Science.gov

Sample records for fiber technology center

  1. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  2. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  3. Improvement of the accuracy of the aircraft center of gravity by employing optical fiber Bragg grating technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Fan, LingLing; Guan, Liang; Zhao, Qiming; Cui, Hong-Liang

    2010-04-01

    Safety flight of aircrafts requires that the aircraft center of gravity (CG) must fall within specified limits established by the manufacturer. However, the aircraft CG depends not only on the structure of planes, but also on the passengers and their luggage. The current method of estimating the weight of passengers and luggage by the average weight may result in a violation of this requirement. To reduce the discrepancy between the actual weight and estimated weight, we propose a method of improving the accuracy of calculating the CG of the plane by weighing the passengers and their personal luggage. This method is realized by a Weigh-In-Motion (WIM) system installed at boarding gates based on optical fiber Bragg grating (FBG) technology. One prototype of WIM is fabricated and tested at lab. The resolution of this system is 2 kg and can be further improved by advanced manufacture technology. With the accurate weight of passengers and luggage coming from the WIM system and the locations of passengers and luggage obtained from boarding cards, the aircraft CG can be calculated correctly. This method can be applied into other fields, such as escalators, boarding gates for ferries.

  4. Fiber Sensor Technology Today

    NASA Astrophysics Data System (ADS)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  5. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  6. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  7. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  8. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  9. Science and Technology Centers.

    ERIC Educational Resources Information Center

    Danilov, Victor J.

    Science and technology centers, which are relative newcomers to the museum field, differ from traditional museums in a number of respects. They are concerned with furthering public understanding and appreciation of the physical and biological sciences, engineering, technology, and health and seek to accomplish this goal by making museums both…

  10. Silica optical fibers: technology update

    NASA Astrophysics Data System (ADS)

    Krohn, David A.; McCann, Brian P.

    1995-05-01

    Silica-core optical fibers have long been the standard delivery medium for medical laser delivery systems. Their high strength, excellent flexibility, and low cost continue to make them the fiber of choice for systems operating from 300 to 2200 nm. An overview of the current fiber constructions available to the industry is reviewed. Silicone-clad fibers, hard- fluoropolymer clad fibers and silica-clad fibers are briefly compared in terms of mechanical and optical properties. The variety of fiber coatings available is also discussed. A significant product development of silica fiber delivery systems has been in side-firing laser delivery systems for Urology. These devices utilize silica-core fibers to project the laser energy at a substantial lateral angle to the conventional delivery system, typically 40 to 100 degrees off axis. Many unique distal tips have been designed to meet the needs of this potentially enormous application. There are three primary technologies employed in side-firing laser delivery systems: reflection off of an attached medium; reflection within an angle-polished fiber through total internal reflection; and reflection from both an angle-polished fiber and an outside medium. Each technology is presented and compared on the basis of operation modality, transmission efficiency, and power-handling performance.

  11. "Infotonics Technology Center"

    SciTech Connect

    Fritzemeier, L.; Boysel, M. B.; Smith, D. R.

    2004-09-30

    During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

  12. The Savannah River Technology Center, a leader in sensor technology

    SciTech Connect

    Stewart, W.C.

    1993-12-01

    This publication highlights the capabilities and achievements of the Savannah River Technology Center in the field of sensor technology. Sensors are developed to provide solutions for environmental and chemical analysis. Most of their sensor systems are based upon fiber optics. Fiber optic probes function in three main modes: as a reflected light probe, from opaque samples; as a transreflectance probe, which sample light reflected back from samples which can pass light; and a flow cell, which monitors light transmitted through a path which passes the process stream being tested. The sensor group has developed fiber optic based temperature probes, has combined fiber optics with sol-gel technology to monitor process streams using chemical indicators, has done development work on slip stream on-line sampling of chemical process streams, has developed software to aid in the analysis of chemical solutions, and has applied this technology in a wide range of emerging areas.

  13. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  14. Solar Technology Center

    SciTech Connect

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  15. Technology Development Center at NICT

    NASA Technical Reports Server (NTRS)

    Takefuji, Kazuhiro; Ujihara, Hideki

    2013-01-01

    The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.

  16. Ceramic fiber filter technology

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  17. New development in optical fibers for data center applications

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Shubochkin, Roman; Zhu, Benyuan

    2015-01-01

    VCSEL-multimode optical fiber based links is the most successful optical technology in Data Centers. Laser-optimized multimode optical fibers, OM3 and OM4, have been the primary choice of physical media for 10 G serial, 4 x 10 G parallel, 10 x 10 G parallel, and 4 x 25 G parallel optical solutions in IEEE 802.3 standards. As the transition of high-end servers from 10 Gb/s to 40 Gb/s is driving the aggregation of speeds to 40 Gb/s now, and to 100 Gb/s and 400 Gb/s in near future, industry experts are coming together in IEEE 802.3bs 400 Gb/s study group and preliminary discussion of Terabit transmission for datacom applications has also been commenced. To meet the requirement of speed, capacity, density, power consumption and cost for next generation datacom applications, optical fiber design concepts beyond the standard OM3 and OM4 MMFs have a revived research and developmental interest, for example, wide band multimode optical fiber using multiple dopants for coarse wavelength division multiplexing; multicore multimode optical fiber using plural multimode cores in a single fiber strand to improve spatial density; and perhaps 50 Gb/s per lane and few mode fiber in spatial division multiplexing for ultimate capacity increase in far future. This talk reviews the multitude of fiber optic media being developed in the industry to address the upcoming challenges of datacom growth. We conclude that multimode transmission using low cost VCSEL technology will continue to be a viable solution for datacom applications.

  18. Center for space microelectronics technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 1992 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during the past year. The report lists 187 publications, 253 presentations, and 111 new technology reports and patents in the areas of solid-state devices, photonics, advanced computing, and custom microcircuits.

  19. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents.

  20. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents.

  1. GSFC Technology Development Center Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Gipson, John; Gonzalez, Raymond; Vandenberg, Nancy

    2004-01-01

    This report summarizes the activities of the GSFC Technology Development Center for 2003. The report forecasts activities planned for the year 2004. The GSFC Technology Development Center (TDC) develops station software including the Field System (FS), scheduling software (SKED), hardware including tools for station timing and meteorology, scheduling algorithms, operational procedures, and provides a pool of individuals to assist with station implementation, check-out, upgrades, and training.

  2. Fiber gyroscopes for strapdown technology

    NASA Astrophysics Data System (ADS)

    Novac, Octavian; Jitescu, Florina

    2000-02-01

    The gyroscopes are defined as devices, which can measure, autonomously, rotational motions relative to inertial space. They are of central importance for flight control, for navigation/orientation in the air, at sea and on land, and also for stabilization/guidance of smart weapon systems. Benefitting form advances in semiconductor technology, the basis of gyro systems has changed from mechanical platforms to strapdown technology. For strapdown use, new types of gyroscopes, such as optical gyros, have been developed. This paper presents optical gyros, emphasizing the fiber gyro and its principal advantages such as solid-state operation, light weight, small size, low power consumption, rapid turn- on time and high reliability, that are important considerations for many high-performance application areas.

  3. Ec-135 Fiber Optic Technology Review

    NASA Astrophysics Data System (ADS)

    Schultz, Jan R...; Hodges, Harry N.

    1984-10-01

    Fiber optic technology offers many advantages for upgrading nuclear survivability in systems such as the Airborne Command Post EC-135 aircraft, including weight and cost savings, EMI and EMC immunity, high data rates. The greatest advantage seen for nuclear survivable systems, however, is that a fiber optic system's EMP hardness can be maintained more easily with the use of fiber optics than with shielded cables or other protective methods. TRW recently completed a study to determine the feasibility of using fiber optic technology in an EC-135 aircraft environment. Since this study was conducted for a USAF Logistics Command Agency, a feasible system had to be one which could be realistically priced by an integrating contractor. Thus, any fiber optic approach would have to be well developed before it could be considered feasible. During the course of the study problem areas were encountered which are associated with the readiness of the technology for use rather than with the technology itself. These included connectors, standards, fiber radiation resistance, busing, maintenance, and logistics. Because these problems areas have not been resolved, it was concluded that fiber optic technology, despite its advantages, is not ready for directed procurement (i.e., included as a requirement in a prime mission equipment specification). However, offers by a manufacturer to use fiber optic technology in lieu of conventional technology should be considered. This paper treats these problems in more detail, addresses the areas which need further development, and discusses the hardness maintenance advantages of using fiber optic technology.

  4. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  5. COTTON FIBER CHEMISTRY AND TECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual cotton production exceeds 25 million metric tons and accounts for more than 40 percent of the textile fiber consumed worldwide. A key textile fiber for over 5000 years, this complex carbohydrate is also one of the leading crops to benefit from genetic engineering. Cotton Fiber Chemistry and...

  6. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  8. GSFC Technology Development Center Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Gipson, John

    2013-01-01

    This report summarizes the activities of the GSFC Technology Development Center (TDC) for 2012 and forecasts planned activities for 2013. The GSFC TDC develops station software including the Field System (FS), scheduling software (SKED), hardware including tools for station timing and meteorology, scheduling algorithms, and operational procedures. It provides a pool of individuals to assist with station implementation, check-out, upgrades, and training.

  9. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  10. Process Engineering Technology Center Initiative

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.

    2001-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  11. Fiber Optic Communications Technology. A Status Report.

    ERIC Educational Resources Information Center

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  12. Center for Computational Structures Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.

    1995-01-01

    The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.

  13. A survey of fiber-positioning technologies

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Brzeski, Jurek; Miziarski, Stan; Gillingham, Peter R.; Moore, Anna; McGrath, Andrew

    2004-09-01

    A wide range of positioning technologies has been exploited to flexibly configure fiber ends on the focal surfaces of telescopes. The earliest instruments used manual plugging, or glued buttons on the focal plane. Later instruments have used robotic fisherman-round-the-pond probes and articulated armsto position fibres, each probe or arm operated by its own motors, or buttons on fiber ends moved by pick-and-place robotic positioners. A positioner using fiber spines incorporating individual actuators operating over limited patrol areas is currently being manufactured and a derivative proposed for future large telescopes. Other techniques, using independent agents carrying the fiber ends about the focal plane have been prototyped. We describe these various fiber positioning techniques and compare them, listing the issues associated with their implementation, and consider the factors which make each of them suitable for a given situation. Factors considered include: robot geometries; costs; inherent limits to the number of fibers; clustering of targets; serial and parallel positioning and reconfiguration times; adaptability to curved focal surfaces; the virtues of on-telescope versus off-telescope configuration of the field, and suitability for the various telescope foci. The design issues include selection of actuators and encoding systems, counterbalancing, configuration of fiber buttons and their associated grippers, interchanging field plates, and the need for fiber retractors. Finally we consider the competing technologies: fiber and reflective image slicer IFUs, multislit masks and reconfigurable slits.

  14. Developments in distributed optical fiber detection technology

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  15. Process Engineering Technology Center Initiative

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.

    2002-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  16. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  17. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  18. Fiber-Optic Communication Technology Branching Devices

    NASA Astrophysics Data System (ADS)

    Williams, J. C.

    1985-02-01

    This tutorial review of fiber-optic branching devices covers example uses of branching devices, device types, device-performance characteristics, examples of current technology, and system-design methodology. The discussion is limited to passive single- and multimode devices fabricated from optical fibers or graded-index components. Integrated-optic, wavelength-division-multiplexing, and polarization-selective devices are not specifically addressed.

  19. Center for Assistive Technology & Environmental Access

    MedlinePlus

    ... through the application of assistive and universally designed technologies in real world environments, products and devices. More ... address and college name * The Center for Assistive Technology and Environmental Access Georgia Institute of Technology (GT) ...

  20. Multimode and single-mode fibers for data center and high-performance computing applications

    NASA Astrophysics Data System (ADS)

    Bickham, Scott R.

    2016-03-01

    Data center (DC) and high performance computing (HPC) applications have traditionally used a combination of copper, multimode fiber and single-mode fiber interconnects with relative percentages that depend on factors such as the line rate, reach and connectivity costs. The balance between these transmission media has increasingly shifted towards optical fiber due to the reach constraints of copper at data rates of 10 Gb/s and higher. The percentage of single-mode fiber deployed in the DC has also grown slightly since 2014, coinciding with the emergence of mega DCs with extended distance needs beyond 100 m. This trend will likely continue in the next few years as DCs expand their capacity from 100G to 400G, increase the physical size of their facilities and begin to utilize silicon-photonics transceiver technology. However there is a still a need for the low-cost and high-density connectivity, and this is sustaining the deployment of multimode fiber for links <= 100 m. In this paper, we discuss options for single-mode and multimode fibers in DCs and HPCs and introduce a reduced diameter multimode fiber concept which provides intra-and inter-rack connectivity as well as compatibility with silicon-photonic transceivers operating at 1310 nm. We also discuss the trade-offs between single-mode fiber attributes such as bend-insensitivity, attenuation and mode field diameter and their roles in capacity and connectivity in data centers.

  1. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2011-11-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  2. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  3. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  4. Advanced radio over fiber network technologies.

    PubMed

    Novak, Dalma; Waterhouse, Rod

    2013-09-23

    The evolution of wireless communication networks supporting emerging broadband services and applications offers new opportunities for realizing integrated optical and wireless network infrastructures. We report on some of our recent activities investigating advanced technologies for next generation converged optical wireless networks. Developments in Active Antenna Systems, mobile fronthaul architectures, and 60 GHz fiber distributed wireless networks are described. We also discuss the potential for analog radio over fiber distribution links as a viable solution for meeting the capacity requirements of new network architectures. PMID:24104183

  5. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  6. Join TTC! | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees.

  7. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  8. Responding to Industry Demands: Advanced Technology Centers.

    ERIC Educational Resources Information Center

    Smith, Elizabeth Brient

    1991-01-01

    Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…

  9. The Savannah River Technology Center Research and Development Climatology Center

    SciTech Connect

    Kurzeja, R.J.

    1995-12-31

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) built and has operated the Climatology Site (CS) for almost 10 years. The Climatology Site provides a wide variety of meteorological support functions for Savannah River Site (SRS) operations and research. This document describes the Climatology Site facility to familiarize present and potential users with its capabilities.

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  11. Fiber optic communication technology; Proceedings of the Meeting, San Diego, CA, August 23, 24, 1984

    NASA Astrophysics Data System (ADS)

    Kleekamp, C. W.

    Fiber optic components are considered, taking into account a review of developments related to optical fibers, a review of fiber optic cable technology, aspects of fiber system testing, fiber optic splices, a critical review of fiber optic connectors, and fiber optic communication technology branching devices. Developments concerning fiber optic systems are also discussed, giving attention to optoelectronic issues in fiber optic communications, digital fiber optic systems, wideband analog fiber optic systems, fiber optic local area networks, and wavelength division multiplexing.

  12. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-05-31

    The programming and website for the advanced Technology Information System (TIS) have been completed. Over and above the LSDDP-TIS, the new system provides information on DOE's baseline technologies, technology data contained in DOE's databases, technologies assessed at FIU-HCET Technology Assessment Program (TAP), as well as links to other selected D&D sites with valuable technology information. The new name for the website is Gateway for Environmental Technology (GET). A super-vacuum type blasting system was tested for decontamination of 12-in pipe internal surfaces. The system operates on compressed air and propels grit media at high speed at wall surfaces. It is equipped with a vacuum system for collecting grit, dust, and debris. This technology was selected for further development. The electret ion chamber (EIC) system for measurement of alpha contamination on surfaces has been calibrated and is ready for demonstration and deployment. FIU-HCET is working with representatives from Fernald, Oak Ridge, Rocky Flats, and Savannah River to procure a demonstration and deployment site. Final arrangements are ongoing for the mock-up design for the glove box and tank size reduction technology assessments, including designing of support bases for tanks, a piping support system, and a mobilization plan for glove boxes and tanks from storage site to the PermaCon.

  13. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  14. Research and technology at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report.

  15. Technologies and the Secondary School Writing Center

    ERIC Educational Resources Information Center

    Inman, James A.

    2006-01-01

    Although the use of computers in secondary school writing centers has been pioneering in some instances, it has at other times been problematic. It is important to be clear at the outset that using particular technologies for the sake of those particular technologies is a bad idea. While technologies are always present in our lives, they are…

  16. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  17. Center for Instructional Technology: A Strategic Imperative

    ERIC Educational Resources Information Center

    Volzer, Debra; Weaver, Mark

    2004-01-01

    Ohio Dominican University, a small traditional Catholic Liberal Arts University steeped in the Dominican tradition, is in the midst of a technological metamorphosis. At the forefront of the change is the Center for Instructional Technology. Charged with supporting the development of technology enhanced, hybrid, and totally online curriculum, the…

  18. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  19. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-07-31

    FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.

  20. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  1. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  2. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  3. Rock Port Celebrates New Technology Center.

    ERIC Educational Resources Information Center

    Grones, Freda

    1997-01-01

    Discusses the advantages dome architecture gave to a new school technology center in Rock Port, Missouri. Advantages cover energy cost savings, lighting, storage space, aesthetics, accessibility, and convenience. (GR)

  4. Savannah River Technology Center monthly report

    SciTech Connect

    Not Available

    1992-10-01

    This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

  5. Savannah River Technology Center, monthly report

    SciTech Connect

    Not Available

    1994-04-01

    This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

  6. The Learning Technology Center at Vanderbilt University.

    ERIC Educational Resources Information Center

    Bransford, John

    1994-01-01

    Describes the Vanderbilt University (Tennessee) Learning Technology Center, including profile of the center's personnel; description of representative projects, such as the Jasper-Woodbury Problem Solving Series, a multimedia literacy program for grades K-3, and the Adult Literacy Program; and a list of 14 representative publications by center…

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A.Ebadian

    1999-02-28

    Search for decontamination technologies to be assessed at FIU-HCET continues. Bartlett Nuclear Inc. returned to FIU-HCET on February 15-19, 1999, to complete the demonstration of coating removal from concrete ceiling and aggressive contamination removal on uncoated concrete wall using their Robotic Climber. The design of test beds for large-scale technology demonstration of blockage locating and pipe unplugging has undergone major revision. The lab-scale test loop is also under modification. A new sampling system using isokinetic principles and consisting of thermistors, flow controller, and Wheatstone bridge will be installed on the flow loop. FIU-HCET International Coordinator attended the VII Steering Committee meeting in Lima, Peru, on February 11-12, 1999, and successfully introduced the Interactive Communication Website. Additional agenda items on the Website were proposed by the Steering Committee for upcoming committee meetings and working groups.

  8. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-06-30

    To enhance the measurement capability of EICs to alpha spectrometry, measurements at FIU-HCET were performed on different energy alpha sources, and response factors of ST electrets in 960-mL chamber were determined. Earlier, EIC was considered as only a charge-integrating device without spectrometric capability. This is a potentially significant development accomplished by FIU-HCET. It could appreciably lower the current cost of spectral characterization. FIU-HCET has been invited to participate in the Operating Engineers' National Hazmat program's assessment of the Mini Mitter, commercially known as the VitalSense{trademark} Telemetric Monitoring System. This evaluation is scheduled for early July 1999. Additional health and safety technology evaluations, in which FIU-HCET will also participate, are also scheduled for later in the summer. The Technology Information System (TIS), MISD, and DASD are now complete and accessible through the Internet website http://www.DandD.org/tis.

  9. Satisloh centering technology developments past to present

    NASA Astrophysics Data System (ADS)

    Leitz, Ernst Michael; Moos, Steffen

    2015-10-01

    The centering of an optical lens is the grinding of its edge profile or contour in relationship to its optical axis. This is required to ensure that the lens vertex and radial centers are accurately positioned within an optical system. Centering influences the imaging performance and contrast of an optical system. Historically, lens centering has been a purely manual process. Along its 62 years of assembling centering machines, Satisloh introduced several technological milestones to improve the accuracy and quality of this process. During this time more than 2.500 centering machines were assembled. The development went from bell clamping and diamond grinding to Laser alignment, exchange chuckor -spindle systems, to multi axis CNC machines with integrated metrology and automatic loading systems. With the new centering machine C300, several improvements for the clamping and grinding process were introduced. These improvements include a user friendly software to support the operator, a coolant manifold and "force grinding" technology to ensure excellent grinding quality and process stability. They also include an air bearing directly driven centering spindle to provide a large working range of lenses made of all optical materials and diameters from below 10 mm to 300 mm. The clamping force can be programmed between 7 N and 1200 N to safely center lenses made of delicate materials. The smaller C50 centering machine for lenses below 50 mm diameter is available with an optional CNC loading system for automated production.

  10. GSFC IVS Technology Development Center Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Vandenberg, Nancy; Clark, Tom

    2001-01-01

    This report summarizes the activities of the Goddard Space Flight Center's (GSFC's) International Very Long Base Interferometry (VLBI) Service (IVS)Technology Development Center from the establishment of IVS to the end of 2000. The report forecasts activities planned for the year 2001. The GSFC IVS Technology Development Center (TDC) develops station software including the Field System (FS), scheduling software (SKED), hardware including tools for station timing and meteorology, scheduling algorithms, operational procedures, and provides a pool of individuals to assist with station implementation, check-out, upgrades, and training.

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-09-30

    The Princeton Plasma Physics Laboratory (PPPL) demonstration of the diamond wire cutting technology on the surrogate of the Tokamak Fusion Test Reactor (TFTR), Figure 1, was performed from August 23-September 3, 1999. The plated diamond wire, Figure 2, was successful in cutting through all components of the TFTR surrogate including stainless steel, inconel and graphite. The demonstration tested three different void fill materials (mortar with sand, Rheocell-15, and foam) and three cooling systems (water, air, and liquid nitrogen). The optimum combination was determined to be the use of the low-density concrete void fill, Rheocell-15 with an average density of 52 lbs/ft{sup 3}, using a water coolant. However, the liquid nitrogen performed better than expected with only minor problems and was considered to be a successful demonstration of the Bluegrass Concrete Cutting, Inc. proprietary liquid-nitrogen coolant system. Data from the demonstration is being calculated and a summary of the technology demonstration will be included in the October monthly report. An ITSR will be written comparing the diamond wire saw to the plasma arc (baseline) technology. The MTR Chemical Protective Suit, a proprietary new suit from Kimberly Clark, was evaluated from 8/9/99 to 8/12/99 at Beaver, WV. This particular suit was tested on subjects performing three different tasks: climbing through a horizontal confined space, vertical confined space (pit), and loading and unloading material using a wheel barrow. Multiple test subjects performed each task for 20 minutes each. Performance of the innovative suit was compared to two commonly used types of protective clothing. Vital statistics, including body temperature and heart rate, were continuously monitored and recorded by an authorized physician. A summary of the demonstration will be included in the October monthly report. Along with the MTR Chemical Protective Suit, the VitalSense{trademark} Telemetric Monitoring System from Mini Mitter

  12. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  13. Technologies for Learner-Centered Feedback

    ERIC Educational Resources Information Center

    Costello, Jane; Crane, Daph

    2013-01-01

    As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes.…

  14. Educational Technology Center Second Year Report.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    The Educational Technology Center (ETC) was established by the National Institute of Education in October, 1983, in order to find ways of using the computer and other information technologies to teach science, mathematics, and computing more effectively. This report describes the ETC, presents its framework for research, and summarizes work on 12…

  15. Educational Technology Center First Year Report.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    The Educational Technology Center (ETC) was established by the National Institute of Education in October, 1983, in order to find ways of using the computer and other information technologies to teach science, mathematics, and computing more effectively. This report describes the ETC, presents its framework for research, and summarizes work on 14…

  16. Educational Technology Center Third Year Report.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    The Educational Technology Center (ETC) was established by the National Institute of Education in October, 1983, in order to find ways of using the computer and other information technologies to teach science, mathematics, and computing more effectively. This report describes the ETC, presents its framework for research, and summarizes work on 11…

  17. Excellence Center for High Technology Transfer.

    ERIC Educational Resources Information Center

    Ismail, M. I.; Al-Turkait, A. A.

    Centers for technology transfer are available almost everywhere based on the availability of interested experts and funding. The objective of this monograph is to introduce the assured system that results in excellence in services and expectations from technology transfer. The focus is on simple techniques of potential interest for community and…

  18. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    PubMed Central

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  19. Fiber sensor systems based on fiber laser and microwave photonic technologies.

    PubMed

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  20. Critical reviews of fiber-optic communication technology Optical fibers

    NASA Astrophysics Data System (ADS)

    Kapron, F. P.

    The review begins with brief highlights of the history of fiber optics, followed by a discussion of the attributes of shortwave and longwave transmission. This leads to an investigation of various fiber types, short-haul considerations, and then single-mode aspects. Specialty fiber is briefly covered, followed by a survey of several research trends today that will lead to new systems capabilities in the future. No references are given, since hundreds would be necessary to make the list even partially complete.

  1. Developments in Hollow Graphite Fiber Technology

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)

    2002-01-01

    Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.

  2. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  3. Automatic arc discharge technology for inscribing long period fiber gratings.

    PubMed

    Yin, Guolu; Tang, Jian; Liao, Changrui; Wang, Yiping

    2016-05-10

    We experimentally demonstrate an automatic arc discharge technology for inscribing high-quality long period fiber gratings (LPFGs) with greatly improved inscription efficiency for single mode fiber (SMF) and photonic crystal fiber (PCF). The proposed technology was developed by implementing an embedded program in a commercial fusion splicer. In addition, the improved technology employs an ultraprecision motorized translation stage, and the tensioning mass required by conventional technology was eliminated. While hundreds of arc discharges are generally required by conventional technology, only 30 and 60 arc discharges were required to inscribe LPFGs with dip attenuations of 30 and 20 dB for SMF and PCF, respectively. PMID:27168306

  4. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  5. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  8. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  9. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  10. License Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits.

  11. About TTC | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more.

  12. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  13. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  14. Technologies for the Energy Efficient Data Center

    SciTech Connect

    Cader, Tahir; Westra, Levi; Marquez, Andres

    2007-07-17

    Although semiconductor manufacturers have provided temporary relief with lower-power multi-core microprocessors, OEMs and data center operators continue to push the limits for individual rack power densities. It is not uncommon today for data center operators to deploy multiple 20 kW racks in a facility. Such rack densities are exacerbating the major issues of power and cooling in data centers. Data center operators are now forced to take a hard look at the efficiencies of their data centers. Malone and Belady (2006) have proposed three metrics, i.e., Power Usage Effectiveness (PUE), Data Center Efficiency (DCE), and the Energy-to-Acquisition Cost ratio (EAC), to help data center operators quickly quantify the efficiency of their data centers. In their paper, Malone and Belady present nominal values of PUE across a broad crosssection of data centers. PUE values are presented for data centers at four levels of optimization. One of these optimizations involves the use of Computational Fluid Dynamics (CFD). In the current paper, CFD is used to conduct an in-depth investigation of a liquid-cooled data center that would potentially be housed at the Pacific Northwest National Labs (PNNL). The boundary conditions used in the CFD model are based upon actual measurements on a rack of liquid-cooled servers housed at PNNL. The analysis shows that the liquid-cooled facility could achieve a PUE of 1.57 as compared to a PUE of 3.0 for a typical data center (the lower the PUE, the better, with values below 1.6 approaching ideal). The increase in data center efficiency is also translated into an increase in the amount of IT equipment that can be deployed. At a PUE of 1.57, the analysis shows that 91% more IT equipment can be deployed as compared to the typical data center. The paper will discuss the analysis of the PUE, and will also explore the impact of the raising data center efficiency via the use of multiple cooling technologies and CFD analysis. Complete results of the

  15. Marshall Space Flight Center Technology Investments Overview

    NASA Technical Reports Server (NTRS)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  16. Active radiation hardening technology for fiber-optic source

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Suo, Xinxin; Yang, Mingwei

    2013-09-01

    We demonstrated an active radiation hardening technology for fiber optic source developed for high performance fiber optic gyroscope. The radiation characteristic of erbium-doped fiber was studied experimentally. The radiation induced attenuation (RIA) at 980nm pump light was identified to be the main reason for the degradation and there was photo-bleaching effect in EDF too. A variable parameters control technology was proposed and taken to keep the 980nm and 1550nm light energy stable and high stability and radiation-resistance fiber source with gauss profile spectrum was realized .The source can stand against more than 50 krad (Si) total radiation dose.

  17. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  18. Reviews of computing technology: Fiber distributed data interface. Revision

    SciTech Connect

    Johnson, A.J.

    1992-04-01

    This technology report describes Fiber Distributed Data Interface (FDDI) as a technology, looks at the applications of this technology, examines the current economics of using it, and describe activities and plans by the Information Resource Management Department to implement this technology at the Savannah River Site.

  19. Reviews of computing technology: Fiber distributed data interface

    SciTech Connect

    Johnson, A.J.

    1992-04-01

    This technology report describes Fiber Distributed Data Interface (FDDI) as a technology, looks at the applications of this technology, examines the current economics of using it, and describe activities and plans by the Information Resource Management Department to implement this technology at the Savannah River Site.

  20. Development of optical fiber technology in Poland: 2014

    NASA Astrophysics Data System (ADS)

    Dorosz, Jan; Romaniuk, Ryszard S.

    2014-05-01

    In this paper, the authors, chairs of the 15th Conference on Optical Fibers and Their Applications OFTA2014, and editors of the conference proceedings summarize the developments of optical fiber technology in Poland (during the period of 2012-2014) on the basis of papers presented there and consecutively published in this volume. The digest covers the periodically presented work results every 18 months during the meetings on optical fibers in Białystok - Lipowy Most (with emphasis on technology and applications) and Lublin - Nałęczow (with emphasis on materials and technologies). The XVth Conference on Optical Fibers and Their Applications was held in Białystok and Lipowy Most on 29.01-01.02.2014. The first conference from this cycle was organized in Jabłonna in 1976. Conference topics were: optical fiber technology, materials for optoelectronics and photonics, rare earth doped and luminescent materials, metrology of optical fibers, components and optoelectronic circuits, applications of optical fibers, waveguides and optical fiber sensors, and lighting technology. The conference was attended by 120 participants, including international guests, and 90 papers were presented. Conference papers are traditionally published in Proceedings SPIE.

  1. Integrated Technology Assessment Center (ITAC) Update

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)

    2002-01-01

    The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.

  2. Interrogating adhesion using fiber Bragg grating sensing technology

    NASA Astrophysics Data System (ADS)

    Rasberry, Roger D.; Rohr, Garth D.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David; Roach, Allen R.; Walsh, David S.; McElhanon, James R.

    2015-05-01

    The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. FY86 Technology Transfer Program Morgantown Energy Technology Center

    SciTech Connect

    Not Available

    1986-10-01

    The actual technology transfer was accomplished by several integrated activities during fiscal year (FY) 1986: R and D contracts with industry and academia, including cost-shared contracts; technical information exchange for scientist-to-scientist communication through conferences, visitors to the Center, and federal personnel visits with US industry; technical documents for information dissemination; patents to advance technology adoption and use in US industry; on-site training activities as personnel exchange; and technical assistance through the use of fossil energy technology data bases.

  4. National Wind Technology Center (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  5. Research and technology, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The NASA Lewis Research Center's research and technology accomplishments for fiscal year 1985 are summarized. The report is organized into five major sections covering aeronautics, aerospace technology, spaceflight systems, space station systems, and computational technology support. This organization of the report roughly parallels the organization of the Center into directorates. Where appropriate, subheadings are used to identify special topics under the major headings. Results of all research and technology work performed during the fiscal year are contained in Lewis-published technical reports and presentations prepared either by Lewis scientists and engineers or by contractor personnel. In addition, significant results are presented by university faculty or graduate students in technical sessions and in journals of the technical societies. For the reader who desires more information about a particular subject, the Lewis contact will provide that information or references. In 1985, five Lewis products were selected by Research and Development Magazine for IR-100 awards. All are described and identified. In addition, the Lewis Distinguished Paper for 1984 to 1985, which was selected by the Chief Scientist and a research advisory board, is included and so identified.

  6. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  7. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  9. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  10. Microgel photonics and lab on fiber technology for advanced label-free fiber optic nanoprobes

    NASA Astrophysics Data System (ADS)

    Giaquinto, M.; Micco, A.; Aliberti, A.; Ricciardi, A.; Ruvo, M.; Cutolo, A.; Cusano, A.

    2016-05-01

    We experimentally demonstrate a novel optical fiber label free optrode platform resulting from the integration between two rapidly emerging technologies such as Lab-on-Fiber Technology (LOFT) and Microgel Photonics (MPs). The device consists of a microgel (MG) layer painted on a metallic slabs supporting plasmonic resonances, directly integrated on the optical fiber tip. A molecular binding event induces significant changes in the MG layer thickness (and consequently in its 'equivalent' refractive index) resulting in an evident wavelength shift of the resonant feature. As a case of study, glucose-responsive MGs have been synthesized by incorporating into the gel matrix boronic acid moieties, whose interaction with glucose rules the driving forces for gel swelling. Our results pave the way for new technological routes aimed to develop advanced label free fiber optic nanoprobes.

  11. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  12. Center for Space Microelectronics Technology 1988-1989 technical report

    NASA Technical Reports Server (NTRS)

    Olsen, Peggy

    1990-01-01

    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents.

  13. Center for Space Microelectronics Technology 1988-1989 technical report

    NASA Astrophysics Data System (ADS)

    Olsen, Peggy

    1990-03-01

    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents.

  14. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  15. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  16. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  17. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  18. The advanced technology development center (ATDC)

    NASA Astrophysics Data System (ADS)

    Clements, Gregory R.

    2002-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a ``national resource'' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets: this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area (Phase 1); a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount (Phase 2); ``Iron Rocket'' Test Demonstrator (Phase 3); a Processing Facility with a Checkout and Control System (Phase 4); and Future Infrastructure Developments (Phase 5). Initial ATDC development will be completed in 2006. .

  19. Tiger Team Assessment, Energy Technology Engineering Center

    SciTech Connect

    Not Available

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  20. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  1. Scientific Data Management Center for Enabling Technologies

    SciTech Connect

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  2. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  3. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  4. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  5. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  6. Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence

    SciTech Connect

    Vaccaro, L.; Cannas, M.; Alessi, A.; Boscaino, R.; Girard, S.; Boukenter, A.; Ouerdane, Y.; Morana, A.

    2013-05-21

    The distribution of Non-Bridging Oxygen Hole Centers (NBOHCs) in fluorine doped optical fibers was investigated by confocal microluminescence spectroscopy, monitoring their characteristic 1.9 eV luminescence band. The results show that these defects are generated by the fiber drawing and their concentration further increases after {gamma} irradiation. The NBOHC concentration profile along the fiber provides evidence for an exponential decay with the fluorine content. This finding agrees with the role of fluorine in the fiber resistance and is discussed, from the microscopic point of view, by looking at the conversion mechanisms from strained bonds acting as precursors.

  7. fibmeasure: Python/Cython module to find the center of back-illuminated optical fibers in metrology images

    NASA Astrophysics Data System (ADS)

    Gilbert, James

    2016-03-01

    fibmeasure finds the precise locations of the centers of back-illuminated optical fibers in images. It was developed for astronomical fiber positioning feedback via machine vision cameras and is optimized for high-magnification images where fibers appear as resolvable circles. It was originally written during the design of the WEAVE pick-and-place fiber positioner for the William Herschel Telescope.

  8. Advances in the Echidna fiber-positioning technology

    NASA Astrophysics Data System (ADS)

    Sheinis, Andrew; Saunders, Will; Gillingham, Peter; Farrell, Tony J.; Muller, Rolf; Smedley, Scott; Brzeski, Jurek; Waller, Lewis G.; Gilbert, James; Smith, Greg

    2014-07-01

    We present advances in the patented Echidna 'tilting spine' fiber positioner technology that has been in operation since 2007 on the SUBARU telescope in the FMOS system. The new Echidna technology is proposed to be implemented on two large fiber surveys: the Dark Energy Spectroscopic Instrument (DESI) (5000 fibers) as well the Australian ESO Positioner (AESOP) for 4MOST, a spectroscopic survey instrument for the VISTA telescope (~2500 fibers). The new 'superspine' actuators are stiffer, longer and more accurate than their predecessors. They have been prototyped at AAO, demonstrating reconfiguration times of ~15s for errors of <5 microns RMS. Laboratory testing of the prortotype shows accurate operation at temperatures of -10 to +30C, with an average heat output of 200 microwatts per actuator during reconfiguration. Throughput comparisons to other positioner types are presented, and we find that losses due to tilt will in general be outweighed by increased allocation yield and reduced fiber stress FRD. The losses from spine tilt are compensated by the gain in allocation yield coming from the greater patrol area, and quantified elsewhere in these proceedings. For typical tilts, f-ratios and collimator overspeeds, Echidna offers a clear efficiency gain versus current r-that or theta-phi positioners.

  9. Center for Space Microelectronics Technology. 1993 Technical Report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents.

  10. Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures.

    PubMed

    Fujiwara, Masazumi; Zhao, Hong-Quan; Noda, Tetsuya; Ikeda, Kazuhiro; Sumiya, Hitoshi; Takeuchi, Shigeki

    2015-12-15

    We demonstrate cooling of ultrathin fiber tapers coupled with nitrogen vacancy (NV) centers in nanodiamonds to cryogenic temperatures. Nanodiamonds containing multiple NV centers are deposited on the subwavelength 480-nm-diameter nanofiber region of fiber tapers. The fiber tapers are successfully cooled to 9 K using our home-built mounting holder and an optimized cooling speed. The fluorescence from the nanodiamond NV centers is efficiently channeled into a single guided mode and shows characteristic sharp zero-phonon lines (ZPLs) of both neutral and negatively charged NV centers. The present nanofiber/nanodiamond hybrid systems at cryogenic temperatures can be used as NV-based quantum information devices and for highly sensitive nanoscale magnetometry in a cryogenic environment. PMID:26670490

  11. Toward a statewide health information technology center (abbreviated version).

    PubMed

    Sittig, Dean F; Joe, John C

    2010-11-01

    With the passage of The American Reinvestment and Recovery Act of 2009 that includes the Health Care Information Technology for Economic & Clinical Health Act, the opportunity for states to develop a Health Information Technology Center (THITC) has emerged. The Center provides the intellectual, financial, and technical leadership along with the governance and oversight for all health information technology-related activities in the state. This Center would be a free-standing, not-for-profit, public-private partnership that would be responsible for operating one or more (in large states) Regional Health Information Technology Extension Centers (Extension Centers) along with several Regional Health Information Exchanges (HIEs) and one or more Regional Health Information Data Centers (Data Centers). We believe that if these features and functions could be developed, deployed, and integrated statewide, the health and welfare of the citizens of the state could be improved while simultaneously reducing the costs associated with the provision of care. PMID:20890248

  12. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    'The Asian Routes Towards the Global Information Society' and 'Towards a Strategic Planning for the Global Information Society' will be the forum themes of 'Asia Telecom 97' and 'Telecom Interactice 97' events respectively, to be held by the International Telecommunication Union (ITU) in order to further telecommunication development around the world. International telecommunications network affects our life by keeping us in touch, bringing us world news and underpinning the global economy. Global tele-economy, global information infrastructure, global information society terms are more and more used to indicate the evolution towards an information- driven world where the access to information, communication and technologies is essential to the economic and social development in every country. Telecommunication industry can strongly contribute to this evolution together with broadcasting and computer industry, and fiber optic communications are expected to continue to grow up and share a relevant part of the total telecom market. In 1995 telecom market shown a 3.8 percent worldwide investment growth reaching a 545 billion value. According to 'Kessler Marketing Intelligence (KMI) Corp.' analysis of fiberoptics and multimedia market the amount of cabled fiber installed in U.S. will be around 11 million fiber-km in 1997 and 15 million fiber-km are predicted in the year 2000. Between 1995 and 1998 the undersea industry is estimated to deal with 13.9 billion as additional undersea cable systems investment in the global telecom network. In China beside satellite telecom stations and digital microwave systems 22 fiber optic backbones have been realized and another 23 systems are expected to be built in the Ninth Five-Year National Plan (1996 to approximately 2000) with a total length of nearly 30,000 sheat-km. The study, Fiber and Fiberoptic Cable Markets in China, recently released by KMI Corp. shows that fiber optic cable installation by MPT and other network operators

  13. Introduction to cadet center for advanced data evaluation technology

    NASA Technical Reports Server (NTRS)

    Schulbach, Cathy; Jorgensen, C.

    1991-01-01

    Viewgraphs on the Center for Advanced Data Evaluation Technology are presented. Topics covered include: technology problem; human problem; goals and objectives; key CADET focus; and elements of the modeling process.

  14. Center for Global Health announces grants to support portable technologies

    Cancer.gov

    NCI’s Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm

  15. New trends and applications of optical fiber sensing technologies at the NEL-FOST

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Huang, Chujia; Yuan, Yinquan; Ding, Liyun; Zhou, Ciming

    2015-07-01

    This paper reviews the recent development of optical fiber sensors at the National Engineering Laboratory for Optic Fiber Sensing Technologies (NEL-FOST) at Wuhan University of Technology. Integration of optical fiber with sensitive thin films will new possibilities for industry application, such as optical fiber hydrogen sensors based on Pt-doped WO3 coatings, fiber humidity sensors with porous oxide coating and high-temperature sapphire fiber sensors based on multilayer coating on fiber tip. Ultra-weak FBG array with thousand of FBGs with on-line draw tower technology will enable FBG sensing network with large capacity, also improved sensing performance and mechanical stability.

  16. Technological hurdles to the application of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1988-01-01

    Before intercalated graphite fibers can be developed as an effective power material, there are several technological hurdles which must be overcome. These include the environmental stability, homogeneity and bulk properties, connection procedures, and costs. Strides were made within the last several years in stability and homogeneity of intercalated graphite fibers. Bulk properties and connection procedures are areas of active research now. Costs are still prohibitive for all but the most demanding applications. None of these problems, however, appear to be unsolvable, and their solution may result in wide spread GOC application. The development of a relatively simple technology application, such as EMI shielding, would stimulate the solution of scale-up problems. Once this technology is developed, then more demanding applications, such as power bus bars, may be possible.

  17. Applied technology center business plan and market survey

    NASA Technical Reports Server (NTRS)

    Hodgin, Robert F.; Marchesini, Roberto

    1990-01-01

    Business plan and market survey for the Applied Technology Center (ATC), computer technology transfer and development non-profit corporation, is presented. The mission of the ATC is to stimulate innovation in state-of-the-art and leading edge computer based technology. The ATC encourages the practical utilization of late-breaking computer technologies by firms of all variety.

  18. Creating a Resource Center for Homeschoolers: The Impact of Technology.

    ERIC Educational Resources Information Center

    Javid, Mahnaz A.

    1998-01-01

    Summarizes the findings of a two-month case study of Edmonds Cyberschool (Washington), a resource center for homeschoolers. The study focused on the impact of technology on students' learning as indicated in three areas: attitude toward technology, the use of technology, and value of technology versus other available resources. (Author/LRW)

  19. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  20. The Learner-Centered Paradigm of Education: Roles for Technology

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.

    2014-01-01

    The learner-centered paradigm of education requires very different roles for technology, as well as for teachers and students, compared with the teacher-centered paradigm. Rather than almost exclusively serving the teacher for teaching, technology primarily serves the student for learning. It does so through four major roles: (1) keeping records…

  1. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  2. Validating a Technology Enhanced Student-Centered Learning Model

    ERIC Educational Resources Information Center

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  3. The Center for Interactive Learning: An Incubator for Hatching Technology.

    ERIC Educational Resources Information Center

    Coburn, Janet

    1999-01-01

    Describes a state-of-the-art community college facility (Center for Interactive Learning) that helps professors integrate technology and instruction to provide students with unique technology-enhanced learning experiences. The center's planning, distinctive features, and amenities are detailed. (GR)

  4. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (< 5%) in most major Western economies. The main reason for this is the high deployment cost of FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment

  5. Reviews of computing technology: Fiber distributed data interface

    SciTech Connect

    Johnson, A.J.

    1991-12-01

    Fiber Distributed Data Interface, more commonly known as FDDI, is the name of the standard that describes a new local area network (LAN) technology for the 90`s. This technology is based on fiber optics communications and, at a data transmission rate of 100 million bits per second (mbps), provides a full order of magnitude improvement over previous LAN standards such as Ethernet and Token Ring. FDDI as a standard has been accepted by all major computer manufacturers and is a national standard as defined by the American National Standards Institute (ANSI). FDDI will become part of the US Government Open Systems Interconnection Profile (GOSIP) under Version 3 GOSIP and will become an international standard promoted by the International Standards Organization (ISO). It is important to note that there are no competing standards for high performance LAN`s so that FDDI acceptance is nearly universal. This technology report describes FDDI as a technology, looks at the applications of this technology, examine the current economics of using it, and describe activities and plans by the Information Resource Management (IRM) department to implement this technology at the Savannah River Site.

  6. Reviews of computing technology: Fiber distributed data interface

    SciTech Connect

    Johnson, A.J.

    1991-12-01

    Fiber Distributed Data Interface, more commonly known as FDDI, is the name of the standard that describes a new local area network (LAN) technology for the 90's. This technology is based on fiber optics communications and, at a data transmission rate of 100 million bits per second (mbps), provides a full order of magnitude improvement over previous LAN standards such as Ethernet and Token Ring. FDDI as a standard has been accepted by all major computer manufacturers and is a national standard as defined by the American National Standards Institute (ANSI). FDDI will become part of the US Government Open Systems Interconnection Profile (GOSIP) under Version 3 GOSIP and will become an international standard promoted by the International Standards Organization (ISO). It is important to note that there are no competing standards for high performance LAN's so that FDDI acceptance is nearly universal. This technology report describes FDDI as a technology, looks at the applications of this technology, examine the current economics of using it, and describe activities and plans by the Information Resource Management (IRM) department to implement this technology at the Savannah River Site.

  7. Mission & Role | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry.

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky

  9. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  10. Emerging Technologies: Applications and Implications for School Library Media Centers.

    ERIC Educational Resources Information Center

    Craver, Kathleen W.

    This paper examines emerging information technologies and their implications for school library media centers. Because of the fluctuating situation regarding new innovations, only emerging technologies that specialists believe will occur within the next 5 to 10 years are discussed. For each technology mentioned, a brief description is given…

  11. Biological Semiconductors | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Cancer Diagnostic Program and the Food and Drug Administration's Center for Devices and Radiological Health is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological semiconductors as diagnostic sensors.

  12. Technology at the "Center for Two Learners"

    ERIC Educational Resources Information Center

    Dismukes, Delisa; Yarbrough, Sondra; Zenanko, Marsha; Zenanko, Mike

    2004-01-01

    In this paper, an early component of the teacher education practicum program in the College of Education and Professional Studies at Jacksonville State University is described. This program includes an on-campus one-on-one tutorial that is facilitated through the Teaching/Learning Center (T/LC). The T/LC was established so that the JSU College of…

  13. Marshall Space Flight Center ECLSS technology activities

    NASA Technical Reports Server (NTRS)

    Wieland, Paul

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.

  14. Ames Research Center Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  15. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable,...

  16. Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Li, Ya; Zhang, Zu-Chen; Wu, Chun-Xiao; Song, Ning-Fang

    2016-08-01

    The effects of color centers’ absorption on fibers and interferometric fiber optical gyroscopes (IFOGs) are studied in the paper. The irradiation induced attenuation (RIA) spectra of three types of polarization-maintaining fibers (PMFs), i.e., P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to 1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers’ absorption on RIA and mean wavelength shifts (MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient (RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments. Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

  17. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  18. The Manned Spacecraft Center and medical technology

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  19. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  20. Multi-core fiber technology for highly reliable optical network in access areas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Lee, Yong; Nomoto, Etsuko; Arimoto, Hideo; Sugawara, Toshiki

    2015-03-01

    A failure recovery system utilizing a multi-core fiber (MCF) link with field programmable gate array-based optical switch units was developed to achieve high capacity and highly reliable optical networks in access areas. We describe the novel MCF link based on a multi-ring structure and a protection scheme to prevent link failures. Fan-in/ -out devices and connectors are also presented to demonstrate the development status of the MCF connection technology for the link. We demonstrated path recovery by switching operation within a sufficiently short time, which is required by ITU-T. The selection of a protecting path as a failure working path was also optimized as the minimum passage of units for low loss transmission. The results we obtained indicate that our proposed link has potential for the network design of highly reliable network topologies in access areas such as data centers, systems in business areas, and fiber to the home systems in residential areas.

  1. Supporting learner-centered technology integration through situated mentoring

    NASA Astrophysics Data System (ADS)

    Rosenberg, Marian Goode

    Situated mentoring was used as a professional development method to help 11 high school science teachers integrate learner-centered technology. The teachers' learner-centered technology beliefs and practices as well as their perception of barriers to learner-centered technology integration were explored before and after participating in the mentoring program. In addition, the participants' thoughts about the effectiveness of various components of the mentoring program were analyzed along with the mentor's observations of their practices. Situated mentoring can be effective for supporting learner-centered technology integration, in particular decreasing the barriers teachers experience. Goal setting, collaborative planning, reflection, and onsite just-in-time support were thought to be the most valuable components of the mentoring program.

  2. Research and technology of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.

  3. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  4. Lessons learned in control center technologies and non-technologies

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.

    1991-01-01

    Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.

  5. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  6. Research and technology of the Lyndon Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1988 are highlighted. This year, reports are grouped in sections Space System Technology, Solar System Sciences, Space Transportation Technology, and Medical Sciences. Summary sections describing the role of Johnson Space Center in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  7. The Center for Advancing Technology Succeeds with New Literacy Program.

    ERIC Educational Resources Information Center

    Bailey, Charles; Rentz, William D.

    As part of an effort to combat the persistent problem of adult illiteracy, the Center for Advancing Technology was initiated at Piedmont Community College (PCC) in North Carolina and charged with the design of an effective model of rural, adult education for use throughout the state. The first step in the development of the center's literacy…

  8. Reexamining Technology's Role in Learner-Centered Professional Development

    ERIC Educational Resources Information Center

    Polly, Drew; Hannafin, Michael J.

    2010-01-01

    The American Psychological Association's "Learner-Centered Principles" provide empirically-based approaches to improving teaching and learning. However, in order to facilitate learner-centered, technology-rich instruction to K-12 students, teachers must be afforded opportunities to develop key understandings and skills, rarely evident in most…

  9. A feasibility study for a manufacturing technology deployment center

    SciTech Connect

    Not Available

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  10. Phosphor Technology Center of Excellence: research, education, industrial interactions

    NASA Astrophysics Data System (ADS)

    Summers, Christopher J.

    1994-04-01

    A review is given of the participants and the research, education and industrial mission of the center. The Phosphor Technology Center of Excellence is established at the Georgia Institute of Technology with the University of Georgia, University of Florida, Pennsylvania State University, David Sarnoff Research Center and the American Display Consortium being charter members. The research mission addresses short, medium and long term needs in five technological areas; cathode ray tube, electroluminescence, field emission devices, plasma display panels and active-matrix liquid crystal display back-light phosphors through interactive university/industry technology groups. Outreach activities include the establishment of a phosphor database, industry analysis and short courses in addition to the conventional university education role. Specific science and technology programs are briefly described.

  11. Research & Technology Report Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  12. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect

    2010-01-01

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  13. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  14. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    ERIC Educational Resources Information Center

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  15. Research and technology highlights of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Highlights of research accomplishments of the Lewis Research Center for fiscal year 1984 are presented. The report is divided into four major sections covering aeronautics, space communications, space technology, and materials and structures. Six articles on energy are included in the space technology section.

  16. Customizing graphical user interface technology for spacecraft control centers

    NASA Technical Reports Server (NTRS)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  17. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  18. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  19. GHG MITIGATION TECHNOLOGY PERFORMANCE EVALUATIONS UNDERWAY AT THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper outlines the verification approach and activities of the Greenhouse Gas (GHG) Technology Verification Center, one of 12 independent verification entities operating under the U.S. EPA-sponsored Environmental Technology Verification (ETV) program. (NOTE: The ETV program...

  20. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  1. MEMS technology and explosive growth fiber optical communication

    NASA Astrophysics Data System (ADS)

    Liu, Ai Q.

    2001-10-01

    Silicon micromachines are an emerging technology that will impact almost every area of science and technology. From industries as diverse as automotive, cellular, aerospace, chemical as well as lightwave systems, N/MEMS (Nano/Microelectromechanical Systems) is rapidly becoming the solution of choice for many technical problems. MEMS devices are, in general, built using standard IC techniques. Starting with a silicon wafer and depositing a series of films such as nitrides, polysilicon, oxides and metals, one builds a complex three-dimensional structure in much the same way one builds an IC. However, unlike an IC, one then releases the device by etching away the oxides, producing a structure that can move. This subtle change in processing allows one to produce devices that move including rotary gears, hinges, plates, flexural beams and motors of every imaginable type. In optical fiber communication, MEMS allows one to build a wide range of components including data modulators, variable attenuators, optical switches, active equalizers, add/drop multiplexers, optical crossconnects (OXCs), dispersion compensators, all- optical switches, tunable laser sources, active packages and adaptive optical elements. In this paper, the design and fabrication of MEMS optical devices using readily available standard fabrication facilities for different fiber optical communication applications will be discussed in details.

  2. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers.

    PubMed

    Firstov, S V; Khopin, V F; Bufetov, I A; Firstova, E G; Guryanov, A N; Dianov, E M

    2011-09-26

    For the first time, 3-dimensional luminescence spectra (luminescence intensity as a function of the excitation and emission wavelengths) have been obtained for bismuth-doped optical fibers of various compositions in a wide spectral range (450-1700 nm). The bismuth-doped fibers investigated have the following core compositions: SiO(2), GeO(2), Al-doped SiO(2), and P-doped SiO(2). The measurements are performed at room and liquid nitrogen temperatures. Based on the experimental results, the positions of the low-lying energy-levels of the IR bismuth active centers in SiO(2)- and GeO(2)-core fibers have been determined. Similarity of the energy-level schemes for the two core compositions has been revealed. PMID:21996896

  3. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  4. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a... described in U.S. Patent No. 7,020,354: Intensity Modulated Fiber Optic Pressure Sensor, Navy Case No....

  5. 75 FR 34988 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a.... Patent No. 7,149,374: Fiber Optic Pressure Sensor, Navy Case No. 84,557.//U.S. Patent No....

  6. The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.

    ERIC Educational Resources Information Center

    Kovacs, Robert E.

    1993-01-01

    Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)

  7. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  8. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    SciTech Connect

    Liebermeister, Lars Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki; Schell, Andreas W.; Benson, Oliver; Meinhardt, Thomas; Krueger, Anke; Stiebeiner, Ariane; Rauschenbeutel, Arno; Weinfurter, Harald; Weber, Markus

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  9. Lab on fiber technology and related devices, part I: a new technological scenario; Lab on fiber technology and related devices, part II: the impact of the nanotechnologies

    NASA Astrophysics Data System (ADS)

    Cusano, A.; Consales, M.; Pisco, M.; Crescitelli, A.; Ricciardi, A.; Esposito, E.; Cutolo, A.

    2011-05-01

    PART ONE: The "Lab on Fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modern optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano and micro scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the "Lab on Fiber" roadmap discussing perspectives and challenges that lie ahead. PART TWO: After having reviewed, in the previous part, the main results achieved in the "Lab o Fiber" roadmap through the development of several wavelength-scale devices and components based on the lab on fiber concept, here we focus the attention on new trends involving innovative nano-fabrication strategies enabling to exploit further intriguing photonic and/or plasmonic phenomena at the forefront of optical research. Novel complex fabrication techniques of "Lab-on-fiber" device at the nanoscale are here presented and discussed, from advanced multi material stacks and drawing technique up to the use of nanotechnologies, including standard lithographic tools as well as new nano-imprinting approaches. In particular, for the first time, we report some preliminary results obtained by our multidisciplinary research group concerning the design and fabrication of a 2D hybrid metallo-dielectric photonic crystal (PC) nanostructure, directly realized by innovatively applying the electron beam lithography technique on the cleaved end of standard single mode optical fibers.

  10. Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology.

    PubMed

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2015-09-10

    An adhesive potting technology for fiber coils of a fiber optic gyroscope (FOG) is proposed. The fiber coil is immersed in liquid adhesive with superior mechanical properties. The internal air is first removed completely by vacuum pumping, and the adhesive is then evenly pressed into the fiber coil under pressure. The potted fiber core is prepared by ladder-type temperature curing and a stress-release process. With this potting technology, the vibration performance of an FOG is greatly improved and, at the same time, will not lead to degradation of its temperature performance. Using this potting technique of adhesive impregnation, the adaptability of FOGs will be enhanced. PMID:26368951

  11. Polarization maintaining fiber magnetic sensor based on the digital phase generated carrier technology

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming

    2008-12-01

    A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.

  12. Center Wavelength Adoption Techniques for Supercontinuum Generating Highly Nonlinear Noncircular Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Anwar; Namihira, Yoshinori

    2013-05-01

    A supercontinuum (SC) light source is designed using a highly nonlinear noncircular core photonic crystal fiber (HNL-NcPCF) with all-normal group velocity dispersion (GVD) to demonstrate how simply an SC can be generated at different center wavelengths in a normal GVD regime. Using the finite element method (FEM) with a perfectly matched layer (PML), the design of two or more PCF-based light sources at different neighboring center wavelengths is demonstrated numerically. Moreover, SC generations are demonstrated numerically at 1.06, 1.31, and 1.55 µm in a normal dispersion regime using picosecond optical pulses.

  13. Applied wind energy research at the National Wind Technology Center

    SciTech Connect

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  14. Manufacturing Technology Information Analysis Center: Knowledge is strength

    NASA Astrophysics Data System (ADS)

    Safar, Michal

    1992-04-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  15. Manufacturing Technology Information Analysis Center: Knowledge Is Strength

    NASA Technical Reports Server (NTRS)

    Safar, Michal

    1992-01-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  16. Savannah River Technology Center monthly report, March 1995

    SciTech Connect

    1995-03-01

    Short summaries are given on the status of projects within the Savannah River Technology Center covering the following broad topical areas: Tritium; Separations; Environmental studies; Waste management; and General. Studies listed under this last area include: Reactor support; Site robotics support; Robotics for D and D; Robotics for mixed waste operation; Integrated demonstration of an underground storage tank; and Alliance for the Advancement of Robotic Technology (AART).

  17. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2015-01-01

    Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  18. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  19. Center for Advanced Technology Training (CATT) Feasibility Study.

    ERIC Educational Resources Information Center

    Albuquerque Technical Vocational Inst., NM.

    A study of the feasibility of establishing a Center for Advanced Technology Training (CATT) at the Albuquerque Technical Vocational Institute (TVI Community College, New Mexico) was conducted by members of the Albuquerque business community, government representatives, and college administrators. Phase 1 of the study was an examination of the…

  20. Centers for manufacturing technology: Industrial Advisory Committee Review

    SciTech Connect

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  1. Research and technology report of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Highlights of major accomplishments and applications made during the past year at the Langley Research Center are reported. The activities and the contributions of this work toward maintaining United States leadership in aeronautics and space research are also discussed. Accomplishments in the fields of aeronautics and space technology, space science and applications and space transportation systems are discussed.

  2. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  3. CET; Center for Educational Technology, Trenton, N.J.

    ERIC Educational Resources Information Center

    Center for Educational Technology, Trenton, NJ.

    The New Jersey Center for Educational Technology (CET) has three basic priorities: to disseminate information, to coordinate effort, and to reorient school personnel. In its dissemination efforts, CET has published a series of "consumer" newsletters which define the assets and liabilities of different educational media. In addition, it is…

  4. The Role of Community Technology Centers in Promoting Youth Development

    ERIC Educational Resources Information Center

    London, Rebecca A.; Pastor, Manuel, Jr.; Servon, Lisa J.; Rosner, Rachel; Wallace, Antwuan

    2010-01-01

    Recent data suggest that the digital divide between White and minority youth persists, particularly in terms of home access to computers and the Internet. Community technology centers (CTCs) are an important alternative access point, especially for low-income youth of color. Such institutions, however, do much more, providing not just access, but…

  5. CONTROL TECHNOLOGY CENTER, 1990 - A YEAR OF EXPANDING SERVICE

    EPA Science Inventory

    The report discusses services provided by EPA's Control Technology Center (CTC) during FY90. he CTC, developed by EPA's Office of Research and Development (ORD) and Office of Air Planning Quality and Standards (OAQPS), is an innovative technical assistance program for state and l...

  6. Comprehensive Learning Centers: Using Technology To Supplement the Classroom.

    ERIC Educational Resources Information Center

    Groomes, M. Rudy

    Orangeburg-Calhoun Technical College (OCTC) is a public two-year technical college located in rural South Carolina. Some prominent examples of the use of technology at OCTC include the following: (1) the Health Sciences Satellite Media Center houses software and audiovisual equipment which provides instructional support to seven health science…

  7. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  8. Johnson Space Center Research and Technology 1993 Annual Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Center research and technology accomplishments during fiscal year 1993 are described and principle researchers and technologists are identified as contacts for further information. Each of the four sections gives a summary of overall progress in a major discipline, followed by detailed, illustrated descriptions of significant tasks. The four disciplines are Life Sciences, Human Support Technology, Solar Systems Sciences, and Space Systems Technology. The report is intended for technical and management audiences throughout the NASA and worldwide aerospace community. An index lists project titles, funding codes, and principal investigators.

  9. Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation

    SciTech Connect

    Wen, J. X.; Luo, W. Y.; Xiao, Z. Y.; Wang, T. Y.; Chen, Z. Y.; Zeng, X. L.

    2010-02-15

    The formation and conversion processes of defect centers in low water peak single mode optical (LWPSM) fiber irradiated with gamma rays were investigated at room temperature using electron spin resonance. Germanium electron center (GEC) and self-trapped hole center (STH) occur when the fibers are irradiated with 1 and 5 kGy cumulative doses, respectively. With the increase in irradiation doses, the GEC defect centers disappear, and new defect centers such as E{sup '} centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. The generation of GEC and STH is attributed to the electron transfer, which is completely balanced. This is the main reason that radiation-induced attenuation (RIA) of the LWPSM fiber is only 10 dB/km at communication window. The new defect centers come from the conversion of GEC and STH to E{sup '} centers and NBOHC, and the conversion processes cause bond cleavage, which is the root cause that the RIA of the LWPSM fiber significantly increases up to 180 dB/km at working window. Furthermore, the concentration of new defect centers is saturated easily even by increasing cumulative doses.

  10. Establishing technology development centers at closing California bases

    SciTech Connect

    Wood, P.J.

    1994-12-31

    The challenges posed by remediating closing bases offers a special opportunity for California`s environmental technology companies, former defense contractors and Californians in general. One of the most important factors in the successful remediation and reuse of closing bases is the development of new cleanup technologies. At present, there is no method for effectively remediating some kinds of contamination found at military bases. Cal/EPA is in the process of working with the Western Governors` Association Wastes at Military Bases Workgroup to create a strategic plan that will integrate federal, state and local technology development programs. The proposed strategic plan will include a blueprint to help guide proposed technology development centers in California to a portion of the market yet to be addressed by other centers within the state, thus eliminating intra-state competition for the same market. By addressing this issue in a proactive manner, California will demonstrate to the federal government that tax dollars utilized to support technology development centers sited at closing California bases will be present in an efficient and cost effective manner.

  11. Spatial Information Technology Center at Fulton-Montgomery Community College

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Spatial Information Technology Center (SITC) at Fulton-Montgomery Community College (FMCC) continued to fulfill its mission and charter by successfully completing its fourth year of operations under Congressional funding and NASA sponsorship. Fourth year operations (01 Oct 03 - 30 Sep 04) have been funded and conducted utilizing an authorized Research Grant NAG 13-02053 (via a one-year no-cost extension expiring Sep 04). Drawdown and reporting of fiscal activities for SITC operations passes through the Institute for the Application of Geo-spatial Technology (IAGT) at Cayuga Community College in Auburn, New York. Fiscal activity of the Center is reported quarterly via SF 272 to IAGT, this report contains an overview and expenditures for the remaining funds of NAG 13-02053. NAG 13-02053, slated for operating costs for the fiscal year FY02-03, received a one-year no-cost extension. SITC also received permission to use remaining funds for salaries and benefits through December 31,2004. The IAGT receives no compensation for administrative costs. This report includes addendums for the NAG award as required by federal guidelines. Attached are the signed Report of New Technology/Inventions and a Final Property Report. As an academic, economic, and workforce development program, the Center has made significant strides in bringing the technology, knowledge and applications of the spatial information technology field to the region it serves. Through the mission of the Center, the region's communities have become increasingly aware of the benefits of Geospatial technology, particularly in the region s K-12 arena. SITC continues to positively affect the region's education, employment and economic development, while expanding its services and operations.

  12. Vibration performance comparison study on current fiber optic connector technologies

    NASA Astrophysics Data System (ADS)

    Thomes, William J., Jr.; LaRocca, Frank V.; Switzer, Robert C.; Ott, Melanie N.; Chuska, Richard F.; Macmurphy, Shawn L.

    2008-08-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints often require fiber optic connectors so that subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. The fiber endfaces and connectors were inspected at selected intervals throughout the testing.

  13. Optical communication technology. II - Properties of optical fibers

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The pulse dispersion of short light impulses is examined with respect to mode, waveguides, and material and profile dispersion. Impulse expansions of up to 50 ns/km are measured and equations for calculating light impulses from fiber length and light speed in vacuum are presented, together with equations of refraction profiles and profile patterns. Attention is given to multimode-step index fibers, gradient fibers, and monomode fibers as well as to their differing properties. Diagrams of numerical aperture, light dispersion (of the above mentioned fiber types), and interference of two waveguides are given.

  14. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  15. Audio networking at the Center for Art and Media Technology Karlsruhe

    NASA Astrophysics Data System (ADS)

    Dutilleux, Pierre

    1993-01-01

    The Center for Art and Media Technology is dedicated to art and its relationship to new media. The Center supports music as well as graphic art. It also will house museums. The Center will be fully operational by the middle of 1996. The audio network will interconnect five recording studios and a large theater with three control rooms. With the additional facilities, the number of 40 interconnected rooms is reached. As to the quality and the versatility, the network can be compared, to some extent, to that of a broadcast-building. Traditional networking techniques involve many kilometers of high quality audio-cables and bulky automated patch-bays. Still, we wish even more freedom in the way the rooms are interconnected. Digital audio and computer network technology are promising. Although digital audio technology is spreading, the size of the totally digital systems is still limited. Fiber optic and large capacity optical disks offer attractive alternatives to traditional techniques (cabling, multitrack recorders, sound archives, routing). The digital audio standards are evolving from point to point communication to network communication. A 1 Gbit/s network could be the backbone of a solution.

  16. Energy-efficient technologies for point-to-point fiber access

    NASA Astrophysics Data System (ADS)

    Lee, Ka-Lun; Li, Jie; Chan, Chien Aun; Anthapadmanabhan, N. Prasanth; Chow, Hungkei (Keith)

    2015-12-01

    This article discusses the fundamental issues and the technologies to achieve an energy-efficient Gigabit-Ethernet point-to-point (PtP) fiber access network. To minimize the power consumption of PtP fiber access for long-term development, it is essential to optimize each of the network components such as optical transceiver, user network interface, Ethernet aggregator and also their modes of operation. Our analysis shows that the energy consumption of a PtP fiber access network using our proposed technologies can be up to 7.5 times lower than that of the 2010 technologies when a combination of appropriate technologies is applied.

  17. Mid-Atlantic Technology Applications Center. Quarters 1-4

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mid-atlantic Technology Application Center (MTAC) pursued a number of initiatives designed to enhance the strategic position of the Langley Research Center (LaRC) and NASA in industry. Among these was a closer association with the ISA, International Society for Measurement and Control. During 1997, MTAC placed articles regarding NASA-developed technologies in each In Tech magazine. The monthly magazine is sent to 46,000 sensors and instrumentation professionals. In addition, MTAC coordinated NASXs participation in the ISA Tech 97 Conference, securing $112,000 of free exhibit space, 1500 NASA sensors posters at no cost to NASA, and thousands of dollars of free publicity. MTAC was awarded a contract by ISA to operate its Technical Resource Center (TRC). The goal of this project is to determine what user needs are in order to identify opportunities for collaboration between NASA centers and companies. In addition, the TRC work will lay the groundwork for the Technology Development Consortium (TDC) proposed by MTAC. The purpose of the TDC is to: match current industry needs with NASA technologies available now, and to identify future needs of NASA and industry which may lead to dual use projects. The goal of these activities is twofold: to infuse NASA technologies into the sensors and instrumentation industry and to secure industry funds to support NASA technology development projects. The instrumentation and sensors industry is valued at $30 billion worldwide, with $12 billion in sales in the United States. The growth rate averages 13.5%, so that by the year 2000, the industry will produce products worth $49 billion. More than 80% of instruments, sensors and control systems are currently manufactured in the United States. NASA and the industry do not have a history of collaborative projects; MTAC's initiatives in this area are designed to foster working relationships between the two parties that will help maintain U.S. leadership in this field. Mid-atlantic Technology

  18. Comparison of satellite and fiber optics technologies for intercity and intercontinental communications

    NASA Astrophysics Data System (ADS)

    Sharifi, M. Hossein; Arozullah, Mohammed

    The applications of satellite and fiber optic technologies to the design of intercity and intercontinental communications networks are examined. Satellite technology including space and ground segments, and advancements and operational requirements for underwater and land fiber optics communications systems are discussed. Communications satellites and fiber optics are compared in terms of physical implementation, switching requirements, transmission parameters, availability, cost, system flexibility, transmission quality, and applications. The cost of point-to-point transmission of 60 Mbps data using satellite, fiber optics, and microwave systems is evaluated. It is observed that satellite systems are the most cost-effective and flexible methods for providing transmission media for distances greater than about 700 km.

  19. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  20. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  1. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  2. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  3. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  4. Ion Propulsion Technology Programs at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Oleson, S. R.

    2001-01-01

    As lead center for the agency in electric and ion propulsion, the NASA Glenn Research Center (GRC) is pursuing technology development in ion propulsion for a range of mission applications. The program goal is to develop key technologies for advanced NSTAR-derivative high-power ion propulsion, lightweight low power high-performance ion propulsion, 'micro' ion propulsion, and engine and component technologies for high-power electric propulsion for very ambitious missions. Products include: (1) a 5 kW, 400 kg throughput ion thruster and power processing technology; (2) extremely-lightweight high-efficiency sub-kilowatt ion thruster and power processor; (3) a 1-25 W high-specific impulse ion engine; and (4) engine and component technologies for high-power (30 kW class) ion and Hall engines. Identified applications include outer planetary science missions such as Europa orbiter/lander, Comet Nucleus Sample Return mission, Titan Explorer, Neptune/Triton, Pluto-Kuiper Belt Objects Mission, various second generation interplanetary Micro spacecraft, and the Interstellar Probe Mission. Additional information is contained in the original extended abstract.

  5. A future perspective on technological obsolescenceat NASA, Langley Research Center

    NASA Technical Reports Server (NTRS)

    Mcintyre, Robert M.

    1990-01-01

    The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

  6. Savannah River Technology Center. Monthly report, May 1993

    SciTech Connect

    Not Available

    1993-05-01

    This report covers the progress and accomplishments made at the Savannah River Technology Center for the month of May 1993. Progress is reported for projects in the following areas: reactors, tritium, separations, environmental, waste management, and general. General projects are: an eight week tutorial of the Los Alamos National Laboratory developed Monte Carlo Neutron Photon (MCNP) code; development of materials and fabrication technologies for the spallation and tritium targets for the accelerator production of tritium; and a program to develop welding methods to repair stainless steel containing helium.

  7. NOAA Interdisciplinary Scientific Environmental Technology Cooperative Science Center

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon

    2008-10-01

    ISETCS is led by North Carolina Agricultural & Technical State University in collaboration with thirty one scientists and engineers in nine academic departments in seven academic partnering institutions. The focus of the ISET Cooperative Science Center (ISETCSC) is to conduct research on sensor science and sensor technology for oceanic and atmospheric applications; perform analysis of global observing systems that include numerical and physical research and analysis of hurricanes; and, develop information technology tools for data fusion, data mining and geospatial modeling and analysis. In collaboration with Keith Schimmel and Abdollah Homaifar, North Carolina A&T State University; Frederick Semazzi, North Carolina State University; and Samir Ahmed, City University of New York.

  8. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  9. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  10. A Comparison of Lead Abatement Technologies at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Jeziorowski, Luz Y.; Calla, Joanne

    1997-01-01

    In 1995, Lewis participated in a pilot test of Lead Specifications. The Specifications were sponsored by the Center to Protect Worker's Rights (CPWR). Entitled "Model Specifications for the Protection of Worker's from Lead on Steel Structures", one aspect of this endeavor was to test and compare several lead abatement technologies. The project overview, objectives, team, and requirements as well as abatement methods and materials are outlined.

  11. Technologies for the marketplace from the Centers for Disease Control

    NASA Technical Reports Server (NTRS)

    Reid-Sanden, Frances L.; Greene, R. Eric; Malvitz, Dolores M.

    1991-01-01

    The Centers for Disease Control, a Public Health Service agency, is responsible for the prevention and control of disease and injury. Programs range from surveillance and prevention of chronic and infectious diseases to occupational health and injury control. These programs have produced technologies in a variety of fields, including vaccine development, new methods of disease diagnosis, and new tools to ensure a safer work environment.

  12. Establishment of the Center for Biomedical Technology Innovation

    SciTech Connect

    2001-12-15

    The report discussed the following topics: (1) Orthopedic Devices; (2) Hybrid Vector and Method Resulting in Protein Overproduction by Eukaryotic Cells; (3) Surgical Simulator; (4) CBTI (Center for Biomedical Technology Innovation) as an Incubator for Start-up Companies; (5) Voice-activated, computer-assisted surgical robotics; (6) Through transmission ultrasonic 3-D holography for diagnostic imaging; (7) CBTI's Scibermed{trademark} Virtual Institute (SVI); and (8) Laser Oxygenation Tomography.

  13. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  14. Career and Technology Center Honors Julie Hartman | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer On May 7, Julie Hartman was honored by the Frederick County Career and Technology Center (CTC) for her support of the CTC’s Biomedical Sciences Program. As an education program specialist for Outreach and Special Programs at NCI at Frederick, Hartman is responsible for NCI at Frederick’s participation in the program, which is designed to offer Frederick County high school students hands-on, practical laboratory experience beyond the typical classroom setting. 

  15. Spatial Information Technology Center at Fulton-Montgomery Community College

    NASA Technical Reports Server (NTRS)

    Flinton, Michael E.

    2004-01-01

    The Spatial Information Technology Center (SITC) at Fulton-Montgomery Community College (FMCC) continued to fulfill its mission and charter by successfully completing its third year of operations under Congressional funding and NASA sponsorship. Third year operations (01 Oct 02 - 30 Sep 03) have been funded and conducted utilizing two authorized Research Grants NAG 13-00043 (via a one-year no-cost extension expiring Sep 03) and NAG 13-02053 (one-year no-cost extension expiring Sep 04). Drawdowns and reporting of fiscal activities for SlTC operations continues to pass through the Institute for the Application of Geo-spatial Technology (IAGT) at Cayuga Community College in Auburn, New York. Fiscal activity of the Center is reported quarterly via SF 272 to IAGT, thus this report contains only a budgetary overview and forecast of future expenditures for the remaining funds of NAG 13 - 02053. Funds from NAG 13 - 00043 were exhausted during the fourth quarter of fiscal year FY02 - 03, which necessitated initial draw down of NAG 13 - 02053. The IAGT receives no compensation for administrative costs as authorized and approved by NASA in each award budget. This report also includes the necessary addendums for each NAG award, as required by federal guidelines, though no reportable activities took place within this report period. Attached are the signed Report of New Technology/lnventions and a Final Property Report identifying qualifying equipment purchased by the Center. As an academic, economic and workforce development oriented program, the Center has made significant strides in bringing the technology, knowledge and applications of the spatial information technology field to the region it serves. Through the mission of the Center, the region's educational, economic development and work force communities have become increasingly educated to the benefits of spatial (Geospatial) technology, particularly in the region's K-12 arena. SlTC continues to positively affect the

  16. Center for BioBased Binders and Pollution Reduction Technology

    SciTech Connect

    Thiel, Jerry

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  17. Morgantown Energy Technology Center: FY83 annual report

    SciTech Connect

    Not Available

    1983-11-01

    Fiscal Year 1983 was a productive year for the Morgantown Energy Technology Center with the introduction of three new Fossil Energy program areas. This annual report includes our first efforts in these three areas, which are deep source gas (subducted hypothesis), gas hydrates, and coal-burning gas turbines. The turbine work includes both highly beneficiated coal mixtures and minimally cleaned hot or cold fuel gas. The lead mission assignments for the laboratory grew to 13 areas. The new areas added in 1982 included fuel cells and heat engines. Ongoing program areas are coal gasification, fluidized-bed combustion, gas stream cleanup, components, instrumentation and control, and unconventional gas recovery. Through the defederalization of the Laramie and Grand Forks Energy Technology Centers in mid-1983, low-rank coals, oil shale, tar sands, and underground coal gasification program areas were acquired. In addition, efforts were initiated in arctic and offshore technologies. The Advanced System for Process Engineering, or ASPEN, computer code was the most requested Department of Energy software from the National Energy Software Center. The Laboratory Overview section of this report presents foremost accomplishments by program areas during FY83. Section A enumerates major institutional accomplishments of the laboratory during the year. Subsequent sections detail major accomplishments for the 13 lead mission areas. The report contains information about the indexed items.

  18. Teaching Technology with Technology. An Off-the-Shelf Robotics Course Builds Technical Center Enrollment.

    ERIC Educational Resources Information Center

    Hannemann, Jim; Rice, Thomas R.

    1991-01-01

    At the Oakland Technical Center, which provides vocational programs for nine Michigan high schools, a one-semester course in Foundations of Technology Systems uses a computer-simulated manufacturing environment to teach applied math, science, language arts, communication skills, problem solving, and teamwork in the context of technology education.…

  19. All Fiber Grating (AFG): a new platform for fiber optic sensing technologies

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yu, Haihu; Jiang, Desheng; Yang, Minghong

    2015-09-01

    A versatile all fiber grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) was firstly proposed and demonstrated. On-line writing identically weak fiber Bragg grating array by the phase mask technique was developed. The sensing network is interrogated with time- and wavelength-division multiplexing method. The proposed ultra-weak FBG system was very promising for the large-scale sensing network.

  20. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  1. Research on distributed strain separation technology of fiber Brillouin sensing system combining an electric power optical fiber cable

    NASA Astrophysics Data System (ADS)

    Lei, Yuqing; Chen, Xi; Li, Jihui; Tong, Jie

    2013-12-01

    Brillouin-based optical fiber sensing system has been taken more and more attentions in power transmission line in recent years. However, there exists a temperature cross sensitivity problem in sensing system. Hence, researching on strain separation technology of fiber brillouin sensing system is an urgent requirement in its practical area. In this paper, a real-time online distributed strain separation calculation technology of fiber Brillouin sensing combining an electric power optical fiber cable is proposed. The technology is mainly composed of the Brillouin temperature-strain distributed measurement system and the Raman temperature distributed measurement system. In this technology, the electric power optical fiber cable is a special optical phase conductor (OPPC); the Brillouin sensing system uses the Brillouin optical time domain analysis (BOTDA) method. The optical unit of the OPPC includes single-mode and multimode fibers which can be used as sensing channel for Brillouin sensing system and Raman sensing system respectively. In the system networking aspect, the data processor of fiber Brillouin sensing system works as the host processor and the data processor of fiber Raman sensing system works as the auxiliary processor. And the auxiliary processor transfers the data to the host processor via the Ethernet interface. In the experiment, the BOTDA monitoring system and the Raman monitoring system work on the same optical unit of the OPPC simultaneously; In the data processing aspect, the auxiliary processor of Raman transfers the temperature data to the host processor of Brillouin via the Ethernet interface, and then the host processor of Brillouin uses the temperature data combining itself strain-temperature data to achieve the high sampling rate and high-precision strain separation via data decoupling calculation. The data decoupling calculation is achieved through the interpolation, filtering, feature point alignment, and the singular point prediction

  2. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.

  3. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  4. Innovative fiber systems for laser medicine and technology

    NASA Astrophysics Data System (ADS)

    Artiouchenko, Viatcheslav G.; Wojciechowski, Cezar

    2003-10-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4-18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared (FTIR) spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR-fiber probes have been used to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high spectral resolution of TDL spectrometers with Δv=10-4cm-1, provides the unique tool for gas analysis, specifically wiht PIR-fibers are coupled as pigtails with MCT-detectors and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis as 1 ppb level of detectivity for various applications in medicine and biotechnology.

  5. Innovative fiber systems for laser medicine and technology

    NASA Astrophysics Data System (ADS)

    Artiouchenko, Viatcheslav G.; Wojciechowski, Cezar

    2004-09-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared (FTIR) spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR-fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high spectral resolution of TDL spectrometers with Δν=10-4cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  6. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  7. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  8. Publications in academic medical centers: technology-facilitated culture clash.

    PubMed

    Berner, Eta S

    2014-05-01

    Academic culture has a set of norms, expectations, and values that are sometimes tacit and sometimes very explicit. In medical school and other health professions educational settings, probably the most common norm includes placing a high value on peer-reviewed research publications, which are seen as the major evidence of scholarly productivity. Other features of academic culture include encouraging junior faculty and graduate students to share their research results at professional conferences and lecturing with slides as a major way to convey information. Major values that faculty share with journal editors include responsible conduct of research and proper attribution of others' words and ideas. Medical school faculty also value technology and are often quick to embrace technological advances that can assist them in their teaching and research. This article addresses the effects of technology on three aspects of academic culture: education, presentations at professional meetings, and research publications.The technologies discussed include online instruction, dissemination of conference proceedings on the Internet, plagiarism-detection software, and new technologies deployed by the National Center for Biotechnology Information, the home of PubMed. The author describes how the ease of deploying new technologies without faculty changing their norms and behavior in the areas of teaching and research can lead to conflicts of values among key stakeholders in the academic medical community, including faculty, journal editors, and professional associations. The implications of these conflicts and strategies for managing them are discussed. PMID:24667517

  9. The research of high efficient optical fiber coupling technology in space laser communication

    NASA Astrophysics Data System (ADS)

    Wang, Hao-zeng; Tong, Shou-feng; Zhang, Lei; Yang, Hong-kun

    2013-08-01

    With the development of optical fiber communications, especially the maturity of the optical amplifiers and the WDM technology, space optical communication at 1550 nm becomes a promising solution for future high speed satellite communication. Receiving technology with optical amplifiers and coupling space light into single mode fiber are key technologies in space optical communication at 1550 nm. Free-space-to-fiber coupling technique investigated in this paper is the first challenge of applying fiber communication techniques to free space optical communications. We analyzed the factors that affect the efficiency of free-space-to single-mode-fiber coupling based on mode-matching theory of electromagnetic fields. On this objective, in this paper, the theoretical analysis of the effect of atmospheric turbulence on the space light-single mode fiber coupling efficiency is discussed. On this basis, the short-distance experiment coupling space light into single mode fiber is carried out. 1. The main factors affecting the process coupling space light into single mode fiber are analyzed. This paper introduced the statistical theory of atmospheric turbulence and gave out the main turbulence parameters and meteyard based on the theory of the space light-single mode fiber coupling efficiency under ideal conditions. 2. The influence of atmospheric turbulence on the space light-single mode fiber coupling efficiency is analyzed and simulated. In the weak turbulence condition, mathematical model of the mean coupling efficiency and its fluctuation variance was given. And the fluctuation variance of coupling efficiency was simulated studied under the atmospheric conditions. The influences on the average coupling efficiency was theoretically studied, which were induced by the structure constant of atmospheric refractive index, the diameter of coupling lens and the single-mode fiber mode field radius. 3. Validating the theoretical model by a experiment under a short link coupling

  10. Computational structures technology and UVA Center for CST

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    Rapid advances in computer hardware have had a profound effect on various engineering and mechanics disciplines, including the materials, structures, and dynamics disciplines. A new technology, computational structures technology (CST), has recently emerged as an insightful blend between material modeling, structural and dynamic analysis and synthesis on the one hand, and other disciplines such as computer science, numerical analysis, and approximation theory, on the other hand. CST is an outgrowth of finite element methods developed over the last three decades. The focus of this presentation is on some aspects of CST which can impact future airframes and propulsion systems, as well as on the newly established University of Virginia (UVA) Center for CST. The background and goals for CST are described along with the motivations for developing CST, and a brief discussion is made on computational material modeling. We look at the future in terms of technical needs, computing environment, and research directions. The newly established UVA Center for CST is described. One of the research projects of the Center is described, and a brief summary of the presentation is given.

  11. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    NASA Astrophysics Data System (ADS)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  12. Lab-on-fiber technology: a new avenue for optical nanosensors

    NASA Astrophysics Data System (ADS)

    Consales, Marco; Pisco, Marco; Cusano, Andrea

    2012-12-01

    The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modern optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.

  13. All Fiber Technology for High-Energy Petawatt Front End Laser Systems

    SciTech Connect

    Dawson, J W; Liao, Z M; Jovanovic, I; Wattellier, B; Beach, R; Payne, S A; Barty, C P J

    2003-09-05

    We are developing an all fiber front end for the next generation high-energy petawatt (HEPW) laser at Lawrence Livermore National Laboratory (LLNL). The ultimate goal of the LLNL HEPW effort is to generate 5-kJ pulses capable of compression to 5ps at 1053nm, enabling advanced x-ray backlighters and possible demonstration of fast ignition. We discuss the front-end of the laser design from the fiber master oscillator, which generates the mode-locked 20nm bandwidth initial pulses through the 10mJ output of the large flattened mode (LFM) fiber amplifier. Development of an all fiber front end requires technological breakthroughs in the key areas of the master oscillator and fiber amplification. Chirped pulse amplification in optical fibers has been demonstrated to 1mJ. Further increase is limited by the onset of stimulated Raman scattering (SRS). We have recently demonstrated a new flattened mode fiber technology, which reduces peak power for a given energy and thus the onset of SRS. Controlled experiments with 1st generation fibers yielded 0.5mJ of energy while significantly increasing the point at which nonlinear optical effects degrade the amplified pulse. In this paper we will discuss our efforts to extend this work to greater than 20mJ using our large flattened mode fiber amplifier.

  14. Future Directions in Rotorcraft Technology at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Ormiston, Robert A; Young, Larry A.

    2000-01-01

    Members of the NASA and Army rotorcraft research community at Ames Research Center have developed a vision for 'Vertical Flight 2025'. This paper describes the development of that vision and the steps being taken to implement it. In an effort to realize the vision, consistent with both NASA and Army Aviation strategic plans, two specific technology development projects have been identified: (1) one focused on a personal transportation system capable of vertical flight (the 'Roto-Mobile') and (2) the other on small autonomous rotorcraft (which is inclusive of vehicles which range in grams of gross weight for 'MicroRotorcraft' to thousands of kilograms for rotorcraft uninhabited aerial vehicles). The paper provides a status report on these projects as well as a summary of other revolutionary research thrusts being planned and executed at Ames Research Center.

  15. Application of microscopy technology in mathematical modeling of hollow fiber membrane system

    NASA Astrophysics Data System (ADS)

    Lock, S. S. M.; Lau, K. K.; Tan, E. K.; Shariff, A. M.; Mei, Irene Lock Sow

    2015-07-01

    Mathematical modeling becomes an indispensable tool in the design process of membrane system by predicting the required module specification and membrane characteristic that are optimum according to various operating conditions. However, challenges are often encountered in determining the effective separation area for mathematical modeling of the hollow fiber membrane system, which are associated with many fine hollow fibers. In this work, the microscopy technology has been adapted to determine the specification of the hollow fiber and packing fraction of the membrane system, before being applied alongside numerical solution to describe the separation performance of a countercurrent hollow fiber membrane system. The accuracy of the methodology has been validated through experimental work. The promising result enables further application of the methodology in industrial scale hollow fiber membrane module design with approximately ten to hundreds of thousands of extremely fine hollow fibers.

  16. Design and prototyping of self-centering optical single-mode fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Gao, Fei; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-06-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s‑1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μm. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μm, which is no problem

  17. Advanced communication systems: A report on fiber optic technology and its possible applications in the gas industry

    NASA Astrophysics Data System (ADS)

    Ziolkowski, C. J.; Rush, W. F.; Saha, N. C.

    1987-08-01

    The applicability of fiber optic technology to the area of natural gas distribution is examined. The basic technology of fiber optics is outlined. Some of the commercially available products are examined. The two areas where fiber optics might be successfully applied to gas distribution needs are the remote control of district pressure regulators and the lease of communication capability to interested parties.

  18. High performance FBG interrogation technology with scan fiber laser

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Ma, Youchun; Yang, Minwei

    2010-11-01

    A Fiber Bragg gratings (FBG) Interrogation scheme with scan fiber laser was demonstrated. The ring cavity scan fiber laser was investigated and the scan fiber laser module was made and test, the 200Hz scan frequency, ~0.02nm line width, more than 40nm scan range and more than 1 mW output power were obtained. A 12 channels, 20 FBGs per channel FBG interrogator was made with this laser module and the high speed signal process circuit base on FPGA. The centroid finding method which has advantage on interrogation speed and accurate was taken for finding the peak of the return FBG spectrum. The FBG interrogator was test and less than 3pm standard deviation with 200Hz scan frequency were obtained.

  19. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  20. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  1. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Yuan; Wang, Ding; Leng, Yu-Xin; Dai, Ye

    2015-01-01

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, and 11134010), the National Basic Research Program of China (Grant No. 2011CB808101), the Commission of Science and Technology of Shanghai, China (Grant No. 12dz1100700), the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800), and the International Science and Technology Cooperation Program of China (Grant No. 2011DFA11300).

  2. The Savannah River Technology Center environmental monitoring field test platform

    SciTech Connect

    Rossabi, J.

    1993-03-05

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy`s Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques.

  3. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    SciTech Connect

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  4. The Goddard Space Flight Center (GSFC) robotics technology testbed

    NASA Technical Reports Server (NTRS)

    Schnurr, Rick; Obrien, Maureen; Cofer, Sue

    1989-01-01

    Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.

  5. Trends and future of fiber Bragg grating sensing technologies: tailored draw tower gratings (DTGs)

    NASA Astrophysics Data System (ADS)

    Lindner, E.; Hartung, A.; Hoh, D.; Chojetzki, C.; Schuster, K.; Bierlich, J.; Rothhardt, M.

    2014-05-01

    Today fiber Bragg gratings are commonly used in sensing technology as well as in telecommunications. Numerous requirements must be satisfied for their application as a sensor such as the number of sensors per system, the measurement resolution and repeatability, the sensor reusability as well as the sensor costs. In addition current challenges need to be met in the near future for sensing fibers to keep and extend their marketability such as the suitability for sterilization, hydrogen darkening or the separation of strain and temperature (or pressure and temperature). In this contribution we will give an outlook about trends and future of the fiber Bragg gratings in sensing technologies. Specifically, we will discuss how the use of draw tower grating technology enables the production of tailored Bragg grating sensing fibers, and we will present a method of separating strain and temperature by the use of a single Bragg grating only, avoiding the need for additional sensors to realize the commonly applied temperature compensation.

  6. Center for development technology and program in technology and human affairs. [emphasizing technology-based networks

    NASA Technical Reports Server (NTRS)

    Wong, M. D.

    1974-01-01

    The role of technology in nontraditional higher education with particular emphasis on technology-based networks is analyzed nontraditional programs, institutions, and consortia are briefly reviewed. Nontraditional programs which utilize technology are studied. Technology-based networks are surveyed and analyzed with regard to kinds of students, learning locations, technology utilization, interinstitutional relationships, cost aspects, problems, and future outlook.

  7. Scientific and educational center "space systems and technology"

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.

    2015-10-01

    The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.

  8. Research and technology, fiscal year 1986, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  9. Research progress in the key device and technology for fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Sun, Qizhen; Lu, Ping; Xia, Li; Sima, Chaotan

    2016-03-01

    The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.

  10. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  11. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  12. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  13. Research progress of the resonant fiber optic gyroscope technology

    NASA Astrophysics Data System (ADS)

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2015-10-01

    The resonant fiber optic gyro (RFOG) is a high accuracy inertial rotation sensor based on the Sagnac effect. The existence of various noises, including the nonreciprocal noises such as the polarization noise and the Kerr noise as well as the reciprocal circuit noise, limits the performance improvement of the RFOG. An improved scheme by inserting two in-line polarizers in the polarization maintaining fiber transmission-type resonator has been proposed to suppress the polarization-fluctuation induced drift. Furthermore, the adoption of the air-core photonic bandgap fibers (PBFs) offers a novel solution to reduce the optical Kerr effect. In addition, A digital signal processor is designed to reduce the reciprocal noises and detect the rotation information. A minimum actual rotation of 0.001°/s is achieved. The dynamic range is improved by a factor of 7 and the scale factor nonlinearity is decreased by a factor of 60.

  14. Intellectual parachute and balloon systems based on fiber optic technologies

    NASA Astrophysics Data System (ADS)

    Nikolaev, Alexander M.; Nikolaev, Pavel M.; Nikolaev, Yuri M.; Morozov, Oleg G.; Zastela, Mikhail Yu.; Morozov, Gennady A.

    2014-04-01

    For any parachute system, it is important to predict the opening forces it will experience in order to make a safe and economic choice of materials to be used. Developed fiber optic sensors on two twisted fibers with the locked ends and variable twisting step have been used for creation of intellectual knots of perspective vehicles, in particular, parachute canopies and slings. We decided to change our measuring procedure from measuring of transmitted power or its Raleigh scattering in different ends of twisted fibers onto Brillouin scattering characterization. For this situation we offered the kind of method of frequency variation to get the information about the frequency shift and Q-factor of the Brillouin scattering in each sensor.

  15. Enhanced Product Generation at NASA Data Centers Through Grid Technology

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.

    2003-01-01

    This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.

  16. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  17. The Picatinny Technology Transfer Innovation Center: A business incubator concept adapted to federal laboratory technology transfer

    SciTech Connect

    Wittig, T.; Greenfield, J.

    1996-10-01

    In recent years, the US defense industrial base spawned the aerospace industry, among other successes, and served as the nation`s technology seed bed. However, as the defense industrial base shrinks and public and private resources become scarcer, the merging of the commercial and defense communities becomes necessary to maintain national technological competencies. Cooperative efforts such as technology transfer provide an attractive, cost-effective, well-leveraged alternative to independently funded research and development (R and D). The sharing of knowledge, resources, and innovation among defense contractors and other public sector firms, academia, and other organizations has become exceedingly attractive. Recent legislation involving technology transfer provides for the sharing of federal laboratory resources with the private sector. The Army Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, NJ, a designer of weapons systems, is one of the nation`s major laboratories with this requirement. To achieve its important technology transfer mission, ARDEC reviewed its capabilities, resources, intellectual property, and products with commercial potential. The purpose of the review was to develop a viable plan for effecting a technology transfer cultural change within the ARDEC, Picatinny Arsenal and with the private sector. This report highlights the issues identified, discussed, and resolved prior to the transformation of a temporarily vacant federal building on the Picatinny installation into a business incubator. ARDEC`s discussions and rationale for the decisions and actions that led to the implementation of the Picatinny Technology Transfer Innovation Center are discussed.

  18. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  19. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  20. Distance Learning Using Digital Fiber Optics: Applications, Technologies, and Benefits.

    ERIC Educational Resources Information Center

    Currer, Joanne M.

    Distance learning provides special or advanced classes in rural schools where declining population has led to decreased funding and fewer classes. With full-motion video using digital fiber, two or more sites are connected into a two-way, full-motion, video conference. The teacher can see and hear the students, and the students can see and hear…

  1. Draw tower fiber Bragg gratings and their use in sensing technology

    NASA Astrophysics Data System (ADS)

    Lindner, E.; Mörbitz, J.; Chojetzki, C.; Becker, M.; Brückner, S.; Schuster, K.; Rothhardt, M.; Bartelt, H.

    2011-06-01

    The idea of fabricating fiber Bragg gratings already during the drawing of a fiber dates back almost 20 years. The application of a transverse holographic writing method on a draw tower offers a promising solution for a highly effective Bragg grating production. Because of the high technology requirements it took more than 10 years to develop the method into a reliable process. During the last five years the improvements in the technical development enables cost effective industrial production of draw tower gratings (1DTG®). In this paper we report about new possibilities of the improved process with respect to the grating type (type I gratings, type II gratings), the coating type (2ORMOCER®, metals) and the fiber type and diameter (125μm, 80μm and below). Furthermore, we present examples for the application of draw tower fiber Bragg gratings in sensing technologies for medical applications.

  2. Assessment of Japanese technology in advanced glass and ceramic fibers. Final report

    SciTech Connect

    Messier, D.R.

    1992-06-01

    Summarized herein are the findings from a two month trip to Japan from mid-September to mid-November 1991 to evaluate Japanese technology in oxynitride glasses and fibers and in carbide and nitride fibers and whiskers. The information discussed was obtained through visits to universities, companies, Government institutes, and through attendance at three conferences. It was learned that the development of a process for the production of oxynitride glass fibers is still being actively pursued and that, while high temperature instability problems are well-recognized, the production of carbide or nitride fibers with good high temperature stability is still several years away. Also discussed are new developments in several research areas including ceramic matrix composites, sol-gel technology, ceramic powder preparation, and high strength ceramics.

  3. An organizational survey of the Pittsburgh Energy Technology Center

    SciTech Connect

    Stock, D.A.; Shurberg, D.A.; Haber, S.B.

    1991-09-01

    An Organizational Survey (OS) was administrated at the Pittsburgh Energy Technology Center (PETC) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of ``culture``; that is, the values attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization.

  4. An organizational survey of the Pittsburgh Energy Technology Center

    SciTech Connect

    Stock, D.A.; Shurberg, D.A.; Haber, S.B.

    1991-09-01

    An Organizational Survey (OS) was administrated at the Pittsburgh Energy Technology Center (PETC) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of culture''; that is, the values attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization.

  5. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  6. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  7. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  8. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  9. Electric Power Research Institute: Environmental Control Technology Center

    SciTech Connect

    1997-03-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month continued with the DOE/PRDA Phase I investigation of the Clear Liquor Scrubbing Process with Anhydrite Production. The DOE/PRDA Phase I testing of the B&W/Condensing Heat Exchanger (CH) was completed this month. This one-year tube wear analysis investigation was completed on 3/10/97, and a final inspection of the unit was made on 3/21/97. The CH unit and its related equipment are currently being removed from the ECTC test configuration, disassembled, and returned to B&W and CH Corp. for additional analyses. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the Carbon Injection System (the Pulse-jet Fabric Filter) remained idle this month in a cold-standby mode and were inspected regularly.

  10. Lab on fiber technology: a versatile fabrication path for optimized nanoprobes

    NASA Astrophysics Data System (ADS)

    Quero, G.; Consales, M.; Crescitelli, A.; Ricciardi, A.; Esposito, E.; Cutolo, A.; Cusano, A.

    2013-05-01

    We recently introduced a reliable fabrication process enabling the integration of dielectric and metallic nanostructures directly on the tip of optical fibers1. It involves conventional deposition and nanopatterning techniques (typically used for planar devices fabrication) suitably adapted to directly operate on the fiber tip. By using this approach, and with a view towards possible applications, here we demonstrate the realization of different technological platforms based on the integration on the fiber facet of periodic and quasi-periodic metallo-dielectric nanostructures supporting localized surface plasmon resonances, that can be used for chemical and biological sensing as well as polarization sensitive devices.

  11. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  12. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  13. Film Processing Module for Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    This viewgraph presentation describes fiber placement technology which was originally developed by Marshall Space Flight Center (MSFC) for the fabrication of fiber composite propellant tanks. The presentation includes an image of the MSFC Fiber Placement Machine, which is a prototype test bed, and images of some of the machine's parts. Some possible applications for the machines are listed.

  14. Electric Power Research Institute: Environmental Control Technology Center

    SciTech Connect

    1996-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber and the Pulse-jet Fabric Filter). Testing also continued across the B&W/CHX Heat Exchanger this month as the effects of increased particulate loading are being studied. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. Testing in October at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC) included tests from the Pilot Trace Elements Removal (TER) test block as part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions. The 1996 program is being performed on the 4.0 MW wet FGD pilot unit and the spray dryer/pulse jet fabric filter (SDA/PJFF) pilot units. The 1996 Trace Elements Removal (TER) test block is a continuation of the 1995 TER test block and will focus on up to five research areas, depending on experimental results. These areas are: (1) Mercury speciation methods; (2) Effect of FGD system operating variables on mercury removal; (3) Novel methods for elemental mercury control; (4) Catalytic methods for converting elemental mercury to oxidized mercury; and (5) Electrostatic charging of particulate material in the FGD inlet flue gas stream. The work during October continued to focus on catalytic oxidation of elemental mercury. These tests included the evaluation of two different loadings of catalyst CT-9 (carbon-based material) over extended periods (8-10 days) and an evaluation of FAB-2B (bulk bituminous fly ash taken from the first hopper of the

  15. Electric Power Research Institute: Environmental Control Technology Center

    SciTech Connect

    1997-02-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month continued with the Phase I DOE/PRDA investigation of the Clear Liquor Scrubbing Process with Anhydrite Production and Chloride Control. The Phase I DOE/PRDA testing of the B&W/Condensing Heat Exchanger (CHE) also continued this month as the inlet particulate control system (installed September 1996) is maintaining the inlet particulate mass loading to the unit at an average value of 0.2 lb./MMBTU. The one-year tube wear analysis project conducted across this unit will be completed in the early part of March. At the completion of testing, a final inspection will be conducted before the unit is cleaned, disassembled, and returned to B&W and CH Corp. for additional analysis. Once the unit is removed from the ECTC, the 0.4 MW Mini-Pilot Wet Scrubber unit will be assembled and configured back into the flue gas path for future testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the Carbon Injection System (the Pulse-jet Fabric Filter configuration) remained idle this month in a cold-standby mode and were inspected regularly. In February 1997, the Clear Liquor Scrubbing with Anhydrite Production test block continued. This PRDA project is being jointly funded by the Electric Power Research Institute and the Department of Energy and is part of the DOE`s Advanced Power Systems Program, whose mission is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The pilot portion of the CLS/Anhydrite project is being conducted on the 4.0 MW wet FGD pilot unit at EPRI`s Environmental Control Technology Center (ECTC). The project is designed to develop an advanced FGD process incorporating chloride control, clear liquor scrubbing, and anhydrite (anhydrous calcium sulfate) production. While the three areas of the

  16. Intelligent processing equipment developments within the Navy's Manufacturing Technology Centers of Excellence

    NASA Astrophysics Data System (ADS)

    Nanzetta, Philip

    1992-04-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  17. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  18. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Morohashi, Isao; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-02-01

    Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

  19. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    ERIC Educational Resources Information Center

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  20. [INVITED] New advances in fiber cavity ring-down technology

    NASA Astrophysics Data System (ADS)

    Silva, S. O.; Magalhães, R.; Marques, M. B.; Frazão, O.

    2016-04-01

    A brief review in the cavity ring-down technique (CRD) is presented. In this review, there will only be considered the conventional fiber CRD configuration, i.e., there will only be presented researches involving cavities with two couplers with 99:1 ratios, due to the large amount of publications involving this spectroscopy method. The presented survey is divided in different topics related to the measurement of physical parameters, such as strain and temperature, curvature, pressure, refractive index, gas and biochemical sensing.

  1. Laser ultrasound technology for fault detection on carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  2. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  3. Fiber

    MedlinePlus

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  4. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  5. Advances in hyperspectral imaging technologies for multichannel fiber sensing

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Jay; Didona, Kevin

    2009-05-01

    A spectrograph's design, e.g. the opto-mechanical system beginning at the entrance slit, and ending at the back focal plane position, directly impacts system level performance parameters including the height of the useable aperture, spatial and spectral resolving power, optical throughput efficiency, and dynamic range. The efficiency and integrity of both spatial and spectral input image reproduction within the entire back focal plane area is an often overlooked parameter leading to unnecessary acceptance of sacrificed system level performance. Examples of input images include the slit apertured area of a scene captured by a camera lens, a single optical fiber core located within the entrance aperture area, or a linear array of optical fiber cores stacked along the spatial height of the entrance aperture area. This study evaluates the spectral and spatial imaging performance of several aberration corrected high reciprocal dispersion retro-reflective concentric, as well as aberration corrected Offner imaging spectrographs which produce minimal degradation over a large focal plane. Ray trace images and pixilated area maps demonstrating spatial and spectral reproduction accuracy over the entire back focal plane are presented.

  6. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  7. EMC noise free endoscope using optical fiber communication technology

    NASA Astrophysics Data System (ADS)

    Kubo, Wataru; Minakuchi, Tadashi; Sato, Koichi; Tsutamura, Koichi; Syoji, Takaaki; Sugitani, Kazuo; Arimoto, Akira; Arai, Shinichi

    2008-02-01

    Recently, the number of pixels of an image sensor has reached more than one Mega in the field of video endoscopes, while analog signal transmission bands that use existing electric wires will face physical limitations from the perspective of signal bandwidth and EMC (Electro Magnetic Compatibility) noise. In order to solve these problems, we have developed a bi-directional digital optical communication endoscope system that employs both an image sensor and a single line optical fiber. In addition, due to the fiber's high-speed image signal transmission, we have incorporated a digital circuit for serial modulation and deserial demodulation. Consequently, we confirmed that transmission speeds of a 1Gbps downlink image signal and a 110Kbps uplink control signal were achieved as a result of simultaneous communication. We also designed and tested a compact, co-axial bi-directional optical transmitter and receiver module that can be built into the distal side of a scope. The optical communication module size is less than φ4×10mm. It was confirmed that this module could be installed in the distal side of a current endoscope.

  8. Automation of Oklahoma School Library Media Centers: A Plan for the Development of Technology in Library Media Centers.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City. Library and Learning Resources Section.

    This training manual and statewide plan begins by describing the role of the Oklahoma State Department of Education, Library Resources/Technology Section as one of providing leadership, consultation, communication, and coordination in the systematic development of technology in Oklahoma school library media centers. Information about the Oklahoma…

  9. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  10. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  11. Desulfurization sorbent development at the Morgantown Energy Technology Center

    SciTech Connect

    Siriwardane, R.V.; Grimm, U.; Poston, J.A.; Monaco, S.J.

    1994-10-01

    The overall objective of this project is to develop regenerable sorbents for hot gas desulfurization in IGCC systems. The major criteria for the development of novel sorbents included reasonable chemical reactivity and physical durability during repeated sulfidation and regeneration cycles. Various formulations of zinc ferrite and zinc titanate in the form of extrudates and spherical pellets have been studied at the Morgantown Energy Technology Center (METC) for removal of sulfurous gases from coal gasification gas streams. Problems of decrepitation and spalling have occurred after sulfidation and regeneration of these sorbents. Z-Sorb, a proprietary sorbent developed at Phillips Petroleum Company, showed good physical durability during testing at METC, but there was a continuous decrease in reactivity during multiple cycle tests due to steam regeneration. A series of novel sorbents containing zinc oxide have been developed at METC to address these problems. These METC-developed sorbents showed superior performance during a 20-cycle, high-pressure, fixed-bed test with steam regeneration conducted at METC. Nine sorbents were prepared, but results are given for only three.

  12. Electric Power Esearch Institute: Environmental Control Technology Center

    SciTech Connect

    1996-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI Integrated SO{sub x}/NO{sub x} removal process, the DOE PRDA testing of the B&W/Condensing Heat Exchanger (CHX), and support for the Semi-Continuous On-line Mercury Analyzer. The test configuration utilized in the EPRI Integrated SO{sub x}/NO{sub x} removal process included the 4.0 MW Spray Dryer Absorber (SDA), the Pulse-jet Fabric Filter (PJFF), and a new Selective Catalytic Reduction (SCR) reactor installed at the ECTC. During this testing, O&M support was also required to conclude the test efforts under the EPRI Hazardous Air Pollutant (HAP) test block. This included the on-site development efforts for the Semi-Continuous On-line Mercury Analyzer. In the DOE PRDA project with the B&W/Condensing Heat Exchanger (CHX), the effects of the increased particulate loading to the unit were monitored throughout the month. Also, the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly.

  13. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    SciTech Connect

    Not Available

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  14. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism.

    PubMed

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15-213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  15. Technology utilization in a non-urban region: Further impact and technique of the Technology Use Studies Center

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Updated information is given pertaining to Technology Use Studies Center (TUSC) clients who are those that receive/use information as disseminated by the center. The client information is presented as a continuation of client data as set forth in the center's previous annual report.

  16. High-power fused assemblies enabled by advances in fiber-processing technologies

    NASA Astrophysics Data System (ADS)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  17. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  18. Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology.

    PubMed

    Chu, Yingbo; Ma, Yunxiu; Yang, Yu; Liao, Lei; Wang, Yibo; Hu, Xiongwei; Peng, Jinggang; Li, Haiqing; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2016-03-15

    We report on the preparation and optical characteristics of an Yb3+-doped large core silica fiber with the active core prepared from nanoporous silica rod by the glass phase-separation technology. The measurements show that the fiber has an Yb3+ concentration of 9811 ppm by weight, a low background attenuation of 0.02 dB/m, and absorption from Yb3+ about 5.5 dB/m at 976 nm. The laser performance presents a high slope efficiency of 72.8% for laser emission at 1071 nm and a low laser threshold of 3 W within only 2.3 m fiber length. It is suggested that the glass phase-separation technology shows great potential for realizing active fibers with larger core and complex fiber designs. PMID:26977675

  19. An innovative approach to achieve re-centering and ductility of cement mortar beams through randomly distributed pseudo-elastic shape memory alloy fibers

    NASA Astrophysics Data System (ADS)

    Shajil, N.; Srinivasan, S. M.; Santhanam, M.

    2012-04-01

    Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.

  20. Review of competing technologies for multigigabit ultralong-span fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Demokan, M. Suleyman

    1993-05-01

    Advances in conventional technologies are reviewed first. The contributions of various components, namely optical amplifiers, external modulators, tunable and narrow-linewidth lasers, high-sensitivity and high-speed detectors, and dispersion-shifted fibers, to the realization of higher speed and longer span fiber communications are discussed. The effect of techniques such as time-division and wavelength-division multiplexing, coherent detection, and dispersion compensation is explored. Optical soliton transmission is then reviewed as an alternative technology. Finally, mid-infrared communications based on new fluoride fibers and associated transmitters and receivers are considered. The author's opinions on the prospects for each approach, in the context of their limitations, are presented.

  1. Glass fiber processing for the Moon/Mars program: Center director's discretionary fund final report

    NASA Technical Reports Server (NTRS)

    Tucker, D. S.; Ethridge, E.; Curreri, P.

    1992-01-01

    Glass fiber has been produced from two lunar soil simulants. These two materials simulate lunar mare soil and lunar highland soil compositions, respectively. Short fibers containing recrystallized areas were produced from the as-received simulants. Doping the highland simulant with 8 weight percent B2-O3 yielded a material which could be spun continuously. The effects of lunar gravity on glass fiber formation were studied utilizing NASA's KC-135 aircraft. Gravity was found to play a major role in final fiber diameter.

  2. Bridge continuous deformation measurement technology based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  3. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  4. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  5. Teaching fiber-optic communications in engineering technology programs by virtual collaboration with industry

    NASA Astrophysics Data System (ADS)

    Mynbaev, Djafar K.

    2003-10-01

    A fiber-optic communications course requires a deep understanding of the physical processes of the components and systems. Unfortunately, many students in engineering technology programs lack the scientific background for such a course. Another challenge is that these students need to be trained as maintenance and control personnel. To resolve these problems, we focus our teaching on the use of corporate technical documentation.

  6. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  7. Ecologically clean and raw-resources-saving technology using photonic purification of fibers

    NASA Astrophysics Data System (ADS)

    Belyshev, Boris E.; Protasova, Valentina A.; Shepelev, Andrey V.; Kalinin, Yuri A.

    1995-04-01

    The elaborated technology of laseral optical pumping is successfully used for the purification of fibers from impurities. This is the novel and effective application of pulsed power. The higher powerful and technological advantages for purification of wool from vegetable impurities are presented in this paper. The aim of using light irradiation is almost complete cleaning of light wool from dark vegetable admixtures, dust and brand at the early steps (carding worsted blends) of technological process of producing fine yarns. Stabilizing all mechanical and chemical-technological processes following light radiation purification and increasing technical-economic parameters of production is achieved in this case as well. The physical essence of light irradiation wool cleaning is based upon different optical and thermal properties of light fibers on the one hand, and of dark admixtures-fractions of vegetable matter and burrs, dust and brand-on the other hand. The difference of coefficients of light irradiation by fibers and impurities is of great importance. The 500-1100 nm spectral range has a selective impact on the fibers and impurities.

  8. The creation and early implementation of a high speed fiber optic network for a university health sciences center.

    PubMed Central

    Schueler, J. D.; Mitchell, J. A.; Forbes, S. M.; Neely, R. C.; Goodman, R. J.; Branson, D. K.

    1991-01-01

    In late 1989 the University of Missouri Health Sciences Center began the process of creating an extensive fiber optic network throughout its facilities, with the intent to provide networked computer access to anyone in the Center desiring such access, regardless of geographic location or organizational affiliation. A committee representing all disciplines within the Center produced and, in conjunction with independent consultants, approved a comprehensive design for the network. Installation of network backbone components commenced in the second half of 1990 and was completed in early 1991. As the network entered its initial phases of operation, the first realities of this important new resource began to manifest themselves as enhanced functional capacity in the Health Sciences Center. This paper describes the development of the network, with emphasis on its design criteria, installation, early operation, and management. Also included are discussions on its organizational impact and its evolving significance as a medical community resource. PMID:1807660

  9. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  10. An organizational cultural assessment of the Energy Technology Engineering Center

    SciTech Connect

    Haber, S.B.; Crouch, D.A.

    1991-04-01

    An Organizational Cultural Assessment (OCA) was performed at the Energy Technology Engineering Center (ETEC) by administering an Organizational Culture Survey (OCS) that queried employees on the subjects of organizational culture, various species of communication, employee commitment to ETEC, work group cohesion, coordination of work, environmental, safety and health concerns, hazardous nature of work, and overall job satisfaction. A description of each of the scales used to assess these subjects is discussed. The primary purpose of administering the survey was to attempt to measure, in a more quantitative and objective way the notion of organizational culture, '' that is, the values, attitudes, and beliefs of the individuals working within the organization. In particular, those aspects of the working environment which are believed to be important influences on the operations of a facility and on the safety issues relevant to the organization were assessed. In addition, by conducting a survey, a broad sampling of the individuals in the organization can be obtained. This is especially important when the survey is utilized in conjunction with an assessment or inspection team which typically has only a limited amount of resources to address many issues. The OCS provides a broad, but more comprehensive picture of the organization by querying a much larger number of individuals than could be reached through the assessment team alone. Finally, the OCS provides a descriptive profile of the organization at one point in time. This profile can then can be used as a baseline point against which comparisons of other points in time can be made. Such comparisons may prove valuable and would help to assess changes in the organizational culture. Comparisons of the profiles can also be made across similar facilities. 9 refs., 22 figs., 6 tabs.

  11. George C. Marshall Space Flight Center Research and Technology Report 2014

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler)

    2015-01-01

    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery.

  12. Development of viscosity sensor with long period fiber grating technology

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Dong; Wang, Jian-Neng; Chen, Shih-Huang; Wang, Juei-Mao

    2009-03-01

    In this paper, we describe the development of a viscosity sensing system using a simple and low-cost long-period fiber grating (LPFG) sensor. The LPFG sensor was extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator. Viscosity can be simply defined as resistance to flow of a liquid. We have measured asphalt binder, 100-190000 centistokes, in comparison with optical sensing results. The system sensing asphalt binders exhibited increase trend in the resonance wavelength shift when the refractive index of the medium changed. The prototype sensor consisted of a LPFG sensing component and a cone-shaped reservoir where gravitational force can cause asphalt binders flow through the capillary. Thus the measured time for a constant volume of asphalt binders can be converted into either absolute or kinematic viscosity. In addition, a rotational viscometer and a dynamic shear rheometer were also used to evaluate the viscosity of this liquid, the ratio between the applied shear stress and rate of shear, as well as the viscoelastic property including complex shear modulus and phase angle. The measured time could be converted into viscosity of asphalt binder based on calculation. This simple LPFG viscosity sensing system is hopefully expected to benefit the viscosity measurement for the field of civil, mechanical and aerospace engineering.

  13. Development of optical fiber technology in Poland 2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2015-12-01

    The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.

  14. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology

    NASA Astrophysics Data System (ADS)

    Lefèvre, Hervé C.

    2013-12-01

    Taking advantage of the development of optical-fiber communication technologies, the fiber-optic gyroscope started to be investigated in the mid 1970s, opening the way for a fully solid-state rotation sensor. It was firstly seen as dedicated to medium-grade applications, but today, it reaches strategic-grade performance and surpasses its well-established competitor, the ring-laser gyroscope, in terms of bias noise and long-term stability. Further progresses remain possible, the challenge being the ultimate inertial navigation performance of one nautical mile per month corresponding to a long-term bias stability of 10-5°/h.

  15. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    PubMed

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top

  16. Minutes of the Fiber Optics Standardization Planning Meeting

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Partial Contents: Report on NATO Allied Publications for Fiber Optics Components, IECSC, International Electro-Technical Commission Subcommittee 46E on Fiber Optics, EIA TR-44, Optical Communications Systems Committee Report, Fiber Optic Technology Center Briefing, Report on Cleaved-Coupled-Cavity (C3), Semiconductor Lasers, EIA P6.7 Fiber Optic Cable Committee Report, and Report on EIA P-6.1 Committee on Fiber Optics.

  17. Study on the distributed optical fiber sensing technology for pipeline leakage protection

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Jin, Shi-jiu; Qu, Zhi-gang

    2006-06-01

    A new distributed optical fiber sensing technology to detect pipeline leakage in real time is introduced in this paper, which is based on Mach-Zehnder optical fiber interferometer. The principle of this technology is analyzed, and the phase change of light wave caused by the leakage acoustic wave is discussed as well. The results of the theory analysis and the experiments show that the measuring sensitivity of detecting leakage is greatly improved. Using this technology, the gas leakage of 0.4m 3/min can be detected and the measured distance is about 50km under the condition that the pressure of the gas pipe is less than 0.2Mpa.

  18. Assessing Community Informatics: A Review of Methodological Approaches for Evaluating Community Networks and Community Technology Centers.

    ERIC Educational Resources Information Center

    O'Neil, Dara

    2002-01-01

    Analyzes the emerging community informatics evaluation literature to develop an understanding of the indicators used to gauge project impacts in community networks and community technology centers. The study finds that community networks and community technology center assessments fall into five key areas: strong democracy; social capital;…

  19. 78 FR 13142 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    .... 1701-1706) (``IEEPA''), issued Executive Order 13382 (70 FR 38567, July 1, 2005) (the ``Order... Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries (PCI... of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries...

  20. 77 FR 43131 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Emergency Economic Powers Act (50 U.S.C. 1701-1706) (``IEEPA''), issued Executive Order 13382 (70 FR 38567... Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries (PCI... of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries...

  1. 78 FR 77662 - Notice of Availability (NOA) for General Purpose Warehouse and Information Technology Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Logistics Agency (DLA) published a NOA in the Federal Register (78 FR 65300) announcing the publication of... Technology Center Construction (GPW/IT)--Tracy Site-- Environmental Assessment (EA); Finding of No... General Purpose Warehouse and Information Technology Center Construction (GPW/IT)--Tracy...

  2. Research and technology 1987 annual report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects of this Kennedy Space Center 1987 Annual Report.

  3. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  4. Application of fiber optic temperature and strain sensing technology to gas hydrates

    SciTech Connect

    Ulrich, Shannon M; Madden, Megan Elwood; Rawn, Claudia J; Szymcek, Phillip; Phelps, Tommy Joe

    2008-01-01

    Gas hydrates may have a significant influence on global carbon cycles due to their large carbon storage capacity in the form of greenhouse gases and their sensitivity to small perturbations in local conditions. Characterizing existing gas hydrate and the formation of new hydrate within sediment systems and their response to small changes in temperature and pressure is imperative to understanding how this dynamic system functions. Fiber optic sensing technology offers a way to measure precisely temperature and strain in harsh environments such as the seafloor. Recent large-scale experiments using Oak Ridge National Laboratory's Seafloor Process Simulator were designed to evaluate the potential of fiber optic sensors to study the formation and dissociation of gas hydrates in 4-D within natural sediments. Results indicate that the fiber optic sensors are so sensitive to experimental perturbations (e.g. refrigeration cycles) that small changes due to hydrate formation or dissociation can be overshadowed.

  5. Silicon-on-sapphire fiber optic transceiver technology for space applications

    NASA Astrophysics Data System (ADS)

    Kuznia, C. P.; Ahadian, J. F.; Pommer, R. J.; Hagan, R.

    2007-09-01

    We present Single Event Upset (SEU) testing of a parallel fiber optic transceiver designed for communicating data using commercial Fibre Channel and GbE protocols at data rates up to 2.5 Gbps per channel (on eight parallel channels). This transceiver was developed for aircraft applications, such as the Joint Strike Fighter (JSF), Raptor and F/A-18 aircraft, that deploy fiber optic networks using multi-mode fiber operating at 850 nm wavelength. However, this transceiver may also have applications in space environments. This paper describes the underlying transceiver component technology, which utilizes complementary metal-oxide semiconductor (CMOS) silicon-onsapphire circuitry and GaAs VCSEL and PIN devices. We also present results of SEU testing of this transceiver using heavy ions at Brookhaven National Labs.

  6. A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology

    NASA Astrophysics Data System (ADS)

    Unger, Sonja; Lindner, Florian; Aichele, Claudia; Leich, Martin; Schwuchow, Anka; Kobelke, Jens; Dellith, Jan; Schuster, Kay; Bartelt, Hartmut

    2014-03-01

    In this paper we report on an alternative technique for the preparation of ytterbium (Yb)-doped silica fibers and their characteristics compared to the conventional modified chemical vapor deposition (MCVD) process in combination with solution doping and powder sinter technology (REPUSIL). In the case of the technique applied here, the active core diameter in the preform can be significantly increased via the deposition of Yb and the most important codopant, aluminum (Al), in the gas phase through the high-temperature evaporation of the Yb chelate compound and Al chloride in the MCVD process. The prepared preform shows a homogenous distribution of the refractive index and dopant concentration. The background loss of the drawn fiber was measured to be 25 dB km-1 at 1200 nm. Efficient lasing up to 200 W, showing a slope efficiency of about 80%, was demonstrated, which is comparable to fibers made via MCVD/solution doping and the REPUSIL technique.

  7. New technology developments make passive laser/fiber alignment a reality

    NASA Astrophysics Data System (ADS)

    Collins, John V.; MacDonald, Brian M.; Lealman, I. F.; Jones, C. A.

    1996-01-01

    In this paper we report on the combination of a precision cleaved large spot laser and a silicon micromachined optical bench to achieve high coupling efficiencies by purely passive alignment. Coupling efficiencies of over 50% have been obtained by passively aligning precision cleaved large spot sized lasers to singlemode fiber on a silicon micromachined substrate. This is the highest known coupling figure reported for passive alignment. The packaging of semiconductor laser chips has always presented a range of technical problems due to the sub-micron tolerances required to obtain optimum coupling of the small laser spot size to the larger spot size of a singlemode fiber. Lasers have been developed that can ease these tolerances by matching the laser spot size to that of cleaved fiber. This is achieved by tapering the active layer to adiabatically expand the laser mode size. A method of controlling the physical size of laser diode chips to sub-micron accuracy has enabled these lasers to be bonded against substantial alignment features on a silicon micro-engineered optical bench which also includes a V-groove into which a cleaved single-mode optical fiber can be fixed. Results are also discussed for an alternative ferrule-based, non-hermetic laser packaging design which utilizes the relaxed alignment tolerances of the large spot lasers to give simple package assembly suitable for automation. Both of the packaging technologies discussed offer a viable route to obtaining the very low cost optoelectronic components required for fiber to the home networks.

  8. The Relationship between Selected Educational Technologies and Student-Centered versus Teacher-Centered Instruction

    ERIC Educational Resources Information Center

    Kollmer, Michael J.

    2013-01-01

    Not all teachers and students have equal access to technology. This inequality of access creates an uneven instructional practice that may result in varied student learning. By and large, students have limited access to technology within the confines of the classroom. New educational technologies provide schools with an opportunity to broaden and…

  9. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  10. Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Guttmann, Markus; Kolew, Alexander; Worgull, Matthias; Barié, Nicole; Schneider, Marc; Hofmann, Andreas; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-07-01

    This paper presents the hot-embossing replication of self-centering fiber alignment structures for high-precision, single-mode optical fiber connectors. To this end, a metal mold insert was fabricated by electroforming a polymer prototype patterned by means of deep proton writing (DPW). To achieve through-hole structures, we developed a postembossing process step to remove the residual layer inherently present in hot-embossed structures. The geometrical characteristics of the hot-embossed replicas are compared, before and after removal of the residual layer, with the DPW prototypes. Initial measurements on the optical performance of the replicas are performed. The successful replication of these components paves the way toward low-cost mass replication of DPW-fabricated prototypes in a variety of high-tech plastics.

  11. Impact Goals of Research and Development Technology on the Business Strategy of NTT's Fiber-to-the-Home Deployment

    NASA Astrophysics Data System (ADS)

    Kimura, Hideaki

    2013-03-01

    Huge investment is needed for introducing a fiber-to-the-home system, so research and development strategy is very important. Requirements for fiber-to-the-home systems have been increased because communication systems have been recognized as one of the lifelines along with water, electricity, and gas. Furthermore, low energy consumption and recyclable eco-friendliness are required for products. NTT has been challenged to reduce capital expenditure, reduce operational expenditure, and create new applications for expanding the number of fiber-to-the-home subscribers from the viewpoint of a technological approach, including access infrastructure, fiber, transmission, and wireless technologies. Due to continuous and strategic technological development, the number of NTT's fiber-to-the-home subscribers is now over 17 million.

  12. Center for Technology for Advanced Scientific Componet Software (TASCS)

    SciTech Connect

    Govindaraju, Madhusudhan

    2010-10-31

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB. We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This

  13. Museum of Science Builds National Center for Technological Literacy (NCTL)

    ERIC Educational Resources Information Center

    Technology Teacher, 2005

    2005-01-01

    Research indicates that most Americans don't understand the technologies that surround them--the products and systems designed to fill a specific need. From water filtration to wheelchairs, from pens to PDAs, people use technology, often without fully comprehending how these tools are designed, developed, and function. In response, the Museum of…

  14. Design of oil pipeline leak detection and communication system based on optical fiber technology

    NASA Astrophysics Data System (ADS)

    Tu, Yaqing; Chen, Huabo

    1999-08-01

    The integrity of oil pipeline is always a major concern of operators. Pipeline leak not only leads to loss of oil, but pollutes environment. A new pipeline leak detection and communication system based on optical fiber technology to ensure the pipeline reliability is presented. Combined direct leak detection method with an indirect one, the system will greatly reduce the rate of false alarm. According, to the practical features of oil pipeline,the pipeline communication system is designed employing the state-of-the-art optic fiber communication technology. The system has such feature as high location accuracy of leak detection, good real-time characteristic, etc. which overcomes the disadvantages of traditional leak detection methods and communication system effectively.

  15. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

    SciTech Connect

    Albrecht, Roland; Bommer, Alexander; Becher, Christoph; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W.; Engel, Philip; Benson, Oliver; Schröder, Tim; Reichel, Jakob

    2014-08-18

    We report the realization of a device based on a single Nitrogen-Vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and out-put are directly fiber-coupled, and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity, we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work, we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.

  16. Survey of fiber optic technology for nuclear-waste cleanup applications

    NASA Astrophysics Data System (ADS)

    Addleman, Shane R.; Crawford, Beverly A.; Mech, Stephen J.; Troyer, Gary L.; Greenwell, Roger A.

    1993-04-01

    The need for suitable remote sensors in highly radioactive defense waste storage tanks is discussed. The harsh radiological and chemical tank environment precludes the use of standard sensors because of the need for intrinsically safe systems. Potential sensor systems based on fiber-optics technologies suitable for the nuclear waste environment are identified. The need for certification standards for this type of environment is also discussed.

  17. Survey of fiber-optic technology for nuclear waste cleanup applications

    SciTech Connect

    Addleman, R.S.; Crawford, B.A.; Mech, S.J.; Troyer, G.L. ); Greenwell, R.A. )

    1992-09-01

    The need for suitable remote sensors in highly radioactive defense waste storage tanks is discussed. The harsh radiological and chemical tank environment precludes the use of standard sensors because of the need for intrinsically safe systems. Potential sensor systems based on fiber-optics technologies suitable for the nuclear waste environment are identified. The need for certification standards for this type of environment is also discussed.

  18. Welcome to Ames Research Center (1987 forum on Federal technology transfer)

    NASA Technical Reports Server (NTRS)

    Ballhaus, William F., Jr.

    1988-01-01

    NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.

  19. The Center for Research and Evaluation in the Application of Technology to Education.

    ERIC Educational Resources Information Center

    Rubin, David P.; Weisgerber, Robert A.

    1985-01-01

    The Center for Research and Development in the Application of Technology to Education project identifies effective uses of new technologies for the learning disabled. Areas investigated include effective instructional design principles, program design strategies, adjusting technology for individual learners, software development, and use of…

  20. SSME testing technology at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Dill, Glenn

    1991-01-01

    An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.

  1. Critical Human Factors in Emerging Library Technology Centers.

    ERIC Educational Resources Information Center

    Lamont, Melissa

    1999-01-01

    Discusses new services that academic librarians are offering to users involving digital data, such as geographic information systems laboratories and electronic text centers. Suggests that human factors, such as management, organizational climate among the staff, and the development of a user community will determine the success or failure of the…

  2. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  3. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  4. The College Writing Center: Best Practices, Best Technologies

    ERIC Educational Resources Information Center

    Moberg, Eric

    2010-01-01

    Lifelong learning is a must in our information age, especially in the worldwide recession that began in 2008. In order to gain the most from their education, adult learners in any subject, major, program, or school must master the basics of academic reading and academic writing. Towards this end, writing tutors and writing centers offer…

  5. Results from Organizational Development Interventions in a Technology Call Center.

    ERIC Educational Resources Information Center

    Workman, Michael

    2003-01-01

    Call center staff answered calls in 4 treatments: alignment job design (n=35), autonomous work teams (n=35), high-involvement work processes (n=43), and controls (n=36). Job satisfaction improved in alignment job design and high-involvement treatments, most significantly in the latter. Skill level and attitude toward autonomous work might have…

  6. Facilitating Learner-Centered Instruction: Technology, Simulation, and Scans.

    ERIC Educational Resources Information Center

    Parsons, Michael H.

    Recent shifts toward collaborative learning and learner-centered language indicates that: (1) student diversity is increasing; (2) delivery, interaction, and assessment must occur across an expanding range of contexts, cultures, and knowledge parameters; and (3) learners must be empowered to accept responsibility for their learning and also to…

  7. Instructional Technology and Learning Resource Center-Based Community Education.

    ERIC Educational Resources Information Center

    Brown, James W.

    A survey of nonformal community education activities was conducted to determine specific use of media for identified educational and informational purposes. The results presented in this report are intended to provide resource information to professionals and paraprofessionals who ultimately may be employed in Learning Resource Center-Based…

  8. Des Moines Energy Center repowering with PCFB technology

    SciTech Connect

    Ambrose, S.J.; Kreumpel, G.E.; Dryden, R.

    1992-12-01

    Iowa Power and Dairyland Power have formed a partnership and entered into an agreement with the United States Department of Energy (DOE) to repower a mothballed electric generating facility using Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The project is the first commercial application of PCFB technology. The project includes the refurbishment of an existing steam turbine cycle, installation of the PCFB and gas turbine, and a two year operating period to demonstrate the technology. The repowered unit is expected to be rated at 80 MW. The plant is scheduled to begin operation in 1996. Process systems are described.

  9. Des Moines Energy Center repowering with PCFB technology

    SciTech Connect

    Ambrose, S.J.; Kreumpel, G.E.; Dryden, R.

    1992-01-01

    Iowa Power and Dairyland Power have formed a partnership and entered into an agreement with the United States Department of Energy (DOE) to repower a mothballed electric generating facility using Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The project is the first commercial application of PCFB technology. The project includes the refurbishment of an existing steam turbine cycle, installation of the PCFB and gas turbine, and a two year operating period to demonstrate the technology. The repowered unit is expected to be rated at 80 MW. The plant is scheduled to begin operation in 1996. Process systems are described.

  10. Co-Development Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's TTC uses three different co-development agreements to help industry and academia interact and partner with National Institutes of Health laboratories and scientists to support technology development activities.

  11. Research and technology at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.

  12. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  13. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    NASA Astrophysics Data System (ADS)

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S.; Wong, Franco N. C.

    2015-05-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% ± 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  14. Organization of distance learning for specialists in the field of fiber optic communication technology

    NASA Astrophysics Data System (ADS)

    Andreev, Vladimir A.; Voronkov, Andrey A.

    2004-05-01

    The main problem of the organization of distance learning for the specialists in the field of fiber-optical communication technology is the creation of new methods and technologies, which correspond the telecommunication medium links. It is necessary to mention that the trainees play an active role in the learning process, develop their capability for self-education on the basis of the wide use of different sets of tests. The cooperation of teachers and trainees underlies in the educational activities to achieve the maximum effect of the knowledge obtaining process. In the Volga State Telecommunications Academy distance learning is being actively introduced.

  15. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    SciTech Connect

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S; Wong, Franco N. C.

    2015-01-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  16. Developing US EPA`s environmental technology cooperation center: A new approach to Foster technology transfer partnerships

    SciTech Connect

    Burke, C.J.

    1994-12-31

    This paper presents a conceptual framework and approach for establishing the US Environmental Protections Agency`s (EPA) environmental technology cooperation center. The topic is introduced with background information on events leading to the development and implementation of the center and brief overviews of the domestic and global environmental industries. The paper assesses several US environmental technology transfer programs and identifies significant, innovative, and instructive technology transfer methods which offer constructive models for the center. This examination focuses on several modes of public-private interaction required to facilitate the transfer of US environmental technologies into the international marketplace. Specific case studies of environmental technology cooperation initiatives include: the US-Asian Environmental Partnership (AEP), the US Environmental Training Institute (US ETI) and the recent International Environmental Technology Business Action Conference, which took place in Moscow last month. This information forms a basis for defining the needs, gaps and opportunities for the technology cooperation center. Technology transfer and cooperation programs must respond to a range of changing needs and requirements in the increasingly competitive and sophisticated global economy of the 1990`s. The environmental technology cooperation center concept developed by the US EPA offers an approach for enhancing public-private sector partnerships to improve domestic industry collaborations and enhance trans-national team-building. An innovative approach by EPA, in collaboration with other agencies and the private sector, can lead to the rapid introduction of a global network of national and regional centers to foster international environmental cooperation and team-building in the years ahead.

  17. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  18. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  19. Fiber Optic Sensing Technology for Detecting Gas Hydrate Formation and Decomposition

    SciTech Connect

    Rawn, Claudia J; Leeman, John R; Ulrich, Shannon M; Alford, Jonathan E; Phelps, Tommy Joe; Madden, Megan Elwood

    2011-01-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 L) pressure vessel providing high spatial resolution, time resolved, 3-D measurement of hybrid temperature-strain (TS) values within experimental sediment gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data is visualized as a 'movie' of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Processing Simulator (SPS) at Oak Ridge National Laboratory show clear indications of hydrate formation and dissociation events at expected P-T conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  20. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  1. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    NASA Astrophysics Data System (ADS)

    Belsito, L.; Vannacci, E.; Mancarella, F.; Ferri, M.; Veronese, G. P.; Biagi, E.; Roncaglia, A.

    2014-08-01

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices.

  2. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  3. Marshall Space Flight Center Research and Technology Report 2015

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)

    2015-01-01

    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.

  4. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center "Welding Processes and Technologies"

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Kryukov, R. E.; Galevsky, G. V.; Titov, D. A.; Shurupov, V. M.

    2015-09-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies». New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed.

  5. Center Director Bridges visits Disability Awareness and Action working Group Technology Fair

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Center Director Roy Bridges (standing, center) poses with members of the Disability Awareness and Action Working Group (DAAWG), which is holding the 1999 Technology Fair Oct. 20-21 at Kennedy Space Center. The Fair is highlighting vendors demonstrating mobility, hearing, vision and silent disability assistive technology. The purpose is to create an awareness of the types of technology currently available to assist people with various disabilities in the workplace. The theme is that of this year's National Disability Employment Awareness Month, 'Opening Doors to Ability.' Some of the vendors participating are Canine Companions for Independence, Goodwill Industries, Accessible Structures, Division of Blind Services, Space Coast Center for Independent Living, KSC Fitness Center and Delaware North Parks Services.

  6. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  7. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  8. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  9. Search for technological advantages and commercial success in sensor applications: lessons of industrial trials for fiber multianalyzer technology

    NASA Astrophysics Data System (ADS)

    McMillan, Norman D.; Baker, M.; O'Neill, M.; Smith, Stuart; Augousti, Andreas T.; Mason, Julian; Ryan, Bernard; Ryan, R. A.

    1999-01-01

    The multianalyzer is a powerful amplitude modulated fiber optic sensor which is perhaps quite typical of so many sensor innovations in that it is a technology looking for an application. Consequently, a series of collaborations with fruit juice, brewing, distilling, biotechnology and polymer industries were made with the objective of identifying potential applications of the multianalyzer. An assessment of these interactions is made for each of the industrial fields explored, by giving for each, just one positive result from the work. The results are then critically assessed. While these studies have illustrated the universal nature of the technology, in every case, lessons have been drawn of a general nature. This experience in particular underlined the difficulty in acceptance of a fiber based technology in industrial process monitoring, against the backdrop of the conservative practice of industry with long established instrumentation. The hard won experience of this product development has shown the vital important of technologists understanding the difference between the marketing concepts of features, benefits and advantages. Three categories of conclusions are drawn, the technical, the commercial, and finally, conclusions drawn from generalizations of the project by the Kingston partners based on their own independent experience in sensor development involving industrial and medical collaborations.

  10. Technology for libraries and information centers: A seminar in Greece, Portugal, and Turkey

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.

    1992-01-01

    Information technologies are evolving at a rapid pace in today's world. But the electronic technologies needed to transform today's libraries and information centers into electronic 'libraries without walls', where an end-user has instantaneous access to all the information needed from a desktop workstation, have not yet arrived. Even so, there are many technologies available today that can be applied in the library/information center environment to yield increased productivity. However, not all technologies are right for or successful in every environment. Mission, budget, infrastructure, client profiles, and staff skills are a few of the 'environmental' issues that must be considered when selecting and introducing new technologies into a particular information center. Key technologies used in libraries today are reviewed; it can be used as background for targeting technologies that could be successfully implemented in your own environment to further service goals. Before focusing on a selection of technologies, you must first focus on the strategic goal of your organization. The same technology is not right for every library/information center. An overview of technologies that are readily available and can be applied today is presented.

  11. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  12. 78 FR 65300 - Notice of Availability (NOA) for General Purpose Warehouse and Information Technology Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Technology Center Construction (GPW/IT)--Tracy Site-- Environmental Assessment AGENCY: Defense Logistics Agency, DoD. ACTION: Notice of Availability (NOA) for GPW/IT--Tracy Site-- Environmental...

  13. OHIO INTERNATIONAL TELEVISION AND VIDEO FESTIVAL AWARD WINNERS FROM THE IMAGING TECHNOLOGY CENTER IT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    OHIO INTERNATIONAL TELEVISION AND VIDEO FESTIVAL AWARD WINNERS FROM THE IMAGING TECHNOLOGY CENTER ITC KEVIN BURKE - BILL FLETCHER - GARY NOLAN - EMERY ADANICH FOR THE VIDEO ENTITLED ICING FOR REGIONAL AND CORPORATE PILOTS

  14. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  15. Hemispheric center for environmental technology: research and development capabilities

    SciTech Connect

    Boudreaux, J.F.

    1996-12-31

    Contains vugraphs: decontamination and decommissioning, Latin America`s D&D needs, metal decontamination, concrete decontamination, structural demolition and dust suppression, melting/solidification/remelting/separation of glass and metals, demonstrations, decision making, information systems, waste processing, tank waste treatment, characterization/monitoring/sensor technology, metal recycling, etc.

  16. Integrating Technology into Classroom: The Learner-Centered Instructional Design

    ERIC Educational Resources Information Center

    Sezer, Baris; Karaoglan Yilmaz, Fatma Gizem; Yilmaz, Ramazan

    2013-01-01

    In this study, to present an instructional model by considering the existing models of instructional design (ARCS, ADDIE, ASSURE, Dick and Carey, Seels and Glasgow, Smith and Ragan etc.) with the nature of technology-based education and to reveal analysis, design, development, implementation, evaluation, and to revise levels with lower levels of…

  17. Collaborative Information Technology Center (CITC) for Rural Areas.

    ERIC Educational Resources Information Center

    Fontenot, Dean; Driskill, David A.

    The digital divide remains a formidable issue in rural areas where the only broadband access to the Internet may be at public schools or city governments. As the only locations in rural areas with adequate technological resources, schools, libraries, health facilities, and agricultural extension facilities can be places where citizens learn about…

  18. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Cancer.gov

    After making such a discovery, NCI researchers should immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention and consult with your NCI TTC Technology Transfer Specialist about submitting an Employee Invention Report (EIR) Form.

  19. Solid State Technology Branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers written by the members of the Solid State Technology Branch of NASA LeRC from Jun. 1991 - Jun. 1992 is presented. A range of topics relating to superconductivity, Monolithic Microwave Circuits (MMIC's), coplanar waveguides, and material characterization is covered.

  20. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  1. TEC Center: Linking Technology, Education and Cultural Diversity

    ERIC Educational Resources Information Center

    Hoter, Elaine; Shonfeld, Miri; Asmaa, N. Ganayem

    2012-01-01

    To many people, "Israel" is perceived as a "high-tech" nation, but in the same breath, as a "nation in conflict." So why not apply Israel's technological advantage to battle the multicultural conflict within? In this article, we will review the multicultural segregation in Israel, the traditional attempts to bring…

  2. Managing Information Technology in Academic Medical Centers: A "Multicultural" Experience.

    ERIC Educational Resources Information Center

    Friedman, Charles P.; Corn, Milton; Krumrey, Arthur; Perry, David R.; Stevens, Ronald H.

    1998-01-01

    Examines how beliefs and concerns of academic medicine's diverse professional cultures affect management of information technology. Two scenarios, one dealing with standardization of desktop personal computers and the other with publication of syllabi on an institutional intranet, form the basis for an exercise in which four prototypical members…

  3. Developing a Technology Resource Center: The OSU Tech Experience.

    ERIC Educational Resources Information Center

    Hensley, S. Michael

    In order to help meet the economic development needs of the state, Oklahoma State University Technical Branch at Okmulgee (OSU Tech) has developed two initiatives. First, OSU Tech has focussed student training on degree programs in advancing technologies, such as avionics, electronics, and robotics. Second, the college has developed a Technology…

  4. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  5. Fiber optic emerging technologies for detection of hydrogen in space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.

    2009-05-01

    Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Optical hydrogen sensors are intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Safety remains a top priority since leakage of hydrogen in air during production, storage, transfer and distribution creates an explosive atmosphere for concentrations between 4% (v/v) - the lower explosive limit (LEL) and 74.5% (v/v) - the upper explosive limit (UEL) at room temperature and pressure. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. This paper describes the development of fiber optic emerging technologies for detection of hydrogen in space applications. These systems consisted of Micro Mirror, Fiber Bragg grating, Evanescent Optical Fiber and Colorimetric Technology. The paper would discuss the sensor design and performance data under field deployment conditions.

  6. Innovative technologies in optical fiber hydrogen sensor detection systems for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.

    2010-04-01

    Hydrogen detection is priority for every launch vehicle where hydrogen is involved. Hydrogen sensors are necessary to monitor the detection of every possible leak. For space application is very challenging to pin point exact location of leaks and public acceptance of hydrogen fuel is require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Recently new innovation in optical hydrogen makes these sensors intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. This paper describes the development of fiber optic innovative technologies for detection of hydrogen in space applications. These systems consisted of Micro Mirror, Fiber Bragg grating, Evanescent Optical Fiber and Colorimetric Technology. The paper would discuss the sensor design and performance data under field deployment conditions.

  7. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  8. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  9. Technology-Based Biliteracy Centers for the 21st Century Learner

    ERIC Educational Resources Information Center

    Mercuri, Sandra; Ramos, Laura

    2014-01-01

    The purpose of this reflective article is to present an alternative that incorporates the four language skills in all content areas through technology-based dual-language centers for emergent bilinguals at the elementary level. The authors propose a matrix to plan the centers and include three examples to facilitate language transfer in English…

  10. Personalized Integrated Educational System: Technology Functions for the Learner- Centered Paradigm of Education

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.; Aslan, Sinem; Chen, Zengguan; Dutta, Pratima; Huh, Yeol; Lee, Dabae; Lin, Chun-Yi; Lu, Ya-Huei; Min, Mina; Tan, Verily; Watson, Sunnie Lee; Watson, William R.

    2015-01-01

    The learner-centered paradigm of instruction differs in such fundamental ways from the teacher-centered paradigm that it requires technology to serve very different functions. In 2006, a research team at Indiana University began to work on identifying those functions and published their results in 2008. Subsequently, the team elaborated and…

  11. Between Technological Endorsement and Resistance: The State of Online Writing Centers

    ERIC Educational Resources Information Center

    Neaderhiser, Stephen; Wolfe, Joanna

    2009-01-01

    Over the past two decades, writing centers have steadily been expanding services and materials they offer online. The way students write and communicate about their writing continues to change, and the writing center has increasingly been looked upon as a site through which technology and writing have the ability to converge in the form of…

  12. The Efficiency and Effectiveness of the K-12 Energy Technology Education Promotion Centers in Taiwan

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng

    2013-01-01

    In order to promote energy literacy for graders K-12, the Ministry of Education (MOE) in Taiwan initiated a K-12 Energy Technology Education Project in September 2010. This 40-month project has one project office affiliated to a university, and 18 promotion centers affiliated to 18 schools--including 5 regional centers for upper-secondary schools…

  13. CD-ROM technology at the EROS data center

    USGS Publications Warehouse

    Madigan, Michael E.; Weinheimer, Mary C.

    1993-01-01

    The vast amount of digital spatial data often required by a single user has created a demand for media alternatives to 1/2" magnetic tape. One such medium that has been recently adopted at the U.S. Geological Survey's EROS Data Center is the compact disc (CD). CD's are a versatile, dynamic, and low-cost method for providing a variety of data on a single media device and are compatible with various computer platforms. CD drives are available for personal computers, UNIX workstations, and mainframe systems, either directly connected, or through a network. This medium furnishes a quick method of reproducing and distributing large amounts of data on a single CD. Several data sets are already available on CD's, including collections of historical Landsat multispectral scanner data and biweekly composites of Advanced Very High Resolution Radiometer data for the conterminous United States. The EROS Data Center intends to provide even more data sets on CD's. Plans include specific data sets on a customized disc to fulfill individual requests, and mass production of unique data sets for large-scale distribution. Requests for a single compact disc-read only memory (CD-ROM) containing a large volume of data either for archiving or for one-time distribution can be addressed with a CD-write once (CD-WO) unit. Mass production and large-scale distribution will require CD-ROM replication and mastering.

  14. Factors Predicting the Use of Technology: Findings From the Center for Research and Education on Aging and Technology Enhancement (CREATE)

    PubMed Central

    Czaja, Sara J.; Charness, Neil; Fisk, Arthur D.; Hertzog, Christopher; Nair, Sankaran N.; Rogers, Wendy A.; Sharit, Joseph

    2006-01-01

    The successful adoption of technology is becoming increasingly important to functional independence. The present article reports findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE) on the use of technology among community-dwelling adults. The sample included 1,204 individuals ranging in age from 18–91 years. All participants completed a battery that included measures of demographic characteristics, self-rated health, experience with technology, attitudes toward computers, and component cognitive abilities. Findings indicate that the older adults were less likely than younger adults to use technology in general, computers, and the World Wide Web. The results also indicate that computer anxiety, fluid intelligence, and crystallized intelligence were important predictors of the use of technology. The relationship between age and adoption of technology was mediated by cognitive abilities, computer self-efficacy, and computer anxiety. These findings are discussed in terms of training strategies to promote technology adoption. PMID:16768579

  15. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  16. The fiber-optic gyroscope, a century after Sagnac's experiment: The ultimate rotation-sensing technology?

    NASA Astrophysics Data System (ADS)

    Lefèvre, Hervé C.

    2014-12-01

    Taking advantage of the development of optical-fiber communication technologies, the fiber-optic gyroscope (often abbreviated FOG) started to be investigated in the mid-1970s, opening the way for a fully solid-state rotation sensor. It was firstly seen as dedicated to medium-grade applications (1 ° / h range), but today, it reaches strategic-grade performance (10-4 ° / h range) and surpasses its well-established competitor, the ring-laser gyroscope, in terms of bias noise and long-term stability. Further progresses remain possible, the challenge being the ultimate inertial navigation performance of one nautical mile per month corresponding to a long-term bias stability of 10-5 ° / h. This paper is also the opportunity to recall the historical context of Sagnac's experiment, the origin of all optical gyros. xml:lang="fr"

  17. Development of a National Center for Hydrogen Technology

    SciTech Connect

    Jay C. Almlie; Bruce Wood; Rich Schlupp

    2007-03-01

    In November 2005, the Energy & Environmental Research Center (EERC), ePowerSynergies, Inc. (ePSI), and Resurfice Corporation teamed to develop, produce, and demonstrate the world's first and only fuel cell-powered ice resurfacer. The goals of this project were: {sm_bullet} To educate the public on the readiness, practicality, and safety of fuel cells powered by hydrogen fuel and {sm_bullet} To establish a commercialization pathway in an early-adopter, niche market. The vehicle was developed and produced in a short 3-month span. The vehicle made its world debut at U.S. Senator Byron Dorgan's (D-ND) 2005 Hydrogen Energy Action Summit. Subsequently, the vehicle toured North America appearing at numerous public events and conferences, receiving much attention from international media outlets.

  18. Characterizing germania concentration and structure in fiber soot using multiphoton microscopy and spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Li, Ming-Jun; Liu, Anping

    2015-02-01

    Germania doping is commonly used in the core of optical fiber due to its advantages compared to other materials such as superior transparency in near-infrared telecommunication wavelength region. During fiber preform manufacturing using the outside vapor deposition (OVD) process, Ge is doped into a silica soot preform by chemical vapor deposition. Since the Ge doping concentration profile is directly correlated with the fiber refractive index profile, its characterization is critical for the fiber industry. Electron probe micro-analyzer (EPMA) is a conventional analysis method for characterizing the Ge concentration profile. However, it requires extensive sample preparation and lengthy measurement. In this paper, a multiphoton microscopy technique is utilized to measure the Ge doping profile based on the multiphoton fluorescence intensity of the soot layers. Two samples, one with ramped and another with stepped Ge doping profiles were prepared for measurements. Measured results show that the technique is capable of distinguishing ramped and stepped Ge doping profiles with good accuracy. In the ramped soot sample, a sharp increment of doping level was observed in about 2 mm range from soot edge followed by a relative slow gradient doping accretion. As for the stepped doping sample, step sizes ranging from around 1 mm (at soot edge) to 3 mm (at soot center) were observed. All the measured profiles are in close agreement with that of the EPMA measurements. In addition, both multiphoton fluorescence (around 420 nm) and sharp second harmonic generations (at 532 nm) were observed, which indicates the co-existence of crystal and amorphous GeO2.

  19. Spatial interpretation of NASA's Marshall Space Flight Center Payload Operations Control Center using virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1993-01-01

    In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.

  20. Crossing the Great Divide: Adoption of New Technologies, Therapeutics and Diagnostics at Academic Medical Centers

    ERIC Educational Resources Information Center

    DeMonaco, Harold J.; Koski, Greg

    2007-01-01

    The role of new technology in healthcare continues to expand from both the clinical and financial perspectives. Despite the importance of innovation, most academic medical centers do not have a clearly defined process for technology assessment. Recognizing the importance of new drugs, diagnostics and procedures in the care of patients and in the…

  1. Partnership-Centered Learning: The Case for Pedagogic Balance in Technology Education.

    ERIC Educational Resources Information Center

    Walmsley, Brad

    2003-01-01

    Results of the Cognitive Holding Power Questionnaire completed by 480 Australian technology education students suggest that design-based technology classes develop higher-order thinking skills. Teachers are attempting to balance support with student autonomy and control while shifting to learner-centered instruction. However, they may be…

  2. Investigating Models for Preservice Teachers' Use of Technology to Support Student-Centered Learning

    ERIC Educational Resources Information Center

    Chen, Rong-Ji

    2010-01-01

    The study addressed two limitations of previous research on factors related to teachers' integration of technology in their teaching. It attempted to test a structural equation model (SEM) of the relationships among a set of variables influencing preservice teachers' use of technology specifically to support student-centered learning. A review of…

  3. Center Director Bridges visits Disability Awareness and Action working Group Technology Fair

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Center Director Roy Bridges stops to talk to one of the vendors at the Disability Awareness and Action Working Group (DAAWG) Technology Fair being held Oct. 20-21 at Kennedy Space Center. With him at the far left is Sterling Walker, director of Engineering Development at KSC and chairman of DAAWG, and Nancie Strott, a multi-media specialist with Dynacs and chairperson of the Fair; at the right is Carol Cavanaugh, with KSC Public Services. The Fair is highlighting vendors demonstrating mobility, hearing, vision and silent disability assistive technology. The purpose is to create an awareness of the types of technology currently available to assist people with various disabilities in the workplace. The theme is that of this year's National Disability Employment Awareness Month, 'Opening Doors to Ability.' Some of the vendors participating are Canine Companions for Independence, Goodwill Industries, Accessible Structures, Division of Blind Services, Space Coast Center for Independent Living, KSC Fitness Center and Delaware North Parks Services.

  4. A Deliberate and Rigorous Approach to Development of Patient-centered Technologies

    PubMed Central

    Wolpin, Seth; Stewart, Mark

    2011-01-01

    Objectives Many technologies intended for patient use are never developed or evaluated with principles of user-centered design. In this review, we explore different approaches to assessing usability and acceptability, drawn from selected exemplar studies in the health sciences literature. Data sources Peer-reviewed research manuscripts were selected from Medline and other data sources accessible through pubmed.gov. We also present a framework for developing patient-centered technologies that we recently employed. Conclusions While there are studies utilizing principles of user-centered design, many more do not report formative usability testing results and may only report post-hoc satisfaction surveys. Consequently, adoption by user groups may be limited. Implications for Nursing Practice We encourage nurses in practice to look for and examine usability testing results prior to considering implementation of any patient-centered technology. PMID:21783009

  5. 200W, 350fs fiber CPA system enabled by chirped-volume-Bragg-gratings and chirally-coupled-core fiber technology

    NASA Astrophysics Data System (ADS)

    Rever, M.; Huang, S.; Smirnov, V.; Rotari, E.; Cohanoshi, I.; Mokhov, S.; Glebov, L.; Galvanauskas, A.

    2010-02-01

    Fiber-CPA-laser-systems are an extremely promising technology for generating ultrashort (fs-scale) pulses at high average-powers (hundreds-of-Watts to kW) while still producing diffraction-limited beams and being compact and robust compared to bulk-solid-state systems. Two obstacles still must be overcome to realize this potential, however. First, there is a need for stretchers and compressors that can yield long stretched pulse-durations (hundreds-of-ps to nanoseconds) and can handle high-energies and average-powers, yet are still simple and compact, so as to not offset the benefits of fibers. Secondly, large-core-fibers are needed for amplifiers and other components that are robustly singlemode. In this work, we present an Yb-fiber-CPA-system based on two novel technologies to overcome the aforementioned problems. Chirped-volume-Bragg-gratings (CVBGs), slabs of photo-thermo-refractive glass of cmscale with a quasi-periodic longitudinal index-of-refraction, are used for the stretcher and compressor. Their compactness and simplicity makes them compatible with fiber-laser benefits, and have excellent power handling capabilities are. Chirally-coupled-core (CCC) fibers, which have large core diameters (35μm here), yet are robustly single mode and can be coiled and spliced, are used for the power-amplifiers. Using these technologies, a system producing a record 200W of power (130W compressed) with 350fs pulse durations is demonstrated, and the potential kW-level-scaling is explored.

  6. U.S. Army's Center of Excellence for Spectral Sensing Technology

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark K.; Roper, William E.

    1999-08-01

    Recent advances in the field of spectral sensing technology have elucidated the benefits of multi-spectral and hyperspectral sensing to the Army's user community. These advancements, when properly exploited can provide the Army with additional and improved automated terrain analysis, image understanding, object detection, and material characterization capabilities. The U.S. Army, led by the Topographic Engineering Center, has established a Center of Excellence for Spectral Sensing Technology. This Center conducts Army wide collaborative research on, and development and demonstration of spectral sensing, processing and exploitation technologies. The Center's collaborative efforts integrate Army programs across multiple disciplines and form a baseline program consisting of coordinated technology thrusts. The program's applied research and demonstration components will in turn support an Army spectral Strategic Technology Objective (STO) that will ultimately support and leverage joint service efforts starting in FY00. Existing efforts span the domains of sensor hardware, data processing architectures, algorithms, and, signal processing and exploitation technologies across wide spectral regions. These thrusts in turn enable progress and performance improvement in the automated analysis, understanding, classification, discrimination, and identification of terrestrial objects, and materials. The participants draw upon common scientific processes and disciplines to attack similar problems related to different categories and domains of phenomenology. This paper describes the Center's program and objectives along with an explanation of the Army's strategy and approach in support of its program objectives.

  7. Advanced Measurement Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.

    1998-01-01

    Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

  8. Zigbee networking technology and its application in Lamost optical fiber positioning and control system

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng

    2010-07-01

    4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.

  9. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    PubMed Central

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  10. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials.

    PubMed

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2015-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  11. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wu, Jiale; Zhou, Guiyao; Xia, Changming; Liu, Jiantao; Tian, Hongchun; Liang, Wanting; Hou, Zhiyun

    2016-03-01

    We demonstrate the fabricating method for Yb3+-doped silica glass and double-cladding large mode area photonic crystal fiber (LMA PCF) based on laser sintering technology combined with a liquid phase doping method. The doped material prepared shows the amorphous property and the hydroxyl content is approximately 40 ppm. The attenuation of the fabricated LMA PCF is 14.2 dB m-1 at 976 nm, and the lowest value is 0.25 dB m-1 at 1200 nm. The laser slope efficiency is up to 70.2%.

  12. Robust-fusion optic fiber distance and orientation integrated sensing technology

    NASA Astrophysics Data System (ADS)

    Liu, Gui-xiong; Kuang, Yong-cong; Xu, Jing; Li, Xia-ni

    2005-02-01

    A robust-fusion optic fiber sensor technology of proximity distance and orientation integration is studied in this paper. A novel optic fiber sensing head with redundant information, which can measure distance and orientation in any pose as well as compensate fluctuation caused by changing parameters such as surface reflectivity, light intensity and characteristic shifting from photoelectric-converter device, is proposed. The implement method of sensor network compensation is introduced. An improved BP network arithmetic, which can enhance the dynamic characteristic and measurement accuracy of the sensing system, is presented. To speed up the convergence rate of BP network training, GA -BP training method is applied. An intelligent signal detecting and processing system based on DSP is designed, the strong data processing ability of DSP makes the system hardware structure simplified. The method of moderate output light power control is put forward for enlarging the measuring range. Experiment result shows that robust-fusion optic fiber proximity sensor system has the distance measuring range of 0.1~19.9mm and the orientation measuring range of 0~25°. The measuring time of each point is 92.5ms.

  13. Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core

    PubMed Central

    Ahmad, Harith; Zulkifli, Mohd Zamani; Muhammad, Farah Diana; Samangun, Julian Md; Abdul-Rashid, Hairul Azhar; Harun, Sulaiman Wadi

    2013-01-01

    A fiber based bend sensor using a uniquely designed Bend-Sensitive Erbium Doped Fiber (BSEDF) is proposed and demonstrated. The BSEDF has two core regions, namely an undoped outer region with a diameter of about 9.38 μm encompassing a doped, inner core region with a diameter of 4.00 μm. The doped core region has about 400 ppm of an Er2O3 dopant. Pumping the BSEDF with a conventional 980 nm laser diode gives an Amplified Spontaneous Emission (ASE) spectrum spanning from 1,510 nm to over 1,560 nm at the output power level of about −58 dBm. The ASE spectrum has a peak power of −52 dBm at a central wavelength of 1,533 nm when not spooled. Spooling the BSEDF with diameters of 10 cm to 2 cm yields decreasing peak powers from −57.0 dBm to −61.8 dBm, while the central wavelength remains unchanged. The output is highly stable over time, with a low temperature sensitivity of around ∼0.005 dBm/°C, thus allowing for the development of a highly stable sensor system based in the change of the peak power alone. PMID:23881146

  14. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  15. Safety, Reliability, and Quality Assurance Provisions for the Office of Aeronautics, Exploration and Technology Centers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Handbook establishes general safety, reliability, and quality assurance (SR&QA) guidelines for use on flight and ground-based projects conducted at the Ames, Langley, and Lewis Research Centers, hereafter identified as the Office of Aeronautics, Exploration and Technology (OAET) Centers. This document is applicable to all projects and operations conducted at these Centers except for those projects covered by more restrictive provisions such as the Space Shuttle, Space Station, and unmanned spacecraft programs. This Handbook is divided into two parts. The first (Chapters 1 and 2) establishes the SR&QA guidelines applicable to the OAET Centers, and the second (Appendices A, B, C, and D) provides examples and definitions for the total SR&QA program. Each center should implement SR&QA programs using these guidelines with tailoring appropriate to the special projects conducted by each Center. This Handbook is issued in loose-leaf form and will be revised by page changes.

  16. Heidegger in the Hands-on Science and Technology Center: Philosophical Reflections on Learning in Informal Settings.

    ERIC Educational Resources Information Center

    Walton, Richard

    2000-01-01

    Uses interactive science and technology centers as an example of the application of Heidegger's ideas about technology. Discuses Heidegger's concerns about uncritical acceptance of technology. (Contains 27 references.) (SK)

  17. Development of ultra-precision centering and leveling turntable using aerostatic bearing technology

    NASA Astrophysics Data System (ADS)

    Hou, Maosheng; Tian, Yanrong; Ji, Lin; Wang, Longxiao; Liu, Jiaqi; Zhao, Weiqian

    2015-02-01

    To perform the ultra-precision centering and leveling operation of large surface under test in optical and mechanical precision measurements, a novel automatic centering and leveling turntable based on the aerostatic bearing technology is developed. In the functional module of centering, a planar aerostatic bearing and two micro-displacement actuators are utilized to achieve centering operation, and in the leveling functional module, a spherical aerostatic bearing, two microdisplacement actuators and a spring pivot are employed to realize the leveling operation. In the paper, the mathematical models of centering and leveling operation are obtained using coordinate transformation, and coupling between the centering and leveling operation is also analyzed. Furthermore, by using distance-measuring interferometer and autocollimator, the resolutions of centering and leveling operation are measured. Finally, errors of the centering and leveling operation are analyzed and the performance evaluation of the turntable is given. The experimental results show that, with 50Kg load, the leveling operation resolution is better than 1.2″; leveling operation range is +/-1° the centering operation resolution is better than 0.05μm centering operation range is about +/-5mm. The developed turntable can satisfy the requirements of ultra-precision, high resolution, wide range, frictionless, high load stiffness, stabilization and small driving force.

  18. VACET: Proposed SciDAC2 Visualization and Analytics Center forEnabling Technologies

    SciTech Connect

    Bethel, W.; Johnson, Chris; Hansen, Charles; Parker, Steve; Sanderson, Allen; Silva, Claudio; Tricoche, Xavier; Pascucci, Valerio; Childs, Hank; Cohen, Jonathon; Duchaineau, Mark; Laney, Dan; Lindstrom,Peter; Ahern, Sean; Meredith, Jeremy; Ostrouchov, George; Joy, Ken; Hamann, Bernd

    2006-06-19

    This paper accompanies a poster that is being presented atthe SciDAC 2006 meeting in Denver, CO. This project focuses on leveragingscientific visualization and analytics software technology as an enablingtechnology for increasing scientific productivity and insight. Advancesincomputational technology have resultedin an "information big bang,"which in turn has createda significant data understanding challenge. Thischallenge is widely acknowledged to be one of the primary bottlenecks incontemporary science. The vision for our Center is to respond directly tothat challenge by adapting, extending, creating when necessary anddeploying visualization and data understanding technologies for ourscience stakeholders. Using an organizational model as a Visualizationand Analytics Center for Enabling Technologies (VACET), we are wellpositioned to be responsive to the needs of a diverse set of scientificstakeholders in a coordinated fashion using a range of visualization,mathematics, statistics, computer and computational science and datamanagement technologies.

  19. Fiber-Optic Sensor And Smart Structures Research At Florida Institute Of Technology

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Alavie, A. Tino; Ham, Fredric M.; Franke, Jorge E.; Thursby, Michael H.

    1990-02-01

    This paper discusses the fundamental issues being investigated by Florida Institute of Technology (F.I.T.) to implement the technology of smart structural systems for DoD, NASA, and commercial applications. Embedded sensors and actuators controlled by processors can provide a modification of the mechanical characteristics of composite structures to produce smart structures1-3. Recent advances in material science have spurred the development and use of composite materials in a wide range of applications from rotocraft blades and advanced tactical fighter aircraft to undersea and aerospace structures. Along with the advantages of an increased strength-to-weight ratio, the use of these materials has raised a number of questions related to understanding their failure mechanisms. Also, being able to predict structural failures far enough in advance to prevent them and to provide real-time structural health and damage monitoring has become a realistic possibility. Unfortunately, conventional sensors, actuators, and digital processors, although highly developed and well proven for other systems, may not be best suited for most smart structure applications. Our research has concentrated on few-mode and polarimetric single-fiber strain sensors4-7 and optically activated shape memory alloy (SMA) actuators controlled by artificial neural processors. We have constructed and characterized both few-mode and polarimetric sensors for a variety of fiber types, including standard single-mode, high-birefringence polarization preserving, and low-birefringence polarization insensitive fibers. We have investigated signal processing techniques for these sensors and have demonstrated active phase tracking for the high- and low-birefringence polarimetric sensors through the incorporation into the system of an electrooptic modulator designed and fabricated at F.I.T.. We have also started the design and testing of neural network architectures for processing the sensor signal outputs to

  20. Effect of four types of dietary fiber on the technological quality of pasta.

    PubMed

    Bustos, M C; Pérez, G T; León, A E

    2011-06-01

    The development of dietary fiber-enriched foods permits to obtain products with functional properties but can cause several problems in technological quality. The aim of this study was to study the quality of pasta obtained by replacing bread wheat flour with resistant starch II (RSII), resistant starch IV (RSIV), oat bran (OB) and inulin (IN) with the purpose of improving their nutritional quality. RSII, RSIV, OB and IN were substituted for a portion of bread wheat flour at levels 2.5%, 5.0%, 7.5% and 10.0%. Cooking properties, amylose and inulin losses, color and texture were measured. Finally, nutritional quality of enriched pasta was evaluated by protein losses during cooking and total dietary fiber. Microstructure of pasta was analyzed by scanning electron microscopy. Addition of RSII into pasta formulation improved the quality of the final product. RSIV-enriched pasta presented an improvement in textural characteristics and OB affected cooking properties positively up to 5% of substitution. Inulin was lost during cooking; besides, its addition negatively affected the technological quality of pasta. The results obtained in this study prove that it is possible to elaborate pasta with acceptable cooking quality and with improved nutritional characteristics by adding 10% of RSII and RSIV and 5% of OB. PMID:21593287

  1. The feasibility of a unified role for NASA regional dissemination centers and technology application teams

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Insights and recommendations arising from a study of the feasibility of combining the NASA Regional Dissemination Center (RDC) and Technology Application Team (Tateam) roles to form Regional Application Centers (RADC's) are presented. The apparent convergence of the functions of RDC's and Tateams is demonstrated and strongly supportive of the primary recommendation that an applications function be added to those already being performed by the RDC's. The basis of a national network for technology transfer and public and private sector problem solving is shown to exist, the skeleton of which is an interactive network of Regional Application Centers and NASA Field Centers. The feasibility of developing and extending this network is considered and the detailed ramifications of so doing are discussed and the imperatives emphasized. It is hypothesized that such a national network could become relatively independent of NASA funding within five years.

  2. Media Centers and Instructional Technology in an Era of Information Technology.

    ERIC Educational Resources Information Center

    Albright, Michael J.

    1995-01-01

    The failure of funding to keep pace with costs has led some colleges and universities to question the viability of continued operations in both information and instructional technology. Examines the differences between information and instructional technology, the functional areas of instructional technology in higher education, and the unique…

  3. ALTEC (Advanced Learning Technologies Center): Promoting Faculty Use of Instructional Technology at Arizona State University.

    ERIC Educational Resources Information Center

    Sager, Harvey; Konomos, Philip

    The first of two parts of this paper, "From Computer Literacy to Technological Literacy: The Challenge for Faculty Development," traces some of the problems and solutions associated with faculty development issues surrounding computers and telecommunications technologies. It is argued that although the need for technological literacy among higher…

  4. NASA Earth Science Mission Control Center Enterprise Emerging Technology Study Study (MCC Technology Study)

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Horan, Stephen; Royer, Don; Sullivan, Don; Moe, Karen

    2015-01-01

    This paper reports on the results of the study to identify technologies that could have a significant impact on Earth Science mission operations when looking out at the 5-15 year horizon (through 2025). The potential benefits of the new technologies will be discussed, as well as recommendations for early research and development, prototyping, or analysis for these technologies.

  5. Heavy metal fluoride glass fibers and their applications

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2011-12-01

    The availability of high quality optical fibers with transmission window, larger than that of silica fiber, extends the use of optical fibers and open new application fields. There is increasing demand of optical fiber with transmission over 2 microns, where silica is opaque, for applications as diverse as sensing, fiber lasers and amplifiers, defense (IRCM), spectroscopy... No materials can fulfill all applications needs. Engineers have to make some compromise when choosing the right materials for the right application. Heavy metal fluoride glass is one of these materials. The glass, under bulk form, has a wide transmission window from 0.3 up to 8 microns, without any absorption peaks. Heavy metal fluoride glass fibers are drawn using the preform technique, the same technique used for silica fiber. This technique has proven to allow good control of fiber dimensions and geometry. Fluoride glass fibers with different exotics shapes have already been obtained, such as D-shaped, square, of centered fiber, multi cladding fibers and microstructured fibers.... As far as active fibers are concerned, heavy metal fluoride glasses have low phonon energy and can contain high concentration of active ions, rare-earth elements. Therefore, new laser lines have been already demonstrated using fluoride glass fibers. Fiber lasers with output power exceeding 10 w have been obtained by different groups. This paper will present the latest development of fluoride glass fiber technology, including fibers optical and mechanical properties, fiber lasers and power handling.

  6. Battlefield tracheal intubation training using virtual simulation: a multi center operational assessment of video laryngoscope technology.

    PubMed

    Boedeker, Ben H; Boedeker, Kirsten A; Bernhagen, Mary A; Miller, David J; Lacy, Timothy

    2011-01-01

    Airway management is an essential skill in providing care in trauma situations. The video laryngoscope is a tool which offers improvement in teaching airway management skills and in managing airways of trauma patients on the far forward battlefield. An Operational Assessment (OA) of videolaryngoscope technology for medical training and airway management was conducted by the Center for Advanced Technology and Telemedicine (at the University of Nebraska Medical Center, Omaha, NE) for the US Air Force Modernization Command to validate this technology in the provision of Out of OR airway management and airway management training in military simulation centers. The value for both the training and performance of intubations was highly rated and the majority of respondents indicated interest in having a video laryngoscope in their facility. PMID:21335763

  7. A regional technology transfer program. [North Carolina Industrial Applications Center for the Southeast

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The proliferation of online searching capabilities among its industrial clients, changes in marketing staff and direction, use of Dun and Bradstreet marketing service files, growth of the Annual Service Package program, and services delivered to clients at the NASA funded North Carolina Science and Technology Research Center are described. The library search service was reactivated and enlarged, and a survey was conducted on the NC/STRC Technical Bulletin's effectiveness. Several quotations from clients assess the overall value of the Center's services.

  8. Synergistic control center development utilizing commercial technology and industry standards. [NASA space programs

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    1993-01-01

    The development of the Control Center Complex (CCC), a synergistic control center supporting both the Space Station Freedom and the Space Shuttle Program, is described. To provide maximum growth and flexibility, the CCC uses commercial off-the-shelf technology and industry standards. The discussion covers the development philosophy, CCC architecture, data distribution, the software platform concept, workstation platform, commercial tools for the CCC, and benefits of synergy.

  9. SciDAC Visualization and Analytics Center for EnablingTechnology

    SciTech Connect

    Bethel, E. Wes; Johnson, Chris; Joy, Ken; Ahern, Sean; Pascucci,Valerio; Childs, Hank; Cohen, Jonathan; Duchaineau, Mark; Hamann, Bernd; Hansen, Charles; Laney, Dan; Lindstrom, Peter; Meredith, Jeremy; Ostrouchov, George; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier

    2006-11-28

    The SciDAC2 Visualization and Analytics Center for EnablingTechnologies (VACET) began operation on 10/1/2006. This document, dated11/27/2006, is the first version of the VACET project management plan. Itwas requested by and delivered to ASCR/DOE. It outlines the Center'saccomplishments in the first six weeks of operation along with broadobjectives for the upcoming future (12-24 months).

  10. Compact, robust technology for next-generation ultrafast high-power fiber lasers

    NASA Astrophysics Data System (ADS)

    Rever, Matthew A.

    Fiber lasers are an attractive alternative to bulk solid-state systems due to their potential for compactness and robustness, as well as their having diffraction-limited output even at high average powers. Combined with the technique of chirped-pulse-amplification (CPA), a new generation of ultrafast lasers can be engineered providing reliable high average power and ultrahigh peak power for applications in high-field research, novel radiation sources, spectroscopy, and materials processing. However, current fiber CPA systems still rely on large stretchers and compressors with free-space bulk diffraction gratings, which are incompatible with fiber laser benefits. Clearly, the bulk diffraction grating stretchers and compressors need to be replaced by much smaller and simpler devices. Chirped volume Bragg gratings (CVBGs) are simple slabs of glass with quasi-periodic indices of refraction that can chirp ultrafast pulses to hundreds of picoseconds and back down to the sub-picosecond level in only a few centimeters of material and with easy alignment. Proof-of-principle experiments using CVBGs for stretchers and compressors in fiber CPA systems have previously been performed, but several issues need to be resolved before they are deployed for mainstream use. This thesis presents a quantitative analysis of the performance of CVBGs at high average powers, which is backed by experimental data wherein the gratings are exposed to a record high 200 W of input power. Due to the gratings bandwidth and thermal properties, the pulses are recompressible to 350 fs, indicating high fidelity operation. Extrapolation from the model predicts that kW operation, a major goal for all fiber CPA lasers, will be feasible with this technology. Moreover, the fundamental performance of the CVBGs, both spatial and temporal, is characterized. A new fabrication technique has allowed for the elimination of spatial chirp, a previous limitation on the beam quality. Measurements clearly show the new

  11. Technology Assessment: NREL Provides Know-How for Highly Energy-Efficient Data Centers (Fact Sheet)

    SciTech Connect

    Not Available

    2012-05-01

    NREL leads the effort to change how energy is used worldwide by helping identify and eliminate barriers to energy efficiency and clean energy technology deployment. The laboratory takes a portfolio approach that explores the full range of technology options for developing and implementing innovative energy performance solutions. The Research Support Facility (RSF) data center is a prime example of NREL's capabilities and expertise in energy efficiency. But, more important, its features can be replicated. NREL provides custom technical assistance and training for improved data center performance to help our customers realize cost savings.

  12. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  13. The roles and functions of a lunar base Nuclear Technology Center

    SciTech Connect

    Buden, D. ); Angelo, J.A. Jr. )

    1991-01-01

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth. 12 refs., 4 figs., 1 tab.

  14. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  15. SciDAC Visualization and Analytics Center for EnablingTechnologies

    SciTech Connect

    Bethel, E. Wes; Johnson, Chris; Joy, Ken; Ahern, Sean; Pascucci,Valerio; Childs, Hank; Cohen, Jonathan; Duchaineau, Mark; Hamann, Bernd; Hansen, Charles; Laney, Dan; Lindstrom, Peter; Meredith, Jermey; Ostrouchov, George; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier.

    2007-06-30

    The Visualization and Analytics Center for EnablingTechnologies (VACET) focuses on leveraging scientific visualization andanalytics software technology as an enabling technology for increasingscientific productivity and insight. Advances in computational technologyhave resulted in an 'information big bang,' which in turn has created asignificant data understanding challenge. This challenge is widelyacknowledged to be one of the primary bottlenecks in contemporaryscience. The vision of VACET is to adapt, extend, create when necessary,and deploy visual data analysis solutions that are responsive to theneeds of DOE'scomputational and experimental scientists. Our center isengineered to be directly responsive to those needs and to deliversolutions for use in DOE's large open computing facilities. The researchand development directly target data understanding problems provided byour scientific application stakeholders. VACET draws from a diverse setof visualization technology ranging from production quality applicationsand application frameworks to state-of-the-art algorithms forvisualization, analysis, analytics, data manipulation, and datamanagement.

  16. Research and Technology 1998 Annual Report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the NASA Center responsible for preparing and launching space missions, the John F. Kennedy Space Center (KSC) is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. This edition of the KSC Research and Technology 1998 Annual Report covers the efforts of these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The following research areas are covered: Life Sciences; Mechanical Engineering; Environmental Engineering; Advanced Software; Atmospheric Science; Materials Science; Nondestructive Evaluation; Process/Industrial Engineering; Automation and Robotics; and Electronics and Instrumentation.

  17. Gasification and hot gas cleanup at the Morgantown Energy Technology Center

    SciTech Connect

    Strickland, L.D.

    1995-03-01

    The Morgantown Energy Technology Center (METC) is a Government-owned and Government-operated research center located in Morgantown, West Virginia. Since its opening in 1955, METC has been a Fossil Energy research laboratory focused on the development of advanced Fossil Energy technologies. METC is currently an organizational unit of Fossil Energy which is, in turn, a part of the U.S. Department of Energy. METC pursues the development of fossil energy technologies through contracts with industrial/commercial partners, through Cooperative Research and Development Agreements, and through a relatively small in-house hands-on research program which is coordinated with customer/program needs associated with the major technologies. The purpose of this paper is to introduce the Integrated Gasification Combined Cycle (IGCC) concept for power generation and to review the METC in-house activities related to this concept.

  18. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  19. CREATING INTEROPERABLE MESHING AND DISCRETIZATION SOFTWARE: THE TERASCALE SIMULATION TOOLS AND TECHNOLOGY CENTER.

    SciTech Connect

    BROWN,D.; FREITAG,L.; GLIMM,J.

    2002-06-02

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  20. Creating Interoperable Meshing and Discretization Software: The Terascale Simulation Tools and Technology Center

    SciTech Connect

    Brown, D.; Freitag, L.; Glimm, J.

    2002-03-28

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  1. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    SciTech Connect

    Holmes, Michael

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  2. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  3. Greenhouse gas (GHG) mitigation and monitoring technology performance: Activities of the GHG Technology Verification Center. Report for January 1998--January 1999

    SciTech Connect

    Masemore, S.; Kirchgessner, D.A.

    1999-05-01

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the US EPA`s Office of Research and Development. The Center is part of EPA`s Environmental Technology Verification (ETV) Program, which has established 12 verification centers to evaluate a wide range of technologies in various environmental media and technology areas. The Center has published the results of its first verification: use of a phosphoric acid fuel cell to produce electricity from landfill gas. It has also initiated three new field verifications, two on technologies that reduce methane emissions from natural gas transmissions compressors, and one on a new microturbine electricity production technology.

  4. Wide field fluorescence imaging in narrow passageways using scanning fiber endoscope technology

    NASA Astrophysics Data System (ADS)

    Lee, Cameron M.; Chandler, John E.; Seibel, Eric J.

    2010-02-01

    An ultrathin scanning fiber endoscope (SFE) has been developed for high resolution imaging of regions in the body that are commonly inaccessible. The SFE produces 500 line color images at 30 Hz frame rate while maintaining a 1.2-1.7 mm outer diameter. The distal tip of the SFE houses a 9 mm rigid scan engine attached to a highly flexible tether (minimum bend radius < 8 mm) comprised of optical fibers and electrical wires within a protective sheath. Unlike other ultrathin technologies, the unique characteristics of this system have allowed the SFE to navigate narrow passages without sacrificing image quality. To date, the SFE has been used for in vivo imaging of the bile duct, esophagus and peripheral airways. In this study, the standard SFE operation was tailored to capture wide field fluorescence images and spectra. Green (523 nm) and blue (440 nm) lasers were used as illumination sources, while the white balance gain values were adjusted to accentuate red fluorescence signal. To demonstrate wide field fluorescence imaging of small lumens, the SFE was inserted into a phantom model of a human pancreatobiliary tract and navigated to a custom fluorescent target. Both wide field fluorescence and standard color images of the target were captured to demonstrate multimodal imaging.

  5. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure.

    PubMed

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m(3)/h to 6.5 m(3)/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement. PMID:27587096

  6. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-01

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport. PMID:24015820

  7. Deformation monitoring of long GFRP bar soil nails using distributed optical fiber sensing technology

    NASA Astrophysics Data System (ADS)

    Hong, Cheng-Yu; Yin, Jian-Hua; Zhang, Yi-Fan

    2016-08-01

    This paper introduces a new measurement technology characterized by the use of distributed optical fiber sensor (OFSs) for monitoring the strain and temperature distribution of glass fiber reinforced polymer (GFRP) bar soil nails. Laboratory tension tests were used to verify the performance of the OFSs for strain and elongation monitoring of GFRP bars. The measured strain data from the OFSs agree fairly well with the data from strain gauges in calibration tests. In field monitoring tests, two GFRP bar soil nails were installed with OFSs and pure strain data were used to evaluate the performance of GFRP bar soil nails after installation in a practical slope. Both the strain and temperature distributions measured by the OFSs show symmetric features. A Brillouin optical time domain analysis (BOTDA) measurement unit was used to collect temperature and strain data from the OFSs. The monitoring data show that the accumulative elongations of the soil nails present a continuous but limited increase with time in the field. The achieved maximum elongations of soil nails were less than 0.4 mm. The measured axial elongations of the soil nails were also validated using corresponding data predicted by a theoretical model. The test results from the present study prove that BOTDA based sensors are useful for the investigation of the average strain distributions (or elongation) of long soil nails and these data are useful for the estimation of the potential sliding surface of the entire soil nailing system.

  8. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    NASA Astrophysics Data System (ADS)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  9. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  10. Community College Advanced Technology Centers: Meeting America's Need for Integrated, Comprehensive Economic Development.

    ERIC Educational Resources Information Center

    Hinckley, Richard; And Others

    By entering into partnerships with business and industry, community colleges are able to offset the high cost of remaining current with training techniques, job market skill requirements, and state-of-the-art hardware. The construction of advanced technology centers (ATCs) located on community college campuses is one key element supporting these…

  11. Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.

  12. CONTROL TECHNOLOGY CENTER, 1989, A YEAR OF GROWTH AND A PROMISING FUTURE

    EPA Science Inventory

    The report documents the activity of EPA's Control Technology Center (CTC) between October 1988 and September 1989. It discusses the program's history, its growth during fiscal year 1989 (FY89), and its plans for the future. In FY89, the CTC experienced significant growth. It rec...

  13. Mobilizing Learning Resources in a Transnational Classroom: Translocal and Digital Resources in a Community Technology Center

    ERIC Educational Resources Information Center

    Noguerón-Liu, Silvia

    2014-01-01

    Drawing from transnational and activity theory frameworks, this study analyzes the ways translocal flows shape learning in a community technology center serving adult immigrants in the US Southwest. It also explores students' constructions of the transnational nature of the courses they took, where they had access to both online and…

  14. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  15. Advanced Telecommunications and Computer Technologies in Georgia Public Elementary School Library Media Centers.

    ERIC Educational Resources Information Center

    Rogers, Jackie L.

    The purpose of this study was to determine what recent progress had been made in Georgia public elementary school library media centers regarding access to advanced telecommunications and computer technologies as a result of special funding. A questionnaire addressed the following areas: automation and networking of the school library media center…

  16. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  17. The Impact of Technology in the Schools of the Mohawk Regional Information Center Area. Technical Report.

    ERIC Educational Resources Information Center

    Mann, Dale; Shakeshaft, Charol

    This study was commissioned by participating school districts served by the Mohawk Regional Information Center (New York) to document the differences that computer-related technology has made for the region's students, teachers, and schools. Elementary and secondary school teachers (n=4,041), students (n=1,722), and administrators (n=225) in 159…

  18. Examining Health Information Technology Implementations: Case of the Patient-Centered Medical Home

    ERIC Educational Resources Information Center

    Behkami, Nima A.

    2012-01-01

    It has been shown that the use of Health Information Technology (HIT) is associated with reduced cost and increased quality of care. This dissertation examined the use of registries in Patient Centered Medical Home (PCMH) practices. A survey questionnaire was sent to a nationwide group of clinics certified for being a PCMH. They were asked to…

  19. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  20. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC's), coplanar waveguide, and material characterization.

  1. The Importance of Innovation: Diffusion Theory and Technological Progress in Writing Centers.

    ERIC Educational Resources Information Center

    Inman, James A.

    2000-01-01

    Suggests that all stakeholders should share a focus on "innovations," referring here simultaneously to technologies and their social, cultural, political, and historical contexts. Introduces a new perspective through which writing center professionals can approach collaborative relationships with other stakeholders in the move towards…

  2. Planning and Using Language Learning Centers. Applications of Technology, Volume 1, Summer 1986.

    ERIC Educational Resources Information Center

    Larson, Jerry W., Ed.

    This collection of articles offers advice on concerns and decisions in planning or remodeling a language learning center, incorporation of satellite reception in the language lab, coping with different television standards and technologies in the language lab, testing language skills, and the role of computer-assisted instruction (CAI) in language…

  3. Biomedical Computing Technology Information Center (BCTIC). Progress report, October 1, 1979-September 30, 1980

    SciTech Connect

    Gurney, Jane

    1980-07-30

    The operations and activities of the Biomedical Computing Technology Information Center (BCTIC) for the period 8 April 1980 to 30 July 1980 are summarized. These include mailing list update, software package preparation, software implementation, quality control of software, and Society of Nuclear Medicine support. (ACR)

  4. Lend an Ear....And Other Technological Challenges at the Tsongas Industrial History Center.

    ERIC Educational Resources Information Center

    Maher, Philip; Anderson, Mary

    1992-01-01

    Describes some experiences of 30 teachers who met at the Tsongas Industrial History Center in Lowell, Massachusetts, to develop motivating, interdisciplinary activities for middle school students around science, technology, and industry. Discusses interdisciplinary problem solving using the design loop and presents six problems related to corn and…

  5. Technology Can Help Young Children Succeed. PACER Center ACTion Information Sheets: PHP-c70

    ERIC Educational Resources Information Center

    PACER Center, 2014

    2014-01-01

    Parents of young children with disabilities are discovering that carefully selected computer software and mobile apps can provide many benefits such as improved self-esteem, a longer attention span, and inclusion among family and other children that help their children succeed at home and in school. PACER's Simon Technology Center (STC) can help…

  6. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  7. NASA Lewis Research Center low-gravity fluid management technology program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Carney, M. J.; Hochstein, J. I.

    1985-01-01

    A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.

  8. A Working Model for Student Success: The Tennessee Technology Centers. Preliminary Case Study

    ERIC Educational Resources Information Center

    Hoops, John

    2010-01-01

    This is a report about a unique postsecondary education system, the Tennessee Technology Centers--a statewide system of 27 institutions providing a wide range of rigorous, one to two year, technical/occupational education programs at consistently high completion and placement rates in high skill and relatively high wage employment. This report…

  9. Technology utilization in a non-urban region: Further impact and technique of the Technology Use Studies Center, 2

    NASA Technical Reports Server (NTRS)

    Gold, H. C. (Editor); Moore, A. M.; Dodd, B.; Dittmar, V.

    1971-01-01

    The clientele served by the Technology Use Studies Center (TUSC) is updated. Manufacturing leads the list of client firms. The standard industrial classification (SIC) range of these firms is broad. Substantial numbers of college and university faculties are using TUSC services. Field operations inherent in the functions of dissemination and assistance are reviewed. Increasing emphasis among clientele is on environmental concerns and management. A record is provided of the institutions contacted and the extent of TUSC involvement with them, as well as TUSC's cooperation with agencies and organizations. The impact of TUSC and the NASA-sponsored Technology Utilization Program on other public agencies is discussed.

  10. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  11. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  12. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  15. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    SciTech Connect

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  16. Recent advances in Ni-H2 technology at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.

    1986-01-01

    The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.

  17. Fiber Bragg grating sensors array based on optical frequency domain reflectometry technology

    NASA Astrophysics Data System (ADS)

    Xiong, Yanling; He, Lijuan; Chen, Tao; Wang, Xuan; Yang, Wenlong

    2007-01-01

    In this paper, the optimized Fiber Bragg Grating Sensor Arrays system, which was based on Optical Frequency Domain Reflectometry(OFDR) Multiplexing and Fabry-Perot Tunable Optical Filter(TOF) Demodulation Technology was Introduced, that FBG sensors in the same operating waveband can be used in different beat frequencies positions was proposed, and then a simulation was made for this proposition. As a result, in the case of duty ratio of the modulation signal w=1, the maximum amplitude B=4OMHz, and saw-tooth frequency f s=5kHz,the maximum measurement range can reach 4000m and , the minimum resolution can be reduced to 2.58m. In addition, A/D converting circuits and a DSP COMS chip were suggested to be designed for the function of frequency mixing, wavelength filtering and Fast Fourier Transform so that instead of expensive frequency analyzer, so that the system cost can be reduced.

  18. A new fiber-optic sensor technology for rapid and inexpensive characterization of soil contamination

    SciTech Connect

    Milanovich, F.P.; Brown, S.B.; Colston, B.W. Jr.; Daley, P.F.; Rossabi, J.

    1993-04-01

    The extent and complexity of worldwide environmental contamination are great enough that remediation will be extremely costly and lengthy. There is an urgent need for characterization techniques that are rapid, inexpensive, and simple and that do not generate waste. Towards this end LLNL is developing a fiber-optic chemical sensor technology for use in groundwater and vadose-zone monitoring. We use a colorimetric detection technique, based on an irreversible chemical reaction between a specific reagent and the target compound. The accuracy and sensitivity of the sensor (<5 ppb by weight in water, determined by comparison with gas chromatographic standard measurements) are sufficient for environmental monitoring of at least trichloroethylene (TCE) and chloroform.

  19. Simulation and Technology of Hybrid Welding of Thick Steel Parts with High Power Fiber Laser

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Valdaytseva, Ekaterina; Tzibulsky, Igor; Lopota, Alexander; Velichko, Olga

    The article devoted to steady state and dynamic simulation of melt pool behavior during hybrid laser-arc welding of pipes and shipbuilding sections. The quasi-stationary process-model was used to determine an appropriate welding mode. The dynamical model of laser welding was used for investigation of keyhole depth and width oscillations. The experiments of pipe steel and stainless steel hybrid laser-MAG welding have been made with 15-kW fiber laser in wide range of welding mode parameters. Comparison of experimentally measured and simulated behavior of penetration depth as well as their oscillation spectra approved the self-oscillation nature of melt pool behavior. The welding mode influence of melt pool stability has also been observed. The technological peculiarities, which allow provide high quality weld seam, has been discussed also.

  20. The Earth System Grid Center for Enabling Technologies: Focusing Technologies on Climate Datasets and Resource Needs

    SciTech Connect

    Williams, Dean N.

    2007-09-26

    This report discusses a project that used prototyping technology to access and analyze climate data. This project was initially funded under the DOE’s Next Generation Internet (NGI) program, with follow-on support from BER and the Mathematical, Information, and Computational Sciences (MICS) office. In this prototype, we developed Data Grid technologies for managing the movement and replication of large datasets, and applied these technologies in a practical setting (i.e., an ESG-enabled data browser based on current climate data analysis tools), achieving cross-country transfer rates of more than 500 Mb/s. Having demonstrated the potential for remotely accessing and analyzing climate data located at sites across the U.S., we won the “Hottest Infrastructure” award in the Network Challenge event. While the ESG I prototype project substantiated a proof of concept (“Turning Climate Datasets into Community Resources”), the SciDAC Earth System Grid (ESG) II project made this a reality. Our efforts targeted the development of metadata technologies (standard schema, XML metadata extraction based on netCDF, and a Metadata Catalog Service), security technologies (Web-based user registration and authentication, and community authorization), data transport technologies (GridFTPenabled OPeNDAP-G for high-performance access, robust multiple file transport and integration with mass storage systems, and support for dataset aggregation and subsetting), as well as web portal technologies to provide interactive access to climate data holdings. At this point, the technology was in place and assembled, and ESG II was poised to make a substantial impact on the climate modelling community.