang, Saibo; Lin, Huimin; Deng, Shang-gui

    2015-01-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  3. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  4. Mössbauer Spectroscopy of Iron Containing Vitamins and Dietary Supplements

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Milder, O. B.; Semionkin, V. A.

    2004-12-01

    Mössbauer spectroscopy was used to study various industrial samples of vitamins containing ferrous fumarate and ferrous bisglycinate chelate (Ferrochel®) and dietary supplements containing ferrous sulfate. The presence of small quantities of various ferric impurities was found. Two vitamins contained major iron compounds that did not correspond to ferrous fumarate and ferrous bisglycinate chelate.

  5. Deoxyribonucleic acid-protein and deoxyribonucleic acid interstrand cross-links induced in isolated chromatin by hydrogen peroxide and ferrous ethylenediaminetetraacetate chelates

    SciTech Connect

    Lesko, S.A.; Drocourt, J.; Yang, S.

    1982-01-01

    DNA-protein and DNA interstrand cross-links were induced in isolated chromatin after treatment with H/sub 2/O/sub 2/ and ferrous ethylenediaminetetraacetate (EDTA). Retention of DNA on membrane filters after heating of chromatin in a dissociating solvent indicated the presence of a stable linkage between DNA and protein. Treatment of protein-free DNA with H/sub 2/O/sub 2//Fe/sup 2 +/-EDTA did not result in enhanced filter retention. Incubation of cross-linked chromatin with proteinase K completely eliminated filter retention. Resistance to S/sub 1/ nuclease after a denaturation-renaturation cycle was used to detect DNA interstrand cross-links. Heating the treated chromatin at 45/sup 0/C for 16 h and NaBH/sub 4/ reduction enhanced the extent of interstrand cross-linking. The following data are consistent with, but do not totally prove, the hypothesis that cross-links are induced by hydroxyl radicals generated in Fenton-type reactions: (1) cross-linking was inhibited by hydroxyl radical scavengers; (2) the degree of inhibition of DNA interstrand cross-links correlated very closely with the rate constants of the scavengers for reaction with hydroxyl radicals; (3) cross-linking was eliminated or greatly reduced by catalase; (4) the extent of cross-linking was directly related to the concentration of Fe/sup 2 +/-EDTA. Partial inhibition of cross-linking by superoxide dismutase indicates that super-oxide-driven Fenton chemistry is involved. The data indicate that DNA cross-linking may play a role in the manifestation of the biological activity of agents of systems that generate reactive hydroxyl radicals.

  6. Structural, optical and dielectric studies of novel non-linear Bisglycine Lithium Nitrate piezoelectric single crystal

    NASA Astrophysics Data System (ADS)

    Dalal, Jyoti; Sinha, Nidhi; Kumar, Binay

    2014-11-01

    The novel non-linear semiorganic Bisglycine Lithium Nitrate (BGLiN) single crystals were grown by slow evaporation technique. The structural analysis revealed that it belongs to non-centrosymmetric orthorhombic structure. The presence of various functional groups in the grown crystal was confirmed by FTIR and Raman analysis. Surface morphology of the grown crystal was studied by scanning electron microscopy. The optical studies show that crystal has good transmittance (more than 80%) in the entire visible region and a wide band gap (5.17 eV). The optical constants such as extinction coefficient (K), the reflectance (R) and refractive index (n) as a function of photon energy were calculated from the optical measurements. With the help of these optical constants the electric susceptibility (?c) and both the real (?r) and imaginary (?i) parts of the dielectric constants were also calculated which are required to develop optoelectronic devices. In photoluminescence studies, a broad emission band centered at 404 nm was found in addition to a small band at 352 nm. A broad transition (from 29 to 33 °C) was observed with low dielectric constant value. A high piezoelectric charge coefficient (d33) of 14 pC/N was measured at room temperature which implies its usefulness for various sensor applications. The second harmonic generation efficiency of crystal was found to be 1.5 times to that of KDP. From thermo gravimetric analysis and differential thermal analysis, thermal stability and melting point (246 °C) were investigated. The dielectric behavior, optical characterization, piezoelectric behavior and the non-linear optical properties of the Bisglycine Lithium Nitrate single crystals were reported for the first time which established the usefulness of these crystals for various piezo- and opto-electronics applications.

  7. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...crystalline mass. It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous sulfate with...

  8. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate produces ferrous sulfate (dried). Ferrous...

  9. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined...

  10. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferrous gluconate. 73.160 Section 73.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.160 Ferrous gluconate. (a) Identity. The color additive ferrous gluconate is the ferrous...

  11. Study of Vitamins and Dietary Supplements Containing Ferrous Fumarate and Ferrous Sulfate Using Moessbauer Spectroscopy

    SciTech Connect

    Oshtrakh, M. I.; Novikov, E. G.; Semionkin, V. A.; Dubiel, S. M.

    2010-07-13

    A study of several samples of vitamins and dietary supplements containing ferrous fumarate and ferrous sulfate was carried out using Moessbauer spectroscopy with a high velocity resolution. A presence of ferrous and ferric impurities was revealed. Small variations of Moessbauer hyperfine parameters were found for both ferrous fumarates and ferrous sulfates in the investigated medicines.

  12. Study of Vitamins and Dietary Supplements Containing Ferrous Fumarate and Ferrous Sulfate Using Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Novikov, E. G.; Dubiel, S. M.; Semionkin, V. A.

    2010-07-01

    A study of several samples of vitamins and dietary supplements containing ferrous fumarate and ferrous sulfate was carried out using Mössbauer spectroscopy with a high velocity resolution. A presence of ferrous and ferric impurities was revealed. Small variations of Mössbauer hyperfine parameters were found for both ferrous fumarates and ferrous sulfates in the investigated medicines.

  13. Comment on the paper by R. Sankar, C.M. Ragahvan, R. Mohan Kumar, R. Jayavel, “Growth and characterization of bis-glycine sodium nitrate (BGSN), a novel semiorganic nonlinear optical crystal”, J. Crystal Growth 309 (2007) 30 36

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.

    2008-08-01

    It is argued that the conclusion of the authors of the title paper on obtaining of a new crystal bis-glycine sodium nitrate is erroneous. From an aqueous solution containing 2 glycine+NaNO 3 the authors actually have obtained earlier known crystals: glycine (alpha form) and glycine sodium nitrate.

  14. Effect of iron chelators on placental uptake and transfer of iron in rat

    SciTech Connect

    Wong, C.T.; McArdle, H.J.; Morgan, E.H.

    1987-05-01

    The uptake of radiolabeled transferrin and iron by the rat placenta has been studied using two approaches. The first involved injection of a ferrous or ferric iron chelator followed by injection of label. Neither chelator decreased the amount of labelled transferrin in the placenta after 2-h incubation and only bipyridine, a ferrous iron chelator, inhibited iron transport to the fetus. Deferoxamine (DFO), a ferric iron chelator, had no effect on iron transport to the fetus but reduced iron uptake by the liver. Both bipyridine and DFO increased iron excretion into the gut and by the urinary tract to the same degree into the gut, but there was a 10-fold greater urinary excretion with bipyridine than with DFO. Injection of iron attached to the chelators showed that neither bipyridine nor DFO could donate iron to the fetus as efficiently as transferrin. The mechanism involved was further investigated by studying the effect of the chelators on uptake of transferrin-bound iron by placental cells in culture. DFO inhibited iron accumulation more effectively than bipyridine in the cultured cells. The effect was not due to a decrease in the cycling time of the receptor. The results can be explained if the iron is released from the transferrin in intracellular vesicles in the ferrous form, where it may be chelated by bipyridine and prevented from passing to the fetus or converted to the ferric form once it is inside the cell matrix.

  15. Efficacy and safety of ferrous asparto glycinate in the management of iron deficiency anaemia in pregnant women.

    PubMed

    Kamdi, S P; Palkar, P J

    2015-01-01

    The aim of the present investigation was to compare the efficacy and safety of oral ferrous asparto glycinate and ferrous ascorbate in pregnant women with iron deficiency anaemia (IDA). We performed a double blind, prospective, randomised, multicentre, parallel group comparative clinical study at three different centres in India. A total of 73 pregnant women at 12-26 weeks' gestation were divided into two arms. While one group received ferrous ascorbate, another group was treated with ferrous asparto glycinate for a period of 28 days. The mean rise in haemoglobin and ferritin levels on day 14 and 28 was evaluated. At both time points, significantly higher levels of haemoglobin and ferritin were noticed with ferrous asparto glycinate treatment as compared with ferrous ascorbate. Our results showed that ferrous asparto glycinate is an effective iron-amino acid chelate in the management of IDA in pregnant women as compared with ferrous ascorbate. Nevertheless, additional large scale prospective, randomised trials are warranted to confirm the findings of the present efficacy trial, and also to find out the anaemia eradication rate. PMID:24959663

  16. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This...

  17. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  18. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5308 Ferrous gluconate. (a) Product. Ferrous gluconate. (b) Conditions of use....

  19. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  20. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This...

  1. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5308 Ferrous gluconate. (a) Product. Ferrous gluconate. (b) Conditions of use....

  2. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron (II... accordance with § 184.1(b)(1), the ingredient is used in food as a nutrient supplement as defined in §...

  3. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron (II... accordance with § 184.1(b)(1), the ingredient is used in food as a nutrient supplement as defined in §...

  4. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron (II... accordance with § 184.1(b)(1), the ingredient is used in food as a nutrient supplement as defined in §...

  5. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron (II... accordance with § 184.1(b)(1), the ingredient is used in food as a nutrient supplement as defined in §...

  6. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use....

  7. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5308 Ferrous gluconate. (a) Product. Ferrous gluconate. (b) Conditions of use....

  8. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous sulfate with...

  9. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of...

  10. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate... nutrient supplements as defined in § 170.3(o)(20) of this chapter and as a processing aid as defined...

  11. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate... nutrient supplements as defined in § 170.3(o)(20) of this chapter and as a processing aid as defined...

  12. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of...

  13. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate... nutrient supplements as defined in § 170.3(o)(20) of this chapter and as a processing aid as defined...

  14. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (1996), pp. 154 to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...

  15. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping...Certain Materials § 148.260 Ferrous metal. (a) This part does not apply...waters of United States. (b) Ferrous metal may not be stowed or transported in...

  16. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping...Certain Materials § 148.260 Ferrous metal. (a) This part does not apply...waters of United States. (b) Ferrous metal may not be stowed or transported in...

  17. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping...Certain Materials § 148.260 Ferrous metal. (a) This part does not apply...waters of United States. (b) Ferrous metal may not be stowed or transported in...

  18. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping...Certain Materials § 148.260 Ferrous metal. (a) This part does not apply...waters of United States. (b) Ferrous metal may not be stowed or transported in...

  19. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  20. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  1. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  2. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  3. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  4. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F. (Davis, CA); DeNardo, Sally J. (El Macero, CA); Cole, William C. (Houston, TX); Mol, Min K. (Davis, CA)

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  5. The Chelate Effect Redefined.

    ERIC Educational Resources Information Center

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  6. The Rules of Ferrous Metallurgy

    PubMed Central

    2010-01-01

    The ways in which the sciences have been delineated and categorized throughout history provide insights into the formation, stabilization, and establishment of scientific systems of knowledge. The Dresdener school’s approach for explaining and categorizing the genesis of the engineering disciplines is still valid, but needs to be complemented by further-reaching methodological and theoretical reflections. Pierre Bourdieu’s theory of social practice is applied to the question of how individual agents succeed in influencing decisively a discipline’s changing object orientation, institutionalisation and self-reproduction. Through the accumulation of social, cultural and economic capital, they succeed in realising their own organisational ideas and scientific programs. Key concepts for the analysis include the struggle for power and resources, monopolies of interpretation, and the degree of autonomy. A case study from the Aachener Technische Hochschule shows that the consolidation of ferrous metallurgy can be conceived as a symbolical struggle between Fritz Wüst, professor for ferrous metallurgy, and the German Iron and Steel Institute, leading to a construction of a system of differences in which scientists accepted being scientists rather than entrepreneurs, and entrepreneurs accepted becoming entrepreneurs and renounced science.

  7. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron (II) gluconate dihydrate, C12H22FeO14....1(b)(1), the ingredient is used in food as a nutrient supplement as defined in § 170.3(o)(20)...

  8. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on iron. It occurs as..._locations.html. (c) In accordance with § 184.1(b)(1), the ingredients are used in food as...

  9. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW.... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of...

  10. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...6047-12-7) is a fine yellowish-gray or pale greenish-yellow powder or granules. It is prepared by reacting hot solutions of barium or calcium gluconate with ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous...

  11. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...6047-12-7) is a fine yellowish-gray or pale greenish-yellow powder or granules. It is prepared by reacting hot solutions of barium or calcium gluconate with ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous...

  12. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...6047-12-7) is a fine yellowish-gray or pale greenish-yellow powder or granules. It is prepared by reacting hot solutions of barium or calcium gluconate with ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous...

  13. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferrous gluconate. 73.160 Section 73.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.160 Ferrous gluconate. (a) Identity. The color...

  14. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferrous gluconate. 73.160 Section 73.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.160 Ferrous gluconate. (a) Identity. The color...

  15. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferrous gluconate. 73.160 Section 73.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.160 Ferrous gluconate. (a) Identity. The color...

  16. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferrous gluconate. 73.160 Section 73.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.160 Ferrous gluconate. (a) Identity. The color...

  17. POLYCYCLIC AROMATIC HYDROCARBONS AND PHENOLICS IN FERROUS AND NON-FERROUS WASTE FOUNDRY SANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 43 sets of waste sand were collected from ferrous and non-ferrous foundries in the eastern United States. The concentration of organic compounds known as polycyclic aromatic hydrocarbons (PAHs) and phenolics were determined. These compounds are known to be toxic to humans. Since there ...

  18. Non-ferrous metal data yearbook 1986

    SciTech Connect

    Not Available

    1986-01-01

    Non-Ferrous Metal Data Yearbook has been published annually since 1920. It contains data on metals production for five comparative years and has over 180 statistical tables for (1) imports and exports, (2) mine, smelter, and refined production, (3) inventory tonnages, and (4) listed prices for each metal. Significant non-ferrous metals include copper, lead, zinc, aluminum, silver, gold, antimony, cadmium, magnesium, molybdenum, cobalt, nickel, platinum, selenium, tellurium, titanium, tin, and uranium. Included in the yearbook is an extensive listing of the names, and in some cases, addresses of major producers, smelters, and refiners.

  19. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II) fumarate... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  20. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II) fumarate... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  1. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II) fumarate... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  2. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II) fumarate... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  3. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ferrous materials. 56.60-3 Section 56.60-3 Shipping... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material....

  4. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II) citrate... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings...(b)(1) the ingredient is used in food as a nutrient supplement as defined in § 170.3(o)(20) of...

  5. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II) citrate... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings...(b)(1) the ingredient is used in food as a nutrient supplement as defined in § 170.3(o)(20) of...

  6. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II) citrate... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings...(b)(1) the ingredient is used in food as a nutrient supplement as defined in § 170.3(o)(20) of...

  7. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II) citrate, (C6H6FeO7), CAS Reg. No... citrate with ferrous sulfate or by direct action of citric acid on iron filings. (b) The ingredient must... used in food as a nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no...

  8. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  9. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P. (Coram, NY); Mease, Ronnie C. (Fairfax, VA); Srivastava, Suresh C. (Setauket, NY)

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  10. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P. (Coram, NY); Mease, Ronnie C. (Fairfax, VA); Srivastava, Suresh C. (Setauket, NY)

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  11. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies...

  12. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies...

  13. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies...

  14. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies...

  15. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  16. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  17. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  18. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  19. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  20. Novel polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1981-08-24

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. Formulas of the compounds are given. To prepare them polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO/sub 3/H, SO/sub 3/M, NO/sub 2/, CO/sub 2/H or CO/sub 2/M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr/sub 3/ or BCl/sub 3/ in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  1. Polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1984-04-10

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula given in patent. Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO[sub 3]H, SO[sub 3]M, NO[sub 2], CO[sub 2]H or CO[sub 2]M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr[sub 3] or BCl[sub 3] in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated. No Drawings

  2. Polycatecholamide chelating agents

    DOEpatents

    Weitl, Frederick L. (Martinez, CA); Raymond, Kenneth N. (Berkeley, CA)

    1984-01-01

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula ##STR1## Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO.sub.3 H, SO.sub.3 M, NO.sub.2, CO.sub.2 H or CO.sub.2 M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr.sub.3 or BCl.sub.3 in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  3. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system.

    PubMed

    Zhou, Lei; Zheng, Wei; Ji, Yuefei; Zhang, Jinfeng; Zeng, Chao; Zhang, Ya; Wang, Qi; Yang, Xi

    2013-12-15

    In situ chemical oxidation (ISCO) can be an effective technology for the remediation of soil and groundwater polluted by organic and inorganic contaminants. This study investigated the oxidation of arsenic(III) (As(III)) and diuron using ferrous activated persulfate-based ISCO. The results indicated that Fe(II)/persulfate oxidation could be an effective method to oxidize As(III) and diuron. Effects of pH, S2O8(2-) and Fe(II) amounts on the destruction of As(III) and diuron were examined in batch experiments. Acidic conditions favored the removal of As(III) and diuron. Four chelating agents, citric acid (CA), Na2S2O3, diethylene triamine pentaacetic acid (DTPA) and ethylene diamine tetraacetic acid disodium (EDTA-Na2) were used in attempt to maintain the quantity of ferrous ion in solution. In our experiments, CA and Na2S2O3 were found to be more effective than DTPA and EDTA-Na2. Our results also revealed a widely practical prospect of inorganic chelating agent Na2S2O3. Hydroxyl and sulfate radical were determined to play key roles in the oxidation process by using ethanol and tertiary butanol as molecular probes. Oxidation of As(III) yielded As(V) via the electron-transfer reaction. In the oxidation process of diuron, a stepwise nucleophilic substitution of chlorine by hydroxyl and a stepwise oxidation process of the methyl on the dimethylurea group by hydroxyl and sulfate radical were proposed. PMID:24220194

  4. Ferrous iron oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Widdel, Friedrich; Schnell, Sylvia; Heising, Silke; Ehrenreich, Armin; Assmus, Bernhard; Schink, Bernhard

    1993-04-01

    NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E'0 = -0.236V) or Fe(OH)3 + HCO-3FeCO3 (E'0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

  5. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  6. 46 CFR 148.04-13 - Ferrous metal borings, shavings, turnings, or cuttings (excluding stainless steel).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Ferrous metal borings, shavings, turnings, or cuttings...Certain Material § 148.04-13 Ferrous metal borings, shavings, turnings, or cuttings...hazardous materials described as ferrous metal borings, shavings, turnings,...

  7. 21 CFR 184.1307b - Ferrous carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Listing of Specific Substances Affirmed as GRAS § 184.1307b Ferrous carbonate. (a) Ferrous carbonate (iron... solutions of iron (II) salts with alkali carbonate salts. (b) The ingredient must be of a purity suitable... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  8. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II) fumarate, (C4H2FeO4), CAS Reg. No..._locations.html. (c) In accordance with § 184.1(b)(1) the ingredient is used in food as a nutrient...

  9. 21 CFR 184.1307b - Ferrous carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1307b Ferrous carbonate. (a) Ferrous carbonate (iron (II) carbonate, FeCO3, CAS Reg. No. 563-71-3) is an odorless, white solid prepared by treating solutions of iron... intended use. (c) In accordance with § 184.1(b)(1), the ingredient is used in food as a nutrient...

  10. 21 CFR 184.1307b - Ferrous carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1307b Ferrous carbonate. (a) Ferrous carbonate (iron (II) carbonate, FeCO3, CAS Reg. No. 563-71-3) is an odorless, white solid prepared by treating solutions of iron (II) salts with alkali... with § 184.1(b)(1), the ingredient is used in food as a nutrient supplement as defined in §...

  11. 21 CFR 184.1307b - Ferrous carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Listing of Specific Substances Affirmed as GRAS § 184.1307b Ferrous carbonate. (a) Ferrous carbonate (iron... solutions of iron (II) salts with alkali carbonate salts. (b) The ingredient must be of a purity suitable... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  12. 21 CFR 184.1307b - Ferrous carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Listing of Specific Substances Affirmed as GRAS § 184.1307b Ferrous carbonate. (a) Ferrous carbonate (iron... solutions of iron (II) salts with alkali carbonate salts. (b) The ingredient must be of a purity suitable... nutrient supplement as defined in § 170.3(o)(20) of this chapter, with no limitation other than...

  13. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...ascorbate. (a) Ferrous ascorbate (CAS Reg. No. 24808-52-4) is a reaction product of ferrous hydroxide and ascorbic acid. It is a blue-violet product containing 16 percent iron. (b) The ingredient must be of a purity suitable...

  14. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ascorbate. (a) Ferrous ascorbate (CAS Reg. No. 24808-52-4) is a reaction product of ferrous hydroxide and ascorbic acid. It is a blue-violet product containing 16 percent iron. (b) The ingredient must be of a purity suitable...

  15. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...ascorbate. (a) Ferrous ascorbate (CAS Reg. No. 24808-52-4) is a reaction product of ferrous hydroxide and ascorbic acid. It is a blue-violet product containing 16 percent iron. (b) The ingredient must be of a purity suitable...

  16. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...ascorbate. (a) Ferrous ascorbate (CAS Reg. No. 24808-52-4) is a reaction product of ferrous hydroxide and ascorbic acid. It is a blue-violet product containing 16 percent iron. (b) The ingredient must be of a purity suitable...

  17. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...ascorbate. (a) Ferrous ascorbate (CAS Reg. No. 24808-52-4) is a reaction product of ferrous hydroxide and ascorbic acid. It is a blue-violet product containing 16 percent iron. (b) The ingredient must be of a purity suitable...

  18. A Reaction of Aspirin with Ferrous Gluconate.

    PubMed

    Zhang, Jian

    2015-12-01

    A color reaction of aspirin with ferrous gluconate was studied by UV-Vis spectrophotometry and HPLC-MS. It was found that the UV-Vis spectra of the two drugs were different before and after they were mixed in water at about 0.3 M (diluted by >20 times for analysis), indicating that a complexation reaction took place. The drug-iron complex dissociated when the reacting solution was diluted by 400 times. The by-products of the reaction identified by HPLC-MS were salicylic acid, acetylated gluconic acid, salicylate-gluconic acid conjugate, and an oxidized product of salicylic acid that was complexed with iron with a molecular weight of 212. This reaction may be used as an important consideration to optimize the dosing regime of the two drugs and to help explain some pharmacological reactions between aspirin and biomolecules. PMID:25771741

  19. Induction of Porphyrin Synthesis in Etiolated Bean Leaves by Chelators of Iron 12

    PubMed Central

    Duggan, Jeffrey; Gassman, Merrill

    1974-01-01

    Primary leaves of 7- to 9-day-old etiolated seedlings of Phaseolus vulgaris L. var. Red Kidney infiltrated in darkness with aqueous solutions of ?, ??-dipyridyl, o-phenanthroline, pyridine-2-aldoxime, pyridine-2-aldehyde, 8-hydroxyquinoline, or picolinic acid synthesize large amounts of magnesium protoporphyrin monomethyl ester and lesser amounts of magnesium protoporphyrin, protoporphyrin, and protochlorophyllide. Pigment formation proceeds in a linear manner for up to 21 hours after vacuum infiltration with 10 mm ?, ??-dipyridyl. Etiolated tissues of Zea mays L., Cucumis sativus L., and Pisum sativum L. respond in the same way to dipyridyl treatment. Compounds active in eliciting this response are aromatic heterocyclic nitrogenous bases which also act as bidentate chelators and form extremely stable complexes with iron; other metal ion chelators, such as ethylenediaminetetraacetic acid, salicylaldoxime, and sodium diethyldithiocarbamate, do not elicit any pigment synthesis. The ferrous, ferric, cobaltous, and zinc chelates of ?, ??-dipyridyl are similarly ineffective. If levulinic acid is supplied to etiolated bean leaves together with ?, ??-dipyridyl, porphyrin production is inhibited and ?-aminolevulinic acid accumulates in the tissue. Synthesis of porphyrins proceeds in the presence of 450 micrograms per milliliter chloramphenicol or 50 micrograms per milliliter cycloheximide with only partial diminution. We propose that heme or an iron-protein complex blocks the action of the enzyme(s) governing the synthesis of ?-aminolevulinic acid in etiolated leaves in the dark and that iron chelators antagonize this inhibition, leading to the biosynthesis of ?-aminolevulinic acid and porphyrins. PMID:16658677

  20. Fast Ferrous Heme-NO Oxidation in Nitric Oxide Synthases

    PubMed Central

    Tejero, Jesús; Santolini, Jérôme; Stuehr, Dennis J.

    2009-01-01

    During catalysis, the heme in nitric oxide synthase (NOS) binds NO before releasing it to the environment. Oxidation of the NOS ferrous heme-NO complex by O2 is key for catalytic cycling, but the mechanism is unclear. We utilized stopped-flow methods to study reaction of O2 with ferrous heme-NO complexes of the inducible and neuronal NOS enzymes. We found that the reaction does not involve heme-NO dissociation, but instead proceeds by a rapid, direct reaction of O2 with the ferrous heme-NO complex. This behavior is novel and may distinguish heme-thiolate enzymes like NOS from related heme proteins. PMID:19691141

  1. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY)

    1988-01-01

    This invention relates to the preparation of new, naturally produced chelating agents as well as to the method and resulting chelates of desorbing cultures in a bioavailable form involving Pseudomonas species or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 100-1,000 and also forms chelates with uranium of molecular weight in the area of 100-1,000 and 1,000-2,000.

  2. Metallic Recovery and Ferrous Melting Processes

    SciTech Connect

    Luis Trueba

    2004-05-30

    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy recovery. The use of an argon atmosphere was also found to increase recoveries, but to a lesser extent than with carbon additions to the briquettes. Task 3--Finally, thermodynamic studies were carried out to evaluate the potential for removing manganese and sulfur from iron melts for the production of ferritic ductile iron. Thermodynamic calculations indicated that manganese and sulfur might be removed from iron melts by careful control of the temperature and slag. In laboratory tests however, it was shown that the removal of sulfur was much less successful than that indicated by the thermodynamic analyses.

  3. Vivapure Metal Chelate Maxi spin columns

    E-print Network

    Lebendiker, Mario

    ® Vivapure Metal Chelate Maxi spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Maxi spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Maxi spin columns can be stored

  4. Vivapure Metal Chelate Mega spin columns

    E-print Network

    Lebendiker, Mario

    ®® Vivapure Metal Chelate Mega spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mega spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mega spin columns can be stored

  5. Vivapure Metal Chelate Mini spin columns

    E-print Network

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn #12;E. coli cell lysates containing a recombinant Hisn-tagged protein were purified using Vivapure Metal Chelate Mini spin columns and competitor products. The Vivapure Metal Chelate Mini spin columns were pre- loaded with different metal ions

  6. Vivapure Metal Chelate Mini spin columns

    E-print Network

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mini spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mini spin columns can be stored

  7. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... product of ferrous hydroxide and ascorbic acid. It is a blue-violet product containing 16 percent iron. (b...), the ingredient is used in food as a nutrient supplement as defined in § 170.3(o)(20) of this...

  8. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  9. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 1

    SciTech Connect

    Smith, K.; Lani, B.; Berisko, D.; Schultz, C.; Carlson, W.; Benson, L.B.

    1992-12-01

    Successful pilot plant tests of simultaneous removal of S0{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The tests, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7, a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for S0{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 NW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 95% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology.

  10. Iron chelators and iron toxicity.

    PubMed

    Brittenham, Gary M

    2003-06-01

    Iron chelation may offer new approaches to the treatment and prevention of alcoholic liver disease. With chronic excess, either iron or alcohol alone may individually injure the liver and other organs. In combination, each exaggerates the adverse effects of the other. In alcoholic liver disease, both iron and alcohol contribute to the production of hepatic fibrosis through their effects on damaged hepatocytes, hepatic macrophages, hepatic stellate cells, and the extracellular matrix. The pivotal role of iron in these processes suggests that chelating iron may offer a new approach to arresting or ameliorating liver injury. For the past four decades, deferoxamine B mesylate has been the only iron-chelating agent generally available for clinical use. Clinical experience with deferoxamine has demonstrated the safety and effectiveness of iron chelation for the prevention and treatment of iron overload. Determined efforts to develop alternative agents have at last resulted in the development of a variety of candidate iron chelators that are now in or near clinical trial, including (a) the hexadentate phenolic aminocarboxylate HBED [N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid], (b) the tridentate desferrithiocin derivative 4'-OH-dadmDFT [4'-hydroxy-(S)-desazadesmethyl-desferrithiocin; (S)-4,5-dihydro-2-(2,4-dihydroxyphenyl)-4-thiazolecarboxylic acid], (c) the tridentate triazole ICL670A [CGP72 670A; 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid], and (d) the bidentate hydroxypyridin-4-one deferiprone [L1, CP20; 1,2-dimethyl-3-hydroxypyridin-4-one]. These agents may provide new pharmacological means of averting or ameliorating liver damage in alcoholic liver disease by binding, inactivating, and eliminating the reactive forms of iron that contribute to oxidative injury of cellular components, are involved in signal transduction, or both. PMID:12957300

  11. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1?, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  12. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R. (Berkeley, CA); Hearst, John (Berkeley, CA)

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  13. Sinemet-ferrous sulphate interaction in patients with Parkinson's disease.

    PubMed Central

    Campbell, N R; Rankine, D; Goodridge, A E; Hasinoff, B B; Kara, M

    1990-01-01

    1. This study examined the effects of administering ferrous sulphate 325 mg with Sinemet (100/25 tablet) on levodopa and carbidopa bioavailability and on signs of Parkinson's disease in nine patients. 2. Ferrous sulphate ingestion with Sinemet resulted in a decrease in levodopa area under the curve (AUC) of 30% (P less than 0.01) and a greater than 75% decrease in carbidopa AUC. Despite a strong relationship between reductions in levodopa AUC and reductions in Sinemet efficacy (r = 0.83, P less than 0.01), the average reduction in Sinemet's efficacy associated with ferrous sulphate did not achieve statistical significance (P = 0.055). 3. Chemical studies indicate that iron forms chemical complexes with carbidopa in a similar manner to levodopa and is a likely mechanism for the drug interactions. 4. AUC when a Sinemet tablet is taken concurrently with a ferrous sulphate tablet appears to be clinically significant in some but not all patients. The clinical significance of repeated ingestion of ferrous sulphate with Sinemet requires further studies. PMID:2291872

  14. The origin of ferrous zoning in Allende chondrule olivines

    NASA Technical Reports Server (NTRS)

    Peck, Julia A.; Wood, John A.

    1987-01-01

    Very similar major and minor element compositions are noted in the ferrous olivine occurring in chondrules at olivine grain boundaries, along cracks in olivine grains, interleaved with enstatite, and in the inner portions of exposed olivine grain surface rims; simultaneous formation by a single process is therefore suggested. The ferrous chondrule olivine probably formed by the reaction of chondrules with very hot nebular vapors over a period of several hours, followed by the condensation of residual metal vapors onto those olivine surfaces that were in direct contact with the gas as the system cooled. The ferrous chondrule olivine that occurs interleaved with enstatite in Allende does not have a composition idendical to, and is not the precursor of, matrix olivine.

  15. Phosphonated chelates for nuclear imaging.

    PubMed

    Abada, Sabah; Lecointre, Alexandre; Christine, Câline; Ehret-Sabatier, Laurence; Saupe, Falk; Orend, Gertraud; Brasse, David; Ouadi, Ali; Hussenet, Thomas; Laquerrière, Patrice; Elhabiri, Mourad; Charbonnière, Loïc J

    2014-12-21

    A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging. PMID:25338628

  16. 76 FR 31357 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ...Activities: Comment Request for the Ferrous Metals Surveys AGENCY: U.S. Geological Survey...paperwork requirements for the Ferrous Metals Surveys. This collection consists of...consumption data of 13 ores, concentrates, metals, and ferroalloys, some of which...

  17. Beliefs about chelation among thalassemia patients

    PubMed Central

    2012-01-01

    Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ) was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC) of the Thalassemia Clinical Research Network (TCRN). Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y), 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump), 63% oral, 11% combination). Patients expressed high “necessity” for transfusion (96%), DFO chelation (92%) and oral chelation (89%), with lower “concern” about treatment (48%, 39%, 19% respectively). Concern about oral chelation was significantly lower than that of DFO (p<0.001). Self-reported adherence to chelation was not associated with views about necessity or concerns, but negatively correlated with perceived sensitivity to DFO (Sensitive Soma scale; r=?0.23, p=0.01) and side effects of oral chelation (r=?0.14, p=0.04). High ferritin iron levels, potentially indicating lower adherence, were found in 41% of patients reporting low necessity of oral chelation compared to 24% reporting high necessity (p=0.048). Concerns about treatment were associated with lower quality of life and more symptoms of anxiety and depression. Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804 PMID:23216870

  18. Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic

    E-print Network

    Bogyo, Matthew

    Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents and cancer. Here, we describe a method to exploit aberrant levels of mobile ferrous iron (Fe parasites produce high concentrations of mobile ferrous iron as a consequence of their catabolism of host

  19. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    EPA Science Inventory

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  20. 46 CFR 148.04-13 - Ferrous metal borings, shavings, turnings, or cuttings (excluding stainless steel).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ferrous metal borings, shavings, turnings, or cuttings... Requirements for Certain Material § 148.04-13 Ferrous metal borings, shavings, turnings, or cuttings (excluding... described as ferrous metal borings, shavings, turnings, or cuttings on board vessels (excluding...

  1. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous citrate. 184.1307c Section 184.1307c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  2. Method for the preparation of ferrous low carbon porous material

    SciTech Connect

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  3. LIMESTONE AND LIME NEUTRALIZATION OF FERROUS IRON ACID MINE DRAINAGE

    EPA Science Inventory

    The U.S. Environmental Protection Agency conducted a 2-yr study on hydrated lime and rock-dust limestone neutralization of acid mine drainage containing ferrous iron at the EPA Crown Mine Drainage Control Field Site near Rivesville, West Virginia. The study investigated optimizat...

  4. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  5. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...citrate (iron (II) citrate, (C6 H6 FeO7 ), CAS Reg. No. 23383-11-1) is a slightly colored powder or white crystals. It is prepared from the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron...

  6. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...citrate (iron (II) citrate, (C6 H6 FeO7 ), CAS Reg. No. 23383-11-1) is a slightly colored powder or white crystals. It is prepared from the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron...

  7. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  8. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 2

    SciTech Connect

    1992-12-01

    Successful pilot plant tests of simultaneous removal of SO{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The test, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot plant facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7 a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for SO{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 MW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 96% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangeably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology. Volume 2 covers: description and results of NO{sub x} removal tests; and description and results of waste characterization studies.

  9. Hydrometallurgical recovery of non-ferrous metals from secondary sources

    SciTech Connect

    Goldschmidt, J.

    1995-12-31

    Recycling of fine oxidized particles of non-ferrous metals usually cannot be carried out by pyrometallurgical methods. Hydrometallurgy provides an alternative technology to reintroduce the resulting products as secondary raw materials into the industrial cycle, thereby saving resources and energy while keeping the environment a little cleaner. The paper summarizes the methods employed by Hydrometal to achieve these objectives and stigmatizes the latest counterproductive international regulations which create ever more obstacles to environmentally sound recycling.

  10. Questions and Answers on Unapproved Chelation Products

    MedlinePLUS

    ... Consumers (Drugs) Buying & Using Medicine Safely Medication Health Fraud Section Contents Menu Resources for You Information for Consumers (Drugs) Buying & Using Medicine Safely Medication Health Fraud Questions and Answers on Unapproved Chelation Products The ...

  11. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G. (Moscow, ID); Wai, Chien M. (Moscow, ID); Lin, Yuehe (Moscow, ID); Kwang, Yak Hwa (Moscow, ID)

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  12. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  13. Chelator Fragment Libraries for Targeting Metalloproteinases

    PubMed Central

    Agrawal, Arpita; Johnson, Sherida L.; Jacobsen, Jennifer A.; Miller, Melissa T.; Chen, Li-Hsing

    2010-01-01

    A chelator fragment library based on a variety of metal binding groups was screened against a metalloproteinase. Lead hits were identified and an expanded library of select compounds was synthesized, resulting in numerous high-affinity hits against several metalloprotein targets. The findings clearly demonstrate that chelators can be used to generate libraries suitable for fragment-based lead design (FBLD) directed at important metalloproteins. PMID:20058293

  14. Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching

    SciTech Connect

    Hiroyoshi, Naoki; Hirota, Masahiko; Hirajima, Tsuyoshi; Tsunekawa, Masami

    1999-08-20

    A substantial amount of copper is obtained by dump leaching of low-grade ore that would otherwise become waste. It is generally accepted that iron-oxidizing bacteria. Thiobacillus ferrooxidans, enhance chalcopyrite leaching. However, this article details a case of the bacteria suppressing chalcopyrite leaching. Bacterial leaching experiments were performed with sulfuric acid solutions containing 0 or 0.04 mol/dm{sup 3} ferrous sulfate. Without ferrous sulfate, the bacteria enhance copper extraction and oxidation of ferrous ions released from chalcopyrite. However, the bacteria suppressed chalcopyrite leaching when ferrous sulfate was added. This is mainly due to the bacterial consumption of ferrous ions which act as a promoter for chalcopyrite oxidation with dissolved oxygen. Coprecipitation of copper ions with jarosite formed by the bacterial ferrous oxidation also causes the bacterial suppression of copper extraction.

  15. Combined SO{sub 2}/NO{sub x} control using ferrous{center_dot}EDTA and a secondary additive in a lime-based aqueous scrubber system

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.; Harkness, J.B.L.

    1991-12-01

    Integration of NO{sub x} control into existing flue-gas desulfurization (FGD) systems addresses site-specific control requirements while minimizing retrofit difficulties. Argonne has studied the use of the metal-chelate additives, such as ferrous{center_dot}EDTA in various wet FGD chemistries, to promote combined SO{sub 2}/NO{sub x} scrubbing. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne discovered a class of organic compounds that, when used with ferrous{center_dot}EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents are not effective in a lime-based chemistry, and a broader investigation of antioxidants was initiated. This paper discusses results of that investigation, which found a practical antioxidant/reducing agent capable of maintaining NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with FE(II){center_dot}EDTA. 5 refs., 10 figs.

  16. Copper Chelation in Alzheimer's Disease Protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. AD is primarily characterized at the cellular level by densely tangled fibrils of amyloid- ? protein. These protein clusters have been found in association with elevated levels of multiple transition metals, with copper being the most egregious. Interestingly, metal chelation has shown promise in attenuating the symptoms of AD in recent clinical studies. We investigate this process by constructing an atomistic model of the amyloid- ?-copper complex and profile the energetic viability in each of its subsequent disassociation stages. Our results indicate that five energetic barriers must be overcome for full metal chelation. The energy barriers are biologically viable in the presence water mediated bond and proton transfer between the metal and the protein. We model the chelation reaction using a consecutive path nudged elastic band method implemented in our ab initio real-space multi-grid code to obtain a viable sequence. This reaction model details a physically consistent explanation of the chelation process that could lead to the discovery of more effective chelation agents in the treatment of AD.

  17. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M. (Moscow, IA); Smart, Neil G. (Moscow, IA); Lin, Yuehe (Moscow, IA)

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  18. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  19. Overview of Lightweight Ferrous Materials: Strategies and Promises

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Lahaye, Chris; Ray, Ranjit Kumar

    2014-09-01

    Reducing the density of steels is a novel approach for weight reduction of automobiles to improve fuel efficiency. In this overview article, strategies for the development of lightweight steels are presented with a focus on bulk ferrous alloys. The metallurgical principles of these steels and their mechanical properties of relevance to automotive applications are discussed. Some of the engineering aspects highlighting the possible problems related to mass production of these steels are also considered. Application prospects of these steels vis-à-vis standard automotive steels are shown.

  20. Overview of Lightweight Ferrous Materials: Strategies and Promises

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Lahaye, Chris; Ray, Ranjit Kumar

    2014-08-01

    Reducing the density of steels is a novel approach for weight reduction of automobiles to improve fuel efficiency. In this overview article, strategies for the development of lightweight steels are presented with a focus on bulk ferrous alloys. The metallurgical principles of these steels and their mechanical properties of relevance to automotive applications are discussed. Some of the engineering aspects highlighting the possible problems related to mass production of these steels are also considered. Application prospects of these steels vis-à-vis standard automotive steels are shown.

  1. Microbiological Oxidation of Ferrous Iron at Low Temperatures

    PubMed Central

    Ahonen, Lasse; Tuovinen, Olli H.

    1989-01-01

    Acidophilic iron-oxidizing bacteria were enriched from mine water samples with ferrous sulfate as the substrate at incubation temperatures in the range of 4 to 46°C. After several subcultures at each test temperature except 46°C, which was prohibitive to growth, the rates of iron oxidation were determined in batch cultures. The results yielded linear rates in a semilogarithmic scale. The rate constants of iron oxidation by growing cultures were fitted into the Arrhenius equation, which displayed linearity in the 4 to 28°C range and yielded an activation energy value of 83 ± 3 kJ/mol. PMID:16347844

  2. Substructures of the (252) ferrous martensite and their crystallographic significance

    SciTech Connect

    Wang Shidao; Hei Zukun

    1999-04-23

    Many ferrous martensites have been found to possess a macroscopically invariant habit plane close to (252){sub f} and to exhibit complex and variable substructures that cannot be not only satisfactorily explained but also fully characterized so far. The present work attempts to examine the mechanism of occurrence of the complex substructures and their correlation to other crystallographic properties, esp. to the shape strain, on the basis of a new theory. The theory describes the atomic movements in the lattice change represented with the Bain distortion in the past.

  3. Trypanotoxic activity of thiosemicarbazone iron chelators.

    PubMed

    Ellis, Samuel; Sexton, Darren W; Steverding, Dietmar

    2015-03-01

    Only a few drugs are available for treating sleeping sickness and nagana disease; parasitic infections caused by protozoans of the genus Trypanosoma in sub-Saharan Africa. There is an urgent need for the development of new medicines for chemotherapy of these devastating diseases. In this study, three newly designed thiosemicarbazone iron chelators, TSC24, Dp44mT and 3-AP, were tested for in vitro activity against bloodstream forms of Trypanosoma brucei and human leukaemia HL-60 cells. In addition to their iron chelating properties, TSC24 and Dp44mT inhibit topoisomerase II? while 3-AP inactivates ribonucleotide reductase. All three compounds exhibited anti-trypanosomal activity, with minimum inhibitory concentration (MIC) values ranging between 1 and 100?µM and 50% growth inhibition (GI50) values of around 250?nM. Although the compounds did not kill HL-60 cells (MIC values >100?µM), TSC24 and Dp44mT displayed considerable cytotoxicity based on their GI50 values. Iron supplementation partly reversed the trypanotoxic and cytotoxic activity of TSC24 and Dp44mT but not of 3-AP. This finding suggests possible synergy between the iron chelating and topoisomerase II? inhibiting activity of the compounds. However, further investigation using separate agents, the iron chelator deferoxamine and the topoisomerase II inhibitor epirubicin, did not support any synergy for the interaction of iron chelation and topoisomerase II inhibition. Furthermore, TSC24 was shown to induce DNA degradation in bloodstream forms of T. brucei indicating that the mechanism of trypanotoxic activity of the compound is topoisomerase II independent. In conclusion, the data support further investigation of thiosemicarbazone iron chelators with dual activity as lead compounds for anti-trypanosomal drug development. PMID:25595343

  4. Analyzing the International Exergy Flow Network of Ferrous Metal Ores

    PubMed Central

    Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing

    2014-01-01

    This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven. PMID:25188407

  5. Tryptophan-to-heme electron transfer in ferrous myoglobins

    PubMed Central

    Monni, Roberto; Al Haddad, André; van Mourik, Frank; Auböck, Gerald; Chergui, Majed

    2015-01-01

    It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp14) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe–porphyrin ? [FeII(porph??)] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu69) and valine 68 (Val68) residues. The results on ferric Mbs and the present ones highlight the generality of Trp–porphyrin electron transfer in heme proteins. PMID:25902517

  6. Analyzing the international exergy flow network of ferrous metal ores.

    PubMed

    Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing

    2014-01-01

    This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven. PMID:25188407

  7. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Piwonka, T.S.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  8. 76 FR 9810 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys (17 Forms)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Geological Survey Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys... to supply the USGS with domestic consumption data of 13 ores, concentrates, metals, and ferroalloys... OMB Control Number: 1028-0068. Form Number: Various (17 forms). Title: Ferrous Metals Surveys. Type...

  9. Deferitazole, a new orally active iron chelator.

    PubMed

    Hider, Robert C; Kong, Xiaole; Abbate, Vincenzo; Harland, Rachel; Conlon, Kelly; Luker, Tim

    2015-03-21

    Following a systematic search of desferrithiocin analogs, a polyether derivative, deferitazole (formerly FBS0701), has entered into phase 1 and 2 clinical trials with promising biological properties. However, until now, detailed physicochemical properties of this chelator have not been reported. The compound displays a high affinity and selectivity for iron(III) as demonstrated by the log??2 = 33.39 ± 0.03 and the pFe(3+) value of 22.3. Two equilibrating isomeric forms of the iron(III) complex exist under biological conditions. Deferitazole also binds the trivalent metals Al(III) and La(III) with high affinity; log??2 values, 26.68 and 21.55 respectively. The affinity of deferitazole for divalent cations is somewhat lower, with the exception of Cu(II) which possesses a log??2 value of 25.5; deferitazole scavenges iron from labile sources such as citrate and albumin with efficiencies comparable with those of other therapeutic iron chelators, including deferasirox, deferiprone and desferrioxamine. The Fe(III)(deferitazole)2 is stable under physiological conditions and does not redox cycle. The high affinity of deferitazole for iron(III) renders it unlikely that this chelator will lead to the redistribution of iron and consequently deferitazole shows considerable promise as a therapeutic iron(III) chelator. PMID:25687725

  10. CHELATING ABILITY OF PROCTOLIN TETRAZOLE ANALOGUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the investigation was to establish a chelating ability of a new proctolin analog of the sequence Arg-Tyr-Leu-psi-[CN4]Ala-Thr towards copper(II) ions. The insertion of the tetrazole moiety into the peptide sequence considerably has changed the coordination ability of the ligand. Potentiom...

  11. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  12. A randomized, double-blind clinical study on the safety and tolerability of an iron multi-amino acid chelate preparation in premenopausal women.

    PubMed

    Fouad, Gameil T; Evans, Malkanthi; Sharma, Prachi; Baisley, Joshua; Crowley, David; Guthrie, Najla

    2013-03-01

    ABSTRACT Considerable risk of iron deficiency has been identified in premenopausal women because of the adverse effects associated with commercial iron preparations. This study examined the safety and tolerability of a novel iron multi-amino acid chelate (IMAAC) preparation in premenopausal women. A single-centre, randomized, double-blind, three-arm placebo-controlled (n = 60) study was conducted where subjects received one of three test materials: IMAAC (600 mg) or ferrous sulfate (600 mg) each containing 25 mg of elemental iron, or placebo as a single daily dose for 7 days. After testing, there were no significant differences found in any of the hematological outcomes between the different test groups. The safety analyses showed that a significantly (p = .044) higher number of patients reported adverse events when taking the ferrous sulfate supplement compared to IMAAC. A significantly lower number of adverse effects (p = .008) were reported by subjects on IMAAC. The current study demonstrated the superiority of the IMAAC preparation over ferrous sulfate with regards to tolerability and adverse effects. PMID:23387416

  13. Shortened forms of provocative lead chelation

    SciTech Connect

    Sokas, R.K.; Atleson, J.; Keogh, J.P.

    1988-05-01

    Shortened urinary lead collections following provocative chelation have been standardized for pediatric patients, but have not been considered adequate for adults. This study compared shortened urine collections for lead excretion post chelation with standard 24-hour collections. Thirty-five patients without known current lead exposure and with serum creatinine measurements less than 2 mg/dL were hospitalized and had provocative chelation performed as follows: One gram of CaNa2-ethylenediaminetetraacetic acid (EDTA) was administered in 250 mL of a 5% dextrose in water solution intravenously over one hour; the same dose was repeated 12 hours later. A 24-hour urine collection for lead excretion was begun at the time of initiation of the first dose. At three hours and six hours from start of first dose, each patient was instructed to void, total volume to that point was recorded, and a 10-mL aliquot was withdrawn for lead measurement. Both three-hour and six-hour urinary lead excretion following a single dose of EDTA correlated linearly with 24-hour lead excretion post chelation (r = .89 and .94, respectively). When a 24-hour level of 600 micrograms was defined as true positive the three-hour collection had a sensitivity of 76% and specificity of 95% and six-hour urinary lead excretion had 82% sensitivity and 100% specificity. Mild renal insufficiency (reflected by serum creatinine levels between 1.5 and 2.1 mg/dL) did not significantly alter the correlation between three-, six-, and 24-hour urinary post-chelation lead excretion.

  14. Chelation therapy after the Trial to Assess Chelation Therapy: results of a unique trial

    PubMed Central

    Avila, Maria D.; Escolar, Esteban; Lamas, Gervasio A.

    2014-01-01

    Purpose of review EDTA chelation therapy has been in off-label use for the treatment of atherosclerosis. We review the results of the first large-scale randomized trial of this treatment. Recent findings The trial to assess chelation therapy was a $30 million National Institutes of Health-funded study of the safety and efficacy of EDTA-based chelation infusions in 1708 post-myocardial infarction (MI) patients. The trial to assess chelation therapy demonstrated a significant (P?=?0.035) 18% reduction in a combined primary endpoint of death, MI, stroke, coronary revascularization, or hospitalization for angina. In diabetic patients the benefit was more extreme, with a 41% relative reduction in risk (P?=?0.0002) and a 43% reduction in total mortality (P?=?0.011). Safety data were favorable. A reduction of oxidative stress by chelation of toxic metals has been proposed as a possible mechanism of action. Summary Recent research suggests that EDTA chelation may be a well-tolerated and effective treatment for post-MI patients. Future replication and mechanistic studies are important prior to implementation in all post-MI patients. PMID:25023079

  15. [Research advances on anaerobic ferrous-oxidizing microorganisms].

    PubMed

    Zhang, Meng; Zheng, Ping; Ji, Jun-yuan

    2013-08-01

    Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications. PMID:24380362

  16. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa.

    PubMed

    Tvrdá, Eva; Ková?ik, Anton; Tušimová, Eva; Massányi, Peter; Luká?, Norbert

    2015-01-01

    Resveratrol (RES) is a natural polyphenol and phytoestrogen exhibiting cardioprotective, anticancer, antibacterial and vasorelaxing properties. It is also a powerful reactive oxygen species (ROS) scavenger and chelating agent. This study was designed to determine the efficiency of RES to reverse the ROS-mediated impairment of the motility, viability and intracellular antioxidant profile of bovine spermatozoa. Spermatozoa were washed out of fresh bovine semen, suspended in 2.9% sodium citrate and subjected to RES treatment (5, 10, 25 and 50 ?mol L(-1)) in the presence or absence of a pro-oxidant, i.e., ferrous ascorbate (FeAA; 150 ?mol L(-1) FeSO4 and 750 ?mol L(-1) ascorbic acid) during a 6-h in vitro culture. Spermatozoa motion parameters were assessed using the SpermVision computer-aided sperm analysis (CASA) system. Cell viability was examined with the metabolic activity (MTT) assay, and the nitroblue-tetrazolium (NBT) test was applied to quantify the intracellular superoxide formation. Cell lysates were prepared at the end of the in vitro experiments in order to investigate the intracellular activity of superoxide dismutase (SOD), catalase (CAT), as well as the concentrations of glutathione (GSH) and malondialdehyde (MDA). FeAA treatment led to a reduced sperm motility (P < 0.001) and viability (P < 0.001), decreased the antioxidant parameters of the samples (P < 0.001 in case of SOD; P < 0.01 with respect to CAT; P < 0.05 in relation to GSH) but increased the superoxide production (P < 0.001) and lipid peroxidation (P < 0.001). RES supplementation resulted in a preservation of the spermatozoa vitality and antioxidant characteristics (P < 0.001 in case of SOD; P < 0.01 with respect to 25-50 ?mol L(-1) RES and P < 0.05 in relation to 10 ?mol L(-1) RES; P < 0.05 in case of GSH), with 50 ?mol L(-1) RES proving to be the most effective RES concentration. Our results suggest that RES possesses significant antioxidant properties that may prevent the deleterious effects caused by ROS to spermatozoa, and preserve the fertilization potential of male reproductive cells. PMID:26305177

  17. Relationship among Chelator Adherence, Change in Chelators, and Quality of Life in Thalassemia

    PubMed Central

    Trachtenberg, Felicia L.; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A.; Neufeld, Ellis J.; Yamashita, Robert

    2015-01-01

    Purpose Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of Health-Related Quality of Life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Methods Thalassemia Longitudinal Cohort participants in the US, UK, and Canada completed the SF-36v2 (ages 14+), and the PF-28 CHQ (parents of children<14 years). Chelation adherence was defined as self-reported percent of doses administered in the last 4 weeks. Results 258 adults/adolescents (mean 29.7 years) and 133 children (mean 8.5 years) completed a mean of 2.8 years follow-up. Children made few chelator changes, whereas a mean of 2.2 changes was observed among the 37% of adults/adolescents who made chelator changes, mainly, due to patient preference or medical necessity. Physical HRQOL improved among those with lower iron burden (better health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from DFO infusion to oral deferasirox (p=0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical QOL. Conclusions Strategies to balance medical needs with family, work, and personal life may assist in adherence. PMID:24682717

  18. Anacardic acids and ferric ion chelation.

    PubMed

    Tsujimoto, Kazuo; Hayashi, Akio; Ha, Tae Joung; Kubo, Isao

    2007-01-01

    6-Pentadeca(e)nylsalicylic acids isolated from the cashew Anacardium occidentale L. (Anacardiaceae), commonly known as anacardic acids, inhibited the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) competitively without prooxidant effects. Their parent compound, salicylic acid, did not have this inhibitory activity up to 800 pm, indicating that the pentadeca(e)nyl group is an essential element to elicit the activity. The inhibition is attributed to its ability to chelate iron in the enzyme. Thus, anacardic acids chelate iron in the active site of the enzyme and then the hydrophobic tail portion slowly begins to interact with the hydrophobic domain close to the active site. Formation of the anacardic acids-ferric ion complex was detected in the ratio of 2:1 as the base peak in the negative ion electrospray ionization mass spectrometry. Hence, anacardic acids inhibit both Eox and Ered forms. PMID:18069245

  19. Iron lung: bronchoscopic and pathological consequences of aspiration of ferrous sulphate.

    PubMed Central

    Godden, D J; Kerr, K M; Watt, S J; Legge, J S

    1991-01-01

    Acute bronchial damage was caused by aspiration of a ferrous sulphate tablet, early histological changes (unlike in the few previously reported cases) being observed in the biopsy specimens. Images PMID:2014497

  20. Insight into the formation of magnetite mesocrystals from ferrous precursors in ethylene glycol.

    PubMed

    Wan, Jiaqi; Tang, Jing; Zhang, Chongyu; Yuan, Ruiting; Chen, Kezheng

    2015-11-14

    Uniform magnetite mesocrystals were fabricated by solvothermal treatment of ferrous chloride in ethylene glycol in the presence of sodium hydroxide. The formation mechanism of magnetite mesocrystals in ethylene glycol was deduced by a time-dependent experiment. PMID:26255597

  1. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  2. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  3. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  4. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.

    PubMed

    Oehmig, Wesley N; Roessler, Justin G; Zhang, Jianye; Townsend, Timothy G

    2015-02-11

    The recovery of ferrous and non-ferrous metals from waste to energy (WTE) ash continues to advance as the sale of removed metals improves the economics of waste combustion. Published literature suggests that Fe and Fe oxides play a role in suppressing Pb leaching in the Toxicity Characteristic Leaching Procedure (TCLP); further removal of ferrous metals from WTE ashes may facilitate higher Pb leaching under the TCLP. Eight WTE bottom ash size-fractions, from three facilities, were evaluated to assess the effect of metallic Fe addition and ferrous metal removal on TCLP leaching. Metallic Fe addition was demonstrated to reduce Pb leaching; the removal of ferrous metals by magnet resulted in a decrease in total available Pb (mg/kg) in most ash samples, yet Pb leachability increased in 5 of 6 ash samples. The research points to two chemical mechanisms to explain these results: redox interactions between Pb and Fe and the sorption of soluble Pb onto Fe oxide surfaces, as well as the effect of the leachate pH before and after metals recovery. The findings presented here indicate that generators, processors, and regulators of ash should be aware of the impact ferrous metal removal may have on Pb leaching, as a substantial increase in leaching may have significant implications regarding the management of WTE ashes. PMID:25464288

  5. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability.

    PubMed

    Yu, Xubiao; Xu, Ronghua; Wei, Chaohai; Wu, Haizhen

    2016-01-25

    The effect of ferrous sulfate (FeSO4) treatment on the removal of cyanide compounds and the improvement of biodegradability of coking wastewater were investigated by varying Fe:TCN molar ratios. Results suggested that the reaction between FeSO4 and coking wastewater was a two-step process. At the first step, i.e., 0?Fe:TCN?1.0, the reaction mechanisms were dominated by the precipitation of FeS, the complexation of CN(-), and the coagulation of organic compounds. The COD of coking wastewater decreased from 3748.1mg/L to 3450.2mg/L, but BOD5:COD (B/C) was improved from 0.30 to 0.51. At the second step, i.e., 1.0ferrous ions was the dominating mechanism. The COD showed a continuous increase to 3542.2mg/L (Fe:TCN=3.2) due to the accumulated ferrous ions in coking wastewater. Moreover, B/C decreased progressively to 0.35, which was attributed to the negative effects of excess ferrous ions on biodegradability. To improve coking wastewater's biodegradability, a minimum ferrous dosage is required to complete the first step reaction. However, the optimum ferrous dosage should be determined to control a safe residual TCN in coking wastewater for the further biological treatment. PMID:26547041

  6. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger (El Cerrito, CA); Littlejohn, David (Oakland, CA); Shi, Yao (Berkeley, CA)

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  7. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  8. Ultrafine Particulate Ferrous Iron and Anthracene Associations with Mitochondrial Dysfunction

    SciTech Connect

    Faiola, Celia; Johansen, Anne M.; Rybka, Sara; Nieber, Annika; Thomas-Bradley, Carin; Bryner, Stephanie; Johnston, Justin M.; Engelhard, Mark H.; Nachimuthu, Ponnusamy; Owens, Kalyn S.

    2011-04-20

    The ultrafine size fraction of ambient particles (ultrafine particles, UFP, diameter < 100 nm) has been identified as being far more potent in their adverse health effects than their larger counterparts, yet, the detailed mechanisms for why UFP display such distinctive toxicity are not well understood. In the present study, ambient UFP were exposed to mitochondria while monitoring electron transport chain (ETC) activity as a model system for biochemical toxicity. UFP samples were collected in rural (Ellensburg, WA) and urban environments (Seattle, WA) and chemically characterized for total trace metals, ferrous (Fe(II)) and easily reducible ferric (Fe(III)) iron, polycyclic aromatic hydrocarbons, and surface constituents with X-ray photoelectron spectroscopy (XPS). Low doses of UFP (8 µg mL-1) caused a decrease in mitochondrial ETC function compared to controls in 94% of the samples after The 20 min of exposure. Significant correlations exist between initial %ETC inhibition (0-10 min) and Fe(II) (R=0.55, P=0.03, N=15), anthracene (R=0.74, P<0.01, N=13), and %C-O surface bonds (R=0.56, P=0.03, N=15), whereby anthracene and %C-O correlate as well (R=0.58, P=0.03, N=14). No significant associations were identified with total Fe and other trace metals. Results from this study indicate that the redox active fraction of Fe as well as the abundance of anthracene-related, C-O containing, surface structures may contribute to the initial detrimental behavior of UFP, thus supporting the idea that the Fe(II)/Fe(III) and certain efficient hydroquinone/quinone redox pairs may play an important role likely due to their potential to produce reactive oxygen species (ROS).

  9. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  10. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  11. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    PubMed Central

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies of using principles of metal chelation in medicinal contexts beyond the traditional notion of chelation therapy. These strategies include altering metal biodistribution, inhibiting specific metalloenzymes associated with disease, enhancing the reactivity of a metal complex to promote cytotoxicity, and conversely, passivating the reactivity of metals by site-activated chelation to prevent cytotoxicity. PMID:23332666

  12. Melting of low-level radioactive non-ferrous metal for release

    SciTech Connect

    Quade, Ulrich; Kluth, Thomas; Kreh, Rainer

    2007-07-01

    Siempelkamp Nukleartechnik GmbH has gained lots of experience from melting ferrous metals for recycling in the nuclear cycle as well as for release to general reuse. Due to the fact that the world market prices for non-ferrous metals like copper, aluminium or lead raised up in the past and will remain on a high level, recycling of low-level contaminated or activated metallic residues from nuclear decommissioning becomes more important. Based on the established technology for melting of ferrous metals in a medium frequency induction furnace, different melt treatment procedures for each kind of non-ferrous metals were developed and successfully commercially converted. Beside different procedures also different melting techniques such as crucibles, gas burners, ladles etc. are used. Approximately 340 Mg of aluminium, a large part of it with a uranium contamination, have been molten successfully and have met the release criteria of the German Radiation Protection Ordinance. The experience in copper and brass melting is based on a total mass of 200 Mg. Lead melting in a special ladle by using a gas heater results in a total of 420 Mg which could be released. The main goal of melting of non-ferrous metals is release for industrial reuse after treatment. Especially for lead, a cooperation with a German lead manufacturer also for recycling of non releasable lead is being planned. (authors)

  13. Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia

    PubMed Central

    Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40?mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40?mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95?g/dL and 2.62% in the ferric group, while they were 2.25?g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  14. Potential for microbial oxidation of ferrous iron in basaltic glass.

    PubMed

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place. PMID:25915449

  15. Medical toxicology case presentations: to chelate or not to chelate, is that the question?

    PubMed

    McKay, Charles A

    2013-12-01

    Four case studies described in this article were presented to a panel of physicians participating in the ACMT "Use and Misuse of Metal Chelation Therapy" Symposium in February 2012. The individuals who participated in the panel are listed in the appendix. These cases highlight some of the practical questions facing medical providers when issues of metal toxicity and its treatment arise. Medical toxicologists are valuable resources for information, public debate, consultation, and treatment of patients with concerns about heavy metal exposure. PMID:24243289

  16. Chelating versatility of toxic metal resistant microorganisms

    SciTech Connect

    Premuzic, E.T.; Lin, M.

    1985-05-01

    Thorium- and uranium-resistant strains of Pseudomonas aeruginosa when grown in high concentration of these metals (100 to 1000 ppM) in citrate- or succinate-containing media produce several chelating agents. Crude extracts of the metal-induced products, when tested for their toxicity and decorporation potential from mammalian tissues have shown that their efficiency is comparable to DTPA (Diethylene triamine pentaacetic acid) and DFOA (Desferrioxamine). Washed biomass of P. aeruginosa also bioaccumulates heavy metals. Bioaccumulation is selective and several microorganisms have been tested for selective adsorption of uranium, thorium, cobalt, chromium, manganese, tin, and platinum. The results have shown that P. aeruginosa CSU has a preference for uranium, while P. aeruginosa PAO-1 and P. fluorescens exhibit a preference for thorium, and Aspergillus niger is selective for chromium and thorium. 8 refs., 3 figs., 2 tabs.

  17. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  18. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    PubMed

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities. PMID:26093796

  19. Removal of phosphorus from wastewaters using ferrous salts - a pilot scale membrane bioreactor study.

    PubMed

    Wang, Yuan; Tng, K Han; Wu, Hao; Leslie, Greg; Waite, T David

    2014-06-15

    A pilot scale membrane bioreactor (3.7 m(3)/day capacity), configured for alternate point ferrous sulphate addition, was evaluated in a fourteen month trial to comply with an effluent discharge requirement of less than 0.15 mg-P/L at the 50(th) percentile and less than 0.30 mg-P/L at the 90th percentile. Ferrous sulphate was added at a molar ratio (Fe(II):PO4) of 2.99 in the filtration chamber for 85 days and 2.60 in the primary anoxic zone for 111 days. Addition of ferrous salts to the anoxic zone achieved a final effluent phosphorous concentration (mg-P/L) of <0.05 (29%), <0.15 (77%) and <0.30 (95%), while addition of ferrous salts in the filtration zone achieved <0.05 (18%), <0.15 (63%) and <0.30 (95%). Analysis of the concentration of iron(II) in the supernatant indicated that phosphorus was mainly removed via adsorption to amorphous iron oxyhydroxides particles in both dosing scenarios. However, analysis of residence time distribution (RTD) data of the reactor indicated that severe short-circuiting from the dosing point to the membrane outlet could occur when the ferrous salts were added to the membrane zone while the reactor behaved close to a completely mixed reactor when dosing to the primary anoxic zone, resulting in improved phosphorus removal. The addition of ferrous salt was also found to delay the onset of severe increase in trans-membrane pressure as a result of the removal of macro-molecules. However, detailed analysis of the form and concentration of iron species in the supernatant and permeate indicated that the presence of fine iron particles resulted in a higher fouling rate when Fe(II) was added to the membrane zone rather than the primary anoxic zone and could cause more severe irreversible fouling in long-term operation. PMID:24709534

  20. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    PubMed Central

    Sears, Margaret E.

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease. PMID:23690738

  1. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  2. Changes of ferrous iron and its transporters after intracerebral hemorrhage in rats

    PubMed Central

    Wang, Gaiqing; Shao, Anwen; Hu, Weimin; Xue, Fang; Zhao, Hongping; Jin, Xiaojie; Li, Guanglai; Sun, Zhitang; Wang, Li

    2015-01-01

    Objective: Ferrous iron is a major source inducing oxidative stress after intracerebral hemorrhage (ICH). Divalent metal transporter1 (DMT1) is the important and well-known plasma membrane transport protein which was proved to be involved in the transport of free ferrous iron in mammals. Ferroportin 1 (FPN1) is the unique exporter of ferrous iron from mammalian cells. The role of DMT1 and FPN1 in brain after ICH is still not elucidated. Therefore, we measure the expression of DMT1 and FPN1, to explore the correlations between ferrous iron and its specific transporters after ICH. Methods: Ninety-six Sprague-Dawley rats received intra-striatal infusions of 0.5 U type IV collagenase to establish ICH model. Ferrous iron content in brain was determined using Turnbull’s method. DMT1 and FPN1 expression were examined by immunohistochemical staining and Real-Time quantitative polymerase chain reaction (RT-PCR). With the use of confocal laser microscopy, we determined the colocalization of DMT1 and FPN1 at 1, 3, 7 and 14 days after ICH. Results: Ferrous iron deposition was shown in the perihematomal zone as early as 1 day after ICH; it reached a peak after 7 days and was not elevated within 14 days following ICH. The expression of the DMT1 upregulated and reached to peak at day 7 after ICH. FPN1 reached a plateau at 3 days post-ICH. Expression levels of DMT1 and FPN1 were in parallel with ferrous iron deposition. There was a positive correlation between FPN1 and DMT1. DMT1 mainly localized in the cytoplasm of glias and neurons. FPN1 were mostly distributed on the membrane of endothelial cells and glias. Confocal microscope showed that DMT1 colocalized with FPN1. Conclusions: DMT1 and FPN1 are positively influenced by ferrous iron status in brain after ICH. DMT1 and FPN1 attenuate iron overload after ICH via increasing transmembrane iron export. PMID:26617777

  3. Development of an intelligent control system for ferrous iron oxidation by Thiobacillus ferrooxidans

    SciTech Connect

    Light, M.D.; Torma, A.E.; Cordes, G.A.

    1991-01-01

    An intelligent control system (ICS) is being developed for ferrous iron oxidation by Thiobacillus ferroxidans. The ICS provides compterized data acquisition and control of process variables (temperature, Eh, pH, dissolved oxygen and carbon dioxide concentrations, and dilution rate) to maintain the ferrous iron oxidation at the highest possible rate. The ICS uses fuzzy logic for analysis of data inputs and implementation of control strategies. This paper provides preliminary information on the development of the ICS and its operation. 17 refs., 3 figs.

  4. [Dithiols as chelators. A cause of bullous skin reactions].

    PubMed

    Storim, J; Stoevesandt, J; Anders, D; Kneitz, H; Bröcker, E-B; Trautmann, A

    2011-03-01

    Chelation therapy with (RS)-2,3-Bis(sulfonyl)propane-1-sulfonic acid (DMPS) after an occupational lead exposure led to the development of a severe bullous drug eruption. Skin tests and histology/immunohistology of the test reactions indicated a T-cell-mediated immune response against DMPS. Metal-binding thiol groups as in DMPS are chemically highly reactive and therefore effectively mediate the development of immunogenic hapten (DMPS)-protein complexes. Therefore, the pharmacological effects and sensitization potential of dithiols are tightly connected. Cross-reactivity of DMPS to other chelators like D-penicillamine is possible; the indications for chelation therapy should be weighed carefully. PMID:20945055

  5. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T. (El Cerrito, CA)

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  6. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  7. Sandstone Acidizing Using Chelating Agents and their Interaction with Clays 

    E-print Network

    George, Noble Thekkemelathethil 1987-

    2013-01-09

    of colloidal silica gel residue. Hence, compatibility of chelates with clay minerals was investigated through the static solubility tests. GLDA and HEDTA were analyzed for their permeability enhancement properties in Berea and Bandera cores. In the coreflood...

  8. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth (Berkeley, CA); Xu, Jide (Berkeley, CA)

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  9. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  10. Strategies for the preparation of bifunctional gadolinium(III) chelators

    PubMed Central

    Frullano, Luca; Caravan, Peter

    2012-01-01

    The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications. PMID:22375102

  11. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to ? -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  12. Electrokinetic remediation of concrete: effect of chelating agents.

    PubMed

    Popov, K; Glazkova, I; Yachmenev, V; Nikolayev, A

    2008-05-01

    Contamination of concrete at various nuclear power plants and spent nuclear fuel reprocessing facilities by radionuclides represents a significant problem for the world's nuclear power industries and nuclear waste management. The present publication summarizes the most recently published data on Electrokinetic Remediation (EK) of various concrete installations and advantageous effects of the combination of EK with different chelating agents. The specific aspects of decontamination of concrete and mortar surfaces are analyzed, such as: (a) effect of chelating agents (EDTA, citric acid), (b) effect of the zeta-potential (zeta) of concrete surface, (c) effects of sorption and complex formation equilibrium, and (d) specific advantages and problems of the electrokinetic decontamination process. The results of laboratory and in situ tests of chelating agent assisted EK removal of radionuclides are reported. It is demonstrated that the correct combination of EK with specific chelating agents can be effectively employed for decontamination of concrete surfaces. PMID:18313182

  13. The determination of ferric iron in plants by HPLC using the microbial iron chelator desferrioxamine E.

    PubMed

    Fernández, Victoria; Winkelmann, Günther

    2005-02-01

    Common methods for plant iron determination are based on atomic absorption spectroscopy, radioactive measurements or extraction with subsequent spectrophotometry. However, accuracy is often a problem due to background, contamination and interfering compounds. We here describe a novel method for the easy determination of ferric iron in plants by chelation with a highly effective microbial siderophore and separation by high performance liquid chromatography (HPLC). After addition of colourless desferrioxamine E (DFE) to plant fluids, the soluble iron is trapped as a brown-red ferrioxamine E (FoxE) complex which is subsequently separated by HPLC on a reversed phase column. The formed FoxE complex can be identified due to its ligand-to-metal charge transfer band at 435 nm. Alternatively, elution of both, DFE and FoxE can be followed as separate peaks at 220 nm wavelength with characteristic retention times. The extraordinarily high stability constant of DFE with ferric iron of K = 10(32) enables extraction of iron from a variety of ferrous and ferric iron compounds and allows quantitation after separation by HPLC without interference by coloured by-products. Thus, iron bound to protein, amino acids, citrate and other organic acid ligands and even insoluble ferric hydroxides and phosphates can be solubilized in the presence desferrioxamine E. The "Ferrioxamine E method" can be applied to all kinds of plant fluids (apoplasmic, xylem, phloem, intracellular) either at physiological pH or even at acid pH values. The FoxE complex is stable down to pH 1 allowing protein removal by perchloric acid treatment and HPLC separation in the presence of trifluoroacetic acid containing eluents. PMID:15865410

  14. Effects of adding glycerol and sucrose to ferrous xylenol orange hydrogel

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-11-01

    Glycerol and sucrose were substituted up to 40% by mass for water in ferrous xylenol gelatin hydrogel (FX). Both materials increased the refractive index of the aqueous component of the gels and lowered the optical scatter coefficient. Diffusion of the FX products was reduced 3-fold at 40% substitution levels. The radiation response was more stable with glycerol.

  15. COMBINATION LIMESTONE-LIME NEUTRALIZATION OF FERROUS IRON ACID MINE DRAINAGE

    EPA Science Inventory

    Studies were conducted on ferrous-iron acid mine drainage (AMD) treatment by a two-step neutralization process in which rock-dust limestone was mixed with the influent AMD and then hydrated lime was added in a polishing reactor. This combination treatment process resulted in reag...

  16. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...

  17. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behavior of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the FE3/Fe2+ couple in a Nernstian nanner. ew method for determining dissolved fer...

  18. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  19. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis

    E-print Network

    Chorover, Jon

    A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis immobilization of nitrate is parti- cularly perplexing because the thermodynamics of nitrate reduction in soils that explains abiotic immobilization of nitrate in forest soils. Because iron (and perhaps manganese) plays

  20. Non-heme iron as ferrous sulfate does not interact with heme iron absorption in humans.

    PubMed

    Gaitán, Diego; Olivares, Manuel; Lönnerdal, Bo; Brito, Alex; Pizarro, Fernando

    2012-12-01

    The absorption of heme iron has been described as distinctly different from that of non-heme iron. Moreover, whether heme and non-heme iron compete for absorption has not been well established. Our objective was to investigate the potential competition between heme and non-heme iron as ferrous sulfate for absorption, when both iron forms are ingested on an empty stomach. Twenty-six healthy nonpregnant women were selected to participate in two iron absorption studies using iron radioactive tracers. We obtained the dose-response curve for absorption of 0.5, 10, 20, and 50 mg heme iron doses, as concentrated red blood cells. Then, we evaluated the absorption of the same doses, but additionally we added non-heme iron, as ferrous sulfate, at constant heme/non-heme iron molar ratio (1:1). Finally, we compare the two curves by a two-way ANOVA. Iron sources were administered on an empty stomach. One factor analysis showed that heme iron absorption was diminished just by increasing total heme iron (P?ferrous sulfate did not have any effect on heme iron absorption (P?=?NS). We reported evidence that heme and non-heme iron as ferrous sulfate does not compete for absorption. The mechanism behind the absorption of these iron sources is not clear. PMID:22935997

  1. Martian weathering/alteration scenarios from spectral studies of ferric and ferrous minerals

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Adams, John B.; Morris, Richard V.

    1992-01-01

    We review the major aspects of our current knowledge of martian ferric and ferrous mineralogy based on the available ground-based telescopic and spacecraft data. What we know and what we don't know are used to constrain various weathering/alteration models and to identify key future measurements and techniques that can distinguish between these models.

  2. Energy conservation and efficiency in Giprokoks designs at Ukrainian ferrous-metallurgical enterprises

    SciTech Connect

    M.I. Fal'kov

    2009-07-15

    Energy conditions at Ukrainian ferrous-metallurgical enterprises are analyzed. Measures to boost energy conservation and energy efficiency are proposed: specifically, the introduction of systems for dry slaking of coke; and steam-gas turbines that employ coke-oven gas or a mixture of gases produced at metallurgical enterprises. Such turbines may be built from Ukrainian components.

  3. IN SITU CR(VI) TREATMENT USING A FERROUS IRON-BASED REDUCTANT

    EPA Science Inventory

    Laboratory and field studies were conducted to evaluate the performance of a ferrous sulfate/ sodium hydrosulfite (dithionite) reductant blend in treating a hexavalent chromium (Cr(VI)) source area and Cr(VI) dissolved phase plume at a former industrial site in Charleston, South ...

  4. 76 FR 31357 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... published a Federal Register Notice (76 FR 9810) announcing that we would submit this ICR to OMB for.... Geological Survey Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys... Metals Surveys. This collection consists of 17 forms. This notice provides the public and other...

  5. ORGANIC EMISSIONS FROM FERROUS METALLURGICAL INDUSTRIES: COMPILATION OF EMISSION FACTORS AND CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report gives results of a review and analysis of the information and data available in the public domain on organic emissions from the ferrous metallurgy industry, specifically the iron and steel, iron foundry, and ferroalloy industries. Emission sources and information gaps ...

  6. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    PubMed Central

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  7. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F. (Davis, CA); Li, Min (Davis, CA); DeNardo, Sally J. (El Macero, CA)

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  8. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors. PMID:15366904

  9. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  10. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  11. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    SciTech Connect

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-10-25

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.

  12. Iron Chelation Adherence to Deferoxamine and Deferasirox in Thalassemia

    PubMed Central

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A.; Porter, John; Coates, Thomas; Giardina, Patricia J.; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J.

    2015-01-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed (chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine and deferasirox were quite high, with slightly higher adherence to the oral chelator (97 vs. 92%). Ninety percent of patients on deferasirox reported at least 90% adherence, compared with 75% of patients on deferoxamine. Adherence to both chelators was highest in children, followed by adolescents and older adults. Predictors of lower deferoxamine adherence were smoking in the past year, problems sticking themselves (adults only), problems wearing their pump, and fewer transfusions in the past year. Predictors of lower deferasirox adherence were bodily pain and depression. Switching chelators resulted in increased adherence, regardless of the direction of the switch, although switching from deferoxamine to deferasirox was far more common. As adherence to deferoxamine is higher than previously reported, it appears beneficial for patients to have a choice in chelators. PMID:21523808

  13. Radiation-chemical and MR studies of aqueous agarose gels containing ferrous ions

    SciTech Connect

    Leghrous, A.A.

    1989-01-01

    Aqueous agarose gels containing ferrous ions, in 0.05 N sulfuric acid have been studied after irradiation with 6-18 MeV electrons or {sup 137}Cs {gamma}-rays. Such gels can sustain a radiolytic chain reaction, producing Fe{sup 3+} with G (Fe{sup 3+})-values up to 100 having been observed. The Fe{sup 3+} production is independent of dose rate between 0.434 and 3.74 Gy min{sup {minus}1}. Dissolved oxygen is needed to maintain the chain reaction, and initial ferric yields are increased if the gel is oxygen saturated or if the ferrous concentration is decreased below 1 mM. The oxidation of ferrous to ferric alters the magnetic moment of the ion and its electron spin relaxation time, which in turn affects its ability to promote proton spin relaxation rates. Longitudinal proton magnetic relaxation rates are increased in proportion to ferric production, permitting visualization of dose levels in these gels by magnetic resonance imaging (MRI) techniques. Non-uniform dose distribution images of electron irradiated ferrous/agarose (FA) systems have been obtained using MRI. Images of radiation doses surrounding capillary tubes filled with radioactive material embedded in PA systems have also been obtained. In this work, another new method of using the ferrous/agarose gel system doped with xylenol orange to visualize the radiation dose distribution directly by eye has been developed. The color change developed depends both quantitatively and qualitatively on the concentrations of solutes in the gel.

  14. Dissimilatory reduction of FeIII (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption.

    PubMed

    Ma, Bi-yao; Li, Wei; Jing, Guo-hua; Shi, Yao

    2004-01-01

    In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capable of binding NO. By adding iron metal or electrochemical method, FeIII(EDTA) can be reduced to FeII(EDTA). However, there are various drawbacks associated with these techniques. The dissimilatory reduction of FeIII(EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was investigated. Ammonium salt instead of nitrate was used as the nitrogen source, as nitrates inhibited the reduction of FeIII due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of FeII more than ethanol as the carbon sources. The microorganisms cultured at 50 degrees C were not very sensitive to the other experimental temperature, the reduction percentage of FeIII varied little with the temperature range of 30-50 degrees C. Concentrated Na2CO3 solution was added to adjust the solution pH to an optimal pH range of 6-7. The overall results revealed that the dissimilatory ferric reducing microorganisms present in the mix-culture are probably neutrophilic, moderately thermophilic FeIII reducers. PMID:15272717

  15. Differentiation between chelated and non-chelated DNA-Pt complexes by atomic absorption spectrophotometry.

    PubMed

    Macquet, J P; Theophanides, T

    1976-08-18

    As a continuation of our study of the properties of the cis-trans platinum series we have investigated the DNA-Pt complexes of [Pt(dien)Cl]Cl, cis-Pt (en)Cl2, cis-Pt (NH3)2Cl2 and K2[PtCl4] by atomic absorption spectrophotometry. The DNA-Pt complexes correspond to the saturation of the N7-(Guanine) sites. It has been found that the chelate complexes obtained with cis-Pt(en)Cl2, cis-Pt(NH3)2Cl1 and K2[PtCl4] show the same absorbance. The [Pt(dien)Cl]Cl and trans-Pt (NH3)2Cl2 which are bound to the N7 (tuanine) site only, show an absorbance greater than the chelate complexes by a factor of two. In addition, it has been possible in the case of the trans-Pt (NH3)CCl1 complex to follow the fixation of platinum to DNA by atomic absorption spectrophotometry. The result is similar to the ionic chlorine liberation procedure reported previously. PMID:953006

  16. The magnesium chelation step in chlorophyll biosynthesis

    SciTech Connect

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  17. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper.

    PubMed

    Mukherjee, Indrani; Campbell, Nathan H; Ash, Joshua S; Connolly, Erin L

    2006-05-01

    The Arabidopsis FRO2 gene encodes the iron deficiency-inducible ferric chelate reductase responsible for reduction of iron at the root surface; subsequent transport of iron across the plasma membrane is carried out by a ferrous iron transporter (IRT1). Genome annotation has identified seven additional FRO family members in the Arabidopsis genome. We used real-time RT-PCR to examine the expression of each FRO gene in different tissues and in response to iron and copper limitation. FRO2 and FRO5 are primarily expressed in roots while FRO8 is primarily expressed in shoots. FRO6 and FRO7 show high expression in all the green parts of the plant. FRO3 is expressed at high levels in roots and shoots, and expression of FRO3 is elevated in roots and shoots of iron-deficient plants. Interestingly, when plants are Cu-limited, the expression of FRO6 in shoot tissues is reduced. Expression of FRO3 is induced in roots and shoots by Cu-limitation. While it is known that FRO2 is expressed at high levels in the outer layers of iron-deficient roots, histochemical staining of FRO3-GUS plants revealed that FRO3 is predominantly expressed in the vascular cylinder of roots. Together our results suggest that FRO family members function in metal ion homeostasis in a variety of locations in the plant. PMID:16362328

  18. Oxidative Transformations of Ferrous Iron-Bearing Smecitites: Routes to Martian Nontronites

    NASA Astrophysics Data System (ADS)

    Beehr, A. R.; Catalano, J. G.

    2011-12-01

    Data collected by the OMEGA spectrometer and the CRISM instrument indicate the presence of iron-bearing phyllosilicates on Mars' surface. Identified species include chlorite, saponite (Mg-rich smectite), and nontronite (Fe(III)-bearing smectite). The observed phyllosilicates occur in units that were deposited during the Noachian, which is thought to have had chemically reducing and alkaline conditions. Phyllosilicates are expected aqueous weathering products of basaltic minerals; the aqueous activity may have occurred episodically and hydrothermally, or as prolonged, low temperature alteration. Aqueous alkaline and reducing conditions favor the initial formation of ferrous iron-bearing phyllosilicates; subsequent surface alteration events are required to have oxidized these units into ferric smectites. Understanding the formation and oxidation of ferrous phyllosilicates can offer insight into the early Martian environment by allowing us to determine by what mechanism the oxidation occurred. We have investigated chemical and structural changes that occur upon oxidation of a synthetic ferrous saponite to determine the conditions under which such a process can produce nontronite or other ferric smectites. Both H2O2 and NO3- were used as oxidants. Hydrogen peroxide is likely the dominant oxidant currently present on Mars and nitrate is a plausible oxidant produced through photochemical processes. Deposition of photochemical nitrate is observed in the Antarctic dry valleys where it co-occurs with perchlorate, which was recently identified in Martian soil by the Phoenix lander. The initial ferrous saponite contains Fe(II) in the octahedral sheet. X-ray absorption spectroscopy (XAS) indicates that in the presence of a 1m nitrate solution under hydrothermally conditions the ferrous saponite undergoes oxidation to an Fe(III)-bearing phyllosilicate. Similar oxidation is not observed at 22°C, but this appears to be a kinetic phenomenon as oxidation is thermodynamically favorable. In contrast, exposure to hydrogen peroxide causes significant oxidation regardless of temperature. However, oxidation at 22°C produces a poorly crystalline material lacking substantial structural Fe. Recrystallization upon aging under mild hydrothermal conditions (150°C) produces an Fe(III)-bearing phyllosilicate. X-ray diffraction indicates that this oxidized phyllosilicate is a 2:1 clay with lattice parameters similar to nontronite. XAS demonstrates that this oxidized clay contains Fe in similar local coordiation environments as two nontronite standards, NAu-2 and SWa-1. In both systems the need for hydrothermal aging to produce a nontronite-like clay likely reflects the slow rate of crystallization of smectites at room temperature on laboratory timescales rather than changes in their favorabtility of formation. Oxidation of ferrous smectites formed through weathering of basalt under reducing conditions is thus a viable formation pathway for the observed Martian nontronites.

  19. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-07-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review. PMID:25457281

  20. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N. (Berkeley, CA); Xu, Jide (Berkeley, CA)

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  1. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  2. Ab Initio Coordination Chemistry for Nickel Chelation Motifs

    PubMed Central

    Jesu Jaya Sudan, R.; Lesitha Jeeva Kumari, J.; Sudandiradoss, C.

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  3. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    SciTech Connect

    Troutner, D.E.; Schlemper, E.O.

    1990-01-25

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report.

  4. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  5. Porphyromonas gingivalis Ferrous Iron Transporter FeoB1 Influences Sensitivity to Oxidative Stress ?

    PubMed Central

    Anaya-Bergman, Cecilia; He, Jia; Jones, Kevin; Miyazaki, Hiroshi; Yeudall, Andrew; Lewis, Janina P.

    2010-01-01

    Porphyromonas gingivalis FeoB1 is a ferrous iron transporter. Analysis of parental and feoB1-deficient strains of the periodontal pathogen revealed that the feoB1-deficient mutant strain had an increased ability to survive oxidative stress. Specifically, survival of the mutant strain was increased 33% with exposure to peroxide and 5% with exposure to atmospheric oxygen compared to the parental strain. Interestingly, the ability to survive intracellularly also increased fivefold in the case of the feoB1-deficient mutant. Our data suggest that although the FeoB1 protein is required for ferrous iron acquisition in P. gingivalis, it also has an adverse effect on survival of the bacterium under oxidative stress conditions. Finally, we show that feoB1 expression is not iron dependent and is dramatically reduced in the presence of host cells, consistent with the observed deleterious role it plays in bacterial survival. PMID:19917713

  6. Laser beam welding non-ferrous metals. (Latest citations from METADEX). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning techniques and the evaluation of laser beam welding of non-ferrous metals. Welding parameters, such as incident laser power and welding speed, are reviewed in relation to their characterization of weld microstructure. Weld examination techniques are cited, including macrophotography, light and electron microscopy, and microhardness profiling. (Contains a minimum of 170 citations and includes a subject term index and title list.)

  7. Stress corrosion cracking of several high strength ferrous and nickel alloys

    NASA Technical Reports Server (NTRS)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  8. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates

    PubMed Central

    Mikhailov, Oleg V.

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis. PMID:24516711

  9. Inflammation induced by photocoagulation laser is minimized by copper chelators

    PubMed Central

    Cui, Jing Z.; Wang, Xue-Feng; Hsu, Lena

    2014-01-01

    The effect of trientine hydrochloride (TRIEN), a copper-selective chelating agent, on retinal inflammation induced by photocoagulation laser treatment was studied. Nine Long-Evans rats were treated with TRIEN (0.5 mmol/kg per day, intraperitoneal injection) for 9 days. On day 8, each animal underwent unilateral photocoagulation laser treatment with an argon dye laser. On day 9, animals were killed and the eyes processed for immunohistochemistry and light microscopy. In the TRIEN-treated group, retinal thickness and number of macrophages (ED-1) were both significantly lower than in the saline-treated, control group exposed to laser photocoagulation. The results support the hypothesis that selective copper chelation prior to laser treatment may inhibit ocular inflammation. The results suggest that pretreatment with a selective copper-chelating compound can minimize retinal inflammation secondary to laser photocoagulation treatment, which may improve overall outcome of photocoagulation treatment for diabetic retinopathy. PMID:18566852

  10. Inflammation induced by photocoagulation laser is minimized by copper chelators.

    PubMed

    Cui, Jing Z; Wang, Xue-Feng; Hsu, Lena; Matsubara, Joanne A

    2009-07-01

    The effect of trientine hydrochloride (TRIEN), a copper-selective chelating agent, on retinal inflammation induced by photocoagulation laser treatment was studied. Nine Long-Evans rats were treated with TRIEN (0.5 mmol/kg per day, intraperitoneal injection) for 9 days. On day 8, each animal underwent unilateral photocoagulation laser treatment with an argon dye laser. On day 9, animals were killed and the eyes processed for immunohistochemistry and light microscopy. In the TRIEN-treated group, retinal thickness and number of macrophages (ED-1) were both significantly lower than in the saline-treated, control group exposed to laser photocoagulation. The results support the hypothesis that selective copper chelation prior to laser treatment may inhibit ocular inflammation. The results suggest that pretreatment with a selective copper-chelating compound can minimize retinal inflammation secondary to laser photocoagulation treatment, which may improve overall outcome of photocoagulation treatment for diabetic retinopathy. PMID:18566852

  11. Gastrointestinal Complications of Ferrous Sulfate in Pregnant Women: A Randomized Double-Blind Placebo-Controlled Trial

    PubMed Central

    Jafarbegloo, Esmat; Ahmari Tehran, Hoda; Dadkhah Tehrani, Tahmineh

    2015-01-01

    Background: Some pregnant women discontinue iron supplements consumption due to Gastrointestinal (GI) complications, whereas pregnancy induces the same complications physiologically. Objectives: The aim of the present study was to assess GI complications of ferrous sulfate in pregnant women. Patients and Methods: This randomized, double-blind, placebo-controlled clinical trial was performed on 176 pregnant women referred to prenatal care clinic of Maryam Hospital from April 2011 to February 2012. Pregnant women with Hb ? 13.2 gr/dL at 13th - 18th weeks of gestation were selected based on the inclusion criteria and were randomly assigned to the ferrous sulfate and placebo groups. The ferrous sulfate group (n = 90) received a 50-mg ferrous sulfate tablet daily from the 20th week to the end of pregnancy and the placebo group (n = 89) received one placebo tablet in the same way. All participants were visited twice at 24th - 28th and 32nd - 36th weeks to assess the GI complications as well as Hb level to determine the Hb changes in two groups. Chi-square test, t-test and Kolmogorov-Smirnov test were used to analyze the data. P value of < 0.05 and confidence level of 95% were considered as statistically significant. Results: None of the GI complications were significantly different between the ferrous sulfate and placebo groups at 24th - 28th and 32nd - 36th weeks. Hemoglobin drop lower than 10.5 gr/dL at 24th - 28th weeks or lower than 11 g/dL at 32nd - 36th weeks was not observed in any cases. Conclusions: It can be concluded that GI complications in pregnant women using ferrous sulfate are mostly caused by physiologic changes of pregnancy rather than ferrous sulfate; therefore, it is not reasonable to stop using ferrous sulfate due to GI complications. PMID:26430520

  12. Stable intermediate-spin ferrous iron in lower-mantle perovskite

    SciTech Connect

    McCammon, C.; Kantor, I.; Narygina, O.; Rouquette, J.; Ponkratz, U.; Sergueev, I.; Mezouar, M.; Prakapenka, V.; Dubrovinsky, L.

    2008-11-10

    The lower mantle is dominated by a magnesium- and iron-bearing mineral with the perovskite structure. Iron has the ability to adopt different electronic configurations, and transitions in its spin state in the lower mantle can significantly influence mantle properties and dynamics. However, previous studies aimed at understanding these transitions have provided conflicting results. Here we report the results of high-pressure (up to 110 GPa) and high-temperature (up to 1,000 K) experiments aimed at understanding spin transitions of iron in perovskite at lower-mantle conditions. Our Moessbauer and nuclear forward scattering data for two lower-mantle perovskite compositions demonstrate that the transition of ferrous iron from the high-spin to the intermediate-spin state occurs at approximately 30 GPa, and that high temperatures favour the stability of the intermediate-spin state. We therefore infer that ferrous iron adopts the intermediate-spin state throughout the bulk of the lower mantle. Our X-ray data show significant anisotropic compression of lower-mantle perovskite containing intermediate-spin ferrous iron, which correlates strongly with the spin transition. We predict spin-state heterogeneities in the uppermost part of the lower mantle associated with sinking slabs and regions of upwelling. These may affect local properties, including thermal and electrical conductivity, deformation (viscosity) and chemical behaviour, and thereby affect mantle dynamics.

  13. LITERATURE REVIEW: REDUCTION OF NP(V) TO NP (IV)-ALTERNATIVES TO FERROUS SULFAMATE

    SciTech Connect

    Kessinger, G.; Kyser, E.; Almond, P.

    2009-09-28

    The baseline approach to control of Np oxidation in UREX and PUREX separation processes is the reduction of Np(V) and Np(VI) to Np(IV) using ferrous sulfamate. Use of this reagent results in increased sulfur and iron concentrations in the liquid waste streams from the process. Presence of these two elements, especially sulfur, increases the complexity of the development of wasteforms for immobilizing these effluents. Investigations are underway to identify reductants that eliminate sulfur and iron from the Np reduction process. While there are a variety of chemical reductants that will reduce Np to Np(IV) in nitric acid media, the reaction rates for most are so slow that the reductants are not be feasible for use in an operating plant process. In an attempt to identify additional alternatives to ferrous sulfamate, a literature search and review was performed. Based on the results of the literature review, it is concluded that photochemical and catalytic processes should also be investigated to test the utility of these two approaches. The catalytic process could be investigated for use in conjunction with chemical oxidants to speed the reaction rates for reductants that react slowly, but would otherwise be appropriate replacements for ferrous sulfamate. The photochemical approach, which has received little attention during the past few decades, also shows promise, especially the photocatalytic approach that includes a catalyst, such as Pt supported on SiC, which can be used in tandem with an oxidant, for Np reduction.

  14. Dissolution of nickel ferrite in aqueous solutions containing oxalic acid and ferrous salts

    SciTech Connect

    Figueroa, C.A.; Sileo, E.E.; Morando, P.J.; Blesa, M.A.

    2000-05-15

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni{sub 1.06}Fe{sub 1.96}O{sub 4}. The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite. It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel.

  15. Folding process of silk fibroin induced by ferric and ferrous ions

    NASA Astrophysics Data System (ADS)

    Ji, Dan; Deng, Yi-Bin; Zhou, Ping

    2009-12-01

    Bombyx mori silk fiber has useful mechanical properties largely due to a high content of ordered ?-sheet crystallites separated by non-crystalline spacers. Metallic ions present in the silk dope in nature could affect the ?-sheet content. In this work, we used solid-state 13C NMR, EPR and Raman spectroscopy to investigate how the ferric/ferrous ions affect the folding process of the silk fibroin. NMR and Raman results indicate that ferric and ferrous ions have different effects on the secondary structure of silk fibroin. Ferric ions can induce a conformation change from helix to ?-sheet form in silk fibroin when their concentration exceeds a critical value, while ferrous ions cannot. EPR results indicate that the ferric ions bound with silk fibroin have a high-spin state ( S = 5/2) with g-value of g1 = 1.950, g2 = 1.990 and g3 = 1.995, zero-field splitting interaction D of 1.2-2 cm -1, and symmetric character of E/ D = 1/3, resulting in an effective g-value of g' = 4.25. The hydrophilic spacer GTGSSGFGPYVAN(H)GGYSGYEYAWSSESDFGT in the heavy chain of silk fibroin is likely to be involved in the binding of ferric ions, and His, Asn and Tyr residues are considered as the potential binding sites.

  16. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    SciTech Connect

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  17. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  18. Structure and energetics of solvated ferrous and ferric ions: Car-Parrinello molecular dynamics in the DFT+U formalism

    E-print Network

    P. H. -L. Sit; Matteo Cococcioni; Nicola Marzari

    2007-01-12

    We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car-Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT+U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexa-aqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe-O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe-O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions.

  19. Car–Parrinello molecular dynamics in the DFT + U formalism: Structure and energetics of solvated ferrous and ferric ions

    SciTech Connect

    Sit, P H L.; Cococcioni, Matteo; Marzari, Nicola N.

    2007-09-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car–Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT + U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexaaqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe–O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe–O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions.

  20. Modeling ferrous ferric iron chemistry with application to martian surface geochemistry

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.; Catling, David C.

    2008-01-01

    The Mars Global Surveyor, Mars Exploration Rover, and Mars Express missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major recent mission findings are the presence of jarosite (a ferric sulfate salt), which requires formation from an acid-sulfate brine, and the occurrence of hematite and goethite on Mars. Recent ferric iron models have largely focused on 25 °C, which is a major limitation for models exploring the geochemical history of cold bodies such as Mars. Until recently, our work on low-temperature iron-bearing brines involved ferrous but not ferric iron, also obviously a limitation. The objectives of this work were to (1) add ferric iron chemistry to an existing ferrous iron model (FREZCHEM), (2) extend this ferrous/ferric iron geochemical model to lower temperatures (<0 °C), and (3) use the reformulated model to explore ferrous/ferric iron chemistries on Mars. The FREZCHEM model is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Ferric chloride and sulfate mineral parameterizations were based, in part, on experimental data. Ferric oxide/hydroxide mineral parameterizations were based exclusively on Gibbs free energy and enthalpy data. New iron parameterizations added 23 new ferrous/ferric minerals to the model for this Na-K-Mg-Ca-Fe(II)-Fe(III)-H-Cl-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-H 2O system. The model was used to develop paragenetic sequences for Rio Tinto waters on Earth and a hypothetical Martian brine derived from acid weathering of basaltic minerals. In general, model simulations were in agreement with field evidence on Earth and Mars in predicting precipitation of stable iron minerals such as jarosites, goethite, and hematite. In addition, paragenetic simulations for Mars suggest that other iron minerals such as lepidocrocite, schwertmannite, ferricopiapite, copiapite, and bilinite may also be present on the surface of Mars. Evaporation or freezing of the Martian brine led to similar mineral precipitates. However, in freezing, compared to evaporation, the following key differences were found: (1) magnesium sulfates had higher hydration states; (2) there was greater total aqueous sulfate (SO 4T = SO 4 + HSO 4) removal; and (3) there was a significantly higher aqueous Cl/SO 4T ratio in the residual Na-Mg-Cl brine. Given the similarities of model results to observations, alternating dry/wet and freeze/thaw cycles and brine migration could have played major roles in vug formation, Cl stratification, and hematite concretion formation on Mars.

  1. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life. PMID:26593563

  2. Molecular mechanisms of in vivo metal chelation: implications for clinical treatment of metal intoxications.

    PubMed Central

    Andersen, Ole; Aaseth, Jan

    2002-01-01

    Successful in vivo chelation treatment of metal intoxication requires that a significant fraction of the administered chelator in fact chelate the toxic metal. This depends on metal, chelator, and organism-related factors (e.g., ionic diameter, ring size and deformability, hardness/softness of electron donors and acceptors, route of administration, bioavailability, metabolism, organ and intra/extracellular compartmentalization, and excretion). In vivo chelation is not necessarily an equilibrium reaction, determined by the standard stability constant, because rate effects and ligand exchange reactions considerably influence complex formation. Hydrophilic chelators most effectively promote renal metal excretion, but they complex intracellular metal deposits inefficiently. Lipophilic chelators can decrease intracellular stores but may redistribute toxic metals to, for example, the brain. In chronic metal-induced disease, where life-long chelation may be necessary, possible toxicity or side effects of the administered chelator may be limiting. The metal selectivity of chelators is important because of the risk of depletion of the patient's stores of essential metals. Dimercaptosuccinic acid and dimercaptopropionic sulfonate have gained more general acceptance among clinicians, undoubtedly improving the management of many human metal intoxications, including lead, arsenic, and mercury compounds. Still, development of new safer chelators suited for long-term oral administration for chelation of metal deposits (mainly iron), is an important research challenge for the future. PMID:12426153

  3. EDTA Chelation Therapy, Without Added Vitamin C, Decreases Oxidative DNA Damage and Lipid Peroxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chelation therapy is thought to not only remove contaminating metals, but also to decrease free radical production. However, in standard EDTA chelation therapy high doses of vitamin C with potential prooxidant effects are often added to the chelation solution. We demonstrated previously that the in...

  4. First Chelated Chiral N-Heterocyclic Bis-Carbene Complexes

    E-print Network

    RajanBabu, T. V. "Babu"

    First Chelated Chiral N-Heterocyclic Bis-Carbene Complexes Dean S. Clyne, Jian Jin, Evan Genest metal complexes of N-heterocyclic car- benes,1 received little attention until the report of free metal under catalytic condi- tions.3,4 The N-heterocyclic carbene complexes have been applied

  5. Efficacy of reversal of aortic calcification by chelating agents

    PubMed Central

    Lei, Yang; Sinha, Aditi; Vyavahare, Naren

    2013-01-01

    Elastin specific medial vascular calcification, termed Monckeberg’s sclerosis has been recognized as a major risk factor for various cardiovascular events. We hypothesize that chelating agents, such as disodium ethylene diamine tetraacetic acid (EDTA), diethylene triamine pentaacetic acid (DTPA) and sodium thiosulfate (STS) might reverse elastin calcification by directly removing calcium (Ca) from calcified tissues into soluble calcium complexes. We assessed the chelating ability of EDTA, DTPA, and STS on removal of calcium from hydroxyapatite (HA) powder, calcified porcine aortic elastin, and calcified human aorta in vitro. We show that both EDTA and DTPA could effectively remove calcium from HA and calcified tissues, while STS was not effective. The tissue architecture was not altered during chelation. In the animal model of aortic elastin-specific calcification, we further show that local periadventitial delivery of EDTA loaded in to poly (lactic-co-glycolic acid) (PLGA) nanoparticles regressed elastin specific calcification in the aorta. Collectively, the data indicate that elastin-specific medial vascular calcification could be reversed by chelating agents. PMID:23963635

  6. Chelation-controlled regioselective alkylation of pyrimidine 2'-deoxynucleosides.

    PubMed

    Lucas, R; Teste, K; Zerrouki, R; Champavier, Y; Guilloton, M

    2010-01-26

    Protection-deprotection steps, which are usually needed for regioselective alkylation of pyrimidine deoxynucleosides, can be avoided by choosing the appropriate solvent. The combined effects of low dielectric constant and possible sodium chelation by pyrimidine nucleosides may account for the unexpected regioselectivity observed in THF. PMID:19932891

  7. Role of thermodynamic and kinetic parameters in gadolinium chelate stability.

    PubMed

    Idée, Jean-Marc; Port, Marc; Robic, Caroline; Medina, Christelle; Sabatou, Monique; Corot, Claire

    2009-12-01

    In recent years there has been a renewed interest in the physicochemical properties of gadolinium chelates (GC). The aim of this review is to discuss the physicochemical properties of marketed GC with regard to possible biological consequences. GC can be classified according to three key molecular features: 1) the nature of the chelating moiety: either macrocyclic molecules in which Gd(3+) is caged in the preorganized cavity of the ligand, or linear, open-chain molecules; 2) ionicity: the ionicity of the molecule varies from neutral to tri-anionic agents; and 3) the presence or absence of an aromatic lipophilic moiety, which has a profound impact on the biodistribution of the GC. These parameters can also explain why GC differ considerably with regard to their thermodynamic stability constants and kinetic stability, as demonstrated by numerous studies. The concept of thermodynamic and kinetic stability is critically discussed, as it remains somewhat controversial, especially in predicting the amount of free gadolinium that may result from decomplexation of chelates in physiologic or pathologic situations. This review examines the possibility that the high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) can minimize the amount of free Gd(3+) released in the body. J. Magn. Reson. Imaging 2009;30:1249-1258. (c) 2009 Wiley-Liss, Inc. PMID:19938037

  8. Scintigraphic monitoring of immunotoxins using radionuclides and heterobifunctional chelators

    SciTech Connect

    Reardan, D.; Bernhard, S.

    1991-10-22

    This patent describes a method for in vivo radioimmunodetection of cytotoxic immunotoxin. It comprises administering internally to a mammal a radio-labeled immunotoxin, wherein a heterobifunctional chelating agent provides a chemical bridge between a radiolabel and a cytotoxic component bound to the antigen-binding component of the immunotoxin, and detecting externally the distribution of the immunotoxin in the mammal.

  9. Chelation And Extraction Of Metals For GC-MS Analysis

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    1995-01-01

    Chelation followed by supercritical-fluid extraction enables mass-spectrometric analysis. When fully developed, method implemented in field-portable apparatus for detection and quantification of metals in various matrices without need for elaborate preparation of samples. Used to analyze soil samples for toxic metals.

  10. Evaluation of intakes of transuranics influenced by chelation therapy

    SciTech Connect

    LaBone, T.R.

    1994-02-01

    Once an intake of transuranics occurs, there are only three therapeutic procedures available to the physician for reducing the intake and mitigating the dose: excision of material from wounds, removal of material from the lungs with lavage, and chelation therapy. The only chelation agents approved in the United States for the treatment of occupational intakes of transuranics are the zinc and calcium salts of diethylene-triamine-pentaacetic acid, better known as Zn-DTPA and Ca-DTPA. In the past 35 years, approximately 3000 doses of DTPA have been administrated to over 500 individuals who had intakes of transuranics. The drug is considered to be quiet safe and has few side effects. For the internal dosimetrist, perhaps the most important aspects of chelation therapy is that if enhances the excretion rate of a transuranic and perturbs the shape of the urinary excretion curve. These perturbations last for months and are so great that standard urinary excretion models cannot be used to evaluate the intake. We review here a method for evaluating intakes of transuranics influenced by chelation therapy that has been used with some degree of success at the Savannah River Site for over 20 years.

  11. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  12. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    PubMed Central

    2011-01-01

    Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose. PMID:22074910

  13. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  14. Oxygen isotope fractionation of dissolved oxygen during reduction by ferrous iron

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Poulson, Simon R.

    2009-01-01

    The oxygen isotope fractionation factor of dissolved oxygen gas has been measured during inorganic reduction by aqueous FeSO 4 at 10-54 °C under neutral (pH 7) and acidic (pH 2) conditions, with Fe(II) concentrations ranging up to 0.67 mol L -1, in order to better understand the geochemical behavior of oxygen in ferrous iron-rich groundwater and acidic mine pit lakes. The rate of oxygen reduction increased with increasing temperature and increasing Fe(II) concentration, with the pseudo-first-order rate constant k ranging from 2.3 to 82.9 × 10 -6 s -1 under neutral conditions and 2.1 to 37.4 × 10 -7 s -1 under acidic conditions. The activation energy of oxygen reduction was 30.9 ± 6.6 kJ mol -1 and 49.7 ± 13.0 kJ mol -1 under neutral and acidic conditions, respectively. Oxygen isotope enrichment factors ( ?) become smaller with increasing temperature, increasing ferrous iron concentration, and increasing reaction rate under acidic conditions, with ? values ranging from -4.5‰ to -11.6‰. Under neutral conditions, ? does not show any systematic trends vs. temperature or ferrous iron concentration, with ? values ranging from -7.3 to -10.3‰. Characterization of the oxygen isotope fractionation factor associated with O 2 reduction by Fe(II) will have application to elucidating the process or processes responsible for oxygen consumption in environments such as groundwater and acidic mine pit lakes, where a number of possible processes (e.g. biological respiration, reduction by reduced species) may have taken place.

  15. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Bates, C.E.; Griffin, J.; Giese, S.R.; Lane, A.M.

    1996-01-31

    This is the final report covering work performed on research into methods of attaining clean ferrous castings. In this program methods were developed to minimize the formation of inclusions in steel castings by using a variety of techniques which decreased the tendency for inclusions to form during melting, casting and solidification. In a second project, a reaction chamber was built to remove inclusions from molten steel using electromagnetic force. Finally, a thorough investigation of the causes of sand penetration defects in iron castings was completed, and a program developed which predicts the probability of penetration formation and indicates methods for avoiding it.

  16. Clean Ferrous Casting Technology Research. Annual report, September 29, 1993--September 28, 1994

    SciTech Connect

    Stefanescu, D.M.; Lane, A.M.; Giese, S.R.; Pattabhi, R.; El-Kaddah, N.H.; Griffin, J.; Bates, C.E.; Piwonka, T.S.

    1994-10-01

    This annual report covers work performed in the first year of research on Clean Ferrous Casting Technology Research. During this year the causes of penetration of cast iron in sand molds were defined and a program which predicts the occurrence of penetration was written and verified in commercial foundries. Calculations were made to size a reaction chamber to remove inclusions from liquid steel using electromagnetic force and the chamber was built. Finally, significant progress was made in establishing pouring practices which avoid re-oxidation of steel during pouring application of revised pouring practices have led to reduced inclusion levels in commercially poured steel castings.

  17. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  18. Radiolytic formation of ferrous and ferric ions in carbon steel - deaerated water system

    NASA Astrophysics Data System (ADS)

    ?uba, Václav; Silber, Rostislav; Mú?ka, Viliam; Pospíšil, Milan; Neufuss, Sob?slav; Bárta, Jan; Vokál, Antonín

    2011-03-01

    The influence of gamma irradiation on the formation of Fe ions was investigated with respect to the expected ingress of groundwater into the disposal site with spent nuclear fuel containers. Deaerated conditions were ensured by working in an inert atmosphere. The kinetics of Fe 2+ and Fe 3+ formation in the presence of ionizing radiation was studied. Radiation increases the amount of corrosion products; it affects their composition mainly via radiation oxidation of ferrous to ferric ions. Characterization of crystalline solid corrosion products using X-ray powder diffraction was performed. Predominantly magnetite and lepidocrocite were found in solid phase.

  19. Competitive Inhibition of Ferrous Iron Oxidation by Thiobacillus ferrooxidans by Increasing Concentrations of Cells

    PubMed Central

    Suzuki, Isamu; Lizama, Hector M.; Tackaberry, Patrick D.

    1989-01-01

    The oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) with dioxygen (O2) by various strains of Thiobacillus ferrooxidans was studied by measuring the rate of O2 consumption at various Fe2+ concentrations and cell concentrations. The apparent Km values for Fe2+ remained constant at different cell concentrations of laboratory strains ATCC 13661 and ATCC 19859 but increased with increasing cell concentrations of mine isolates SM-4 and SM-5. The latter results are explained by the competitive inhibition of the Fe2+-binding site of a cell by other cells in the reaction mixture. Possible mechanisms involving cell surface properties are discussed. PMID:16347904

  20. Characterization of Jarosite Formed upon Bacterial Oxidation of Ferrous Sulfate in a Packed-Bed Reactor †

    PubMed Central

    Grishin, Sergei I.; Bigham, Jerry M.; Tuovinen, Olli H.

    1988-01-01

    A packed-bed bioreactor with activated-carbon particles as a carrier matrix material inoculated with Thiobacillus ferrooxidans was operated at a pH of 1.35 to 1.5 to convert ferrous sulfate to ferric sulfate. Despite the low operating pH, trace amounts of precipitates were produced in both the reactor and the oxidized effluent. X-ray diffraction and chemical analyses indicated that the precipitates were well-ordered potassium jarosite. The chemical analyses also revealed a relative deficiency of Fe and an excess of S in the reactor sample compared with the theoretical composition of potassium jarosite. Images PMID:16347799

  1. Hydrocracking with molten zinc chloride catalyst containing 2-12% ferrous chloride

    DOEpatents

    Zielke, Clyde W. (McMurray, PA); Bagshaw, Gary H. (Library, PA)

    1981-01-01

    In a process for hydrocracking heavy aromatic polynuclear carbonaceous feedstocks to produce hydrocarbon fuels boiling below about 475.degree. C. by contacting the feedstocks with hydrogen in the presence of a molten zinc chloride catalyst and thereafter separating at least a major portion of the hydrocarbon fuels from the spent molten zinc chloride catalyst, an improvement comprising: adjusting the FeCl.sub.2 content of the molten zinc chloride to from about 2 to about 12 mol percent based on the mixture of ferrous chloride and molten zinc chloride.

  2. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  3. Ferrous Analysis.

    ERIC Educational Resources Information Center

    Straub, William A.

    1989-01-01

    Elements covered in this review include: aluminum, antimony, arsenic, bismuth, boron, calcium, carbon, chromium, cobalt, copper, hydrogen, iron, lead, magnesium, manganese, molybdenum, nickel, niobium, nitrogen, oxygen, phosphorus, platinum, rare earths, silicons, sulfur, tin, titanium, tungsten, vanadium, zinc, and zirconium. Analytical methods…

  4. Minisequencing with acyclonucleoside triphosphates tethered to lanthanide(III) chelates.

    PubMed

    Ollikka, Pia; Ylikoski, Alice; Kaatrasalo, Annukka; Harvala, Heli; Hakala, Harri; Hovinen, Jari

    2008-06-01

    Four acyclic nucleoside triphosphates (derivatives of cytosine, thymine, 7-deazaadenine, and 7-deazaguanine) labeled with nonluminescent europium, terbium, dysprosium, and samarium chelates of 2,2',2'',2'''-[[4-(4-isothiocyanatophenyl)ethyl]pyridine-2,6-diyl]bis(methylenenitrilo)]tetrakis(acetic acid) were applied to minisequencing using two mutations (Delta F 508 and 1717-1 G to A) of cystic fibrosis as a model system. When synthetic targets were used, all four alleles involved could be analyzed in a single reaction using four terminating substrates labeled with four different lanthanide(III) chelates and DELFIA technology for detection. Blood spot samples without DNA isolations were used for PCR amplification and genotyping the target mutations by minisequencing. The single- and dual-labeled minisequencing assays were robust, while the four-label assay still requires further optimization of the multiplexed PCR amplification. PMID:18505280

  5. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities. PMID:25466035

  6. Iron overload and chelation therapy in myelodysplastic syndromes.

    PubMed

    Temraz, Sally; Santini, Valeria; Musallam, Khaled; Taher, Ali

    2014-07-01

    Iron overload remains a concern in MDS patients especially those requiring recurrent blood transfusions. The consequence of iron overload may be more relevant in patients with low and intermediate-1 risk MDS who may survive long enough to experience such manifestations. It is a matter of debate whether this overload has time to yield organ damage, but it is quite evident that cellular damage and DNA genotoxic effect are induced. Iron overload may play a critical role in exacerbating pre-existing morbidity or even unmask silent ones. Under these circumstances, iron chelation therapy could play an integral role in the management of these patients. This review entails an in depth analysis of iron overload in MDS patients; its pathophysiology, effect on survival, associated risks and diagnostic options. It also discusses management options in relation to chelation therapy used in MDS patients and the impact it has on survival, hematologic response and organ function. PMID:24529413

  7. A Novel Antimycobacterial Compound Acts as an Intracellular Iron Chelator

    PubMed Central

    Dragset, Marte S.; Poce, Giovanna; Alfonso, Salvatore; Padilla-Benavides, Teresita; Ioerger, Thomas R.; Kaneko, Takushi; Sacchettini, James C.; Biava, Mariangela; Parish, Tanya; Argüello, José M.

    2015-01-01

    Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound. PMID:25645825

  8. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    SciTech Connect

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  9. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  10. Tests of stability on waste produced in pilot plant testing using ferrous{center_dot}EDTA and magnesium-enhanced lime for combined SO{sub 2}/NO{sub x} removal

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.

    1994-03-01

    A pilot-plant-scale study of combined sulfur dioxide/nitrogen oxides (SO{sub 2}/NO{sub x}) removal has been performed by the Dravo Lime Company at the Cincinnati Gas and Electric Company`s Miami Fort Station in North Bend, Ohio. This study used Dravo`s patented Thiosorbic{reg_sign} lime process, utilizing a magnesium-enhanced lime, along with Argonne National Laboratory`s (ANL`s) patented ARGONOX metal-chelate additive, ferrous{center_dot}ethylenediaminetetraacetic acid (Fe{center_dot}EDTA). For approximately nine months, scrubbing tests were carried out, and waste samples were collected. Waste testing at ANL involved two types of long-term chemical stability experiments. In one experiment, the gas-phase composition above several different samples was studied by mass spectrometry over a period of about 22 months. Significant changes were noted for oxygen (O{sub 2}), carbon dioxide (CO{sub 2}), and hydrogen sulfide (H{sub 2}S) gases. The other experiment involved solid-phase leaching using the Toxicity Characteristic Leaching Procedure (TCLP). Samples were stored for up to 14 months before leaching. Then each leachate was tested for total Kjeldahl nitrogen and for some nitrogen-containing species. Total leachable nitrogen was found to stabilize after about the first seven months of storage.

  11. Chelating compounds as potential flash rust inhibitors and melamine & aziridine cure of acrylic colloidal unimolecular polymers (CUPs)

    NASA Astrophysics Data System (ADS)

    Mistry, Jigar Kishorkumar

    Waterborne coatings on ferrous substrates usually show flash rusting which decreases the adhesion of the coating and the corrosion products can form a stain. Chelating compounds were investigated as potential flash rust inhibitors. Compounds being evaluated include amine alcohols, diamines and sulfur containing amines. A new corrosion inhibitor 2,5-bis(thioaceticacid)-1,3,4-thiadiazole (H2ADTZ) was synthesized and its performance characteristics were evaluated. It was noted that the observed structure of 1,3,4-thiadiazolidine-2,5-dithione (also known as 2,5-dimercapto-1,3,4-thiadiazole (DMTD or DMcT)) has been previously reported in three different tautomeric forms including -dithiol and -dithione. The relative stability of each form as well as the synthesis and characterization of the structures of mono- and dialkylated forms of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) were examined. The methods of X-ray crystallography, NMR spectroscopy and ab-initio electronic structure calculations were combined to understand the reactivity and structure of each compound. Polymers were synthesized with a 1:7 or 1:8 ratio of acrylic acid to acrylate monomers to produce an acid rich resin. The polymers were reduced and solvent stripped to produce Colloidal Unimolecular Polymers (CUPs). These particles are typically 3-9 nanometers in diameter depending upon the molecular weight. They were then formulated into a clear coating with either a melamine (bake) or an aziridine (ambient cure) and then cured. The melamine system was solvent free, a near zero VOC and the aziridine system was very low to near zero VOC. The coatings were evaluated for their MEK resistance, adhesion, hardness, gloss, flexibility, wet adhesion, abrasion and impact resistance properties.

  12. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, John B. L. (Naperville, IL); Doctor, Richard D. (Glen Ellyn, IL); Wingender, Ronald J. (Deerfield, IL)

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  13. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson's Disease

    PubMed Central

    Moreau, Caroline; Devedjian, Jean Christophe; Kluza, Jérome; Petrault, Maud; Laloux, Charlotte; Jonneaux, Aurélie; Ryckewaert, Gilles; Garçon, Guillaume; Rouaix, Nathalie; Duhamel, Alain; Jissendi, Patrice; Dujardin, Kathy; Auger, Florent; Ravasi, Laura; Hopes, Lucie; Grolez, Guillaume; Firdaus, Wance; Sablonnière, Bernard; Strubi-Vuillaume, Isabelle; Zahr, Noel; Destée, Alain; Corvol, Jean-Christophe; Pöltl, Dominik; Leist, Marcel; Rose, Christian; Defebvre, Luc; Marchetti, Philippe; Cabantchik, Z. Ioav; Bordet, Régis

    2014-01-01

    Abstract Aims: The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. Results: For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30?mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. Innovation: A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. Conclusions: The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD. Antioxid. Redox Signal. 21, 195–210. PMID:24251381

  14. EFFECT OF TEMPERATURE ON THE SORPTION OF CHELATED RADIONUCLIDES.

    USGS Publications Warehouse

    Maest, Ann S.; Crerar, David A.; Dillon, Edward C.; Trehu, Stephen M.; Rountree, Tamara N.

    1985-01-01

    Temperature effects in the near-field radioactive waste disposal environment can result in changes in the adsorptive capacity and character of the substrate and the chemistry of the reacting fluids. This work examines the effect of temperature on 1) the kinetics of radionuclide sorption onto clays from 25 degree -75 degree C and 2) the degradation and metal-binding ability of two organic complexing agents found in chelated radioactive wastes and natural groundwaters.

  15. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  16. Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. [in primitive earth

    NASA Technical Reports Server (NTRS)

    Borowska, Zofia K.; Mauzerall, David C.

    1987-01-01

    A possible origin of early hydrogen by UV-induced photoreduction of ferrous ions was investigated by measuring the rate of H2 formation from irradiated FeSO4 solutions as a function of pH and the range of UV sources. It was found that, in addition to the known reaction in acid solution which decreases in yield with increasing pH and requires far-UV light, there is an efficient reaction occurring between pH 6 and 9 which utilizes near-UV light (of a 200-W mercury arc lamp). This latter reaction is a linear function of both the concentration of Fe(2+) and the light intensity. These results support the suggestion of Braterman et al. (1983) that the near-UV-driven photooxidation of ferrous ions may be responsible for the origin of the banded iron formations on the early earth. The efficient photoreaction could also explain the source of reducing equivalents for CO2 reduction.

  17. Studies with Ferrous Sulfamate and Alternate Reductants for 2nd Uranium Cycle

    SciTech Connect

    Crowder, M.L.

    2003-01-15

    A wide range of miniature mixer-settler tests were conducted to determine the source of iron and sulfur contamination in the uranium product stream (''1EU'') of H Canyon's 2nd Uranium Cycle. The problem was reproduced on the laboratory scale mixer-settlers by changing the feed location of ferrous sulfamate from stage D4 to stage D1. Other process variables effected no change. It was later determined that ferrous sulfamate (FS) solids had plugged the FS line to stage D4, causing FS to backup a ventline and enter the Canyon process at stage D1. Pluggage was almost certainly due to precipitation of FS solids during extended process downtime. During the search for the root cause, tests showed that FS solids were quite small (1-10 mm), and a portion of them could bypass the current Canyon prefilter (3-mm). Also, additional tests were done to find an alternate means of reducing and thereby removing plutonium and neptunium from the uranium product. These tests showed that FS was a more effective reductant than either ascorbic acid or a hydroxylamine nitrate (HAN) / dilute FS combination.

  18. A ferrous oxalate mediated photo-Fenton system: toward an increased biodegradability of indigo dyed wastewaters.

    PubMed

    Vedrenne, Michel; Vasquez-Medrano, Ruben; Prato-Garcia, Dorian; Frontana-Uribe, Bernardo A; Hernandez-Esparza, Margarita; de Andrés, Juan Manuel

    2012-12-01

    This study assessed the applicability of a ferrous oxalate mediated photo-Fenton pretreatment for indigo-dyed wastewaters as to produce a biodegradable enough effluent, likely of being derived to conventional biological processes. The photochemical treatment was performed with ferrous oxalate and hydrogen peroxide in a Compound Parabolic Concentrator (CPC) under batch operation conditions. The reaction was studied at natural pH conditions (5-6) with indigo concentrations in the range of 6.67-33.33 mg L(-1), using a fixed oxalate-to-iron mass ratio (C(2)O(4)(2-)/Fe(2+)=35) and assessing the system's biodegradability at low (257 mg L(-1)) and high (1280 mg L(-1)) H(2)O(2) concentrations. In order to seek the optimal conditions for the treatment of indigo dyed wastewaters, an experimental design consisting in a statistical surface response approach was carried out. This analysis revealed that the best removal efficiencies for Total Organic Carbon (TOC) were obtained for low peroxide doses. In general it was observed that after 20 kJ L(-1), almost every treated effluent increased its biodegradability from a BOD(5)/COD value of 0.4. This increase in the biodegradability was confirmed by the presence of short chain carboxylic acids as intermediate products and by the mineralization of organic nitrogen into nitrate. Finally, an overall decrease in the LC(50) for Artemia salina indicated a successful detoxification of the effluent. PMID:23142056

  19. Ferrous alloy metallurgy, liquid lithium corrosion and welding. Final report, April 1, 1973-March 31, 1984

    SciTech Connect

    Olson, D.L.; Matlock, D.K.

    1984-01-01

    This research program consists of two parts: an evaluation of the corrosion behavior of ferrous alloys in liquid lithium, and a study of microstructure development and properties of dissimilar metal weldments. A ten-year overview of the research accomplishments made is presented. The effects of liquid lithium on both uniform corrosion and grain boundary penetration in ferrous alloys has been investigated as a function of time, temperature, base metal alloy content, and liquid lithium nitrogen content. Kinetic equations for the various corrosion processes have been developed and analyzed with respect to models for corrosion and corrosion product development. The effects of liquid lithium on mechanical properties, particularly fatigue, have been studied. Results have shown that in both austenitic stainless steels and ferritic steels, liquid lithium significantly reduces the mechanical integrity of all materials by inducing liquid metal embrittlement. A model for liquid metal embrittlement induced damage during fatigue was developed and shown to correlate with the experimental results. Microstructural development in austenitic weld metal, with particular emphasis on new grades with reduced chromium contents, has been investigated. The microstructures have been correlated with alloy content and the basics of a thermodynamic model for predicting weld metal microstructure has been developed. The high temperature mechanical behavior of dissimilar metal weldments (austenitic stainless steel to ferritic steel) has been investigated with the impression-creep test technique. Observed microstructural changes with position across the weldment are shown to correlate directly with creep behavior. A model based on deformation of composite materials was developed.

  20. Prospects for Ukrainian ferrous metals in the post-soviet period

    USGS Publications Warehouse

    Levine, R.M.; Bond, A.R.

    1998-01-01

    Two specialists on the mineral industries of the countries of the former USSR survey current problems confronting producers of ferrous metals in Ukraine and future prospects for domestic production and exports. A series of observations documenting the importance of ferrous metals production to Ukraine's economy is followed by sections describing investment plans and needs in the sector, and the role played by Ukraine within the iron and steel industry of the Soviet Union. The focus then turns to assessment of the current regional and global competitive position of Ukrainian producers for each of the major commodities of the sector-iron ore, manganese ore, ferroalloys, steel, and the products of the machine manufacturing and metal working industries. In conclusion, the paper discusses a potential regional industrial integration strategy analogous to that employed in the United States' Great Lakes/Midwest region, which possesses similar types of iron ore deposits and similar transport cost advantages and metallurgical and manufacturing industries. Journal of Economic Literature, Classification Numbers: F14, L61, L72. 1 table, 26 references.

  1. The photochemical origins of life and photoreaction of ferrous ion in the archaean oceans

    NASA Astrophysics Data System (ADS)

    Mauzerall, David C.

    1990-05-01

    A general argument is made for the photochemical origins of life. A constant flux of free energy is required to maintain the organized state of matter called life. Solar photons are the unique source of the large amounts of energy probably require to initiate this organization and certainly required for the evolution of life to occur. The completion of this argument will require the experimental determination of suitable photochemical reactions. Our work shows that biogenetic porphyrins readily photooxidize substrates and emit hydrogen in the presence of a catalyst. These results are consistent with the Granick hypothesis, which relates a biosynthetic pathway to its evolutionary origin. We have shown that photoexcitation of ferrous ion at neutral pH with near ultraviolet light produces hydrogen with high quantum yield. This same simple system may reduce carbon dioxide to formaldehyde and further products. These reactions offer a solution to the dilemma confronting the Oparin-Urey-Miller model of the chemical origin of life. If carbon dioxide is the main form of carbon on the primitive earth, the ferrous photoreaction may provide the reduced carbon necessary for the formation of amino acids and other biogenic molecules. These results suggest that this progenitor of modern photosynthesis may have contributed to the chemical origins of life.

  2. Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron.

    PubMed

    Nefso, E K; Burns, S E; McGrath, C J

    2005-08-31

    Trinitrotoluene (TNT), a nitroaromatic explosive, is a commonly encountered groundwater contaminant in the United States that can pose a human health risk, even at very low aqueous concentrations. This study describes the process characteristics of abiotic degradation of dissolved TNT in the presence of ferrous iron (Fe2+) and six different minerals-processes relevant to a more complete understanding of reduced iron technologies in TNT cleanup. Kinetic degradation batch reactions involving combinations of TNT, ferrous iron, six minerals with varying cation exchange capacity, and two pH buffers were performed. The rate of TNT degradation was quantified using high performance liquid chromatography (HPLC). Unbuffered reactions between TNT, Fe2+, and magnetite, pyrite, quartz, and goethite/quartz were insignificant. However, unbuffered reactions between TNT, Fe2+, and calcite and siderite proceeded rapidly to completion. The difference in reaction rates was attributable to the elevated pH in the presence of the latter minerals. For reactions performed in buffered systems with pH 7.4, degradation followed a second-order kinetics rate law. For reactions in buffered systems with pH 9.0, the reactions proceeded to completion almost instantaneously. The presence of the mineral solid surface was necessary for TNT reduction to proceed, with the most rapid reaction rates occurring in the presence of a suspected hydroxy solid phase that formed at high pH. PMID:15961226

  3. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  4. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae.

    PubMed

    Wyckoff, Elizabeth E; Mey, Alexandra R; Leimbach, Andreas; Fisher, Carolyn F; Payne, Shelley M

    2006-09-01

    Vibrio cholerae has multiple iron acquisition systems, including TonB-dependent transport of heme and of the catechol siderophore vibriobactin. Strains defective in both of these systems grow well in laboratory media and in the infant mouse intestine, indicating the presence of additional iron acquisition systems. Previously uncharacterized potential iron transport systems, including a homologue of the ferrous transporter Feo and a periplasmic binding protein-dependent ATP binding cassette (ABC) transport system, termed Fbp, were identified in the V. cholerae genome sequence. Clones encoding either the Feo or the Fbp system exhibited characteristics of iron transporters: both repressed the expression of lacZ cloned under the control of a Fur-regulated promoter in Escherichia coli and also conferred growth on a Shigella flexneri mutant that has a severe defect in iron transport. Two other ABC transporters were also evaluated but were negative by these assays. Transport of radioactive iron by the Feo system into the S. flexneri iron transport mutant was stimulated by the reducing agent ascorbate, consistent with Feo functioning as a ferrous transporter. Conversely, ascorbate inhibited transport by the Fbp system, suggesting that it transports ferric iron. The growth of V. cholerae strains carrying mutations in one or more of the potential iron transport genes indicated that both Feo and Fbp contribute to iron acquisition. However, a mutant defective in the vibriobactin, Fbp, and Feo systems was not attenuated in a suckling mouse model, suggesting that at least one other iron transport system can be used in vivo. PMID:16952942

  5. The photochemical origins of life and photoreaction of ferrous ion in the archaean oceans

    NASA Technical Reports Server (NTRS)

    Mauzerall, David C.

    1990-01-01

    A general argument is made for the photochemical origins of life. A constant flux of free energy is required to maintain the organized state of matter called life. Solar photons are the unique source of the large amounts of energy probably required to initiate this organization and certainly required for the evolution of life to occur. The completion of this argument will require the experimental determination of suitable photochemical reactions. It is shown that biogenetic porphyrins readily photooxidize substrates and emit hydrogen in the presence of a catalyst. These results are consistent with the Granick hypothesis, which relates a biosynthetic pathway to its evolutionary origin. It has been shown that photoexcitation of ferrous ion at neutral pH with near ultraviolet light produces hydrogen with high quantum yield. This same simple system may reduce carbon dioxide to formaldehyde and further products. These reactions offer a solution to the dilemma confronting the Oparin-Urey-Miller model of the chemical origin of life. If carbon dioxide is the main form of carbon on the primitive earth, the ferrous photoreaction may provide the reduced carbon necessary for the formation of amino acids and other biogenic molecules. These results suggest that this progenitor of modern photosynthesis may have contributed to the chemical origins of life.

  6. Enzymes hydrolyzing structural components and ferrous ion cause rusty-root symptom on ginseng (Panax ginseng).

    PubMed

    Lee, Chanyong; Kim, Kwang Yup; Lee, Jo-Eun; Kim, Sunghan; Ryu, Dongkul; Choi, Jae-Eul; An, Gilhwan

    2011-02-01

    Microbial induction of rusty-root was proved in this study. The enzymes hydrolyzing plant structural materials, including pectinase, pectolyase, ligninase, and cellulase, caused the rusty-root in ginseng. Pectinase and pectolyase produced the highest rusty-color formation. Ferrous ion (Fe+++) caused the synergistic effect on rusty-root formation in ginseng when it was used with pectinase. The effect of ferric ion (Fe++) on rusty-root formation was slow, compared with Fe+++, probably due to gradual oxidation to Fe+++. Other metal ions including the ferric ion (Fe++) did not affect rusty-root formation. The endophytic bacteria Agrobacterium tumefaciens, Lysobacter gummosus, Pseudomonas veronii, Pseudomonas marginalis, Rhodococcus erythropolis, and Rhodococcus globerulus, and the rotten-root forming phytophathogenic fungus Cylindrocarpon destructans, caused rusty-root. The polyphenol formation (rusty color) was not significantly different between microorganisms. The rotten-root-forming C. destructans produced large quantities of external cellulase activity (about 2.3 U[micronM/min/mg protein]), which indicated the pathogenecity of the fungus, whereas the bacteria produced 0.1-0.7 U. The fungal external pectinase activities (0.05 U) and rusty-root formation activity were similar to those of the bacteria. In this report, we proved that microbial hydrolyzing enzymes caused rusty-root (Hue value 15 degrees) of ginseng, and ferrous ion worsened the symptom. PMID:21364303

  7. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-01

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. PMID:25463240

  8. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- ? (A ?), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A ? that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A ? or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  9. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T. (Louisville, OH)

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  10. Increased inorganic mercury in spinal motor neurons following chelating agents.

    PubMed

    Ewan, K B; Pamphlett, R

    1996-01-01

    Heavy metal toxicity has been implicated in the pathogenesis of motor neuron diseases. In an attempt to assess the efficacy of chelating agents to remove mercury from motor neurons, we quantitated the effect of the chelating agents meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3- dimercaptopropane -1-sulphonate (DMPS) on the burden of inorganic mercury in mouse spinal motor neurons. Mice were injected intraperitoneally with 1.0 mg HgCl2/kg body weight and one week later with either 4,400 mg/kg DMPS, 3,600 mg/kg DMSA or 5% NaHCO3 (control) over 4 weeks. Mercury deposits in motor neurons of 50 micron frozen sections of lumbar spinal cord were visualised with an autometallographic technique. Optical sections of silver-enhanced deposits were acquired using a confocal microscope in reflective mode and the volume of the deposits within the perikaryon was estimated. Mercury deposits occupied significantly more volume in motor neurons after both DMPS (7.4%, SD +/- 0.7%) and DMSA (8.0% +/- SD 0.7%) treatment than in controls (4.3%, SD +/- 1.7%). The higher levels of neuronal inorganic mercury may be due to increased entry of mercury into motor axons across the neuromuscular junction as a result of chelator-induced elevated circulating mercury. PMID:8856730

  11. Chemical Fixation of Trace Elements in Coal Fly Ash using Ferrous Sulfate Treatment

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.

    2008-12-01

    Coal fired electric power plants produce 50% of the electricity consumed in the US and generate large volumes of fly ash and other coal combustion by-products (CCBs). The majority of the CCB materials are disposed of in surface impoundments and landfills located throughout the US. Fly ash contains trace elements such as As, B, Cr, Mo, Ni, Se, Sr and V which can have a negative impact on the environment due to leaching by acid rain and groundwater with time. The potential release of these toxic trace elements into the environment is a big concern for the US power industry due to the high cost involved in lining the old and existing ash disposal sites. As a result, simple and effective treatment techniques are needed to stabilize the coal combustion by-products produced by power plants in the ash disposal sites and also to increase the use of coal fly ash for beneficial purposes. This paper reports the results of batch experiments designed to chemically treat coal fly ash with ferrous sulfate solution by promoting the formation of insoluble iron oxy- hydroxide phases that immobilize the toxic trace elements. Four fly ash samples, three acidic (HA, HB and MA) and one alkaline (PD), were treated with a ferrous sulfate (FS) solution (322 ppm Fe) and a ferrous sulfate + calcium carbonate (FS+CC) solution (322 ppm Fe and 28 ppm CaCO3) at solid:liquid ratios of 1:3 and 1:30. The effectiveness of this treatment technique was evaluated by the batch sequential leaching of treated and untreated coal fly ash samples using a synthetic acid rain (SAR) solution (USEPA Method 1312B) and also by a 7-step sequential chemical extraction procedure (SCEP) to understand the mechanism of treatment. The unbuffered FS solution at the 1:30 ratio was highly successful in reducing the mobility of the oxyanionic trace elements As (24-91%), Cr (82-97%), Mo (79-100%), Se (41-87%) and V (55-100%). However, the unbuffered FS treatment failed to reduce the mobility of B, Ni and Sr for the acidic fly ash samples. The buffered FS + CC solution greatly increased the mobility of the oxyanionic trace elements in the acidic fly ash samples, except for Cr in HA and HB fly ash. The buffered FS+CC solution reduced the mobility of all the trace elements except Ni in the alkaline PD fly ash. The ferrous sulfate treatment can be applied directly to the fresh fly ash produced in the electric power plants as well as to the fly ash already placed in the ash disposal facilities. A preliminary estimate indicates that ferrous sulfate treatment of fly ash at a power plant would be cost effective.

  12. Novel hexadentate and pentadentate chelators for 64Cu-based targeted PET imaging

    PubMed Central

    Sin, Inseok; Kang, Chisoo; Bandara, Nilantha; Sun, Xiang; Zhong, Yongliang; Rogers, Buck E.; Chong, Hyun-Soon

    2014-01-01

    A series of new hexadentate and pentadentate chelators were designed and synthesized as chelators of 64Cu. The new pentadentate and hexadentate chelators contain different types of donor groups and are expected to form neutral complexes with Cu(II). The new chelators were evaluated for complex kinetics and stability with 64Cu. The new chelators instantly bound to 64Cu with high labeling efficiency and maximum specific activity. All 64Cu-radiolabeled complexes in human serum remained intact for 2 days. The 64Cu-radiolabeled complexes were further challenged by EDTA in a 100-fold molar excess. Among the 64Cu-radiolabeled complexes evaluated, 64Cu-complex of the new chelator E was well tolerated with a minimal transfer of 64Cu to EDTA. 64Cu-radiolabeled complex of the new chelator E was further evaluated for biodistribution studies using mice and displayed rapid blood clearance and low organ uptake. 64Cu-chelator E produced a favorable in vitro and in vivo complex stability profiles comparable to 64Cu complex of the known hexadentate NOTA chelator. The in vitro and in vivo data highlight strong potential of the new chelator E for targeted PET imaging application. PMID:24657050

  13. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "clean? labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ?1 to ?10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ?10(2)  mPa·s. In more viscous solutions (up to ?10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality. PMID:26220302

  14. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  15. FERROUS METALS RECOVERY AT RECOVERY 1, NEW ORLEANS: PERFORMANCE OF THE MODIFIED SYSTEM. TEST NO. 4.05 AND TEST NO. 4.09, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    This report documents two series of samplings and the monitoring of enery consumption and shredder hammer wear of the upgraded ferrous recovery system that produces a light ferrous product from the processing of municipal refuse at the New Orleans resource recovery project. A ser...

  16. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 ?mol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator. PMID:26033030

  17. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89†

    PubMed Central

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; Magda, Darren; Wadas, Thaddeus J.

    2015-01-01

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 (89Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with 89Zr and are highly stable in vitro. They represent a novel class of chelators, which are worthy of further development as BFCs for 89Zr. PMID:25556851

  18. [AAS determination of trace lead, cadmium, copper and nickel by enrichment with 2-mercaptobenzimidazole chelating cellulose].

    PubMed

    Chen, Z

    1998-10-01

    Chelating cellulose is of simple preparation,excellent nature and low cost. MBM chelating cellulose was prepared with good chelating reagent (2-mercaptobenzimidazole) grafted on cotton by indirect etherification method. Four heavy metal ions in one solution can be simultaneously preconcentrated and eluted under good condition. Results have shown that the approach for separating and preconcentrating trace of Cu, Pb, Cd and Ni has advantages of high exchanging speed, high preconcentration multiple, high selectivity, easy elution and excellent results. PMID:15825377

  19. The Ferrous Iron-Responsive BqsRS Two-Component System Activates Genes That Promote Cationic Stress Tolerance

    E-print Network

    Heaton, Thomas H.

    Pseudomonas aeruginosa. Previously, we showed that bioavailable ferrous iron [Fe(II)] is present in CF sputum is a severe problem in the context of chronic infections. For example, the mucus-filled lungs of cystic at all stages of infection and constitutes a significant portion of the iron pool at advanced stages

  20. INJECTION OF A FERROUS SULFATE/SODIUM DITHIONITE REDUCTANT FOR IN-SITU TREATMENT OF HEXAVALENT CHROMIUM

    EPA Science Inventory

    An in situ pilot study was conducted to evaluate the performance of a ferrous iron-based reductant solution in treating hexavalent chromium within a saturated zone source area at a former industrial site in Charleston, South Carolina (USA). The hexavalent source area, consisting...

  1. Selective dissolution of magnetic iron oxides in the acidammonium oxalate/ferrous iron extraction method--I. Synthetic samples

    E-print Network

    Utrecht, Universiteit

    Selective dissolution of magnetic iron oxides in the acid­ammonium oxalate/ferrous iron extraction of magnetite and maghemite in the acid­ammonium oxalate method to see whether the method is suitable mechanism during the experiments (see Appendix A), we used an adapted version of the acid­ammonium oxalate

  2. Application of cross-flow ultrafiltration for the determination of colloidal abundances in suboxic ferrous-rich ground waters

    E-print Network

    Buesseler, Ken

    such as underground waste storage and drinking water safety. Groundwater colloids can migrate through the porous media ferrous-rich ground waters Martin Hassellöv a,b,, Ken O. Buesseler a , Steven M. Pike a , Minhan Dai a,c a Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA

  3. Formation and characterization of an all-ferrous Rieske cluster and stabilization of the [2Fe-2S]0

    E-print Network

    Ullmann, G. Matthias

    of coupled reactions at iron­sulfur clusters and of the factors that determine the relative stabilities of their different oxidation states are discussed. Iron­sulfur (FeS) clusters are essential to all forms of life /0 couple is 1.0 V below the [2Fe-2S]2 /1 couple. The two cluster-bound ferrous irons are both high

  4. Arsenic Encapsulation Using Portland Cement With Ferrous Sulfate/Lime And Terra-BondTM Technologies - Microcharacterization And Leaching Studies

    EPA Science Inventory

    This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-BondTM, a commercially available patented technology. The arsenic materials treated we...

  5. IMPROVEMENT OF MAGNETICALLY SEPARATED FERROUS CONCENTRATE BY SHREDDING: A PERFORMANCE TEST. TEST NO. 4.07, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    This report describes a series of test runs in which ferrous product magnetically recovered from municipal waste was further shredded in a small (50 hp) hammermill to free attached or entrapped contaminant. A belt magnet was then used to separate metal from the liberated contamin...

  6. Use of a Ferrous Sulfate - Sodium Dithionite Blend to Treat a Dissolved Phase Cr(VI) Plume

    EPA Science Inventory

    A field study was conducted to evaluate the use of a combination of sodium dithionite and ferrous sulfate in creating an in situ redox zone for treatment of a dissolved phase Cr(VI) plume at a former industrial site. The reductant blend was injected into the path of a dissolved ...

  7. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation

    PubMed Central

    Kosman, Daniel J.

    2012-01-01

    Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron’s aqueous chemistry, occurs as ‘rust’, insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H2O)6]3+. Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting FeII which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the ‘rusting out’ of FeIII and the ROS-generating autoxidation of FeII so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology. PMID:23264695

  8. Evaluation of a ferrous benzoic xylenol orange transparent PVA cryogel radiochromic dosimeter

    NASA Astrophysics Data System (ADS)

    Eyadeh, Molham M.; Farrell, Thomas J.; Diamond, Kevin R.

    2014-04-01

    A stable cryogel dosimeter was prepared using ferrous benzoic xylenol orange (FBX) in a transparent poly-(vinyl alcohol) (PVA) cryogel matrix. Dose response was evaluated for different numbers of freeze-thaw cycles (FTCs), different concentrations of PVA, and ratios of water/dimethyl sulfoxide. Linear relationships between dose and absorbance were obtained in the range of 0-1000 cGy for all formulations. Increasing the concentration of PVA and number of FTCs resulted in increased absorbance and sensitivity. The effects of energy and dose rate were also evaluated. No significant dose rate dependence was observed over the range 1.05 to 6.33 Gy min-1. No energy response was observed over photon energies of 6, 10, and 18 MV.

  9. Tribological Behavior of Ferrous-Based APS Coatings Under Dry Sliding Conditions

    NASA Astrophysics Data System (ADS)

    Vencl, Aleksandar

    2015-04-01

    The use of Al-alloys for engine blocks production, instead of e.g., gray cast iron, results with weight savings and lower fuel consumption and therefore, reduces pollution. Possible solution for overcoming poor tribological properties of Al-alloys is the application of thermal spray coatings. In this paper, the tribological properties of two ferrous-based coatings were analyzed and compared with gray cast iron as a standard material for engine blocks. The process used for coating deposition on an Al-Si alloy substrate was atmospheric plasma spraying. In order to investigate the tribological behavior of these coatings under dominant adhesive and abrasive wear regime, two tests were applied with different test equipments and conditions. Both tribological tests showed that, for the investigated conditions, both coatings had improved wear resistance and lower coefficient of friction compared with gray cast iron.

  10. Reactivity of an All-Ferrous Iron-Nitrogen Heterocubane under Reductive and Oxidative Conditions.

    PubMed

    Lichtenberg, Crispin; Prokopchuk, Demyan E; Adelhardt, Mario; Viciu, Liliana; Meyer, Karsten; Grützmacher, Hansjörg

    2015-10-26

    The reactivity of the all-ferrous FeN heterocubane [Fe4 (Ntrop)4 ] (1) with i)?Brønsted acids, ii)??-donors, iii)??-donors/?-acceptors, and iv)?one-electron oxidants has been investigated (trop = 5H-dibenzo[a,d]cyclo-hepten-5-yl). 1 showed self-re-assembling after reactions with i) and proved surprisingly inert in reactions with ii) and iii), with the exception of CO. Reductive and oxidative cluster degradation was observed in reactions with CO and TEMPO, respectively. These reactions yielded new cluster compounds, namely a trinuclear bis(?3 -imido) 48 electron complex in the former case and a tetranuclear all ferric ?-oxo-?-imido species in the latter case. Characterization techniques include NMR and in situ IR spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, cyclic voltammetry, magnetic susceptibility measurements, and DFT calculations. PMID:26374167

  11. Hydrogen peroxide-independent generation of superoxide catalyzed by soybean peroxidase in response to ferrous ion.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-11-01

    It is well documented that extracellular alkalization occurs in plants under the challenges by pathogenic microbes. This may eventually induce the pH-dependent extracellular peroxidase-mediated oxidative burst at the site of microbial challenges. By employing the purified proteins of horseradish peroxidase as a model, we have recently proposed a likely role for free Fe(2+) in reduction of ferric enzyme of plant peroxidases into ferrous intermediate and oxygen-bound form of enzyme known as Compound III which may eventually releases superoxide anion radical (O2(•-)), especially under alkaline condition, possibly contributing to the plant defense mechanism. In the present study, we employed the purified protein of soybean peroxidase (SBP) as an additional model, and examined the changes in the redox status of enzyme accompanying the generation of O2(•-) in response to Fe(2+) under alkaline condition. PMID:26417938

  12. Active removal of ibuprofen by Money plant enhanced by ferrous ions.

    PubMed

    Chehrenegar, Behdad; Hu, Jiangyong; Ong, Say Leong

    2016-02-01

    In this study, the removal of ibuprofen (IBP), a pharmaceutical compound, from aqueous media by Money plant (Epipremnum aureum) was investigated. The effect of ferrous iron (Fe(2+)) on enhancing the IBP removal rate was also analyzed. The first-order removal rate constants showed higher values for lower IBP initial concentrations in the range of 0.20-0.28 d(-1) for an initial concentration of 125 ?g L(-1) to 0.03-0.13 d(-1) for an initial concentration of 1000  ?g L(-1). Introducing ferrous iron to the aqueous media enhanced the first-order removal rate constant up to 6.5 times in a 3 d time period. Along with the removal of IBP from the media, the endogenous concentration of H2O2 also decreased presumably by the production of hydroxyl radical (OH). Reduction in the endogenous H2O2 concentration was recorded to be 38% and 98% in the absence and presence of Fe(2+) respectively in the first day and the H2O2 level remained considerably low until day 7 which then gradually increased slightly. Simultaneous reduction of IBP and endogenous H2O2 concentration could be due to the reaction of IBP with OH and presumably OH production itself accelerated via Fenton reaction. In addition, presence of sodium bicarbonate (NaHCO3) as OH scavenger in the system showed reduction of first-order removal rate constant from 1.30 d(-1) to 0.07 d(-1) which could be a possible evidence of biological advanced oxidation process which is believed to play an important role in phytoremediation. PMID:26347930

  13. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study.

    PubMed

    Wander, Matthew C F; Kerisit, Sebastien; Rosso, Kevin M; Schoonen, Martin A A

    2006-08-10

    Uranium is a pollutant whose mobility is strongly dependent on its oxidation state. While U(VI) in the form of the uranyl cation is readily reduced by a range of natural reductants, by contrast complexation of uranyl by carbonate greatly reduces its reduction potential and imposes increased electron transfer (ET) distances. Very little is known about the elementary processes involved in uranium reduction from U(VI) to U(V) to U(IV) in general. In this study, we examine the theoretical kinetics of ET from ferrous iron to triscarbonato uranyl in aqueous solution. A combination of molecular dynamics (MD) simulations and density functional theory (DFT) electronic structure calculations is employed to compute the parameters that enter into Marcus' ET model, including the thermodynamic driving forces, reorganization energies, and electronic coupling matrix elements. MD simulations predict that two ferrous iron atoms will bind in an inner-sphere fashion to the three-membered carbonate ring of triscarbonato uranyl, forming the charge-neutral ternary Fe(2)UO(2)(CO(3))(3)(H(2)O)(8) complex. Through a sequential proton-coupled electron-transfer mechanism (PCET), the first ET step converting U(VI) to U(V) is predicted by DFT to occur with an electronic barrier that corresponds to a rate on the order of approximately 1 s(-1). The second ET step converting U(V) to U(IV) is predicted to be significantly endergonic. Therefore, U(V) is a stabilized end product in this ET system, in agreement with experiment. PMID:16884201

  14. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ?0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. PMID:25966327

  15. Optical Imaging of Radiation Dose Distributions in a Ferrous-Gelatin Orange Gel Dosimeter.

    NASA Astrophysics Data System (ADS)

    Fried, Richard Marc

    A new tissue-equivalent radiation dosimeter was developed and studied. The dosimeter consists of a ferrous -xylenol orange solution suspended in a gelatin matrix. Ferric ions produced from irradiation react with the xylenol orange dye to form a complex which absorbs light maximally at 585 nm, in the visible band. The optical density at this wavelength increases in proportion to the absorbed dose over a limited dose range. The dosimeter's gelatin component serves to solidify the chemical system so that an irradiated dosimeter yields a stable three-dimensional image of its dose distribution. The dosimeter is transparent to most other visible wavelengths so that the image of the dose distribution is clearly visible to the naked eye. Experiments were conducted in order to optimize the sensitivity of the chemical system and determine the conditions which produce a linear dose response for doses up to 6 Gray. A computed-tomography system was developed in order to quantify the dose-distribution images recorded by the dosimeter. The accuracy of the tomographic-reconstruction process was to be determined by comparing the resulting data to that obtained by standard dosimetry techniques. It was found that dosimeter sensitivity is gained with increasing ferrous and/or gelatin concentration and decreasing xylenol orange concentration. It was also determined that a dose range which provides a linear response can be extended by increasing the xylenol orange concentration and/or decreasing the dosimeter's sensitivity. An optimal chemical formulation that achieves a balance among sensitivity, linearity, and dosimeter stability was defined. In preliminary tests involving a homogeneous-dose simulation, the tomography code was tested and determined to be in error as it produced an inaccurate rendering of the dosimeter volume. Reasons for this error are discussed and suggestions for an improved optical-tomography system are made.

  16. Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis

    PubMed Central

    Tolkien, Zoe; Stecher, Lynne; Mander, Adrian P.; Pereira, Dora I. A.; Powell, Jonathan J.

    2015-01-01

    Background The tolerability of oral iron supplementation for the treatment of iron deficiency anemia is disputed. Objective Our aim was to quantify the odds of GI side-effects in adults related to current gold standard oral iron therapy, namely ferrous sulfate. Methods Systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating GI side-effects that included ferrous sulfate and a comparator that was either placebo or intravenous (IV) iron. Random effects meta-analysis modelling was undertaken and study heterogeneity was summarised using I2 statistics. Results Forty three trials comprising 6831 adult participants were included. Twenty trials (n = 3168) had a placebo arm and twenty three trials (n = 3663) had an active comparator arm of IV iron. Ferrous sulfate supplementation significantly increased risk of GI side-effects versus placebo with an odds ratio (OR) of 2.32 [95% CI 1.74–3.08, p<0.0001, I2 = 53.6%] and versus IV iron with an OR of 3.05 [95% CI 2.07-4.48, p<0.0001, I2 = 41.6%]. Subgroup analysis in IBD patients showed a similar effect versus IV iron (OR = 3.14, 95% CI 1.34-7.36, p = 0.008, I2 = 0%). Likewise, subgroup analysis of pooled data from 7 RCTs in pregnant women (n = 1028) showed a statistically significant increased risk of GI side-effects for ferrous sulfate although there was marked heterogeneity in the data (OR = 3.33, 95% CI 1.19-9.28, p = 0.02, I2 = 66.1%). Meta-regression did not provide significant evidence of an association between the study OR and the iron dose. Conclusions Our meta-analysis confirms that ferrous sulfate is associated with a significant increase in gastrointestinal-specific side-effects but does not find a relationship with dose. PMID:25700159

  17. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (inventors)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  18. Treatment of superficial siderosis with iron chelation therapy

    PubMed Central

    Cummins, Gemma; Crundwell, Gemma; Baguley, David; Lennox, Graham

    2013-01-01

    Superficial siderosis is caused by recurrent haemorrhage in the subarachnoid space leading to haemosiderin deposition. It typically causes the triad of ataxia, deafness and myelopathy. We report a patient who developed superficial siderosis following neurosurgery for syringomyelia and who had an improvement in his hearing and mobility following treatment with a new iron chelation therapy that can penetrate the blood–brain barrier. It provides an intriguing insight into a therapy that could potentially modify the course of this rare neurodegenerative disorder. Further studies are required to assess the clinical efficacy of deferiprone in superficial siderosis. PMID:23843408

  19. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands. PMID:25771379

  20. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhou, Lixiang; Zhang, Shasha; Liu, Lanlan; Wang, Ming

    2015-12-15

    Bio-oxidation of ferrous ions prior to lime neutralization exhibits great potential for acid mine drainage (AMD) treatment, while slow ferrous ion bio-oxidation or total iron precipitation is a bottleneck in this process. In this study, neutralized solid waste (NSW) harvested in an AMD lime neutralization procedure was added as a crystal seed in AMD for iron oxyhydroxysulfate bio-synthesis. The effect of this waste on ferrous ion oxidation efficiency, total iron precipitation efficiency, and iron oxyhydroxysulfate minerals yield during ferrous ion bio-oxidation by Acidithiobacillus ferrooxidans was investigated. Ferrous ion oxidation efficiency was greatly improved by adding NSW. After 72h incubation, total iron precipitation efficiency in treatment with 24g/L of NSW was 1.74-1.03 times higher than in treatment with 0-12g/L of NSW. Compared with the conventional treatment system without added NSW, the iron oxyhydroxysulfate minerals yield was increased by approximately 21.2-80.9% when 3-24g/L of NSW were added. Aside from NSW, jarosite and schwertmannite were the main precipitates during ferrous ion bio-oxidation with NSW addition. NSW can thus serve as the crystal seed for iron oxyhydroxysulfate mineral bio-synthesis in AMD, and improve ferrous ion oxidation and total iron precipitation efficiency significantly. PMID:26150283

  1. Zn(II) Robson macrocycles as templates for chelating diphosphines.

    PubMed

    Ponsico, Sergio; Gulyas, Henrik; Martínez-Belmonte, Marta; Escudero-Adán, Eduardo C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-10-28

    Chelating diphosphines were constructed using dinuclear Zn(II) complexes of Robson macrocycles (Zn-RMCs) as templates. The assembly process is driven by the interaction between the metal centers (Lewis acids) with anionic and neutral Lewis base-functionalized monophosphines. The stability of the final structure depends on the geometry and the affinity of the functional groups of the ditopic phosphines and on the structure of the RMC. In the free ligand the ditopic phosphines coordinate at opposite faces of the pseudo-planar macrocycle as is shown in the molecular structure of several of the assemblies, according to X-ray diffraction. Pre-organization of the system by coordinating the phosphorus atoms to a transition metal center enforced coordination of the functional groups at the same face of the RMC. For several templated diphosphines cis-PtCl(2) complexes were identified by NMR. The in situ assembled diphosphines showed a chelating effect in the rhodium catalyzed hydroformylation of 1-octene. Combination of Zn-RMC 3 and phosphine A gave the highest l/b ratio (13) in acetonitrile. PMID:21874185

  2. Immobilization of alcohol dehydrogenase onto metal-chelated cryogels.

    PubMed

    Uygun, Deniz Akta?; Akduman, Begüm; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-01-01

    In this presented work, poly(HEMA-GMA) cryogel was synthesized and used for the immobilization of alcohol dehydrogenase. For this, synthesized cryogels were functionalized with iminodiacetic acid and chelated with Zn(2+). This metal-chelated cryogels were used for the alcohol dehydrogenase immobilization and their kinetic parameters were compared with free enzyme. Optimum pH was found to be 7.0 for both immobilized and free enzyme preparations, while temperature optima for free and immobilized alcohol dehydrogenase was 25 °C. Kinetic constants such as K(m), V(max), and k(cat) for free and immobilized form of alcohol dehydrogenase were also investigated. k(cat) value of free enzyme was found to be 3743.9 min(-1), while k(cat) for immobilized enzyme was 3165.7 min(-1). Thermal stability of the free and immobilized alcohol dehydrogenase was studied and stability of the immobilized enzyme was found to be higher than free form. Also, operational stability and reusability profile of the immobilized alcohol dehydrogenase were investigated. Finally, storage stability of the free and immobilized alcohol dehydrogenase was studied, and at the end of the 60 days storage, it was demonstrated that, immobilized alcohol dehydrogenase was exhibited high stability than that of free enzyme. PMID:25715869

  3. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Pou?ková, Pavla; Ku?ka, Jan; Skodová, Michaela; Vetrík, Miroslav; St?pánek, Petr; Urbánek, Petr; Pet?ík, Miloš; Nový, Zbyn?k; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease. PMID:24815561

  4. Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    E-print Network

    Fox, George

    Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography of America Abstract Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography. PLoS ONE 6(1): e14512. doi:10

  5. Inhibitory activity of chelating agent against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...

  6. ADSORPTION AND LIGAND-ASSISTED FEOOH(GOETHITE) DISSOLUTION BY AMINOCARBOXYLATE CHELATING AGENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order for extracellular chelating agents to solubilize Fe(III) (hydr)oxides, the following criteria must be met: 1. The chelating agent must adsorb. Amine groups structurally close to a carboxylate group strongly diminish adsorption (via hydrogen-bonding), while distal amine groups slightly dimi...

  7. Polymeric precursor derived nanocrystalline ZnO thin films using EDTA as chelating agent

    E-print Network

    Mohanty, Saraju P.

    1 Polymeric precursor derived nanocrystalline ZnO thin films using EDTA as chelating agent Uma polymeric precursor route using ethylene diamine tetraacetic acid (EDTA) as chelating agent for Zn cations precursor, EDTA #12;3 1. Introduction Zinc oxide (ZnO) is an n-type direct wide band-gap semiconductor (3.3e

  8. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  9. Chelation of hypocrellin B with zinc ions with electron paramagnetic resonance (EPR) evidence of the photodynamic activity of the resulting chelate.

    PubMed

    Tian, C; Xu, S; Chen, S; Shen, J; Zhang, M; Shen, T

    2001-11-01

    Hypocrellin B (HB), a perylenequinone derivative, is an efficient phototherapeutic agent. The chelation of HB with Zinc ions (Zn2+) results in a metal chelate (Zn-HB) which exhibits considerable absorption (lambda max = 612 nm) in the phototherapeutic window. The structure of this chelate has been characterized by UV-Vis, IR and mass spectra. The redox potentials of the Zn-HB chelate were Eox = +1.1 V (vs. SCE) and Ere = -0.7 V (vs. SCE) as measured using the circle volt curve. The quantum yield of singlet oxygen generated by the Zn-HB chelate was 0.86, which both the electron spin trap (EPR) method and the chemical trap method show to be about 0.1 higher than that of its parent compound HB. In irradiated oxygen-saturated solutions of Zn-HB chelate, superoxide radical anions and hydroxyl radicals were detected by EPR spectroscopy using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trapping agent. PMID:11767412

  10. Convection-aided collection of metal ions using chelating porous flat-sheet membranes.

    PubMed

    Saito, Kaori; Saito, Kyoichi; Sugita, Kazuyuki; Tamada, Masao; Sugo, Takanobu

    2002-04-19

    Chelating porous membranes were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer onto a polyethylene flat sheet and subsequent conversion of the epoxy group to an iminodiacetate group as a chelate-forming group. The chelating group density on the resultant porous flat-sheet membrane of 1.0 mol/kg was comparable to that of commercially available chelating beads. The pure water permeability of the membrane was 40% that of the trunk porous membrane, which was used for microfiltration. During the permeation of a copper chloride solution through the membrane, diffusional mass-transfer resistance of copper ion was negligible, since the ion was transported by convective flow through the pore. The tensile strength and elongation at break of the membranes were measured as a function of dose of electron-beam irradiation, the degree of grafting, and the chelating group density to determine an applicable range for practical use. PMID:12058912

  11. Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan

    SciTech Connect

    Wu, F.C.; Tseng, R.L.; Juang, R.S.

    1999-01-01

    The role of pH in adsorption of Cu(II) from aqueous solutions containing chelating agents on chitosan was emphasized. Four chelating agents including ethylenediaminetetraacetic acid (EDTA), citric acid, tartaric acid, and sodium gluconate were used. It was shown that the adsorption ability of Cu(II) on chitosan from its chelated solutions varied significantly with pH variations. The competition between coordination of Cu(II) with unprotonated chitosan and electrostatic interaction of the Cu(II) chelates with protonated chitosan took place because of the change in solution pH during adsorption. The maximum adsorption capacity was obtained within each optimal pH range determined from titration curves of the chelated solutions. Coordination of Cu(II) with the unprotonated chitosan was found to dominate at pH below such an optimal pH value.

  12. Combined chelation of lead (II) by deferasirox and deferiprone in rats as biological model.

    PubMed

    Balooch, F Dahooee; Fatemi, S J; Iranmanesh, M

    2014-02-01

    In order to investigate the capability of two chelators deferasirox (DFX or ICL670) and deferiprone (L1) in removing lead from the body, the present research was performed. Two does levels of 40 and 80 mg/kg body weight of lead (II) chloride was given to rats as biological model for 45 days. After 45 days, some toxicity symptoms were observed in rats such as loss of hair and weight, appearance of red dots around eyes, weakness and irritability. After lead application, chelation therapy with DFX and L1 as mono and combined (DFX, L1 and DFX + L1) was done for 10 days. After chelation therapy, lead level in different tissues reduced. The combined chelation therapy results showed that these chelators are able to remove lead from the body and toxicity symptoms decreased. The combined therapy results (DFX + L1) show higher efficacy and lower toxicity compared to single therapies. PMID:24309925

  13. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Workington, GB); Phelps, Cindy (Moscow, ID)

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  14. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  15. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions

    SciTech Connect

    Fowler, T.A.; Crundwell, F.K.

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

  16. The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases.

    PubMed

    Kuban-Jankowska, Alicja; Gorska, Magdalena; Jaremko, Lukasz; Jaremko, Mariusz; Tuszynski, Jack A; Wozniak, Michal

    2015-12-01

    Hydrogen peroxide is an important regulator of protein tyrosine phosphatase activity via reversible oxidation. However, the role of iron in this reaction has not been yet elucidated. Here we compare the influence of hydrogen peroxide and the ferrous iron (reagent for Fenton reaction) on the enzymatic activity of recombinant CD45, LAR, PTP1B phosphatases and cellular CD45 in Jurkat cells. The obtained results show that ferrous iron (II) is potent inhibitor of CD45, LAR and PTP1B, but the inhibitory effect is concentration dependent. We found that the higher concentrations of ferrous iron (II) increase the inactivation of CD45, LAR and PTP1B phosphatase caused by hydrogen peroxide, but the addition of the physiological concentration (500 nM) of ferrous iron (II) has even a slightly preventive effect on the phosphatase activity against hydrogen peroxide. PMID:26407665

  17. In vitro evaluation of iron solubility and dialyzability of various iron fortificants and of iron-fortified milk products targeted for infants and toddlers.

    PubMed

    Kapsokefalou, Maria; Alexandropoulou, Isidora; Komaitis, Michail; Politis, Ioannis

    2005-06-01

    The objectives of the present study were: to compare the solubility and dialyzability of various iron fortificants (iron pyrophosphate, ferrous bis-glycinate, ferrous gluconate, ferrous lactate, ferrous sulfate) added, in the presence of ascorbic acid, to pasteurized milk samples produced under laboratory conditions; and to compare the solubility and dialyzability of iron in commercial pasteurized, UHT and condensed milk products available in the Greek market fortified with various vitamins and minerals including iron and targeted towards infants (6-12 months old) and toddlers. Iron solubility and dialyzability were determined using a simulated gastrointestinal digestive system. Ferrous dialyzable iron (molecular weight lower than 8000) was used as an index for prediction of iron bioavailability. Ferrous dialyzable iron in pasteurized milk samples fortified with iron pyrophosphate, ferrous lactate and ferrous bis-glycinate was higher (P < 0.05) than that in milk samples fortified with ferrous sulfate and ferrous gluconate. In commercial liquid pasteurized or UHT milk products, formation of ferrous dialyzable iron in products fortified with ferrous lactate was not different (P > 0.05) from those fortified with ferrous sulfate. Ferrous dialyzable iron in four condensed commercial milk products was higher (P < 0.05) than the corresponding values of the liquid UHT milk samples fortified with the same fortificant (ferrous sulfate). Ferrous dialyzable iron was higher (P < 0.05) in products targeted for infants compared with those targeted for toddlers. In conclusion, the type of iron source, milk processing and the overall product composition affect formation of ferrous dialyzable iron and may determine the success and effectiveness of iron fortification of milk. PMID:16096139

  18. Synergistic Competitive Inhibition of Ferrous Iron Oxidation by Thiobacillus ferrooxidans by Increasing Concentrations of Ferric Iron and Cells

    PubMed Central

    Lizama, Hector M.; Suzuki, Isamu

    1989-01-01

    Oxidation of ferrous iron by Thiobacillus ferrooxidans SM-4 was inhibited competitively by increasing concentrations of ferric iron or cells. A kinetic analysis showed that binding of one inhibitor did not exclude binding of the other and led to synergistic inhibition by the two inhibitors. Binding of one inhibitor, however, was affected by the other inhibitor, and the apparent inhibition constant increased with increasing concentrations of the other inhibitor. PMID:16348031

  19. Alginate Inhibits Iron Absorption from Ferrous Gluconate in a Randomized Controlled Trial and Reduces Iron Uptake into Caco-2 Cells

    PubMed Central

    Wawer, Anna A.; Harvey, Linda J.; Dainty, Jack R.; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J.

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n?=?15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p?=?0.003). Sub-group B (n?=?9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p?=?0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p?=?0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p?=?0.009) and 35% (p?=?0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification. Trial Registration ClinicalTrials.gov NCT01528644 PMID:25391138

  20. Iron-sulfur bond lengths in ferrous-CO heme complexes as a function of sulfur donor type

    SciTech Connect

    Kau, L.S.; Svastits, E.W.; Dawson, J.H.; Hodgson, K.O.

    1986-11-05

    The previously reported work on the determination of the role of sulfur donor ligand in the function of heme proteins is very briefly surveyed. The results of studies in which x-ray absorption fine structure (EXAFS) spectroscopy has been employed for the structural analysis of sulfur-ligated heme complexes are reported. These results substantially expand the data base of Fe(II)-S/sub ax/ bond lengths in ferrous porphyrin complexes. 30 references, 1 table.

  1. Magnetic memory effect in chelated zero valent iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Mandal, B. K.; Mohan Kumar, K.

    2012-11-01

    We report the study of nonequilibrium magnetic behavior of air stable zero valent iron nanoparticles synthesized in presence of N-cetyl-N,N,N-trimethyl ammonium bromide chelating agent. X-ray photoelectron spectroscopy study has suggested the presence of iron oxides on nZVI surfaces. Zero-field-cooled and field-cooled magnetization measurements have been carried out at 20-300 K and 100 Oe. For field-cooled measurements with 1 h stops at 200, 100 and 50 K when compared with the warming cycle, we found the signature of magnetic memory effect. A study of magnetic relaxation at the same temperatures shows the existence of two relaxation times.

  2. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2?-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2?-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  3. Bioavailability of stabilised ferrous gluconate with glycine in fresh cheese matrix: a novel iron compound for food fortification.

    PubMed

    Pizarro, Fernando; Boccio, José; Salgueiro, María; Olivares, Manuel; Carmuega, Esteban; Weill, Ricardo; Marque, Sebastien; Frereux, Marine; Noirt, Florence

    2013-03-01

    Iron fortification of foods continues to be one of the preferred ways of improving the iron status of the population. Dairy product is a common product in the diet; therefore, it is a plausible vehicle for iron fortification. This study aims to investigate the bioavailability of ferrous gluconate stabilised with glycine (FGSG) in a fresh cheese fortified with zinc. The iron bioavailability of fresh cheese fortified with either FGSG and with or without zinc and FGSG in aqueous solution and a water solution of ferrous ascorbate (reference dose) was studied using double radio iron ((55)Fe and (59)Fe) erythrocyte incorporation in 15 male subjects. All subjects presented with normal values for iron status parameters. The geometric mean of iron bioavailability for the water solution of FGSG was 38.2 %, adjusted to 40 % from reference doses (N.S.). Iron bioavailability in fresh cheese fortified with Ca and Zn was 15.4 % and was 23.1 % without Zn, adjusted to 40 % from reference doses (N.S.). The results of the present study show that the novel iron compound ferrous gluconate stabilised with glycine in a fresh cheese matrix is a good source of iron and can be used in iron fortification programmes. PMID:23271679

  4. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  5. Spectroscopic characterization of the catalytically competent ferrous site of the resting, activated, and substrate-bound forms of phenylalanine hydroxylase

    SciTech Connect

    Loeb, K.E.; Westre, T.E.; Hedman, B.; Hodgson, K.O.; Solomon, E.I.; Kappock, T.J.; Mitic, N.; Glasfeld, E.; Caradonna, J.P.

    1997-02-26

    The geometric structure of the catalytically relevant ferrous active site of phenylalanine hydroxylase (PAH) has been investigated using magnetic circular dichroism (MCD) and X-ray absorption (XAS) spectroscopies. From the excited state ligand field transitions in the MCD spectrum, the temperature and field dependence of these transitions, and the XAS pre-edge shapes and intensities, the resting ferrous site of the `tense` from PAH is six-coordinate distorted octahedral. The low ligand field strength observed in the MCD spectrum results from significant oxygen ligation and longer Fe-O/N bond distances relative to model complexes as determined from an EXAFS analysis. Substrate-induced allosteric activation ({approx}34 kcal/mol) does not alter the structure of the iron site in the `relaxed` form of PAH compared to the substrate-bound `tense` state. Thus, while activation is necessary for the enzyme to achieve complete catalytic competence, it does not appear to affect the geometry of the catalytically relevent six-coordinate ferrous active site and only directly influences the surrounding protein conformation. In contrast, substrate addition results in a geometric and electronic structural change at the iron center which may help orient the substrate for completely coupled hydroxylation. 106 refs., 10 figs., 6 tabs.

  6. Investigation and analysis of ferrous sulfate polyvinyl alcohol (PVA) gel dosimeter

    NASA Astrophysics Data System (ADS)

    Hill, Brendan; Bäck, Sven Å. J.; Lepage, Martin; Simpson, John; Healy, Brendan; Baldock, Clive

    2002-12-01

    Ferrous sulfate (Fe(SO4)2) PVA gels were investigated for a range of absorbed doses up to 20 Gy using both magnetic resonance imaging (MRI) and spectrophotometry to determine R1 and optical density (OD) dose responses and G values. It was found that R1- and OD-dose sensitivities increased with O2 saturation or by the introduction of a freeze-thaw cycle during preparation of the PVA gel. The storage temperature of the Fe(SO4)2 PVA gel at -18 °C increased R1-dose sensitivity above that of gels stored at 5 °C. The addition of sucrose to the formulation was found to result in the largest increase in both R1- and OD-dose sensitivities. Fe(SO4)2 PVA gel with and without the addition of xylenol orange was demonstrated to have a G value of ~20 ions/100 eV and with sucrose ~24 ions/100 eV.

  7. Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight From Nuclear Resonance Vibrational Spectroscopy

    SciTech Connect

    Paulat, F.; Berto, T.C.; George, S.DeBeer; Goodrich, L.; Praneeth, V.K.K.; Sulok, C.D.; Lehnert, N.

    2009-05-21

    This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to {sup 15}N{sup 18}O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm{sup -1}. Normal coordinate analysis shows that the 437 cm{sup -1} mode corresponds to the Fe-NO stretch, whereas the 563 cm{sup -1} band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.

  8. Lung cancer in a non-ferrous smelter: the role of cadmium.

    PubMed Central

    Ades, A E; Kazantzis, G

    1988-01-01

    Lung cancer mortality was examined in a cohort of 4393 men employed at a zinc-lead-cadmium smelter. There was an excess of lung cancer (overall SMR = 124.5, 95% confidence interval 107-144) which was particularly evident for those employed for more than 20 years. A statistically significant trend in SMRs with increasing duration of employment was apparent. Quantitative estimates of exposure to cadmium and ordinal rankings for lead, arsenic, zinc, sulphur dioxide, and dust were used to calculate cumulative exposures from job histories. Matched logistic regression was used to compare the cumulative exposures of cases of lung cancer to those of controls matched for date of birth and date of starting work and surviving at the time of death of the matched cases. The increasing risk of lung cancer associated with increasing duration of employment could not be accounted for by cadmium and did not appear to be restricted to any particular process or department. Although lung cancer mortality was associated with estimates of cumulative exposure to arsenic and to lead, it was not possible to determine whether the increased risk might be due to arsenic, lead, or to other contaminants in the smelter. These results are compared with findings from other non-ferrous smelters. PMID:3395580

  9. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.

  10. INTERPRETATION OF AT-LINE SPECTRA FROM AFS-2 BATCH #3 FERROUS SULFAMATE TREATMENT

    SciTech Connect

    Kyser, E.; O'Rourke, P.

    2013-12-10

    Spectra from the “at-line” spectrometer were obtained during the ferrous sulfamate (FS) valence adjustment step of AFS-2 Batch #3 on 9/18/2013. These spectra were analyzed by mathematical principal component regression (PCR) techniques to evaluate the effectiveness of this treatment. Despite the complications from Pu(IV), we conclude that all Pu(VI) was consumed during the FS treatment, and that by the end of the treatment, about 85% was as Pu(IV) and about 15% was as Pu(III). Due to the concerns about the “odd” shape of the Pu(IV) peak and the possibility of this behavior being observed in the future, a follow-up sample was sent to SRNL to investigate this further. Analysis of this sample confirmed the previous results and concluded that it “odd” shape was due to an intermediate acid concentration. Since the spectral evidence shows complete reduction of Pu(VI) we conclude that it is appropriate to proceed with processing of this the batch of feed solution for HB-Line including the complexation of the fluoride with aluminum nitrate.

  11. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.

    PubMed

    Sun, Jing; Chillrud, Steven N; Mailloux, Brian J; Stute, Martin; Singh, Rajesh; Dong, Hailiang; Lepre, Christopher J; Bostick, Benjamin C

    2016-02-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6-7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  12. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Hayes, Kim F

    2015-11-01

    Cis-1,2,-dichloroethylene (cis-DCE) is a toxic, persistent contaminant occurring mainly as a daughter product of incomplete degradation of perchloroethylene (PCE) and trichloroethylene (TCE). This paper reports on abiotic reductive dechlorination of cis-DCE by mackinawite (FeS1-x ), a ferrous monosulfide, under variable geochemical conditions. To assess in situ abiotic cis-DCE dechlorination by mackinawite in the field, mackinawite suspensions prepared in a field groundwater sample collected from a cis-DCE contaminated field site were used for dechlorination experiments. The effects of geochemical variables on the dechlorination rates were monitored. A set of dechlorination experiments were also carried out in the presence of aquifer sediment from the site over a range of pH conditions to better simulate the actual field situations. The results showed that the suspensions of freshly prepared mackinawite reductively transformed cis-DCE to acetylene, whereas the conventionally prepared powder form of mackinawite had practically no reactivity with cis-DCE under the same experimental conditions. Significant cis-DCE degradation by mackinawite has not been reported prior to this study, although mackinawite has been shown to reductively transform PCE and TCE. This study suggests feasibility of using mackinawite for in situ remediation of cis-DCE-contaminated sites with high S levels such as estuaries under naturally achieved or stimulated sulfate-reducing conditions. PMID:26278897

  13. Effects of calcium chelators on calcium distribution and protein solubility in rennet casein dispersions.

    PubMed

    McIntyre, Irene; O' Sullivan, Michael; O' Riordan, Dolores

    2016-04-15

    This study investigated the effects of calcium chelating salts on calcium-ion activity (ACa(++)), calcium distribution, and protein solubility in model CaCl2 solutions (50mmolL(-1)) or rennet casein dispersions (15g/100g). Disodium phosphate and trisodium citrate at concentrations of 10 and 30mmolL(-1) and at ratios of 1:0, 2:1, 1:1, 1:2 and 0:1 were added to both systems. The CaCl2 system, despite its simplicity, was a good indicator of chelating salt-calcium interactions in rennet casein dispersions. Adding trisodium citrate either alone or as part of a mixed chelating salt system resulted in high levels of dispersed "chelated" calcium; conversely, disodium phosphate addition resulted in lower levels, while the ACa(++) decreased with increasing concentration of both chelating salts. Neither chelating salt produced high levels of soluble protein. Thus calcium chelating salts may play a more subtle role in modulating hydration during manufacture of casein-based matrices than simply solubilising calcium or protein. PMID:26616945

  14. Design, synthesis, and evaluation of polyhydroxamate chelators for selective complexation of actinides

    SciTech Connect

    Gopalan, A.; Jacobs, H.; Koshti, N.; Stark, P.; Huber, V.; Dasaradhi, L.; Caswell, W.; Smith, P.; Jarvinen, G.

    1995-08-01

    Specific chelating polymers targeted for actinides have much relevance to problems involving remediation of nuclear waste. Goal is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. This is part of an effort to develop chelators for removing actinide ions such as Pu from soils and waste streams. Selected ligands are being attached to polymeric backbones to create novel chelating polymers. These polymers and other water soluble and insoluble polymers have been synthesized and are being evaluated for ability to selectively remove target metal ions from process waste streams.

  15. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  16. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  17. A Speciation Study on the Perturbing Effects of Iron Chelators on the Homeostasis of Essential Metal Ions

    PubMed Central

    2015-01-01

    A number of reports have appeared in literature calling attention to the depletion of essential metal ions during chelation therapy on ?-thalassaemia patients. We present a speciation study to determine how the iron chelators used in therapy interfere with the homeostatic equilibria of essential metal ions. This work includes a thorough analysis of the pharmacokinetic properties of the chelating agents currently in clinical use, of the amounts of iron, copper and zinc available in plasma for chelation, and of all the implied complex formation constants. The results of the study show that a significant amount of essential metal ions is complexed whenever the chelating agent concentration exceeds the amount necessary to coordinate all disposable iron —a frequently occurring situation during chelation therapy. On the contrary, copper and zinc do not interfere with iron chelation, except for a possible influence of copper on iron speciation during deferiprone treatment. PMID:26192307

  18. Computational methods for intramolecular electron transfer in a ferrous-ferric iron complex.

    PubMed

    Zarzycki, Piotr; Kerisit, Sebastien; Rosso, Kevin

    2011-09-01

    The limitations of common theoretical and molecular computational approaches for predicting electron transfer quantities were assessed, using an archetypal bridged ferrous-ferric electron transfer system in aqueous solution. The basis set effect on the magnitude of the electronic coupling matrix element computed using the quasi-diabatic method was carefully examined, and it was found that the error related to a poor basis set could exceed the thermal energy at room temperature. A range of approaches to determining the external (solvent) reorganization energy were also investigated. Significant improvements from the Marcus continuum model can be obtained by including dipolar Born-Kirkwood-Onsager correction. In this regard, we also found that Klamt's Conductor-Like Screening Model (COSMO) yields estimations of the external reorganization energy similar to those obtained with explicit solvent molecular dynamics simulations if the fast-frequency modes are neglected, which makes it an attractive alternative to laborious umbrella sampling simulations. By using the COSMO model, we also confirm that a decrease in curvature of the potential energy surface is a manifestation of the dielectric saturation observed in the first solvation layer. The linearity of solvent response to the charge redistribution was assessed by analyzing the energy gap autocorrelation function as well as the solvent density and dipole moment fluctuations. Molecular dynamics was also used to evaluate the sign and magnitude of the solvent reorganization entropy and to determine its effect on the predicted electron transfer rate. Finally, we present a simple way of estimating the vibration frequency along the reaction coordinate, which also enables prediction of the mass-dependent isotopic signature of electron transfer reactions. PMID:21696749

  19. A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1.

    PubMed

    Bennett, Brittany D; Brutinel, Evan D; Gralnick, Jeffrey A

    2015-11-15

    Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe(3+)) results in the production of ferrous iron (Fe(2+)) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe(2+) from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe(2+). The export function of FeoE is specific for Fe(2+), as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), or Zn(2+)). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd(2+)/Zn(2+) or Fe(2+)/Zn(2+) exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe(2+) compared to that of the ?feoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe(2+) exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found. PMID:26341213

  20. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  1. Radiolabeled technetium chelates for use in renal function determinations

    DOEpatents

    Fritzberg, Alan (Edmonds, WA); Kasina, Sudhakar (Kirkland, WA); Johnson, Dennis L. (Las Cruces, NM)

    1990-01-01

    The present invention is directed to novel radiopharmaceutical imaging agents incorporating Tc-99m as a radiolabel. In particular, the novel imaging agents disclosed herein have relatively high renal extraction efficiencies, and hence are useful for conducting renal function imaging procedures. The novel Tc-99m compounds of a present invention have the following general formula: ##STR1## wherein X is S or N; and wherein Y is--H or wherein Y is ##STR2## and where R.sub.1 is --H, --CH.sub.3, or --CH.sub.2 CH.sub.3 ; R.sub.2 is --H, --CH.sub.2 CO.sub.2 H, --CH.sub.2 CONH.sub.2, --CH.sub.2 CH.sub.2 CO.sub.2 H, --CH.sub.2 CH.sub.2 CONH.sub.2, --CH.sub.3, --CH.sub.2 CH.sub.3, CH.sub.2 C.sub.6 H.sub.5, or --CH.sub.2 OH; and Z is --H, --CO.sub.2 H, --CONH.sub.2, --SO.sub.3 H, --SO.sub.2 NH.sub.2, or --CONHCH.sub.2 CO.sub.2 H; and the Tc is Tc-99m; and water-soluble salts thereof. Of the foregoing, the presently preferred Tc-99m compound of the present invention is Tc-99m-mercaptoacetylglycylglycylglycine (Tc-99m-MAGGG). The present invention is also directed to novel chelating agents that may be reacted with Tc-99m to form the foregoing compounds. Such novel chelating agents have the following general formula. ##STR3## where X and Y have the same definitions as above, and wherein Y' is --H.sub.2 when X is N, or wherein Y' is --H, or a suitable protective group such as --COCH.sub.3, --COC.sub.6 H.sub.5, --CH.sub.2 NHCOCH.sub.3, --COCF.sub.3, or --COCH.sub.2 OH when X is S. The present invention also provides methods for preparing and using the novel Tc-99m compounds.

  2. Radiolabeled technetium chelates for use in renal function determinations

    DOEpatents

    Fritzberg, Alan (Edmonds, WA); Kasina, Sudhaker (Kirkland, WA); Johnson, Dennis L. (Las Cruces, NM)

    1994-01-01

    The present invention is directed to novel radiopharmaceutical imaging agents incorporating Tc-99m as a radiolabel. In particular, the novel imaging agents disclosed herein have relatively high renal extraction efficiencies, and hence are useful for conducting renal function imaging procedures. The novel Tc-99m compounds of a present invention have the following general formula: ##STR1## wherein X is S or N; and wherein Y is --H or wherein Y is ##STR2## and where R.sub.1 is --H, --CH.sub.3, or --CH.sub.2 CH.sub.3 ; R.sub.2 is --H, --CH.sub.2 CO.sub.2 H, --CH.sub.2 CONH.sub.2, --CH.sub.2 CH.sub.2 CO.sub.2 H, --CH.sub.2 CH.sub.2 CONH.sub.2, --CH.sub.3, --CH.sub.2 CH.sub.3, CH.sub.2 C.sub.6 H.sub.5, or --CH.sub.2 OH; and Z is --H, --CO.sub.2 H, --CONH.sub.2, --SO.sub.3 H, --SO.sub.2 NH.sub.2, or --CONHCH.sub.2 CO.sub.2 H; and the Tc is Tc-99m; and water-soluble salts thereof. Of the foregoing, the presently preferred Tc-99m compound of the present invention is Tc-99m-mercaptoacetylglycylglycylglycine (Tc-99m-MAGGG). The present invention is also directed to novel chelating agents that may be reacted with Tc-99m to form the foregoing compounds. Such novel chelating agents have the following general formula. ##STR3## where X and Y have the same definitions as above, and wherein Y' is --H.sub.2 when X is N, or wherein Y' is --H, or a suitable protective group such as --COCH.sub.3, --COC.sub.6 H.sub.5, --CH.sub.2 NHCOCH.sub.3, --COCF.sub.3, or --COCH.sub.2 OH when X is S. The present invention also provides methods for preparing and using the novel Tc-99m compounds.

  3. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ? 5 ?g L? 1. Terrigenous NOM concentrations ? 5 ?g L? 1 are in no way unusual in open ocean surface waters especially of the Arctic and the North Atlantic Oceans. River-derived humic substances could therefore play a greater role as iron carriers in the ocean than previously thought. PMID:26412934

  4. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  5. MRI sensing based on the displacement of paramagnetic ions from chelated complexes

    E-print Network

    Atanasijevic, Tatjana

    We introduce a mechanism for ion sensing by MRI in which analytes compete with paramagnetic ions for binding to polydentate chelating agents. Displacement of the paramagnetic ions results in alteration of solvent interaction ...

  6. Fast, Cell-Compatible Click Chemistry with Copper-Chelating Azides for Biomolecular Labeling

    E-print Network

    Uttamapinant, Chayasith

    Bring your own copper: Copper-chelating azides undergo much faster click reactions (CuAAC) than nonchelating azides under a variety of biocompatible conditions. This kinetic enhancement allows site-specific protein labeling ...

  7. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  8. CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...

  9. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  10. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Chelating agents used in the manufacture of paper and paperboard. 176.150 Section...CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and Paperboard § 176.150...

  11. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Chelating agents used in the manufacture of paper and paperboard. 176.150 Section...CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and Paperboard § 176.150...

  12. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Chelating agents used in the manufacture of paper and paperboard. 176.150 Section...CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and Paperboard § 176.150...

  13. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Chelating agents used in the manufacture of paper and paperboard. 176.150 Section...CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and Paperboard § 176.150...

  14. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Chelating agents used in the manufacture of paper and paperboard. 176.150 Section...CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and Paperboard § 176.150...

  15. Thermal Stability of Various Chelates that are Used in the Oilfield 

    E-print Network

    Sokhanvarian, Khatere

    2012-10-24

    wells. GLDA is environmentally friendly, which makes it favorable. One of the concerns with these chelates is their thermal stability at high temperatures because if they degrade at high temperatures, they may lose their functionality. This study...

  16. THE IMPACT OF MICROBIAL CHELATES ON MINERAL WEATHERING AND MICROBIAL METABOLIC ACTIVITY

    E-print Network

    Kulczycki, Ezra

    2010-04-25

    Island, Panama. Microorganisms can utilize specific chelating agents to mobilize metals of nutritive benefit, i.e., siderophores for Fe3+ (Pseudomonas putida), and methanobactin for Cu (Methylosinus trichosporium OB3b). Enhanced Fe3+ solubility from...

  17. BENCH-SCALE RECOVERY OF LEAD USING AN ELECTROMEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  18. Chelating stability of an amphoteric chelating polymer flocculant with Cu(II), Pb(II), Cd(II), and Ni(II)

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Li, Yanhong; Liu, Xing; Zhou, Zhihua; Ling, Yulin

    2014-01-01

    The absorption spectra of Cu2+, Pb2+, Cd2+, and Ni2+ chelates of an amphoteric chelating polymer flocculant (ACPF) were measured by ultraviolet spectrophotometry, and their compositions and stability constants (?) were calculated. ACPF exhibited three apparent absorption peaks at 204, 251, and 285 nm. The sbnd CSS- group of ACPF reacted with Cu2+, Ni2+, Pb2+, and Cd2+ to form ACPF-Cu2+, ACPF-Ni2+, ACPF-Pb2+, and ACPF-Cd2+ chelates, respectively, according to a molar ratio of 2:1. The maximum absorption peaks of ACPF-Cu2+, ACPF-Ni2+, ACPF-Pb2+, and ACPF-Cd2+ appeared at 319, 326, 310, and 313.5 nm, respectively. The maximum absorption peaks of the chelates showed significant red shifting compared with the absorption peaks of ACPF. The ? values of the ACPF-Cu2+, ACPF-Pb2+, ACPF-Cd2+, and ACPF-Ni2+ chelates were (1.37 ± 0.35) × 1012, (3.26 ± 0.39) × 1011, (2.05 ± 0.27) × 1011, and (3.04 ± 0.45) × 1010, respectively. The leaching rate of heavy metal ions from the chelating precipitates decreased with increasing pH. ACPF-Cu2+, ACPF-Ni2+, ACPF-Pb2+, and ACPF-Cd2+ were very stable at pH ? 5.6. Cu2+, Ni2+, Pb2+, and Cd2+ concentrations in the leaching liquors were lower than the corresponding limits specified by the Integrated Wastewater Discharge Standard of China.

  19. Chelating stability of an amphoteric chelating polymer flocculant with Cu(II), Pb(II), Cd(II), and Ni(II).

    PubMed

    Liu, Lihua; Li, Yanhong; Liu, Xing; Zhou, Zhihua; Ling, Yulin

    2014-01-24

    The absorption spectra of Cu(2+), Pb(2+), Cd(2+), and Ni(2+) chelates of an amphoteric chelating polymer flocculant (ACPF) were measured by ultraviolet spectrophotometry, and their compositions and stability constants (?) were calculated. ACPF exhibited three apparent absorption peaks at 204, 251, and 285 nm. The CSS(-) group of ACPF reacted with Cu(2+), Ni(2+), Pb(2+), and Cd(2+) to form ACPF-Cu(2+), ACPF-Ni(2+), ACPF-Pb(2+), and ACPF-Cd(2+) chelates, respectively, according to a molar ratio of 2:1. The maximum absorption peaks of ACPF-Cu(2+), ACPF-Ni(2+), ACPF-Pb(2+), and ACPF-Cd(2+) appeared at 319, 326, 310, and 313.5 nm, respectively. The maximum absorption peaks of the chelates showed significant red shifting compared with the absorption peaks of ACPF. The ? values of the ACPF-Cu(2+), ACPF-Pb(2+), ACPF-Cd(2+), and ACPF-Ni(2+) chelates were (1.37±0.35)×10(12), (3.26±0.39)×10(11), (2.05±0.27)×10(11), and (3.04±0.45)×10(10), respectively. The leaching rate of heavy metal ions from the chelating precipitates decreased with increasing pH. ACPF-Cu(2+), ACPF-Ni(2+), ACPF-Pb(2+), and ACPF-Cd(2+) were very stable at pH?5.6. Cu(2+), Ni(2+), Pb(2+), and Cd(2+) concentrations in the leaching liquors were lower than the corresponding limits specified by the Integrated Wastewater Discharge Standard of China. PMID:24144830

  20. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  1. Novel molecular platform integrated iron chelation therapy for 1H-MRI detection of ?-galactosidase activity.

    PubMed

    Li, Xiaojin; Zhang, Zhongwei; Yu, Zijun; Magnusson, Jennifer; Yu, Jian-Xin

    2013-04-01

    Targeting the increased Fe(3+) content in tumors, we propose a novel molecular platform integrated cancer iron chelation therapy for (1)H-magnetic resonance imaging (MRI) detection of ?-galactosidase (?-gal) activity. Following this idea, we have designed, synthesized, and characterized a series of ?-d-galactosides conjugated with various chelators and demonstrated the feasibility of this concept for assessing ?-gal activity in solution by (1)H-MRI T1 and T2 relaxation mapping. PMID:23391334

  2. Chromium uptake by Spirodela polyrrhiza (L. ) Schleiden in relation to metal chelators and pH

    SciTech Connect

    Tripathi, R.D.; Chandra, P. )

    1991-11-01

    This paper reports the influence of metal chelators, ethylenediaminetetraacetic acid (EDTA) and salicylic acid, and pH on the accumulation of Cr by S. polyrrhiza under the laboratory conditions. This also includes the results of K.D. pond water treatment study by cultured fronds of S. polyrrhiza. In view of the occurrence of metal chelators in natural waters and pH variation the present study would enable to assess the performance of this species under the influence of these factors.

  3. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  4. Theoretical analysis of the influence of chelate-ring size and vicinal effects on electronic circular dichroism spectra of cobalt(III) EDDA-type complexes.

    PubMed

    Wang, Ai; Wang, Yuekui; Jia, Jie; Feng, Lixia; Zhang, Chunxia; Liu, Linlin

    2013-06-20

    To assess the contributions of configurational and vicinal effects as well as chelate-ring size to rotational strengths, the geometries of a series of cobalt(III) complexes [Co(EDDA-type)(L)](±) with the tetradentate EDDA-type ligands, EDDA (ethylenediamine-N,N'-diacetate), DMEDDA (N,N'-dimethylethylenediamine-N,N'-diacetate), DEEDDA (N,N'-diethylethylenediamine-N,N'-diacetate), and a bidentate ancillary ligand L (L = ethylenediamine, oxalate, carbonate, (S)-alanine, and malonate) in aqueous solution have been optimized at the DFT/B3LYP/6-311++G(2d,p) level of theory. Based on the optimized geometries, the excitation energies and oscillator and rotational strengths have been calculated using the time-dependent density functional theory (TDDFT) method with the same functional and basis set. The calculated circular dichroism (CD) curves are in excellent agreement with the observed ones except for some small red or blue shifts in peak wavelengths. For the influence of chelate-ring size of the bidentate ligands on the CD intensities, a qualitative analysis together with the quantitative TDDFT calculation reveal that it depends on the symmetry of the cobalt-EDDA backbone. For the s-cis-isomers, the influence is negligible due to the perturbation is symmetric. For the uns-cis-isomers, the perturbation is unsymmetric. Since a small ring size means a large perturbation, this leads to the integral CD intensities decreasing with increasing the chelate ring size. The vicinal effects of asymmetric nitrogens incorporate both the substitutent effects and conformational relaxation effects, with the former being dominant. By analyzing the contributions of chiral arrays to rotational strengths, we found that the part of contributions dominated by the S-type chiral nitrogens could be considered as a good measure for the vicinal effects of chiral nitrogens. In addition, we found that the twist form (?/?) of the backbone ethylenediamine ring (E-ring) of the coordinated EDDA-type ligands is a key factor to understand the properties of these chelates, because it not only dominates the relative stabilities of the s-cis-?(SS)-diastereoisomers with the result that ? > ? but also affects the major CD band by changing the order of the first two transitions. Moreover, the twist angle of E-ring is inversely related to the vicinal effect of chiral nitrogens. These findings may help us to understand the chelate ring size as well as vicinal effect related chiroptical phenomenon of the cobalt EDDA-type chelates. PMID:23713886

  5. Bifunctional Indenyl-Derived Receptors for Fluoride Chelation and Detection.

    PubMed

    Tirfoin, Rémi; Abdalla, Joseph A B; Aldridge, Simon

    2015-08-10

    Anion receptors based on a [CpFe(indenyl)] scaffold offer the possibility for the incorporation of adjacent Lewis acidic functions onto a six-membered carbocyclic framework, while at the same time retaining the colorimetric/electrochemical reporter mechanisms available to synthetically simpler ferrocene systems. Thus, [CpFe(indenyl)] systems featuring mutually ortho BMes2 and PPh2 Me(+) substituents (with either 4,5 or 5,6 regiochemistry) are accessible which are capable of cooperative fluoride ion fixation. Simultaneous binding at the borane and phosphonium centres can be established by spectroscopic, structural and computational approaches, and is responsible for the favourable thermodynamics associated with F(-) uptake. Thus, in contrast to simple BMes2 systems, the binding of fluoride is found to be more favourable than the uptake of cyanide (which interacts only with the borane Lewis acid). Moreover, in the case of a 4-(MePh2 P)-5-(Mes2 B)-7-Me-indenyl derivative, fluoride chelation is signalled not only by a large cathodic shift in the Fe(II) /Fe(III) potential (>500?mV in THF), but also by a distinct colour change from green (for the free receptor) to maroon for the adduct. PMID:26179477

  6. Chelating ion exchange with macroreticular hydroxamic acid resins

    SciTech Connect

    Phillips, R.J.

    1980-01-01

    The synthesis, reactions, and analytical applications of hydroxamic acids, including chelating resins with this functional group, are reviewed. A procedure for attaching N-phenyl hydroxamic acid groups to Amberlite XAD-4 is described. The extraction of 20 metal ions from 2 M hydrochloric acid by this resin is discussed. Conditions for the quantitative extraction and back-extraction of 9 ions are reported. Results are compared with work on solvent extraction with N-phenylbenzohydroxamic acid. Procedures for attaching N-methyl and N-unsubstituted hydroxamic acid groups to Amberlite XAD-4 are described. The N-phenyl, N-methyl, and N-unsubstituted hydroxamic acid resins are compared with respect to metal-ion complexation. The scope of applications for hydroxamic acid resins is investigated by studying the extraction of 19 metal ions as a function of pH. The resins are especially suitable for the extraction of zirconium(IV), titanium(IV), and uranium(IV) from strongly acidic solution. Aluminum(III) is separated from calcium and phosphate by extraction at pH 4. The use of the resins for the purification of reagents, concentration of trace constituents, and chromatographic separation is demonstrated.

  7. Synthesis and characterizations of pyridazine-based iron chelators.

    PubMed

    Ma, Yongmin; Kong, Xiaole; Chen, Yu-lin; Hider, Robert C

    2014-12-01

    In an attempt to design ligands which require both a high iron(III) affinity and a low iron(II) affinity, the 3-hydroxypyridin-4-one structure has been modified to introduce an additional nitrogen atom in the pyridine ring to form a pyridazine. The target molecules were synthesized from a chlorine-substituted pyridazine using step-by-step methoxylations. A total of six 3- and 5-hydroxypyridazin-4(1H)-ones have been synthesized, with a methyl, ethyl or n-propyl group on the N1 of the pyridazine ring. In the reaction of the pyridazines with alkyl iodide, the presence of acetone drives the reaction to afford pyridazinones rather than the desired pyridaziniums. The pK(a) values of the free ligands, the stability constants of their iron(III) complexes and corresponding pFe(III) values demonstrate that this type of ligand has lower values when compared with those of deferiprone. The reduction potential values of the iron complexes obtained from cyclic voltammetry measurements, are used to determine the corresponding pFe(II) values. Although two compounds of the 20 series have marginally higher log??3(Fe(III))/log??3(Fe(II)) ratios than those of deferiprone, they possess pFe(III) values <20, indicating that this type of chelator is unlikely to be optimized into a useful therapeutic agent. PMID:25311299

  8. Chelating water-soluble polymers for waste minimization

    SciTech Connect

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-11-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R&D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex.

  9. Shape control of magnesium oxysulfate granules using an ethanolamine chelate.

    PubMed

    Kang, Kuk-Hyoun; Lee, Dong-Kyu; Ruh, Hyun; Ahn, Seonghee; Yu, Hyunung

    2014-11-01

    Shape control of inorganic nanomaterials during hydrothermal syntheses is crucial for fine-tuning the function of these materials, which are widely utilized in semiconductors, ceramics, and optical devices. In particular, magnesium compounds possess many desirable physical properties such as high thermal stability, wide band gap and high secondary electron emission yield, which allow their application as polymeric resins, cements, reinforcements, and fillers. However, conventional synthetic methods often require extreme reaction conditions such as high temperatures, high pressures, or prolonged reaction times. Additionally, various shape control methods are typically quite complicated and time consuming under conventional parameters. In this work, magnesium oxysulfate (5Mg(OH)2 x MgSO4 x 3H2O) granules of various shapes were fabricated by introducing ethanolamine chelate during hydrothermal reaction at a relatively low temperature and pressure. The strong interaction between ethanolamine and Mg2+ produced 5Mg(OH)2 x MgSO4 x 3H2O granules in the form of flakes, flowers, or whiskers through self-assembly this formation is dependent on concentration, reaction time, and temperature. The physicochemical properties of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. PMID:25958602

  10. Alternative chelating agents: evaluation of the ready biodegradability and complexation properties.

    PubMed

    Martins, João G; Neto, Isabel F F; Pinto, Isabel S S; Soares, Eduardo V; Barros, Maria Teresa; Soares, Helena M V M

    2014-01-01

    The ready biodegradability of four chelating agents, N,N'-(S,S)-bis[1-carboxy-2-(imidazol-4-yl)ethyl]ethylenediamine (BCIEE), N'-ethylenedi-L-cysteine (EC), N,N'-bis (4-imidazolymethyl)ethylenediamine (EMI) and 2,6-pyridine dicarboxylic acid (PDA), was tested according to the OECD guideline for testing of chemicals. PDA proved to be a readily biodegradable substance. However, none of the other three compounds were degraded during the 28 days of the test. Chemical simulations were performed for the four compounds in order to understand their ability to complex with some metal ions (Ca, Cd, Co, Cu, Fe, Mg, Mn, Ni, Pb, Zn) and discuss possible applications of these chelating agents. Two different conditions were simulated: (i) in the presence of the chelating agent and one metal ion, and (ii) in the simultaneous presence of the chelating agent and all metal ions with an excess of Ca. For those compounds that were revealed not to be readily biodegradable (BCIEE, EC and EMI), applications were evaluated where this property was not fundamental or even not required. Chemical simulations pointed out that possible applications for these chelating agents are: food fortification, food process, fertilizers, biocides, soil remediation and treatment of metal poisoning. Additionally, chemical simulations also predicted that PDA is an efficient chelating agent for Ca incrustations removal, detergents and for pulp metal ions removal process. PMID:24279626

  11. Translational downregulation of HSP90 expression by iron chelators in neuroblastoma cells.

    PubMed

    Sidarovich, Viktoryia; Adami, Valentina; Gatto, Pamela; Greco, Valentina; Tebaldi, Toma; Tonini, Gian Paolo; Quattrone, Alessandro

    2015-01-01

    Iron is an essential cellular nutrient, being a critical cofactor of several proteins involved in cell growth and replication. Compared with normal cells, neoplastic cells have been shown to require a greater amount of iron, thus laying the basis for the promising anticancer activity of iron chelators. In this work, we evaluated the effects of molecules with iron chelation activity on neuroblastoma (NB) cell lines. Of the 17 iron chelators tested, six reduced cell viability of two NB cell lines with an inhibition of growth of 50% below 10 µM; four of the six molecules-ciclopirox olamine (CPX), piroctone, 8-hydroxyquinoline, and deferasirox-were also shown to efficiently chelate intracellular iron within minutes after addition. Effects on cell viability of one of the compounds, CPX, were indeed dependent on chelation of intracellular iron and mediated by both G0/G1 cell cycle block and induction of apoptosis. By combined transcriptome and translatome profiling we identified early translational downregulation of several members of the heat shock protein group as a specific effect of CPX treatment. We functionally confirmed iron-dependent depletion of HSP90 and its client proteins at pharmacologically achievable concentrations of CPX, and we extended this effect to piroctone, 8-hydroxyquinoline, and deferasirox. Given the documented sensitivity of NB cells to HSP90 inhibition, we propose CPX and other iron chelators as investigational antitumor agents in NB therapy. PMID:25564462

  12. The role of chelation in the treatment of arsenic and mercury poisoning.

    PubMed

    Kosnett, Michael J

    2013-12-01

    Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for more than half a century. Animal experiments and in some instances human data indicate that the dithiol chelators enhance arsenic and mercury excretion. Controlled animal experiments support a therapeutic role for these chelators in the prompt treatment of acute poisoning by arsenic and inorganic mercury salts. Treatment should be initiated as rapidly as possible (within minutes to a few hours), as efficacy declines or disappears as the time interval between metal exposure and onset of chelation increases. DMPS and DMSA, which have a higher therapeutic index than BAL and do not redistribute arsenic or mercury to the brain, offer advantages in clinical practice. Although chelation following chronic exposure to inorganic arsenic and inorganic mercury may accelerate metal excretion and diminish metal burden in some organs, potential therapeutic efficacy in terms of decreased morbidity and mortality is largely unestablished in cases of chronic metal intoxication. PMID:24178900

  13. Mathematical modeling of the effects of aerobic and anaerobic chelate bioegradation on actinide speciation.

    SciTech Connect

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-03-19

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems.

  14. Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein.

    PubMed

    Tan, Ming-Liang; Perrin, B Scott; Niu, Shuqiang; Huang, Qi; Ichiye, Toshiko

    2016-01-01

    In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum-FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4 S4 ](1+) cluster, evidence also exists for an all-ferrous [Fe4 S4 ](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all-ferrous [Fe4 S4 ](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, "density functional theory plus Poisson Boltzmann" calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all-ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes. PMID:26271353

  15. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria.

    PubMed

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Kita, Kiyoshi

    2015-11-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe(2+)) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  16. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    SciTech Connect

    Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma ; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Piazza Umberto I 1, I-87100 Bari ; Fasano, Mauro

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  17. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria

    PubMed Central

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O.; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  18. Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra

    NASA Astrophysics Data System (ADS)

    Horgan, Briony H. N.; Cloutis, Edward A.; Mann, Paul; Bell, James F.

    2014-05-01

    Iron-bearing minerals are a major component of planetary surfaces, and many can be identified by their characteristic absorption bands in the near-infrared (NIR). Here we present laboratory NIR spectra of a wide range of common Fe-bearing minerals (e.g., olivines, pyroxenes), glasses, and mineral/glass mixtures. We then use this suite of spectra to evaluate the effects of mixtures on mineral detection methods, including olivine and pyroxene spectral indices developed for the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter. We find that although these indices can be compromised by minerals with atypical compositions, mineral mixtures, and the presence of other ferrous minerals, these issues can generally be mitigated by visual inspection of the spectra. However, a special case occurs when the mineral or mixture in question is spectrally indistinguishable from a more common mineral. In particular, we show that spectra of high-calcium pyroxene mixed with Fe-bearing glass can be virtually indistinguishable from common Fe-bearing olivine compositions. This effect, combined with the fact that Fe-bearing glass is generally much more difficult to detect than other ferrous minerals, may be causing glass occurrences on planetary surfaces to be underreported. In support of this hypothesis, we use Mars Express OMEGA observations to show that previous olivine detections in the north polar sand sea on Mars are actually more consistent with local mixing of glass and pyroxene. To address these issues, we present an alternative ferrous mineral identification method based on the position and shape of the 1 and 2 ?m iron absorption bands, which are sensitive to mineralogy, composition, and mineral mixtures in planetary surface spectra, including glass and mixtures with glass. Using Chandrayaan-1 Moon Mineralogy Mapper (M3) observations of Aristarchus Crater on the Moon, we show that these band parameters can reveal subtle spectral variations and can produce mineralogical maps at an exceptional level of detail.

  19. Assessment of mapping exposed ferrous and ferric iron compounds using Skylab-EREP data. [Pisgah Crater, California

    NASA Technical Reports Server (NTRS)

    Vincent, R. (principal investigator); Wagner, H.; Pillars, W.; Bennett, C.

    1976-01-01

    The author has identified the following significant results. The S190B color photography is as useful as LANDSAT data for the mapping of color differences in the rocks and soils of the terrain. An S192 ratio of 0.79 - 0.89 and 0.93 - 1.05 micron bands produced an apparently successful delineation of ferrous, ferric, and other materials, in agreement with theory and ratio code studies. From an analysis of S191 data, basalt and dacite were separated on the basis of differences in spectral emissivity in the 8.3 - 12 micron region.

  20. The problem of arsenic disposal in non-ferrous metals production.

    PubMed

    Hopkin, W

    1989-12-01

    Arsenic is a minor and inevitable component of all inputs to the non-ferrous metals extraction industry but sales are only a small proportion of input. Safe disposal of the excess is a substantial problem. Public perception exaggerates the toxicity of arsenic and generates emotional reactions, whereas arsenic has a natural cycle in the environment and all life is tolerant to traces with detoxication processes to deal with excess. Toxicity data for overload doses to biota in general are poor when required for the formulation of standards for disposal of waste thus making difficult the legal definition of hazardous wastes for appropriate regulation. Suitable tests to determine the stability of a waste for safe disposal are complex, costly, and uncertain against the need for the waste to be in place for a very long time. Further, there is no universal agreement on the principles which should govern the means of disposal of hazardous wastes. Safe disposal of arsenical wastes is thus difficult but practical and convincing solutions must still be devised, guided by thermodynamics and by natural processes. Much judgement and goodwill are required. However, few if any arsenical substances are so stable to moist air that they will not release unacceptable concentrations of arsenic when left in a thermodynamically open dump. Control of "hot spot" dumps must therefore start with planning of location and configuration, and the wastes must be sealed to exclude air and water and to contain leachates indefinitely. This is very difficult to ensure. Registration, control and testing of waste stability and dump behaviour must be planned on the assumption that leakage will arise at some time in future millennia, a major and expensive logistical problem. Adsorption of arsenate by soils and aquatic sediments is an important buffering and fixing process for any leakage, but waters can still be polluted. It is, however, argued that deliberate retention of leachate can lead to problems from uncontrolled future leakages, and thus that "hot spot" dumps should be designed to allow controlled leakage within the capacity of the receiving environment. Better still would be efficient dilution and dispersal. Marine disposal may be politically unattractive, but the arsenic reports to sediments and the process copies nature. It is probably the best environmental disposal option where practicable. PMID:24202419

  1. Predominant Intermediate-Spin Ferrous Iron in Lowermost Mantle Post-Perovskite and Perovskite

    NASA Astrophysics Data System (ADS)

    Lin, J.; Watson, H. C.; Vanko, G.; Alp, E. E.; Prakapenka, V.; Dera, P.; Struzhkin, V. V.; Kubo, A.; Zhao, J.; McCammon, C.; Evans, W. J.

    2008-12-01

    Silicate post-perovskite and perovskite are believed to be the dominant minerals of the lowermost mantle and the lower mantle, respectively, and their properties, which can be strongly influenced by the electronic state of iron in these phases, affect our understanding of the nature of the deep Earth. To date, in these minerals the electronic spin state of iron remains unknown under lowermost-mantle pressure-temperature conditions, although recent studies have showed an electronic spin crossover from high-spin to low-spin in ferropericlase over an extended pressure-temperature range of the lower mantle (i.e., Lin et al., Science, 2007) and from high-spin to intermediate-spin in silicate perovskite near the top of the lower mantle (McCammon et al., Nature Geoscience, 2008). Here we report the spin and valence states of iron in post-perovskite and perovskite at pressure-temperature conditions relevant to the lowermost mantle using in situ X-ray emission, X-ray diffraction, and synchrotron Mossbauer spectroscopies in a laser-heated diamond cell. Perovskite and post-perovskite display extremely high quadrupole splitting (QS) of approximately 4 mm/s and relatively high center shift in the synchrotron Mossbauer spectra at 110 GPa and 134 GPa, respectively. Our results show that Fe2+ exists predominantly in the intermediate-spin state with a total spin number of one in both phases (Lin et al., Nature Geoscience, 2008). Together with recent results on the effects of the spin transition in the lower-mantle ferropericlase (see a recent review by Lin and Tsuchiya, PEPI, 2008), here we will address how the electronic spin states in lower-mantle phases and their associated effects affect our understanding on the composition, geophysics, and dynamics of the lower mantle.. References: 1. Lin, J. F., H. C. Watson, G. Vanko, E. E. Alp, V. B. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, W. J. Evans, Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite, Nature Geosciences, 2008. 2. Lin, J. F., and T. Tsuchiya, Spin transition of iron in the Earth's lower mantle, Phys. Earth Planet. Inter., doi:10.1016/j.pepi.2008.01.005, 2008. 3. Lin, J. F., G. Vanko, S. D. Jacobsen, V. Iota-Herbei, V. V. Struzhkin, V. B. Prakapenka, A. Kuznetsov, and C.-S.Yoo, Spin transition zone in Earth's lower mantle, Science, 317, 1740-1743, 2007.

  2. Fine and ultrafine emission dynamics from a ferrous foundry cupola furnace.

    PubMed

    Meléndez, Antton; García, Estibaliz; Carnicer, Pedro; Pena, Egoitz; Larrión, Miren; Legarreta, Juan Andres; Gutiérrez-Cañas, Cristina

    2010-05-01

    Aerosol size distributions from ferrous foundry cupola furnaces vary depending on semicontinuous process dynamics, time along the tap-to-tap cycle, dilution ratio, and the physical and chemical nature of the charge and fuel. All of these factors result in a highly time-dependent emission of particulate matter (PM) 2.5 pm or less in aerodynamic diameter (PM2.5)--even on a mass concentration basis. Control measures are frequently taken on the basis of low-reliability parameters such as emission factors and loosely established mass ratios of PM2.5 to PM 10 microm or less in aerodynamic diameter (PM1.0). The new environmental requirements could entail unexpected and undesired drawbacks and uncertainties in the meaning and effectiveness of process improvement measures. The development of process-integrated and flue-gas cleaning measures for reduction of particle emissions requires a better knowledge of generation mechanisms during melting. Available aerosol analyzers expand the range of control issues to be tackled and contribute to greatly reduce the uncertainty of engineering decisions on trace pollutant control. This approach combines real-time size distribution monitoring and cascade impactors as preseparators for chemical or morphological analysis. The results allow for establishing a design rationale and performance requirement for control devices. A number size distribution below 10 microm in aerodynamic equivalent diameter was chosen as the main indicator of charge influence and filter performance. Size distribution is trimodal, with a coarse mode more than 12 microm that contributes up to 30% of the total mass. A temporal series for these data leads to identification of the most relevant size ranges for a specific furnace (e.g., the most penetrating size range). In this cupola, this size range is between 0.32 and 0.77 microm of aerodynamic equivalent diameter and defines the pollution control strategy for metals concentrating within this size range. Scrap quality effect is best monitored at less than 0.2 microm in aerodynamic equivalent diameter and has been confirmed as strongly dependent on the physical state of the charge. PMID:20480855

  3. Chelating and antibacterial properties of chitosan nanoparticles on dentin

    PubMed Central

    Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-01-01

    Objectives The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin. PMID:26295022

  4. Combined chelation therapy with deferasirox and deferoxamine in thalassemia.

    PubMed

    Lal, Ashutosh; Porter, John; Sweeters, Nancy; Ng, Vivian; Evans, Patricia; Neumayr, Lynne; Kurio, Gregory; Harmatz, Paul; Vichinsky, Elliott

    2013-02-01

    Iron overload is the primary cause of mortality and morbidity in thalassemia major despite advances in chelation therapy. We performed a pilot clinical trial to evaluate the safety and efficacy of combined therapy with deferasirox (DFX, 20-30 mg/kg daily) and deferoxamine (DFO, 35-50mg/kg on 3-7 days/week) in 22 patients with persistent iron overload or organ damage. In the 18 subjects completing 12 months of therapy, median liver iron concentration decreased by 31% from 17.4 mg/g (range 3.9-38.2mg/g) to 12.0mg/g (range 0.96-26.7 mg/g, p<0.001). Median ferritin decreased by 24% from 2465 ng/mL (range 1110-10,700 ng/mL) to 1875 ng/mL (range 421-5800 ng/mL, p=0.002). All 6 subjects with elevated myocardial iron showed improvement in MRI T2* (p=0.031). The mean±S.E. plasma non-transferrin-bound iron (NTBI) declined from 3.10±0.25?M to 2.15±0.29?M (p=0.028). The administration of DFX during infusion of DFO further lowered NTBI (-0.28±0.08 ?M, p=0.004) and labile plasma iron (LPI, -0.03±0.01 ?M, p=0.006). The simultaneous administration of DFO and DFX rapidly reduced systemic and myocardial iron, and provided an excellent control of the toxic labile plasma iron species without an increase in toxicity. PMID:23151373

  5. Pig oocyte activation using a Zn²? chelator, TPEN.

    PubMed

    Lee, Kiho; Davis, Alyssa; Zhang, Lu; Ryu, Junghyun; Spate, Lee D; Park, Kwang-Wook; Samuel, Melissa S; Walters, Eric M; Murphy, Clifton N; Machaty, Zoltan; Prather, Randall S

    2015-10-01

    Artificial oocyte activation is a critical step during SCNT. Most current activation protocols focus on inducing an increase in the intracellular free Ca(2+) concentration of the oocyte. Here, we have used a zinc chelator, TPEN, to enhance the efficiency of oocyte activation during SCNT. TPEN treatment of matured pig oocytes resulted in the reduction of available Zn(2+) in pig oocytes; however, the cytosolic Ca(2+) concentration in the oocytes was not affected by the TPEN treatment. When various concentrations (100-250 ?M) and incubation durations (45 minutes-2.5 hours) of TPEN were used to activate oocytes, the efficiency of oocyte activation was not different from conventional activation methods. When oocytes that were activated by conventional activation methods were incubated with a lower concentration of TPEN (5-10 ?M), a significant increase in embryos developing to the blastocyst stage was observed. In addition, when oocytes receiving a small Ca(2+) stimulus were further activated by higher concentration of TPEN (100-200 ?M), a significant increase in the frequency of blastocyst formation was observed, compared to a conventional activation method. This result indicated that TPEN can be a main reagent in oocyte activation. No increase in the cytosolic Ca(2+) level was detected when oocytes were exposed to various concentrations of TPEN, indicating the ability of TPEN to induce oocyte activation is independent of an intracellular Ca(2+) increase. We were able to produce clones through SCNT by using the TPEN-assisted activation procedure, and the piglets produced through the process did not show any signs of abnormality. In this study, we have developed an efficient way to use TPEN to increase the developmental potential of cloned embryos. PMID:26143360

  6. Sensorineural hearing loss in ?-thalassemia patients treated with iron chelation.

    PubMed

    Osma, Ustun; Kurtoglu, Erdal; Eyigor, Hulya; Yilmaz, Mustafa Deniz; Aygener, Nurdan

    2015-12-01

    The predictive value of pure-tone audiometry (PTA) in the early detection of ototoxicity has been questioned, particularly in the higher frequencies. Otoacoustic emissions testing appears to be more sensitive to cochlear insult than conventional PTA. We conducted a cross-sectional descriptive study to compare the efficacy of distortion-product otoacoustic emissions (DPOAE) testing with that of PTA as a method of audiologic monitoring. Our study group was made up of 159 patients (318 ears)-69 males (43.4%) and 90 females (56.6%), aged 5 to 61 years (mean: 23.59 ± 12.55). All patients had been diagnosed with either ?-thalassemia major (BTM) or ?-thalassemia intermedia (BTI), and all had received at least 1 year of treatment within the previous year with an iron chelator-either deferasirox, desferrioxamine (deferoxamine in the United States), deferiprone, or a combination of desferrioxamine and deferiprone. PTA and DPOAE evaluations were performed by the same audiologist using the same audiometer for all patients. In the right ears, the overall incidence of ototoxicity as manifested by sensorineural hearing loss was 39.0% on PTA and 22.0% on DPOAE testing; in the left ears, the corresponding figures were 27.7 and 19.5%, respectively. There were no statistically significant differences in the incidence of ototoxicity between the BTM and BTI groups with any of the four different drug regimens on PTA (p = 0.765, p = 0.378, p = 0.265, and p = 0.579, respectively) or on DPOAE testing (p = 0.890, p = 0.263, p = 0.390, and p = 0.340, respectively). Based on these data, we found no significant difference between PTA and DPOAE testing in their ability to detect ototoxicity. We conclude that periodic testing with both PTA and DPOAE is necessary for patients with suspected ?-thalassemia in order arrive at a prompt diagnosis and initiate timely management. PMID:26670754

  7. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-12-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. {open_quotes}Hard{close_quotes} chemical decontamination solutions, capable of achieving decontamination factors (Df`s) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. {open_quotes}Soft{close_quotes} chemical decontamination solutions, capable of achieving Df`s of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock & Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment.

  8. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture.

    PubMed

    Rush, Travis; Hjelmhaug, Julie; Lobner, Doug

    2009-01-01

    Chelation therapy for the treatment of acute, high dose exposure to heavy metals is accepted medical practice. However, a much wider use of metal chelators is by alternative health practitioners for so called "chelation therapy". Given this widespread and largely unregulated use of metal chelators it is important to understand the actions of these compounds. We tested the effects of four commonly used metal chelators, calcium disodium ethylenediaminetetraacetate (CaNa2EDTA), D-penicillamine (DPA), 2,3 dimercaptopropane-1-sulfonate (DMPS), and dimercaptosuccinic acid (DMSA) for their effects on heavy metal neurotoxicity in primary cortical cultures. We studied the toxicity of three forms of mercury, inorganic mercury (HgCl2), methyl mercury (MeHg), and ethyl mercury (thimerosal), as well as lead (PbCl2) and iron (Fe-citrate). DPA had the worst profile of effects, providing no protection while potentiating HgCl2, thimerosal, and Fe-citrate toxicity. DMPS and DMSA both attenuated HgCl2 toxicity and potentiated thimerosal and Fe toxicity, while DMPS also potentiated PbCl2 toxicity. CaNa2EDTA attenuated HgCl2 toxicity, but caused a severe potentiation of Fe-citrate toxicity. The ability of these chelators to attenuate the toxicity of various metals is quite restricted, and potentiation of toxicity is a serious concern. Specifically, protection is provided only against inorganic mercury, while it is lacking against the common form of mercury found in food, MeHg, and the form found in vaccines, thimerosal. The potentiation of Fe-citrate toxicity is of concern because of iron's role in oxidative stress in the body. Potentiation of iron toxicity could have serious health consequences when using chelation therapy. PMID:19027035

  9. Study of the dose response of the system ferrous ammonium sulfate-sucrose-xylenol orange in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Juarez-Calderon, J. M.; Negron-Mendoza, A.; Ramos-Bernal, S.

    2014-11-01

    An aqueous solution of ammonium ferrous sulfate-sucrose-xylenol orange in sulfuric acid (FSX) is proposed as a dosimetric system for the processes of gamma irradiation in a range between 0.3 and 6 Gy. This system is based on the indirect oxidation of ferrous ion by an organic compound (sucrose) to ferric ion and on the formation of a color complex of Fe3+ in an acidic medium with xylenol orange (a dye). After gamma radiation, an observable change occurs in the color of the system. Irradiation was executed at three different temperatures (13 °C, 22 °C, and 40 °C). A spectrometric readout method at 585 nm was employed to evaluate the system's dose response. In all of the cases analyzed, the responses had a linear behavior, and a slight effect of irradiation temperature was observed. Post-irradiation response was also evaluated and showed the stability of the solutions 24 h after the irradiation. The results obtained suggest that FSX might be used as a dosimeter for low doses of gamma irradiation because it provides a stable signal, good reproducibility, and an accessible technique for analysis.

  10. Thumbnail Sketches: EDTA-Type Chelating Agents in Everyday Consumer Products: Some Medicinal and Personal Care Products.

    ERIC Educational Resources Information Center

    Hart, J. Roger

    1984-01-01

    Discusses various ethylenediaminetetraacetate (EDTA)-type chelating agents found in ophthalmic products, personal care products, and disinfectants. Also discusses the properties and action of these EDTA agents. (JN)

  11. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage

    PubMed Central

    Johnson, Anthea; Singhal, Naresh

    2015-01-01

    The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA)), transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency. PMID:26512647

  12. Iron Chelators with Topoisomerase-Inhibitory Activity and Their Anticancer Applications

    PubMed Central

    2013-01-01

    Abstract Significance: Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. Recent Advances: The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2?). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2? inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. Critical Issues: While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. Future Directions: Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed. Antioxid. Redox Signal. 00, 000–000. PMID:22900902

  13. Comparative study on fluorescence enhancement and quenching of europium and terbium chelate anions in cationic micelles

    NASA Astrophysics Data System (ADS)

    Du, Xinzhen; Hou, Jinguo; Deng, Hualin; Gao, Jinzhang; Kang, Jingwan

    2003-01-01

    Fluorescence enhancement and quenching of water soluble chelates of terbium (Tb 3+) with Tiron, salicylic acid (SA), 4-sulfonyl salicylic acid (SSA) and acetylacetone (AA) and sparingly soluble chelates of europium (Eu 3+) with ?-diketones were comparatively examined in the presence of cetyltrimethyl ammonium bromide (CTMAB) and cetylpyridinium chloride (CPC). By the composition of the complexes, surface tension measurements and spectral analysis, the binding mode of chelate anions to the micellar surface of cationic surfactants was discussed in terms of ion-exchange model. Quenching effect of CPC on the fluorescence of association complexes seems to arise from the charge transfer from a fluorescent ligand to pyridinium cation. In the case of the chelates of Eu 3+ with ?-diketones, however, pyridinium ion is only capable of overlapping the aromatic ring of ?-diketones to less extent since the poorly soluble charged chelates have a weak affinity for the highly polar surface of pyridinium cationic micelles. Efficient charge transfer between the excited aromatic ?-diketone and pyridinium cation fails to be established. CPC also shows enhanced effect on fluorescence like CTMAB.

  14. Which psychosocial factors are related to chelation adherence in thalassemia? A systematic review.

    PubMed

    Evangeli, Michael; Mughal, Kulsoom; Porter, John B

    2010-06-01

    Good adherence to iron chelation therapy in thalassemia is crucial. Although there is evidence that adherence is related to regimen factors, there has been less emphasis on the relationship between psychosocial (psychological, demographic and social) factors and adherence. We present a systematic review of psychosocial correlates of chelation adherence in thalassemia. Nine studies met the inclusion criteria. Information was extracted regarding the study characteristics and the relationship between psychosocial factors and chelation adherence. Methodological quality was rated. The studies took place in a range of countries, were mostly cross sectional in design, and examined adherence to deferoxamine (DFO) only. Sample sizes ranged from 15 to 1573. A variety of psychosocial variables were examined. Definitions of adherence varied between studies and non adherence rates were also variable (9 to 66%). Older age was consistently associated with lower levels of chelation adherence. There were few other consistent findings. The methodological quality of studies was variable. There is a need for more methodologically sophisticated and theoretically informed studies on psychosocial correlates of chelation adherence. We offer specific suggestions. PMID:20524820

  15. Synthesis, characterization and cyclic voltammetric study of copper(II) and nickel(II) polymer chelates.

    PubMed

    Azmeera, Venkanna; Rastogi, Pankaj Kumar; Adhikary, Pubali; Ganesan, Vellaichamy; Krishnamoorthi, S

    2014-09-22

    Graft copolymers based on dextran (Dx) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) were synthesized by free radical initiated solution polymerization technique using ceric ammonium nitrate as initiator. These graft copolymers were used to prepare Cu(II) and Ni(II) chelates by reactions with Cu(II) and Ni(II) metal ions respectively. Graft copolymer and metal chelates were characterized by elemental analysis, intrinsic viscosity, FT-IR, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD). Elemental analysis, intrinsic viscosity and FT-IR studies revealed the incorporation of metal ions to form metal chelates. SEM studies showed the change in morphology due to metal incorporation. From AFM studies it was observed that there was increase in Root mean square (RMS) roughness values in case of metal complexes. Metal chelates were observed to be thermally more stable than graft copolymer from TGA. UV-vis spectroscopy study revealed increase in absorbance values and cyclic voltammetric (CV) studies showed more than tenfold increase in redox current due to formation of Cu(II) and Ni(II) metal chelates. The binding constants of each complex determined by using UV-visible spectroscopy revealed that Cu(II) has more binding ability than Ni(II). PMID:24906771

  16. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints

    SciTech Connect

    Wu, J.; Hsu, F.C.; Cunningham, S.D.

    1999-06-01

    Chelates have been shown to enhance phytoextraction of Pb from contaminated soil. Mechanisms behind this phenomenon, however, remain largely unexplored. In this paper the authors examine chelate effect on Pb dissolution, plant Pb uptake, and internal plant Pb translocation. EDTA was found to be the most efficient in increasing water-soluble Pb concentration in the test soil. Unfortunately, Pb-EDTA is highly water-soluble and posses potential risks to ground water in its application. In addition, it would not appear to be ideally suited for plant uptake and translocation based upon the relative water solubility of Pb-EDTA. The authors demonstrated that N,N{prime}-di(2-hydroxybenzyl)ethylenediamine N,N{prime}-diacetic acid (HBED) resulted in Zea mays root Pb content significantly higher than did EDTA, indicating that a chelate better than EDTA might be designed. Fortuitously, EDTA appears to increase overall plant transpiration, the driving force in phytoextraction of the Pb-chelate complex from soil. The authors also found that there was a significant increase in Pb uptake and translocation for corn transplanted into soil, then treated with EDTA, as compared to plants germinated and grown in Pb-contaminated soil to which EDTA was subsequently applied. These results demonstrate that significant improvement over current chelate-assisted phytoextraction of Pb may be possible.

  17. PHARMACOLOGICAL PROPERTIES OF ORALLY AVAILABLE, AMPHIPATHIC POLYAMINOCARBOXYLIC ACID CHELATORS FOR ACTINIDE DECORPORATION

    PubMed Central

    Miller, Scott C.; Wang, Xuli; Bowman, Beth M.

    2010-01-01

    Commonly used water-soluble polyaminocarboxylic acid (PACA) chelators, such as (EDTA) and DTPA, require intravenous or subcutaneous administration due to their poor bioavailability. The bioavailability of PACAs can be improved by the addition of differing lengths of alkyl side chains that alter amphipathic properties. Orally administered amphipathic triethylenetetramine pentaacetic acid (TT) compounds are efficacious for decorporation of Pu and Am. The synthesis, efficacy, binding affinities, and some initial pharmacokinetics properties of amphipathic TT chelators are reviewed. 14C-Labeled C12TT and C22TT chelators are reasonably well absorbed from the intestine and have a substantial biliary/fecal excretion pathway, unlike DTPA, which is mostly excreted in the urine. Whole body retention times are increased as a function of increasing lipophilicity. Neutron-induced autoradiography studies demonstrate that the oral administration of the chelators can substantially inhibit the redistribution of 239Pu in skeletal tissues. In summary, amphipathic TT-based chelators have favorable bioavailability, have a significant biliary excretion pathway, have demonstrated efficacy for americium and plutonium and are thus good candidates for further development. Furthermore, some of the pharmacological properties can be manipulated by changing the lengths of the alkyl side chains and this may have some advantage for decorporation of certain metals and radionuclides. PMID:20699705

  18. Soil Remediation of an Arsenic-Contaminated Site With Ferrous Sulfate and Type V Portland Cement

    NASA Astrophysics Data System (ADS)

    Illera, V.; O'Day, P. A.; Rivera, N.; Root, R.; Rafferty, M. T.; Vlassopoulos, D.

    2005-12-01

    High levels of arsenic are present in a site adjacent to San Francisco Bay (in East Palo Alto, CA) as a consequence of the activity of a former pesticide manufacturing plant. Most of the readily accessible arsenic at the site has been removed by remedial excavation and surface capping. In-situ fixation of residual arsenic was performed close to the source about 10 years ago where arsenic values in capped soils ranged from 500 to 5000 mg kg-1. The fixation method consisted of the addition of ferrous sulfate (3% w/w), type V Portland cement (10% w/w) and water. Both products were mixed with the contaminated soil to a treatment depth between 1.5 and 9 meters. The treated soil was then capped to prevent weathering. This long-term amended soil offers an opportunity to compare the processes that prevent microbial arsenic reduction and control the immobilization of arsenic in the treated soils versus natural soils, and to study the aging effects of arsenic sorption. Solid phase characterization of soil samples from both the field and controlled laboratory experiments were carried out to study the speciation and bioavailability of arsenic and to ascertain the mechanisms of the arsenic immobilization in the treated soil. These methods included physical description by field observations, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy, total elemental concentrations, and solid phase fractionation by sequential extraction. Both synchrotron X-ray absorption spectroscopy (XAS) and XRD measurements were used to determine oxidation state of arsenic and iron and host phases present in the soil. The remedial treatment was successful in immobilizing the arsenic in the contaminated soil, and decreasing its leachability. Measurements taken at short aging times (during the first month) showed that the treatment was effective in reducing leachable arsenic as evidenced by the TCLP wet test (< 5 mg l-1 leached). The field amendment influenced arsenic speciation. The treated soil in both field samples and short-term laboratory experiments contained only As(V), suggesting that the microbial reduction of arsenic is prevented in the amended soils. Natural soils from cores adjacent to the amended soils contained both As(III) and As(V), and sulfides associated with the arsenic. The addition of Portland cement to soils caused alkaline conditions and pH buffering, changing the pH from 7 before the treatment to 12 afterwards. Calcium and iron sulfates are typical precipitates of iron sulfate and cement applications. Our characterizations suggest that arsenate was incorporated into new phases, either as solid solutions with sulfate or as localized arsenate phases. Arsenic incorporated into these less soluble phases is resistant to desorption and leaching, particularly under changing subsurface conditions.

  19. Chelation of intracellular calcium prevents mesangial cell proliferative responsiveness.

    PubMed

    Whiteside, C; Munk, S; Zhou, X; Miralem, T; Templeton, D M

    1998-01-01

    Mesangial cell transformation into a proliferative phenotype, observed in many glomerular diseases, occurs in response to growth factors and cytokines. This study tests the hypothesis that intracellular calcium is necessary for stimulation of mesangial cell proliferative responsiveness to a variety of growth factors. Furthermore, these experiments tested whether nonspecific calcium entry via a calcium ionophore was sufficient to elicit the same response. Rat primary mesangial cells (passages 5 to 10) were growth-arrested for 48 h in 0.5% fetal bovine serum (FBS), then stimulated with 0.1 microM endothelin-1, 1.9 microM platelet-derived growth factor (PDGF)-BB, 0.5% FBS, or 0.1 microM ionomycin, with or without the intracellular calcium chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid (BAPTA). Calcium signaling was measured in Fura-2-loaded cells on coverslips by dual-wavelength spectrofluorometry and in Fluo-3-loaded cells by confocal fluorescence laser microscopy. [3H]-Thymidine incorporation was measured after 12 to 24 h of stimulation with each test agent. Expression of c-fos mRNA was analyzed by Northern blot. All test agents stimulated a significant increase in cytosolic and nuclear calcium, which were both effectively inhibited with BAPTA. All agents stimulated a significant increase in [3H]-thymidine incorporation and enhanced c-fos mRNA expression (no detectable c-fos mRNA was observed in quiescent cells). BAPTA prevented the enhanced [3H]-thymidine incorporation stimulated by endothelin-1 and PDGF, and partial inhibition of FBS-stimulated incorporation with BAPTA was observed. BAPTA inhibited c-fos expression observed in response to these agents. Phorbol ester induction of c-fos mRNA in the absence of raised cytosolic or nuclear calcium was also suppressed by BAPTA. Cell viability as measured by thiazolyl blue and trypan blue was not altered by BAPTA. It is concluded that normal regulation of intracellular calcium is necessary for mesangial cell proliferative responsiveness. PMID:9440082

  20. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents; Performance report

    SciTech Connect

    Troutner, D.E.; Schlemper, E.O.

    1988-12-01

    Work during this year has centered on the synthesis of suitable ligands for complexing Rh-105. Our previous work has shown that if unenriched natural ruthenium is used as a target for neutron irradiation, and if the unseparated ruthenium competes with rhodium during chelation, we can expect specific activities of {approximately}1000 mCi/{mu}mol total metal ion. An average of 1 metal ion per molecule of antibody leads to a specific activity of 6.7 mCi/mg antibody. Because of the kinetic inertness of rhodium complexes we did not attempt to add the chelating group to the antibody followed by chelation of the rhodium, but instead prepared the rhodium complexes of ligands with pendant functional groups, activated those groups, and coupled the complex to the antibody. 9 refs., 11 figs., 13 tabs.

  1. Detection of decontamination solution chelating agents using ion selective coated-wire electrodes

    SciTech Connect

    Banks, M.L.

    1992-12-31

    This thesis explores feasibility of using coated-wire electrodes to measure chelating agent concentration. Chelating agents are often found in radioactive decontamination solutions because they aid in the removal of radionuclides from contaminated surfaces by increasing their solubility. However, this characteristic will also enhance the mobility of the radionuclide and thus its transport out of a waste disposal site. Coated-wire ion selective electrodes, based on a polyvinylchloride membrane using dioctylphthalate as a plasticizer and dinonylnaphthalenesulfonic acid as a counterion, were constructed for five commonly utilized chelating agents (ethylenediaminetetracetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid, oxalic acid and tartaric add). The EDTA and NTA electrodes` calibration characteristics exhibited acceptable behavior in pure standard solutions. From data obtained while using the EDTA and NTA electrodes in a cement environment, further research needs to be done in the area of ion interference.

  2. Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions.

    PubMed

    Saliba, Antoine N; Harb, Afif R; Taher, Ali T

    2015-01-01

    Transfusional iron overload is a major target in the care of patients with transfusion-dependent thalassemia (TDT) and other refractory anemias. Iron accumulates in the liver, heart, and endocrine organs leading to a wide array of complications. In this review, we summarize the characteristics of the approved iron chelators, deferoxamine, deferiprone, and deferasirox, and the evidence behind the use of each, as monotherapy or as part of combination therapy. We also review the different guidelines on iron chelation in TDT. This review also discusses future prospects and directions in the treatment of transfusional iron overload in TDT whether through innovation in chelation or other therapies, such as novel agents that improve transfusion dependence. PMID:26124688

  3. Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions

    PubMed Central

    Saliba, Antoine N; Harb, Afif R; Taher, Ali T

    2015-01-01

    Transfusional iron overload is a major target in the care of patients with transfusion-dependent thalassemia (TDT) and other refractory anemias. Iron accumulates in the liver, heart, and endocrine organs leading to a wide array of complications. In this review, we summarize the characteristics of the approved iron chelators, deferoxamine, deferiprone, and deferasirox, and the evidence behind the use of each, as monotherapy or as part of combination therapy. We also review the different guidelines on iron chelation in TDT. This review also discusses future prospects and directions in the treatment of transfusional iron overload in TDT whether through innovation in chelation or other therapies, such as novel agents that improve transfusion dependence. PMID:26124688

  4. Improvement in hematopoiesis after iron chelation therapy with deferasirox in patients with aplastic anemia.

    PubMed

    Lee, Sung-Eun; Yahng, Seung-Ah; Cho, Byung-Sik; Eom, Ki-Sung; Kim, Yoo-Jin; Lee, Seok; Min, Chang-Ki; Kim, Hee-Je; Cho, Seok-Goo; Kim, Dong-Wook; Min, Woo-Sung; Park, Chong-Won; Lee, Jong Wook

    2013-01-01

    Iron overload due to regular transfusions of packed red cells can cause multiple organ damage. Iron chelation therapy (ICT) is important in patients with aplastic anemia (AA) who require blood transfusions as supportive management. With the introduction of the oral iron chelator deferasirox, ICT has become more widely available and feasible. We studied 4 adult AA patients who had transfusion-induced iron overload and showed hematological improvement after ICT with oral deferasirox. Following deferasirox treatment, hemoglobin increased and serum ferritin levels decreased, and the patients subsequently became transfusion independent. Our experience raises the possibility of the potential benefit of ICT on hematopoiesis. Further long-term studies in larger patient cohorts are needed to clarify the effect of the restoration of hematopoiesis after iron chelation therapy. PMID:23154600

  5. Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    1996-01-01

    Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.

  6. Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods.

    PubMed

    Canabady-Rochelle, Laetitia L S; Harscoat-Schiavo, Christelle; Kessler, Violette; Aymes, Arnaud; Fournier, Frantz; Girardet, Jean-Michel

    2015-09-15

    The purpose of this study was to improve two common tests used for antioxidant capacity measurements, i.e. the reducing power and chelating ability measurements, for appropriate comparisons between the molecules tested and chosen references, as the usual methods are often performed in a qualitative way rather than a quantitative way. After revision, it was then possible to determine an AERC indice (Ascorbate Equivalent Reducing Capacity) and a CECC (Carnosine Equivalent Chelating Capacity) or EECC (EDTA Equivalent Chelating Capacity) indice according to the standard chosen, by analogy to the TEAC indice (Trolox Equivalent Antioxidant Capacity) already used in many reported works to determine the free radical scavenging activity. Thus, the determination of these relative indices enables the comparison of antioxidative capacities obtained in various studies. The adaptation of these two tests to micro-scales and the calculation of AERC, EECC and CECC were performed on model peptides. PMID:25863620

  7. Assessment of methylsulfonylmethane as a permeability enhancer for regional EDTA chelation therapy.

    PubMed

    Zhang, Min; Wong, Ira G; Gin, Jerry B; Ansari, Naseem H

    2009-07-01

    Pharmacologic chelators do not effectively penetrate cell membranes and blood-brain barrier. This study assesses methylsulfonylmethane (MSM) as a permeability enhancer and an excipient to facilitate EDTA transport across biologic membranes, and to make possible localized, regional chelation. Topical application of MSM with C(14)EDTA onto the rat cornea led to uptake of the C(14)EDTA in all tested ocular tissues. Without MSM, EDTA did not penetrate the eye. The ability of MSM to deliver EDTA into an eye provides an opportunity for regional chelation therapy. Additionally, these studies suggest that MSM could also be an adjuvant for delivering ciprofloxacin and other chemical compounds to specific, local tissue sites. PMID:19538004

  8. Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use

    DOEpatents

    Srivastava, Suresh C. (Setauket, NY); Meinken, George E. (Middle Island, NY)

    2001-01-01

    Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.

  9. [Sorption rate equation of 2-mercaptopbenzimidazole chelating cellulose for some heavy metal ions].

    PubMed

    Chen, Zhong-lan

    2002-10-01

    Chelating cellulose is of simple preparation, excellent nature and low cost. MBM chelating cellulose (CC-MBM) was prepared with chelating reagent (2-mercaptobenzimidazole) grafted on cotton by indirect etherification method. The approach for separating and preconcentrating trace of Pb, Cd, Cu and Ni has advantages of high exchanging speed, high preconcentration multiple, high selectivity and easy elution. The sorption kinetic properties of CC-MBM for several heavy metal ions have also been studied systematically. It is shown that the sorption rate of CC-MBM is very rapid and the reaching time is short. The relation between the sorption amount and time completely complies with following equation Q/Q infinity = at/(1 + at). PMID:12938454

  10. Synthesis and structural characterization of ferrous trioctahedral smectites: Implications for clay mineral genesis and detectability on Mars

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Nickerson, Ryan D.; Morris, Richard V.; Agresti, David G.; Catalano, Jeffrey G.

    2015-06-01

    Widespread detections of phyllosilicates in Noachian terrains on Mars imply a history of near-surface fluid-rock interaction. Ferrous trioctahedral smectites are thermodynamically predicted products of basalt weathering on early Mars, but to date only Fe3+-bearing dioctahedral smectites have been identified from orbital observations. In general, the physicochemical properties of ferrous smectites are poorly studied because they are susceptible to air oxidation. In this study, eight Fe2+-bearing smectites were synthesized from Fe2+-Mg-Al silicate gels at 200°C under anoxic conditions. Samples were characterized by inductively coupled plasma optical emission spectrometry, powder X-ray diffraction, Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy, and visible/near-infrared (VNIR) reflectance spectroscopy. The range of redox states was Fe3+/?Fe = 0 to 0.06 ± 0.01 as determined by both XAS and, for short integration times, Mössbauer. The smectites have 060 distances (d(060)) between 1.53 and 1.56 Å, indicating a trioctahedral structure. d(060) and XAS-derived interatomic Fe-(Fe,Mg,Al) distance scaled with Fe content. Smectite VNIR spectra feature OH/H2O absorption bands at 1.4 and 1.9 µm, (Fe2+,Mg,Al)3-OH stretching bands near 1.4 µm, and Fe2+Fe2+Fe2+-OH, MgMgMg-OH, AlAl(Mg,Fe2+)-OH, and AlAl-OH combination bands at 2.36 µm, 2.32 µm 2.25 µm, and 2.20 µm, respectively. The spectra for ferrous saponites are distinct from those for dioctahedral ferric smectites, permitting their differentiation from orbital observations. X-ray diffraction patterns for synthetic high-Mg ferrosaponite and high-Mg ferrian saponite are both consistent with the Sheepbed saponite detected by the chemistry and mineralogy (CheMin) instrument at Gale Crater, Mars, suggesting that anoxic basalt alteration was a viable pathway for clay mineral formation on early Mars.

  11. Arsenic and lead induced free radical generation and their reversibility following chelation.

    PubMed

    Flora, S J S; Flora, G; Saxena, G; Mishra, M

    2007-01-01

    Health hazards caused by heavy metals have become a great concern to the population. Lead and arsenic are one of the most important current global environmental toxicants. Their toxic manifestations are being considered caused primarily due to the imbalance between pro-oxidant and antioxidant homeostasis and also due to a high affinity of these metals for thiol groups on functional proteins. They also interfere with a number of other body functions and are known to affect central nervous system (CNS), hematopoietic system, liver and kidneys and produce serious disorders. They produce both acute and chronic poisoning, of which chronic poisoning is more dangerous as its very difficult to revert back to normal condition after chronic exposure to these insidious metals present in our life. Despite many years of research, we are still far from an effective treatment of chronic plumbism and arsenicosis. Current approved treatment lies in the administration of chelating agents that forms an insoluble complex with the metal and removes it. They have been used clinically as antidotes for treating acute and chronic poisoning. The most widely used chelating agents are calcium disodium ethylenediamine tetra acetic acid (CaNa2EDTA), D-penicillamine and British anti-lewisite (BAL). Meso 2,3 dimercaptosuccinic acid (DMSA), an analogue of BAL, has been tried successfully in animals as well as in humans. But it is unable to remove the metal from intracellular sites. Effective chelation therapy for intoxication by heavy metals depends on whether the chelating agents are able to reach the intracellular site where the heavy metal is firmly bound. One of the important approaches has been the use of combination therapy. This includes use of structurally different chelators or a combination of an adjuvant/ antioxidant/ herbal extracts and a chelator to provide better clinical/ biochemical recovery. A number of other strategies have been suggested to minimize the numerous problems. This article presents the recent development made in this area with possible directions for future research. PMID:17519110

  12. Use of Iron Chelating Agents in Transfusion Dependent Thalassaemia Major Patients.

    PubMed

    Santra, S; Bhattacharya, A; Mukhopadhyay, T; Agrawal, D; Kumar, S; Das, P; Chakrabarty, P

    2015-10-01

    This cross-sectional study was done to find and investigate the utilization pattern of iron chelating agents among 73 transfusion-dependent thalassaemia major patients with continuous enrolment for at least 1 year in a day care treatment centre run by The Thalassaemia Society of India, Kolkata from November 2014 to January 2015. Transfusion dependent thalassaemia major patients above the age of 2 years managed by various haematologists and Thalassaemia specialists were studied. The administration of iron chelators namely Desferrioxamine (DFO), Deferiprone (DFP) and Deferasirox (DFX) were evaluated. Forty seven (64%) of the thalassaemics had serum ferritin level below 2500ng/dl, of whom 20(27%) patients have ferritin level below 1000ng/dl. A number of 55(75%) of 73 patients who were treated with a single chelating agent consisted 50 patients only on DFX. Exact 8(67%) patients were on DFO+DFP and 4(33%) are treated with DFX+DFP. The mean age was 19 and mean serum ferritin level was 2280ng/dl among the thalassaemia major patients. DFX was used 68% of patients as monotherapy and 5% patients in combination therapy with DFP. DFX in the dose of 30-40mg/kg/day was prescribed in 52% of patients. Mean dose of 15mg/kg/day of DFX was been administered in combination with DFP (75mg/kg/day) in 5% patients. DFO+DFP were preferred by 8 patients, out of which 6 were aged above 25. Cost of monotherapy is twice that of combination therapy. These data demonstrates the ferritin status and present scenario of utilization of chelating agents among thalassaemia major patients on repeated transfusions. The dosing of new drug, Deferasirox and the cost analysis of various chelating regimen has also been dealt. Individualization rather than rationalization of chelation therapy should be focussed upon in managing iron overload in thalassaemia. PMID:26620028

  13. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ? potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation. PMID:24313833

  14. The effects of chelators on zinc levels in patients with thalassemia major.

    PubMed

    Erdo?an, Elvan; Canatan, Duran; Ormeci, Ahmet Rifat; Vural, Hüseyin; Aylak, Firdevs

    2013-04-01

    Zinc which is an essential element has very important effects on growth and immune system in patients with thalassemia major (TM). The effects of two oral iron chelator agents, desferrioxamine (DFO) and deferiprone (DFP), on zinc levels were investigated in previous studies and they were found to cause zinc deficiency. Zinc level alteration by the new chelator deferasirox (DFX) is not present in the literature. The aim of this study was to examine the effects of different oral chelators on serum and urine zinc levels in TM patients. Zinc levels are compared in the patients who received different chelators: only DFX, combined chelation with DFO plus DFP and the healthy control group. A total of 56 patients with TM were involved in this study: 39 patients received only DFX and 17 patients were given combined treatment DFO+DFP between August 2008 and August 2009. In addition, a control group was established from the healthy population. Blood was taken from all the patients for serum zinc levels and 24hour-urine samples were collected for urine zinc levels. Serum zinc levels were found to be 64.8±14.8?g/dL in DFX group and 66.5±15.1?g/dL in DFO+DFP group. These levels were statistically lower than that in the control group (149±54.3?g/dL) (p<0.05), but there was no statistically difference between the two different chelation groups (p>0.05). The urine zinc levels of DFX and DFO+DFP group were 662.2±428.2?g/day and 1182.3±980.3?g/day respectively (p<0.05). Urinary zinc excretion in the chelation groups (DFX and DFO+DFP) was significantly higher than the control group (395.1±208.9?g/day) (p<0.05). As a conclusion, the new chelation agent, DFX, also leads to zinc deficiency, though its urinary zinc excretion is lower. New studies are required to examine the effects of DFX on zinc extensively. Zinc levels of patients with TM should be followed up regularly and zinc supply should be given at early ages. PMID:23164519

  15. New aryloxybenzylidene ruthenium chelates – synthesis, reactivity and catalytic performance in ROMP

    PubMed Central

    ?ak, Patrycja; Rogalski, Szymon; Majchrzak, Mariusz; Kubicki, Maciej

    2015-01-01

    Summary New phenoxybenzylidene ruthenium chelates were synthesised from the second generation Grubbs catalysts bearing a triphenylphosphine ligand (or its para-substituted analogues) by metathesis exchange with substituted 2-vinylphenols. The complexes behave like a latent catalyst and are characterized by an improved catalytic behaviour as compared to that of the known analogues, i.e., they exhibit high catalytic inactivity in their dormant forms and a profound increase in activity after activation with HCl. The strong electronic influence of substituents in the chelating ligand on the catalytic activity was demonstrated. The catalytic properties were tested in ROMP of cyclooctadien (COD) and a single selected norbornene derivative. PMID:26664610

  16. Use of ozone + hydrogen peroxide to degrade macroscopic quantities of chelating agents in an aqueous solution

    SciTech Connect

    Appelman, E.H.; Jache, A.W.; Muntean, J.V.

    1996-04-01

    Chelating agents capable of complexing highly charged metal ions play an important role in separation science and in particular in the development of methods for the separation of actinide ions present in radioactive wastes. Ozone in the presence of hydrogen peroxide has been employed successfully for the oxidative degradation of polycarboxylic and diphosphonic acid chelating agents present at the 0.1 M level in a neutral or weakly alkaline aqueous solution. The geminal diphosphonic acid complexants methane diphosphonic acid and (1-hydroxyethylidene) bisphosphonic acid have been successfully mineralized, as have the polycarboxylic acids ethylenediaminetetraacetic acid and tetrahydro-furantetracarboxylic acid.

  17. Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification.

    PubMed

    Wang, Ru; Zheng, Ping; Zhang, Meng; Zhao, He-Ping; Ji, Jun-Yuan; Zhou, Xiao-Xin; Li, Wei

    2015-12-01

    Nitrate-dependent anaerobic ferrous oxidation (NAFO) is a new and valuable bio-process for the treatment of wastewaters with low C/N ratio, and the NAFO process is in state of the art. The heterotrophic denitrifying sludge (HDS), possessing NAFO activity, was used as bioaugmentation to enhance NAFO efficiency. At a dosage of 6% (V/V), the removal of nitrate and ferrous was 2.4 times and 2.3 times of as primary, and the volumetric removal rate (VRR) of nitrate and ferrous was 2.4 times and 2.2 times of as primary. Tracing experiments of HDS indicated that the bioaugmentation on NAFO reactor was resulted from the NAFO activity by HDS itself. The predominant bacteria in HDS were identified as Thauera (52.5%) and Hyphomicrobium (20.0%) which were typical denitrifying bacteria and had potential ability to oxidize ferrous. In conclusion, HDS could serve as bioaugmentation or a new seeding sludge for operating high-efficiency NAFO reactors. PMID:26348287

  18. Reactivity and molecular modeling of new solvatochromic mixed-ligand copper(II) chelates of 2-acetylbutyrolactone and dinitrogen bases.

    PubMed

    Taha, A; Adly, Omima M I; Shebl, Magdy

    2015-04-01

    A new series of solvatochromic mononuclear mixed ligand chelates with the general formula: Cu(AcBL)(L)X; where AcBL=2-acetylbutyrolactonate, L=N,N,N',N'-tetramethylethylenediamine (Me4en), N,N,N',N'-tetramethylpropylene diamine (Me4pn), 1,10-phenanthroline (Phen) or 2,2'-bipyridyl (Bipy) and X=ClO4-, NO3- or Br- have been synthesized and characterized by the analytical and spectral methods, as well as magnetic and molar conductance measurements. The d-d absorption bands of Me4en-chelates as Nujol mulls or weak donor solvents solutions revealed square-planar, distorted octahedral and/or distorted trigonal bipyramid geometries for the perchlorate, nitrate and bromide chelates, respectively. However, an octahedral structure is identified for chelates in strong donor solvents. Perchlorate chelates show a remarkable color change from violet to green as the Lewis basicity of the donor solvent increases, whereas bromide chelates are mainly affected by the Lewis acidity of solvent. Specific and non-specific interactions of solvent molecules with the chelates were investigated on the basis of unified solvation model. Structural parameters of the free ligands and their Cu(II)-chelates have been calculated on the basis of semiempirical PM3 level and correlated with the experimental data. PMID:25589389

  19. Improvement of Oxidative and Metabolic Parameters by Cellfood Administration in Patients Affected by Neurodegenerative Diseases on Chelation Treatment

    PubMed Central

    Fulgenzi, Alessandro; Giuseppe, Rachele De; Bamonti, Fabrizia; Ferrero, Maria Elena

    2014-01-01

    Objective. This prospective pilot study aimed at evaluating the effects of therapy with antioxidant compounds (Cellfood, and other antioxidants) on patients affected by neurodegenerative diseases (ND), who displayed toxic metal burden and were subjected to chelation treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa2EDTA or EDTA). Methods. Two groups of subjects were studied: (a) 39 patients affected by ND and (b) 11 subjects unaffected by ND (controls). The following blood parameters were analyzed before and after three months' treatment with chelation + Cellfood or chelation + other antioxidants: oxidative status (reactive oxygen species, ROS; total antioxidant capacity, TAC; oxidized LDL, oxLDL; glutathione), homocysteine, vitamin B12, and folate. Results. After 3-months' chelation + Cellfood administration oxLDL decreased, ROS levels were significantly lower, and TAC and glutathione levels were significantly higher than after chelation + other antioxidants treatment, both in ND patients and in controls. Moreover, homocysteine metabolism had also improved in both groups. Conclusions. Chelation + Cellfood treatment was more efficient than chelation + other antioxidants improving oxidative status and homocysteine metabolism significantly in ND patients and controls. Although limited to a small number of cases, this study showed how helpful antioxidant treatment with Cellfood was in improving the subjects' metabolic conditions. PMID:25114898

  20. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    SciTech Connect

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K.

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  1. Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhou, Xiaoyan; Wang, Dongqi; Yin, Jun-Jie; Chen, Hanqing; Gao, Xingfa; Zhang, Jing; Ibrahim, Kurash; Chai, Zhifang; Feng, Weiyue; Zhao, Yuliang

    2015-01-01

    Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing ? electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C&z.dbd;C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C ?* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media.Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing ? electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C&z.dbd;C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C ?* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media. Electronic supplementary information (ESI) available: Optimization of the mass ratios of HA to CNTs and the reaction pH conditions for Fe loading; scanning electron microscope (SEM), UV-Vis-near-infrared, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) for CNT-HA; EPR experiment and UPLC-ESI-MS analysis; and DFT calculation. See DOI: 10.1039/c4nr06665k

  2. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    PubMed

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results. PMID:26264929

  3. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  4. Chemiluminescence study on the peroxidation of linoleic acid initiated by the reaction of ferrous iron with hydrogen peroxide.

    PubMed

    Xun, S; Jingdong, T; Zhaonan, Z; Xinyuan, L

    1991-05-01

    Linoleic acid was used as a model system to study lipid peroxidation initiated by the reaction of ferrous iron with hydrogen peroxide. Low-level chemiluminescence of the peroxidation was measured with a high-sensitivity single-photon counter. It was found that the luminescence primarily comes from the dimol reaction of singlet oxygen and that the peak intensity of emission is a quadratic function of the concentration of either Fe2+ or H2O2, provided that the other Fenton reagent is in great excess. Under the same conditions, analysis on reaction kinetics shows a linear relationship between the maximal level of the initiator formed by the Fenton reaction and the initial concentration of Fe2+ or H2O2. This implies that the peak intensity of the chemiluminescence may be a good index of the maximal level of the initiator. PMID:17014779

  5. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better

    PubMed Central

    Avedano, Stefano; Botta, Mauro; Haigh, Julian S.; Longo, Dario; Woods, Mark

    2013-01-01

    The influence of dynamics on solution state structure is a widely overlooked consideration in chemistry. Variations in Gd3+ chelate hydration with changing coordination geometry and dissociative water exchange kinetics substantially impact the effectiveness (or relaxivity) of mono-hydrated Gd3+ chelates as T1-shortening contrast agents for MRI. Theory shows that relaxivity is highly dependent upon the Gd3+-water proton distance (rGdH) and yet this distance is almost never considered as a variable in assessing the relaxivity of a Gd3+ chelate as a potential contrast agent. The consequence of this omission can be seen when considering the relaxivity of isomeric Gd3+ chelates that exhibit different dissociative water exchange kinetics. The results described herein show that the relaxivity of a chelate with ‘optimal’ dissociative water exchange kinetics is actually lower than that of an isomeric chelate with ‘sub-optimal’ dissociative water exchange. When the rate of molecular tumbling of these chelates is slowed, an approach that has long been understood to increase relaxivity, the observed difference in relaxivity is increased with the more rapidly exchanging (‘optimal’) chelate exhibiting lower relaxivity than the ‘sub-optimally’ exchanging isomer. The difference between the chelates arises from a non-field dependent parameter: either the hydration number (q) or rGdH. For solution state Gd3+ chelates, changes in the values of q and rGdH are indistinguishable. These parametric expressions simply describe the hydration state of the chelate – i.e. the number and position of closely associating water molecules. The hydration state (q/rGdH6) of a chelate is intrinsically linked to its dissociative water exchange rate kex and the interrelation of these parameters must be considered when examining the relaxivity of Gd3+ chelates. The data presented herein indicates that the changes in the hydration parameter (q/rGdH6) associated with changing dissociative water exchange kinetics has a profound effect on relaxivity and suggest that achieving the highest relaxivities in monohydrated Gd3+ chelates is more complicated than simply “optimizing” dissociative water exchange kinetics. PMID:23841587

  6. Solution Structure of Escherichia coli FeoA and Its Potential Role in Bacterial Ferrous Iron Transport

    PubMed Central

    Lau, Cheryl K. Y.; Ishida, Hiroaki; Liu, Zhihong

    2013-01-01

    Iron is an indispensable nutrient for most organisms. Ferric iron (Fe3+) predominates under aerobic conditions, while during oxygen limitation ferrous (Fe2+) iron is usually present. The Feo system is a bacterial ferrous iron transport system first discovered in Escherichia coli K-12. It consists of three genes, feoA, feoB, and feoC (yhgG). FeoB is thought to be the main transmembrane transporter while FeoC is considered to be a transcriptional regulator. Using multidimensional nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structure of E. coli FeoA. The structure of FeoA reveals a Src-homology 3 (SH3)-like fold. The structure is composed of a ?-barrel with two ?-helices where one helix is positioned over the barrel. In comparison to the standard eukaryotic SH3 fold, FeoA has two additional ?-helices. FeoA was further characterized by heteronuclear NMR dynamics measurements, which suggest that it is a monomeric, stable globular protein. Model-free analysis of the NMR relaxation results indicates that a slow conformational dynamic process is occurring in ?-strand 4 that may be important for function. 31P NMR-based GTPase activity measurements with the N-terminal domain of FeoB (NFeoB) indicate a higher GTP hydrolysis rate in the presence of potassium than with sodium. Further enzymatic assays with NFeoB suggest that FeoA may not act as a GTPase-activating protein as previously proposed. These findings, together with bioinformatics and structural analyses, suggest that FeoA may have a different role, possibly interacting with the cytoplasmic domain of the highly conserved core portion of the FeoB transmembrane region. PMID:23104801

  7. Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron?

    NASA Astrophysics Data System (ADS)

    Wuguo, Deng; Xingwang, Fang; Jilan, Wu

    1997-09-01

    Flavonoids have been reported to exhibit strong antioxidative activity. In the present work, a systematic mechanistic study has been performed on five flavonoids (baicalin, hesperidin, naringin, quercetin and rutin) selected according to their structural characteristics. The experimental results reveal that flavonoids function as antioxidant mainly by chelating iron ions and by scavenging peroxyl radicals whereas their OH radical scavenging effect is much less important.

  8. Iron chelators in photodynamic therapy revisited: synergistic effect by novel highly active thiosemicarbazones.

    PubMed

    Mrozek-Wilczkiewicz, Anna; Serda, Maciej; Musiol, Robert; Malecki, Grzegorz; Szurko, Agnieszka; Muchowicz, Angelika; Golab, Jakub; Ratuszna, Alicja; Polanski, Jaroslaw

    2014-04-10

    In photodynamic therapy (PDT), a noninvasive anticancer treatment, visible light, is used as a magic bullet selectively destroying cancer cells by a photosensitizer that is nontoxic in the dark. Protoporphyrin IX (PpIX) is a natural photosensitizer synthesized in the cell, which is also a chelating agent that if bonded to Fe(2+) forms heme, a central component of hemoglobin. Therefore, xenobiotic iron chelators can disturb iron homeostasis, increasing the accumulation of PpIX, obstructing the last step of heme biosynthesis, and enhancing PDT efficiency. However, the attempts to use this promising idea have not proved to be hugely successful. Herein, we revisited this issue by analyzing the application of iron chelators highly toxic in the dark, which should have higher Fe(2+) affinity than the nontoxic chelators used so far. We have designed and prepared thiosemicarbazones (TSC) with the highest dark cellular cytotoxicity among TSCs ever reported. We demonstrate that compound 2 exerts powerful PDT enhancement when used in combination with 5-aminolevulinic acid (ALA), a precursor of PpIX. PMID:24900837

  9. Sartobind IDA 75 A Separation Technology Based on Metal Chelate Membrane Adsorbers

    E-print Network

    Lebendiker, Mario

    Sartobind® IDA 75 A Separation Technology Based on Metal Chelate Membrane Adsorbers Operating with a syringe connected via Luer Lock. The iminodiacetic acid (IDA) ligand is attached to the inner surface Polysulfone Materials needed No further hardware than a 10 ml syringe with Luer Lock connector and beakers

  10. The preparation and characterization of novel human-like collagen metal chelates.

    PubMed

    Zhu, Chenhui; Sun, Yan; Wang, Yaoyu; Luo, Yane; Fan, Daidi

    2013-07-01

    In order to develop the nutritional trace elements which could be absorbed and utilized effectively, protein chelates were adopted. Calcium, copper and manganese were considered based on their physiological functions, and the new chelates of HLC-Ca, HLC-Cu and HLC-Mn were formed in MOPS or MES buffer and purified by gel chromatography, and then freeze-dried. And they were detected and analyzed by atomic absorption spectrophotometry, ultraviolet-visible absorption (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence quenching method, circular dichroism (CD) and differential scanning calorimetry (DSC). The results showed that some chemical reactions happened between HLC and the three metal ions to form new chemical compounds. The thermodynamic parameters, ?H, ?G and ?S, showed that the chelation process between HLC and metal ions was performed spontaneously. Fluorescence quenching spectra of HLC indicated that the quenching mechanism was static in nature. According to the data of DSC, the new chelates were more stable than the free HLC. And HLC-metal complex was non-toxic to the BHK21 cell through MTT assay. PMID:23623075

  11. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  12. BEHAVIORAL CONSEQUENCES OF CHELATOR ADMINISTRATION IN ACUTE CADMIUM TOXICITY (JOURNAL VERSION)

    EPA Science Inventory

    The conditioned flavor-aversion paradigm was used to assess the toxicity of acutely administered cadmium and the interaction of cadmium with the heavy-metal chelating agents dimercaprol (BAL) and dimercaptosuccinic acid (DMSA). Shortly after consuming saccharin, rats received cad...

  13. Crystallization kinetics and densification of YAG nanoparticles from various chelating agents

    SciTech Connect

    Hou, J.G.; Kumar, R.V.; Qu, Y.F.; Krsmanovic, Dalibor

    2009-08-05

    Yttrium aluminium garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) nanoparticles were prepared using sonochemical sol-gel method with three different chelating agents and the effect of crystallization kinetics was investigated with differential scanning calorimetry-thermogravimetry (DSC-TG). The activation energy values of crystallization for the as-synthesized YAG nanoparticles using citric acid (CA), glycine (G) or a mixture of citric acid-glycine (CA-G), as chelating agents were found to be 160.5, 142.2 and 140.4 kJ mol{sup -1} and the corresponding Avarami constants were 2.2, 2.1 and 1.9, respectively. Samples produced with the mixed chelating agent under sonification, could be crystallized to single phase YAG nanoparticles (10-65 nm) after annealing at 1100 deg. C. Pellets made from the annealed YAG particles could be sintered to a relative density greater than 99% at 1500 deg. C with a grain size of 4.5 {mu}m, made up of secondary particles formed from primary nano-crystals within the grains. Grain size and relative density increased with different chelating agents from CA to G and CA-G in the increasing order when YAG samples were sintered. Grain growth and densification occurred at a relatively low temperature of 1500 deg. C as compared to over 1800 deg. C in solid-state reactions.

  14. Comparison of the antibacterial activity of chelating agents using the agar diffusion method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...

  15. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical and animal model data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the United States (US) Food and Drug Administration (FDA), is a highly effec...

  16. Iron chelation with deferasirox in a patient with de-novo ferroportin mutation.

    PubMed

    Unal, Sule; Piperno, Alberto; Gumruk, Fatma

    2015-04-01

    Ferroportin disease is a rare type of autosomal dominantly inherited hemochromatosis caused with mutations in the ferroportin gene (SLC40A1). The patients characteristically have hyperferritinemia but normal transferin saturations. Herein, we present a 15-year-old female whose chief complaint was persistent nausea for the last one year. Extensive work-up including brain imaging revealed nothing to explain the etiology of nausea. The serum ferritin level of 1474ng/mL was suggestive for hemochromatosis syndromes and the molecular testing revealed de-novo c.485_487delTTG (P.Val162del) ferroportin gene mutation. Mild hepatic iron loading, in addition to the cumbersome nausea were accepted as indications for chelation treatment in this particular patient and deferasirox was initiated (10mg/kg/day) since family did not consent for phlebotomy. Deferasirox was stopped by the 9th month of initiation, since nausea subsided and hepatic iron content was normalized, in order to prevent over chelation. There are no well-established guidelines for the chelation of patients with hereditary hemochromatosis syndromes. However, lifelong monitorization for iron loading and re-initiation of chelation when necessary was planned in our patient. PMID:25744502

  17. Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands

    NASA Astrophysics Data System (ADS)

    Szadkowska, Anna; Grela, Karol

    This review article is devoted to recent advances in the design and application of so-called “dormant” or “latent” ruthenium olefin metathesis catalysts bearing S-chelating alkylidene ligands. Selected ruthenium complexes containing S-donor ligands, which possess controllable initiation behaviour are presented. Applications of these complexes in olefin metathesis are described.

  18. Iron chelation with deferasirox in two patients with HFE hemochromatosis and chronic anemia.

    PubMed

    Nagler, Michael; Gregor, M; Wuillemin, W A

    2011-01-01

    We present 2 patients with hyperferritinemia, increased liver iron and hemochromatosis-associated HFE genotypes. At diagnosis, both patients had chronic anemia that prevented initiation of phlebotomy. Iron chelation with deferasirox proved to be a safe and effective means of substantially lowering ferritin levels. PMID:21659727

  19. Modern Chemistry Techniques Applied to Metal Behavior and Chelation in Medical and Environmental Systems ? Final Report

    SciTech Connect

    Sutton, M; Andresen, B; Burastero, S R; Chiarappa-Zucca, M L; Chinn, S C; Coronado, P R; Gash, A E; Perkins, J; Sawvel, A M; Szechenyi, S C

    2005-02-03

    This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied at LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.

  20. Dual selective iron chelating probes with a potential to monitor mitochondrial labile iron pools.

    PubMed

    Abbate, Vincenzo; Reelfs, Olivier; Kong, Xiaole; Pourzand, Charareh; Hider, Robert C

    2015-12-24

    Mitochondria-targeted peptides incorporating dual fluorescent and selective iron chelators have been designed as novel biosensors for the mitochondrial labile iron pool. The probes were demonstrated to specifically co-localize with mitochondria and their fluorescence emission was found to be sensitive to the presence of iron. PMID:26567874

  1. Pressure-Assisted Chelating Extraction as a Teaching Tool in Instrumental Analysis

    ERIC Educational Resources Information Center

    Sadik, Omowunmi A.; Wanekaya, Adam K.; Yevgeny, Gelfand

    2004-01-01

    A novel instrumental-digestion technique using pressure-assisted chelating extraction (PACE), for undergraduate laboratory is reported. This procedure is used for exposing students to safe sample-preparation techniques, for correlating wet-chemical methods with modern instrumental analysis and comparing the performance of PACE with conventional…

  2. Synergic effect of chelating agent and oxidant on chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Weijuan, Liu; Yuling, Liu

    2015-02-01

    Chemically dominant alkaline slurry, which is free of BTA (benzotriazole) and other inhibitors, was investigated. The synergic effect of the chelating agent and oxidant on the chemical mechanical planarization (CMP) was taken into consideration. Copper CMP slurry is mainly composed of an oxidizer, nonionic surfactant, chelating agent and abrasive particles. The effect of different synergic ratios of oxidant with chelating agent on the polishing removal rate, static etch rate and planarization were detected. The planarization results reveal that with the increase of oxidant concentration, the dishing value firstly diminished and then increased again. When the synergic ratios is 3, the dishing increases the least. A theoretical model combined with chemical-mechanical kinetics process was proposed in the investigation, which can explain this phenomenon. Based on the theoretical model, the effect of synergic ratios of oxidant with chelating agent on velocity D-value (convex removal rate minus recessed removal rate) was analyzed. The results illustrate that when the synergic ratio is between 2.5-3.5, the velocity D-value is relatively higher, thereby good planarization can be achieved in this interval. This investigation provides a new guide to analyze and study copper line corrosion in the recessed region during copper clearing polishing.

  3. Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species

    PubMed Central

    2014-01-01

    Background Metals including iron, copper and zinc are essential for physiological processes yet can be toxic at high concentrations. However the role of these metals in the progression of cancer is not well defined. Here we study the anti-tumor activity of the metal chelator, TPEN, and define its mechanism of action. Methods Multiple approaches were employed, including cell viability, cell cycle analysis, multiple measurements of apoptosis, and mitochondrial function. In addition we measured cellular metal contents and employed EPR to record redox cycling of TPEN–metal complexes. Mouse xenografts were also performed to test the efficacy of TPEN in vivo. Results We show that metal chelation using TPEN (5?M) selectively induces cell death in HCT116 colon cancer cells without affecting the viability of non-cancerous colon or intestinal cells. Cell death was associated with increased levels of reactive oxygen species (ROS) and was inhibited by antioxidants and by prior chelation of copper. Interestingly, HCT116 cells accumulate copper to 7-folds higher levels than normal colon cells, and the TPEN-copper complex engages in redox cycling to generate hydroxyl radicals. Consistently, TPEN exhibits robust anti-tumor activity in vivo in colon cancer mouse xenografts. Conclusion Our data show that TPEN induces cell death by chelating copper to produce TPEN-copper complexes that engage in redox cycling to selectively eliminate colon cancer cells. PMID:25047035

  4. [Physico-chemical and toxicological profile of gadolinium chelates as contrast agents for magnetic resonance imaging].

    PubMed

    Idée, J-M; Fretellier, N; Thurnher, M M; Bonnemain, B; Corot, C

    2015-07-01

    Gadolinium chelates (GC) are contrast agents widely used to facilitate or to enable diagnosis using magnetic resonance imaging (MRI). From a regulatory viewpoint, GC are drugs. GC have largely contributed to the success of MRI, which has become a major component of clinician's diagnostic armamentarium. GC are not metabolised and are excreted by the kidneys. They distribute into the extracellular compartment. Because of its high intrinsic toxicity, gadolinium must be administered as a chelate. GC can be classified according to two key molecular features: (a) nature of the chelating moiety: either macrocyclic molecules in which gadolinium is caged in the pre-organized cavity of the ligand, or linear, open-chain molecules, (b) ionicity: Gd chelates can be ionic (meglumine or sodium salts) or non-ionic. The thermodynamic and kinetic stabilities of the various GCs differ according to these structural characteristics. The kinetic stability of macrocyclic GCs is much higher than that of linear GCs and the thermodynamic stability of ionic GCs is generally higher than that of non-ionic GC, thus leading to a lower risk of gadolinium dissociation. This class of drugs has enjoyed an excellent reputation in terms of safety for a long time, until a causal link with a recently-described serious disease, nephrogenic systemic fibrosis (NSF), was evidenced. It is acknowledged that the vast majority of NSF cases are related to the administration of some linear CG in renally-impaired patients. Health authorities, worldwide, released recommendations which drastically reduced the occurrence of new cases. PMID:25731664

  5. Ruthenium(ii) and iridium(iii) complexes featuring NHC-sulfonate chelate.

    PubMed

    Rajaraman, A; Sahoo, A R; Hild, F; Fischmeister, C; Achard, M; Bruneau, C

    2015-10-28

    Three new complexes bearing a chelating (?(2)C,O) NHC-SO3 ligand have been prepared. An original method for the synthesis of the imidazolium-sulfonate NHC precursor is described. The 5-membered ruthena- and irida-cycle containing complexes were fully characterized and evaluated in a series of catalytic transformations involving hydrogen auto-transfer processes. PMID:26400073

  6. An Evaluation of the Chelating Agent EDDS for Floriculture Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) ligands (chelating agents) like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to plants. When complexed with Fe, EDTA and...

  7. Observation of unusual slow-relaxation of the magnetisation in a Gd-EDTA chelate.

    PubMed

    Holmberg, Rebecca J; Ho, Le Tuan Anh; Ungur, Liviu; Korobkov, Ilia; Chibotaru, Liviu F; Murugesu, Muralee

    2015-12-21

    A Gadolinium EDTA chelate displays characteristic isotropic behaviour common of Gd(III) complexes under zero applied magnetic field, and anisotropic behaviour arising from dipolar coupling and weak spin-phonon coupling under an applied magnetic field. This surprising magnetic behaviour for Gd(III) is investigated using SQUID magnetometry and rationalized through theoretical calculations. PMID:26554669

  8. Effect of Chelating Group Density of Crosslinked Graft Chain on Dynamic Binding Capacity for Metal Ions

    NASA Astrophysics Data System (ADS)

    Wada, Go; Ishihara, Ryo; Miyoshi, Kazuyoshi; Umeno, Daisuke; Saito, Kyoichi; Asai, Shiho; Yamada, Shinsuke; Hirota, Hideyuki

    An iminodiacetate (IDA) group was introduced into the crosslinked polymer chain grafted onto a porous sheet. An epoxy-group-containing monomer, glycidyl methacrylate, and a crosslinker, ethyleneglycoledimethacrylate, were cografted to the porous sheet with various concentrations of crosslinker of 1.0 to 6.0 mol% in a monomer solution, followed by epoxy ring opening with disodium iminodiacetate. A 500 mg/L copper chloride solution was permeated through the resultant chelating porous sheet at a residence time of 10 sec. The dynamic binding capacity of the crosslinked chelating porous sheet with an IDA group density of 1.7 mmol/g for copper ions was 1.7-fold higher than that of a noncrosslinked chelating porous sheet. This improvement results from the restriction of the axial diffusion along the sheet thickness induced by the gradient of the amount of copper ions adsorbed by the crosslinked graft chain along the porous sheet thickness. The dynamic binding capacity of the crosslinked chelating porous sheet decreased with increasing space velocity. This indicates that the time required for copper ions to diffuse in the radial direction of the pores is not negligible compared to the residence time of the copper chloride solution across the porous sheet.

  9. Growth and Decay: An Experiment Demonstrating Radioactivity Relationships and Chelate Solvent Extraction Separations.

    ERIC Educational Resources Information Center

    Downey, D. M.; And Others

    1984-01-01

    The separation of lead and bismuth by chelate solvent extraction is of interest because of the simplicity which the use of radiotracers allows in its demonstration. Theoretical background information, procedures, materials needed, and typical results are provided for an experiment involving the extraction. (JN)

  10. Pyrolysed N{sub 4}-chelates: Novel electrocatalysts for chemical and biosensors

    SciTech Connect

    Atanasov, P.; Wilkins, E.; Gamburzev, S.

    1996-12-31

    During the last few years the use of different types of N{sub 4}-metal chelates (especially phtalocyanines and phorphyrins) for electroanalytical and biosensor applications has been attracting increasing attention. Electroanalytical application of such catalysts is generally based on their use as electrode modifiers. The use of N{sub 4}-metal chelates offers several advantages: they show high catalytic activity combined with some analyte selectivity; they are suitable for forming thin layers over an inert electrode; they demonstrate compatibility with enzymes and different immobilization reagents; the electrode modification procedures can be arranged as a step in the sensor micromanufacturing procedure. Oxygen reduction as well as redox properties of numerous organic compounds have been studied on electrodes modified with N{sub 4}-metal chelates. Some of the N{sub 4}-metal chelates have been employed as catalysts for oxygen electroreduction and the electrochemical oxidation of hydrogen peroxide. During the work described, catalysts were prepared by deposition of CoTMPP or H{sub 2} TMPP on non-carbon dispersed carrier, followed by the pyrolysis of the compound and by removal of the carrier. Both pyrolysis products possess high electrocatalytic activity for oxygen reduction and hydrogen peroxide reduction and oxidation.

  11. Chemical characterization and reactivity of iron chelator-treated amphibole asbestos.

    PubMed

    Gold, J; Amandusson, H; Krozer, A; Kasemo, B; Ericsson, T; Zanetti, G; Fubini, B

    1997-09-01

    Iron in amphibole asbestos is implicated in the pathogenicity of inhaled fibers. Evidence includes the observation that iron chelators can suppress fiber-induced tissue damage. This is believed to occur via the diminished production of fiber-associated reactive oxygen species. The purpose of this study was to explore possible mechanisms for the reduction of fiber toxicity by iron chelator treatments. We studied changes in the amount and the oxidation states of bulk and surface iron in crocidolite and amosite asbestos that were treated with iron-chelating desferrioxamine, ferrozine, sodium ascorbate, and phosphate buffer solutions. The results have been compared with the ability of the fibers to produce free radicals and decompose hydrogen peroxide in a cell-free system in vitro. We found that chelators can affect the amount of iron at the surface of the asbestos fibers and its valence, and that they can modify the chemical reactivity of these surfaces. However, we found no obvious or direct correlations between fiber reactivity and the amount of iron removed, the amount of iron at the fiber surface, or the oxidation state of surface iron. Our results suggest that surface Fe3+ ions may play a role in fiber-related carboxylate radical formation, and that desferrioxamine and phosphate groups detected at treated fiber surfaces may play a role in diminishing and enhancing, respectively, fiber redox activity. It is proposed that iron mobility in the silicate structure may play a larger role in the chemical reactivity of asbestos than previously assumed. PMID:9400694

  12. Biodegradable chelating agents for industrial, domestic, and agricultural applications--a review.

    PubMed

    Pinto, Isabel S S; Neto, Isabel F F; Soares, Helena M V M

    2014-10-01

    Aminopolycarboxylates, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), are chelating agents widely used in several industrial, agricultural, and domestic applications. However, the fact that they are not biodegradable leads to the presence of considerable amounts in aquatic systems, with serious environmental consequences. The replacement of these compounds by biodegradable alternatives has been the object of study in the last three decades. This paper reviews the most relevant studies towards the use of environmentally friendly chelating agents in a large number of applications: oxidative bleaching, detergents and cleaning compositions, scale prevention and reduction, remediation of soils, agriculture, electroplating, waste treatment, and biocides. Nitrilotriacetic acid (NTA), ethylenediaminedisuccinic acid (EDDS), and iminodisuccinic acid (IDS) are the most commonly suggested to replace the nonbiodegradable chelating agents. Depending on the application, the requirements for metal complexation might differ. Metal chelation ability of the most promising compounds [NTA, EDDS, IDS, methylglycinediacetic acid (MGDA), L-glutamic acid N,N-diacetic acid (GLDA), ethylenediamine-N,N'-diglutaric acid (EDDG), ethylenediamine-N,N'-dimalonic acid (EDDM), 3-hydroxy-2,2-iminodisuccinic acid (HIDS), 2-hydroxyethyliminodiacetic acid (HEIDA), pyridine-2,6-dicarboxylic acid (PDA)] with Fe, Mn, Cu, Pb, Cd, Zn, Ca, and Mg was simulated by computer calculations. The advantages or disadvantages of each compound for the most important applications were discussed. PMID:24554295

  13. Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays

    SciTech Connect

    Diamandis, E.P.; Christopoulos, T.K. Univ. of Toronto, Ontario )

    1990-11-15

    Like many analytical methodologies, immunoassays and nucleic acid hybridization assays rely on the reaction between an analyte of interest and a specific reagent. The analyte concentration is then deduced by measuring either the amount of analyte-reagent complex formed (product) or the amount of residual reagent. The authors describe the application of fluorescent rare-earth chelates to immunoassay and DNA probing.

  14. The Impact of Succimer Chelation on Blood Cadmium in Children with Background Exposures: A Randomized Trial

    PubMed Central

    Cao, Yang; Chen, Aimin; Bottai, Matteo; Caldwell, Kathleen L.; Rogan, Walter J.

    2013-01-01

    Succimer lowers blood lead concentrations in children, and the structure of succimer chelates of lead and cadmium are similar. Using blood samples from a randomized trial of succimer for lead poisoning, however, we found that succimer did not lower blood cadmium in children with background exposure. PMID:23601497

  15. SPECTROSCOPY, MODELING AND COMPUTATION OF METAL CHELATE SOLUBILITY IN SUPERCRITICAL CO2

    EPA Science Inventory

    The objectives of this project are to gain a fundamental understanding of the solubility and stability of metal chelates in supercritical CO2. Extraction with CO2 is a excellent way to remove organic compounds from soils, sludges and aqueous solutions and recent research has demo...

  16. Effect of metal chelate layer on electroluminescent and current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Xu, Xinjun; Yu, Gui; Liu, Yunqi; Tang, Rupei; Xi, Fu; Zhu, Daoben

    2005-05-01

    We report the effects of a metal chelate, bis[2-(2-hydroxyphenyl)benzothiazolate]zinc [Zn(BTZ)2] and 8-tris-hydroxyquinoline aluminum (Alq3) used as electron-transporting layers, and various cathodes on electroluminescent and current-voltage characteristics of a polymer light-emitting diode with phenyl-substituted poly(phenylene vinylene) as an emissive layer. We find that the metal chelate layers also play a role in hole blocking. For a double-layer device with the structure of indium-tin oxide (ITO)/polymer/Zn(BTZ)2 or Alq3/Al, the metal chelate layer lowers the hole current and improves the electroluminescent properties. Inserting a LiF layer between the metal chelate layer and the Al cathode enhances the electron injection and improves the elctroluminescent efficiency. The device with the structure of ITO/polymer/Zn(BTZ)2/Alq3/LiF/Al can reach the highest luminous efficiency of 5.0 cd/A.

  17. FTIR, magnetic, mass spectral, XRD and thermal studies of metal chelates of tenoxicam

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2007-09-01

    Metal chelates of anti-inflammatory drug, tenoxicam (Ten), are synthesized and characterized using elemental analyses, IR, solid reflectance, magnetic, mass spectra, thermal analyses (TGA and DTA) and X-ray powder diffraction techniques. The chelates are found to have the general formulae [M(H 2L) 2(H 2O) x] (A) 2· yH 2O (where H 2L = neutral Ten, A = Cl in case of Ni(II) and Co(II) or AcO in case of Cu(II) and Zn(II) ions, x = 0-2 and y = 0-2.5) and [M(H 2L) 3](A) z· yH 2O (A = SO 4 in case of Fe(II) ion ( z = 1) or Cl in case of Fe(III) ( z = 3) and y = 0-4). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions through the pyridyl- N and carbonyl- O of the amide moiety. The solid reflectance spectra and magnetic moment measurements reveal that these chelates have tetrahedral, square planar and octahedral geometrical structures. Mass spectra are also used to confirm the proposed formulae and the possible fragments resulted from fragmentation of Ten and its Zn(II) and Cu(II) chelates are suggested. The thermal behaviour of the chelates (TG/DTG, DTA) are discussed in detailed manner and revealed that water molecules of crystallization together with anions are removed in the first and second steps while the Ten molecules are removed in the subsequent steps. Different thermodynamic parameters are evaluated and the relative thermal stabilities of the complexes are discussed. X-ray powder diffraction patterns are used to indicate the polymorphic form of Ten and if the complexes have molecular similarity with respect to type of coordination.

  18. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soon; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-01

    Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y2O3 dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ?50 nm to ?1 nm over a 10 × 10 ?m2 area. After Y2O3 deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO3 (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y2O3 and GdBCO/LMO/MgO/Y2O3 stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y2O3 multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  19. Chelation technology: a promising green approach for resource management and waste minimization.

    PubMed

    Chauhan, Garima; Pant, K K; Nigam, K D P

    2015-01-01

    Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from contaminated sites has also been reviewed. PMID:25476956

  20. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons

    PubMed Central

    Aguirre, Pabla; Mena, Natalia P.; Carrasco, Carlos M.; Muñoz, Yorka; Pérez-Henríquez, Patricio; Morales, Rodrigo A.; Cassels, Bruce K.; Méndez-Gálvez, Carolina; García-Beltrán, Olimpo; González-Billault, Christian; Núñez, Marco T.

    2015-01-01

    Neuronal death in Parkinson’s disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2’-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death. PMID:26658949

  1. Rhodamine labeling of 3-hydroxy-4-pyridinone iron chelators is an important contribution to target Mycobacterium avium infection.

    PubMed

    Moniz, Tânia; Nunes, Ana; Silva, Ana M G; Queirós, Carla; Ivanova, Galya; Gomes, M S; Rangel, Maria

    2013-04-01

    We have recently demonstrated that tripodal hexadentate chelators, based on 3-hydroxy-4-pyridinone units, can limit the access of iron to bacteria and have a significant inhibitory effect in the intramacrophagic growth of Mycobacterium avium. The results showed that the chelation of iron is a determinant although not sufficient property for antimicrobial activity. The rhodamine B isothiocyanate labelled chelator (MRH7) exhibited the strongest inhibitory activity and was identified as a lead compound since a dose response effect was observed. Significant inhibition of M. avium growth was achieved at a concentration as low as 1 ?M. To identify key molecular features essential for the biological activity we designed parent hexadentate and bidentate chelators, in which different structural groups are introduced in the molecular framework. Herein, we report the work concerning three novel fluorescent chelators: a hexadentate ligand labelled with 5(6)-carboxytetramethylrhodamine (MRH8) and two 3-hydroxy-4-pyridinone fluorescent bidentate ligands labelled with rhodamine B isothiocyanate (MRB7) and 5(6)-carboxytetramethylrhodamine (MRB8). The results show that all fluorescent chelators are capable of restricting the intramacrophagic growth of M. avium and that the inhibitory effect is dependent on the fluorophore. In fact, for compounds bearing the same fluorophore the results obtained with the hexadentate or bidentate chelator (MRH7/MRB7 or MRH8/MRB8) are identical as long as the appropriate stoichiometric amount of chelator is used. The inhibitory effect of the rhodamine B isothiocyanate labelled compounds (MRH7 and MRB7) is significantly greater than that observed for the other two chelators, thus pointing out the significance of the rhodamine B isothiocyanate molecular fragment. PMID:23384853

  2. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead-a pilot study.

    PubMed

    ?abarkapa, A; Borozan, S; Živkovi?, L; Stojanovi?, S; Milanovi?-?abarkapa, M; Baji?, V; Spremo-Potparevi?, B

    2015-12-01

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. PMID:26460059

  3. Cost-utility of chelators in transfusion-dependent ?-thalassemia major patients: a review of the pharmacoeconomic literature.

    PubMed

    Lee, Todd A; von Riedemann, Sarah; Tricta, Fernando

    2014-10-01

    In the inherited hematologic disorder ?-thalassemia major, patients receive regular, lifelong blood transfusions, which carry excess iron that the body is unable to eliminate. Chelation therapy (deferoxamine, deferiprone, deferasirox or deferoxamine-deferiprone combination) is required to reduce iron accumulation in target organs and the associated morbidity and mortality. Each chelation regimen has a distinct safety/efficacy profile and particular costs associated with its use. This review aims to provide an overview of published cost-utility analyses of currently used chelation regimens, and to comment on the potential relevance of their findings in the USA market, where deferiprone has recently been introduced. PMID:24918168

  4. Probing the Hydrogen Bonding of the Ferrous–NO Heme Center of nNOS by Pulsed Electron Paramagnetic Resonance

    PubMed Central

    Astashkin, Andrei V.; Chen, Li; Elmore, Bradley O.; Kunwar, Deepak; Miao, Yubin; Li, Huiying; Poulos, Thomas L.; Roman, Linda J.; Feng, Changjian

    2015-01-01

    Oxidation of L-arginine (L-Arg) to nitric oxide (NO) by NO synthase (NOS) takes place at the heme active site. It is of current interest to study structures of the heme species that activates O2 and transforms the substrate. The NOS ferrous–NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron–nuclear double resonance (ENDOR) spectroscopy was used to probe the hydrogen bonding of the NO ligand in the ferrous–NO heme center of neuronal NOS (nNOS) without a substrate and with L-Arg or N-hydroxy-L-arginine (NOHA) substrates. Unexpectedly, no H-bonding interaction connecting the NO ligand to the active site water molecule or the Arg substrate was detected, in contrast to the results obtained by X-ray crystallography for the Arg-bound nNOS heme domain [Li et al. J. Biol. Inorg. Chem. 2006, 11, 753–768]. The nearby exchangeable proton in both the no-substrate and Arg-containing nNOS samples is located outside the H-bonding range and, on the basis of the obtained structural constraints, can belong to the active site water (or OH). On the contrary, in the NOHA-bound sample, the nearby exchangeable hydrogen forms an H-bond with the NO ligand (on the basis of its distance from the NO ligand and a nonzero isotropic hfi constant), but it does not belong to the active site water molecule because the water oxygen atom (detected by 17O ENDOR) is too far. This hydrogen should therefore come from the NOHA substrate, which is in agreement with the X-ray crystallography work [Li et al. Biochemistry 2009, 48, 10246–10254]. The nearby nonexchangeable hydrogen atom assigned as H? of Phe584 was detected in all three samples. This hydrogen atom may have a stabilizing effect on the NO ligand and probably determines its position. PMID:26035438

  5. Synthesis, Characterization, and Application of Metal-Chelating Polymers for Mass Cytometric Bioassays

    NASA Astrophysics Data System (ADS)

    Majonis, Daniel

    This thesis describes the synthesis, characterization, and application of metal-chelating polymers for mass-cytometric bioassays. Mass cytometry is a cell characterization technique in which cells are injected individually into an ICP-MS detector. Signal is provided by staining cell-surface or intracellular antigens with metal-labeled antibodies (Abs). These Abs are labeled through the covalent attachment of metal-chelating polymers which carry multiple copies of a lanthanide isotope. In this work, my first goal was to develop a facile, straightforward synthesis of a new generation of metal-chelating polymers. The synthesis began with reversible addition-fragmentation chain transfer polymerization, and was followed by numerous post-polymerization pendant group transformations to introduce DTPA lanthanide chelators to every repeat unit, and a maleimide at the end of the chain. The second goal was to apply these metal-chelating polymers in bioassay experiments. The DTPA groups were loaded with lanthanide ions, and the maleimide group was used to covalently attach the polymer to an Ab. This goat anti-mouse conjugate was found to carry an average of 2.4 +/- 0.3 polymer chains. Then, primary Ab conjugates were prepared and used in an 11-plex mass cytometry assay in the characterization of umbilical cord blood cells. The third goal was to expand the multiplexity of the assay. In current technology, the number of Abs that can be monitored simultaneously is limited to the 31 commercially available, stable lanthanide isotopes. Thus, I had an interest in preparing metal-chelating polymers that could carry other metals in the 100-220 amu range. I synthesized polymers with four different polyaminocarboxylate ligands, and investigated the loading of palladium and platinum ions into these polymers. Polymer-Ab conjugates prepared with palladium- and platinum-loaded polymers gave curious results, in that only dead cells were recognized. The fourth goal was to create dual-purpose Ab tags. My approach was to synthesize polymers similar to those described above, but which also carried two to six fluorescent dyes. Polymer-Ab conjugates prepared with four different dye-labeled polymers gave mixed results. Two of the four conjugates performed well in FACS and mass cytometric assays, but the other two did not. Further experiments are needed to overcome this problem.

  6. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02753e

  7. Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species.

    PubMed

    Mehrotra, A; Kundu, K; Sreekrishnan, T R

    2016-02-01

    A possibility of using simultaneous sewage sludge digestion and metal leaching (SSDML) process at the thermophilic temperature to remove heavy metals and suspended solids from sewage sludge is explored in this study. Though thermophilic sludge digestion efficiently produces a stable sludge, its inability to remove heavy metals requires it to be used in tandem with another process like bioleaching for metal reduction. Previously, different temperature optima were known for the heterotrophs (thermophilic) responsible for the sludge digestion and the autotrophs involved in bioleaching (mesophilic), because of which the metal concentration was brought down separately in a different reactor. In our study, SSDML process was carried out at 50 °C (thermophilic) by using ferrous sulfate (batch-1) and sulfur (batch-2) as the energy source in two reactors. The concentration of volatile suspended solids reduced by >40% in both batches, while that of heavy metals zinc, copper, chromium, cadmium and nickel decreased by >50% in both batch-1 and batch-2. Lead got leached out only in batch-1. Using 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis analysis, Alicyclobacillus tolerans was found to be the microorganism responsible for lowering the pH in both the reactors at thermophilic temperature. The indicator organism count was also below the maximum permissible limit making sludge suitable for agricultural use. Our results indicate that SSDML at thermophilic temperature can be effectively used for reduction of heavy metals and suspended solids from sewage sludge. PMID:26686075

  8. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  9. Phase Transitions and Atomic-Scale Migration During the Preoxidation of a Titania/Ferrous Oxide Solution

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yang; Zhang, Jian-Liang; Xing, Xiang-Dong; Liu, Zheng-Jian; Zhang, Ya-Peng; Liu, Xing-Le; Liu, Yi-Ran

    2015-10-01

    The non-isothermal preoxidation of the titania/ferrous oxide solution (TFOS) was investigated between 300°C and 1200°C. To explore the TFOS preoxidation mechanism, the phase transitions, crystal structure behavior, subreactions, and atomic-scale migration and enrichment of the TFOS during preoxidation were studied. Two different titanium and iron solutions were distinguished by scanning electron microscopy analysis. The phase transitions from titanomagnetite (TTM) to titanohematite to pseudobrookite (PSB) were indicated by the separation and enrichment of Ti and Fe, which migrated into PSB and hematite, respectively. This occurred alongside the generation and destruction of FeTiO3. Multiple local maxima and shoulders were observed in the double-derivative thermogravimetric curves during the preoxidation process, indicating the existence and initial reaction temperatures of five stages of subreactions. Compared with the theoretical mass gain (3.28 wt.%), only 80.8 at.% of the Fe2+ was oxidized to Fe3+, leaving unoxidized TTM in the solid solution during non-isothermal oxidation at 1200°C. The concentration of Ti gradually increased in the lamellar structures. However, Fe, Al, and O were mostly restricted to the homogeneous regions. The segregation of Mg only became obvious when TFOS was oxidized at high temperatures. The enrichment reduced the impact of Ti when O migrated during the reduction process, thus, enhancing the reducibility of the TFOS after preoxidation.

  10. The glassy behaviour of poorly crystalline Fe2O3 nanorods obtained by thermal decomposition of ferrous oxalate

    NASA Astrophysics Data System (ADS)

    Perovic, M.; Kusigerski, V.; Mrakovic, A.; Spasojevic, V.; Blanusa, J.; Nikolic, V.; Schneeweiss, O.; David, B.; Pizúrová, N.

    2015-03-01

    Nanorod ferrous oxalate dihydrate (FeC2O4 × 2H2O) which had been synthesized by the microemulsion method, was used as a precursor in the thermal decomposition process performed in air atmosphere. The formation of nanocrystalline hematite as the final product was preceded by the appearence of an intermediate product. Comprehensive study comprising several complementary techniques (x-ray diffraction, transmission electron microscopy, selected area electron diffraction, thermogravimetric/differential thermal analyses and SQUID magnetometry) confirmed that the intermediate product corresponds to the poorly crystalline Fe2O3. Due to the specific nanorod shape and poorly crystalline structure, the investigated Fe2O3 showed high coercive field value of ? 0.5 T at 5 K. Special attention in this study was devoted to the peculiar magnetic properties of poorly crystalline Fe2O3, which were thoroughly investigated by employing sophisticated experimental procedures such as relaxation of thermoremanent magnetization for different cooling fields, zero field and field cooled memory effects as well as aging experiments for different waiting times. At low temperatures and weak applied magnetic fields, the investigated system behaves similarly to spin glasses, manifesting slow, collective relaxation dynamics of magnetic moments through memory, rejuvenation and aging effects.

  11. Correlation between ferrous ammonium sulfate concentration, sensitivity and stability of Fricke gel dosimeters exposed to clinical X-ray beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Brai, Maria; Gagliardo, Cesare; Gallo, Salvatore; Longo, Anna; Tranchina, Luigi; Abbate, Boris; Collura, Giorgio; Gallias, Kostantinos; Caputo, Vittorio; Lo Casto, Antonio; Midiri, Massimo; D'Errico, Francesco

    2014-09-01

    This work describes the characterization of various Fricke-Agarose-Xylenol gels (FXG) dosimeters using NMR relaxometry and MRI analysis. Using X-rays from a clinical linear accelerator (LINAC), the gels were irradiated in the dose range from 0 Gy to 20 Gy. The photon sensitivity of the FXGs was measured in terms of NMR relaxation rates; its dependence on radiation dose was determined as a function of ferrous ammonium sulfate contents (from 0.5 mM to 5 mM). Furthermore, the stability of the NMR signal was monitored over several days after irradiation. These measurements were aided by Magnetic Resonance Imaging (MRI) scans which allowed three-dimensional (3D) dose mapping. In order to maximize the MRI response, a systematic study was performed to optimize acquisition sequences and parameters. In particular, we analyzed the dependence of MRI signal on the repetition time (TR) and on the inversion time (TI) using inversion recovery sequences. The results are reported and discussed from the point of view of the dosimeter use in clinical radiotherapy. This work highlights that the optimization of additive content inside gel matrix is fundamental for optimizing photon sensitivity of these detectors.

  12. Experimental investigation and thermodynamic modeling of extraction of heavy metal ions from aqueous solutions by chelation in supercritical carbon dioxide 

    E-print Network

    Uyansoy, Hakki

    1995-01-01

    conventional organic solvents with supercritical fluids. The main objective of this research has been to investigate the potential and feasibility of heavy metal ion extraction through chelation in supercritical CO2. Copper has been chosen as the model...

  13. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues.

    PubMed

    Xie, Ningning; Huang, Jingjing; Li, Bo; Cheng, Jianghua; Wang, Zhuochen; Yin, Junfeng; Yan, Xiaoming

    2015-04-15

    Zinc is an essential trace element for human growth and development. In this work, zinc-chelating peptides from rapeseed protein hydrolysates produced with alcalase were investigated by affinity chromatography with immobilized zinc and Sephadex G-25 gel filtration. Four small peptides, namely, Ala-Arg, Asn-Ser-Met (NSM), Gly-Lys-Arg, and Glu-Pro-Ser-His, were obtained and identified by reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry. The zinc-chelating ability of the four peptides was further validated by inductively coupled plasma atomic emission spectrometry (ICP-AES). NSM was found to exhibit the highest zinc-chelating rate, which was better than that of reduced glutathione. We speculated that the Asn residue at the amino-terminus might facilitate this zinc-chelating ability. Therefore, utilizing small peptides from rapeseed protein as novel carriers for zinc supplement was feasible. PMID:25466014

  14. Tris(2-pyridylmethyl)amine (TPA) as a membrane-permeable chelator for interception of biological mobile zinc

    E-print Network

    Huang, Zhen

    We report the characterization of tris(2-pyridylmethyl)amine (TPA) as a membrane-permeable zinc chelator for intercepting biological mobile zinc. Compared to N,N,N?,N?-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), TPA ...

  15. Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1983-01-01

    The application of calcium chelating agents (EDTA or EGTA) to the tips of maize roots caused a loss of gravitropic sensitivity. When the chelator was replaced with calcium chloride, gravitropic sensitivity was restored. Asymmetric application of calcium chloride near the tip of a vertical root caused curvature toward the calcium source. When the calcium was applied to the upper surface of the tip of a root oriented horizontally, the root curved upward even though control roots exhibited strong downward curvature. Application of calcium chloride to the tips of decapped roots, which are known to be gravitropically insensitive, did not restore gravitropic sensitivity. However, asymmetric application of calcium chloride near the tips of decapped roots caused curvature toward the calcium source. Calcium may play a key role in linking gravity detection to gravitropic curvature in roots.

  16. Fusaric acid induces a notochord malformation in zebrafish via copper chelation.

    PubMed

    Yin, Emily S; Rakhmankulova, Malika; Kucera, Kaury; de Sena Filho, Jose Guedes; Portero, Carolina E; Narváez-Trujillo, Alexandra; Holley, Scott A; Strobel, Scott A

    2015-08-01

    Over a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos. The active compound was isolated and identified as fusaric acid. Previous literature has shown this phenotype to be associated with copper chelation from the active site of lysyl oxidase, but the ability of fusaric acid to bind copper ions has not been well described. Isothermal titration calorimetry revealed that fusaric acid is a modest copper chelator with a binding constant of 4.4 × 10(5) M(-1). These results shed light on the toxicity of fusaric acid and the potential teratogenic effects of consuming plants infected with Fusarium sp. PMID:25913293

  17. The Structural Basis of Action of Vanadyl (VO(2+)) Chelates in Cells.

    PubMed

    Makinen, Marvin W; Salehitazangi, Marzieh

    2014-11-01

    Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO(2+)) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO(2+)-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO(2+)-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in the extravascular space. Serum albumin, as the most abundant transport protein in the blood stream, serves commonly as the carrier protein for small molecules, and transcytosis of albumin through capillary endothelium is regulated by a Src protein tyrosine kinase system. In this respect it is of interest to note that inorganic VO(2+) has the capacity to enhance insulin receptor kinase activity of intact 3T3-L1 adipocytes in the presence of albumin, albeit weak; however, in the presence of transferrin no activation is observed. In addition to facilitating glucose uptake, the capacity of VO(2+)- chelates for insulin-like, antilipolytic action in primary adipocytes has also been reviewed. We conclude that measurement of inhibition of release of only free fatty acids from adipocytes stimulated by epinephrine is not a sufficient basis to ascribe the observations to purely insulin-mimetic, antilipolytic action. Adipocytes are known to contain both phosphodiesterase-3 and phosphodiesterase-4 (PDE3 and PDE4) isozymes, of which insulin antagonizes lipolysis only through PDE3B. It is not known whether the other isozyme in adipocytes is influenced directly by VO(2+)- chelates. In efforts to promote improved development of VO(2+)- chelates for therapeutic purposes, we propose synergism of a reagent with insulin as a criterion for evaluating physiological and biochemical specificity of action. We highlight two organic compounds that exhibit synergism with insulin in cellular assays. Interestingly, the only VO(2+)- chelate for which this property has been demonstrated, thus far, is VO(acac)2. PMID:25237207

  18. Tin-117m-labeled stannic (Sn.sup.4+) chelates

    DOEpatents

    Srivastava, Suresh C. (Setauket, NY); Meinken, George E. (Middle Island, NY); Richards, Powell (Bayport, NY)

    1985-01-01

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  19. Experimental animal model to study iron overload and iron chelation and review of other such models.

    PubMed

    Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha

    2015-10-01

    The disorders of iron overload due to primary or secondary cause are one of the important human diseases leading to high mortality if untreated. To understand this, an animal model has been extensively studied. The source of iron administered to the mode of iron administration that can mimic the iron overload in humans has been studied. A safe and orally active iron chelator is still needed as many of the existing compounds have different types of complications and toxicity associated. Hence having a simple animal model which can be availed quickly and can be used to study various compounds for its iron chelating activity would likely to have immense utility for pharmacological studies. In this review we have shown how, using a simple procedure, a large number of small iron overloaded animals can be produced easily for various studies. PMID:26227843

  20. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    SciTech Connect

    Chang, Yu-Chi; Wang, Yeong-Her

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550?nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85?°C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect of Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.