Science.gov

Sample records for fiber taper extraction

  1. Tapered fiber amplifier

    NASA Astrophysics Data System (ADS)

    Russell, Stephen D.; Stamnitz, Timothy C.

    1990-07-01

    A tapered optical fiber amplifier is designed to provide for long-distance, un-repeatered fiber optic communications. Two single-mode fiber portions are tapered to efficiently intensify and couple an information signal from a laser diode and a pump signal at a shorter wavelength into a fused, tapered single-mode fiber optic coupler. The concentrated information signal and concentrated pump signal are combined via the coupler which is coupled to a several-kilometer length of a relatively small core diametered single-mode fiber to create nonlinear optical effect (stimulated Raman scattering) (SRS). The SRS causes Raman shift of the pump light into the small core diametered single-mode fiber length, thereby generating SRS to result in a signal amplification and an efficient extraction of the amplified signal via the tapered output fiber portion or pigtail.

  2. Tapered fibers embedded in silica aerogel.

    PubMed

    Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A

    2009-09-15

    We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores. PMID:19756084

  3. Workplace for manufacturing devices based on optical fiber tapers

    NASA Astrophysics Data System (ADS)

    Martan, Tomáš; Honzátko, Pavel; Kaňka, Jiři; Novotný, Karel

    2007-04-01

    Many important optical fiber components are based on tapered optical fibers. A taper made from a single-mode optical fiber can be used, e.g., as a chemical sensor, bio-chemical sensor, or beam expander. A fused pair of tapers can be used as a fiber directional coupler. Fiber tapers can be fabricated in several simple ways. However, a tapering apparatus is required for more sophisticated fabrication of fiber tapers. The paper deals with fabrication and characterization of fiber tapers made from a single-mode optical fiber. A tapering apparatus was built for producing devices based on fiber tapers. The apparatus is universal and enables one to taper optical fibers of different types by a method utilizing stretching a flame-heated section of a silica fiber. Fiber tapers with constant waist length and different waist diameters were fabricated. The transition region of each fiber taper monotonically decreased in diameter along its length from the untapered fiber to the taper waist. The fiber tapers were fabricated with a constant drawing velocity, while the central zone of the original single-mode fiber was heated along a constant length. The spectral transmissions of the manufactured fiber tapers with different parameters were measured by the cut-back method.

  4. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  5. Tapered polysilicon core fibers for nonlinear photonics.

    PubMed

    Suhailin, Fariza H; Shen, Li; Healy, Noel; Xiao, Limin; Jones, Maxwell; Hawkins, Thomas; Ballato, John; Gibson, Ursula J; Peacock, Anna C

    2016-04-01

    We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1  μm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems. PMID:27192236

  6. Nanostructured tapered optical fibers for paticle trapping

    NASA Astrophysics Data System (ADS)

    Daly, Mark; Truong, Viet Giang; Nic Chormaic, Síle

    2015-05-01

    Optical micro- and nanofibers have recently gained popularity as tools in quantum engineering using laser-cooled, neutral atoms. In particular, atoms can be trapped around such optical fibers, and photons coupled into the fibers from the surrounding atoms could be used to transfer quantum state information within the system. It has also been demonstrated that such fibers can be used to manipulate and trap silica and polystyrene particles in the 1-3 μm range. We recently proposed using a focused ion beam nanostructured tapered optical fiber for improved atom trapping geometries1. Here, we present details on the design and fabrication of these nanostructured optical fibers and their integration into particle trapping platforms for the demonstration of submicron particle trapping. The optical fibers are tapered to approximately 1-2 μm waist diameters, using a custom-built, heat-and-pull fiber rig, prior to processing using a focused ion beam. Slots of about 300 nm in width and 10-20 μm in length are milled right though the waist regions of the tapered optical fibers. Details on the fabrication steeps necessary to ensure high optical transmission though the fiber post processing are included. Fiber transmissions of over 80% over a broad range of wavelengths, in the 700-11100 nm range, are attainable. We also present simulation results on the impact of varying the slot parameters on the trap depths achievable and milling multiple traps within a single tapered fiber. This work demonstrates even further the functionality of optical micro- and nanofibers as trapping devices across a range of regimes.

  7. Tapered fiber bundle couplers for high-power fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Sliwinska, Dorota; Kaczmarek, Pawel; Abramski, Krzysztof M.

    2014-12-01

    In this work, we would like to demonstrate our results on performing (6+1)x1 tapered fiber bundle combiners using a trielectrode fiber splicing system. In our combiners we have used 9/80 μm (core/clad) diameter fibers as single-mode signal input ports. Using this fiber, instead of a conventional 9/125 μm single-mode fiber allowed us to reduce the taper ratio and therefore significantly increase the signal transmission. We have also performed power combiner which is based on the LMA fibers: input signal fiber 20/125μm and passive double clad fiber 25/300 μm at the output.

  8. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber. PMID:26479631

  9. Adiabatically-tapered fiber mode multiplexers.

    PubMed

    Yerolatsitis, S; Gris-Sánchez, I; Birks, T A

    2014-01-13

    Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021

  10. An acoustic vibration sensor based on tapered triple cladding fiber

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Pang, Fufei; Zhao, Shiqi; Chen, Zhenyi; Wang, Tingyun

    2014-05-01

    An acoustic vibration sensor is investigated and demonstrated by using a tapered triple cladding fiber (TCF). It is fabricated by tapering a length of 2 cm TCF which is spliced between two single mode fibers (SMF). The TCF consists of core, inner cladding, middle cladding and outer cladding. After the tapering process, this structure becomes a tapered coaxial fiber coupler which presents a periodic filtering transmission spectrum. The surrounding vibration perturbation can be directly demodulated by intensity detection of the transmission power at a particular wavelength. The experimental result shows that the maximum frequency response of 700 kHz is achieved.

  11. Group delay and dispersion tailoring in nonadiabatic tapered fibers

    NASA Astrophysics Data System (ADS)

    Mas, Sara; Palací, Jesús; Martí, Javier

    2016-09-01

    The dispersion profile of a nonadiabatic tapered singlemode fiber is characterized and dynamically tuned. Its group delay and dispersion parameters are measured and compared to those of a standard singlemode fiber. The dispersion profile can be tuned by introducing a phase shift through mechanical stretching. Coarse tuning is also obtained by varying the surrounding medium of the tapered fiber. Dispersion values up to 700 ps/nm·km in nonadiabatic tapered fibers are obtained for the first time. Dynamic tuning exposed here can be very useful in applications such as nonlinearities or soliton generation.

  12. Nonlinear transmission through a tapered fiber in rubidium vapor

    SciTech Connect

    Hendrickson, S. M.; Pittman, T. B.; Franson, J. D.

    2009-02-15

    Subwavelength-diameter tapered optical fibers surrounded by rubidium vapor can undergo a substantial decrease in transmission at high atomic densities due to the accumulation of rubidium atoms on the surface of the fiber. Here we demonstrate the ability to control these changes in transmission using light guided within the taper. We observe transmission through a tapered fiber that is a nonlinear function of the incident power. This effect can also allow a strong control beam to change the transmission of a weak probe beam.

  13. Compact fiber optic immunosensor using tapered fibers and acoustic enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Chonghua; Pivarnik, Philip E.; Auger, Steven; Rand, Arthur G.; Letcher, Stephen V.

    1997-06-01

    A compact fiber-optic sensing system that features all-fiber optical design and semiconductor-laser excitation has been developed and tested. A 2X2 fiber coupler directs the input light to the SMA connected sensing fiber tip and the fluorescent signal back to a CCD fiber spectrophotometer. In this system, the fluorescent signal is confined in the fiber system so the signal-to-noise ratio is greatly improved and the system can be operate in ambient light conditions. The utilization of a red laser diode has reduced the background signal of non-essential biomolecules. The fluorescent dye used is Cy5, which has an excitation wavelength of 650 nm and a fluorescent center wavelength of 680 nm. To illustrate the biosensor's diagnostic capabilities, a sandwich immunoassay to detect Salmonella is presented. Tapered fiber tips with different shapes and treatments were studied and optimized. An enhancement system employing ultrasonic concentration of target particles has also been developed and applied to the detection of Salmonella. The immunoassay was conducted in a test chamber that also serves as an ultrasonic standing-wave cell and allows microspheres to be concentrated in a column along the fiber probe. The system demonstrates broad promise in future biomedical application.

  14. Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan

    2010-03-01

    A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.

  15. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  16. Compact optical fiber curvature sensor based on concatenating two tapers.

    PubMed

    Monzon-Hernandez, D; Martinez-Rios, A; Torres-Gomez, I; Salceda-Delgado, G

    2011-11-15

    A low-loss, compact, and highly sensitive optical fiber curvature sensor is presented. The device consists of two identical low-loss fused fiber tapers in tandem separated by a distance L. When the optical fiber is kept straight and fixed, no interference pattern appears in the transmitted spectrum. However, when the device is bent, the symmetry of the straight taper is lost and the first taper couples light into the cladding modes. In the second taper, a fraction of the total light guided by the cladding modes will be coupled back to the fundamental mode, producing an interference pattern in the transmitted spectrum. As the fiber device is bent, visibility of the interference fringes grows, reaching values close to 1. The dynamic range of the device can be tailored by the proper selection of taper diameter and separation between tapers. The effects of temperature and refractive index of the external medium on the response of the curvature sensor is also discussed. PMID:22089570

  17. Tapered fiber optic sensor for potassium detection in distilled water

    NASA Astrophysics Data System (ADS)

    Yasin, M.; Pujiyanto, .; Apsari, R.; Tanjung, M.

    2015-01-01

    A simple sensor is proposed and demonstrated using a silica tapered fiber for sensing different concentration of potassium in de-ionized water. The tapered fiber is fabricated using a flame brushing technique to achieve a waist diameter and length of 10 μm and 80 mm, respectively. For a concentration change from 0 to 50 %, the ouput signal of the sensor decreases exponentially from -10.04 dBm to -11.11 dBm with linearity of more than 92%. The increment of potassium concentration increases the refractive index of the solution, which in turn reduces the index difference between core and cladding of the tapered fiber and thus allows more light to be leaked out from the fiber. This new potassium monitoring system provides numerous advantages such as simplicity of design and low cost of production.

  18. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    PubMed

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region. PMID:26907442

  19. Acoustic vibration sensor based on nonadiabatic tapered fibers.

    PubMed

    Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong

    2012-11-15

    A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB. PMID:23164907

  20. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  1. Ultra-low-loss tapered optical fibers with minimal lengths.

    PubMed

    Nagai, Ryutaro; Aoki, Takao

    2014-11-17

    We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7% with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6% transmission for a 63 mm TOF length. PMID:25402084

  2. Submicron particle manipulation using slotted tapered optical fibers

    NASA Astrophysics Data System (ADS)

    Daly, M.; Truong, V. G.; Nic Chormaic, S.

    2015-08-01

    The use of optical micro- and nanofibers has become commonplace in the areas of atom trapping using neutral atoms and, perhaps more relevantly, the optical trapping and propulsion of micro- and nanoscale particles. It has been shown that such fibers can be used to manipulate and trap silica and polystyrene particles in the 1-3 µm range using either the fundamental or higher order modes of the fibers, with the propulsion of smaller particle sizes also possible through the use of metallic and/or high index materials. We previously proposed using a focused ion beam nanostructured tapered optical fiber for improved atom trapping geometries; here, we present the details of how these nanostructured optical fibers can be used as a platform for submicron particle trapping. The optical fibers are tapered to approximately 1.2 µm waist diameters, using a custom-built, heat-and-pull fiber rig prior to processing using a focused ion beam. Slots of approximately 300 nm in width and 10-20 µm in length are milled clean though the waist regions of the tapered optical fibers. High fiber transmissions (> 80%) over a broad range of wavelengths (700-1100 nm) are observed. We present simulation results for the trapping of submicron particles and experimental results on the trapping of 200 nm particles. This work demonstrates even further the functionality of optical micro- and nanofibers as trapping devices across a range of regimes.

  3. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2015-10-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  4. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  5. Mechanically induced long period fiber gratings on single mode tapered optical fiber for structure sensing applications

    NASA Astrophysics Data System (ADS)

    Pulido-Navarro, María. G.; Marrujo-García, Sigifredo; Álvarez-Chávez, José A.; Velázquez-González, Jesús S.; Martínez-Piñón, Fernando; Escamilla-Ambrosio, Ponciano J.

    2015-08-01

    The modal characteristics of tapered single mode optical fibers and its strain sensing characteristics by using mechanically induced long period fiber gratings are presented in this work. Both Long Period Fiber Gratings (LPFG) and fiber tapers are fiber devices that couple light from the core fiber into the fiber cladding modes. The mechanical LPFG is made up of two plates, one flat and the other grooved. For this experiment the grooved plate was done on an acrylic slab with the help of a computer numerical control machine. The manufacturing of the tapered fiber is accomplished by applying heat using an oxygen-propane flame burner and stretching the fiber, which protective coating has been removed. Then, a polymer-tube-package is added in order to make the sensor sufficiently stiff for the tests. The mechanical induced LPFG is accomplished by putting the tapered fiber in between the two plates, so the taper acquires the form of the grooved plate slots. Using a laser beam the transmission spectrum showed a large peak transmission attenuation of around -20 dB. The resultant attenuation peak wavelength in the transmission spectrum shifts with changes in tension showing a strain sensitivity of 2pm/μɛ. This reveals an improvement on the sensitivity for structure monitoring applications compared with the use of a standard optical fiber. In addition to the experimental work, the supporting theory and numerical simulation analysis are also included.

  6. Diode-Pumped Dye Laser Using a Tapered Optical Fiber

    NASA Astrophysics Data System (ADS)

    Patterson, Brian; Stofel, James; Myers, Elliot; Knize, Randy

    2015-05-01

    We describe the construction of a simple dye laser based on a single-mode optical fiber. Light from a 120-mW laser diode (λ = 520 nm) is launched into the fiber. The fiber is tapered to a diameter of approximately 1 μm and placed in Rhodamine 6G laser dye. The pump light interacts with the gain medium through the evanescent field outside the fiber causing stimulated emission, which couples back into the fiber. Mirrors on each end of the fiber provide the necessary feedback for lasing, and a grating is used to narrow the spectral output. We characterize the lasing threshold and output spectrum of the laser. This has been a good project for undergraduate students to learn about lasers and optics.

  7. Expanded-mode semiconductor laser with tapered-rib adiabatic-following fiber coupler

    SciTech Connect

    Vawter, G.A.; Smith, R.E.; Hou, H.; Wendt, J.R.

    1997-02-01

    A new diode laser using a Tapered-Rib Adiabatic-Following Fiber Coupler to achieve 2D mode expansion and narrow, symmetric far-field emission without epitaxial regrowth or sharply-defined tips on tapered waveguides is presented.

  8. Integrated polarizers based on tapered highly birefringent photonic crystal fibers.

    PubMed

    Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S

    2014-07-28

    This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned. PMID:25089397

  9. Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers

    PubMed Central

    González-Cano, Agustín; Navarrete, María-Cruz; Esteban, Óscar; Díaz-Herrera, Natalia

    2014-01-01

    A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced. PMID:24618726

  10. Temperature sensing on tapered single mode fiber using mechanically induced long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Marrujo-García, Sigifredo; Velázquez-González, Jesús Salvador; Pulido-Navarro, María. Guadalupe; González-Ocaña, Ernesto; Mújica-Ascencio, Saúl; Martínez-Piñón, Fernando

    2015-09-01

    The modeling of a temperature optical fiber sensor is proposed and experimentally demonstrated in this work. The suggested structure to obtain the sensing temperature characteristics is by the use of a mechanically induced Long Period Fiber Grating (LPFG) on a tapered single mode optical fiber. A biconical fiber optic taper is made by applying heat using an oxygen-propane flame burner while stretching the single mode fiber (SMF) whose coating has been removed. The resulting geometry of the device is important to analyze the coupling between the core mode to the cladding modes, and this will determine whether the optical taper is adiabatic or non-adiabatic. On the other hand, the mechanical LPFG is made up of two plates, one grooved and other flat, the grooved plate was done on an acrylic slab with the help of a computerized numerical control machine (CNC). In addition to the experimental work, the supporting theory is also included.

  11. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.

    PubMed

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut

    2015-09-15

    We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers. PMID:26371916

  12. Enhanced supercontinuum generation in tapered tellurite suspended core fiber

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, J.; Strutynski, C.; Amrani, F.; Désévédavy, F.; Jules, J.-C.; Gadret, G.; Deng, D.; Cheng, T.; Nagasaka, K.; Ohishi, Y.; Kibler, B.; Smektala, F.

    2015-11-01

    We demonstrate 400-THz (0.6-3.3 μm) bandwidth infrared supercontinuum generation in a 10 cm-long tapered tellurite suspended core fiber pumped by nJ-level 200-fs pulses from an optical parametric oscillator. The increased nonlinearity and dispersion engineering extended by the moderate reduction of the fiber core size are exploited for supercontinuum optimization on both frequency edges (i.e., 155-THz overall gain), while keeping efficient power coupling into the untapered fiber input. The remaining limitation of supercontinuum bandwidth is related to the presence of the high absorption beyond 3 μm whereas spectral broadening is expected to fully cover the glass transmission window (0.5-4.5 μm).

  13. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    SciTech Connect

    Sarkissian, Raymond O'Brien, John

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  14. Refractive index sensors based on the fused tapered special multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  15. Three-dimensional modeling of CPA to the multimillijoule level in tapered Yb-doped fibers for coherent combining systems.

    PubMed

    Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard

    2014-11-17

    We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels. PMID:25402067

  16. Tunable ring laser using a tapered single mode fiber tip.

    PubMed

    Wang, Xiaozhen; Li, Yi; Bao, Xiaoyi

    2009-12-10

    A tunable ring laser using a tapered single mode fiber tip as a bandpass filter has been proposed and demonstrated for the first time to our knowledge. This is a simple and cost-effective tunable source. It is found that the tuning range and bandwidth of the laser are related to the relaxation time of the optical amplifier, the current of the amplifier, and the steepness of the tip shape. The calculations and experimental results show that the laser has a tuning range of 9 nm in the L-band and the spectral linewidth can be varied from 0.06 nm to 0.17 nm. PMID:20011024

  17. Fiber torsion sensor based on a twist taper in polarization-maintaining fiber.

    PubMed

    Zhou, Quan; Zhang, Weigang; Chen, Lei; Yan, Tieyi; Zhang, Liyu; Wang, Li; Wang, Biao

    2015-09-01

    A novel optical fiber torsion sensor head is proposed. A section of polarization-maintaining fiber (PMF) is spliced between single mode fiber (SMF), and a twist taper is fabricated by a commercial electric-arc fusion splicer in the middle of the PMF. The asymmetric characteristics are obtained by the twist taper so that a fiber torsion sensor with directional discrimination is fabricated. Due to the characteristics of the asymmetric structure, the torsion sensitivity for the twist rate from 0 rad/m to -8 rad/m reaches 2.392 nm/rad·m-1, and for the twist rate from 0 rad/m to 8 rad/m reaches 1.071 nm/rad·m-1 respectively. PMID:26368481

  18. Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.

    PubMed

    Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo

    2015-04-20

    A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis. PMID:25969082

  19. Modeling of coherent beam combining from multimillijoule chirped pulse tapered fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.; Kim, A. V.; Anashkina, E. A.; Meyerov, I. B.; Lebedev, S. A.; Sergeev, A. M.; Koenig, K.; Mourou, G.

    2015-10-01

    The amplification of high energy chirped pulses in Large Mode Area tapered fiber amplifiers and their coherent combining have been investigated numerically. We have developed a three-dimensional model of strongly chirped nanosecond pulse amplification and compression back to femtosecond duration fully taking into account transverse and longitudinal variations of refractive index profile and distribution of active ions in the fiber, wavelength dependence of emission and absorption cross sections, gain saturation and Kerr nonlinearity. Modeling of Yb-doped fiber amplifier shows that up to 3 mJ of output energy can be extracted in 1 ns pulse with single-mode beam quality. Finally, we have investigated numerically the capabilities of compression and coherent combining of up to 36 perturbed amplifying channels in which high-order modes were excited and have obtained more than 70% combining efficiency and 380 fs compressed pulse duration.

  20. Acousto-optic interaction in biconical tapered fibers: shaping of the stopbands

    NASA Astrophysics Data System (ADS)

    Ramírez-Meléndez, Gustavo; Bello-Jiménez, Miguel Ángel; Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, José Luis; Rodríguez-Cobos, Amparo; Balderas-Navarro, Raúl; Andrés Bou, Miguel Vicente

    2016-03-01

    The effect of a gradual reduction of the fiber diameter on the acousto-optic (AO) interaction is reported. The experimental and theoretical study of the intermodal coupling induced by a flexural acoustic wave in a biconical tapered fiber shows that it is possible to shape the transmission spectrum, for example, substantially broadening the bandwidth of the resonant couplings. The geometry of the taper transitions can be regarded as an extra degree of freedom to design the AO devices. Optical bandwidths above 45 nm are reported in a tapered fiber with a gradual reduction of the fiber down to 70 μm diameter. The effect of including long taper transition is also reported in a double-tapered structure. A flat attenuation response is reported with 3-dB stopband bandwidth of 34 nm.

  1. Two-octave spectral broadening of subnanojoule Cr:forsterite femtosecond laser pulses in tapered fibers

    NASA Astrophysics Data System (ADS)

    Akimov, D. A.; Ivanov, A. A.; Alfimov, M. V.; Bagayev, S. N.; Birks, T. A.; Wadsworth, W. J.; Russell, P. St. J.; Fedotov, A. B.; Pivtsov, V. S.; Podshivalov, A. A.; Zheltikov, A. M.

    Spectral broadening of femtosecond Cr:forsterite laser pulses is enhanced due to the use of tapered fibers. Supercontinuum generation with unamplified subnanojoule femtosecond Cr:forsterite laser pulses is observed for the first time. With 40-fs 0.6-nJ pulses of 1.25-μm Cr:forsterite laser radiation coupled into a tapered fiber having a taper waist diameter of about 2 μm and a taper waist length of 90 mm, we observed the spectra spanning more than two octaves at the output of the fiber in the regime of anomalous group-velocity dispersion. This result opens the way for the creation of compact femtosecond Cr:forsterite laser plus tapered fiber systems for optical metrology and biomedical applications.

  2. Tapered Optical Fibers Designed for Surface Plasmon Resonance Phase Matching

    PubMed Central

    Yu, Yinni; Blake, Phillip; Roper, D. Keith

    2009-01-01

    Combining a modified two-step chemical etch method with equations to predict etch parameters and photon-plasmon phase-matching resulted in single-mode tapered optical fibers (TOFs) to optimize electromagnetic field enhancement. The phase-matching equation was used to identify the angle of incidence near the TOF cutoff radius at which surface plasmon resonance (SPR) is maximized. The axisymmetric Young–Laplace equation was used to predict the angle of incidence from the fabrication of a TOF via chemical etching. An optimal cone angle of 20.0°, angles of incidence averaging (81.6 ± 1.9)°, and tip diameters of (80.0 ± 14.1) nm were achieved through a two-step etching process. These TOF characteristics maximize SPR excitation and field enhancement. The refractive index for optimized SPR excitation in the fabricated TOFs at a wavelength of 650 nm was found to be 1.343. PMID:19061312

  3. Temperature-independent gas refractometer based on an S-taper fiber tailored fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shao, Zhihua; Qiao, Xueguang; Bao, Weijia; Rong, Qiangzhou

    2016-09-01

    A fiber Bragg grating (FBG)-based gas refractometer is proposed and demonstrated experimentally. The configuration consists of a short section of S-type taper incorporated in the upstream of a FBG. The S-taper is capable to couple the core mode to cladding modes into the downstream single mode fiber (SMF), and the low-order cladding modes can be reflected back to the fiber core via the FBG. Because of the recoupling efficiency depending on surrounding refractive index (SRI), the reflection power of the device presents high response to gas RI change with the sensitivity of 172.7 dB/RIU. This power-referenced RI measurement and wavelength-referenced temperature measurement have been achieved via selective cladding modes monitoring.

  4. Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler

    NASA Astrophysics Data System (ADS)

    Guo, Hairun; Pang, Fufei; Zeng, Xianglong; Wang, Tingyun

    2013-03-01

    We theoretically analyzed the gain characteristics of an integrated semiconductor quantum dot (QD) fiber amplifier (SQDFA) by using a 2 × 2 tapered fiber coupler with a PbS QD-coated layer. The asymmetric structure of the fiber coupler is designed to have a maximum working bandwidth around 1550-nm band and provide a desired optical power ratio of the output signals. By using 600 mW of 980-nm pump, 10 dB gain of a 1550-nm signal is estimated with the gain efficiency of 4.5 dB/cm.

  5. An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ma, S.; Dutta, N. K.

    2010-08-01

    In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.

  6. Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating

    SciTech Connect

    Ji Chongke; Zhao Chunliu; Kang Juan; Dong Xinyong; Jin Shangzhong

    2012-05-15

    A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded tapered fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 x 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/{mu}m for displacement in the range of 0-400 {mu}m, and {approx}0.0097 nm/ deg. C for temperature between 20 deg. C and 70 deg. C.

  7. Gas refractometer based on an S-taper fiber tailored fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shao, Zhihua; Bao, Weijia; Qiao, Xueguang; Rong, Qiangzhou

    2015-09-01

    A fiber Bragg grating (FBG)-based gas refractometer is proposed and demonstrated experimentally. The configuration consists of a short section of S-type taper followed with a FBG. The S-taper is capable to couple the core mode to cladding modes into the downstream SMF, and the low-order cladding modes can be reflected back to the fiber core via the FBG, in which the recoupling efficiency is highly dependent on surrounding refractive index (RI) of liquid and gas. Experimental results show that some recoupled cladding modes show high sensitivities to surround RI. This power-referenced RI measurement and wavelength-referenced temperature measurement have been achieved via selective cladding modes monitoring.

  8. Bragg grating fabrication on tapered fiber tips based on focused ion beam milling

    NASA Astrophysics Data System (ADS)

    André, Ricardo M.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2015-09-01

    Focused ion beam milling is used on chemically etched tapered fiber tips to create fiber Bragg gratings. These fiber Bragg gratings are based on a modulation of silica and external medium. This leads to a wide and structured spectrum obtained due to imperfections and the inherent structure of the tip. The fiber Bragg gratings presented are very short and have a length of 27 μm and 43 μm and are milled on the tapered fiber tip. They are characterized in the high temperature range 350-850ºC and a sensitivity of 14.4 pm/K is determined.

  9. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    SciTech Connect

    Holleis, S.; Hoinkes, T.; Wuttke, C.; Schneeweiss, P.; Rauschenbeutel, A.

    2014-04-21

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  10. Optical similaritons in a tapered graded-index nonlinear-fiber amplifier with an external source

    SciTech Connect

    Raju, Thokala Soloman; Panigrahi, Prasanta K.

    2011-09-15

    We analytically explore a wide class of optical similariton solutions to the nonlinear Schroedinger equation appropriately modified to model beam propagation in a tapered, graded-index nonlinear-fiber amplifier with an external source. Under certain physical conditions, we reduce the coupled nonlinear Schroedinger equations to a single-wave equation that aptly describes similariton propagation through asymmetric twin-core fiber amplifiers. The asymmetric twin-core fiber is composed of two adjoining, closely spaced, single-mode fibers in which the active one is a tapered, graded-index nonlinear-fiber and the passive one is a step-index fiber. We obtain these self-similar waves for different choices of tapered index profile, using a Moebius transformation. Our procedure is applicable for both self-focusing and self-defocusing nonlinearities.

  11. Thymol blue immobilized on tapered fibers as optical transducer for pH sensing

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Ciaccheri, Leonardo; Falai, Alida; Mignani, Anna G.; Rayss, Jan; Sudolski, Grzegorz

    1999-02-01

    The present work is concerned with the optical characterization of an evanescent wave sensor for pH detection. First, the interaction between the solution containing the acid-base indicator and the fiber core was investigated. Then, the acid-base indicator, thymol blue, was covalently immobilized on the core of a 200/380 micrometers fiber by means of a silylation process of the glass surface. The fiber core surface was modified along a section of 8 mm. A comparison was made using both bare and tapered fibers, with a tapering ratio (fiber diameter/waist diameter) of 2.3. An enhancement in sensitivity of a factor 6 was observed with tapered fibers in the 1/2.5 range, and a sensitivity of 0.05 pH units was attained.

  12. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    PubMed

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated. PMID:25322232

  13. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures.

    PubMed

    Sun, Ya'nan; Dai, Shixun; Zhang, Peiqing; Wang, Xunsi; Xu, Yinsheng; Liu, Zijun; Chen, Feifei; Wu, Yuehao; Zhang, Yuji; Wang, Rongping; Tao, Guangming

    2015-09-01

    This paper reports on the fabrication and characterization of multimaterial chalcogenide fiber tapers that have high numerical apertures (NAs). We first fabricated multimaterial As(2)Se(3)-As(2)S(3) chalcogenide fiber preforms via a modified one-step coextrusion process. The preforms were drawn into multi- and single-mode fibers with high NAs (≈1.45), whose core/cladding diameters were 103/207 and 11/246 μm, respectively. The outer diameter of the fiber was tapered from a few hundred microns to approximately two microns through a self-developed automatic tapering process. Simulation results showed that the zero-dispersion wavelengths (ZDWs) of the tapers were shorter than 2 μm, indicating that the tapers can be conveniently pumped by commercial short wavelength infrared lasers. We also experimentally demonstrated the supercontinuum generation (SCG) in a 15-cm-long multimaterial As(2)Se(3)-As(2)S(3) chalcogenide taper with 1.9 μm core diameter and the ZDW was shifted to 3.3 μm. When pumping the taper with 100 fs short pulses at 3.4 µm, a 20 dB spectral of the generated supercontinuum spans from 1.5 μm to longer than 4.8 μm. PMID:26368447

  14. Tapered inner-cladding fiber design for uniform heat deposition in Ytterbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Zhang, Yongliang; Deng, Ying; Lin, Honghuan; Li, Qi; Zhao, Lei; Wang, Jianjun

    2015-04-01

    A method for designing double-clad fiber with tapered inner cladding and uniform core is proposed for linear pump power profile, i.e. uniform heat deposition, in the ytterbium-doped fiber amplifier. The analytical formula for the inner-cladding diameter profile along the fiber is given. The inner-cladding diameter near the pump injection port is determined purely by the diameter of the doped region, the number density of the doped ions, the absorption cross section at the pump wavelength and the length of the fiber. The simplified linearly varying inner-cladding diameter is proven to have a smoother heat deposition profile with lower maximum thermal load in both the co-pumping scheme and the counter-pumping scheme.

  15. Mode-expanded semiconductor laser with tapered-rib adiabatic-following fiber coupler

    SciTech Connect

    Vawter, G.A.; Smith, R.E.; Hou, H.; Wendt, J.R.

    1996-12-01

    Expanded-mode semiconductor lasers are of great interest due to the benefits of reduced far-field divergence and improved coupling efficiency to optical fiber. The authors present a new diode laser using a Tapered-Rib Adiabatic-Following Fiber Coupler (TRAFFiC) to achieve 2D mode expansion without epitaxial regrowth or sharply-defined tips on tapered waveguides. The expanded mode size would allow 0.25 to 1 dB coupling loss to standard telecommunications fiber making smaller-core specialty fibers unnecessary, increasing misalignment tolerance, and eliminating the need for coupling optics.

  16. Top-hat beam Tm3+-doped fiber laser using an intracavity abrupt taper

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Zhong, F. F.; Wang, Y. Z.

    2011-01-01

    The top-hat beam clad-pumped Tm3+-doped fiber laser was realized simply using an intracavity multi-mode abrupt taper. The ratio of the flat-top diameter to the spot diameter reaches 53%, with a small intensity variation less than 6%, and the top-hat beam's half-divergence angle is only 5.3°. The fiber laser has a maximal output power of 5 W with slope efficiency of 39.7%, pumped by the 792 nm diode laser (LD). The abrupt taper is directly made on the multi-mode double-clad Tm3+-doped fiber near the fiber laser output end with the 0.45 ratio of taper waist diameter to fiber clad diameter, and this fiber end 4% Fresnel reflection is used to be the output coupler. The fiber laser's high reflective coupler is an intracore multi-mode FBG, which is directly written into the multi-mode Tm3+-doped fiber core using femtosecond laser and phase mask, at the other fiber end. The abrupt taper has no obviously influence on the fiber laser output power, and the output laser spectrum.

  17. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power

    NASA Astrophysics Data System (ADS)

    Leich, M.; Jäger, M.; Grimm, S.; Hoh, D.; Jetschke, S.; Becker, M.; Hartung, A.; Bartelt, H.

    2014-04-01

    We report on a tapered large-core Yb fiber laser operating at 976 nm emission wavelength. It was realized using a high-numerical aperture large-core fiber with 126 μm core diameter, which was fabricated by powder-sinter technology and shows a very homogeneous step-index profile. The end of the fiber is tapered down to match a single-mode fiber containing a fiber Bragg grating. Using the benefits of core-pumping and the feedback of the spliced fiber Bragg grating, we achieved efficient pump light absorption and wavelength stable 976 nm lasing with single-mode performance. We could demonstrate 10 W laser power out of a 10 μm fiber core with a slope efficiency of 31% with respect to the launched pump power. The presented device is well-suited for fiber-coupled pumping of amplifiers for high peak power.

  18. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Tang, Xuan; Lin, Honghuan; Wang, Jianjun

    2016-05-01

    The thermal effect has become the biggest limiting factor regarding the further power scaling of single mode fiber lasers, and it can lead to coating failure and transverse mode instability. A tapered cladding diameter profile design is proposed for the tandem-pumped fiber laser in this work, as it can smooth the temperature profile and reduce the maximum temperature rise within the fiber tremendously. The improvement in performance of the fiber design is verified by analytical and numerical results.

  19. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer.

    PubMed

    Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao

    2015-08-10

    An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited. PMID:26367919

  20. Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xie; Hai-Nian, Han; Long, Zhang; Zi-Jiao, Yu; Zheng, Zhu; Lei, Hou; Li-Hui, Pang; Zhi-Yi, Wei

    2016-04-01

    We demonstrate a stable Yb:fiber frequency comb with supercontinuum generation by using a specially designed tapered single-mode fiber, in which a spectrum spanning from 500 nm to 1500 nm is produced. The carrier-envelope offset signal of the Yb:fiber comb is measured with a signal-to-noise ratio of more than 40 dB and a linewidth narrower than 120 kHz. The repetition rate and carrier-envelope offset signals are simultaneously phase locked to a microwave reference frequency. Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant No. 61378040).

  1. Tailored dispersion profile in controlling optical solitons in a tapered parabolic index fiber

    NASA Astrophysics Data System (ADS)

    Prakash, S. Arun; Malathi, V.; Mani Rajan, M. S.

    2016-03-01

    We investigate the soliton dynamics in tapered parabolic index fibers via symbolic computation for a variety of dispersion profiles to inspect how a specific dispersion profile controls the optical soliton. By means of AKNS procedure, Lax pair is constructed for nonlinear Schrödinger equation with variable coefficients. Using obtained Lax pair, multi-soliton solutions are generated via Darboux transformation technique. Using multi-soliton solutions, soliton dynamics in tapered parabolic index fiber with the hyperbolic, Gaussian, exponential, and linear profiles are discussed. Results obtained in this study will be of certain potential application on construction of the nonlinear optical devices by soliton control. Results obtained in this study will be of certain value to the studies on the propagation and application of the soliton in the tapered parabolic index fiber and dispersion-managed fiber system.

  2. High finesse microfiber knot resonators made from double-ended tapered fibers.

    PubMed

    Xiao, Limin; Birks, T A

    2011-04-01

    We fabricated optical microfiber knot resonators from thin tapered fibers (diameter down to 1 μm) linked to untapered fiber at both ends. We demonstrated a finesse of about 100, over twice as high as previously reported for microfiber resonators. Low-loss encapsulation of microfiber knot resonators in hydrophobic silica aerogel was also investigated. PMID:21478995

  3. High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong

    2016-05-01

    In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.

  4. Label free detection of DNA hybridization by refractive index tapered fiber biosensor

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Ghanati, E.; Gholami, M.; Hosseini, S. M.

    2010-04-01

    We demonstrate a simple refractive index sensor (RI) sensing system based on a biconical tapered optical fiber (BTOF), which is fabricated by heat pulling method, utilizing a CO2 laser. In this work we explore the application of these sensors for the detection of label free single stranded DNA (ssDNA) in real time. During the experiment, the target ssDNA did not need to be labeled with a fluorescent tag, which is expensive and complicated. The change in output optical transmission of the tapered fiber was recorded for Poly-L-Lysine (PLL) coating, ssDNA probe immobilization and hybridization. The result indicated that due to the hybridization with the complementary target ssDNA on the tapered surface, the RI of surrounding medium changes which leads to changes in the characteristics of the tapered region and change in the output power of the sensor.

  5. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  6. A high-energy cladding-pumped 80 nanosecond Q-switched fiber laser using a tapered fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Soh, Daniel B. S.; Bisson, Scott E.; Patterson, Brian D.; Hsu, Wen L.

    2013-02-01

    We report a passively Q-switched all-fiber laser using a large mode area (LMA) Yb3+-doped fiber cladding-pumped at 915 nm and an unpumped single-mode Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber and gain fibers were first coupled with a free-space telescope to better study the composite system, and then fusion spliced with fiber tapers to match the mode field diameters. ASE generated in the LMA gain fiber preferentially bleaches the SA fiber before depleting the gain, thereby causing the SA fiber to act as a passive saturable absorber. Using this scheme we first demonstrate a Q-switched oscillator with 40 μJ 79 ns pulses at 1026 nm using a free-space taper, and show that pulses can be generated from 1020 nm to 1040 nm. We scale the pulse energy to 0.40 mJ using an Yb3+-doped cladding pumped fiber amplifier. Experimental studies in which the saturable absorber length, pump times, and wavelengths are independently varied reveal the impact of these parameters on laser performance. Finally, we demonstrate 60 μJ 81 ns pulses at 1030 nm in an all fiber architecture using tapered mode field adaptors to match the mode filed diameters of the gain and SA fibers.

  7. Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures.

    PubMed

    Fujiwara, Masazumi; Zhao, Hong-Quan; Noda, Tetsuya; Ikeda, Kazuhiro; Sumiya, Hitoshi; Takeuchi, Shigeki

    2015-12-15

    We demonstrate cooling of ultrathin fiber tapers coupled with nitrogen vacancy (NV) centers in nanodiamonds to cryogenic temperatures. Nanodiamonds containing multiple NV centers are deposited on the subwavelength 480-nm-diameter nanofiber region of fiber tapers. The fiber tapers are successfully cooled to 9 K using our home-built mounting holder and an optimized cooling speed. The fluorescence from the nanodiamond NV centers is efficiently channeled into a single guided mode and shows characteristic sharp zero-phonon lines (ZPLs) of both neutral and negatively charged NV centers. The present nanofiber/nanodiamond hybrid systems at cryogenic temperatures can be used as NV-based quantum information devices and for highly sensitive nanoscale magnetometry in a cryogenic environment. PMID:26670490

  8. About the role of phase matching between a coated microsphere and a tapered fiber: experimental study.

    PubMed

    Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio

    2013-09-01

    Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles. PMID:24103968

  9. Investigation on single taper-based all-solid photonic bandgap fiber modal interferometers.

    PubMed

    Li, Jie; Geng, Mengmei; Sun, Li-Peng; Fan, Pengcheng; Liu, Bo; Guan, Bai-Ou

    2016-04-18

    We demonstrate a single taper-based all-solid photonic bandgap (AS-PBG) fiber modal interferometer that consists of a central tapered fiber region connected to the untapered via two abrupt transitions. Modal interference is given by superimposing the bandgap-guided fundamental core mode with a lower effective index and a specific index-guided cladding supermode with a higher effective index. A series of interferometers with taper diameter of 50μm ~60μm and device length of ~3mm are fabricated and studied in contrast to the conventional counterparts. The temperature coefficient of the interferometer is closely determined by the fraction of the cladding supermode energy localized within the index-raised regions of the fiber. The refractive index (RI) responsivities associated to fiber taper sizes are investigated. The measured maximal RI sensitivity is ~3512.36nm/RIU at the taper diameter of 50μm around RI = 1.423. This research gives a deep understanding to the modal-interferometric AS-PBG structure, which we believe to be valuable for the future application of the related device. PMID:27137292

  10. Bent optical fiber tapers for refractometery and biosensing

    NASA Astrophysics Data System (ADS)

    Penchev, Emil; Eftimov, Tinko; Bock, Wojtek

    2015-01-01

    We report the results of our study of the spectral shifts caused by surrounding refractive index changes (SRI) in bent fibre tapers. Fused and etched fibre tapers were fabricated using a gas burner and HF acid. Spectral shifts as high as 200 nm have been observed for SRI variations from 1.33 to 1.44 and sensitivity as high as 830 nm/r.i.u. around water RI values. We present results for refractometric measurements of cow milk of varying fat content and compare results with those obtained with conventional Abbe refractometers and high sensitivity double resonance LPGs.

  11. Tapered-fiber-based refractive index sensor at an air/solution interface.

    PubMed

    Lu, Ping; Harris, Jeremie; Wang, Xiaozhen; Lin, Ganbin; Chen, Liang; Bao, Xiaoyi

    2012-10-20

    An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach-Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber. PMID:23089794

  12. Theoretical study of mode evolution in active long tapered multimode fiber.

    PubMed

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2016-08-22

    A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers. PMID:27557225

  13. Low-loss deposition of solgel-derived silica films on tapered fibers.

    PubMed

    Kakarantzas, G; Leon-Saval, S G; Birks, T A; Russell, P St J

    2004-04-01

    Films of porous silica are deposited on the uniform waists of tapered fibers in minutes by a modified solgel dip coating method, inducing less than 0.2 dB of loss. The coated tapers are an ideal platform for realizing all-fiber devices that exploit evanescent-field interactions with the deposited porous film. As an example we demonstrate structural long-period gratings in which a periodic index variation in the film arises from the porosity variation produced by spatially varying exposure of the waist to a scanned CO2 laser beam. The long period grating is insensitive to temperature up to 800 degrees C. PMID:15072361

  14. Magnetic field sensor based on fiber taper coupler coated with magnetic fluid

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Hao; Song, Binbin; Liu, Bo; Lin, Yandong; Liu, Haifeng; Miao, Yinping; Liu, Yange

    2015-09-01

    In this paper, we have demonstrated a magnetic field sensor based on the fiber taper coupler coated with Magnetic fluid. The proposed sensor is fabricated by immersing a fiber taper coupler into the Magnetic fluid and then sealing it with the paraffin. The sensor exhibits high response as a function of the magnetic field with sensitivities of 0.154 nm/Oe with measurement range from 50 Oe to 200 Oe and -0.06301 dB/ Oe from 75 Oe to 200 Oe. Owing to the advantages of high sensitivity, small footprint, and ease of fabrication, the proposed sensor would find potential applications in magnetic field sensing field.

  15. Nonlinear Optics with Tapered Fibers and Magneto-Optically Trapped Rubidium

    NASA Astrophysics Data System (ADS)

    Little, Bethany; Mullarkey, Chris; Howell, John; Vamivakas, Nick; Lin, Qiang

    2016-05-01

    Tapered optical fibers of sub-wavelength diameter present a promising means of integrating the light-atom interaction into larger scale devices. We present work on a tapered fiber system loaded by a magneto optical trap of Rubidium atoms, in which a combination of red and blue detuned beams create a one-dimensional lattice trap along the fiber. The same fiber is used for interacting with the atoms in the trap via the evanescent fields of light propagating along the fiber. Light storage has been demonstrated in a similar system with Cesium, and we believe that much nonlinear optics remains to be explored in this regime. We also plan to see how these nonlinear effects can be enhanced with the addition of a micro-resonator such as the ones in.

  16. Evaluation of the tapered PMMA fiber sensor response due to the ionic interaction within electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Batumalay, M.; Rahman, H. A.; Kam, W.; Ong, Y. S.; Ahmad, F.; Zakaria, R.; Harun, S. W.; Ahmad, H.

    2014-01-01

    A tapered plastic multimode fiber (PMMA) optical sensor is proposed and demonstrated for continuous monitoring of solutions based on different concentration of sodium chloride and glucose in deionized water The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 mm and 10 mm, respectively, and was used to investigate the effect of straight, U-shape, and knot shape against concentration for both sodium chloride and glucose. The results show that there is a strong dependence of the electrolytic and non-electrolytic nature of the chemical solutions on the sensor output. It is found that the sensitivity of the sodium chloride concentration sensor with the straight tapered fiber probe was 0.0023 mV/%, which was better than the other probe arrangements of U-shape and knot. Meanwhile, the glucose sensor performs with the highest sensitivity of 0.0026 mV/wt % with the knot-shaped tapered fiber probe. In addition, a tapered PMMA probe which was coated by silver film was fabricated and demonstrated using calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observed increment in the transmission of the sensor that is immersed in solutions of higher concentration. As the concentration varies from 0 ppm to 6 ppm, the output voltage of the sensor increases linearly from 3.61 mV to 4.28 mV with a sensitivity of 0.1154 mV/ppm and a linearity of more than 99.47%. The silver film coating increases the sensitivity of the proposed sensor due to the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber.

  17. All-fiber-integrated single frequency tapered fiber amplifier with near diffraction limited output

    NASA Astrophysics Data System (ADS)

    Zhou, Zichao; Zhang, Hanwei; Wang, Xiaolin; Pan, Zhiyong; Su, Rongtao; Yang, Baolai; Zhou, Pu; Xu, Xiaojun

    2016-06-01

    We present an all-fiber single frequency high-power amplifier using tapered ytterbium-doped fiber (T-YDF) based on a master oscillator power amplification (MOPA) scheme. Different from previous laser amplifiers, the monolithic system is all-fiber-integrated, employing a large mode area (LMA) T-YDF and co-pump scheme. The LMA T-YDF is 7 m long and its core/inner cladding diameters are 20.4/237.1 μm and 46.9/579.9 μm in the input port and output port, respectively. In experiment, the laser amplifier is shown to generate up to 53 W of single frequency laser with slope efficiency of 57.7%, which indicates more than a two times increase of the stimulated Brillouin scattering (SBS) threshold than common LMA fibers with core/inner cladding diameters of 20/400 μm. At the highest output power, the M 2 factor is measured to be 1.25 and 1.20 in the X and Y directions. Results show that this T-YDF can be scaled up to even higher power when other SBS suppression methods are employed simultaneously.

  18. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  19. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    NASA Astrophysics Data System (ADS)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  20. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  1. Trapping and Propelling Microparticles at Long Range by Using an Entirely Stripped and Slightly Tapered No-Core Optical Fiber

    PubMed Central

    Sheu, Fang-Wen; Huang, Yen-Si

    2013-01-01

    A stripped no-core optical fiber with a 125 μm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-μm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-μm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber. PMID:23449118

  2. Tunable and switchable dual-wavelength erbium-doped fiber laser based on in-line tapered fiber filters

    NASA Astrophysics Data System (ADS)

    Tong, Zheng-rong; Yang, He; Cao, Ye

    2016-07-01

    A tunable and switchable dual-wavelength erbium-doped fiber laser (EDFL) based on all-fiber single-mode tapered fiber structure has been demonstrated. By adjusting the variable optical attenuator (VOA), the laser can be switched between the single-wavelength mode and the dual-wavelength mode. When the temperature applied on the tapered fiber structure varies, the pass-band varies and the wavelength of the output laser shifts correspondingly. When the temperature changes from 30 °C to 180 °C, the central wavelength of the EDFL generated by branch A shifts from 1 550.7 nm to 1 560.3 nm, while that of branch B shifts from 1 530.8 nm to 1 540.4 nm, indicating the wavelength interval is tunable. These advantages enable this laser to be a potential candidate for high-capacity wavelength division multiplexing systems and mechanical sensors.

  3. Nanocoating effects on tapered long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Pilla, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Korwin-Pawlowski, M. L.; Bock, W. J.

    2007-07-01

    In this work, the experimental analysis of the response of nanocoated Tapered Long Period Gratings (TLPGs) to Surrounding Refractive Index (SRI) changes is presented. The modal transition is demonstrated to take place in this kind of devices and to be an effective method to improve their SRI sensitivity. The dip-coating method was carried out by an automated system and showed to be a reliable technique for the deposition of conformal coatings. A comparison with traditional UV-written LPGs revealed that a thicker overlay is necessary for the TLPG to tune the transition region in the same SRI range.

  4. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    NASA Astrophysics Data System (ADS)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  5. Tapered TeX glass optical fibers for remote IR spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Le Foulgoc, Karine; Le Neindre, Lydia; Zhang, Xhang H.; Lucas, Jacques

    1996-12-01

    Infrared TeX fibers operating in a wide wavelength region have various potential uses in the short distance area such as laser power delivery, remote temperature monitoring and chemical analysis. TeX glass fibers with a minimum attenuation of 0.5 dB/m in the 7 - 10 micrometer range have been obtained. A plastic coating protects these fibers from external environment and improves their mechanical properties. Remote spectroscopy using mono-index fiber is one of the most promising applications. This new technology allows the identification and in situ analysis of many substances such as oils and fertilizers, which have their fingerprint in the 2 - 13 micrometer domain. The detection efficiency using evanescent wave absorption has been studied as a function of the fiber's diameter. It is found that the sensitivity increases very rapidly when the fibers' diameter decreases. The possibility of detecting very low concentrations has been tested by using TeX tapered fibers.

  6. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  7. Theoretical study of power amplification in tapered fiber with multi-seed parallel injection

    NASA Astrophysics Data System (ADS)

    Xiao, Qi-Rong; Ren, Hai-Cui; Li, Dan; Gong, Ma-Li; Yan, Ping

    2013-11-01

    We proposed the concept of parallel injection power amplification. A tapered fiber amplifier with multi-seed sources by the way of parallel injection was studied. The lower-order modes are excited and more than 90% of the input signal power remains in the fiber core if optimal injection and taper design are set. The power in the doped-core is amplified with high optical-optical efficiency. When light is propagating along the fiber, the higher-order modes are filtered which results in the high output beam quality. Incoherent combination of multi-seed lights launched through the wide end gives rise to the output power of several kW.

  8. Double-clad fiber with a tapered end for confocal endomicroscopy

    PubMed Central

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-01-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259

  9. Performance evaluation of four-wave mixing in a graphene-covered tapered fiber

    NASA Astrophysics Data System (ADS)

    Jin, Qiang; Lu, Jiamei; Li, Xibin; Yan, Qiang; Gao, Qianyu; Gao, Shiming

    2016-07-01

    Four-wave mixing in a monolayer graphene-covered tapered fiber is theoretically analyzed by taking into account the influence of the graphene layer on the light-field distribution. A figure-of-merit (FOM) coefficient, considering both the high nonlinearity and the heavy absorption, is redefined to evaluate nonlinear performance. The fiber diameter and length are optimized to acquire a higher FOM. Using such a graphene-covered tapered fiber with an optimal diameter of 0.736 μm, a maximum conversion efficiency of ‑38.07 dB is numerically obtained for the 1.55 μm pump when the graphene length is 34.4 μm and the peak pump power is 10 W. Moreover, a 3 dB bandwidth as broad as 430 nm can be realized in the 1.55 μm telecommunication band.

  10. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz

    2016-05-01

    A method of spectral width tailoring of tapered fiber Bragg gratings is theoretically analyzed and experimentally verified. This concept is based on inscription grating structures in which synthesis of chirps comes from both taper profile and a linearly chirped phase mask used for grating inscription. It is shown that under UV exposure and depending on the orientation of the optical fiber taper relative to the variable-pitch phase mask, tapered and linearly chirped fiber Bragg gratings (TCFBG) with resultant co-directional or counter-directional chirps are achieved. Thus, both effects, those of reduction and enhancement of the grating chirp, as well as their influence on the grating spectral response, are presented. In particular, using the above approach TCFBG with significantly narrowed spectral width are shown. Moreover, fused tapered chirped FBG with relatively large waist diameter are shown having broad spectrum, something that prior to now was not attainable using previously developed techniques.

  11. LP01 to LP0m mode converters using all-fiber two-stage tapers

    NASA Astrophysics Data System (ADS)

    Mellah, Hakim; Zhang, Xiupu; Shen, Dongya

    2015-11-01

    A mode converter between LP01 and LP0m modes is proposed using two stages of tapers. The first stage is formed by an adiabatically tapering a circular fiber to excite the desirable LP0m mode. The second stage is formed by inserting an inner core (tapered from both sides) with a refractive index smaller than the original core. This second stage is used to obtain low insertion loss and high extinction ratio of the desired LP0m mode. Three converters between LP01 and LP0m, m=2, 3, and 4, are designed for C-band, and simulation results show that less than 0.24, 0.54 and 0.7 dB insertion loss and higher than 15, 16, and 17.5 dB extinction ratio over the entire band were obtained for the three converters, respectively.

  12. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples. PMID:26186260

  13. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    PubMed Central

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei

    2011-01-01

    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair. PMID:22163821

  14. Tunable modulational instability sidebands via parametric resonance in periodically tapered optical fibers.

    PubMed

    Armaroli, Andrea; Biancalana, Fabio

    2012-10-22

    We analyze the modulation instability induced by periodic variations of group velocity dispersion and nonlinearity in optical fibers, which may be interpreted as an analogue of the well-known parametric resonance in mechanics. We derive accurate analytical estimates of resonant detuning, maximum gain and instability margins, significantly improving on previous literature on the subject. We also design a periodically tapered photonic crystal fiber, in order to achieve narrow instability sidebands at a detuning of 35 THz, above the Raman maximum gain peak of fused silica. The wide tunability of the resonant peaks by variations of the tapering period and depth will allow to implement sources of correlated photon pairs which are far-detuned from the input pump wavelength, with important applications in quantum optics. PMID:23187276

  15. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper.

    PubMed

    Cui, Wei; Si, Jinhai; Chen, Tao; Hou, Xun

    2015-05-01

    We propose and experimentally demonstrate a compact bending sensor. The head of the sensor is only 0.8 mm in length, and consists of an abrupt biconical fiber taper formed using a conventional fusion splicer, in which a fiber Bragg grating (FBG) is inscribed using a femtosecond laser. The biconical taper incorporating the FBG can couple light from the cladding to the backward-propagating core mode, which realizes an interferometer in reflection-mode. Bending of the structure can be detected from the contrast change of interference fringes. A configuration to measure curvature is investigated to demonstrate the sensing characteristics. The temperature cross-sensitivity of the sensor is studied, and the results demonstrate that it is insensitive to temperature. PMID:25969198

  16. Coherence Properties of Supercontinuum Generated in Dispersion-Tailored Lead-Silicate Microstructured Fiber Taper

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Li, Wenbo; Ma, Shaozhen; Dutta, Niloy K.

    2013-05-01

    This article details the numerically studied coherence properties of the supercontinuum generated in a lead-silicate microstructured fiber taper, with an increasing core radius along the propagation distance that tailors the dispersion property. Simulations are conducted by adding quantum noise into the input pulse at 1.55 μm, and the complex degree of first-order coherence function and the overall spectral coherence degree are both calculated. Although the spectral broadening is comparable, the coherence degree is shown to vary with different pumping conditions. It decreases with higher peak power and longer duration due to the significant competition between the soliton-fission process and the noise-seeded modulation instability. By controlling the input pulse parameters, it is possible to generate a perfectly coherent supercontinuum with a flat broadened spectrum extending from ~1 μm to ~5μm in this fiber taper.

  17. Supercontinuum generation in dispersion-tailored lead-silicate fiber taper

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Li, Wenbo; Ma, Shaozhen; Dutta, Niloy K.

    2013-01-01

    In this paper we numerically study the coherence properties of the supercontinuum generated in a lead-silicate microstructured fiber taper, with an increasing core radius along the propagation distance which tailors the dispersion property. Simulations are conducted by adding quantum noise into the input pulse at 1.55 μm, and the complex degree of first-order coherence function and the overall spectral coherence degree are both calculated. Although the spectral broadening is comparable, the coherence degree is shown to vary with different pumping conditions. It decreases with higher peak power and longer duration due to the significant competition between the soliton-fission process and the noise-seeded modulation instability. By controlling the input pulse parameters, it is possible to generate perfectly coherent supercontinuum with a flat broadened spectrum extending to ~5μm in this fiber taper.

  18. Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins

    NASA Astrophysics Data System (ADS)

    Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.

    1994-07-01

    An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.

  19. Analysis of an upside-down taper lens end from a single-mode step-index fiber.

    PubMed

    Mondal, S K; Gangopadhyay, S; Sarkar, S

    1998-02-20

    We introduce and analyze the upside-down taper lens end drawn from step-index fibers. Also, we model the refractive-index distribution and present the ABCD transformation matrix of this fiber end under paraxial approximation. The analysis can be useful for designing micro-optic image systems and laser diodes to single-mode fiber coupling optics. PMID:18268676

  20. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.

  1. Silver iodide phosphate glass microsphere resonator integrated on an optical fiber taper.

    PubMed

    Milenko, Karolina; Konidakis, Ioannis; Pissadakis, Stavros

    2016-05-15

    In this Letter, we demonstrate the fabrication and characterization of a robust and functional whispering gallery mode (WGM) resonating system based on a silver iodide phosphate glass microsphere melted on an optical fiber taper. The fabrication process is presented, together with spectral characterization of the device. The effect of the thermal annealing of the soft glass resonator on the whispering gallery modes' excitation and Q-factor is shown and discussed. PMID:27176958

  2. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy.

    PubMed

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source. PMID:26836298

  3. Mode-field adapter for tapered-fiber-bundle signal and pump combiners.

    PubMed

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael

    2015-02-01

    We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results. PMID:25967784

  4. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Oliveira, Ricardo; Osório, Jonas H.; Aristilde, Stenio; Bilro, Lúcia; Nogueira, Rogerio N.; Cordeiro, Cristiano M. B.

    2016-07-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 με, 1.36 °C and 5  ×  10‑4, respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications.

  5. Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing

    NASA Astrophysics Data System (ADS)

    Liang, Yanhong; Yan, Guofeng; He, Sailing

    2015-08-01

    In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.

  6. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing.

    PubMed

    Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A

    2014-09-22

    We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V. PMID:25321749

  7. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.

    PubMed

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-06-10

    In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design. PMID:27409005

  8. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip†

    PubMed Central

    Coskun, Ahmet F.; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-01-01

    We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm2 with a spatial resolution of <4 μm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 μm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications. PMID:21283900

  9. Package of a dual-tapered-fiber coupled microsphere resonator with high Q factor

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Wang, Keyi; Jin, Xueying

    2015-09-01

    We package a high-quality (Q) factor optical whispering gallery mode (WGM) microsphere resonator side coupled to two tapered fibers without changing the initial coupling conditions, achieving a final Q as high as 2.7×106. The mechanical stability of the coupling system is improved by placing the tapers in contact with the microsphere. The packaged device can be easily sealed in a targeted hermetic box according to different practical applications, which provides long term maintenance of the coupling efficiency and high-Q factor. Moreover, we test the temperature dependence of the packaged device and demonstrate its capability for thermal tuning of the drop wavelength. This device has a variety of advantages, such as portability, low-cost, and ease of fabrication.

  10. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    NASA Technical Reports Server (NTRS)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  11. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Monzón-Hernández, David

    2005-06-01

    We report a miniature hydrogen sensor that consists of a subwavelength diameter tapered optical fiber coated with an ultra thin palladium film. The optical properties of the palladium layer changes when the device is exposed to hydrogen. Consequently, the absorption of the evanescent waves also changes. The sensor was tested in a simple light transmission measurement setup that consisted of a 1550 nm laser diode and a photodetector. Our sensor is much smaller and faster than other optical hydrogen sensors reported so far. The sensor proposed here is suitable for detecting low concentrations of hydrogen at normal conditions.

  12. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers.

    PubMed

    Dudley, John M; Coen, Stéphane

    2002-07-01

    Numerical simulations have been used in studies of the temporal and spectral features of supercontinuum generation in photonic crystal and tapered optical fibers. In particular, an ensemble average over multiple simulations performed with random quantum noise on the input pulse allows the coherence of the supercontinuum to be quantified in terms of the dependence of the degree of first-order coherence on the wavelength. The coherence is shown to depend strongly on the input pulse's duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed. PMID:18026400

  13. Theoretical study of mode evolution properties in a 3×1 adiabatic tapered single-mode fiber combiner

    NASA Astrophysics Data System (ADS)

    Zhou, Xuanfeng; Chen, Zilun; Zhou, Hang; Hou, Jing

    2015-02-01

    We study the mode evolution properties in a 3 x 1 adiabatic tapered single-mode fiber combiner (ATSMFC) in theory. The fabrication of the combiner for single mode fibers based on adiabatic tapered fused bundle (TFB) technique with the assistant of low index glass capillary is introduced. The whole taper region can be seen as three phase: single-mode fibers, multi-core fiber and multi-mode fiber. Supermodes of three-core fiber with scalar mode results are derived based on coupling mode theory. The analysis is verified with numerical examples by fully vectorial finite element mode solver (Cosmol Multiphysics). Simulation results show that the three input core modes in single-mode fibers gradually evolve into three supermodes in three-core fiber and then evolve into three low-order modes in the multi-core fiber. Effective indices for different modes are calculated which can depict the evolution process vividly. The results may be useful for practical high power fiber laser systems.

  14. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  15. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity

    PubMed Central

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L.; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-01-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello, Neuron 82, 1245 (2014)24881834]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber. PMID:26504650

  16. Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Taguchi, Y.; Saiki, T.; Nagasaka, Y.

    2012-12-01

    A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.

  17. A Sensitivity-Enhanced Refractive Index Sensor Using a Single-Mode Thin-Core Fiber Incorporating an Abrupt Taper

    PubMed Central

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity. PMID:22666052

  18. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    SciTech Connect

    Liebermeister, Lars Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki; Schell, Andreas W.; Benson, Oliver; Meinhardt, Thomas; Krueger, Anke; Stiebeiner, Ariane; Rauschenbeutel, Arno; Weinfurter, Harald; Weber, Markus

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  19. Coupling of DBR tapered diode laser radiation into a single-mode-fiber at high powers

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, D.; Asbahr, P.; Pulka, M.; Eppich, B.; Paschke, K.

    2014-03-01

    In this work, we investigate experimentally coupling of diode laser radiation into a single-mode-fiber (SMF) at high optical power. In particular, nearly diffraction-limited, single-frequency continuous wave (CW) radiation around 1064 nm generated by a distributed Bragg reflector (DBR) tapered diode laser is coupled in a bench-top experiment into an SMF with a core diameter of approx. 6 μm. Misalignment tolerances for efficient SMF coupling are determined through two-dimensional coupling efficiency scans, conducted for an attenuated diode laser beam. The coupling efficiency and the laser beam properties behind the SMF are investigated in dependence on the optical power in front of the SMF. A maximum power ex fiber of 3.5 W at a coupling efficiency of 65 % is reached.

  20. Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating.

    PubMed

    Lv, Lingya; Wang, Sumei; Jiang, Lan; Zhang, Fei; Cao, Zhitao; Wang, Peng; Jiang, Yi; Lu, Yongfeng

    2015-12-20

    A compact optical fiber sensor for simultaneous measurement of strain and temperature is designed and experimentally investigated. The proposed sensor consists of a two-peanut-taper Mach-Zehnder interferometer (MZI) and in-line embedded fiber Bragg grating (FBG). The sensor at a length of 35 mm presents strain sensitivities 1.07  pm/με and 0.891  pm/με, the temperature sensitivities are 55.35  pm/°C and 10.85  pm/°C, for MZI and FBG, respectively. Through tapering the center of the sensor by a fusion splicer, the strain sensitivity of the MZI is improved to 1.93  pm/με. The resolutions for strain and temperature measurement are ±3.104  με and ±0.194°C with the wavelength resolution of 5 pm. The experimental results show that the sensor is able to simultaneously measure strain and temperature by sensitivity matrix with advantages such as simple structure, compact size, ease of fabrication, low cost, etc. PMID:26837035

  1. Lensless fluorescent on-chip microscopy using a fiber-optic taper.

    PubMed

    Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-01-01

    We demonstrate a lensfree on-chip fluorescent microscopy platform that can image fluorescently labeled cells over ~60 mm(2) field-of-view with <4 urn spatial resolution. In this lensfree imaging system, micro-objects of interest are directly located on a tapered fiber-optic faceplate which has > 5-fold higher density of fiber-optic waveguides in its top facet compared to the bottom facet. For excitation, an incoherent light source (e.g., a simple light emitting diode--LED) is used to pump fluorescent objects through a glass hemi-sphere interface. Upon interacting with the entire sample volume, the excitation light is rejected by total internal reflection process occurring at the bottom of the sample substrate. Fluorescent emission from the objects is then collected by the smaller facet of the tapered faceplate and is delivered to a detector-array with an image magnification of ~2.4X. A compressive sampling based decoding algorithm is used for sparse signal recovery, which further increases the space-bandwidth-product of our lensfree on-chip fluorescent imager. We validated the performance of this lensfree imaging platform using fluorescent micro-particles as well as labeled water-borne parasites (e.g., Giardia Muris cysts). Such a compact and wide-field fluorescent microscopy platform could be valuable for cytometry and rare cell imaging applications as well as for micro array research. PMID:22255702

  2. Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample.

    PubMed

    Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel

    2015-08-24

    We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively. PMID:26368188

  3. All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.

    PubMed

    Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun

    2016-04-01

    An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications. PMID:27137035

  4. Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper.

    PubMed

    Wang, Yazhou; Li, Jianfeng; Zhai, Bo; Hu, Yunxiao; Mo, Kundong; Lu, Rongguo; Liu, Yong

    2016-07-11

    We demonstrate a self-starting dual-wavelength mode-locked fiber laser at a 2 μm spectral region by using a fiber taper in a Tm3+-doped ring fiber cavity. The fiber taper fabricated with a flame brushing technique was used as a periodic filter with a modulation depth of ~3.61 dB and a modulation period of ~7.3 nm, respectively. Diverse dual-wavelength regimes including continuous wave (CW)/multi-soliton, soliton/multi-soliton, and soliton/soliton regimes were obtained by adjusting pump power. Wavelength tuning for the dual-wavelength was also precisely controllable through stretching the fiber taper carefully. The tuning range was ~7 nm which was limited by the modulation period of the taper. By inserting a 10.0 m dispersion compensation fiber (DCF) into the fiber cavity, a stable dual-wavelength dissipative-soliton operation was obtained at 2 μm spectral region for the first time. PMID:27410806

  5. Biconically Tapered Fiber Optic Probes for Rapid Label-Free Immunoassays ǂ

    PubMed Central

    Miller, John; Castaneda, Angelica; Lee, Kun Ho; Sanchez, Martin; Ortiz, Adrian; Almaz, Ekrem; Turkoglu Almaz, Zuleyha; Murinda, Shelton; Lin, Wei-Jen; Salik, Ertan

    2015-01-01

    We report use of U-shaped biconically tapered optical fibers (BTOF) as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G) and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G)-antigen (rabbit anti-mouse IgG) reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method. PMID:25836359

  6. Size stabilization of surface-supported liquid aerosols using tapered optical fiber coupling.

    PubMed

    Karadag, Yasin; Jonáš, Alexandr; Kucukkara, Ibrahim; Kiraz, Alper

    2013-03-01

    We demonstrate long-term size stabilization of surface-supported liquid aerosols of salt-water. Single tapered optical fibers were used to couple the light from independent heating and probe lasers into individual microdroplets that were kept on a superhydrophobic surface in a high-humidity chamber. Size stabilization of microdroplets resulted from competition between resonant absorption of the infrared heating laser by a microdroplet whispering gallery mode and water condensation in the sample chamber. Microdroplet size was continuously monitored using the tunable red probe laser. Thanks to the narrow linewidth of the heating laser, stabilization of the 110 μm radius of a microdroplet with a precision down to 0.54 nm was achieved for a period of 410 s. PMID:23455301

  7. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring

    PubMed Central

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-01-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344

  8. SPR based cone tapered fiber optic chemical sensor for the detection of low water in ethanol

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Bhardwaj, V.; Gangwar, R. K.; Singh, V. K.

    2016-05-01

    In this paper a cone tapered surface plasmon resonance (SPR) based chemical fiber sensor is fabricated and demonstrated for the detection of low water content in ethanol. Here the 11nm thickness of Aluminum (Al) is used to coat tip of probe to generate Plasmon wave. The output power has been found to increase linearly with water content in the range 1-10% due to the increase in refractive index (RI) of ethanolabove which, as the percentage of water increases in step of 20% it shows abrupt decrease in RI hence decrease in the output power. The compact size of sensor and its low cost fabrication makes it useful for many applications in the field of chemical and biochemical sensing.

  9. Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity.

    PubMed

    Chen, H F; Wang, D N; Wang, Y

    2015-03-21

    An ultracompact optical fiber mode interferometer capable of performing simultaneous strain and temperature sensing is demonstrated. The device is fabricated by using femtosecond laser micromachining together with fusion splicing techniques and followed by a tapering process. The transmission spectrum of the device exhibits a number of resonance wavelength dips, corresponding to different orders of cladding mode, which allow simultaneous strain and temperature sensing by monitoring the variation of selected two wavelength dips. The sensitivity achieved is -16.12 pm με(-1) and 85.95 pm °C(-1) for strain and temperature, respectively. The device has a spatially precise sensing capability owing to the small size of the inner air-cavity. PMID:25631366

  10. Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.

    2011-05-01

    A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.

  11. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.

    PubMed

    Zhong, Nianbing; Zhao, Mingfu; Li, Yishan

    2016-02-01

    To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm. PMID:26977344

  12. Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber.

    PubMed

    Pal, Parama; Knox, Wayne H; Hartl, Ingmar; Fermann, Martin E

    2007-09-17

    We demonstrate a fully stabilized frequency comb in the 1mum spectral region based on an Yb-fiber oscillator and a cladding pumped chirped pulse Yb-fiber amplifier whose output is spectrally broadened in a dispersion micromanaged holey fiber. The dispersion micromanaged fiber is used to generate efficient, low noise spectral components at 523nm which are heterodyned with the second harmonic of the amplifier output for standard f-to-2f self-referenced carrier envelope offset frequency detection. For comb stabilization we phase-lock this offset frequency and the oscillator repetition frequency simultaneously to an RF reference by feedback controlling the oscillator pump diode current and the driving voltage of an intracavity piezo-electric fiber stretcher respectively. PMID:19547582

  13. Exact optical self-similar solutions in a tapered graded-index nonlinear-fiber amplifier with an external source

    NASA Astrophysics Data System (ADS)

    He, Jun-Rong; Yi, Lin

    2014-06-01

    We study the propagations of optical self-similar solutions in a tapered graded-index nonlinear-fiber amplifier with an external source through asymmetric twin-core fiber amplifiers. Various types of exact self-similar solutions, including the W-shaped and U-shaped solutions, trigonometric function solutions, and periodic wave solutions are found. The results show that these different types of self-similar optical structures can be generated and effectively controlled by modulating the amplitude of the source. The influences of nonlinear tunneling effects on the propagation of optical pulses are investigated as well. The obtained results may have potential applications in a tapered graded-index nonlinear-fiber amplifier with an external source.

  14. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier

    NASA Astrophysics Data System (ADS)

    Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.

    2013-06-01

    We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.

  15. Ethanol extraction of phytosterols from corn fiber

    DOEpatents

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  16. Simultaneous measurement of temperature and strain using a long-period fiber grating with a micro-taper

    NASA Astrophysics Data System (ADS)

    Geng, Tao; Li, Jian; Yang, Wenlei; An, Maowei; Zeng, Hongyi; Yang, Fan; Cui, Zhengji; Yuan, Libo

    2016-08-01

    An all-fiber Mach-Zehnder interferometer (MZI) consisting of a long-period fiber grating with a micro-taper is proposed for simultaneous measurement of temperature and strain. The experimental results demonstrate that the temperature and strain sensitivities of the proposed MZI are 83 pm/°C and -2.6 pm/μɛ, respectively. The strain sensitivity is 20 times as high as that of a long-period fiber written by CO2 laser pulses combined with a fiber bitaper. In addition, the interferometer requires only a common single-mode fiber, and it is easy to fabricate and is inexpensive for temperature and strain sensing applications.

  17. Simultaneous measurement of temperature and strain using a long-period fiber grating with a micro-taper

    NASA Astrophysics Data System (ADS)

    Geng, Tao; Li, Jian; Yang, Wenlei; An, Maowei; Zeng, Hongyi; Yang, Fan; Cui, Zhengji; Yuan, Libo

    2016-06-01

    An all-fiber Mach-Zehnder interferometer (MZI) consisting of a long-period fiber grating with a micro-taper is proposed for simultaneous measurement of temperature and strain. The experimental results demonstrate that the temperature and strain sensitivities of the proposed MZI are 83 pm/°C and -2.6 pm/μɛ, respectively. The strain sensitivity is 20 times as high as that of a long-period fiber written by CO2 laser pulses combined with a fiber bitaper. In addition, the interferometer requires only a common single-mode fiber, and it is easy to fabricate and is inexpensive for temperature and strain sensing applications.

  18. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-08-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  19. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-07-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  20. Coupling of a laser diode to single-mode fiber with an upside-down tapered lens end.

    PubMed

    Mondal, S K; Sarkar, S

    1999-10-20

    We present in detail a simple analysis of the coupling efficiency and possible transverse and angular misalignment losses of a laser diode to single-mode, step-index fiber excitation with an upside-down tapered lens (UDTL) end, drawn by molding the end of a step-index fiber. The analysis employs our recently formulated ABCD matrix for an UDTL and has the advantage of simplicity compared with complicated methods involving cumbersome numerical integrations. Both the analysis and the results should be useful in designing coupling optics that use such lenses in the context of probable misalignments. PMID:18324151

  1. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  2. Coupling of a high-power tapered diode laser beam into a single-mode-fiber within a compact module

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, D.; Sahm, A.; Carstens, C.; Urban, G.; Pulka, M.; Eppich, B.; Scholz, F.; Paschke, K.

    2015-03-01

    In this work, coupling of radiation generated by a distributed Bragg reflector (DBR) tapered diode laser around 1064 nm into a single-mode-fiber (SMF) within a butterfly module with a footprint < 10 cm2 is demonstrated. The module comprises temperature stabilizing components, a brightness maintaining micro optical assembly mounted with submicrometer precision and a standard FC/APC output connector. The aim of the introduced concept is to improve the beam quality and to eliminate the current dependent beam astigmatism, characteristic for tapered diode lasers and amplifiers, and, thus, provide an efficient, multi-Watt laser light source characterized by a narrow-band spectrum and a stigmatic, nearly Gaussian laser beam independent of the operating point. A maximum power ex SMF of 2.5 W at a coupling efficiency of 57 % is reached in the presented butterfly module.

  3. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator.

    PubMed

    Mescia, Luciano; Bia, Pietro; De Sario, Marco; Di Tommaso, Annalisa; Prudenzano, Francesco

    2012-03-26

    A dedicated 3D numerical model based on coupled mode theory and solving the rate equations has been developed to analyse, design and optimize an optical amplifier obtained by using a tapered fiber and a Er³⁺-doped chalcogenide microsphere. The simulation model takes into account the main transitions among the erbium energy levels, the amplified spontaneous emission and the most important secondary transitions pertaining to the ion-ion interactions. The taper angle of the optical fiber and the fiber-microsphere gap have been designed to efficiently inject into the microsphere both the pump and the signal beams and to improve their spatial overlapping with the rare earth doped region. In order to reduce the computational time, a detailed investigation of the amplifier performance has been carried out by changing the number of sectors in which the doped area is partitioned. The simulation results highlight that this scheme could be useful to develop high efficiency and compact mid-infrared amplifiers. PMID:22453441

  4. Suppression and splitting of modulational instability sidebands in periodically tapered optical fibers because of fourth-order dispersion.

    PubMed

    Armaroli, Andrea; Biancalana, Fabio

    2014-08-15

    We study the modulational instability induced by periodic variations of group-velocity dispersion in the proximity of the zero dispersion point. Multiple instability peaks originating from parametric resonance coexist with the conventional modulation instability because of fourth-order dispersion, which in turn is suppressed by the oscillations of dispersion. Moreover, isolated unstable regions appear in the space of parameters because of imperfect phase matching. This confirms the dramatic effect of periodic tapering in the control and shaping of MI sidebands in optical fibers. PMID:25121879

  5. The influence of temperature to a refractive index sensor based on a macro-bending tapered plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Teng, Chuan-xin; Yu, Fang-da; Jing, Ning; Zheng, Jie

    2016-09-01

    The temperature influence to a refractive index (RI) sensor based on a macro-bending tapered plastic optical fiber (POF) was investigated experimentally. The total temperature dependence loss (TDLtotal) and total temperature dependence RI deviation (TDRtotal) were measured at different temperature (10-60 °C) over an RI range of 1.33-1.41. The temperature dependence RI deviation of the sensor itself was obtained by subtracting the temperature dependence RI of measured liquid from TDRtotal. Therefore, the influence of temperature variation to the sensor was characterized and corrected.

  6. Polypyrrole hollow fiber for solid phase extraction.

    PubMed

    Tian, Tian; Deng, Jianjun; Xie, Zhuoying; Zhao, Yuanjin; Feng, Zhangqi; Kang, Xuejun; Gu, Zhongze

    2012-04-21

    We have developed a solid-phase extraction method based on conductive polypyrrole (PPy) hollow fibers which were fabricated by electrospinning and in situ polymerization. The electrospun poly (e-caprolactone) (PCL) fibers were employed as templates for the in situ surface polymerization of PPy under mechanical stirring or ultrasonication to obtain burr-shaped or smooth fiber shells, respectively. Hollow PPy fibers, achieved by removing the PCL templates, were the ideal sorbents for solid phase extraction of polar compounds due to their inherent multi-functionalities. By using the hollow PPy fibers, two important neuroendocrine markers of behavioural disorders, 5-hydroxyindole-3-acetic acid and homovanillic acid, were successfully extracted. Under the optimized conditions, the absolute recoveries of the above two neuroendocrine markers were 90.7% and 92.4%, respectively, in human plasma. Due to its simplicity, selectivity and sensitivity, the method may be applied to quantitatively analyse the concentrations of polar species in complex matrix samples. PMID:22398754

  7. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber

    SciTech Connect

    Gu, Jian; Yang, Yanfu Zhang, Jianyu; Wang, Xiaorui; Yuan, Yijun; Yao, Yong; Liu, Meng

    2015-09-14

    We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that with the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.

  8. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle.

    PubMed

    Huang, Yunyun; Tian, Zhuang; Sun, Li-Peng; Sun, Dandan; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2015-10-19

    A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower. PMID:26480357

  9. Method for improving the spectral flatness of the supercontinuum at 1.55 μm in tapered microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Vukovic, N.; Broderick, N. G. R.

    2010-10-01

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 μm by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  10. Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers.

    PubMed

    Hartung, Alexander; Heidt, Alexander M; Bartelt, Hartmut

    2011-06-20

    Recently, coherent pulse-preserving and octave-spanning supercontinuum (SC) generation was theoretically predicted and experimentally shown in photonic crystal fibers (PCFs) with all-normal dispersion behavior. Since this behavior is due only to the all-normal dispersion profile and not to the photonic crystal cladding, other all-normal optical waveguides exhibit these properties as well. We extend this concept to suspended-core fibers and optical nanofibers and show experimental demonstrations of this way of SC generation. We show that optical suspended-core fibers and optical nanofibers of appropriate dimensions exhibit all-normal dispersion and address octave-spanning single pulse SC generation in the visible (VIS) and ultra violet (UV) wavelength range. In addition, we discuss the feasibility of fiber taper transitions for suitable input coupling schemes in sub-micron diameter fibers and show the importance of short adiabatic transition profiles for utilizing high-energy pulses to obtain maximum spectral broadening. They are essential for coherent broadband UV SC generation in optical nanofibers. PMID:21716464

  11. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  12. Experimental observation of mid-infrared higher-order soliton fission in a tapered tellurite microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Xue, Xiaojie; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-06-01

    The evolution of mid-infrared (MIR) higher-order soliton fission in a tapered tellurite microstructured optical fiber (TMOF) is experimentally investigated. From ∼30 to 80 mW, the redshift of the first fundamental soliton is obvious. From ∼80 to 120 mW, two fundamental solitons are obtained by the fission of higher-order solitons. The redshift of the first fundamental soliton almost stops because the increased pump power is preferentially distributed to the second fundamental soliton. From ∼120 to 180 mW, an obvious redshift of the first fundamental soliton is observed again, and a third fundamental soliton is obtained at ∼180 mW. The evolution of each soliton is determined by the power distribution, which is, to the best of our knowledge, reported for the first time.

  13. Examination of tapered plastic multimode fiber-based sensor performance with silver coating for different concentrations of calcium hypochlorite by soft computing methodologies--a comparative study.

    PubMed

    Zakaria, Rozalina; Sheng, Ong Yong; Wern, Kam; Shamshirband, Shahaboddin; Wahab, Ainuddin Wahid Abdul; Petković, Dalibor; Saboohi, Hadi

    2014-05-01

    A soft methodology study has been applied on tapered plastic multimode sensors. This study basically used tapered plastic multimode fiber [polymethyl methacrylate (PMMA)] optics as a sensor. The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 and 10 mm, respectively. In addition, a tapered PMMA probe, which was coated by silver film, was fabricated and demonstrated using a calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observation increment in the transmission of the sensor that is immersed in solutions at high concentrations. As the concentration was varied from 0 to 6 ppm, the output voltage of the sensor increased linearly. The silver film coating increased the sensitivity of the proposed sensor because of the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber. In this study, the polynomial and radial basis function (RBF) were applied as the kernel function of the support vector regression (SVR) to estimate and predict the output voltage response of the sensors with and without silver film according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf were used in an attempt to minimize the generalization error bound so as to achieve generalized performance. An adaptive neuro-fuzzy interference system (ANFIS) approach was also investigated for comparison. The experimental results showed that improvements in the predictive accuracy and capacity for generalization can be achieved by the SVR_poly approach in comparison to the SVR_rbf methodology. The same testing errors were found for the SVR_poly approach and the ANFIS approach. PMID:24979634

  14. Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Zhang, Kailiang; Liu, Bo; Yao, Jianquan

    2015-08-15

    A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The tapered all-solid WAF is fabricated by using a fusion splicer, and the sensor is formed by immersing the tapered all-solid WAF into the MF. The transmission spectra have been measured and analyzed under different magnetic-field intensities. Experimental results show that the acquired magnetic-field sensitivity is 44.57 pm/Oe for a linear magnetic-field intensity range from 50 to 200 Oe. All-solid WAF has very similar thermal expansion coefficient for high- and low-refractive-index glasses, so mode profile is not affected by thermal drifts. Also, magnetically induced refractive-index changes into the ferrofluid are of the order of ∼5×10(-2), while the corresponding thermally induced refractive-index changes into the ferrofluid are expected to be lower. The temperature response has also been detected, and the temperature-induced wavelength shift perturbation is less than 0.3 nm from temperature of 26.9°C-44°C. The proposed magnetic-field sensor has such advantages as low temperature sensitivity, simple structure, and ease of fabrication. It also indicates that the magnetic-field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field. PMID:26274690

  15. {open_quotes}Optical Guiding{close_quotes} limits on extraction efficiencies of single-pass, tapered wiggler amplifiers

    SciTech Connect

    Fawley, W.M.

    1995-08-01

    Single-pass, tapered wiggler amplifiers have an attractive feature of being able, in theory at least, of extracting a large portion of the electron beam energy into light. In circumstances where an optical FEL wiggler length is significantly longer than the Rayleigh length Z{sub R} corresponding to the electron beam radius, diffraction losses must be controlled via the phenomenon of optical guiding. Since the strength of the guiding depends upon the effective refractive index n exceeding one, and since (n-1) is inversely proportional to the optical electric field, there is a natural limiting mechanism to the on-axis field strength and thus the rate at which energy may be extracted from the electron beam. In particular, the extraction efficiency for a prebunched beam asymptotically grows linearly with z rather than quadratically. We present analytical and numerical simulation results concerning this behavior and discuss its applicability to various FEL designs including oscillator/amplifier-radiator configurations.

  16. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    NASA Astrophysics Data System (ADS)

    Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh

    2010-11-01

    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.

  17. Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes

    NASA Astrophysics Data System (ADS)

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-11-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

  18. Ultrathin niobium nanofilms on fiber optical tapers--a new route towards low-loss hybrid plasmonic modes.

    PubMed

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A

    2015-01-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices. PMID:26593209

  19. Ultrathin niobium nanofilms on fiber optical tapers – a new route towards low-loss hybrid plasmonic modes

    PubMed Central

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-01-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices. PMID:26593209

  20. Dual-Tapered 10-µm-Spot-Size Converter with Double Core for Coupling Polarization-Independent Silicon Rib Waveguides to Single-Mode Optical Fibers

    NASA Astrophysics Data System (ADS)

    Tokushima, Masatoshi; Kamei, Akio; Horikawa, Tsuyoshi

    2012-02-01

    A new spot-size converter (SSC) for coupling Si rib waveguides to 10-µm-mode-diameter single mode optical fibers was theoretically and experimentally evaluated. The core of the SSC consisted of a lateral and vertical Si inverse-taper having a rib-to-wire shape and a lateral silica normal-taper with a rib shape. The calculated coupling losses for an optimized structure were 0.65 and 0.66 dB for transverse-electric (TE) and transverse-magnetic (TM) polarizations, respectively. The losses of the fabricated SSCs were 2.7 dB (TE) and 3.0 dB (TM). The measured misalignment tolerance was +/-1.2 µm for an extra-loss increase of 0.25 dB.

  1. Numerical model of tapered fiber Bragg gratings for comprehensive analysis and optimization of their sensing and strain-induced tunable dispersion properties.

    PubMed

    Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz

    2015-06-10

    A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design. PMID:26192856

  2. Heat Extraction of Corn Fiber Hemicellulose

    NASA Astrophysics Data System (ADS)

    Benkő, Zsuzsa; Andersson, Alexandra; Szengyel, Zsolt; Gáspár, Melinda; Réczey, Kati; Stålbrand, Henrik

    Water-soluble hemicellulose was extracted from corn fiber with microwave-assisted heat treatment. The effects of treatment temperature and initial pH of the aqueous extraction media were investigated regarding hemicellulose recovery and molecular mass of the isolated polysaccharides. In treatments carried out at neutral pH (simple water extraction), it has been demonstrated that hemicellulose recovery could be increased by applying higher treatment temperatures. However, the molecular weight of isolated hemicellulose gets significantly lower. For example, 10% of the raw materials' xylan was extracted at 160°C and about 30% recovery was reached at 210°C. However, the molecular mass of the isolated polysaccharide at 210°C (5.82×104) was about half of that measured at 160°C (1.37×105). Reducing the pH with sulfuric acid resulted in shorter polymer chains (1.7×104) and lower hemicellulose yields (2.2%). Application of sodium hydroxide in the treatment showed that, compared with acid, considerably higher yields (11%) with longer polysaccharide chains (1.3×105) could be obtained.

  3. {open_quotes}Optical guiding{close_quotes} limits on extraction efficiencies of single-pass, tapered wiggler amplifiers

    SciTech Connect

    Fawley, W.M.

    1995-12-31

    Single-pass, tapered wiggler amplifiers have an attractive feature of being able, in theory at least, of extracting a large portion of the electron beam energy into light. In circumstances where an optical FEL`s wiggler length is significantly longer than the Rayleigh length Z{sub R} corresponding to the electron beam radius, diffraction losses must be controlled via the phenomenon of {open_quotes}optical guiding{close_quotes}. Since the strength of the guiding depends upon the effective refractive index {eta}{sub r} exceeding one, and since ({eta}{sub r}-1) is inversely proportional to the optical electric field, there is a natural {open_quotes}limiting{close_quotes} mechanism to the on-axis field strength and thus the rate at which energy may be extracted from the electron beam. In particular, the extraction efficiency for a prebunched beam asymptotically grows linearly with z rather than quadratically. We present analytical and numerical simulation results concerning this behavior and discuss its applicability to various FEL designs including oscillator/amplifier-radiator configurations.

  4. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier.

    PubMed

    Rogers, C E; Gould, P L

    2016-02-01

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized. PMID:26906832

  5. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    NASA Astrophysics Data System (ADS)

    Rogers, C. E.; Gould, P. L.

    2016-02-01

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  6. Spot-size converter with a SiO(2) spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling.

    PubMed

    Maegami, Yuriko; Takei, Ryohei; Omoda, Emiko; Amano, Takeru; Okano, Makoto; Mori, Masahiko; Kamei, Toshihiro; Sakakibara, Youichi

    2015-08-10

    We experimentally demonstrate low-loss and polarization-insensitive fiber-to-chip coupling spot-size converters (SSCs) comprised of a three dimensionally tapered Si wire waveguide, a SiON secondary waveguide, and a SiO(2) spacer inserted between them. Fabricated SSCs with the SiO(2) spacer exhibit fiber-to-chip coupling loss of 1.5 dB/facet for both the quasi-TE and TM modes and a small wavelength dependence in the C- and L-band regions. The SiON secondary waveguide is present only around the SSC region, which significantly suppresses the influence of the well-known N-H absorption of plasma-deposited SiON at around 1510 nm. PMID:26367977

  7. Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient.

    PubMed

    Blum, J Y; Machtou, P; Ruddle, C; Micallef, J P

    2003-09-01

    The purpose of this study was to apply the Endographe to analyze the vertical forces and torque developed during mechanical preparations in extracted teeth. The data collected in this study may be used to calculate the safety quotient (SQ) as proposed by J.T. McSpadden. The SQ formula is defined as the torque required to break a file at D3 divided by the mean working torque required to cut dentin. The Endographe is a unique force-analyzer device equipped to measure, record, and generate graphs of the vertical forces and torque exerted during root canal preparation. All preparations were performed by endodontists in roots with narrow, more restrictive canals, larger, more open canals, or in roots sectioned in two halves. All canals, including the sectioned canals, were prepared with ProTaper files in accordance with the manufacturer's guidelines for use. For narrow canals, the mean values of the generated vertical forces (g) and torque (g.cm) varied from 80 (+/- 20) g (SX) to 232 (+/- 60) g (F2) and from 80 (+/- 24) g x cm (F1) to 150 (+/- 45) g x cm (S2), respectively. For large canals, the mean values of the generated vertical forces (g) and torque (g x cm) varied from 80 (+/- 20) g (SX) to 340 (+/- 20) g (F1) and from 31 (+/- 9) g x cm (S2) to 96 (+/- 35) g x cm (SX), respectively. The SQ varied from 0.93 to 7.95 for narrow canals and from 1.58 to 14.50 for large canals. The SQ is intended to provide values that can be analyzed to predict whether a rotary file will have a tendency to break or will work safely during clinical use. However, if the formula is going to provide useful information, it must index the "rotation to failure torque" with the "mean working torque" at a specific location along the cutting blades of a file. Additionally, this mathematical formula does not account for factors such as the concentration of forces, the way the instruments are used, or the wear of the instruments. A precise protocol for canal preparation should emphasize using

  8. Diode-pumped, ultrafast, multi-octave supercontinuum source at repetition rates between 500 kHz and 20 MHz using Yb:glass lasers and tapered fibers.

    PubMed

    Teipel, Jörn; Türke, Diana; Giessen, Harald; Killi, Alexander; Morgner, Uwe; Lederer, Max; Kopf, Daniel; Kolesik, Miroslav

    2005-03-01

    We present a compact, all diode-pumped supercontinuum source based on a SESAM mode-locked Yb:glass oscillator at 1040 nm and a tapered fiber. The oscillator has a repetition rate of 20 MHz, a pulse duration of 200 fs, and a maximum pulse energy of about 15 nJ. This system delivers an 1100 nm broad spectrum with an output power of more than 100 mW. Decreasing the repetition rate to 500 kHz by cavity-dumping results in a supercontinuum with a high pulse energy of about 50 nJ. Furthermore, using the frequency-doubled output of this laser at 520 nm with 300 fs pulse duration resulted in supercontinua in the near-UV and visible spectral region. We compare the experimental spectra with theoretical simulations. PMID:19495023

  9. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

    NASA Astrophysics Data System (ADS)

    Rivière, R.; Arcizet, O.; Schliesser, A.; Kippenberg, T. J.

    2013-04-01

    We developed an apparatus to couple a 50-μm diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550 nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed "cryotaper" to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostat's base temperature of 1.65 K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability, and cryogenic cooling.

  10. Low-temperature-sensitive relative humidity sensor based on tapered square no-core fiber coated with SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Zhang, Hao; Song, Binbin; Liu, Bo; Yao, Jianquan

    2016-05-01

    A low-temperature-sensitive relative humidity (RH) sensor based on multimode interference effects has been proposed. The sensor consists of a section of tapered square no-core fiber (TSNCF) coated with SiO2 nanoparticles which is fabricated by splicing the TSNCF with two single-mode fibers (SMFs). The refractive index of SiO2 nanoparticles changes with the variation of environmental humidity levels. Characteristics of the transmission spectral have been investigated under different humidity levels. The wavelength shifts up to 10.2 nm at 1410 nm and 11.5 nm at 1610 nm for a RH range of 43.6-98.6% have been experimentally achieved, and the corresponding sensitivities reach 456.21 pm/%RH and 584.2 pm/%RH for a RH range of 83-96.6%, respectively. The temperature response of the proposed sensor has also been experimentally investigated. Due to the fact that the sensing head is made of a pure silica rod with a low thermal expansion coefficient and the thermo-optic coefficient, the transmission spectrum shows a low temperature sensitivity of about 6 pm/°C for an environmental temperature of 20.9-80 °C, which is a desirable merit to resolve the temperature cross sensitivity. Therefore, the proposed sensor could be applied to breath analysis applications with low temperature fluctuations.

  11. A pratical deconvolution algorithm in multi-fiber spectra extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Haotong; Li, Guangwei; Bai, Zhongrui

    2015-08-01

    Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and

  12. Biconical tapered optical fiber biosensor for measuring refractive index of a-amino acids in aqueous D-glucose and sucrose solution

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S. M.; Ghezelayagh, M. H.

    2010-04-01

    A single-mode biconical tapered optical fiber (BTOF) sensor was utilized for sensing the variation of refractive index (RI) with concentration of D-glucose in double distilled deionized water and measuring of RI of amino acids (AAs) in carbohydrate solutions. This method showed a rewarding ability in understanding the basis of biomolecular interactions in biological systems. The BTOF is fabricated by heat pulling method, utilizing a CO2 laser. The detection limit of the BTOF was 50 ppb for the D-glucose concentration ranging from 0 to 80 ppm, and RI detection limit corresponding to these concentrations in the range at 1.3333 to 1.3404 was 5.4×10-6 as a refractometer sensor. The response of the BTOF shows that the different kinds of interactions of various groups of AAs such as L-alanine, L-leucine, and L-cystein with D-glucose, sucrose and water molecules depend on functional groups in AAs such as OH, SH;CH2;NH3+ ,COO-. These results can be interpreted in terms of solute-solute and solute-solvent interactions and structure making/breaking ability of solutes in the given solution.

  13. Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber

    NASA Astrophysics Data System (ADS)

    Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V.

    2015-01-01

    This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3 μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7 μm2. The improved SSPD demonstrates a record timing jitter (<25 ps), an ultrashort recovery time (<2 ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.

  14. Fiber-Optic Taper Coupled with a Large Format Charge-coupled Device X-ray Detector: Fast Readout and High Duty-Cycle Ratio

    SciTech Connect

    Ito, Kazuki; Fujisawa, Tetsuro; Iwata, Tadahisa

    2007-01-19

    A novel fiber-optic taper (FOT) coupled with a charge-coupled device (CCD) X-ray detector was developed as a basic module of the simultaneous small- and wide-angle X-ray scattering measurement apparatus at SPring-8 BL45XU. The detector consists of two identical units, each comprising a phosphor (CsI:Tl, 80 {mu}m thickness), a 2:1 demagnifying FOT, and an interline transfer-type CCD as an image sensor. The CCD has a 4000 x 2624 pixel format with a 9 {mu}m pitch, resulting in an effective pixel size of 18 {mu}m at the large end of the FOT. The active area size is 72.0 mm x 47.2 mm in each unit. The image stored in the CCD can be readout through the dual readout channels with 12 bits ADC within 220 ms without binning and 65 ms with 8 x 8 binning, respectively. Moreover, this detector is not necessary to stop the incoming X-rays during the CCD readout and can simultaneously execute both exposure and readout on the CCD with a small dead time of {approx}1 {mu}s so that a duty-cycle ratio of almost 100% is achieved. Therefore, it allows the continuous rotation method, where data is collected without stopping the rotation of a sample crystal in macromolecular crystallography. The continuous rotation method was performed with a total data collection time of 12 s for a range of 180 deg. with 1.5 deg. per frame (120 frames). In this paper, the design, performance characteristics, and verification experiment of the detector will be described.

  15. Compression Molding of CFRTP Used with Carbon Fiber Extracted from CFRP Waste

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Nishida, Yuichi; Aoyama, Naoki; Shibata, Katsuji

    This study investigated a compression molding method of carbon fiber reinforced thermoplastics (CFRTP) made of carbon fiber extracted from CFRP waste. The short carbon fibers were mixed with polyester fibers using a papermaking method to make the preform sheet of compression molding. The waste obtained from a textile water jet loom was used as a matrix material. The setting speed of each fiber during the papermaking process was regulated by using a dispersing agent to obtain the good dispersion of each fiber. Laminated preform sheets combined with polyester fibers and carbon fibers were compressed with heating at 300°C and then the polyester fiber was melted as a matrix material. It was cleared from the experimental results that the mechanical properties of molded CFRTP largely depends on both the fiber dispersion and the content of carbon fiber in the preform.

  16. Pressure variation assisted fiber extraction and development of high performance natural fiber composites and nanocomposites

    NASA Astrophysics Data System (ADS)

    Markevicius, Gediminas

    It is believed, that due to the large surface areas provided by the nano scale materials, various composite properties could be enhanced when such particles are incorporated into a polymer matrix. There is also a trend of utilizing natural resources or reusing and recycling materials that are already available for the fabrication of the new composite materials. Cellulose is the most abundant natural polymer on the planet, and therefore it is not surprising to be of interest for composite fabrication. Basic structures of cellulose, comprised of long polysaccharide chains, are the building blocks of cellulose nano fibers. Nano fibers are further bound into micro fibrils and macro fibers. Theoretically pure cellulose nano fibers have tremendous strengths, and therefore are some of the most sought after nano particles. The fiber extraction however is a complex task. The ultrasound, which creates pressure variation in the medium, was employed to extract nano-size cellulose particles from microcrystalline cellulose (MCC). The length and the intensity of the cavitations were evaluated. Electron microscopy studies revealed that cellulose nanoparticles were successfully obtained from the MCC after ultrasound treatment of just 30 minutes. Structure of the fractionated cellulose was also analyzed with the help of X-ray diffraction, and its thermal properties were evaluated with the help of differential scanning calorimetry (DSC). Ultrasound treatment performed on the wheat straw, kenaf, and miscanthus particles altered fiber structure as a result of the cavitation. The micro fibers were generated from these materials after they were subjected to NaOH treatment followed by the ultrasound processing. The potential of larger than nano-sized natural fibers to be used for composite fabrication was also explored. The agricultural byproducts, such as wheat or rice straw, as well as other fast growing crops as miscanthus or kenaf, are comprised of three basic polymers. Just like in

  17. Parabolic tapers for overmoded waveguides

    DOEpatents

    Doane, J.L.

    1983-11-25

    A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.

  18. Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor

    SciTech Connect

    Hu, S.Y.B.; Wiencek, J.M.

    1998-03-01

    A novel extraction technique using an emulsion liquid membrane within a hollow-fiber contactor was developed and utilized to extract copper using LIX 84 extractant. Emulsion liquid membranes are capable of extracting metals from dilute waste streams to levels much below those possible by equilibrium-limited solvent extraction. Utilizing an emulsion liquid membrane within a hollow-fiber contactor retains the advantages of emulsion-liquid-membrane extraction, namely, simultaneous extraction and stripping, while eliminating problems encountered in dispersive contacting methods, such as swelling and leakage of the liquid membrane. Mathematical models for extraction in hollow-fiber contactors were developed. The models satisfactorily predict the outcome of both simple solvent extraction and emulsion-liquid-membrane extraction of copper by LIX 84 in a hollow-fiber contactor over a wide range of conditions. Emulsion-liquid-membrane extraction performs exceptionally well when the extraction is close to equilibrium limit. It is also capable of extracting a solute f/rom very dilute solutions. Stability of the liquid membrane is not crucial when used in hollow-fiber contactors; the surfactant in liquid membrane can be reduced or even eliminated without severely impairing the performance.

  19. Tapered structure construction

    DOEpatents

    Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.; Nayfeh, Samir A.

    2016-04-05

    Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.

  20. Plasma cholesterol-lowering effect on rats of dietary fiber extracted from immature plants.

    PubMed

    Nishimura, N; Taniguchi, Y; Kiriyama, S

    2000-12-01

    Crude dietary fiber samples were prepared from beet, cabbage, Japanese radish, onion and mung bean sprouts (BF, CF, RF, OF and MF, respectively). These samples contained total dietary fiber at the levels of 814, 699, 760, 693 and 666 g/kg, respectively. To examine the effect of these dietary fiber sources on the plasma cholesterol concentration, male Sprague-Dawley rats were fed on a fiber-free (FF) diet or on an FF diet supplemented with 5% or 10% dietary fiber. Dietary fiber extracted from vegetables, wood cellulose (CL), pectin (PE) and guar gum (GG) were used as the fiber sources. Compared with the rats fed on the FF diet, a significant reduction in the plasma cholesterol concentration was observed in the rats fed on BF, CF, RF, MF, PE or GG after a 21-d feeding period. Cecal acetate, n-butyrate and total short-chain fatty acids were significantly higher in the rats fed on these dietary fibers, except for CF, than in those fed on the FF diet. A negative correlation was apparent between the total dietary fiber content, hemicellulose content and pectin content of each dietary fiber source and the plasma cholesterol concentration. These results suggest that some vegetable fibers exert a plasma cholesterol-lowering effect through cecal fermentation of these fibers. PMID:11210115

  1. Collection and separation of extract in dispersive liquid-liquid microextraction with hollow fiber.

    PubMed

    Wang, Kun; Li, Na; Lei, Lei; Yang, Xiao; Wang, Zhibing; Li, Dan; Zang, Shuang; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei

    2016-05-01

    Dispersive liquid-liquid microextraction combined with collection of the extraction phase with the hollow fiber was applied to the extraction of estrogens from environmental water samples. 1-Undecanol with relatively lower toxicity was used as the extraction solvent. The hollow fiber was used to collect the extraction phase containing the analytes from the aqueous phase. Hollow fibers collecting the extraction phase were eluted with acetonitrile and the resulting eluate was analyzed by high performance liquid chromatography. Several parameters, including pH of sample, the type and volume of the extraction and dispersive solvent, salt concentration, extraction time, and collection time were optimized. Under the optimal experimental conditions, the limits of detection for estriol, 17α-estradiol, and ethynylestradiol were 4.58, 1.41, and 1.41 μg L(-1), respectively. When the present method was applied to the analysis of real water samples, the recoveries of estrogens at two spiked levels were in the range of 55.8-107.4%. In this method, the separation of the extraction phase and aqueous phase becomes easy with no need for centrifugation, refrigeration-thaw, or any special device. The hollow fiber was commercially available and the collection procedure was easy to perform, which make the present method have potential for automation and wide promotion. Small sizes of pores on the walls of the hollow fibers can block large molecules, which makes the present method have the potential for the treatment of complex matrices. PMID:26894762

  2. Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM.

    PubMed

    Sørensen, S T; Møller, U; Larsen, C; Moselund, P M; Jakobsen, C; Johansen, J; Andersen, T V; Thomsen, C L; Bang, O

    2012-05-01

    We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper length, the downtapering should be as long as possible. We argue how this may be explained by the concept of group-acceleration mismatch (GAM) and we confirm the results using conventional symmetrical short tapers made on a taper station, which have varying downtapering lengths. PMID:22565689

  3. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources.

    PubMed

    Sørensen, Simon T; Larsen, Casper; Jakobsen, Christian; Thomsen, Carsten L; Bang, Ole

    2014-02-15

    Dispersion control with axially nonuniform photonic crystal fibers (PCFs) permits supercontinuum (SC) generation into the deep-blue from an ytterbium pump laser. In this Letter, we exploit the full degrees of freedom afforded by PCFs to fabricate a fiber with longitudinally increasing air-fill fraction and decreasing diameter directly on the draw-tower. We demonstrate SC generation extending down to 375 nm in one such monolithic fiber device that is single-mode at 1064 nm at the input end. PMID:24562287

  4. How long wavelengths can one extract from silica-core fibers?

    PubMed Central

    Lægsgaard, Jesper; Tu, Haohua

    2014-01-01

    The generation of wavelengths above 3 μm by nonlinear processes in short silica photonic crystal fibers is investigated numerically. It was found that wavelengths in the 3–3.5 μm range may be generated quite efficiently in centimeter-long fiber pieces when pumping with femtosecond pulses in the 1.55–2 μm range. Wavelengths in the range of 3.5–4 μm can in principle be generated, but these require shorter fiber lengths for efficient extraction. The results indicate that useful 3 μm sources may be fabricated with existing silica-based fiber technology. PMID:24177134

  5. Analysis of Dyes Extracted from Millimeter-Size Nylon Fibers by Micellar Electrokinetic Chromatography

    SciTech Connect

    Lewis, L.A.

    2001-07-30

    The Learning Objective is to present to the forensic community a potential qualitative/quantitative method for trace-fiber color comparisons using micellar electrokinetic chromatography (MEKC). Developing a means of analyzing extracted dye constituents from millimeter-size nylon fiber samples was the objective of this research initiative. Aside from ascertaining fiber type, color evaluation and source comparison of trace-fiber evidence plays a critical role in forensic-fiber examinations. Literally thousands of dyes exist to date, including both natural and synthetic compounds. Typically a three-color-dye combination is employed to affect a given color on fiber material. The result of this practice leads to a significant number of potential dye combinations capable of producing a similar color and shade. Since a typical forensic fiber sample is 2 mm or less in length, an ideal forensic dye analysis would qualitatively and quantitatively identify the extracted dye constituents from a sample size of 1 mm or smaller. The goal of this research was to develop an analytical method for comparing individual dye constituents from trace-fiber evidence with dyes extracted from a suspected source, while preserving as much of the original evidence as possible.

  6. Fabrication of polymer waveguide tapers to minimize insertion loss

    NASA Astrophysics Data System (ADS)

    Yacoubian, Araz; Lin, Weiping; Bechtel, James H.

    2001-12-01

    Polymer based electro-optic (EO) modulators and other integrated optic devices have the potential to provide low cost and lightweight alternative for high-speed digital as well as analog RF links. To be truly competitive with existing technologies such as LiNbO3, EO polymer modulators must also meet the criteria of low loss. There are two major causes of loss in EO modulators: waveguide loss (including material loss, scattering, etc.), and fiber- to-waveguide coupling (butting) loss. Various techniques can be utilized to minimize these coupling losses, however, to maintain low cost of component, we resort to the simplest possible approach which is easy to manufacture. Pigtails using standard single mode fiber produce coupling loss on the order of 3 to 5 dB/connection. In order to improve mode size matching yet maintain low drive voltage we incorporate waveguide and fibers tapers. Waveguide tapers resulted to butting losses as low as 1.5 dB/connection, whereas fiber tapers resulted to 2.5 dB/connection butting losses. Combining both techniques together, it was possible to produce 1.3 dB/connection butting loss, however, tapered waveguide devices were less sensitive to alignment tolerance than tapered fiber devices, and therefore less sensitive to environmental conditions.

  7. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    Lapointe, Donat J. E. (Inventor); Wright, Lawrence T. (Inventor); Vincent, Laurence J. (Inventor)

    1987-01-01

    A tapered tubular polyester sleeve is described to serve as the flexible foundation for a spacesuit limb covering. The tube has a large end and a small end with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end. A requisite number of warp yarns extend the full length of the sleeve. Other warp yarns extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel, heated in an oven, and then attached to the arm or other limb of the spacesuit.

  8. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    LaPointe, Donat J. E. (Inventor); Vincent, Laurence J. (Inventor); Wright, Lawrence T. (Inventor)

    1988-01-01

    A tapered tubular polyester sleeve as set forth. It has a large end 12 and a small end 14 with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end 12. A requisite number of warp yarns 16 extend the full length of the sleeve. Other warp yarns exemplified at 18, 22, 26, 28, 30 and 32 extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn 40 which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel 42, heated in an oven 44 and is thereafter placed on the arm or other limb of a space suit exemplified at 50.

  9. Effect of Dietary Fiber Extracted from Algelica keiskei Koidz on the Quality Characteristics of Chicken Patties

    PubMed Central

    Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Jeon, Ki-Hong

    2015-01-01

    In this study, we evaluated the effects of dietary fiber extracted from Algelica keiskei Koidz on the chemical composition, cooking characteristics, and sensory properties of chicken patties. The chicken patties with Algelica keiskei Koidz dietary fiber had significantly higher moisture and ash content, and yellowness than the control sample (p<0.05). Energy value, cooking loss, reduction in diameter, reduction in thickness, lightness, redness, hardness, cohesiveness, gumminess, and chewiness of the control samples was significantly higher than chicken patties with Algelica keiskei Koidz dietary fiber (p<0.05). The sensory evaluation indicated that the greatest overall acceptability in chicken patties was achieved at Algelica keiskei Koidz dietary fiber levels of 1% and 2%. Chicken patties supplemented with 2% Algelica keiskei Koidz dietary fiber had improved quality characteristics. PMID:26761844

  10. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    NASA Astrophysics Data System (ADS)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  11. Compound taper milling machine

    NASA Technical Reports Server (NTRS)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  12. Modelling the spindle-holder taper joint in machine tools: A tapered zero-thickness finite element method

    NASA Astrophysics Data System (ADS)

    Xiao, Weiwei; Mao, Kuanmin; Zhu, Ming; Li, Bin; Lei, Sheng; Pan, Xiaoyan

    2014-10-01

    This study presents a tapered zero-thickness finite element model together with its parameter identification method for modelling the spindle-holder taper joint in machine tools. In the presented model, the spindle and the holder are modelled as solid elements and the taper joint is modelled as a tapered zero-thickness finite element with stiffness and damping but without mass or thickness. The proposed model considers not only the coupling of adjacent degrees of freedom but also the radial, tangential and axial effects of the spindle-holder taper joint. Based on the inverse relationship between the dynamic matrix and frequency response function matrix of a multi-degree-of-freedom system, this study proposes a combined analytical-experimental method to identify the stiffness matrix and damping coefficient of the proposed tapered zero-thickness finite element. The method extracts those parameters from FRFs of an entire specimen that contains only the spindle-holder taper joint. The simulated FRF obtained from the proposed model matches the experimental FRF quite well, which indicates that the presented method provides high accuracy and is easy to implement in modelling the spindle-holder taper joint.

  13. Ultrafast superconducting single-photon detector with reduced-size active area coupled to a tapered lensed single-mode fiber

    NASA Astrophysics Data System (ADS)

    Sidorova, Maria V.; Divochiy, Alexander; Vachtomin, Yury B.; Smirnov, Konstantin V.

    2015-05-01

    We present an ultrafast NbN Superconducting single-photon detector (SSPD) with active area of 3x3 μm2, which reveals better timing performances than a previously developed SSPD with active area of 10x10 μm2. The improved SSPD demonstrates the record timing jitter <25 ps, ultra short recovery time <2 ns, extremely low dark counts level, and high detection efficiency (DE) in a wide spectral range from visible to near-infrared. The record parameters were obtained thanks to the development of a new technique of an effective optical coupling between a detector with reduced-size active area and a standard single-mode telecommunication fiber. The advantages of a new approach are experimentally confirmed by performed electro-optical measurements of the device performances.

  14. Comparison between 50 W tapered laser arrays and tapered single emitters

    NASA Astrophysics Data System (ADS)

    Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart; Keleman, Marc T.; Weber, Jürgen; Mikulla, Michael; Weimann, Günter

    2006-02-01

    During the last few years high power diode laser arrays have become well established for direct material processing due to their high efficiency of more than 50%. But standard broad-area waveguide designs are susceptible to modal instabilities and filamentations resulting in low beam qualities. The beam quality increases by more than a factor of four by using tapered laser arrays, but so far they suffer from lower efficiencies. Therefore tapered lasers are mainly used today as single emitters in external resonator configurations. With increased output power and lifetime, they will be much more attractive for material processing and for pumping of fiber amplifiers. High efficiency tapered mini bars emitting at a wavelength of 980 nm are developed, and in order to qualify the bars, the characteristics of single emitters and mini bars from the same wafer have been compared. The mini bars have a width of 6 mm with 12 emitters. The ridge waveguide tapered lasers consist of a 500 μm long ridge and a 2000 μm long tapered section. The results show very similar behavior of the electro-optical characteristics and the beam quality for single emitters and bars. Due to different junction temperatures, different slope efficiencies were measured: 0.8 W/A for passively cooled mini bars and 1.0 W/A for actively cooled mini-bars and single emitters. The threshold current of 0.7 A per emitter is the same for single emitters and emitter arrays. Output powers of more than 50 W in continuous wave mode for a mini bar with standard packaging demonstrates the increased power of tapered laser bars.

  15. Tapered capillary optics

    DOEpatents

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  16. Misalignment tolerant efficient inverse taper coupler for silicon waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Michael, Aron; Kwok, Chee Yee; Chen, Ssu-Han

    2015-12-01

    This paper describes an efficient fiber to submicron silicon waveguide coupling based on an inversely tapered silicon waveguide embedded in a SiO2 waveguide that is suspended in air. The inverse taper waveguide consist of a 50um long and 240nm thick silicon that linearly taper in width from 500nm to 120nm, which is embedded in SiO2. The SiO2 waveguide is 6um wide and 10um long. The simulation results show that the coupling loss of this new approach is 2.7dB including the interface loss at the input and output. The tolerance to fiber misalignment at the input of the coupler is 2um in both horizontal and vertical directions for only 1.5dB additional loss.

  17. Fundamental mode evolution in long, large-core (>100 μm) adiabatic tapers

    NASA Astrophysics Data System (ADS)

    Kerttula, Juho; Filippov, Valery; Chamorovskii, Yuri; Ustimchik, Vasily; Okhotnikov, Oleg G.

    2013-03-01

    We have experimentally investigated fundamental mode propagation in few-meter-long adiabatic step-index tapers with high numerical aperture, core diameter up to 117μm (V=38), and tapering ratio up to 18. We confirmed single fundamental mode guiding in tapers with uniform core index profile by several experiments. We observed an annular near field distribution and degraded beam quality for large output core diameters, found to occur due to intrinsic mechanical stress in the fibers. We expect that eliminating the stress would prevent the mode deformation and allow constructing single-mode, diffraction-limited tapered large-mode-area amplifiers with a good beam shape.

  18. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.

    PubMed

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2012-10-01

    Cellulose nanowhiskers is a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Here, for the first time, a novel controllable fabrication of cellulose nanowhiskers from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization is reported. The versatile jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and high crystallinity (69.72%), contains C6 carboxylate groups converted from C6 primary hydroxyls, which would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, pharmaceutical and optical industries as additives. PMID:22840042

  19. Wafer-scale pixelated scintillator and specially designed data acquisition system for fiber optic taper array-coupled digital x-ray detector

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang; Li, Ji; Lei, Yaohu; Wang, Ru; Ren, Jianping; Qiao, Jian; Niu, Hanben

    2015-09-01

    A digital x-ray detector scheme based on a pixelated scintillator coupled with a fiber optic (FOT) array is suitable for many high-resolution x-ray imaging applications. However, certain challenges need to be addressed for fabrication of wafer-scale uniform pixelated x-ray scintillators. In addition, difficulties associated with implementation of the data acquisition system for acquiring output image data from the multiple image sensors used in the detector also need to be addressed. In this paper, a 2×2 FOT array-coupled digital x-ray detector scheme using a 5-in. pixelated scintillator is proposed. A novel fabrication setup along with the corresponding processes for fabricating the wafer-scale pixelated scintillator and implementation of a specially designed embedded data acquisition system based on a single embedded micro-processer (ARM) and four field-programmable gate array (FPGA) chips are discussed in detail. Preliminary experiments demonstrate that this pixelated scintillator-based digital x-ray detector scheme with an active imaging area of about 100 mm×100 mm shows considerable potential for use in high-resolution x-ray imaging.

  20. High-coherence light extraction through a compact Brillouin/erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Wang, Jianfei; Chen, Wei; Sun, Shilin; Meng, Zhou

    2016-05-01

    High-coherence light is stringently demanded in high-accuracy interferometric optical fiber sensors, where the phase noise of the light source greatly affects the sensitivity of the whole system. Distributed-feedback laser diodes with a phase noise of -80 ~ -90 dB/Hz1/2 at 1 kHz (with 1 m optical path difference) is now easily obtained, but the interferometric fiber sensors requires the laser source with the phase noise lower than -100 dB/Hz1/2. Lasers with ultra-low-noise usually require complicated and sophisticated techniques. We propose a novel structure to realize high-coherence light extraction through a compact Brillouin/erbium fiber laser (BEFL) which uses a length of 4 m erbium-doped fiber as both the Brillouin and linear gain media. The phase noise of the Brillouin pump light is greatly smoothed and suppressed after being transferred to the Brillouin Stokes light. High-coherence light with the phase noise of about -104 dB/Hz1/2 at 1 kHz is extracted through the compact BEFL from a commercialized laser diode with the phase noise of about -89 dB/Hz1/2. The capability of phase noise suppression in the compact BEFL presents much importance especially in large-array interferometric fiber sensor systems.

  1. Designing a gel-fiber composite to extract nanoparticles from solution.

    PubMed

    Liu, Ya; Yong, Xin; McFarlin, Gerald; Kuksenok, Olga; Aizenberg, Joanna; Balazs, Anna C

    2015-11-28

    The extraction of nanoscopic particulates from flowing fluids is a vital step in filtration processes, as well as the fabrication of nanocomposites. Inspired by the ability of carnivorous plants to use hair-like filaments to entrap species, we use computational modeling to design a multi-component system that integrates compliant fibers and thermo-responsive gels to extract particles from the surrounding solution. In particular, hydrophobic fibers are embedded in a gel that exhibits a lower critical solution temperature (LCST). With an increase in temperature, the gel collapses to expose fibers that self-assemble into bundles, which act as nanoscale "grippers" that bind the particles and draw them into the underlying gel. By varying the relative stiffness of the fibers, the fiber-particle interaction strength and the shear rate in the solution, we identify optimal parameters where the particles are effectively drawn from the solution and remain firmly bound within the gel layer. Hence, the system can be harnessed in purifying fluids and creating novel hybrid materials that integrate nanoparticles with polymer gels. PMID:26376705

  2. Effect of Aspergillus oryzae fermentation extract (Amaferm) on in vitro fiber degradation.

    PubMed

    Beharka, A A; Nagaraja, T G

    1993-03-01

    The influence of Aspergillus oryzae fermentation extract (Amaferm) on in vitro fiber degradation was determined by incubating eight ground fibrous feed-stuffs with rumen fluid and buffer inoculum. Amaferm was added at 0, .4, .8, or 1.2 g/L of fermentation mixture. Both NDF and ADF degradabilities were determined after 96 h of incubation. Addition of extract had no effect on NDF or ADF degradability of pure cellulose, low endophyte fescue, wheat straw, corn silage, or prairie hay. Addition of Amaferm at .8 or 1.2 g/L increased NDF and ADF degradations of bromegrass hay and alfalfa hay; its addition at .4 or .8 g/L, but not at 1.2 g/L, increased NDF and ADF degradation of high endophyte fescue hay. In a second set of in vitro fermentations, selective antimicrobials (penicillin, streptomycin, and cycloheximide) were used to assess the influence of Amaferm on various microbial groups. The enhanced fiber degradation by Amaferm was attributed to its stimulation of bacterial activity because its addition to whole rumen fluid without or with cycloheximide increased fiber digestion. In contrast, addition of Amaferm to the whole rumen fluid plus penicillin and streptomycin treatment had no effect on fiber degradation, suggesting that fungal or protozoal activity was not affected by treatment. In conclusion, Amaferm increased fiber digestibility of certain feedstuffs, and the increase was mediated via stimulation of rumen bacterial, but not fungal or protozoal, activities. PMID:8385163

  3. The ABCD matrix in graded index tapers used for beam expansion and compression.

    PubMed

    McMullin, J N

    1989-04-01

    A new form is proposed for the ABCD matrix in a graded index taper with a large variation in cross section such as might be used for single-mode beam expansion. Expressions are given for the loss of power from the fundamental mode and the coupling efficiency between fibers when two tapers are used in an expanded beam connector. Exact solutions are found for linear tapers and for a class of tapers with zero slope ends. The distinction between adiabatic and nonadiabatic tapers is made clear from the functional form of the matrix in the linear case. Comparisons are made with previously published results and the effect of taper shape on the coupling efficiency is discussed. PMID:20548654

  4. Intensity modulated SMF cascaded tapers with a hollow core PCF based microcavity for curvature sensing

    NASA Astrophysics Data System (ADS)

    Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan

    2016-03-01

    We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.

  5. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  6. Finite-aperture tapered unstable resonator lasers

    NASA Astrophysics Data System (ADS)

    Bedford, Robert George

    The development of high power, high brightness semiconductor lasers is important for applications such as efficient pumping of fiber amplifiers and free space communication. The ability to couple directly into the core of a single-mode fiber can vastly increase the absorption of pump light. Further, the high mode-selectivity provided by unstable resonators accommodates single-mode operation to many times the threshold current level. The objective of this dissertation is to investigate a more efficient semiconductor-based unstable resonator design. The tapered unstable resonator laser consists of a single-mode ridge coupled to a tapered gain region. The ridge, aided by spoiling grooves, provides essential preparation of the fundamental mode, while the taper provides significant amplification and a large output mode. It is shown a laterally finite taper-side mirror (making the laser a "finite-aperture tapered unstable resonator laser") serves to significantly improve differential quantum efficiency. This results in the possibility for higher optical powers while still maintaining single-mode operation. Additionally, the advent of a detuned second order grating allows for a low divergent, quasicircular output beam emitted from the semiconductor surface, easing packaging tolerances, and making two dimensional integrated arrays possible. In this dissertation, theory, design, fabrication, and characterization are presented. Material theory is introduced, reviewing gain, carrier, and temperature effects on field propagation. Coupled-mode and coupled wave theory is reviewed to allow simulation of the passive grating. A numerical model is used to investigate laser design and optimization, and effects of finite-apertures are explored. A microfabrication method is introduced to create the FATURL in InAlGaAs/-InGaAsP/InP material emitting at about 1410 nm. Fabrication consists of photolithography, electron-beam lithography, wet etch and dry etching processes, metal and

  7. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  8. Spectro-Perfectionism: An Algorithmic Framework for Photon Noise-Limited Extraction of Optical Fiber Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolton, Adam S.; Schlegel, David J.

    2010-02-01

    We describe a new algorithm for the "perfect" extraction of one-dimensional (1D) spectra from two-dimensional (2D) digital images of optical fiber spectrographs, based on accurate 2D forward modeling of the raw pixel data. The algorithm is correct for arbitrarily complicated 2D point-spread functions (PSFs), as compared to the traditional optimal extraction algorithm, which is only correct for a limited class of separable PSFs. The algorithm results in statistically independent extracted samples in the 1D spectrum, and preserves the full native resolution of the 2D spectrograph without degradation. Both the statistical errors and the 1D resolution of the extracted spectrum are accurately determined, allowing a correct χ2 comparison of any model spectrum with the data. Using a model PSF similar to that found in the red channel of the Sloan Digital Sky Survey spectrograph, we compare the performance of our algorithm to that of cross-section based optimal extraction, and also demonstrate that our method allows coaddition and foreground estimation to be carried out as an integral part of the extraction step. This work demonstrates the feasibility of current and next-generation multifiber spectrographs for faint-galaxy surveys even in the presence of strong night-sky foregrounds. We describe the handling of subtleties arising from fiber-to-fiber cross talk, discuss some of the likely challenges in deploying our method to the analysis of a full-scale survey, and note that our algorithm could be generalized into an optimal method for the rectification and combination of astronomical imaging data.

  9. Dynamics of organic compound extraction from water using liquid-coated fused silica fibers

    SciTech Connect

    Louch, D.; Motlagh, S.; Pawliszyn, J.

    1992-05-15

    Mathematical descriptions of the absorption and desorption processes were developed and compared with experimental results for solid-phase microextraction (SPME) using poly(dimethylsiloxane)-coated fused silica optical fibers. Extraction times for benzene, toluene, and p-xylene using a coating thickness of 55 {mu}m are under 10 min and can be shortened substantially using agitation. Detection limits and distribution coefficients for several organic compounds are presented. 20 refs., 13 figs., 1 tab.

  10. Designing a gel-fiber composite to extract nanoparticles from solution

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; Balazs, Anna

    Using DPD simulations, we proposed the design of a gel-fiber coating where the components of the system act in concert to extract particles from solution and localize these solids in the underlying gel layer. We model an array of flexible fibers that are embedded in a lower critical solution temperature (LCST) thermo-responsive gel, which swells at lower temperatures and collapses at higher temperatures. The system is immersed in a solution containing dispersed nanoparticles and this fluid is driven to flow by an imposed shear. When the gel is heated, it collapses to expose the fibers, and thereby, triggers the ``catch'' process. Namely, the fibers can act like ``arms'' that wrap around the nanoparticle and bring it from the outer solvent into the gel layer. Moreover, we show that depending on the flexibility and hydrophobicity of the fibers, as well as the imposed shear, we can position the nanoparticles at the desired height within the gel layer. Our approach can be utilized for the detection and separation of components in fluids and for the controlled insertion of nanoparticles within a hydrogel at a particular distance from the gel interface

  11. TAPERED DEFINING SLOT

    DOEpatents

    Pressey, F.W.

    1959-09-01

    An improvement is reported in the shape and formation of the slot or opening in the collimating slot member which forms part of an ion source of the type wherein a vapor of the material to be ionized is bombarded by electrons in a magnetic field to strike an arc-producing ionization. The defining slot is formed so as to have a substantial taper away from the cathode, causing the electron bombardment from the cathode to be dispersed over a greater area reducing its temperature and at the same time bringing the principal concentration of heat from the electron bombardment nearer the anode side of the slot, thus reducing deterioration and prolonging the life of the slot member during operation.

  12. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    PubMed

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  13. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    PubMed Central

    Rakha, Allah; Åman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  14. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  15. Enhanced Trace-Fiber Color Discrimination by Electrospray Ionization Mass Spectrometry: A Quantitative and Qualitative Tool for the Analysis of Dyes Extracted from Sub-millimeter Nylon Fibers

    SciTech Connect

    2002-09-26

    The application of electrospray-ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color-identity of different samples (i.e., comparative trace-fiber analysis) are shown to be sub-millimeter. Absolute verification of dye-mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound--information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  16. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated. PMID:26831995

  17. Tapered undulators for SASE FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2002-05-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  18. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    SciTech Connect

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-11

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  19. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-01

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  20. Evaluation of Ultrasonic Fiber Structure Extraction Technique Using Autopsy Specimens of Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hirai, Kazuki; Yamada, Hiroyuki; Ebara, Masaaki; Hachiya, Hiroyuki

    2005-06-01

    It is very important to diagnose liver cirrhosis noninvasively and correctly. In our previous studies, we proposed a processing technique to detect changes in liver tissue in vivo. In this paper, we propose the evaluation of the relationship between liver disease and echo information using autopsy specimens of a human liver in vitro. It is possible to verify the function of a processing parameter clearly and to compare the processing result and the actual human liver tissue structure by in vitro experiment. In the results of our processing technique, information that did not obey a Rayleigh distribution from the echo signal of the autopsy liver specimens was extracted depending on changes in a particular processing parameter. The fiber tissue structure of the same specimen was extracted from a number of histological images of stained tissue. We constructed 3D structures using the information extracted from the echo signal and the fiber structure of the stained tissue and compared the two. By comparing the 3D structures, it is possible to evaluate the relationship between the information that does not obey a Rayleigh distribution of the echo signal and the fibrosis structure.

  1. Fiber-integrated diamond-based magnetometer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Cui, Jinming; Sun, Fangwen; Song, Xuerui; Feng, Fupan; Wang, Junfeng; Zhu, Wei; Lou, Liren; Wang, Guanzhong

    2013-09-01

    We demonstrated a fiber-integrated diamond-based magnetometer in this paper. In the system, the fluorescence of nitrogen vacancy (NV) centers in nanodiamonds deposited on a tapered fiber was coupled to the tapered fiber effectively and detected at the output end of the fiber. By using this scheme, optically detected electron spin resonance spectra were recorded for single NV centers. The results confirmed that such a tapered fiber-nanodiamond system can act as a magnetometer. Featured with excellent portability, convenient fabrication, and potential for further integration, the constructed system has been demonstrated to be a practical magnetometer prototype.

  2. Comparative evaluation of apically extruded debris with V-Taper, ProTaper Next, and the Self-adjusting File systems

    PubMed Central

    Vyavahare, Nishant K.; Raghavendra, Srinidhi Surya; Desai, Niranjan N.

    2016-01-01

    Background: Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. Aim: To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Materials and Methods: Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. Results: All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). Conclusion: The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF. PMID:27217636

  3. Blasting extrusion processing: the increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran.

    PubMed

    Yan, Xiaoguang; Ye, Ran; Chen, Ye

    2015-08-01

    In this study, soluble dietary fiber (SDF) content of wheat bran was significantly increased from 9.82 ± 0.16 (w/w, %) to 16.72 ± 0.28 (w/w, %) by a novel blasting extrusion processing with enhanced water retention capacity and the swelling capacity. In addition, a water-soluble polysaccharide (WBP) was isolated and extracted from extruded SDF. WBP was successfully purified from SDF by column chromatography systems with the average molecular weight (Mw) of 4.7 × 10(4)Da, containing arabinose, xylose, glucose, and galactose. With the molar ratio of 0.76:0.99:1.00:0.12. Our results suggest that WBP owned 1 → 2, 1 → 3, 1 → 2, 6 and 1 → 4, 1 → 4, 6 glycosidic bonds in the absence of 1 →, 1 → 6 glycosidic bonds. In vitro antioxidant assays (DPPH, ABTS+ radical scavenging capacities, and ferric ion reducing capacity) demonstrated that WBP possesses good antioxidant capacity, and it could be potentially used as a natural antioxidant for use in functional food, cosmetic and pharmaceutical industries. PMID:25766807

  4. Immunomodulatory activity of Bengkoang (Pachyrhizus erosus) fiber extract in vitro and in vivo.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Harmayani, Eni; Raharjo, Sri; Sugahara, Takuya

    2014-01-01

    Bengkoang (Pachyrhizus erosus (L.) Urban) is one of the most popular edible root vegetables in Indonesia. Bengkoang contains fairly large amounts of carbohydrates and crude fiber. The purpose of this research is to evaluate the immunomodulatory effect of the bengkoang fiber extract (BFE) in vitro and in vivo. BFE was prepared by heating the powder of bengkoang fiber suspended in distilled water at 121 °C for 20 min. BFE facilitated IgM production by the human hybridoma cell line HB4C5 cells. In addition, production of IgM, IgG, and IgA by mouse primary splenocytes was facilitated by BFE in a dose-dependent manner. BFE also significantly facilitated production of both interleukin-5 and interleukin-10 by splenocytes. Immunoglobulin production by lymphocytes from the spleen, Peyer's patch, and mesenteric lymph node were significantly activated by oral administration of BFE to mice for 14 days. The serum immunoglobulin levels of IgG, IgM, and IgA were also significantly enhanced. Furthermore, cytokine production by lymphocytes from the spleen, Peyer's patch, and mesenteric lymph node were also facilitated by oral administration of BFE. These results suggest that BFE has positive effects on the immune system in vitro and in vivo. PMID:23361525

  5. Automatic one dimensional spectra extraction for Weihai fiber-fed high resolution echelle spectra

    NASA Astrophysics Data System (ADS)

    Hu, Shao Ming; Gao, Dong Yang

    2014-11-01

    One fiber-fed high resolution echelle spectrograph was built for the one meter telescope atWeihai Observatory of Shandong University. It is used for exoplanet searching by radial velocity method and for stellar spectra analysis. One dimensional spectra extraction from the raw echelle data is researched in this paper. Flat field images with different exposure times were used to trace the order position accurately. The accurate background was fitted from each CCD image and it was subtracted from the raw image to correct the background and straylight. The intensity of each order decreases towards the order margin, and the lengths of order are different between the blue and red regions. The order tracing during the data reduction was investigated in this work. Accurate flux can be obtained after considering the effects of bad pixels, the curvature of each order and so on. One Interactive Data Language program for one dimensional spectra extraction was adopted and implemented to echelle data reduction for Weihai fiber-fed high resolution echelle spectra, and the results are illustrated here. The program is efficient and accurate for echelle data reduction. It can be adopted to reduce data taken by other instruments even the spectrographs in other fields, and it is very convenient for astronomers.

  6. In Vitro Stimulation of Forage Fiber Degradation by Ruminal Microorganisms with Aspergillus oryzae Fermentation Extract

    PubMed Central

    Varel, Vincent H.; Kreikemeier, Kelly K.; Jung, Hans-Joachim G.; Hatfield, Ronald D.

    1993-01-01

    Aspergillus oryzae fermentation extract (Amaferm) was evaluated for its ability to influence degradation of brome grass and switchgrass fiber fractions by mixed ruminal microorganisms in vitro. Addition of Amaferm at a concentration of 0.067 mg/ml, which is approximately the concentration found in the rumen ecosystem (0.06 mg/ml), increased the degradation of brome grass neutral detergent fiber (NDF) by 28% after fermentation for 12 h (P < 0.01), but had no effect after fermentation for 24 or 48 h. The levels of degradation of both the cellulose and hemicellulose fractions were increased after fermentation for 12 h (P < 0.01). Additions of 0.08 and 8% (vol/vol) Amaferm filtrate (12.5 g/100 ml) stimulated degradation of switchgrass NDF by 12 and 24% (P < 0.01), respectively, after fermentation for 12 h; when 80% filtrate was added, degradation was decreased by 38%. The concentrations of total anaerobes in culture tubes containing 80% filtrate were 5 times greater than the concentrations in the controls; however, the concentrations of cellulolytic organisms were 3.5 times lower than the concentrations in the controls (P < 0.05). These results suggested that the filtrate contained high concentrations of soluble substrate which did not allow the cellulolytic organisms to compete well with other populations. The remaining concentrations of esterified p-coumaric and ferulic acids were lower at 12 h in NDF residues obtained from fermentation mixtures supplemented with Amaferm. Because the total anaerobes were not inhibited in fermentation mixtures containing Amaferm, antibiotics are unlikely to be involved as a mode of action for increasing NDF degradation. The possibility that Amaferm contains enzymes (possibly esterases) that may play a role in stimulating the rate of fiber degradation by mixed ruminal microorganisms by removal of plant cell wall phenolic acid esters is discussed. PMID:16349057

  7. Novel process for the simultaneous extraction and degumming of banana fibers under solid-state cultivation.

    PubMed

    Jacob, Nicemol; Prema, Parukuttyamma

    2008-01-01

    Various process parameters for the production of polygalacturonase by Streptomyces lydicus under solid-state fermentation were optimized. The optimum particle size of wheat bran for polygalacturonase production was in the range of 500-1000 μm. Initial moisture content of 70% was found to be the optimum for enzyme production. The most suitable inoculum size was 1.25 × 10(5) CFU/mL and the optimum incubation temperature was 30°C. Addition of carbon sources resulted in 37% increase in enzyme yield (425 U/g), whereas no significant enhancement was obtained on nitrogen supplementation. Maximum enzyme yield was recorded at 72 h. When compared to the initial production medium (108.5 U/g), the enzyme yield was 3.9 fold after optimization. Solid-state fermentation was effectively employed to develop a novel process for the simultaneous extraction and degumming of banana fibers. Streptomyces lydicus was allowed to grow on wheat bran medium in which banana leaf sheath pieces were incorporated and the fiber bundles were separated after a two-step fermentative process. PMID:24031190

  8. Activation of macrophages stimulated by the bengkoang fiber extract through toll-like receptor 4.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Putra, Agus Budiawan Naro; Sugahara, Takuya

    2014-07-25

    Bengkoang (Pachyrhizus erosus (L.) Urban) is an edible root tuber containing fairly large amounts of carbohydrates and crude fibers. Our previous studies showed that the bengkoang fiber extract (BFE) stimulates activation of macrophages, leading to induction of phagocytotic activity and cytokine production. In the present study we investigated the mechanism underlying activation of murine macrophages by BFE. BFE increased production of TNF-α, IL-6, and nitric oxide by J774.1 cells. In addition BFE also facilitated the gene expression levels of inducible nitric oxide synthase. We examined the effect of a TLR4 inhibitor on cytokine production to investigate the membrane receptor of macrophage activation by BFE. Treatment of J774.1 cells with the TLR4 inhibitor significantly inhibited production of IL-6 and TNF-α, suggesting that TLR4 is the target membrane receptor for BFE. The main signal molecules located downstream of TLR4 such as JNK, p38, ERK, and NF-κB were activated by BFE treatment. The immunostimulatory effect of BFE was cancelled by the pectinase treatment, suggesting that the active ingredient in BFE is pectin-like molecules. Overall results suggested that BFE activates J774.1 cells via the MAPK and NF-κB signaling pathways. PMID:24770453

  9. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  10. Extracting the inclination angle of nerve fibers within the human brain with 3D-PLI independent of system properties

    NASA Astrophysics Data System (ADS)

    Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2013-09-01

    The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.

  11. Exciting fluorescence compounds on an optical fiber's side surface with a liquid core waveguide.

    PubMed

    Ray, Jason C; Almas, Muhammad S; Tao, Shiquan

    2016-01-01

    A new fiber optic fluorescence spectroscopic method using a liquid core waveguide (LCW) as an excitation element has been developed for detecting a fluorescence compound absorbed on an optical fiber's surface. A laser light beam was coupled into a multimode optical fiber. The distal end of the fiber was inserted into an LCW. The diverging light emerging from the fiber's end was collected and guided within the LCW. A tapered optical fiber was inserted into the LCW from the other side. Laser light traveling in the LCW evenly illuminates the tapered fiber surface and excites fluorescence molecules absorbed on the tapered fiber's surface. Fluorescence light emitted from the tapered fiber surface was collected with the fiber itself and delivered through the fiber to an optical fiber compatible spectrometer for detection. This new technique provides an efficient way for evenly exciting fluorescence compounds absorbed on an optical fiber's surface. PMID:26696168

  12. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  13. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation.

    PubMed

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  14. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  15. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  16. Fiber

    MedlinePlus

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  17. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guangwei, Li; Haotong, Zhang; Zhongrui, Bai

    2015-06-01

    Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our

  18. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  19. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  20. Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice.

    PubMed

    Lima, Eliane Brito Cortez; de Sousa, Caren Nádia Soares; Vasconcelos, Germana Silva; Meneses, Lucas Nascimento; E Silva Pereira, Yuri Freitas; Ximenes, Naiara Coelho; Santos Júnior, Manuel Alves; Matos, Natália Castelo Branco; Brito, Rayanne; Miron, Diogo; Leal, Luzia Kalyne Almeida Moreira; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2016-07-01

    The plant Cocos nucifera and its derivatives have shown antidepressant-like effects, although its hydroalcoholic extract has not been studied with this end in mind. Therefore, we decided to determine the antidepressant-like effects of the standardized hydroalcoholic extract of Cocos nucifera husk fiber (HECN) as well as oxidative alterations in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST), and the levels of brain-derived neurotrophic factor (BDNF) in the HC of mice. The extract was characterized based on the content of total polyphenols as well as two phenol compounds-catechin and chlorogenic acid-by HPLC-PDA. Male animals were treated per os (p.o.) for 7 days with distilled water or HECN (50, 100 or 200 mg/kg), or intraperitoneally with vitamin E (Vit E 400 mg/kg). One hour after the last drug administration, the animals were submitted to the open field test, forced swimming test (FST), tail suspension test (TST) and, immediately after the behavioral tests, had their brain removed for neurochemical determinations. The results showed that HECN100 decreased the immobility time in the FST and TST presenting, thus demonstrating an antidepressant-like effect. The administration of HECN decreased malondialdehyde levels in all doses and brain areas studied with the exception of HECN50 in the HC. The administration of HECN also decreased nitrite levels in all doses and brain regions studied. HECN100 also increased the levels of BDNF in HC of mice. In conclusion, we demonstrated that HECN has antidepressant-like properties, probably based on its antioxidant and neurotrophic effects, and is thus relevant for the treatment of depression. PMID:26857134

  1. Thread gauge for tapered threads

    DOEpatents

    Brewster, A.L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads. 13 figures.

  2. Thread gauge for tapered threads

    DOEpatents

    Brewster, Albert L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads.

  3. Integrative Performance Analysis of a Novel Bone Level Tapered Implant.

    PubMed

    Dard, M; Kuehne, S; Obrecht, M; Grandin, M; Helfenstein, J; Pippenger, B E

    2016-03-01

    Primary mechanical stability, as measured by maximum insertion torque and resonance frequency analysis, is generally considered to be positively associated with successful secondary stability and implant success. Primary implant stability can be affected by several factors, including the quality and quantity of available bone, the implant design, and the surgical procedure. The use of a tapered implant design, for instance, has been shown to result in good primary stability even in clinical scenarios where primary stability is otherwise difficult to achieve with traditional cylindrical implants-for example, in soft bone and for immediate placement in extraction sockets. In this study, bone-type specific drill procedures are presented for a novel Straumann bone level tapered implant that ensure maximum insertion torque values are kept within the range of 15 to 80 Ncm. The drill procedures are tested in vitro using polyurethane foam blocks of variable density, ex vivo on explanted porcine ribs (bone type 3), and finally in vivo on porcine mandibles (bone type 1). In each test site, adapted drill procedures are found to achieve a good primary stability. These results are further translated into a finite element analysis model capable of predicting primary stability of tapered implants. In conclusion, we have assessed the biomechanical behavior of a novel taper-walled implant in combination with a bone-type specific drill procedure in both synthetic and natural bone of various types, and we have developed an in silico model for predicting primary stability upon implantation. PMID:26927485

  4. Photonic lantern with cladding-removable fibers

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Yan, Qi; Bi, Yao; Yu, Haijiao; Liu, Xiaoqi; Xue, Jiuling; Tian, He; Liu, Yongjun

    2014-07-01

    Recently, spectral measurement becomes an important tool in astronomy to find exoplanets etc. The fibers are used to transfer light from the focal plate to spectrometers. To get high-resolution spectrum, the input slits of the spectrometers should be as narrow as possible. In opposite, the light spots from the fibers are circle, which diameters are clearly wider than the width of the spectrometer slits. To reduce the energy loss of the fiber-guide star light, many kinds of image slicers were designed and fabricated to transform light spot from circle to linear. Some different setup of fiber slicers are introduced by different research groups around the world. The photonic lanterns are candidates of fiber slicers. Photonic lantern includes three parts: inserted fibers, preform or tubing, taped part of the preform or tubing. Usually the optical fields concentrate in the former-core area, so the light spots are not uniform from the tapered end of the lantern. We designed, fabricated and tested a special kind of photonic lantern. The special fibers consist polymer cladding and doped high-index core. The polymer cladding could be easily removed using acetone bath, while the fiber core remains in good condition. We inserted the pure high-index cores into a pure silica tubing and tapered it. During the tapering process, the gaps between the inserted fibers disappeared. Finally we can get a uniform tapered multimode fiber end. The simulation results show that the longer the taper is, the lower the loss is. The shape of the taper should be controlled carefully. A large-zone moving-flame taper machine was fabricated to make the special photonic lantern. Three samples of photonic lanterns were fabricated and tested. The lanterns with cladding-removable fibers guide light uniform in the tapered ends that means these lanterns could collect more light from those ends.

  5. Radiation Losses Due to Tapering of a Double-Core Optical Waveguide

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)

    2001-01-01

    The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.

  6. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW.

    PubMed

    Bolpasi, V; von Klitzing, W

    2010-11-01

    A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation. PMID:21133462

  7. The influence of some vegetable extracts on the in vitro adherence of mouse and human lymphocytes to nylon fibers.

    PubMed

    Lenghel, V; Radu, D L; Chirilă, P; Olinescu, A

    1995-01-01

    We found that the total watery extracts obtained from roots of various plants such as Symphytum officinale, Phytolacca americana etc, precipitate human glycoproteins, agglutinate sheep red blood cells (SRBC) and stimulate lymphocyte adherence to nylon fibers. Five out of seven extracts precipitated human gammaglobulins and one of seven obviously agglutinate SRBC. If these cells were pretreated with rabbit antibodies against SRBC, all extracts agglutinated the cells at various degrees of intensity, the most active being Phytolacca americana. The adherence of mouse but not human lymphocytes to nylon fibers was stimulated by extracts of Symphytum officinale and Phytolacca americana. This process was neither stimulated nor inhibited by Mannose (Man), Galactose (Gal), Glucose (Glc), N-acethyl Galactose (GalNAc) and N-acethyl Glucose (Glc-NAc). These biological effects of the plant extracts could be the expression of a lectin-like ability to bind various sugars other than those mentioned. The results suggest the possibility of using different extracts as means to point out the presence in serum or at the cellular level of some carbohydrates influencing the cellular adhesion, phenomenon which plays an important role in the functions of hematopoietic cells. PMID:8993111

  8. Extraction and quantification of SO2 content in wines using a hollow fiber contactor.

    PubMed

    Plaza, Andrea; Romero, Julio; Silva, Wladimir; Morales, Elizabeth; Torres, Alejandra; Aguirre, María J

    2014-10-01

    Sulfites [Formula: see text] or sulfur dioxide (SO2) is a preservative widely used in fruits and fruit-derived products. This study aims to propose a membrane contactor process for the selective removal and recovery of SO2 from wines in order to obtain its reliable quantification. Currently, the aspiration and Ripper methods offer a difficult quantification of the sulfite content in red wines because they involve evaporation steps of diluted compounds and a colorimetric assay, respectively. Therefore, an inexpensive and accurate methodology is not currently available for continuous monitoring of SO2 in the liquids food industry. Red wine initially acidified at pH < 1 was treated by membrane extraction at 25 ℃. This operation is based on a hydrophobic Hollow Fiber Contactor, which separates the acidified red wine in the shell side and a diluted aqueous sodium hydroxide solution as receiving solution into the lumenside in countercurrent. Sulfite and bisulfite in the acidified red wine become molecular SO2, which is evaporated through the membrane pores filled with gas. Thus, SO2 is trapped in a colorless solution and the membrane contactor controls its transfer, decreasing experimental error induced in classical methods. Experimental results using model solutions with known concentration values of [Formula: see text] show an average extraction percentage of 98.91 after 4 min. On the other hand, two types of Chilean Cabernet Sauvignon wines were analyzed with the same system to quantify the content of free and total sulfites. Results show a good agreement between these methods and the proposed technique, which shows a lower experimental variability. PMID:23897976

  9. Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus.

    PubMed

    Domingo, Cinthia Santo; Soria, Marcelo; Rojas, Ana M; Fissore, Eliana N; Gerschenson, Lía N

    2015-01-01

    The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0-200 μL and hemicellulase amounts of 0-200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol. PMID:25809605

  10. Backlight units based on light extraction from a curved optical fiber

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Arizono, Kazuma; Nishida, Kazuki; Takigawa, Naoki

    2014-06-01

    A backlight unit is constructed by laying out a plastic optical fiber (POF) in a curved trench fabricated in a light-guide plate. First, the light leaks out of the POF at curved sections and enters the plate. Next, the light is extracted from the plate by some microstructures fabricated on the surfaces of the plate. Coupled to a laser diode, its optical power can be efficiently and uniformly delivered over a large area via the POF. In this experiment, we fabricated a 10 cm×10 cm×3 mm prototype unit with off-the-shelf components. It becomes see-through when the space around the POF is filled with index-matching oil. One can build an arbitrary-shaped planar light source by tiling multiple cells and connecting them by a POF. The light inside the POF is depleted as it propagates downstream. This can be compensated by decreasing the radii of curvature. Microstructures on the light-guide plate can distort the passage of ambient light. For a see-through unit, we can distribute them sparsely and/or use absorbers. A see-through backlight unit is a relatively unexplored device, and it might pave the way for new applications.

  11. Protease and Hemicellulase Assisted Extraction of Dietary Fiber from Wastes of Cynara cardunculus

    PubMed Central

    Santo Domingo, Cinthia; Soria, Marcelo; Rojas, Ana M.; Fissore, Eliana N.; Gerschenson, Lía N.

    2015-01-01

    The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0–200 μL and hemicellulase amounts of 0–200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol. PMID:25809605

  12. Theory and Simulations of Tapered Diblock Polymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa M.; Seo, Youngmi; Brown, Jonathan R.

    We study tapered block polymers, AB diblock polymers with a gradient region inserted between the pure A and B blocks such that composition smoothly transitions from A to B (or B to A in the case of inverse tapers). Phase diagrams were created using self consistent field theory (SCFT), and coarse-grained molecular dynamics (MD) simulations were used to study polymer conformations and diffusion, including diffusion of monomer-sized penetrants preferentially dissolved in one of the phases. As has been observed experimentally, we find that tapering makes the A and B blocks more miscible, decreasing domain spacing and shifting the order to disorder transition to lower temperatures. We predict a widening of the bicontinuous double gyroid region of the phase diagram for moderate length normal tapers versus diblocks, suggesting taper length can be used as a control parameter to obtain network phases even at high molecular weight, as may be desirable in transport applications. Additionally, in some inverse tapered systems, SCFT predicts phases not present in the standard AB diblock phase diagram, and MD simulations show how the chains fold back and forth across the interface. In these inverse tapered polymers, as segregation strength is increased, the competing effects of folding and stretching produces lamellae that have domain spacing nearly independent of temperature. We also find that diffusion of penetrants in normal tapers is significantly faster than that in inverse tapers, which is likely related to their unusual conformations. This material is based upon work supported by DOE Grant SC0014209.

  13. Adsorption separation of terpene lactones from Ginkgo biloba L. extract using glass fiber membranes modified with octadecyltrichlorosilane.

    PubMed

    Su, I-Fang; Chen, Li-Jen; Suen, Shing-Yi

    2005-07-01

    In this study porous glass fiber membranes were modified by reaction with octadecyl-trichlorosilane to form C18 hydrophobic membranes. The contact angle and the CH2 vibration bands at 2855 and 2920 cm(-1) found by FTIR measurements verified the successful immobilization of C18 groups on the glass fiber membranes. The resulting C18 hydrophobic membranes were used to adsorb terpene lactones from crude Ginkgo biloba L. extracts. In batch adsorption processes, the modified C18 membranes exhibited a better adsorption performance than commercial C18 solid phase extraction adsorbents. Different desorption solvents were tested and ethyl acetate was found to preferentially desorb terpene lactones from the modified C18 membranes. In flow adsorption experiments at 1 mL/min, terpene lactone contents higher than 6 wt% (the standardized content) could be achieved in the elution step using ethyl acetate. PMID:16116999

  14. Magnetic field tunability of optical microfiber taper integrated with ferrofluid.

    PubMed

    Miao, Yinping; Wu, Jixuan; Lin, Wei; Zhang, Kailiang; Yuan, Yujie; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2013-12-01

    Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element. PMID:24514542

  15. Suppression of muscle contraction by vanadate. Mechanical and ligand binding studies on glycerol-extracted rabbit fibers.

    PubMed

    Dantzig, J A; Goldman, Y E

    1985-09-01

    The suppression of tension development by orthovanadate (Vi) was studied in mechanical experiments and by measuring the binding of radioactive Vi and nucleotides to glycerol-extracted rabbit muscle fibers. During active contractions, Vi bound to the cross-bridges and suppressed tension with an apparent second-order rate constant of 1.34 X 10(3) M-1s-1. The half-saturation concentration for tension suppression was 94 microM Vi. The incubation of fibers in Vi relaxing or rigor solutions prior to initiation of active contractions had little effect on the initial rise of active tension. The addition of adenosine diphosphate (ADP) and Vi to fibers in rigor did not cause relaxation. Suppression of tension only developed during cross-bridge cycling. After slow relaxation from rigor in 1 mM Vi and low (50 microM) MgATP concentration (0 Ca2+), radioactive Vi and ADP were trapped within the fiber. This finding indicated the formation of a stable myosin X ADP X Vi complex, as has been reported in biochemical experiments with isolated myosin. Vi and ADP trapped within the fibers were released only by subsequent cross-bridge attachment. Vi and ADP were preferentially trapped under conditions of cross-bridge cycling in the presence of ATP rather than in relaxed fibers or in rigor with ADP. These results indicate that in the normal cross-bridge cycle, inorganic phosphate (Pi) is released from actomyosin before ADP. The resulting actomyosin X ADP intermediate can bind Vi and Pi. This intermediate probably supports force. Vi behaves as a close analogue of Pi in muscle fibers, as it does with isolated actomyosin. PMID:3903036

  16. Calculation of tapered monoplane wings

    NASA Technical Reports Server (NTRS)

    Amstutz, E

    1930-01-01

    The tapered wing shape increases the lift in the middle of the wing and thus reduces the bending moment of the lifting forces in the plane of symmetry. Since this portion of the wing is the thickest, the stresses of the wing material are reduced and desirable space is provided for stowing the loads in the wing. This statically excellent form of construction, however, has aerodynamic disadvantages which must be carefully weighed, if failures are to be avoided. This treatise is devoted to the consideration of these problems.

  17. Physics design for the ATA tapered wiggler 10. 6. mu. FEL amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-10-01

    We are presently designing and constructing a high-gain, tapered wiggler 10.6 ..mu.. FEL amplifier to operate with the 50 MeV ATA e-beam. The initial experiments will be done with a constant period (lambda /SUB w/ =8 cm), 5 m-long linear wiggler. For an input laser power of 800 MW and electron beam brightness of 2.10/sup 5/ A/(rad-cm)/sup 2/, we hope to achieve a trapped particle fraction about0.5 and an energy extraction efficiency of about2% with a about10% taper in the wiggler magnetic field. This taper corresponds to decelerating the trapped particle approximately two full ponderomotive well (i.e. bucket) heights. In this talk, we discuss the physics motivations behind our tapered wiggler design and initial experimental diagnostics.

  18. Design of multiple-ply laminated composite tapered beams

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.

    1993-01-01

    A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted for determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are presented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered.

  19. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  20. Circular tapered tape fabrication: Final report

    SciTech Connect

    Stockdale, D.A.

    1988-04-01

    A new approach to producing tapered tapes has been developed involving generating a tapered tape in a circular configuration on a lathe rather than a mill. This approach is more cost-effective and the redesigned slot configuration induced less stress on the tapes during installation and removal.

  1. Design and construction of cost-effective tapered amplifier systems for laser cooling and trapping experiments

    NASA Astrophysics Data System (ADS)

    Kangara, Jayampathi C. B.; Hachtel, Andrew J.; Gillette, Matthew C.; Barkeloo, Jason T.; Clements, Ethan R.; Bali, Samir; Unks, Brett E.; Proite, Nicholas A.; Yavuz, Deniz D.; Martin, Paul J.; Thorn, Jeremy J.; Steck, Daniel A.

    2014-08-01

    We present plans for the construction and operation of a tapered optical amplifier (TA) system seeded by a single-mode, frequency-tunable, near-IR external-cavity diode laser. Our plans include machine drawings for the parts, electronic circuit diagrams, and information on prices and vendors. Instructions are provided on how to safely couple light into and out of the TA chip. Practical aspects of handling the chip are discussed as well. Because many cold atom experiments require light beams with Gaussian spatial profiles, measurements of the tapered amplifier light output through a single-mode optical fiber are presented as a function of seed intensity, polarization, and driving current.

  2. Application of mesoporous carbon as a solid-phase microextraction fiber coating for the extraction of volatile aromatic compounds.

    PubMed

    Zhang, Xi; Zang, Xiaohuan; Zhang, Guijiang; Wang, Chun; Wang, Zhi

    2015-08-01

    A mesoporous carbon was fabricated using MCM-41 as a template and sucrose as a carbon source. The carbon material was coated on stainless-steel wires by using the sol-gel technique. The prepared solid-phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o-xylene, bromobenzene, and 4-chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 μg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 μg/L ranged from 73.1 to 99.1%. PMID:26041569

  3. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. PMID:27227575

  4. Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing

    NASA Astrophysics Data System (ADS)

    Wieduwilt, T.; Zeisberger, M.; Thiele, M.; Doherty, B.; Chemnitz, M.; Csaki, A.; Fritzsche, W.; Schmidt, M. A.

    2016-09-01

    Due to their unique optical properties, metallic nanoparticles offer a great potential for important applications such as disease diagnostics, demanding highly integrated device solutions with large refractive index sensitivity. Here we introduce a new type of monolithic localized surface plasmon resonance (LSPR) waveguide sensor based on the combination of an adiabatic optical fiber taper and a high-density ensemble of immobilized gold-reinforced silver nanoprisms, showing sensitivities up to 900 nm/RIU. This result represents the highest value reported so far for a fiber optic sensor using the LSPR effect and exceeds the corresponding value of the bulk solution by a factor of two. The plasmonic resonance is efficiently excited via the evanescent field of the propagating taper mode, leading to pronounced transmission dips (-20 dB). The particle density is so high (approx. 210 particle/μm2) that neighboring particles are able to interact, boosting the sensitivity, as confirmed by qualitative infinite element simulations. We additionally introduce a qualitative model explaining the interaction of plasmon resonance and taper mode on the basis of light extinction, allowing extracting key parameters of the plasmonic taper (e.g., modal attenuation). Due to the monolithic design and the extremely high sensitivity we expect our finding to be relevant in fields such as biomedicine, disease diagnostics, and molecular sensing.

  5. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  6. Beyond fractional anisotropy: extraction of bundle-specific structural metrics from crossing fiber models.

    PubMed

    Riffert, Till W; Schreiber, Jan; Anwander, Alfred; Knösche, Thomas R

    2014-10-15

    Diffusion MRI (dMRI) measurements are used for inferring the microstructural properties of white matter and to reconstruct fiber pathways. Very often voxels contain complex fiber configurations comprising multiple bundles, rendering the simple diffusion tensor model unsuitable. Multi-compartment models deliver a convenient parameterization of the underlying complex fiber architecture, but pose challenges for fitting and model selection. Spherical deconvolution, in contrast, very economically produces a fiber orientation density function (fODF) without any explicit model assumptions. Since, however, the fODF is represented by spherical harmonics, a direct interpretation of the model parameters is impossible. Based on the fact that the fODF can often be interpreted as superposition of multiple peaks, each associated to one relatively coherent fiber population (bundle), we offer a solution that seeks to combine the advantages of both approaches: first the fiber configuration is modeled as fODF represented by spherical harmonics and then each of the peaks is parameterized separately in order to characterize the underlying bundle. In this work, the fODF peaks are approximated by Bingham distributions, capturing first and second-order statistics of the fiber orientations, from which we derive metrics for the parametric quantification of fiber bundles. We propose meaningful relationships between these measures and the underlying microstructural properties. We focus on metrics derived directly from properties of the Bingham distribution, such as peak length, peak direction, peak spread, integral over the peak, as well as a metric derived from the comparison of the largest peaks, which probes the complexity of the underlying microstructure. We compare these metrics to the conventionally used fractional anisotropy (FA) and show how they may help to increase the specificity of the characterization of microstructural properties. While metrics relying on the first moments of

  7. Frequency coded sensors incorporating tapers

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor)

    2010-01-01

    A surface acoustic wave device includes a piezoelectric substrate on which is formed a transducer that generates acoustic waves on the surface of the substrate from electrical waves received by the transducer. The waves are carried along an acoustic track to either a second transducer or a reflector. The transducers or transducer and reflector are formed of subsections that are constructed to operate at mutually different frequencies. The subsections of at least one of the transducers or transducer and reflector are out of alignment with respect to one another relative to the transverse of the propagation direction. The out of aligned subsections provide not only a frequency component but also a time to the signal output signal. Frequency response characteristics are improved. An alternative embodiment provides that the transducers and/or reflectors are continuously tapered instead of having discrete frequency subsections.

  8. Utilizing Fiber-containing Thermo-responsive Gels to Extract Nanoparticles from Solution

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; Balazs, Anna

    2015-03-01

    Using computer simulations, we model an array of flexible fibers that are embedded in a lower critical solution temperature (LCST) thermo-responsive gel, which swells at lower temperatures and collapses at higher temperatures. The system is immersed in a solution containing dispersed nanoparticles and this fluid is driven to flow by an imposed shear. When the gel is heated, it collapses to expose the fibers, and thereby, triggers the ``catch'' process. Namely, the fibers can act like ``arms'' that wrap around the nanoparticle and bring it from the outer solvent into the gel layer. Moreover, we show that depending on the flexibility and hydrophobicity of the fibers, as well as the imposed shear, we can position the nanoparticles at the desired height within the gel layer. Our approach can be utilized for the detection and separation of components in fluids and for the controlled insertion of nanoparticles within a hydrogel at a particular distance from the gel interface

  9. Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia

    DOE PAGESBeta

    Montella, Salvatore; Balan, Venkatesh; da Costa Sousa, Leonardo; Gunawan, Christa; Giacobbe, Simona; Pepe, Olimpia; Faraco, Vincenza

    2016-03-02

    Here, the lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods— ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, α-larabinofuranosidase rPoAbf and its evolvedmore » variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and Arundo donax), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to

  10. Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia.

    PubMed

    Montella, Salvatore; Balan, Venkatesh; da Costa Sousa, Leonardo; Gunawan, Christa; Giacobbe, Simona; Pepe, Olimpia; Faraco, Vincenza

    2016-03-01

    The lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods-ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, α-L-arabinofuranosidase rPoAbf and its evolved variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and Arundo donax), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to those used

  11. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions.

    PubMed

    Blaiotta, Giuseppe; La Gatta, Barbara; Di Capua, Marika; Di Luccia, Aldo; Coppola, Raffaele; Aponte, Maria

    2013-12-01

    The main challenge to probiotics, during their passage through the gastrointestinal tract, are the acidic gastric secretions of the stomach, and the bile salts released into the duodenum. The survival of the strains, in this phase, is strongly influenced by the food used for their delivery. This work is part of a project studying the development of novel food processes, based on the use of chestnuts from cultivar "Castagna di Montella". In detail, the effect of indigestible chestnut fiber and of chestnut extract on the viability of selected lactic acid bacteria strains was evaluated. Among 28 cultures, twelve strains were selected, on the basis of tolerance to low pH values and bile salts, and submitted to exposition to simulated gastric or bile juice in presence of chestnut extract with or without immobilization in chestnut fiber. The presence of chestnut extract proved to play a significant role on the gastric tolerance improvement of lactobacilli. The recorded protective effect could not be simply related to the starch or reducing sugars content. RP-HPLC demonstrated that in the chestnut flour, there are one or more hydrophobic peptides or oligopeptides, which specifically offer a marked resistance to simulated gastric juice, albeit present at low concentration. These beneficial effects proved to be dependent by the cultivar used to produce the flour. PMID:24010594

  12. Endfire tapered slot antennas on dielectric substrates

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-01-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  13. Endfire tapered slot antennas on dielectric substrates

    NASA Astrophysics Data System (ADS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-12-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  14. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  15. Extraction of beta-glucan from oats for soluble dietary fiber quality analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: We have tested extraction protocols for soluble ß-glucan in order to optimize conditions for production of ß-glucan solutions for quality evaluation. We applied varied extraction time, temperature, pH, flour/water ratio, number of re-extractions, hydrothermal treatments and tested genoty...

  16. Cyclic fatigue resistance of two variable-taper rotary file systems: ProTaper universal and V-Taper.

    PubMed

    Whipple, Sterling J; Kirkpatrick, Timothy C; Rutledge, Richard E

    2009-04-01

    The cyclic fatigue resistance of ProTaper Universal (Dentsply Tulsa Dental Specialties, Tulsa, OK) and V-Taper (Guidance Endo, Albuquerque, NM) files was measured while rotating files around a 5-mm radius curve with 90 degrees of maximum flexure. The files were rotated at 250 rpm with a continuous axial oscillation of 4 mm at 1 Hz. The number of cycles to failure was calculated and analyzed by using univariate analysis of variance and the Tukey HSD posthoc test with results confirmed by nonparametric Kruskal-Wallis and Mann-Whitney U tests with a Bonferroni correction. The fracture faces of representative files were imaged with a scanning electron microscope to confirm cyclic fatigue as the mode of fracture. For the instruments tested, the ProTaper files appeared to resist fracture better than the V-Taper files. At each tip size tested, the ProTaper files either outperformed or were not statistically different than V-Taper files. PMID:19345804

  17. The Advantages of a Tapered Whisker

    PubMed Central

    Williams, Christopher M.; Kramer, Eric M.

    2010-01-01

    The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals. PMID:20098714

  18. The advantages of a tapered whisker.

    PubMed

    Williams, Christopher M; Kramer, Eric M

    2010-01-01

    The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals. PMID:20098714

  19. All-optical clock extraction from 40-Gbit/s NRZ data using cascaded long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Jeon, Sie-Wook; Hann, Swook; Park, Chang-Soo

    2010-06-01

    All-optical clock extraction from a 40-Gbit/s NRZ input signal is demonstrated using a cascaded long-period fiber grating (CLPG) and a mode-locked fiber ring laser. The CLPG has a Mach-Zehnder configuration with two arms along the core and cladding regions. Using the difference in propagation delay between two arms, the non-return-to-zero (NRZ) signal is converted to the pseudo-return-to-zero (PRZ) signal. To obtain repetitive pulses as a clock signal from the PRZ signal, a ring laser with a semiconductor optical amplifier (SOA) is used. Subsequently, the measured carrier-to-noise ratio (CNR) of the PRZ and clock signals are enhanced up to 30 dB and 31 dB, respectively, compared to that of the original NRZ signal. Also, the clock signal centered at 40 GHz has a low timing jitter of <1.3 ps. It is expected that this method can be applied to high speed fiber-optic systems of >40 Gbit/s due to its small time delay between the core and cladding regions.

  20. Determination of the characteristics of tapered wings

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1937-01-01

    This report presents tables and charts for use in determining the characteristics of tapered wings. Theoretical factors are given from which the following characteristics of tapered wings may be found: the span lift distribution, the induced-angle-of attack distribution, the lift-curve slope, the angle of zero lift, the induced drag, the aerodynamic-center position, and the pitching moment about the aerodynamic center.

  1. Tapered plug foam spray apparatus

    NASA Technical Reports Server (NTRS)

    Allen, Peter B. (Inventor)

    1996-01-01

    A two-component foam spray gun is readily disassembled for cleaning. It includes a body (1) with reactant (12, 14) and purge gas (16) inlet ports. A moldable valve packing (32) inside the body has a tapered conical interior surface (142), and apertures which match the reactant ports. A valve/tip (40) has a conical outer surface (48) which mates with the valve packing (32). The valve/tip (40) is held in place by a moldable packing washer (34), held at non-constant pressure by a screw (36, 38). The interior of the valve/tip (40) houses a removable mixing chamber (50). The mixing chamber (50) has direct flow orifices (60) and an auxiliary flow path (58, 60) which ameliorate pressure surges. The spray gun can be disassembled for cleaning without disturbing the seal, by removing the valve/tip (40) to the rear, thereby breaking it free of the conical packing. Rotation of the valve/tip (40) relative to the body (1) shuts off the reactant flow, and starts the purge gas flow.

  2. Analysis of guided wave propagation in a tapered composite panel

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  3. Analysis of volatile oil composition of Citrus aurantium L. by microwave-assisted extraction coupled to headspace solid-phase microextraction with nanoporous based fibers.

    PubMed

    Gholivand, Mohammad Bagher; Piryaei, Marzieh; Abolghasemi, Mir Mahdi

    2013-03-01

    Nanoporous silica was prepared and functionalized with amino propyl-triethoxysilane to be used as a highly porous fiber-coating material for solid-phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave-assisted extraction followed by headspace (HS) solid-phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave-assisted distillation HS-SPME followed by GC-MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans-β-Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample. PMID:23483734

  4. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    SciTech Connect

    Dasan, Y. K. Bhat, A. H.; Faiz, A.

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  5. Ultra-low-noise microwave extraction from fiber-based optical frequency comb.

    PubMed

    Millo, J; Boudot, R; Lours, M; Bourgeois, P Y; Luiten, A N; Le Coq, Y; Kersalé, Y; Santarelli, G

    2009-12-01

    In this Letter we report on an all-optical-fiber approach to the generation of ultra-low-noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultrastable laser source to generate an 11.55 GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz from the carrier. The residual frequency instability of the microwave signals derived from the two optical frequency combs is below 2.3x10(-16) at 1 s and about 4x10(-19) at 6.5x10(4) s (in 5 Hz bandwidth, three days of continuous operation). PMID:19953169

  6. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  7. High power, high brightness Al-free active region tapered lasers at 915 nm

    NASA Astrophysics Data System (ADS)

    Hassiaoui, I.; Michel, N.; Lecomte, M.; Parillaud, O.; Calligaro, M.; Krakowski, M.

    2006-04-01

    To achieve high power and high brightness, we have developed tapered diode lasers based on an Al-free active region at 915 nm. The material structure was grown by MOCVD (Metallorganic Chemical Vapor Deposition). It shows very low internal losses of only 0.5 cm -1, a very low transparency current density of 86 A/cm2, an excellent internal quantum efficiency of 86%, and a high characteristic temperature T 0 of 171 K. Based on these good results, at first, we have realised index-guided tapered lasers (IG1) with a narrow output width and a narrow taper angle, which deliver 1 W CW, together with an M2 beam quality parameter of 2.9 at 1/e2, and a narrow divergence angle in the slow axis of 5.1° FWHM and 7.5° at 1/e2. We have also fabricated new index-guided tapered lasers with a Clarinet shape, which were recently proposed to achieve high brightness together with a very narrow divergence angle. The Clarinet lasers deliver 0.6W CW, together with an excellent M2 beam quality factor of 1.2 at 1/e2, and a very narrow divergence angle in the slow axis of only 2.5° FWHM, and 3.9° at 1/e2, which is stable with current. These very narrow divergences are very advantageous for the collective coupling of tapered bars into optical fibers. In this work we have also investigated the influence of taper length on the output power and beam quality.

  8. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  9. Rotational flow in tapered slab rocket motors

    NASA Astrophysics Data System (ADS)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  10. Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure.

    PubMed

    Alonso, Diana; Gimeno, Miquel; Sepúlveda-Sánchez, José D; Shirai, Keiko

    2010-04-19

    A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08+/-0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations. PMID:20167308

  11. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  12. Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating.

    PubMed

    Bagheri, Habib; Roostaie, Ali

    2015-01-01

    In the present work, the roles of inorganic oxide nanoparticles on the extraction efficiency of polyethylene terephthalate-based nanocomposites were extensively studied. Four fiber coatings based on polyethylene terephthalate nanocomposites containing different types of nanoparticles along with a pristine polyethylene terephthalate polymer were conveniently electrospun on stainless steel wires. The applicability of new fiber coatings were examined by headspace-solid phase microextraction of some environmentally important volatile organic compound such as benzene, toluene, ethylbenzene and xylene (BTEX), as model compounds, from aqueous samples. Subsequently, the extracted analytes were transferred into a gas chromatography by thermal desorption. Parameters affecting the morphology and capability of the prepared nanocomposites including the type of nanoparticles and their doping levels along with the coating time were optimized. Four types of nanoparticles including Fe3O4, SiO2, CoO and NiO were examined as the doping agents and among them the presence of SiO2 in the prepared nanocomposite was prominent. The homogeneity and the porous surface structure of the SiO2-polyethylene terephthalate nanocomposite were confirmed by scanning electron microscopy indicating that the nanofibers diameters were lower than 300 nm. In addition, important parameters influencing the extraction and desorption process such as temperature and extraction time, ionic strength and desorption conditions were optimized. Eventually, the developed method was validated by gas chromatography-mass spectrometry. Under optimized conditions, the relative standard deviation values for a double distilled water spiked with the selected volatile organic compounds at 50 ng L(-1) were 2-7% (n=3) while the limits of detection were between 0.7 and 0.9 ng L(-1). The method was linear in the concentration range of 10 to 1,000 ng L(-1) (R(2)>0.9992). Finally, the developed method was applied to the analysis of

  13. Stress intensity factor in a tapered specimen

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1985-01-01

    The general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a compact and for a slender tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks.

  14. Collagen fiber formation and proliferation as a mechanism of cancer prevention and regression induced by extract from Mycobacterium tuberculosis: correlation between clinical observation and animal experiments.

    PubMed

    Kimoto, T; Watanabe, S; Hyodoh, F; Saito, T

    1988-01-01

    Administration of polysaccharides extracted from human Mycobacterium tuberculosis bacilli, Aoyama B strain (SSM) produced regression of breast cancer in 2 women. Biopsies of tumor nodules from these patients revealed intense proliferation of collagen fibers from the stromal cells. SSM apparently promoted the proliferation and maturation of collagen fibers from the stromal cells and matrix destroyed by tumor infiltration. Transplantation of human tumor cell lines into athymic mice resulted in the formation of collagen fibers surrounding the cancer cells. SSM promoted the proliferation and maturation of collagen fibers encasing the tumor cells. The intensity of collagen fiber formation varied with the kind of cancer cells used. The degree of proliferation of collagen fibers correlated with the antitumor effects of SSM. There was hardly any migration of lymphocytes, monocytes, and macrophages in the affected sites. It is interpreted that SSM stimulates the proliferation and maturation of collagen fibers in the host as a major mechanism of its antitumor property. When examined by circular dichroism this proliferation was found to be dependent upon changes in the molecular structure of the substances which make up the cell membrane. Fibronectin was presumed to be important among these substances. PMID:3390842

  15. Selective and simultaneous extractions of Zn and Cu ions by hollow fiber SLM modules containing HEH(EHP) and LIX84

    SciTech Connect

    Lee, J.C.; Jeong, J.; Park, J.T.; Youn, I.J.; Chung, H.S.

    1999-06-01

    The selective extractions of Zn{sup 2+} and Cu{sup 2} from their mixed solutions of sulfate medium have been studied using hollow fiber supported liquid membranes (HFSLM). The HFSLM contained two kinds of extractants; one contained 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester [HEH(EHP)], the commercial name of which is PC88A, for Zn extraction; the other contained the hydroxy oxime reagent LIX84 for Cu extraction. Individuals runs of each HFSLM were made to determine the effect of operational variables on the permeation rates of metal ions and their separation factors. In addition, the simultaneous and selective extractions of both Zn{sup 2+} and Cu{sup 2+} from their mixed solutions were demonstrated using the PC88A and LIX84 HFSLMs together. The performance of simultaneous extraction was compared with those of the individual runs.

  16. Observing dynamics of chromatin fibers in Xenopus egg extracts by single DNA manipulation using a transverse magnetic tweezer setup

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Skoko, Dunja; Marko, John; Maresca, Tom; Heald, Rebecca

    2005-03-01

    We have studied assembly of chromatin on single DNAs using Xenopus egg extracts and a specially designed magnetic tweezer setup which generates controlled force in the focal plane of the objective, allowing us to visualize and measure DNA extension under a wide range of constant tensions. We found, in the absence of ATP, interphase extracts assembled nucleosomes against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations indicating our experiments were in mechano-chemical equilibrium. We found that the ATP-depleted reaction can do mechanical work of 27 kcal/mol per nucleosome, providing a measurement of the free energy difference between core histone octamers on and off DNA. Addition of ATP leads to highly dynamic behavior: time courses show processive runs of assembly and disassembly of not observed in the -ATP case, with forces of 2 pN leading to nearly complete fiber disassembly. Our study shows that ATP hydrolysis plays a major role in nucleosome rearrangement and removal, and suggests that chromatin in vivo may be subject to continual assembly and disassembly.

  17. Apparatus for electrolytically tapered or contoured cavities

    NASA Technical Reports Server (NTRS)

    Williams, L. A. (Inventor)

    1967-01-01

    An electrolytic machining apparatus for forming tapered or contoured cavities in an electrically conductive and electrochemically erodible piece is presented. It supports the workpiece and an electrode for movement relatively toward each other and has means for pumping an electrolyte between the workpiece and the electrode.

  18. Cutting a Tapered Edge on Padding Material

    NASA Technical Reports Server (NTRS)

    Mitchell, M. J.

    1982-01-01

    Resilience and flexibility of felt, rubber, or other padding materials allow them to be clamped in form block, cut straight down, and then released to produce straight clean tapered edge. With material held in slanted position, edge can be cut straight down; hence cut depth is minimum.

  19. Ultra trace analysis of PAHs by designing simple injection of large amounts of analytes through the sample reconcentration on SPME fiber after magnetic solid phase extraction.

    PubMed

    Khodaee, Nader; Mehdinia, Ali; Esfandiarnejad, Reyhaneh; Jabbari, Ali

    2016-01-15

    A simple solventless injection method was introduced based on the using of a solid-phase microextraction (SPME) fiber for injection of large amounts of the analytes extracted by the magnetic solid phase extraction (MSPE) procedure. The resulted extract from MSPE procedure was loaded on a G-coated SPME fiber, and then the fiber was injected into the gas chromatography (GC) injection port. This method combines the advantages of exhaustive extraction property of MSPE and the solvent-less injection of SPME to improve the sensitivity of the analysis. In addition, the analytes were re-concentrated prior to inject into the gas chromatography (GC) inlet because of the organic solvent removing from the remaining extract of MSPE technique. Injection of the large amounts of analytes was made possible by using the introduced procedure. Fourteen polycyclic aromatic hydrocarbons (PAHs) with different volatility were used as model compounds to investigate the method performance for volatile and semi-volatile compounds. The introduced method resulted in the higher enhancement factors (5097-59376), lower detection limits (0.29-3.3pgmL(-1)), and higher sensitivity for the semi-volatile compounds compared with the conventional direct injection method. PMID:26592576

  20. Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identification of cellulose synthase complexes and their potential associated- components in cotton fibers

    PubMed Central

    Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao

    2016-01-01

    Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction. PMID:27192945

  1. Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identification of cellulose synthase complexes and their potential associated- components in cotton fibers.

    PubMed

    Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao

    2016-01-01

    Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction. PMID:27192945

  2. Extraction kinetics of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester using a hollow fiber membrane extractor

    SciTech Connect

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki; Hano, Tadashi

    1995-03-01

    A kinetic study concerning chemical complexation-based solvent extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester dissolved as an extractant in n-heptane was carried out using a microporous hydrophobic hollow fiber membrane extractor. The effects of concentration of chemical species in aqueous and organic feed solutions on the apparent permeabilities of metal species for extraction and stripping, respectively, were investigated to clarify the permeation mechanism. From the experimental results it was predicted that the permeation rate is controlled by diffusion of the chemical species in aqueous and organic phases and by interfacial chemical reaction. The experimental data were analyzed by the diffusion model accompanied with an interfacial reaction, taking into account the velocity distributions of the aqueous and organic phases through the inner and outer sides of the hollow fiber.

  3. Comparison of laterally condensed .06 and .02 tapered Gutta-Percha and sealer in vitro.

    PubMed

    Bal, A S; Hicks, M L; Barnett, F

    2001-12-01

    The purpose of this in vitro study was to compare the quality of the seal in canals prepared in a standardized manner and obturated with a .06 or a .02 tapered gutta-percha master cone using lateral condensation. Forty-four extracted human anterior teeth with single, straight canals were divided into two experimental groups of 20 teeth each and two control groups of 2 teeth each. The teeth were instrumented with Series 29 Profile .06 tapered rotary nickel-titanium files to a master apical file of 0.46 mm. Teeth in group 1 were obturated with a .02 tapered master gutta-percha cone and Roth 801 sealer using lateral condensation. Teeth in group 2 were obturated similarly, except a .06 tapered master gutta-percha cone was used. The depth of spreader penetration was recorded in millimeters. Positive control teeth were instrumented but not filled. Negative control teeth were instrumented, obturated, and externally sealed. The teeth were placed into a coronal leakage apparatus that contained an upper and lower reservoir of trypticase soy broth separated by the tooth. A 24-h growth of Proteus vulgaris in 0.25 ml of trypticase soy broth was placed in the coronal reservoir every 7 days for 70 days and incubated at 37 degrees C. Student's t test was used to determine whether there was a difference in spreader penetration between the groups, and a Fisher's exact test was used to determine whether there was a difference in bacterial leakage. The positive and negative controls validated the testing model. When a .02 tapered master cone was used, the spreader penetrated significantly closer to working length than when a .06 tapered master cone was used (p < 0.05). The difference between the groups in the number of samples that demonstrated complete bacterial penetration was not significant (p > 0.05). PMID:11771592

  4. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier.

    PubMed

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Hsu, Kevin; Hansen, Kim P; Sumpf, Bernd; Hasler, Karl-Heinz; Erbert, Götz; Jensen, Ole B; Pedersen, Christian; Huber, Robert; Andersen, Peter E

    2010-07-19

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifier as gain medium, and investigated the FDML performance comparing two fiber delay lines with different dispersion properties. We introduced an additional gain element into the resonator, and thereby achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 microm in air (approximately 11 microm in tissue) in OCT measurements. As our work shows, tapered amplifiers are suitable gain media for swept sources at 1050 nm with increased output power, while high gain counteracts dispersion effects in an FDML laser. PMID:20720964

  5. High extraction efficiency fiber coated with calix[4] open-chain crown ether for solid-phase microextraction of polar aromatic and aliphatic compounds.

    PubMed

    Liu, Mingming; Zeng, Zhaorui; Lei, Yun; Li, Haibing

    2005-11-01

    The calix[4] open-chain crown ether, 5,11,17,23-tetra-tert-butyl-25,27-di(2-allyloxyethoxyl)-26,28-dihydroxycalix[4]arene was synthesized and used for preparation of solid-phase microextraction (SPME) fibers of enhanced extraction efficiency. The new SPME coating made from calix[4] open-chain crown ether and hydroxyl-terminated silicone oil was developed with the aid of vinyltriethoxylsilane as bridge using sol-gel method and cross-linking technology. The efficiency of the novel fiber in the extraction of polar aromatic and aliphatic compounds, such as phenols, alcohols, and volatile fatty acids, was also investigated. Due to the introduction of the polar open-chain crown ether in calix[4]arene molecules, the calix[4] open-chain crown ether fiber showed much better selectivity and sensitivity to these polar compounds in comparison with calix[4]arene fiber. It also had superior extraction efficiency when compared to commercial poly(dimethylsiloxane)-divinylbenzene and polyacrylate fibers. Parts per billion to parts per trillion level detection limits were achieved for most of the analytes through SPME in conjunction with GC and flame ionization detector. The linear ranges were two to four orders of magnitude, and the RSD values were below 7% for all analytes. The novel fiber was applied to determine volatile alcohols and fatty acids in wine samples. The volatile-free wine prepared in this work was used to assure similar chemical environment for analytes in both calibration solutions and in real wine samples, thus compensating for possible matrix interferences. The established internal standard method using 4-methyl-2-pentanol as internal standard showed satisfactory accuracy and precision. PMID:16342796

  6. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    PubMed

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity. PMID:26625075

  7. Single-pot extraction-analysis of dyed wool fibers with ionic liquids.

    PubMed

    Lovejoy, Katherine S; Lou, Alexander J; Davis, Lauren E; Sanchez, Timothy C; Iyer, Srinivas; Corley, Cynthia A; Wilkes, John S; Feller, Russell K; Fox, David T; Koppisch, Andrew T; Del Sesto, Rico E

    2012-11-01

    Analytical capabilities to identify dyes associated with structurally robust wool fibers would critically assist crime-scene and explosion-scene forensics. Nondestructive separation of dyes from wool, removal of contaminants, and dye analysis by MALDI- or ESI-MS, were achieved in a single-pot, ionic liquid-based method. Ionic liquids (ILs) that readily denature the wool α-keratin structure have been identified and are conducive to small volume, high-throughput analysis for accelerated threat-response times. Wool dyed with commercial or natural, plant-based dyes have unique signatures that allow classification and matching of samples and identification of dyestuffs. Wool released 0.005 mg of dye per mg of dyed wool into the IL, allowing for analysis of single-thread sample sizes. The IL + dye mixture promotes sufficient ionization in MALDI-MS: addition of common MALDI matrices does not improve analysis of anionic wool dyes. An inexpensive, commercially available tetrabutylphosponium chloride IL was discovered to be capable of denaturing wool and was determined to be the most effective for this readily fieldable method. PMID:23066794

  8. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  9. Analysis of the polarization rotation effect in the inversely tapered spot size converter.

    PubMed

    Jia, Lianxi; Zhou, Haifeng; Liow, Tsung-Yang; Song, Junfeng; Huang, Ying; Tu, Xiaoguang; Luo, Xianshu; Li, Chao; Fang, Qing; Yu, Mingbin; Lo, Guoqiang

    2015-10-19

    Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods. The analysis results matched with the phenomena we observed in the transmission spectrum. Combining the analysis with the measurement results, we calculated the polarization rotation efficiency of the SSC in different samples and analyzed the origin of the polarization rotation effect. Finally, we discussed the influence of the effect to the DP-QPSK signal and proposed several methods to release the impact. PMID:26480439

  10. Refractometer based on a tapered Mach-Zehnder interferometer with Peanut-Shape structure

    NASA Astrophysics Data System (ADS)

    Huang, Ran; Ni, Kai; Ma, Qifei; Wu, Xueying

    2016-08-01

    A novel refractometer based on tapered Mach-Zehnder modal interferometer (MZI) is proposed and experimentally demonstrated. This sensor is composed of a pair of Peanut-Shape structures and an embedded taper - the former excites high-order cladding modes, while the latter enhances the evanescent field. As the effective refractive index (RI) of cladding is based on the changes of surrounding RI, thus extinction ratio will change due to the alteration of the distribution of power in the fiber which is induced by various differences of core and cladding for RI. As a result, the maximum RI sensitivity of 240.78 extinction ratio/RIU (refractive index unit) is achieved within the range from 1.3334 to 1.4081.

  11. The Effect of Taper Angle and Spline Geometry on the Initial Stability of Tapered, Splined Modular Titanium Stems.

    PubMed

    Pierson, Jeffery L; Small, Scott R; Rodriguez, Jose A; Kang, Michael N; Glassman, Andrew H

    2015-07-01

    Design parameters affecting initial mechanical stability of tapered, splined modular titanium stems (TSMTSs) are not well understood. Furthermore, there is considerable variability in contemporary designs. We asked if spline geometry and stem taper angle could be optimized in TSMTS to improve mechanical stability to resist axial subsidence and increase torsional stability. Initial stability was quantified with stems of varied taper angle and spline geometry implanted in a foam model replicating 2cm diaphyseal engagement. Increased taper angle and a broad spline geometry exhibited significantly greater axial stability (+21%-269%) than other design combinations. Neither taper angle nor spline geometry significantly altered initial torsional stability. PMID:25754255

  12. Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction.

    PubMed

    Li, Jianguo; Liu, Yishan; Duan, Chao; Zhang, Hongjie; Ni, Yonghao

    2015-09-01

    Hemicelluloses removal is a prerequisite for the production of high-quality cellulose (also known as dissolving pulp), and further recovery and utilization of hemicelluloses, which can be considered as a typical Integrated Forest Biorefinery concept. In this paper, a process of combined mechanical refining and cold caustic extraction (CCE), which was applied to a softwood sulfite sample, was investigated. The results showed that the hemicelluloses removal efficiency and selectivity were higher for the combined treatment than that for the CCE alone. The combined treatment can thus decrease the alkali concentration (from 8% to 4%) to achieve a similar hemicelluloses removal. The improved results were due to the fact that the mechanical refining resulted in increases in pore volume and diameter, water retention value (WRV) and specific surface area (SSA), all of which can make positive contributions to the hemicelluloses removal in the subsequent CCE process. PMID:26081626

  13. Recent Progress in Developing a Commercial Fiber-Loop Cavity Ringdown System

    NASA Astrophysics Data System (ADS)

    Siller, Brian; Matz, Ryan; Waechter, Helen

    2014-06-01

    High purity and precisely mixed liquid solutions are important to a variety of industrial processes, but sensors for such solutions often have significant drawbacks such as the need for regular calibration and the inability to continuously make real-time measurements. For some specialty liquids, such as cryogenic liquids or caustic solutions used in the semiconductor industry, direct sensors for composition and contamination don't exist at all, and indirect methods must be used instead. Fiber-loop cavity ring-down spectroscopy (FL-CRDS) can provide an ideal solution for many challenging applications. Since fibers are resistant to chemicals and extreme temperatures, a sensor based on FL-CRDS can be used in environments where other techniques and sensors can't work. In a FL-CRDS instrument, a laser is coupled into a loop of fiber, and a small amount of light is extracted from the loop to a detector with each pass. Spliced into the loop is a sensing element that allows the evanescent field of the light otherwise confined within the fiber core to interact with the surrounding environment. Results will be presented for detection of contaminants in liquids with several types of sensing elements: fiber tapers, side-polished fibers, and core-only fibers; each with a variety of geometries. Sampling systems for both continuous flow of small samples and for monitoring of static sample baths will also be presented.

  14. On the characterization and spinning of solvent extracted lignin towards the manufacture of low-cost carbon fiber

    SciTech Connect

    Baker, Darren A; Gallego, Nidia C; Baker, Frederick S

    2012-01-01

    ABSTRACT: A Kraft hardwood lignin (HWL) and an organic-purified hardwood lignin (HWL-OP) were evaluated as potential precursors for the production of lowcost carbon fibers. It was found that the unpurified HWL exhibited poor spinnability while the HWL-OP exhibited excellent spinnability characteristics. Fibers of various diameters were obtained from the HWL-OP. Thermostabilization studies showed that oxidative stabilization can only be used to convert HWL-OP-based fibers into carbon fibers if extremely low heating rates are applied. Carbonized lignin-based fibers had tensile strength of 0.51 GPa and tensile modulus of 28.6 GPa. VC

  15. Simulations of the 100 kW TJNAF FEL Using a Step-Tapered Undulator

    SciTech Connect

    J. Blau; V. Bouras; W. B. Colson; A. Kalfoutzos; S. V. Benson; H. F. Dylla; G. R. Neil

    2002-05-01

    The TJNAF free electron laser (FEL) can be upgraded to operate at 100 kW average power in the near future using a configuration that recirculates the electron beam to recover energy. It is important to extract the maximum energy from the electron beam in a pass through the undulator while inducing the minimum amount of exhaust energy spread. A larger energy extraction reduces the requirement for a large recirculating current, while a smaller exhaust energy spread allows the intense electron beam to be recirculated without damaging components. To improve FEL performance, we explore the use of the step-tapered undulator which alters the resonance condition halfway through the undulator. Short pulses and optical diffraction complicate the desired interaction. Comparisons are made to the conventional periodic and linearly tapered undulators.

  16. Optimal source to detector separation for extracting sub-dermal chromophores in fiber optic diffuse reflectance spectroscopy: a simulation study

    NASA Astrophysics Data System (ADS)

    Sujatha, N.; Nivetha, K. Bala; Singhal, Akshay

    2014-05-01

    Localization and determination of blood region parameters in skin tissue can serve as a valuable supplement to standard non invasive techniques, especially in accessing the degree of depth of burns on skin and for the classification of vascular malformations. Quantitative optical examination of skin local blood region requires the use of depth sensitive techniques and preferential probing for assessment of data from specific layers of skin tissue. This work incorporates the depth sensitivity of diffuse reflectance spectroscopy and optimal source to detector fiber separation for maximum reflectance collection efficiency from local blood region in skin. Monte Carlo simulation for diffuse reflectance was performed on a multi layered skin tissue model consisting of epidermis, perfused dermis and localized blood region. It was found that the slope of the spatially resolved reflectance curve plotted with respect to the source to detector separation distance in semi log scale varies with the depth of the local blood region at specific wavelengths corresponding to the absorption wavelengths of hemoglobin. From the depth information obtained from the spatially resolved reflectance data, the optimum source to detector separation (SDS) is determined for maximum collection efficiency from the chromophore layer. The results obtained from simulation suggest the design of a linearly variable source to detector separation probe for preferential analysis of the depth of a specific tissue layer and subsequent determination of optimal source to detector separation for extracting the layer information.

  17. Cooling arrangement for a tapered turbine blade

    SciTech Connect

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  18. Spatially resolved spectroscopy using tapered stripline NMR

    NASA Astrophysics Data System (ADS)

    Tijssen, Koen C. H.; Bart, Jacob; Tiggelaar, Roald M.; Janssen, J. W. G. (Hans); Kentgens, Arno P. M.; van Bentum, P. Jan M.

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10-2-101 s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields.

  19. Orthogonal feeding techniques for tapered slot antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1998-01-01

    For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.

  20. Performance of a tapered pulse tube

    SciTech Connect

    Swift, G.; Allen, M.; Woolan, J.J.

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  1. Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles

    PubMed Central

    Choi, Sung-Hwan; Kim, Seong-Jin; Lee, Kee-Joon; Sung, Sang-Jin; Chun, Youn-Sic

    2016-01-01

    Objective The purpose of this study was to analyze stress distributions in the roots, periodontal ligaments (PDLs), and bones around cylindrical and tapered miniscrews inserted at different angles using a finite element analysis. Methods We created a three-dimensional (3D) maxilla model of a dentition with extracted first premolars and used 2 types of miniscrews (tapered and cylindrical) with 1.45-mm diameters and 8-mm lengths. The miniscrews were inserted at 30°, 60°, and 90° angles with respect to the bone surface. A simulated horizontal orthodontic force of 2 N was applied to the miniscrew heads. Then, the stress distributions, magnitudes during miniscrew placement, and force applications were analyzed with a 3D finite element analysis. Results Stresses were primarily absorbed by cortical bone. Moreover, very little stress was transmitted to the roots, PDLs, and cancellous bone. During cylindrical miniscrew insertion, the maximum von Mises stress increased as insertion angle decreased. Tapered miniscrews exhibited greater maximum von Mises stress than cylindrical miniscrews. During force application, maximum von Mises stresses increased in both groups as insertion angles decreased. Conclusions For both cylindrical and tapered miniscrew designs, placement as perpendicular to the bone surface as possible is recommended to reduce stress in the surrounding bone. PMID:27478796

  2. Design of Structurally Efficient Tapered Struts

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2010-01-01

    This report describes the analytical study of two full-scale tapered composite struts. The analytical study resulted in the design of two structurally efficient carbon/epoxy struts in accordance with NASA-specified geometries and loading conditions. Detailed stress analysis was performed of the insert, end fitting, and strut body to obtain an optimized weight with positive margins. Two demonstration struts were fabricated based on a well-established design from a previous Space Shuttle strut development program.

  3. Experimental stiffness of tapered bore seals

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1985-01-01

    The stiffness of tapered-bore ring seals was measured with air as the sealed fluid. Static stiffness agreed fairly well with results of a previous analysis. Cross-coupled stiffness due to shaft rotation was much less than predicted. It is suggested that part of the disparity may be due to simplifying assumptions in the analysis; however, these do not appear to account for the entire difference observed.

  4. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  5. Construct a new method accurately extracting parameters associate with absorption and scattering coefficients of epithelium and stroma: using perpendicular and oblique fiber bundle probes

    NASA Astrophysics Data System (ADS)

    Hsieh, H. P.; Sung, K. B.; Hsu, F. W.

    2014-05-01

    Diffuse reflectance spectroscopy has been applied as a non-invasive method to measure tissue optical properties, which are associate with anatomical information. The algorithm widely used to extract, optical parameters from reflectance spectra is the regression method, which is time-consuming and frequently converge to local maxima. In this study, the effects of parameters changes on spectra are analyzed in different fiber geometries, source-detector separations and wavelengths. In the end of this paper, a new fitting algorithm is proposed base on parameters features found. The new algorithm is expected to enhance the accuracy of parameters extracted and save 75% of the process time.

  6. Tapered fused-bundle splitter capable of 1kW CW operation

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Lovelady, Michael; Séguin, François

    2007-02-01

    In order to test power-handling at 1kW, a special splitter component had to be developed to make use of available sources. A tapered fused-bundle (TFB) 1X7 splitter using a 1.00mm core diameter 0.22NA input fiber coupled to seven 400 micron core 0.22 NA output fibers was tested up to 860W at 976nm. Surface temperature rise was measured to be less than 15°C with active heat sinking. The above results suggest that understanding the mechanisms of optical loss for forward and backward propagating light in a TFB and the heat load that these losses generate is the key to producing multi kW components, and demonstrates that reliable kW-level all fiber devices are possible.

  7. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.).

    PubMed

    Ma, Mengmei; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Yan, Zhibin

    2015-07-15

    This study evaluated the optimal conditions for extracting dietary fiber (DF) from deoiled cumin by shear emulsifying assisted enzymatic hydrolysis (SEAEH) using the response surface methodology. Fat adsorption capacity (FAC), glucose adsorption capacity (GAC), and bile acid retardation index (BRI) were measured to evaluate the functional properties of the extracted DF. The results revealed that the optimal extraction conditions included an enzyme to substrate ratio of 4.5%, a reaction temperature of 57 °C, a pH value of 7.7, and a reaction time of 155 min. Under these conditions, DF extraction efficiency and total dietary fiber content were 95.12% and 84.18%, respectively. The major components of deoiled cumin DF were hemicellulose (37.25%) and cellulose (33.40%). FAC and GAC increased with decreasing DF particle size (51-100 μm), but decreased with DF particle sizes <26 μm; BRI increased with decreasing DF particle size. The results revealed that SEAEH is an effective method for extracting DF. DF with particle size 26-51 μm had improved functional properties. PMID:25722165

  8. Application of a solid-phase microextraction fiber coated with a graphene oxide-poly(dimethylsiloxane) composite for the extraction of triazoles from water.

    PubMed

    Li, Zhi; Ma, Ruiyang; Zhang, Guijiang; Zhang, Shuaihua; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2016-08-01

    A solid-phase microextraction fiber was prepared by mixing graphene oxide and hydroxyl-terminated polydimethylsiloxane together and then coating the mixture on the surface of etched stainless-steel wire by sol-gel technology. After aging by heating, the graphene oxide-polydimethylsiloxane composite coated fiber was used for the direct solid phase microextraction of triazole fungicides from water samples. The properties of the graphene oxide-polydimethylsiloxane coating were characterized by transmission electron microscopy and thermogravimetric analysis. And the chemical stability of the coating was tested as well. Several important experimental parameters that could influence the extraction efficiency such as desorption temperature and time, extraction temperature and time, sample pH and stirring rate, were investigated and optimized. Under the optimized conditions, the limits of detection were in the range from 0.01 to 0.03 μg/L. The results indicated that the homemade fiber had the advantages of good thermal and chemical stability and high extraction efficiency, which was successfully applied to the analysis of triazoles in water samples. PMID:27306964

  9. Taper Angle Evolution in Taiwan Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Chen, L.; Chi, W.; Liu, C.

    2011-12-01

    Liwen Chena,b, Wu-Cheng Chia, Char-Shine Liuc aInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan bInstitute of Geosciences, National Taiwan University, Taipei, Taiwan cInstitute of Oceanography, National Taiwan University, Taipei, Taiwan The critical taper model, originally developed using onland Taiwan as an example, is governed by force balance of a horizontal compressional wedge. This model has been successfully applied to many mountainous regions around the world. Among them, Taiwan is located in an oblique collision between the Luzon Arc and the Chinese Passive margin. Previous critical taper angle studies of Taiwan are mainly focusing on utilizing land data. In this study we want to extend these studies to offshore region from the subduction zone to collision zone. Here we study the varying taper angles of the double-vergent wedge derived from 1,000 km of reflection seismic profiles in both the pro-wedge and retro-wedge locations. These profiles were collected in the last two decades. For the retro-wedge, the topography slope angle changes from 2 to 8.8 degrees; some of the steep slope suggests that some part of the retrowedge is currently in a super-critical angle state. Such dramatic changes in taper angle probably strongly affect regional sedimentary processes, including slumping, in addition to structural deformation. These complex processes might even help develop a mélange or re-open a closed basin. We are currently working on studying the taper angle evolution of the pro-wedge from subduction to arc-continent collision zone in the offshore region. Though further works are needed, our preliminary results show that the evolution of wedge angles and the geometry of the wedge are closely linked and inseparable. The structures of the subducting plate might have strong influence on the deformation style of the over-riding plate. It would be interesting to combine the angle variation with the structure interpretation of the accretionary wedge

  10. Fiber optic engine for micro projection display.

    PubMed

    Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan

    2010-03-01

    A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output. PMID:20389477

  11. Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes.

    PubMed

    Liu, Jing-Fu; Toräng, Lars; Mayer, Philipp; Jönsson, Jan Ake

    2007-08-10

    Hollow fiber supported liquid membranes were applied for the passive extraction of phenoxy acid herbicides from water samples. Polypropylene hollow fiber membranes (240 microm i.d., 30 microm wall thickness, 0.05 microm pore size, 30 cm length) were impregnated with 2.0% tri-n-octylphosphine oxide (TOPO) in di-n-hexyl ether in the pores of the fiber wall to form a liquid membrane. They were then filled with basic solution in the lumen as acceptor and finally placed into the sample (donor). Complete extraction of phenoxy acid herbicides including 2,4-D, MCPA, dichlorprop, and mecoprop from an acidified sample (4 mL, adjusted to pH 1.5 with HCl) into basic acceptor (10 microL of 0.2M NaOH) was achieved after 4 h of shaking (100 rpm) resulting in an enrichment factor of 400 times. The acceptor was then neutralized by addition of HCl and injected into a HPLC system for the determination of the phenoxy acid herbicides. Environmentally relevant salinity (0-3.5% NaCl) and dissolved organic matter (0-25 mg/L of dissolved organic carbon) had no significant effect on the extraction. The method provided extraction efficiencies of more than 91%, detection limits of 0.3-0.6 microg/L, and combined extraction and clean up in one single step. This procedure was applied to determine aqueous concentrations of phenoxy acid herbicides in groundwater samples collected from an old dumping site (Cheminova, Denmark) with detected concentrations up to 5800 microg/L. Although the samples were very dirty with large amounts of suspended particles, non-aqueous phase liquids (NAPLs) and dissolved organic matters, good spike recoveries (80-126%) were obtained for 10 of the 11 samples. PMID:17449052

  12. Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO₂ laser welding.

    PubMed

    Fang, Zhiwei; Lin, Jintian; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya

    2015-10-19

    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high-Q-factor of 2.12 × 10(6) in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid. PMID:26480452

  13. Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO_2 laser welding

    NASA Astrophysics Data System (ADS)

    Fang, Zhiwei; Lin, Jintian; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya

    2015-10-01

    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high Q-factor of 2.12*10^6 in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.

  14. Micro-taper as focusing or scattering optical element

    NASA Astrophysics Data System (ADS)

    Degtyarev, S. A.; Ustinov, A. V.; Khonina, S. N.

    2016-04-01

    We consider micro-taper (narrow refractive axicon) as optical element which is focusing or scattering in dependence on axicon's cone angle. The diffraction of laser beam by micro-taper is simulated by two methods: multiply internal ray reflections using geometrical approach and Helmholtz equation solving using finite elements method. Based on ray optics we derive analytic formulas for conical angles values which provide focusing or scattering features of micro-taper. Numerical simulation by finite elements method verifies theoretical results.

  15. Fiber-based saturable-absorber action based on a focusing Kerr effect

    NASA Astrophysics Data System (ADS)

    Wang, Long; Haus, Joseph W.

    2016-05-01

    We report numerical simulations on a fiber compatible, self-focusing, saturable absorber device. Two fiber ends are separated by a bulk, nonlinear medium. An optical beam transmitted from one tapered fiber end, propagates through the nonlinear medium and couples back into the other tapered fiber end. The fiber mode distributions at the ends of the tapered fibers are calculated using a Finite Difference Method (FDM). We apply the beam propagation method to simulate the diffraction and nonlinearity in the nonlinear medium. As a function of initial beam power and the fiber mode design, the coupling efficiency plots are calculated and compared for different nonlinear mediums. Our simulations identify the optimum contrast between low and high input powers.

  16. Radiation pattern analysis of the tapered slot antenna, appendix 1

    NASA Technical Reports Server (NTRS)

    Janaswamy, Ramakrishna

    1986-01-01

    A theoretical model for the tapered slot antenna is presented. The model is valid for any smooth taper of the slot. The problem is solved by modeling the slot electric field and using the half plane Green's function to compute the far fields. The aperture field is obtained by affecting a stepped approximation to the continuous taper and utilizing the uniform wide slot line data. The uniform wide slot line is solved by the spectral Galerkin's technique and closed form experssions are developed for the slot wave length and the slot characteristic impedance. Numerous comparisons with measurement are made to demonstrate the versatility of the model in treating an arbitrary slot taper.

  17. Investigation of protocols to extraction and quantification of folates in vegetables matrices split into liquor and fiber fraction using factorial design.

    PubMed

    Prado de Paiva, Emmanuela; Anderson de Azevedo Filho, Clayton; Ferreira, Sabrina Gomes; Stamford, Tânia Lucia Montenegro; da Paixão, Jose Almiro

    2012-10-19

    The main protocols of extraction were investigated for the six folate forms in vegetable matrices, treated in two fractions, liquor and fiber. In a pilot study, it was used ammonium acetate added of 2-mercaptoetanol and ascorbic acid as extraction solution. The condition of use of protease and folate conjugase was evaluated, besides alternative treatments without enzyme use. Based on the results of this stage, it was built the factorial design 2(4), with three replications at the central point, using the following variables: temperature, time for reaction, molar concentration of the extraction solution and ratio sample/solution as independent variables and dependent variable, the amount of each folate form extracted as well as spectral and chromatographic parameters. In the pilot study it was verified that the enzyme use can cause an increase in the variability of the folate content, which enabled to build the factorial design without the enzyme use. The binomial time and temperature showed greatest impact on the extraction profile, besides high concentrations of ammonium acetate resulting in bifurcation of some peaks. 5-Methyltetrahydrofolate was extracted primordially in the liquor fraction, indicating that this treatment on the matrix provoked suitable extraction condition to this folate. PMID:22980643

  18. A pure permanent magnet-two plane focusing-tapered wiggler for a high average power FEL

    SciTech Connect

    Fortgang, C.M.

    1996-11-01

    A high-average power FEL is under construction at Los Alamos. The FEL will have aspects of both an oscillator and a SASE (self-amplified spontaneous emission) device. That is, a high-gain and high- extraction efficiency wiggler will be used with a very low-Q optical resonator. FEL simulations reveal that a tapered wiggler with two- plane focusing is required to obtain desired performance. The wiggler is comprised of a I meter long untapered section followed by a 1 meter tapered section. The taper is achieved with the magnetic gap and not the wiggler period which is constant at 2 cm. The gap is tapered from 5.9 mm to 8.8 mm. The, gap, rather than the period, is tapered to avoid vignetting of the 16 {mu}m optical beam. Two-plane focusing is necessary to maintain high current density and thus high gain through out the 2 meter long wiggler. Several magnetic designs have been considered for the wiggler. The leading candidate approach is a pure permanent wiggler with pole faces that are cut to roughly approximate the classical parabolic pole face design. Focusing is provided by the sextupole component of the wiggler magnetic field and is often called ``natural`` or ``betatron`` focusing. Details of the design will be presented.

  19. Improved Tennis Racquets Have Tapered Strings

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Design concept for better performing tennis racquet. Essence of concept to taper strings in such way as to shift center of percussion (also called "sweet spot") toward the toe (outer end of racquet, farthest from player's hand). In addition to increasing power on serves, also improves player's control and feel of racquet in player's hand. Racquet less likely to twist in player's hand on off-center shots. Important element of better feel is better absorption of vibrations; especially for players having chronic arm problems. String material nylon, animal gut, or other naturally or artifically spun threads. String can be attached to conventional racquet frame.

  20. Window taper functions for subaperture processing.

    SciTech Connect

    Doerry, Armin Walter

    2013-12-01

    It is well known that the spectrum of a signal can be calculated with a Discrete Fourier Transform (DFT), where best resolution is achieved by processing the entire data set. However, in some situations it is advantageous to use a staged approach, where data is first processed within subapertures, and the results are then combined and further processed to a final result. An artifact of this approach is the creation of grating lobes in the final response. The nature of the grating lobes, including their amplitude and spacing, is an artifact of window taper functions, subaperture offsets, and subaperture processing parameters. We assess these factors and exemplify their effects.

  1. Single-mode tapered quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Rauter, Patrick; Menzel, Stefan; Gokden, B.; K. Goyal, Anish; Wang, Christine A.; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-05-01

    We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 μm, where nine devices feature single-mode operation at peak powers between 0.3 and 1.6 W at room temperature. High output power and excellent beam quality with peak brightness values up to 1.6 MW cm-2 sr-1 render these two-terminal devices highly suitable for stand-off spectroscopy applications.

  2. Gold Coating of Fiber Tips in Near-Field Scanning Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    2000-01-01

    We report what is believed to be the first experimental demonstration of gold coating by a chemical baking process on tapered fiber tips used in near-field scanning optical microscopy. Many tips can be simultaneously coated.

  3. Comparison of two SPME fibers for the extraction of some off-flavor cork-taint compounds in bottled wines investigated by GC-HRMS.

    PubMed

    Bianco, Giuliana; Novario, Giuseppe; Zianni, Rosalia; Cataldi, Tommaso R I

    2009-04-01

    Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography with high-resolution mass spectrometry (GC-HRMS) was used to determine 2,4,6-trichloroanisole, 2,3,6-trichloroanisole, 2,3,4-trichloroanisole, 2,3,5,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 2-methylisoborneol, and 4-ethylguaiacol in wine samples. Two types of fiber coating commonly employed for sampling trichloroanisoles in wine and cork stoppers, viz. a polar mixed 50/30 microm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and a nonpolar 100 microm polydimethylsiloxane (PDMS), both 1 cm in length, were compared. This study demonstrates that the most employed polar mixed fiber should not be used with ethanol-water solutions, viz. wine samples, as its coating is not chemically and mechanically robust for sample extractions, as confirmed by environmental scanning electron microscopy. Much more effective and reliable results were obtained with the PDMS fiber, which remained functional for more than 80 analyses of red and white wine samples with satisfactory extraction efficiencies. Detection limits of investigated compounds, under optimized experimental conditions, ranged from 0.2 to 0.4 ng/L at a signal-to-noise ratio of 3 and quantification limits from 0.8 to 1.5 ng/L. The proposed method was successfully applied to commercially available Italian white and red wines using 2,4,6-TCA-d(5) as the internal standard. PMID:19190895

  4. Synthesis of silver nanoparticles using aqueous extracts of Heterotheca inuloides as reducing agent and natural fibers as templates: Agave lechuguilla and silk.

    PubMed

    Morales-Luckie, Raúl A; Lopezfuentes-Ruiz, Aldo Adrián; Olea-Mejía, Oscar F; Liliana, Argueta-Figueroa; Sanchez-Mendieta, Víctor; Brostow, Witold; Hinestroza, Juan P

    2016-12-01

    Silver nanoparticles (Ag NPs) were synthesized using a one-pot green methodology with aqueous extract of Heterotheca inuloides as a reducing agent, and the support of natural fibers: Agave lechuguilla and silk. UV-Vis spectroscopy, X-Ray photoelectron spectroscopy XPS and transmission electron microscopy TEM were used to characterize the resulting bionanocomposite fibers. The average size of the Ag NPs was 16nm and they exhibited low polydispersity. XPS studies revealed the presence of only metallic Ag in the nanoparticles embedded in Agave. lechuguilla fibers. Significant antibacterial activities against gram-negative Escherichia coli and gram-positive Staphylococcus aureus were determined. AgO as well as metallic Ag phases were detected when silk threads were used as a substrates hinting at the active role of substrate during the nucleation and growth of Ag NPs. These bionanocomposites have excellent mechanical properties in tension which in addition to the antibacterial properties indicate the potential use of these modified natural fibers in surgical and biomedical applications. PMID:27612732

  5. Optical fiber sensors for measurement strain and vibration

    NASA Astrophysics Data System (ADS)

    Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Holík, Milan; Jelinek, Michal; Cip, Ondrej

    2015-01-01

    We present optical fiber sensors to measurement strain and vibration. The sensors are based on fiber Bragg gratings (FBG). We prepared construction of strain sensors with respect to its implementation on the outer surface of concrete structures and with compensation of potential temperature drifts. These sensors are projected with look forward to maximal elongation and strength which can be applied to the sensor. Each sensor contains two optical fibers with FBGs. One FBG is glued into the sensor in points of fixation which are in the line with mounting holes. This FBG is prestressed to half of measurement range, than the stretching and pressing can be measured simultaneously by one FBG. The second FBG is placed inside the sensor without fixation to measure temperature drifts. The sensor can be used to structure health monitoring. The sensors to measurement vibration are based on tilted fiber Bragg grating (TFBG) with fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. In this article we present complete set-up, optical and mechanical parameters of both types of sensors.

  6. Efficiency Enhancement in a Tapered Free Electron Laser by Varying the Electron Beam Radius

    SciTech Connect

    Jiao, Yi; Wu, J.; Cai, Y.; Chao, A.W.; Fawley, W.M.; Frisch, J.; Huang, Z.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; /PSI, Villigen

    2012-02-15

    Energy extraction efficiency of a free electron laser (FEL) can be increased when the undulator is tapered after the FEL saturation. By use of ray equation approximation to combine the one-dimensional FEL theory and optical guiding approach, an explicit physical model is built to provide insight to the mechanism of the electron-radiation coherent interaction with variable undulator parameters as well as electron beam radius. The contribution of variation in electron beam radius and related transverse effects are studied based on the presented model and numerical simulation. Taking a recent studied terawatt, 120 m long tapered FEL as an example, we demonstrate that a reasonably varied, instead of a constant, electron beam radius along the undulator helps to improve the optical guiding and thus the radiation output.

  7. Fiber-optic reading magnifiers for the visually impaired

    NASA Astrophysics Data System (ADS)

    Peli, Eli; Siegmund, Walter P.

    1995-10-01

    We describe fiber-optic stand magnifiers specifically designed for use as low-vision reading aids. Application of this technology results in better optical and ergonomic properties. The fiber-optic magnifiers (tapers) provide bright, uniformly illuminated, distortion-free images. The reading material can be scanned without the user's having to bend directly over the magnifier. One can further increase the scanning field by slanting the taper to tilt the image toward the observer. Tilting the upper face of the taper by cutting the smaller lower face on a bias is shown to increase the scanning range substantially and to provide better control of illumination. The scanning range of such tilted tapers is approximately double that of the equivalent lens magnifiers. To increase the contrast transfer through the magnifiers, we have developed lower-resolution tapers with an increased core-to-cladding ratio. The increase in contrast transfer is reported for representative tapers. The lower-resolution design is also helpful in reducing the manufacturing cost of taper magnifiers.

  8. The violin bow: taper, camber and flexibility.

    PubMed

    Gough, Colin

    2011-12-01

    An analytic, small-deflection, simplified model of the modern violin bow is introduced to describe the bending profiles and related strengths of an initially straight, uniform cross-section, stick as a function of bow hair tension. A number of illustrative bending profiles (cambers) of the bow are considered, which demonstrate the strong dependence of the flexibility of the bow on longitudinal forces across the ends of the bent stick. Such forces are shown to be comparable in strength to critical buckling loads causing excessive sideways buckling unless the stick is very straight. Non-linear, large deformation, finite element computations extend the analysis to bow hair tensions comparable with and above the critical buckling strength of the straight stick. The geometric model assumes an expression for the taper of Tourte bows introduced by Vuillaume, which is re-examined and generalized to describe violin, viola and cello bows. A comparison is made with recently published measurements of the taper and bending profiles of a particularly fine bow by Kittel. PMID:22225065

  9. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Zuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Maczka, Mirosław; Hanuza, Jerzy

    2009-07-15

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds. PMID:19328737

  10. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  11. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Restoration rights of TAPER employees... REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.303 Restoration rights of TAPER employees. An employee serving in the competitive service under a...

  12. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Restoration rights of TAPER employees... REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.303 Restoration rights of TAPER employees. An employee serving in the competitive service under a...

  13. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Restoration rights of TAPER employees... REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.303 Restoration rights of TAPER employees. An employee serving in the competitive service under a...

  14. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights of TAPER employees... REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.303 Restoration rights of TAPER employees. An employee serving in the competitive service under a...

  15. 5 CFR 353.303 - Restoration rights of TAPER employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Restoration rights of TAPER employees... REGULATIONS RESTORATION TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.303 Restoration rights of TAPER employees. An employee serving in the competitive service under a...

  16. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  17. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  18. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  19. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion.

    PubMed

    Djozan, Djavanshir; Ebrahimi, Bahram

    2008-06-01

    A simple polymerization strategy has been used to produce a monolithic solid phase micro extraction (SPME) fiber on the basis of molecularly imprinted polymer able to couple with GC and GC-MS for selective extraction and analysis of triazine herbicides. A fiber was produced by copolymerization of methacrylic acid-ethylene glycol dimethacrylate imprinted with atrazine. The effective factors influencing the polymerization have been investigated and are detailed here. At the optimum conditions the prepared fiber is firm, inexpensive, durable and thermally stable up to 280 degrees C which has vital importance in SPME coupled with GC or GC/MS. In addition, the influences of pH, extraction time and temperature on the extraction efficiency of analytes were optimized. Selectivity of prepared fibers in relation to triazine herbicides and some of the other pesticide has been investigated. The high extraction efficiency was obtained for atrazine, simazine, propazine, cyanazine, ametryn, terbutryn and prometryn yielding the detection limits of 20, 70, 80, 81, 69, 88 and 68 ng mL(-1), respectively and the high quantities of recoveries. The reliability of prepared fiber to extraction of atrazine and other analogues in real samples has been investigated and proved by implementation of SPME in spiked samples such as tap water, onion and rice. PMID:18482598

  20. Phase-locked loop based on machine surface topography measurement using lensed fibers

    SciTech Connect

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  1. Phase-locked loop based on machine surface topography measurement using lensed fibers.

    PubMed

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers-the ball type and the tapered type-were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications. PMID:21283236

  2. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between

  3. Tapering Practices of New Zealand's Elite Raw Powerlifters.

    PubMed

    Pritchard, Hayden J; Tod, David A; Barnes, Matthew J; Keogh, Justin W; McGuigan, Michael R

    2016-07-01

    Pritchard, HJ, Tod, DA, Barnes, MJ, Keogh, JW, and McGuigan, MR. Tapering practices of New Zealand's elite raw powerlifters. J Strength Cond Res 30(7): 1796-1804, 2016-The major aim of this study was to determine tapering strategies of elite powerlifters. Eleven New Zealand powerlifters (28.4 ± 7.0 years, best Wilks score of 431.9 ± 43.9 points) classified as elite were interviewed, using semistructured interviews, about their tapering strategies. Interviews were transcribed verbatim and content analyzed. Total training volume peaked 5.2 ± 1.7 weeks from competition while average training intensity (of 1 repetition maximum) peaked 1.9 ± 0.8 weeks from competition. During tapering, volume was reduced by 58.9 ± 8.4% while intensity was maintained (or slightly reduced) and the final weight training session was performed 3.7 ± 1.6 days out from competition. Participants generally stated that tapering was performed to achieve full recovery; that accessory work was removed around 2 weeks out from competition; and deadlifting takes longer to recover from than other lifts. Typically participants stated that trial and error, and changes based on "feel" were the sources of tapering strategies; equipment used and movements performed during tapering are the same as in competition; nutrition was manipulated during the taper (for weight cutting or performance aims); and poor tapering occurred when too long (1 week or more) was taken off training. These results suggest that athletes may benefit from continuing to strength train before important events with reduced volume and maintained intensity. Only exercises that directly assist sports performance should remain in the strength program during tapering, to assist with reductions in fatigue while maintaining/improving strength expression and performance. PMID:26670988

  4. Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (III) and arsenic (V) in fresh waters and human hair extracts.

    PubMed

    Jiang, Hongmei; Hu, Bin; Chen, Beibei; Xia, Linbo

    2009-02-16

    A new method of hollow fiber liquid phase microextraction (HF-LPME) using ammonium pyrrolidine dithiocarbamate (APDC) as extractant combined with electrothermal atomic absorption spectrometry (ETAAS) using Pd as permanent modifier has been described for the speciation of As(III) and As(V). In a pH range of 3.0-4.0, the complex of As(III)-APDC complex can be extracted using toluene as the extraction solvent leaving As(V) in the aqueous layer. The post extraction organic phase was directly injected into ETAAS for the determination of As(III). To determine total arsenic in the samples, first As(V) was reduced to As(III) by l-cysteine, and then a microextraction method was performed prior to the determination of total arsenic. As(V) assay was based on subtracting As(III) form the total arsenic. All parameters, such as pH of solution, type of organic solvent, the amount of APDC, stirring rate and extraction time, affecting the separation of As(III) from As(V) and the extraction efficiency of As(III) were investigated, and the optimized extraction conditions were established. Under optimized conditions, a detection limit of 0.12ngmL(-1) with enrichment factor of 78 was achieved. The relative standard deviation (R.S.D.) of the method for five replicate determinations of 5ngmL(-1) As(III) was 8%. The developed method was applied to the speciation of As(III) and As(V) in fresh water and human hair extracts, and the recoveries for the spiked samples are 86-109%. In order to validate the developed method, three certified reference materials such as GBW07601 human hair, BW3209 and BW3210 environmental water were analyzed, and the results obtained were in good agreement with the certified values provided. PMID:19154804

  5. Comparison of free-electron laser amplifiers based on a step-tapered optical klystron and a conventional tapered wiggler

    NASA Astrophysics Data System (ADS)

    Freund, H. P.

    2013-06-01

    Free-electron laser amplifiers have been operated at high efficiency at wavelengths from the microwave through the visible. Typically, these amplifiers require long tapered sections and produce spent beams with large energy spreads that are 4-5 times the electronic efficiency. In addition, while optical guiding during exponential growth in the uniform wiggler section confines the optical mode, the guiding disappears in the tapered wiggler section resulting in a relatively large optical mode at the wiggler exit. Optical klystrons consist of a Modulator wiggler that induces a velocity modulation on the electron beam followed by a magnetic dispersive section that enhances the velocity modulation prior to injection into a second, radiator wiggler. Optical klystrons have been operated over a broad spectral range; however, no optical klystron has been built with a tapered radiator wiggler. A comparison between a optical klystron with a step-tapered Radiator wiggler and a conventional tapered wiggler amplifier is analyzed in this paper. The purpose of the step taper is to both enhance the efficiency and to extend the range of the exponential gain and so preserve the optical guiding over a longer interaction length. The step-tapered optical klystron and a tapered wiggler amplifier are compared for a nominal set of parameters to determine the differences in the efficiency, interaction length, spent beam energy spread, and the size of the optical mode at the wiggler exit.

  6. Design of Structurally Efficient Tapered Struts (SETS)

    NASA Technical Reports Server (NTRS)

    Deo, Ravi; Benner, Harry; Vincent, Dawson; Olason, Eric; Harrison, Richard

    2010-01-01

    A study was conducted to develop mass efficient composite struts. A closed-form design methodology for composite struts was developed using well established analyses to predict Euler buckling, local wall buckling; compression strength, damage tolerance, and interlaminar shear at geometric gradients. The methodology was coded in a spreadsheet suitable for convenient and rapid sizing of tapered composite struts. This spreadsheet analysis was used to determine the influence of several variables such as material stiffness, strut diameter, and material allowables on strut weight for given loading conditions. The comparison showed that, while the Park Aerospace design method was well suited to preliminary sizing for a conservative design, the closed-form-analyses-based spreadsheet accounts for all possible failure modes and is a good optimum strut design tool. The report concludes with a set of recommendations for future work in analytical design and analysis methodology enhancements.

  7. Hierarchical tapered bar elements undergoing axial deformation

    NASA Technical Reports Server (NTRS)

    Ganesan, N.; Thampi, S. K.

    1992-01-01

    A method is described to model the dynamics of tapered axial bars of various cross sections based on the well-known Craig/Bampton component mode synthesis technique. This element is formed in terms of the static constraint modes and interface restrained normal modes. This is in contrast with the finite elements as implemented in NASTRAN where the interface restrained normal modes are neglected. These normal modes are in terms of Bessel functions. Restoration of a few of these modes leads to higher accuracy with fewer generalized coordinates. The proposed models are hierarchical so that all lower order element matrices are embedded in higher order element matrices. The advantages of this formulation compared to standard NASTRAN truss element formulation are demonstrated through simple numerical examples.

  8. Mode Transition of RNA Trap by Electric and Hydraulic Force Field in Microfluidic Taper Shape Channel

    NASA Astrophysics Data System (ADS)

    Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi

    2007-03-01

    We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.

  9. Speciation Analysis of Labile and Total Silver(I) in Nanosilver Dispersions and Environmental Waters by Hollow Fiber Supported Liquid Membrane Extraction.

    PubMed

    Chao, Jing-Bo; Zhou, Xiao-Xia; Shen, Mo-Hai; Tan, Zhi-Qiang; Liu, Rui; Yu, Su-Juan; Wang, Xiao-Wei; Liu, Jing-Fu

    2015-12-15

    Hollow fiber supported liquid membrane (HFSLM) extraction was coupled with ICP-MS for speciation analysis of labile Ag(I) and total Ag(I) in dispersions of silver nanoparticles (AgNPs) and environmental waters. Ag(I) in aqueous samples was extracted into the HFSLM of 5%(m/v) tri-n-octylphosphine oxide in n-undecane, and stripped in the acceptor of 10 mM Na2S2O3 and 1 mM Cu(NO3)2 prepared in 5 mM NaH2PO4-Na2HPO4 buffer (pH 7.5). Negligible depletion and exhaustive extraction were conducted under static and 250 rpm shaking to extract the labile Ag(I) and total Ag(I), respectively. The extraction equilibration was reached in 8 h for both extraction modes. The extraction efficiency and detection limit were (2.97 ± 0.25)% and 0.1 μg/L for labile Ag(I), and (82.3 ± 2.0)% and 0.5 μg/L for total Ag(I) detection, respectively. The proposed method was applied to determine labile Ag(I) and total Ag(I) in different sized AgNP dispersions and real environmental waters, with spiked recoveries of total Ag(I) in the range of 74.0-98.1%. With the capability of distinguishing labile and total Ag(I), our method offers a new approach for evaluating the bioavailability and understanding the fate and toxicity of AgNPs in aquatic systems. PMID:26580982

  10. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices.

    PubMed

    Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPMEf) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Qmax) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPMEf. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1-13.6 and 33.3-43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. PMID:26944990

  11. Supersonic Wave Drag of Sweptback Tapered Wings at Zero Lift

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth

    1947-01-01

    On the basis of a recently developed theory for sweptback wings at supersonic velocities, equations are derived for the wave drag of sweptback tapered wings with thin symmetrical double-wedge sections at zero lift. Calculations of section wave-drag distributions and wing wave drag are presented for families of tapered plan forms. Distributions of section wave drag along the span of tapered wings are, in general, very similar in shape to those of untapered plan forms. For a given taper ratio and aspect ratio, an appreciable reduction in wing wave-drag coefficient with increased sweepback is noted for the entire range of Mach number considered. For a given sweep and taper ratio, higher aspect ratios reduce the wing wave-drag coefficient at substantially subcritical supersonic Mach numbers. At Mach numbers approaching the critical value, that is, a value equal to the secant of the sweepback angle, the plan forms of low aspect ratio have lower drag coefficients. Calculations for wings of equal root bending stress (and hence different aspect ratio) indicate that tapering the wing reduces the wing wave-drag coefficient at Mach numbers considerably less than the critical value and a decrease of the drag coefficient with taper at Mach numbers near the critical value.

  12. Two-mode elliptical-core weighted fiber sensors for vibration analysis

    NASA Technical Reports Server (NTRS)

    Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.

    1992-01-01

    Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.

  13. Double-Gyroid Network Morphology in Tapered Diblock Copolymers

    SciTech Connect

    R Roy; J Park; W Young; S Mastroianni; M Tureau; T Epps III

    2011-12-31

    We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b-styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.67 (inverse-tapered), and tapered regions comprising 30 vol % of the total polymer, were shown to self-assemble into the double-gyroid network morphology through a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The block copolymers were synthesized by anionic polymerization, where the tapered region between the pure poly(isoprene) and poly(styrene) blocks was generated using a semibatch feed with programmed syringe pumps. The overall composition of these tapered copolymers lies within the expected network-forming region for conventional poly(isoprene-b-styrene) [P(I-S)] diblock copolymers. Dynamic mechanical analysis (DMA) clearly demonstrated that the order-disorder transition temperatures (T{sub ODT}'s) of the network-forming tapered block copolymers were depressed when compared to the T{sub ODT} of their nontapered counterpart, with the P(I-SI-S) showing the greater drop in T{sub ODT}. These results indicate that it is possible to manipulate the copolymer composition profile between blocks in a diblock copolymer, allowing significant control over the T{sub ODT}, while maintaining the ability to form complex network structures.

  14. Double-Gyroid Network Morphology in Tapered Diblock Copolymers

    SciTech Connect

    Roy, Raghunath; Park, Jong Keun; Young, Wen-Shiue; Mastroianni, Sarah E.; Tureau, Maeva S.; Epps, III, Thomas H.

    2012-11-14

    We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b-styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.67 (inverse-tapered), and tapered regions comprising 30 vol % of the total polymer, were shown to self-assemble into the double-gyroid network morphology through a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The block copolymers were synthesized by anionic polymerization, where the tapered region between the pure poly(isoprene) and poly(styrene) blocks was generated using a semibatch feed with programmed syringe pumps. The overall composition of these tapered copolymers lies within the expected network-forming region for conventional poly(isoprene-b-styrene) [P(I-S)] diblock copolymers. Dynamic mechanical analysis (DMA) clearly demonstrated that the order-disorder transition temperatures (T{sub ODT}'s) of the network-forming tapered block copolymers were depressed when compared to the T{sub ODT} of their nontapered counterpart, with the P(I-SI-S) showing the greater drop in T{sub ODT}. These results indicate that it is possible to manipulate the copolymer composition profile between blocks in a diblock copolymer, allowing significant control over the T{sub ODT}, while maintaining the ability to form complex network structures.

  15. Discontinuous Tapered Surface Plasmon Polariton Waveguides with Gap.

    PubMed

    Lee, Dong Hun; Lee, Myung-Hyun

    2016-06-01

    We investigate characteristics of discontinuous tapered surface plasmon polariton waveguides with a gap (DTG-SPPWs) to control a guided surface plasmon polariton (SPP) at a telecommunication wavelength of 1.55 μm. The DTG-SPPWs are composed of an input 2 μm-wide and 10 μm-long reverse tapered IMI-W (RT-IMI-W) and a 10 μm-long tapered and output 2 μm-wide IMI-W (T-IMI-W) with the 8 μm-long gap. The width and length of the tapered regions in the RT-IMI-W and the T-IMI-W were varied from 2 to 10 μm and 1 to 8 μm, respectively. Gold is used as the metal in the insulator-metal-insulator waveguides (IMI-Ws). The thickness of the gold strips is fixed with 20 nm. A low-loss polymer is used for the 30 μm-thick upper and lower cladding layers. The coupling losses of the DTG-SPPWs are less than 0.055 dB with an 8 μm-long gap and various taper widths up to 10 μm. The normalized transmissions (NTs) of the DTG-SPPWs are less than about -0.060 dB with various taper widths up to 10 μm. The NTs of the DTG-SPPWs are less than about -0.069 dB with various taper lengths up to 8 μm. The maximum NT of about -0.042 dB was obtained using the 6 μm-wide taper width and the 3 μm-long taper length in the DTG-SPPW. The DTG-SPPWs have potential as a new plasmonic modulation device via control of the guided SPP through interaction with an applied force in the gap. PMID:27427702

  16. Failure of ProTaper rotary Ni-Ti instruments used by undergraduate students

    PubMed Central

    Duran-Sindreu, Fernando; Morello-Castro, Sergio; Mercade-Bellido, Montserrat; Bueno-Martínez, Rufino; Roig-Cayón, Miguel

    2012-01-01

    Objective: To evaluate the effect of number of uses, angle and radius of curvature and type of instrument on the fracture of ProTaper rotary instruments when used by undergraduate students. Study Design: Three hundred and seventy-six molars, with a total of 1114 root canals, extracted were instrumented by undergraduate students using ProTaper instruments according to the manufacturer´s recommendations. When fracture occurred, data were collected concerning the number of uses, type of instrument, level of fracture, angle and radius of curvature. ANOVA test were used to determine the influence of type of instrument in the incidence of instrument fracture. Logistic regression model was used to determine the influence of number of uses, angle and radius of curvature in the incidence of instrument fracture. Significance was set at p< 0.05. Results: A total of 37 Ni-Ti rotary instruments fractured during the treatment. Fracture occurred in 9.84% (37/376) of the teeth treated and 3.32% of the canals prepared with Ni-Ti rotary instruments (37/1114). A decrease in the radius of curvature of the canal significantly increased the likelihood of fracture (p=0.0001). Instrument fracture significantly increased as the number of uses increased (p=0.0037). No significant differences were found between the 6 types of ProTaper instruments (p=0.8). A reduction in the angle of curvature did not produce a significant decrease in the incidence of instrument separation (p=0.08). Conclusions: The results of this study imply that instrument fracture is linked to radius of curvature and number of uses. Key words:Fracture, ProTaper ®, root canal preparation, undergraduate students. PMID:24558555

  17. Some novel features of an FEL oscillator with tapered undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way.

  18. Development of small bore, high speed tapered roller bearing

    NASA Technical Reports Server (NTRS)

    Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.

    1981-01-01

    The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.

  19. Comparisons of minicard ratings to ion chromatography sugar profiles in cotton fiber water extract and minicard sticky spot material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific levels and ratios of the carbohydrates melezitose and trehalulose deposited on the surface of cotton fibers are indicators of whitefly or aphid contamination. These deposits could cause stickiness problems during cotton ginning and textile processing. The concept of cotton stickiness is hi...

  20. Use of hollow fiber liquid phase microextraction and HPLC for extraction and determination of apigenin in human urine after consumption of Satureja sahendica Bornm.

    PubMed

    Hadjmohammadi, Mohammad Reza; Soltani, Mona; Sharifi, Vahid

    2012-07-01

    The applicability of hollow fiber liquid phase microextraction (HF-LPME) was evaluated for extraction and preconcentration of apigenin prior to its determination by HPLC. Different parameters affecting the HF-LPME recovery such as nature of organic solvent, pH of donor and acceptor phases, extraction time, stirring speed, salt addition were optimized. Under optimum conditions (1-octanol as organic solvent, pH of the donor phase=3 and pH of acceptor phase=11.5, extraction time of 75 min, stirring speed of 1000 rpm) limit of detection (LOD) of 0.1 ng/mL, linear range of 0.5-300 ng/mL and correlation of determination (R(2)) of 0.9956 were obtained. The relative intra and inter-day standard deviations (RSD%) based on five replicate measurement were 3.5% and 10.7% respectively. Enrichment factor of 315 and recovery 85% were achieved. Finally, the applicability of the proposed method was evaluated by extraction and determination of apigenin in urine sample after consumption of Satureja sahendica Bornm. which is a native medicinal plant from Iran. Concentration of apigenin in urine sample was found to be 6.20 ng/mL. PMID:22721708

  1. Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber.

    PubMed

    Abedin, Kazi S; Fini, John M; Thierry, Taunay F; Zhu, Benyuan; Yan, Man F; Bansal, Lalit; Dimarcello, Frank V; Monberg, Eric M; DiGiovanni, David J

    2014-02-15

    We demonstrate a seven-core erbium-doped fiber amplifier in which all the cores were pumped simultaneously by a side-coupled tapered multimode fiber. The amplifier has multicore (MC) MC inputs and MC outputs, which can be readily spliced to MC transmission fiber for amplifying space division multiplexed signals. Gain over 25 dB was obtained in each of the cores over a 40-nm bandwidth covering the C-band. PMID:24562260

  2. Multipoint emitting optical fibers for spatially addressable in-vivo optogenetics

    PubMed Central

    Pisanello, Ferruccio; Sileo, Leonardo; Oldenburg, Ian A.; Pisanello, Marco; Martiradonna, Luigi; Assad, John A.; Sabatini, Bernardo L.; De Vittorio, Massimo

    2014-01-01

    Summary Optical stimulation and silencing of neural activity is a powerful technique for elucidating the structure and function of neural circuitry. In most in vivo optogenetic experiments, light is delivered into the brain through a single optical fiber. However, this approach limits illumination to a fixed volume of the brain. Here a focused ion beam is used to pattern multiple light windows on a tapered optical fiber. We show that such fibers allow selective and dynamical illumination of different brain regions along the taper. Site selection is achieved by a simple coupling strategy at the fiber input, and the use of a single tapered waveguide minimizes the implant invasiveness. We demonstrate the effectiveness of this approach for multipoint optical stimulation in the mammalian brain in vivo by coupling the fiber to a microelectrode array and performing simultaneous extracellular recording and stimulation at multiple sites in the mouse striatum and cerebral cortex. PMID:24881834

  3. Active Q switching of a fiber laser with a microsphere resonator.

    PubMed

    Kieu, Khanh; Mansuripur, Masud

    2006-12-15

    We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power approximately 102 W, duration approximately 160 ns) at a low pump-power threshold (approximately 3 mW). PMID:17130905

  4. Approximate indicial lift function for tapered, swept wings in incompressible flow

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Wells, W. R.; Keskar, D. A.

    1978-01-01

    An approximate indicial lift function associated with circulation was developed for tapered, swept wings in incompressible flow. The function is derived by representing the wings with a simple vortex system. The results from the derived equations compare well with the limited available results from more rigorous and complex methods. The equations, as derived, are not very convenient for calculating the dynamic response of aircraft, parameter extraction, or for determining frequency-response curves for wings. Therefore, an expression is developed to convert the indicial response function to an exponential form which is more convenient for these purposes.

  5. Free Vibration of a Rotating Tapered Composite Timoshenko Shaft

    NASA Astrophysics Data System (ADS)

    KIM, W.; ARGENTO, A.; SCOTT, R. A.

    1999-09-01

    A mechanical model is developed of a tapered, filament-wound composite, Timoshenko shaft which is rotating at constant speed about its axis. The model represents an extended length cutting tool intended for use in high-speed operations. The effects of shaft tapering and the use of composite materials on the structure's free response are studied. The spatial solutions to the equations of motion are carried out using the general Galerkin method. It is found that by tapering, bending natural frequencies and stiffness can be significantly increased over those of uniform shafts having the same volume and made of the same material. The potential for designing a taper function to meet a particular cutting need is also discussed. Various composite laminate cases are treated and it is found that improvements of performance are possible over equivalent steel shafts.

  6. A broadband tapered nanocavity for efficient nonclassical light emission.

    PubMed

    Gregersen, Niels; McCutcheon, Dara P S; Mørk, Jesper; Gérard, Jean-Michel; Claudon, Julien

    2016-09-01

    We present the design of a tapered nanocavity, obtained by sandwiching a photonic wire section between a planar gold reflector and a few-period Bragg mirror integrated into the tapered wire. Thanks to its ultrasmall mode volume (0.71 λ3/n3), this hybrid nanocavity largely enhances the spontaneous emission rate of an embedded quantum dot (Purcell factor: 6), while offering a wide operation bandwidth (full-width half-maximum: 20 nm). In addition, the top tapered section shapes the cavity far-field emission into a very directive output beam, with a Gaussian spatial profile. For realistic taper dimensions, a total outcoupling efficiency to a Gaussian beam of 0.8 is predicted. Envisioned applications include bright sources of non-classical states of light, such as widely tunable sources of indistinguishable single photons and polarization-entangled photon pairs. PMID:27607694

  7. Multimode tapered optical light pipe for illumination systems

    NASA Astrophysics Data System (ADS)

    Romańczuk, Patryk; Pietrzycki, Marcin; Źmojda, Jacek; Kochanowicz, Marcin; Dorosz, Dominik

    2015-09-01

    In the article the multimode tapered optical light pipe for illumination systems was investigated. Based on tree light emitting diodes at the wavelength of 460 nm (blue), 528 nm (green) and 631 nm (red) possibility of white light emission on the output surface of the tapered light pipe was submitted. Influence of optical power of LEDs on the colour coordinates (CIE-1931) has been investigated.

  8. Antenna phase center locations in tapered aperture subarrays

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.; Bickel, D. L.

    2016-05-01

    Antenna apertures are often parsed into subapertures for Direction of Arrival (DOA) measurements. However, when the overall aperture is tapered for sidelobe control, the locations of phase centers for the individual subapertures are shifted due to the local taper of individual subapertures. Furthermore, individual subaperture gains are also affected. These non-uniform perturbations complicate DOA calculations. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures' gains.

  9. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  10. Mean Scatterer Spacing Estimation Using Multi-Taper Coherence

    PubMed Central

    Rubert, Nicholas; Varghese, Tomy

    2013-01-01

    It has been hypothesized that estimates of mean scatterer spacing are useful indicators for pathological changes to the liver. A commonly employed estimator of the mean scatterer spacing is the location of the maximum of the collapsed average of coherence of the ultrasound radio-frequency signal. To date, in ultrasound, estimators for this quantity have been calculated with a single taper. Using frequency-domain Monte Carlo simulations, we demonstrate that multi-taper estimates of coherence are superior to single-taper estimates for predicting mean scatterer spacing. Scattering distributions were modeled with Gamma-distributed scatterers for fractional standard deviations in scatterer spacings of 5, 10, and 15% at a mean scatterer spacing of 1 mm. Additionally, we demonstrate that we can distinguish between ablated liver tissue and unablated liver tissue based on signal coherence. We find that, on the average, signal coherence is elevated in the liver relative to signal coherence of received echoes from thermally ablated tissue. Additionally, our analysis indicates that a tissue classifier utilizing the multi-taper estimate of coherence has the potential to distinguish between ablated and unablated tissue types better than a single-taper estimate of coherence. For a gate length of 5 mm, we achieved an error rate of only 8.7% when sorting 23 ablated and 23 unablated regions of interest (ROIs) into classes based on multi-taper calculations of coherence. PMID:25004470

  11. Convergent tapering of xylem conduits in different woody species.

    PubMed

    Anfodillo, Tommaso; Carraro, Vinicio; Carrer, Marco; Fior, Claudio; Rossi, Sergio

    2006-01-01

    A recent theoretical model (the West, Brown and Enquist, WBE model) hypothesized that plants have evolved a network of xylem conduits with a tapered structure (narrower conduits distally) which should minimize the cost of water transport from roots to leaves. Specific measurements are required to test the model predictions. We sampled both angiosperms and gymnosperms (50 trees) growing in different environments with heights ranging from 0.5 to 44.4 m, measuring variations of the xylem-conduit diameter from tree top to stem base. In all trees measured, mean hydraulically weighted conduit diameters (Dh) at the tree top were narrower than those at the stem base. In actively growing trees, the longitudinal variation of Dh showed a degree of tapering in agreement with WBE predictions, while trees close to their maximum height showed slightly lower conduit tapering. Comparing different species, a very good correlation was observed between degree of xylem tapering and tree height (r2 = 0.88; P < 0.0001) independently of any other variable (age, site, altitude, etc.). As predicted by WBE, sampled trees seemed to converge towards similar xylem conduit tapering. However, trees approaching their maximum height had a nonoptimal tapering which appeared insufficient to compensate for the progressive increase in tree height. PMID:16411931

  12. Molecular Dynamics Simulations of Penetrants in Microphase Separated Tapered Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Brown, Jonathan R.; Hall, Lisa M.

    Tapered AB diblock copolymers contain pure A and B monomer blocks on the ends with a tapered midblock of intermediate composition, providing taper length as an additional tuning parameter to control microphase separation and interfacial behavior. We model the midblock as a statistical linear gradient from pure A to pure B. Recent experiments with salt dissolved in one of microphases show that a certain length of taper increases ion conductivity while the same length of inverse taper lowers conductivity. We perform coarse-grained molecular dynamics simulations of tapered copolymers with monomer sized penetrants, which have preferential interactions with one microphase, to better understand this observation and the general effects of tapering on dynamics. We calculate penetrant diffusion, polymer relaxation times, and other quantities over the range from 0% (diblock) to 100% (full gradient) taper length, with the taper direction either normal or inverse (with the A side of the taper connected to the pure B block). Normal taper results typically lie between those of diblocks and full gradients, while inverse tapers show strong nonmonotonic behavior as a function of taper length. For intermediate length inverse tapers, penetrant and monomer dynamics are significantly slower than those of diblocks or normal tapers, and this relates to the folding of the inverse chains back and forth across the interface. To provide further insight, we also compare to the dynamics of random copolymers of various compositions. Based upon work supported by NSF Grant 1454343.

  13. Ultra-broadband multi-sized PbS quantum dots fiber amplifier based on a symmetric fiber coupler

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolan; Chen, Juanjuan; Dai, Rong; Wang, Tingyun; Zhou, Wei; An, Zesheng

    2013-12-01

    We proposed an ultra-broadband multi-sized PbS quantum dots(QDs) fiber amplifier based on a symmetric fused tapered coupler. The 2x2 tapered fiber coupler was coated with a mixture of PbS QDs in two different sizes. By using the multisized PbS QDs as the gain medium, a maximum bandwidth of 400 nm (1200~1600 nm) has been achieved under evanescent wave excitation. In addition, with a 70 mW of 980 nm pump, we obtained a small signal gain of greater than 14 dB in this region.

  14. Graphitic carbon nitrides modified hollow fiber solid phase microextraction for extraction and determination of uric acid in urine and serum coupled with gas chromatography-mass spectrometry.

    PubMed

    Sun, Ying-pei; Chen, Juan; Qi, Huan-yang; Shi, Yan-ping

    2015-11-01

    An elevated uric acid (UA) in urine or serum can affect renal function and blood pressure, which is an indicator of gout, cardiovascular and renal diseases, hypertension, etc. In this work, a new type of mixed matrix membrane (MMM), based on graphitic carbon nitrides (g-CNs) and hollow fiber (HF), was prepared and combined with solid phase microextraction (SPME) mode to determine UA in urine and serum followed by gas chromatography-mass spectrometry (GC/MS). The porous g-CNs were dispersed in ammonia, and then the exfoliated g-CNs nanosheets were held in the pores of HF by capillary forces and sonification. The prepared g-CNs modified HF (g-CNs-HF) was immersed in biofluid directly to extract UA with SPME mode and the solvent-free mode is convenient for further derivatization and analysis. To achieve the highest extraction efficiency (EF), main extraction and derivatization parameters, such as g-CNs-HF immobilizing time, sonification power and time of extraction, derivatization and desorption time, were optimized. Under the optimum extraction conditions, a favorable linearity of UA was obtained in the range 0.1-200μgmL(-1) with correlation coefficients higher than 0.9990, and the average recoveries at three spiked levels of UA in urine and serum ranged from 80.7% to 121.6%, from 84.7% to 101.1%, respectively. The obtained results demonstrated the developed g-CNs-HF-SPME is a simple, rapid, cost-effective, solvent-free method for the analysis of UA in biofluid. PMID:26444336

  15. Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap.

    PubMed

    Hou, Xiudan; Guo, Yong; Liang, Xiaojing; Wang, Xusheng; Wang, Lei; Wang, Licheng; Liu, Xia

    2016-06-01

    A class of novel, environmental friendly ionic liquids (ILs) were synthesized by on-fiber preparation strategy and modified on graphene oxide (GO)-coated stainless steel wire, which was used as a solid-phase microextraction (SPME) fiber for efficient enrichment of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs). Surface characteristic of the ILs and polymeric-ILs (PILs) fibers with the wave-structure were inspected by scanning electron microscope. The successfully synthesis of bis(trifluoromethanesulfonyl)imide (NTf2(-))-based ILs were also characterized by energy dispersive spectrometer analysis. Through the chromatograms of the proposed two ILs (1-aminoethyl-3-methylimidazolium bromide (C2NH2MIm(+)Br(-)), C2NH2MIm(+)NTf2(-)) and two PILs (polymeric 1-vinyl-3-hexylimidazolium bromide (poly(VHIm(+)Br(-))), poly(VHIm(+)NTf2(-)))-GO-coated fibers for the extraction of analytes, NTf2(-)-based PIL demonstrated higher extraction capacity for hydrophobic compounds than other as-prepared ILs. Analytical performances of the proposed fibers were investigated under the optimized extraction and desorption conditions coupled with gas chromatography (GC). Compared with the poly(VHIm(+)Br(-))-GO fiber, the poly(VHIm(+)NTf2(-))-GO SPME fiber brought wider linear ranges for analytes with correlation coefficient in the range of 0.9852-0.9989 and lower limits of detection ranging from 0.015-0.025μgL(-1). The obtained results indicated that the newly prepared PILs-GO coating was a feasible, selective and green microextraction medium, which could be suitable for extraction and determination of PAHs and PAEs in potatoes and food-wrap sample, respectively. PMID:27130133

  16. Photoacoustic spectroscopy detection and extraction of discharge feature gases in transformer oil based on 1.5 μ tunable fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Zhiying; gong, Yinhai; Yu, Qingxu

    2013-05-01

    Information from the analysis of gasses dissolved in insulating oils is valuable for early a transformer maintenance. By means of dissolved gas analysis (DGA), it is possible to distinguish faults such as partial discharge (corona), overheating (pyrolysis) and arcing in a great variety of oil-filled equipment. Tunable fiber laser-based second harmonic photoacoustic spectroscopy offers a fast and good-noise-immunity technique for the quantitative analysis of trace gases in transformer oil. In this work, the discharge feature gases, such as C2H2, CH4, CO2 and H2O, were measured with a tunable laser photoacoustic spectrometer at the 1530.3709 nm transition line, as a typical application of precise measurement of multi-gas, a proposed BSS model based on overcomplete ICA basis and five-point-sampling method based on a created weight-truncation-constraint equation was used to remove noise so that several fault gases can be extracted with a higher detection accuracy and a method detection limit. Experiment shows that within 0.15 nm band near 1530.3709 nm, the four-gas contents have been detected and extracted and the detection accuracy has been improved from available scanning spacing of 0.03 nm to available extracting spacing of 0.0011 nm. At room temperature and atmospheric pressure, this can achieve simultaneous detection for multiple feature gases in discharged transformer oil using laser source with a limited waveband.

  17. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants.

    PubMed

    Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina

    2014-09-01

    Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. PMID:24913857

  18. Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fiber felt.

    PubMed

    Kawata, K; Ibaraki, T; Tanabe, A; Yagoh, H; Shinoda, A; Suzuki, H; Yasuhara, A

    2001-03-01

    Simple gas chromatographic-mass spectrometric determination of hydrophilic organic compounds in environmental water was developed. A cartridge containing activated carbon fiber felt was made by way of trial and was evaluated for solid-phase extraction of the compounds in water. The hydrophilic compounds investigated were acrylamide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, furfural, furfuryl alcohol, N-nitrosodiethylamine and N-nitrosodimethylamine. Overall recoveries were good (80-100%) from groundwater and river water. The relative standard deviations ranged from 4.5 to 16% for the target compounds. The minimum detectable concentrations were 0.02 to 0.03 microg/l. This method was successfully applied to several river water samples. PMID:11269598

  19. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Dai, Sheng

    2016-06-01

    Uranium is dissolved in the ocean at a uniform concentration of 3.34 ppb, which translates to approximately 4-5 billion tons of uranium. The development of adsorbents that can extract uranium from seawater has been a long term goal, but the extremely dilute uranium concentration along with the competition of other metal salts (which are at higher concentrations) has hindered the development of an economical adsorption process. Several acid monomers were co-grafted with acrylonitrile (AN) to help increase the hydrophilicity of the adsorbent to improve access to the metal adsorption sites. Grafting various acid monomers on PE fibers was found to significantly affect the uranium adsorption in simulated seawater in the following order: acrylic acid (AA) < vinyl sulfonic acid (VSA) < methacrylic acid (MAA) < itaconic acid (ITA) < vinyl phosphonic acid (VPA). Interestingly, the uranium adsorption capacity significantly increased when Mohr's salt was added with acrylic acid, most likely due to the reduction of co-polymerization of the monomers. When testing under more realistic conditions, the acid-grafted PE fiber adsorbents were exposed to natural seawater (more dilute uranium), the uranium adsorption capacity increased in the following order: MAA < AA (Mohr's salt) < VSA < ITA (Mohr's salt) < ITA < VPA, which agreed well with the simulated seawater results. Characterization of the adsorbents indicated that the increase in uranium adsorption capacity with each acid monomer was related to higher grafting of AN and therefore a higher conversion to amidoxime (AO). PMID:27145863

  20. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin.

    PubMed

    Ma, Meng-Mei; Mu, Tai-Hua

    2016-03-01

    This study evaluated the effects of alkali extraction, enzymatic hydrolysis, shear emulsifying assisted enzymatic hydrolysis, and particle size distribution on the chemical composition and the structural, physicochemical, and functional properties of deoiled cumin dietary fibers (AEDF, EHDF and SEDF). Compared to AEDF and EHDF, SEDF had the highest total dietary fiber, crystalline regions, water swelling capacity (6.79-7.98ml/g), oil adsorption capacity (6.12-7.25%), α-amylase activity inhibition ratio (14.79-21.84%), glucose adsorption capacity (2.02-60.86%), and bile acid retardation index (16.34-50.08%). DFs sieved with mesh sizes >80 exhibited better physicochemical and functional properties than unsieved DFs. The physicochemical properties of sieved DFs improved with increasing sieve mesh sizes (40-120), but decreased with sieve mesh sizes >120, while the functional properties increased with increasing sieve mesh sizes. SEDF sieved with mesh sizes 100-150 can be used as functional ingredients due to its excellent physicochemical and functional properties. PMID:26471550

  1. All-fiber 7 × 1 signal combiner for high power fiber lasers.

    PubMed

    Zhou, Hang; Chen, Zilun; Zhou, Xuanfeng; Hou, Jing; Chen, Jinbao

    2015-04-10

    We present an all-fiber 7×1 signal combiner for high power fiber lasers. Through theoretical analysis, the fabrication method is confirmed and the taper length of the fiber bundle is chosen to be 1 cm to ensure a high transmission efficiency of the combiner. Based on the theoretical results, an all-fiber 7×1 signal combiner with high transmission efficiency is fabricated. A capillary with low refractive index is fused around the bundle of signal fibers to make an additional cladding layer. Then the fiber bundle is tapered to match the core of the output fiber and then spliced with the output fiber. The combiner is tested with a 500 W fiber laser and a temperature increase of 13°C/kW without any active cooling is observed in the combiner. The power transmission efficiency is measured to be close to 99% for each input port and the beam quality M2 is around 10. PMID:25967291

  2. An Experimental Study of an FEL Oscillator with a Linear Taper

    SciTech Connect

    Benson, S.; Gubeli, J.; Neil, G.R.

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.

  3. Apical root canal transportation of different pathfinding systems and their effects on shaping ability of ProTaper Next

    PubMed Central

    Türker, Sevinç-Aktemur

    2015-01-01

    Background This study aimed to compare glide path preparation of different pathfinding systems and their effects on the apical transportation of ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) in mesial root canals of extracted human mandibular molars, using digital subtraction radiography. Material and Methods The mesial canals of 40 mandibular first molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 4 groups with 10 canals each. Glide paths were created in group 1 with #10, #15 and #20 K-type (Dentsply Maillefer, Ballaigues, Switzerland) stainless steel manual files; in group 2 with Path-File (Dentsply Maillefer) #1, #2, and #3 and in group 3 with #16 ProGlider (Dentsply Maillefer) rotary instruments; in group 4 no glide paths were created. All canals were instrumented up to ProTaper Next X2 to the working length. A double digital radiograph technique was used, pre and post-instrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. Instrument failures were also recorded. The data were analyzed statistically using ANOVA and Tukey tests (p<0.05). Results No significant differences were found among groups regarding apical transportation (p>0.05). Two ProTaper Next instruments failed in-group 4. Conclusions Within the parameters of this study, there was no difference between the performance of path-finding files and ProTaper Next system maintained root canal curvature well and was safe to use either with path-finding files or alone. Key words:Glide path, PathFile, ProGlider, ProTaper Next, transportation. PMID:26330936

  4. Fatigue delamination onset prediction in unidirectional tapered laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Salpekar, Satish A.; O'Brien, T. K.

    1991-01-01

    Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10 (exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode I) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.

  5. Fatigue delamination onset prediction in tapered composite laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen Bostaph; Salpekar, Satish A.; Obrien, T. Kevin

    1989-01-01

    Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10(exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode 1) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.

  6. [An Extraction and Recognition Method of the Distributed Optical Fiber Vibration Signal Based on EMD-AWPP and HOSA-SVM Algorithm].

    PubMed

    Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2016-02-01

    Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively. PMID:27209772

  7. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. PMID:25857993

  8. All-in-one solid-phase microextraction: Development of a selective solid-phase microextraction fiber assembly for the simultaneous and efficient extraction of analytes with different polarities.

    PubMed

    Gharari, Hossein; Farjaminezhad, Manoochehr; Marefat, Abdolrahim; Fakhari, Ali Reza

    2016-05-01

    In the present work, for the first time, an all-in-one solid-phase microextraction technique was developed for the simultaneous and efficient extraction of analytes within a vast polarity range. A novel fiber assembly composed of two different steel components each coated with different coatings (polydimethylsiloxane and polyethylene glycol) in terms of polarity by sol-gel technology was employed for the extraction of model compounds of different polarity in a single run followed by gas chromatography with mass spectrometry. Effective parameters in the extraction step and gas chromatography with mass spectrometry analysis were optimized for all model compounds. The detection limits of the developed method for model compounds were below 0.2 ng/L. The repeatability and reproducibility of the proposed method, explained by relative standard deviation, varied between 7.22 and 9.15% and between 7.95 and 14.90 (n = 5), respectively. Results showed that, under random conditions, compared to separate extractions performed by two other differently end-coated components that had not been assembled as the final dual fiber, as two individual fibers; simultaneous, efficient and relatively selective extraction of all model compounds was obtained in a single run by the proposed all-in-one technique. Finally, the optimized procedure was applied to extraction and determination of the model compounds in spiked water samples. PMID:27027718

  9. One-pot hydrothermal synthesis of silver nanoplates on optical fiber tip for surface-enhanced Raman scattering

    SciTech Connect

    Cao, Jie E-mail: mqinhe@aiofm.ac.cn; Zhao, Di; Lei, Xing; Liu, Ye; Mao, Qinghe E-mail: mqinhe@aiofm.ac.cn

    2014-05-19

    We report on surface-enhanced Raman scattering (SERS) fiber probe based on silver nanoplates which are fabricated on the tapered tip of the multimode fiber, by a simple, effective and low-cost hydrothermal method. The field-emission scanning electron microscopy and the transmission electron microscopy show that the obtained fiber probe is composed of nanoplates with the thickness of about 40 nm and an average length of 300 nm. The SERS activity of the tapered fiber probe with an optimal cone angle has demonstrated excellent results using the probing molecule of 4-aminothiophenol.

  10. Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality.

    PubMed

    Mesaritakis, Charis; Kapsalis, Alexandros; Simos, Hercules; Simos, Christos; Krakowski, Michel; Krestnikov, Igor; Syvridis, Dimitris

    2013-07-15

    In this Letter, a design for a tapered InAs/InGaAs quantum dot semiconductor optical amplifier is proposed and experimentally evaluated. The amplifier's geometry was optimized in order to reduce gain saturation effects and improve gain efficiency and beam quality. The experimental measurements confirm that the proposed amplifier allows for an elevated optical gain in the saturation regime, whereas a five-fold increase in the coupling efficiency to a standard single mode optical fiber is observed, due to the improvement in the beam quality factor M² of the emitted beam. PMID:23939062

  11. Conversion of Extracted Oil Cake Fibers into Bioethanol Including DDGS, Canola, Sunflower, Seasame, Soy, and Peanut for Integrated Biodiesel Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have come up with a novel integrated approach where biodiesel processing can be potentially done in-house by producing ethanol from edible oilseeds after hexane extraction to remove residual oil. In addition, we have demonstrated how ethanol could be manufactured from widely available oil cakes ...

  12. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    SciTech Connect

    Meyer-Scott, Evan Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  13. The width-tapered double cantilever beam for interlaminar fracture testing

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Jensen, R. M.; Bullman, G. W.; Hunston, D. L.

    1984-01-01

    The width-tapered double-cantilever-beam (WTDCB) specimen configuration used to determine the Mode-I interlaminar fracture energy (IFE) of composites has special advantages for routine development work and for quality-assurance purposes. These advantages come primarily from the simplicity of testing and the fact that the specimen is designed for constant change in compliance with crack length, so that the computation of Mode-I IFE is independent of crack length. In this paper, a simplified technique for fabrication and testing WTDCB specimens is described. Also presented are the effects of fiber orientation and specimen dimensions, a comparison of data obtained using the WTDCB specimens and other specimen geometries, and comparison of data obtained at different laboratories. It is concluded that the WTDCB gives interlaminar Mode-I IFE essentially equal to other type specimens, and that it can be used for rapid screening in resin-development work and for quality assurance of composite materials.

  14. Tapered semiconductor amplifiers for optical frequency combs in the near infrared.

    PubMed

    Cruz, Flavio C; Stowe, Matthew C; Ye, Jun

    2006-05-01

    A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified. Interferometric measurements show sub-Hertz linewidths for a heterodyne beat between the input and amplified comb components, yielding no detectable phase-noise degradation under amplification. These amplifiers can be used to boost the infrared power in f-to-2f interferometers used to determine the carrier-to-envelope offset frequency, with clear advantages for stabilization of octave-spanning femtosecond lasers and other supercontinuum light sources. PMID:16642104

  15. Packaged silica microsphere-taper coupling system for robust thermal sensing application.

    PubMed

    Yan, Ying-Zhan; Zou, Chang-Ling; Yan, Shu-Bin; Sun, Fang-Wen; Ji, Zhe; Liu, Jun; Zhang, Yu-Guang; Wang, Li; Xue, Chen-Yang; Zhang, Wen-Dong; Han, Zheng-Fu; Xiong, Ji-Jun

    2011-03-28

    We propose and realize a novel packaged microsphere-taper coupling structure (PMTCS) with a high quality factor (Q) up to 5×10(6) by using the low refractive index (RI) ultraviolet (UV) glue as the coating material. The optical loss of the PMTCS is analyzed experimentally and theoretically, which indicate that the Q is limited by the glue absorption and the radiation loss. Moreover, to verify the practicability of the PMTCS, thermal sensing experiments are carried out, showing the excellent convenience and anti-jamming ability of the PMTCS with a high temperature resolution of 1.1×10(-3) ◦C. The experiments also demonstrate that the PMTCS holds predominant advantages, such as the robustness, mobility, isolation, and the PMTCS can maintain the high Q for a long time. The above advantages make the PMTCS strikingly attractive and potential in the fiber-integrated sensors and laser. PMID:21451600

  16. Multi-tapered x-ray capillary optics for mammography

    NASA Astrophysics Data System (ADS)

    Bradford, Carla Duquesne

    X-ray mammography is currently the primary tool used for breast cancer detection. However mammography has limitations. Studies have shown that 5%-15% of breast cancers are not visualized mammographically and of the number of cases sent to biopsy, only 15% are actually cancerous (high false positive percentage). The long term goal of this project is to improve the x- ray mammographic imaging system using capillary optics. A post-patient capillary optic lens has the potential to increase spatial resolution and eliminate the detection of scattered x-rays, thereby improving image contrast and SNR. These improvements can be exploited with any detector but may have the greatest potential when implemented with digital detectors. An image analysis study has been performed using a prototype multi-tapered optic to determine the feasibility of a full-field multi-tapered optic. Scatter fraction, contrast, transmission, uniformity, MTF, NPS and DQE were measured for a CR imaging system when the prototype multi-tapered optic lens was applied. The results were compared with standard grid and air gap techniques. The measurements demonstrate that the multi-tapered optic lens removes 85% of the scattered photons, while air gap and grid methods remove 66% and 39%, respectively. This results in an improvement of contrast by approximately 80% for the optics, compared to 51% for the air gap and 30% for the grid methods. The single capillary optic lenses can improve the limiting resolution (5% MTF level) of the CR detector by 78% due to magnification with very little focal spot blurring, while the multi-tapered prototype improved resolution significantly but not as much as the single optic. This was due to relative misalignment of the individual lenses in the multi- tapered optic. Acceptable levels of misalignment have been established that appear to be readily achievable. Once this relative misalignment issue is resolved, the multi-tapered lens will produce results similar to single

  17. Mode-filtered large-core fiber for short-pulse delivery with reduced nonlinear effects

    PubMed Central

    Moon, Sucbei; Liu, Gangjun; Chen, Zhongping

    2012-01-01

    We present a large-core fiber (LCF) with a reduced nonlinear property for a single-mode beam delivery of intense ultrashort pulses. A tapered-fiber mode filter was fabricated in an LCF with the core diameter decreased from 20 μm to 6 μm at the tapered waist region surrounded by index-matched liquid. By the tapered geometry, the high-order mode was rejected so that our mode-filtered LCF acted as a single-mode fiber despite the multimode property of the original LCF. It has been found that this fiber class is suitable for applications, such as an endoscopic multiphoton microscope, that demand a flexible short-distance (<4 m) delivery medium of ultrashort pulses. PMID:21886211

  18. Simultaneous extraction and quantification of albendazole and triclabendazole using vortex-assisted hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography.

    PubMed

    Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2016-06-01

    A novel, simple, and rapid vortex-assisted hollow-fiber liquid-phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high-performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3-50.0 and 0.4-50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0-11.0 and 5.0-7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples. PMID:27079953

  19. Structure and Phase Behavior of Tapered Diblock Copolymers from Self-Consistent Field Theory

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Sides, Scott W.; Hall, Lisa M.

    2014-03-01

    Tapered block copolymers are like AB diblock copolymers with a ``tapered block'' inserted between the A and B endblocks. This tapered block sequence is random with its average composition changing linearly from pure A to pure B (or B to A for inverse-tapered systems). Depending on the fraction of A monomers and the quantity χN , the blocks microphase separate to form various ordered morphologies. Increasing N (such as to improve mechanical properties) simultaneously affects the microphase separated state. Tapering adds another adjustable parameter, taper length, that can be used to control the microphase separated state. We map the phase diagrams of model tapered and inverse tapered polymers using self-consistent field theory (SCFT). The ordered phases shift to higher χN for tapered systems, and the shift increases as the taper length increases. Inverse tapers shift the phase diagram to even higher χN . Direct tapered systems' phase diagrams are like those of diblocks, but with a larger gyroid region. For large inverse tapered systems, the polymer appears like an ABAB tetrablock, and it folds across the interface or bridges between domains. In this case some of the ordered structures show reversed A and B domains where the majority phase is relatively impure.

  20. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: an effective extraction technique for measurement of benzodiazepines in hair, urine and wastewater samples combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Nezhadali, Azizollah; Bahar, Shahriyar; Bohlooli, Shahab; Banaei, Alireza

    2015-02-01

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of benzodiazepines (BZPs) in hair, urine and wastewater. The membrane extraction with 1-pentyl-3-methylimidazolium bromide coated titanium dioxide ([PMIM]Br@TiO2) sorbent used in this research is a two-phase supported membrane extraction consisting of an aqueous (donor phase), and n-octanol/nano [PMIM]Br@TiO2 (acceptor phase) system operated in direct immersion sampling mode. The 1-pentyl-3-methylimidazolium bromide (ionic liquid) coated nano TiO2 dispersed in the organic solvent (n-octanol) is held into a porous membrane supported by capillary forces and sonification. It is in contact with the feed phase, which is the aqueous sample. The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of BZPs into one single extract. In order to obtain high extraction efficiency of the analytes using this novel sorbent, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.05-6000ngmL(-1)), low limits of detection (0.08-0.5ngmL(-1)) and good enrichment (533-1190). PMID:25589255

  1. Large deflection of flexible tapered functionally graded beam

    NASA Astrophysics Data System (ADS)

    Davoodinik, A. R.; Rahimi, G. H.

    2011-10-01

    In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied. In order to derive the fully non-linear equations governing the non-linear deformation, a curvilinear coordinate system is introduced. A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities, infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials. The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam. The effects of taper ratio, inclined end load angle and material property gradient on large deflection of the beam are evaluated. The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.

  2. Head-Neck Taper Corrosion in Hip Arthroplasty

    PubMed Central

    Hussenbocus, S.; Kosuge, D.; Solomon, L. B.; Howie, D. W.; Oskouei, R. H.

    2015-01-01

    Modularity at the head-neck junction of the femoral component in THA became popular as a design feature with advantages of decreasing implant inventory and allowing adjustment of leg length, offset, and soft tissue balancing through different head options. The introduction of a new modular interface to femoral stems that were previously monoblock, or nonmodular, comes with the potential for corrosion at the taper junction through mechanically assisted crevice corrosion. The incidence of revision hip arthroplasty is on the rise and along with improved wear properties of polyethylene and ceramic, use of larger femoral head sizes is becoming increasingly popular. Taper corrosion appears to be related to all of its geometric parameters, material combinations, and femoral head size. This review article discusses the pathogenesis, risk factors, clinical assessment, and management of taper corrosion at the head-neck junction. PMID:25954757

  3. Optical Tapers as White-Light WGM Resonators

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Matsko, Andrey B.; Savchenkov, Anatoliy A.

    2010-01-01

    A theoretical analysis has revealed that tapered optical waveguides could be useful as white-light whispering-gallery-mode (WGM) optical resonators. The compactness and the fixed-narrow-frequency-band nature of the resonances of prior microdisk and microsphere WGM resonators are advantageous in low-power, fixed-narrow-frequency-band applications. However for optical-processing applications in which there are requirements for power levels higher and/or spectral responses broader than those of prior microdisk and microsphere WGM resonators, white-light WGM resonators in the form of optical tapers would be preferable. The theoretical analysis was performed for a multimode, axisymmetric, circular-cross-section waveguide having a taper sufficiently smooth and gradual to justify the approximation of adiabaticity. In this approximation, the equation for the dependence of the electromagnetic field upon the axial (longitudinal) waveguide coordinate can be separated from the equation for the dependence upon the radius and the azimuthal angle.

  4. Synthesis of tungsten oxide tapered needles with nanotips

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; He, Yuehui; Zou, Jin; Cao, Peng; Jiang, Yao; Huang, Baiyun; Liu, C. T.; Liaw, P. K.

    2007-05-01

    Tungsten oxide tapered needles with nanotips were synthesized on a large scale by reacting tungsten nanopowders with hydrous nickel nitrate in hydrogen atmosphere. The resultant tungsten oxide needles have lengths more than 100 μm, root diameters of several hundred nanometers and tip diameters of several nanometers, showing a perfectly axisymmetric configuration. HRTEM and SAED analyses showed that the synthesized tungsten oxide tapered needles have a single-crystalline structure with growth direction of [0 1 0]. The effects of the experimental conditions (the ratio between tungsten and hydrous nickel nitrate, the size of tungsten powders, and the reaction atmosphere) on the morphology of the products were systematically investigated. It was found that tungsten oxide nanowires, submicro-/micro-whiskers and microtubules could be facilely obtained under different experimental conditions. The unique configuration and the single-crystal structure of the tapered needles may make them a potential candidate for field emitters and probing tips.

  5. Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers.

    PubMed

    Liu, Weiwei; Wang, Bing; Ke, Shaolin; Qin, Chengzhi; Long, Hua; Wang, Kai; Lu, Peixiang

    2016-06-27

    We investigate the plasmonic nanofocusing of terahertz waves in tapered graphene multilayers separated by dielectrics. The nanofocusing effect is significantly enhanced in the graphene multilayer taper compared with that in a single layer graphene taper due to interlayer coupling between surface plasmon polaritons. The results are optimized by choosing an appropriate layer number of graphene and the field amplitude has been enhanced by 620 folds at λ = 50 μm. Additionally, the structure can slow light to a group velocity ~1/2815 of the light speed in vacuum. Our study provides a unique approach to compress terahertz waves into deep subwavelength scale and may find great applications in terahertz nanodevices for imaging, detecting and spectroscopy. PMID:27410629

  6. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.

    PubMed

    Mo, Lei; Yang, Liu; Nadzeyka, Achim; Bauerdick, Sven; He, Sailing

    2014-12-29

    Gold absorbers based on plasmonic tapered coaxial holes (PTCHs) are demonstrated theoretically and experimentally. An average absorption of over 0.93 is obtained theoretically in a broad wavelength range from 300 nm to 900 nm without polarization sensitivity due to the structural symmetry. Strong scattering of the incident light by the tapered coaxial holes is the main reason for the high absorption in the short wavelength range below about 550 nm, while gap surface plasmon polaritons propagating along the taper dominate the resonance-induced high absorption in the long wavelength range. Combining two PTCHs with different structural parameters can further enhance the absorption and thus increase the spectral bandwidth, which is verified by a sample fabricated by focused ion beam milling. This design is promising to be extended to other metals to realize effective and efficient light harvesting and absorption. PMID:25607189

  7. A porous carbon derived from amino-functionalized material of Institut Lavoisier as a solid-phase microextraction fiber coating for the extraction of phthalate esters from tea.

    PubMed

    Liang, Weiqian; Wang, Juntao; Zang, Xiaohuan; Wang, Chun; Wang, Zhi

    2016-04-01

    In this work, a porous carbon derived from amino-functionalized material of Institut Lavoisier (C-NH2 -MIL-125) was prepared and coated onto a stainless-steel wire through sol-gel technique. The coated fiber was used for the solid-phase microextraction of trace levels of phthalate esters (diallyl phthalate, di-iso-butyl ortho-phthalate, di-n-butyl ortho-phthalate, benzyl-n-butyl ortho-phthalate, and bis(2-ethylhexy) ortho-phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05-30.00 μg/L for green jasmine tea beverage samples, and 0.10-30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0-3.0 ng/L for green jasmine tea beverage sample, and 4.0-5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0-106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%. PMID:26840882

  8. Gap and channeled plasmons in tapered grooves: a review.

    PubMed

    Smith, C L C; Stenger, N; Kristensen, A; Mortensen, N A; Bozhevolnyi, S I

    2015-06-01

    Tapered metallic grooves have been shown to support plasmons - electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces - across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channeled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment of unique properties that are highly suited to a broad range of cutting-edge nanoplasmonic technologies, including ultracompact photonic circuits, quantum-optics components, enhanced lab-on-a-chip devices, efficient light-absorbing surfaces and advanced optical filters, while additionally affording a niche platform to explore the fundamental science of plasmon excitations and their interactions. In this Review, we provide a research status update of plasmons in tapered grooves, starting with a presentation of the theory and important features of GSPs and CPPs, and follow with an overview of the broad range of applications they enable or improve. We cover the techniques that can fabricate tapered groove structures, in particular highlighting wafer-scale production methods, and outline the various photon- and electron-based approaches that can be used to launch and study GSPs and CPPs. We conclude with a discussion of the challenges that remain for further developing plasmonic tapered-groove devices, and consider the future directions offered by this select yet potentially far-reaching topic area. PMID:25965100

  9. Thin Film Metal Coated Fiber Optic Hydrophone Probe

    PubMed Central

    Gopinath, R.; Arora, P.; Gandhi, G.; Daryoush, A.S.; El-Sherif, M.; Lewin, P.A.

    2010-01-01

    The purpose of this work was to improve on sensitivity performance of fiber sensor employed as Fiber Optic Hydrophone Probe (FOHP) by nano-scale thin film gold coating. The fiber is designed to provide a uniform and spatial averaging free response up to 100 MHz by etching down to an active diameter of about 9 μm. The sensitivity performance of straight cleaved (i.e. full size core and cladding) uncoated, tapered uncoated and tapered thin film gold coated fiber sensors were compared in the frequency range of 1.5 MHz to 20 MHz in the presence of acoustic pressure amplitude levels of up to 6 MPa. An unprecedented voltage sensitivity of −245 dB re 1V/uPa (560 mV/ MPa) was measured for thin film gold coated FOHP by optimizing the gold coating thickness. PMID:19881652

  10. Robust optical fiber bending sensor to measure frequency of vibration

    NASA Astrophysics Data System (ADS)

    Hernández-Serrano, Arturo Ignacio; Salceda-Delgado, Guillermo; Moreno-Hernández, David; Martínez-Ríos, Alejandro; Monzón-Hernández, David

    2013-09-01

    A simple technique for sensing the acoustic vibration of a cantilever beam, using a single-fiber Mach-Zehnder interferometer, is presented. The interferometer consists of two concatenated low-loss fused fiber tapers, with a waist diameter of 60 μm, separated by an un-tapered fiber section of 10 mm length. The interferometer transmitted signal is modulated when the device is bent under the presence of an external acoustic signal. The optical fiber device glued directly on a metallic cantilever beam is capable of measuring frequency of the resonant modes. The interrogation set-up is simple consisting of a single tunable diode laser and a photodetector. The measured frequencies of the resonating modes agree with the numerical results obtained by the Finite Element Method.

  11. Impedance Scaling for Small-angle Tapers and Collimators

    SciTech Connect

    Stupakov, G.; /SLAC

    2010-02-11

    In this note I will prove that the impedance calculated for a small-angle collimator or taper, of arbitrary 3D profile, has a scaling property that can greatly simplify numerical calculations. This proof is based on the parabolic equation approach to solving Maxwell's equation developed in Refs. [1, 2]. We start from the parabolic equation formulated in [3]. As discussed in [1], in general case this equation is valid for frequencies {omega} >> c/a where a is a characteristic dimension of the obstacle. However, for small-angle tapers and collimators, the region of validity of this equation extends toward smaller frequencies and includes {omega} {approx} c/a.

  12. Extraction and preconcentration of tylosin from milk samples through functionalized TiO₂ nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique.

    PubMed

    Sehati, Negar; Dalali, Nasser; Soltanpour, Shahla; Dorraji, Mir Saeed Seyed

    2014-08-01

    The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so-called functionalized TiO2 hollow fiber solid/liquid-phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2 O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid-phase microextraction. All the experiments were monitored at λmax = 284 nm using a simple double beam UV-visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (4(5) ) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid-phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51-7000 μg/L (r(2) = 0.991) and 0.21 μg/L as the limit of detection. PMID:24890459

  13. Combining silica-based adsorbents and SPME fibers in the extraction of the volatiles of beer: an exploratory study.

    PubMed

    Biazon, César Luis; Brambilla, Rodrigo; Rigacci, Arnaud; Pizzolato, Tânia M; Dos Santos, João H Z

    2009-05-01

    A series of silica-based materials were employed as sorbents within solid-phase microextraction vials. The aim of the study was to evaluate the effect of an additional phase on the distribution of the volatile and less volatile analytes. The adsorption of six probe molecules, namely isoamyl acetate, ethyl hexanoate (ethyl caproate), phenylethyl alcohol, ethyl octanoate (ethyl caprilate), 2-phenylethyl acetate, and ethyl decanoate, was monitored by detecting the desorbed amount on a DVD-CAR-PDMS fiber from Pilsen beer. The microextraction process involved the presence of different silica-based phases produced via different methods: xerogel produced by hydrolytic and non-hydrolytic routes, aerogel, pyrogenic, and precipitated silica. The resulting data are discussed in correlation with sorbent texture properties (specific area and pore diameter). The modification of silica with alkyl groups also affects the preconcentrated amount of the target molecules in the headspace. The presence of sorbents was shown to affect the analyte signal more than the addition of NaCl or the use of ultrasound. PMID:19283367

  14. Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier

    SciTech Connect

    Hidaka, Y.; She, Y.; Murphy, J.B.; Podobedov, B.; Seletskiy, S.; Yang, X.

    2011-03-28

    We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and a short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.

  15. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    SciTech Connect

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  16. Simple design for singlemode high power CW fiber laser using multimode high NA fiber

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Chatigny, Stéphane; Desrosiers, Cynthia; Gagnon, Éric; Lapointe, Marc-André; de Sandro, Jean-Philippe

    2009-02-01

    A large number of high power CW fiber lasers described in the literature use large mode area (LMA) double cladding fibers. These fibers have large core and low core numerical aperture (NA) to limit the number of supported modes and are typically operated under coiling to eliminate higher order modes. We describe here multimode (MM) high NA ytterbium doped fibers used in single mode output high power laser/amplifier configuration. Efficient single mode amplification is realized in the multimode doped fiber by matching the fundamental mode of the doped fiber to the LP01 mode of the fiber Bragg grating (FBG) and by selecting the upper V-number value that limits the overlap of the LP01 to the higher order modes. We show that negligible mode coupling is realized in the doped fiber, which ensures a stable power output over external perturbation without the use of tapers. Fundamental mode operation is maintained at all time without coiling through the use of FBG written in a single mode fiber. We show that such fiber is inherently more photosensitive and easier to splice than LMA fiber. We demonstrate an efficient 75W singlemode CW fiber laser using this configuration and predict that the power scaling to the kW level can be achieved, the design being more practical and resistant to photodarkening compared to conventional low NA LMA fiber.

  17. Rehabilitation of endodontically treated teeth using the radiopaque fiber post.

    PubMed

    Brown, Philip L; Hicks, Norman L

    2003-04-01

    Metallic posts fall short of satisfying contemporary guidelines for ideal post/core rehabilitation. Along with technological improvements in adhesive resins, cements, and composite restoratives, the evolution of fiber-reinforced posts allows the rehabilitation of endodontically treated teeth with greater esthetics and virtually no predisposition to root fracture. At least one fiber post system now complies with all of the ideal post characteristics described in the endodontic text. This article describes the potential for displacement of metal posts by low-modulus fiber posts, the differences between them, and the development and placement of a radiopaque, translucent, double-tapered fiber post. PMID:12769029

  18. Fabrication of miniature optical fiber and microfiber coils

    NASA Astrophysics Data System (ADS)

    Sumetsky, M.; Dulashko, Y.; Ghalmi, S.

    2010-03-01

    We demonstrate a technique for simultaneous drawing, tapering, and coiling of a silica optical fiber that is locally heated by a CO 2 laser. It allows us to fabricate coils of silica fibers and microfibers with diameters ranging from ˜100 μm down to less than a micron. As an application, we demonstrate an evanescent coiled fiber refractometric sensor comprising 15 cm of standard single mode optical fiber. The dimension of this sensor is only 3 mm×3 mm×4 mm and its sensitivity in the aqueous environment is estimated as ˜160 nm/RIU.

  19. Design procedures for fiber composite box beams

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Murthy, Pappu L. N.

    1989-01-01

    Step-by-step procedures are described which can be used for the preliminary design of fiber composite box beams subjected to combined loadings. These procedures include a collection of approximate closed-form equations so that all the required calculations can be performed using pocket calculators. Included is an illustrative example of a tapered cantilever box beam subjected to combined loads. The box beam is designed to satisfy strength, displacement, buckling, and frequency requirements.

  20. Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power.

    PubMed

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Pung, Aaron; Poutous, Menelaos K; Johnson, Eric G; Richardson, Martin

    2012-08-27

    We report on a Tm:fiber master oscillator power amplifier (MOPA) system producing 109 W CW output power, with >15 dB polarization extinction ratio, sub-nm spectral linewidth, and M2 <1.25. The system consists of polarization maintaining (PM) fiber and PM-fiber components including tapered fiber bundle pump combiners, a single-mode to large mode area mode field adapter, and a fiber-coupled isolator. The laser components ultimately determine the system architecture and the limits of laser performance, particularly considering the immature and rapidly developing state of fiber components in the 2 μm wavelength regime. PMID:23037103

  1. High power monolithically integrated all-fiber laser design using single-chip multimode pumps for high reliability operation

    NASA Astrophysics Data System (ADS)

    Faucher, Mathieu; Villeneuve, Eric; Sevigny, Benoit; Wetter, Alexandre; Perreault, Roger; Lizé, Yannick Keith; Holehouse, Nigel

    2008-02-01

    We present an all-fiber monolithically integrated fiber laser based on a custom tapered fused bundle pump combiner with 32 inputs ports connected to a double clad gain fiber. The pump combiner is designed to provide high isolation between signal and pumps fibers providing intrinsic pump protection. This configuration can generate more than 100W of continuous wave (CW) laser light using single-chip multimode pumps enabling long term reliability.

  2. Effects of Reciproc, Mtwo and ProTaper Instruments on Formation of Root Fracture

    PubMed Central

    Jalali, Sahar; Eftekhar, Behrooz; Paymanpour, Payam; Yazdizadeh, Mohammad; Jafarzadeh, Mansour

    2015-01-01

    Introduction: The aim of this study was to compare the formation of dentinal crack and craze lines in the root dentin during root canal preparation with three different NiTi endodontic systems, naming Reciproc (RCP), ProTaper Universal (PTU) and Mtwo. Methods and Materials: One hundred extracted mandibular premolars with single canals were selected and decoronated. The teeth were randomly divided into four groups of 25 each (n=25). In groups 1, 2 and 3 the teeth were prepared using Mtwo, PTU and RCP, respectively. While in group 4 (control group) the samples were left unprepared. After preparation, all specimens were sectioned perpendicular to the long axis of root at 3, 5 and 9-mm distances from the apex. The sections were then individually observed under 12× magnification using stereomicroscope. The data was analyzed using the chi-square and Fisher’s exact tests. The level of significance was set at 0.05. Results: No cracks were observed in the control group. All engine-driven systems caused dentinal cracks. Mtwo and PTU caused cracks significantly more than RCP (P<0.05). There was no significant difference between RCP and control group (P>0.05). Conclusion: All three engine-driven systems created dentinal defects. Reciproc caused less cracks than Mtwo and ProTaper Universal. PMID:26523141

  3. An all-fiber high-energy cladding-pumped 93 nanosecond Q-switched fiber laser using an Y 3+-doped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Patterson, Brian D.; Soh, Daniel B.; Bisson, Scott E.

    2014-03-01

    We report an all-fiber passively Q-switched laser using a large mode area (LMA) Yb3+ -doped fiber claddingpumped at 915 nm and an unpumped single-mode (SM) Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber SM fiber and LMA gain fiber were coupled with a fiber taper designed to match the fundamental spatial mode of the LMA fiber and the expanded LP01 mode of the single mode fiber. The amplified spontaneous (ASE) intensity propagating in the single mode SA saturates the absorption before the onset of gain depletion in the pumped fiber, switching the fiber cavity to a high Q-state and producing a pulse. Using this scheme we demonstrate a Q-switched all-fiber oscillator with 32 μJ 93 ns pulses at 1030 nm. The associated peak power is nearly two orders of magnitude larger than that reported in previous experimental studies using a single Yb+3 saturable absorber fiber. The pulse energy was amplified to 0.230 mJ using an Yb3+-doped cladding pumped fiber amplifier fusion spliced to the fiber oscillator, increasing the energy by eight fold while preserving the all-fiber architecture.

  4. Tapering optimization for controlling of intermodulation in TWTs

    SciTech Connect

    Antonsen, T.M. Jr. |; Levush, B.

    1996-12-31

    In many applications TWTs amplifiers are required to provide simultaneous amplification of multiple frequencies. Intermodulation and amplitude and phase cross-modulation effects take place. These effects occur because the nonlinearities in the amplification process. However, some applications require intermodulation products at levels lower than {minus}60 dBC. In addition, the requirements of further increasing the efficiency, frequency, and power levels of TWTs makes the attainment of these levels of intermodulation challenging. In order to study intermodulation phenomena in the nonlinear regime the authors are developing time-dependent, multi-frequency models of helix TWTs. In this paper they describe a one-dimensional nonlinear multifrequency model which extends previous work in this field. The extension consists in the ability to treat an arbitrarily large number of distinct signals. it has been suggested that dynamic velocity tapers can, in addition to enhancing the efficiency, extend the range of linearity of the drive curve. In this work, they also suggest the use of tapering in order to reduce the intermodulation products. The results of the optimization of the rates of taper in order to minimize the intermodulation products will be presented. These results hold promise that the dynamic velocity taper approach for reduction of intermodulation products can be accomplished more simply than by the convention feed-forward techniques.

  5. Efficiency optimization in a FEL with fields` nonadiabatic tapering

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.; Silivra, A.A.

    1995-12-31

    Amplification of an electromagnetic wave in free electron lasers with a reversed guide field and right-hand polarized wiggler field is investigated both analytically and numerically. An effect of electron bunch trapping by the high frequency electromagnetic field is used for efficiency optimization. On the basis of motion stability criteria a possibility of bunches trapping by FEL parameters nonadiabatic (experimentally realizable) tapering is shown. The stability analysis of electron motion is based on Lyapunov theory for autonomy systems. A particle simulation is carried out for FEL parameters close to the experimental ones (relativistic factor {gamma}=4.75, wiggler field strength B{sub w}= 2.8 kG, guide field strength B{sub o}= -1.4 kG, operation wavelength {lambda}=6.2 mm) for the case of wiggler field tapering. Theoretically predicted rule of wiggler field tapering corresponding to FEL efficiency of 55% is approximated by stepped functions. For the experimentally realizable tapering it is found that FEL efficiency can be over 40%.

  6. Taper array in silica glass for beam splitting

    NASA Astrophysics Data System (ADS)

    Xia, Zehua; Li, Yan; Han, Yanhua; Ge, Meng; Ye, Jingfu; Deng, Duo; Wang, Benyang; Gao, Jianmin; Qu, Shiliang

    2016-03-01

    We proposed taper array in silica glass for beam splitting which was fabricated by water-assisted femtosecond laser direct writing technology and the subsequent heat treatment. We divided the array into many fabricating cells which were executed automatically in sequences as specified by the program that contained the information for the three-dimensional stage movements. Each cell could fabricated a rectangular cylinder. The size and distribution of the rectangular cylinder could be controlled by adjusting the position of the fabricating cells. Then the heat treatment should be used to reshape the rectangular cylinders into taper array. The experimental results show that the taper periodic microstructures in silica glass are uniform and smooth, and the tapers can divide the incident light into beam array. The results demonstrated that the combination of the water-assisted femtosecond laser direct writing technology and the heat treatment is accessible and practical for the high quality micro-optical elements. These micro-optical elements will have potential applications in fluorescence detection and beam splitter.

  7. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  8. Using Tapered Block Copolymers to Create Conducting Nanomaterials

    NASA Astrophysics Data System (ADS)

    Epps, Thomas, III

    2014-03-01

    Soft materials, such as polymers, colloids, surfactants, and liquid crystals, are a technologically important class of matter employed in a variety of applications. One sub-class of soft material, block copolymers, provides the opportunity to design materials with attractive chemical and mechanical properties based on the ability to assemble into periodic structures with nanoscale domain spacings. Several applications for block copolymers currently under investigation in my group include battery and fuel cell membranes, analytical separations membranes, nano-tool templates, precursors to electronic arrays, and drug delivery vehicles. One area of recent progress in the group focuses on the behavior of conventional block copolymer and tapered block copolymer systems for lithium battery membrane applications. We find that we can tune poly(styrene- b-ethylene oxide) diblock copolymer nanostructures by adjusting the lithium counterion and lithium salt concentration, as well as the taper volume fraction and composition. Additionally, we can estimate the effective interaction parameters (χeff) for the salt-doped copolymers to determine the overall influence of tapering on the energetics of copolymer assembly. These tapered materials allow us to design nanostructured membrane systems with increased conductivity and improved mechanical properties in ion transport devices. We gratefully acknowledge AFOSR-PECASE (FA9550-09-1-0706) and NSF-CAREER (DMR-0645586) for financial support.

  9. FSW of Tapered Thickness Welds using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby; Smelser, Jerry (Technical Monitor)

    2002-01-01

    This viewgraph presentation describes the advantages of tapered thickness welds in FSW (friction stir welding), the structure of FSW welds, the adjustable pin tool used in FSW. Other topics described include compliance and temperature measurement in a FSW system, loads and torque upon the pin tool and its ability to penetrate different metals, and the results and metallurgy of FSW welds.

  10. Vibration frequencies of tapered bars with nonclassical boundary conditions

    NASA Technical Reports Server (NTRS)

    Craver, W. Lionel, Jr.

    1988-01-01

    The goals for this research were revised and clarified. The goals are restated along with an evaluation of the accomplishment of the goal. All of the cases of the truncated-cone beams that were originally proposed to be solved were solved. A summary of these solutions is presented. Some cases of beams with unequal tapers were solved and are discussed.

  11. Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas

    2006-01-01

    A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.

  12. Linearly tapered slot antenna circular array for mobile communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  13. Dielectric tapered rod antennas for millimeter-wave applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Mittra, R.; Lampe, R.

    1982-01-01

    Experimental results are presented for several types of tapered dielectric rod antennas of rectangular cross section investigated at 81.5 GHz. The antennas are based on Zucker's (1961) design principles for low sidelobes and maximum gain adapted to rods of rectangular cross section. The gain and beamwidth plots for the antennas tested are shown.

  14. Nonplanar linearly tapered slot antenna with balanced microstrip feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Perl, Thomas D.

    1992-01-01

    A nonplanar linearly tapered slot antenna (LTSA) has been fabricated and tested at frequencies from 8 to 32 giga-Hz. The LTSA is excited by a broadband balanced microstrip transformer. The measured results include the input term return loss as well as the radiation pattern of the antenna.

  15. Taper-seal type metal sealing system and available applications

    NASA Astrophysics Data System (ADS)

    Kurokouchi, Satoshi; Okabe, Masayuki; Morita, Shinsaku

    2001-01-01

    A conventional disk (flat ring) gasket for ConFlat ® sealing system has been commonly applied to commercially available equipments for ultrahigh vacuum systems. However, its large redundant part which wastes the tightening force makes its handling and seal reliability problematic. We examine a taper-seal type gasket, which is newly designed to improve the inefficiency of ConFlat mechanism using conventional disk gaskets. It is remarked that the obtained seal area on a taper-seal type gasket is 1.6˜3.7 times larger than that of a conventional disk gasket. Our numencal results on stress distributions in a tightened gasket indicate that taper-seal gasket realizes highly stable seal pressure even under a lower tightening torque. High sealing reliability is thus achieved as expected which is mainly due to the wide seal area and stable seal pressure realized even for rather hard gasket material. Taper-seal type gasket also has some practical advantages. The most important of them may be that it enables to construct new edgeless metal sealing systems without a welded heavy flange. Here, edgeless sealing systems are composed of highly flexible incorporating viewports, bellows, feedthroughs, and blank-off covers, as well as any other conventional vacuum components.

  16. Opioid Abstinence Reinforcement Delays Heroin Lapse during Buprenorphine Dose Tapering

    ERIC Educational Resources Information Center

    Greenwald, Mark K.

    2008-01-01

    A positive reinforcement contingency increased opioid abstinence during outpatient dose tapering (4, 2, then 0 mg/day during Weeks 1 through 3) in non-treatment-seeking heroin-dependent volunteers who had been maintained on buprenorphine (8 mg/day) during an inpatient research protocol. The control group (n = 12) received $4.00 for completing…

  17. Nonlinear acoustic streaming in straight and tapered tubes

    NASA Astrophysics Data System (ADS)

    Tuttle, Brian C.

    In thermoacoustic and Stirling devices such as the pulse-tube refrigerator, efficiency is diminished by the formation of a second-order mean velocity known as Rayleigh streaming. This flow emerges from the interaction of the working gas with the wall of the tube in a thin boundary layer. Recent studies have suggested that streaming velocity can be decreased in a tube by tapering it slightly. This research investigates that claim through the development of a numerical model of Rayleigh streaming in variously tapered tubes. It is found that the numerical simulation of streaming in a straight tube compares well with theory, and the application of different thermal boundary conditions at the tube wall shows that for pressurized helium, inner streaming vortices which appear near an adiabatic tube wall do not develop near an isothermal wall. An order analysis indicates that the temperature dependence of viscosity and thermal conductivity contributes appreciably to an accurate numerical model of streaming. Comparison of Rayleigh streaming in tapered tubes shows the effects of taper angle on the circulation and velocity of the mean flow.

  18. High-power fused assemblies enabled by advances in fiber-processing technologies

    NASA Astrophysics Data System (ADS)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  19. Efficiency of the Self Adjusting File, WaveOne, Reciproc, ProTaper and hand files in root canal debridement

    PubMed Central

    Topcu, K. Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim

    2014-01-01

    Objectives: The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Materials and Methods: Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. Results: An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). Conclusions: None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups. PMID:25202211

  20. Characteristics of a tapered capillary plasma waveguide for laser wakefield acceleration

    SciTech Connect

    Kim, M. S.; Jang, D. G.; Lee, T. H.; Nam, I. H.; Lee, I. W.; Suk, H.

    2013-05-20

    We developed a gas-filled capillary with a tapered density for laser wakefield acceleration, of which the tapering was realized by employing gas feed-lines with different cross-sections. Plasma diagnostics show that the capillary plasma has a significant longitudinal density tapering and a transverse parabolic profile. By using the tapered capillary plasma, high transmission (over 90%) of laser beams, meaning good optical guiding, was observed. These results demonstrate the potential of the tapered plasma source for high-energy laser wakefield acceleration, where the dephasing problem is minimized.

  1. High-power monolithic fiber amplifiers based on advanced photonic crystal fiber designs

    NASA Astrophysics Data System (ADS)

    Sipes, Donald L.; Tafoya, Jason D.; Schulz, Daniel S.; Alkeskjold, Thomas Tanggaard; Weirich, Johannes; Olausson, Christina B.

    2014-03-01

    We report on the development and performance of a fully monolithic PCF amplifier that has achieved over 400 W with near diffraction limited beam quality with an approximately 1GHz phase modulated input. The key components for these amplifiers are an advanced PCF fiber design that combines segmented acoustically tailored (SAT) fiber that is gain tailored, a novel multi fiber-coupled laser diode stack and a monolithic 6+1x1 large fiber pump/signal multiplexer. The precisely aligned 2-D laser diode emitter array found in laser diode stacks is utilized by way of a simple in-line imaging process with no mirror reflections to process a 2-D array of 380-450 elements into 3 400/440μm 0.22NA pump delivery fibers. The fiber combiner is an etched air taper design that transforms low numerical aperture (NA), large diameter pump radiation into a high NA, small diameter format for pump injection into an air-clad large mode area PCF, while maintaining a constant core size through the taper for efficient signal coupling and throughput. The fiber combiner has 6 400/440/0.22 core/clad/NA pump delivery fibers and a 25/440 PM step-index signal delivery fiber on the input side and a 40/525 PM undoped PCF on the output side. The etched air taper transforms the six 400/440 μm 0.22 NA pump fibers to the 525 μm 0.55 NA core of the PCF fiber with a measured pump combining efficiency of over 95% with a low brightness drop. The combiner also operates as a stepwise mode converter via a 30 μm intermediate core region in the combiner between the 20 μm core of the input fiber and the 40 μm fiber core of the PCF with a measured signal efficiency of 60% to 70% while maintaining polarization with a measured PER of 20 dB. These devices were integrated in to a monolithic fiber amplifier with high efficiency and near diffraction limited beam quality.

  2. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  3. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey.

    PubMed

    Ghiasvand, Alireza; Dowlatshah, Samira; Nouraei, Nadia; Heidari, Nahid; Yazdankhah, Fatemeh

    2015-08-01

    A mechanically hard and cohesive porous fiber, with large surface area, for more strong attachment of the coating was provided by platinizing a stainless steel wire. Then, the platinized stainless steel fiber was coated with a multiwalled carbon nanotube/polyaniline (MWCNT/PANI) nanocomposite using electrophoretic deposition (EPD) method and applied for the extraction of thymol and carvacrol with direct-immersion solid-phase microextraction (DI-SPME) method followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) quantification. To provide a larger coarse surface for the tightened attachment of coating on the fiber, a stainless steel wire was platinized using a suitable optimized EPD method. Different experimental parameters were studied and the optimal conditions were obtained as: pH of the sample solution: 2; extraction time: 60min; salt content in the sample solution: 1% w/v NaNO3; desorption time: 60min; type and volume of the desorption solvent: acetonitrile, 100μL. Under the optimized conditions, limits of detection (LODs) were 0.6 and 0.8μgmL(-1) for thymol and carvacrol, respectively. Linear dynamic range (LDR) for the calibration curves of both analytes were 1-80μgmL(-1). Relative standard deviation (RSD%, n=6) was 6.8 for thymol and 12.7 for carvacrol. The proposed fiber was successfully applied for the recovery and determination of thymol and carvacrol in thyme, savory, and honey samples. PMID:26138604

  4. Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of d- and l-methionine.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Pandey, Indu; Tiwari, Mahavir Prasad

    2013-01-01

    An alternative method is presented for the modification of pencil graphite fibers using surface imprinting technology. In this new approach, we have adopted surface initiated electropolymerization of benzidine monomer, with simultaneous imprinting of template (d- and l-methionine), on carboxylated multiwalled carbon nanotubes anchored pencil graphite fiber. This yielded a nanostructured ultrathin imprinted film (58.3nm) uniformly coated all along the perimeter and length of pencil graphite fiber, for micro-solid phase extraction with substantial adsorption capability. The same film is coated over the exposed tip of the pencil graphite fiber to serve as a complementary molecularly imprinted polymer-sensor. Both extraction and sensing devices are not capable to measure the stringent limit (0.016ngmL(-1)) of clinical detection of methylenetetrahydrofolate reductase (MTHFR) gene mutation caused by acute methionine depletion, when used alone. However, on combination of both techniques, a successful enantioselective analysis of d- and l-methionine with excellent analytical figures of merit [limit of quantitation range: 0.03-30.00ngmL(-1), limit of detection: 0.0098ngmL(-1) (RSD=2.04, S/N=3)] could be achieved without any problem of non-specific false-positive contribution and cross-reactivity, in real samples. PMID:23262195

  5. High-power high-brightness ridge-waveguide tapered diode lasers at 14xx nm

    NASA Astrophysics Data System (ADS)

    Kallenbach, Senta; Kelemen, Marc T.; Aidam, Rolf; Losch, Rainer; Kaufel, Gudrun; Mikulla, Michael; Weimann, Guenter

    2005-04-01

    High-power spatially single-mode diode lasers at 1.4 - 1.5 μm wavelength are of interest as pump lasers for Raman and rare-earth doped fiber amplifiers as well as for material processing and for Light Detection and Ranging (LIDAR) at eye-safe wavelengths. A cost-efficient way to realize high-power high-brightness devices is the tapered resonator concept. We demonstrate InGaAsP/InP based diode lasers with compressively strained quantum wells and wavelengths around 1480 nm which were grown by solid source MBE. From broad area lasers with variations in quantum well number and waveguide layer thickness, parameters for the logarithmic gain model are deduced. With their implementation in 2-dimensional BPM simulations, an optimized resonator geometry is derived. Devices employ a 500 μm ridge section followed by a 2000 μm taper section with 6° angle. Continuous-wave (cw) output powers reach more than 1.5 W. Beam quality is characterized in terms of near field and far field distribution, M2, and astigmatism. An excellent agreement is found between measurement and simulation. For narrow-linewidth operation, devices are provided with anti-reflection coatings on both facets and spectrally stabilized with an external grating. We achieve 0.7 W single mode power and a side mode suppression ratio (SMSR) of 42 dB. Reliability is tested in terms of facet stability and lifetime. Pulsed measurements reveal a power stability up to more than 5 MW/cm2. From cw aging tests at 1 W output power, lifetimes of about 6,000 h are extrapolated.

  6. Aplanatic beam shaping for diffraction limited beam circularization of tapered laser diodes

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2014-03-01

    Many laser applications require a circular, astigmatism-free, diffraction limited, high power beam. A tapered laser diode can generate up to 6 W output power in a diffraction limited beam. However the beam is elliptical and highly astigmatic rendering the design of beam shaping challenging. We present a diffraction limited beam shaping design, especially suitable to circularize and collimate highly astigmatic beams. The setup consists of a simple plano-convex cylindrical lens in the aplanatic condition and an asphere. The first lens matches the divergence of the fast- to the slow axis at the point where the beam is circular while the following asphere collimates the beam. The aplanatic condition is fulfilled by choosing a glass with a specific refractive index depending on the ratio between fast- and slow axis divergence. This cylindrical lens introduces neither spherical error nor primary coma, which makes it insensitive to misalignment. The setup has been tested with a high power laser diode at 980 nm with a 6 mm long taper (angle 6°) and a facet width of 425 μm. The optics have a transmission of about 90% and the resulting beam has a M2 < 1.5. As a proof of principle 3.2 W were coupled into a 15 μm (NA 0.06) LMA fiber with 55% efficiency corresponding to a brightness B = 140 MW/(cm2 sr). Furthermore the presented beam shaping can easily be extended to bars or multiple emitters to reach power levels that are to date only achievable with complex wavelength combination techniques.

  7. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre.

    PubMed

    Beaudou, B; Couny, F; Wang, Y Y; Light, P S; Wheeler, N V; Gérôme, F; Benabid, F

    2010-06-01

    We report on a novel means which lifts the restriction of the limited optical bandwidth of photonic bandgap hollow-core photonic crystal fiber on generating high order stimulated Raman scattering in gaseous media. This is based on H(2)-filled tapered HC-PCF in which the taper slope is matched with the effective length of Raman process. Raman orders outside the input-bandwidth of the HC-PCF are observed with more than 80% quantum-conversion using a compact, low-power 1064 nm microchip laser. The technique opens prospects for efficient sources in spectral regions that are poorly covered by currently existing lasers such as mid-IR. PMID:20588364

  8. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer: application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion.

    PubMed

    Djozan, Djavanshir; Mahkam, Mehrdad; Ebrahimi, Bahram

    2009-03-20

    A monolithic ametryn molecular-imprinted polymer based on a simple polymerization method was fabricated for use as new solid-phase microextraction (SPME) fiber, which can be coupled with GC and GC/MS for selective extraction and analysis of triazine herbicides. Methacrylic acid (MAA), ethylene glycol dimethacrylate (EDMA) and ametryn bear role of functional monomer, cross-linker and template, respectively. In the optimized conditions the fabricated fiber showed better molecular recognition abilities for methylthiotriazine herbicides than chloro-triazine herbicides. By use of bi-Langmuir isotherm model the evaluated equilibrium constants for ametryn were 0.01 and 890.69 microM(-1), and the numbers of binding sites were 129.98 and 5.82 nmol g(-1), respectively. The high extraction efficiency was obtained for ametryn, prometryn, terbutryn, atrazine, simazine, propazine, and cyanazine, yielding the detection limits of 14, 28, 45, 56, 85, 95 and 74 ng mL(-1), respectively by GC with flame ionization detection. The reliability of the prepared fiber for extraction of ametryn and other analogues in real samples has been investigated and proved by using spiked samples such as tap water, rice, maize, and onion. PMID:19185305

  9. Tapered fused bundle coupler package for reliable high optical power dissipation

    NASA Astrophysics Data System (ADS)

    Séguin, François; Wetter, Alexandre; Martineau, Lilian; Faucher, Mathieu; Delisle, Claude; Caplette, Stéphane

    2006-02-01

    Light absorption in structural adhesives constitutes the main source of heat in tapered fused bundle (TFB) devices. Efficient heat dissipation solutions were developed by studying these thermal loads. The relative merits of transparent vs. opaque package designs were established experimentally. In the former, light escapes without being absorbed by the package walls, whereas in the latter, the spurious optical signal is directly absorbed and dissipated. The fact that heat is generated directly in the adhesive largely favors the opaque package, which offers more efficient heat extraction. By using a thermally conductive package, a temperature rise of 1.1°C per Watt of dissipated power was measured. These numbers demonstrate that passive heat sinking at 20°C is sufficient to allow reliable operation up to 45Watts of dissipated power (1kW with 0.2dB optical loss) without compromising long-term reliability.

  10. Microwave sidebands for laser cooling by direct modulation of a tapered amplifier

    NASA Astrophysics Data System (ADS)

    Mahnke, J.; Kulas, S.; Geisel, I.; Jöllenbeck, S.; Ertmer, W.; Klempt, C.

    2013-06-01

    Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier, which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1 × 109 87Rb atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range, and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size, and applicability for multiple frequencies benefit a wide range of applications reaching from atom-based mobile sensors to the laser cooling of molecules.

  11. Microwave sidebands for laser cooling by direct modulation of a tapered amplifier.

    PubMed

    Mahnke, J; Kulas, S; Geisel, I; Jöllenbeck, S; Ertmer, W; Klempt, C

    2013-06-01

    Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier, which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1 × 10(9) (87)Rb atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range, and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size, and applicability for multiple frequencies benefit a wide range of applications reaching from atom-based mobile sensors to the laser cooling of molecules. PMID:23822336

  12. Thulium Fiber Laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard Leious, Jr.

    The Thulium Fiber Laser (TFL) has been studied as a potential alternative to the conventional Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is more ideally suited for laser lithotripsy because of the higher absorption coefficient of the emitted wavelength in water, the superior Gaussian profile of the laser beam, and the ability to operate at arbitrary temporal pulse profiles. The higher absorption of the TFL by water helps translate into higher ablation of urinary stones using less energy. The Gaussian spatial beam profile allows the TFL to couple into fibers much smaller than those currently being used for Ho:YAG lithotripsy. Lastly, the ability of arbitrary pulse operation by the TFL allows energy to be delivered to the stone efficiently so as to avoid negative effects (such as burning or bouncing of the stone) while maximizing ablation. Along with these improvements, the unique properties of the TFL have led to more novel techniques that have currently not been used in the clinic, such as the ability to control the movement of stones based on the manner in which the laser energy is delivered. Lastly, the TFL has led to the development of novel fibers, such as the tapered fiber and removable tip fiber, to be used for lithotripsy which can lead to safer and less expensive treatment of urinary stones. Overall, the TFL has been demonstrated as a viable alternative to the conventional Ho:YAG laser and has the potential to advance methods and tools for treatment of kidney stones.

  13. Does Taper Angle Clearance Influence Fretting and Corrosion Damage at the Head-Stem Interface? A Matched Cohort Retrieval Study

    PubMed Central

    Kocagöz, Sevi B.; Underwood, Richard J.; Sivan, Shiril; Gilbert, Jeremy L.; MacDonald, Daniel W.; Day, Judd S.; Kurtz, Steven M.

    2014-01-01

    Previous studies have speculated that modular taper design may have an effect on the corrosion and material loss at the taper surfaces. We present a novel method to measure taper angle for retrieved head taper and stem trunnions using a roundness machine (Talyrond 585, Taylor Hobson, UK). We also investigated the relationship between taper angle clearance and visual fretting-corrosion score at the taper-trunnion junction using a matched cohort study of 50 ceramic and 50 metal head-stem pairs. In this study, no correlation was observed between the taper angle clearance and the visual fretting-corrosion scores in either the ceramic or the metal cohorts. PMID:24610994

  14. Determining resin/fiber content of laminates

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1979-01-01

    Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.

  15. Detachable fiber optic tips for use in thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187 μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.

  16. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.

    1995-01-01

    A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

  17. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOEpatents

    O`Rourke, P.E.; Livingston, R.R.

    1995-03-28

    A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

  18. The tapered press fit total hip arthroplasty: a European alternative.

    PubMed

    Swanson, Todd V

    2005-06-01

    The tapered rectangular press fit femoral component design of Karl Zweymüller remains highly successful since its inception in 1979. The longitudinal taper and rectangular cross-section provide unequaled primary stability, which promotes consistent secondary osseointegration to the grit-blasted titanium surface, even in osteoporotic bone. The "fit without fill" concept provides for bone conservation and preservation of the intraosseous blood supply by compaction, rather than removal, of the metaphyseal cancellous bone. The surgical technique is simple and forgiving, allowing for infinite adjustability in stem height and anteversion. Numerous long-term studies report excellent clinical results with a negligible incidence of loosening, thigh pain, osteolysis, or significant stress shielding and survivorships approaching 100% at 10 years. PMID:15991133

  19. Optimized tapered dipole nanoantenna as efficient energy harvester.

    PubMed

    El-Toukhy, Youssef M; Hussein, Mohamed; Hameed, Mohamed Farhat O; Heikal, A M; Abd-Elrazzak, M M; Obayya, S S A

    2016-07-11

    In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure. PMID:27410898

  20. X-ray beam compression by tapered waveguides

    SciTech Connect

    Chen, H.-Y. E-mail: tsaldit@gwdg.de; Hoffmann, S.; Salditt, T. E-mail: tsaldit@gwdg.de

    2015-05-11

    We have fabricated linear tapered waveguide channels filled with air and imbedded in silicon for the hard x-ray regime, using a processing scheme involving e-beam lithography, reactive ion etching, and wafer bonding. Beam compression in such channels is demonstrated by coupling a pre-focused undulator beam into the channels, and recording the exit flux and far-field diffraction patterns. We achieved a compressed beam with a spot size of 16.48 nm (horizontal) × 14.6 nm (vertical) near the waveguide exit plane, as determined from the reconstructed near-field distribution, at an exit flux which is eight times higher than that of an equivalent straight channel. Simulations indicate that this gain could reach three to four orders of magnitude for longer channels with tapering in two directions.

  1. The experimental and calculated characteristics of 22 tapered wings

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1938-01-01

    The experimental and calculated aerodynamic characteristics of 22 tapered wings are compared, using tests made in the variable-density wind tunnel. The wings had aspect ratios from 6 to 12 and taper ratios from 1:6:1 and 5:1. The compared characteristics are the pitching moment, the aerodynamic-center position, the lift-curve slope, the maximum lift coefficient, and the curves of drag. The method of obtaining the calculated values is based on the use of wing theory and experimentally determined airfoil section data. In general, the experimental and calculated characteristics are in sufficiently good agreement that the method may be applied to many problems of airplane design.

  2. Piezoelectric energy harvester having planform-tapered interdigitated beams

    DOEpatents

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  3. Influence of Root Canal Tapering on Smear Layer Removal.

    PubMed

    Zarei, Mina; Javidi, Maryam; Afkhami, Farzaneh; Tanbakuchi, Behrad; Zadeh, Mohsen Movahed; Mohammadi, Marzieh Maghadam

    2016-04-01

    The purpose of the study presented here was to compare the influence of root canal taper on the efficacy of irrigants and chelating agents in smear layer removal. Eighty mesial roots of molar teeth were selected and prepared with rotary instruments. In group A, file 30/0.02 and in group B, file 30/0.4 were placed at working length and the smear layer was removed. In groups C and D, root canal preparation was the same as in groups A and B, respectively, except that the smear layer was not removed. The amount of the smear layer was quantified using a scanning electron microscope. Greater smear layer was detected in the apical portion of each group, whereas no significant difference was detected between groups in other portions. No statistical difference was found between canals with different tapers. PMID:27348950

  4. Numerical Simulation of Flow Past a Tapered Cylinder

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis; Levit, Creon

    1990-01-01

    We have computed the unsteady three-dimensional low Reynolds number flow past a tapered cylinder. The spanwise variation in natural shedding frequency results in interesting three-dimensional flow phenomena. Our computed hot-wire and spectral data are very similar to experimental results. The computation was done on the Connection Machine, a massively parallel computer, we highlight the capabilities of the Connection Machine, for computation and visualization of three-dimensional unsteady flow fields.

  5. Numerical simulation of flow past a tapered cylinder

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon

    1991-01-01

    The unsteady three-dimensional low Reynolds number flow past a tapered cylinder is computed. The spanwise variation in natural shedding frequency results in interesting three-dimensional flow phenomena. The computed hot-wire and spectral data are very similar to experimental results. The computation was done on the Connection Machine, a massively parallel computer; highlights of the capabilities of the Connection Machine for computation and visualization of three-dimensional unsteady flow fields are shown.

  6. Development of high-power gyrotrons with gradually tapered cavity

    SciTech Connect

    Lei Chaojun; Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang

    2012-12-15

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  7. Gas insulated transmission line having tapered particle trapping ring

    DOEpatents

    Cookson, Alan H.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  8. The taper disaster--how could it happen?

    PubMed

    Morlock, Michael M

    2015-01-01

    Corrosion of metallic implants in contact with body fluids is unavoidable, especially at interfaces where movement occurs or in gaps. Corrosion became clinically relevant with the introduction of large modular metal-on-metal total hip joint articulations (MoM THA) early in the 21st century. This review attempts to summarise the scientific knowledge about taper problems available at the time of introduction of these bearings, why this "disaster" could happen. It is speculated that changes to the taper connection made in the 1990s to increase the range of motion with small heads (28 and 32 mm) reduced the mechanical strength of this connection, which did not matter for small heads. With the use of large and very large metal heads in MoM articulations, which have a larger lever arm and can generate high friction in unfavourable situations, suddenly the taper interface exhibited corrosion problems on a previously unknown scale. It is speculated that due to the higher mechanical loading with larger heads, the taper connection became less forgiving with respect to assembly conditions, contamination, manufacturing tolerances and other factors, which are yet not known. Since no major clinical problems had been reported before the introduction of these bearings and the pre-clinical testing was very successful, the disaster took its course. The patient-implant-surgeon system is a very complex intrinsically hazardous system. Pre-clinical testing addresses few and defined factors and such, good results cannot be directly transferred to the clinical reality. A controlled stepwise introduction of innovations is required. PMID:26044535

  9. Microbiological Seal of Two Types of Tapered Implant Connections.

    PubMed

    Peruzetto, Wheslley M; Martinez, Elizabeth F; Peruzzo, Daiane C; Joly, Júlio Cesar; Napimoga, Marcelo H

    2016-01-01

    Tapered implant connections have gained wide popularity for being more resistant to fatigue and for promoting a better seal against bacterial infiltration than conventional connections. The aim of this study was to evaluate the bacterial seal at the implant-abutment interface using two Morse taper implant models, by in vitro microbiological analysis. Eleven non-indexed and 11 indexed abutments were selected and connected to their respective implants with a 20 N torque, according to manufacturer's recommendation. Microbiological analysis was carried out using colonies of Escherichia coli transported directly from a culture dish to the prosthetic component. For control, one non-contaminated abutment-implant set from each group (negative control) and one contaminated implant with no abutment (positive control) were used. The specimens were immersed in BHI broth and maintained in an incubator at 37 °C for 14 days to assess the development of bacterial contamination. The results revealed that 36.4% (n=4) of the indexed components and 90.9% (n=10) of the non-indexed components allowed bacterial leakage, with significant difference between groups (p=0.0237). In conclusion, both tapered components failed to provide adequate sealing to bacterial leakage, although the indexed type components showed a superior seal compared with non-indexed components. PMID:27224559

  10. A prospective evaluation of outcomes of two tapered implant systems.

    PubMed

    Andreasi Bassi, M; Lopez, M A; Confalone, L; Gaudio, R M; Lombardo, L; Lauritano, D

    2016-01-01

    The purpose of this prospective clinical study was to evaluate survival rate (SVR - i.e. fixtures still in place at the end of the observation period) and success rate (SCR - i.e. bone resorption around the implant neck) of two tapered implant systems. Both systems were equipped with a tapered connection, one requiring bone-level (BL) placement, while the other required soft-tissue-level (STL) placement. In the period between January 1996 and October 2011, 133 fixtures were inserted, 90 in females and 43 in males, with a mean age of 60±11 years. The mean post-surgical follow-up was 64±38 months. Several clinical parameters were evaluated as potential outcome conditioners. An SPSS program was used for statistical analysis and a Cox analysis was performed. The SVR was 100% since no fixtures were lost. SCR, expressed through the mean marginal bone loss, was 88%. No significant differences were found, for most of the variables investigated with the exception of bone grafting and implant type: STL implants showed a better clinical outcome than BL implants when bone grafting was performed simultaneously with implant placement. Tapered implants are reliable devices for oral rehabilitation of jaws. PMID:27469541

  11. Electromechanical analysis of tapered piezoelectric bimorph at high electric field

    NASA Astrophysics Data System (ADS)

    Chattaraj, Nilanjan; Ganguli, Ranjan

    2015-04-01

    Piezoelectric bimorph laminar actuator of tapered width exhibits better performance for out-of-plane deflection compared to the rectangular surface area, while consuming equal surface area. This paper contains electromechanical analysis and modeling of a tapered width piezoelectric bimorph laminar actuator at high electric field in static state. The analysis is based on the second order constitutive equations of piezoelectric material, assuming small strain and large electric field to capture its behavior at high electric field. Analytical expressions are developed for block force, output strain energy, output energy density, input electrical energy, capacitance and energy efficiency at high electric field. The analytical expressions show that for fixed length, thickness, and surface area of the actuator, how the block force and output strain energy gets improved in a tapered surface actuator compared to a rectangular surface. Constant thickness, constant length and constant surface area of the actuator ensure constant mass, and constant electrical capacitance. We consider high electric field in both series and parallel electrical connection for the analysis. Part of the analytical results is validated with the experimental results, which are reported in earlier literature.

  12. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts ...

  13. Fiber optic sensor for flow and viscosity measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Leang, Jonathan

    2016-04-01

    A sensitive fluid viscosity and flow measurement device using optical intensity based sensing is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with approximate hinge-free end configuration. The viscosity and mass flow are determined by measuring the vibration of a sinusoidally excited tapered optical fiber under different flow conditions. By measuring the frequency response of the fiber probe, viscosity and mass flow can be deduced from the damping coefficient of the response. The concepts and experimental data presented demonstrate and refine the sensing process of the proposed system.

  14. Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Finite element method was used to analyze a tapered glass/epoxy composite laminate subjected to a tension load, in order to determine the interlaminar stress distributions the strain-energy release rate for the delamination growth that may occur due to ply drops. In a laminate having a typical configuration of a helicopter hub, the (+/- 45)3 plies were dropped in three distinct steps, each 20-ply thickness apart, with the resulting taper angle of 5.71 deg. Delaminations were assumed to initiate at the bottom of the taper on the -45/+45 interface, and the delamination growth was simulated along the taper and into the thin region. The results of the analysis indicated that a delamination initiating at the end of the taper will grow unstably along the taper and the thin laminate simultaneously.

  15. Taper junction failure in large-diameter metal-on-metal bearings

    PubMed Central

    Langton, D. J.; Sidaginamale, R.; Lord, J. K.; Nargol, A. V. F.; Joyce, T. J.

    2012-01-01

    Objectives An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer. Methods Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated. Results The measured rates of wear and distribution of material loss from the taper surfaces appeared to show that the primary factor leading to taper failure is the increased lever arm acting on this junction in contemporary large-diameter metal-on-metal hip replacements. Conclusions Our analysis suggests that varus stems, laterally engaging taper systems and larger head diameters all contribute to taper failure. PMID:23610672

  16. Calculation and analysis of the magnetic field of a linearly tapered undulator

    NASA Astrophysics Data System (ADS)

    Li, He-Ting; Guo, Fan; Li, Jia-Yu; Jia, Qi-Ka

    2015-08-01

    There is an empirical formula describing the relationship between the peak magnetic field and the undulator structure parameters for a uniform-parameter hybrid undulator. In this paper, we investigate the relationship for a linearly tapered undulator through numerical calculation by using the code RADIA, and check it with the empirical formula. The results imply that this empirical formula is also effective for linearly tapered undulators at a big enough scope for the requirements of normal FEL experiments. Therefore, for a linearly tapered undulator, we can use the empirical formula to design the variation of the undulator gap. For the tapering rate demanded by normal FEL experiments, the gap of a linearly tapered undulator increases almost linearly, and the tapering rate will keep constant while adjusting the undulator gap with the same variation for each undulator period. Supported by National Natural Science Foundation of China (11205156) and Major State Basic Research Development Program (2011CB808301)

  17. Autotract: Automatic cleaning and tracking of fibers

    PubMed Central

    Prieto, Juan C.; Yang, Jean Y.; Budin, François; Styner, Martin

    2016-01-01

    We propose a new tool named Autotract to automate fiber tracking in diffusion tensor imaging (DTI). Autotract uses prior knowledge from a source DTI and a set of corresponding fiber bundles to extract new fibers for a target DTI. Autotract starts by aligning both DTIs and uses the source fibers as seed points to initialize a tractography algorithm. We enforce similarity between the propagated source fibers and automatically traced fibers by computing metrics such as fiber length and fiber distance between the bundles. By analyzing these metrics, individual fiber tracts can be pruned. As a result, we show that both bundles have similar characteristics. Additionally, we compare the automatically traced fibers against bundles previously generated and validated in the target DTI by an expert. This work is motivated by medical applications in which known bundles of fiber tracts in the human brain need to be analyzed for multiple datasets. PMID:27065227

  18. Autotract: automatic cleaning and tracking of fibers

    NASA Astrophysics Data System (ADS)

    Prieto, Juan C.; Yang, Jean Y.; Budin, François; Styner, Martin

    2016-03-01

    We propose a new tool named Autotract to automate fiber tracking in diffusion tensor imaging (DTI). Autotract uses prior knowledge from a source DTI and a set of corresponding fiber bundles to extract new fibers for a target DTI. Autotract starts by aligning both DTIs and uses the source fibers as seed points to initialize a tractography algorithm. We enforce similarity between the propagated source fibers and automatically traced fibers by computing metrics such as fiber length and fiber distance between the bundles. By analyzing these metrics, individual fiber tracts can be pruned. As a result, we show that both bundles have similar characteristics. Additionally, we compare the automatically traced fibers against bundles previously generated and validated in the target DTI by an expert. This work is motivated by medical applications in which known bundles of fiber tracts in the human brain need to be analyzed for multiple datasets.

  19. Efficiency enhancement of coupled-cavity TWT's through cavity resonance tapering

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1979-01-01

    The paper examines efficiency enhancement of coupled-cavity traveling-wave tube (TWT) through cavity resonance tapering. Beam-wave resynchronization through circuit velocity reduction is used for TWT efficiency enhancement, with circuit velocity reduction in coupled cavity TWT's accomplished through period tapering. However, the amount of the latter is limited by the stability considerations, so that beyond a critical value of velocity reduction, the tube may be subject to zero drive oscillations originating in the velocity taper region. The coupled-cavity resonance tapering allows the velocity reduction to continue beyond the limit of stable period tapering, and it is accomplished by a gradual reduction in the cavity resonance frequency, with the period and the circuit bandwidth unchanged. The advantages of cavity resonance tapering vs period tapering are discussed, and test data are presented with the results of large-signal computer calculations. It is shown that cavity resonance tapering can produce efficiencies as period tapering without incurring the same risk of lower band-edge oscillations.

  20. Efficiency and Spectrum Enhancement in a Tapered Free-Electron Laser Amplifier

    SciTech Connect

    Wang, X. J.; Harder, D.; Murphy, J. B.; Qian, H.; Shen, Y.; Yang, X.; Freund, H. P.; Miner, W. H. Jr.

    2009-10-09

    We report the first experimental characterization of efficiency and spectrum enhancement in a laser-seeded free-electron laser using a tapered undulator. Output and spectra in the fundamental and third harmonic were measured versus distance for uniform and tapered undulators. With a 4% field taper over 3 m, a 300% (50%) increase in the fundamental (third harmonic) output was observed. A significant improvement in the spectra with the elimination of sidebands was observed using a tapered undulator. The experiment is in good agreement with predictions using the MEDUSA simulation code.