Sample records for fiber-optic nonlinear endomicroscopy

  1. Focus scanning with feedback control for fiber-optic nonlinear endomicroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Ang; Liang, Wenxuan; Li, Xingde

    2017-02-01

    Fiber-optic nonlinear endomicroscopy represents a strong promise to enable translation of nonlinear microscopy technologies to in vivo applications, particularly imaging of internal organs. Two-dimensional imaging beam scanning has been accomplished by using fiber-optic scanners or MEMS scanners. Yet nonlinear endomicroscopy still cannot perform rapid and reliable depth or focus scanning while maintaining a small form factor. Shape memory alloy (SMA) wire had shown promise in extending 2D endoscopic imaging to the third dimension. By Joule heating, the SMA wire would contract and move the endomicroscope optics to change beam focus. However, this method suffered from hysteresis, and was susceptible to change in ambient temperature, making it difficult to achieve accurate and reliable depth scanning. Here we present a feedback-controlled SMA actuator which addressed these challenges. The core of the feedback loop was a Hall effect sensor. By measuring the magnetic flux density from a tiny magnet attached to the SMA wire, contraction distance of the SMA wire could be tracked in real time. The distance was then fed to the PID algorithm running in a microprocessor, which computed the error between the command position and the current position of the actuator. The current running through the SMA wire was adjusted accordingly. Our feedback-controlled SMA actuator had a tube-like shape with outer diameter of 5.5 mm and length of 25 mm, and was designed to house the endomicroscope inside. Initial test showed that it allowed more than 300 microns of travel distance, with an average positioning error of less than 2 microns. 3D imaging experiments with the endomicroscope is underway, and its imaging performance will be assessed and discussed.

  2. Emerging fiber optic endomicroscopy technologies towards noninvasive real-time visualization of histology in situ

    NASA Astrophysics Data System (ADS)

    Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde

    2010-09-01

    This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.

  3. Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

    PubMed Central

    Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève

    2012-01-01

    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579

  4. Double-clad fiber with a tapered end for confocal endomicroscopy

    PubMed Central

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-01-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259

  5. Double-clad fiber with a tapered end for confocal endomicroscopy.

    PubMed

    Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline

    2011-11-01

    We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber.

  6. A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy

    NASA Astrophysics Data System (ADS)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2018-02-01

    Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.

  7. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  8. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  9. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  10. Nonlinear waveguide optics and photonic crystal fibers.

    PubMed

    Knight, J C; Skryabin, D V

    2007-11-12

    Focus Serial: Frontiers of Nonlinear Optics

    Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas.

  11. Nonlinear optics in hollow-core photonic bandgap fibers.

    PubMed

    Bhagwat, Amar R; Gaeta, Alexander L

    2008-03-31

    Hollow-core photonic-bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. In this review we summarize the nonlinear optics experiments that have been performed using these hollow-core fibers.

  12. Fast widefield techniques for fluorescence and phase endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.

    Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.

  13. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Wenxuan; Murari, Kartikeya; Zhang, Yuying; Chen, Yongping; Li, Ming-Jun; Li, Xingde

    2012-02-01

    We compare the illumination uniformity and the associated effects of the spiral and Lissajous scanning patterns that are commonly used in an endomicroscope. Theoretical analyses and numerical simulations were first performed to quantitatively investigate the area illumination density in the spiral scanning pattern. The results revealed the potential problem of manifest photodamage due to the very high illumination density in the center of the spiral scan. Similar analyses of the Lissajous scanning pattern, which can be conveniently implemented on the same endomicroscope with no hardware modifications, showed a more uniform illumination density with about an 80-fold reduction in the peak illumination density. To underscore the benefit offered by the improved illumination uniformity, we conducted in vitro two-photon fluorescence imaging of cultured cells stained with a LIVE/DEAD viability assay using our home-built, fiber-optic, two-channel endomicroscopy system. Both the spiral and the Lissajous scans were implemented. Our experimental results showed that cells near the spiral scan center experienced obvious photodamage, whereas cells remained alive over the entire region under the Lissajous beam scanning, confirming the predicted advantage offered by the Lissajous scan over this spiral scan in an endomicroscopy setting.

  14. Guest-host polymer fibers for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Kuzyk, M. G.; Paek, U. C.; Dirk, C. W.

    1991-08-01

    We report on the fabrication of poly(methyl methacrylate) (PMMA) nonlinear optical fibers with dye-doped cores. The dye-doped cores have an elevated refractive index that defines a waveguiding region with a large third-order susceptibility and with single-mode dimensions. The measured third-order susceptibility of a squarylium-doped PMMA film material and the measured optical loss of the dye-doped fiber core results in a figure of merit that is suitable for all-optical device applications at λ=1.3 μm. The impact of further improvements in PMMA loss and chromophore nonlinearity are also discussed.

  15. Ultrafast optical pulse delivery with fibers for nonlinear microscopy

    PubMed Central

    Kim, Daekeun; Choi, Heejin; Yazdanfar, Siavash; So, Peter T. C.

    2008-01-01

    Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use will require optical fibers to conduct light into tight space where free space delivery is difficult. The delivery of high peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this paper, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these is also provided. PMID:18816597

  16. NONLINEAR AND FIBER OPTICS: Influence of nonlinearity of the parameters of guided modes in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Goncharenko, I. A.

    1990-04-01

    The shift formula method is used to obtain analytic expressions which provide estimates of the influence of nonlinearity on the parameters of fiber waveguide modes. Depending on the sign of the nonlinear susceptibility of the waveguide core, the nonlinearity can improve or impair (right down to complete loss) the waveguiding properties of fibers. The optical power at which a fiber loses its guiding properties is constant far from the cutoff, but rises steeply near the critical cutoff frequency. The nonlinearity can be used to vary the zero dispersion wavelength and the range of single-mode operation of a fiber waveguide.

  17. Nondestructive distributed measurement of supercontinuum generation along highly nonlinear optical fibers.

    PubMed

    Hontinfinde, Régis; Coulibaly, Saliya; Megret, Patrice; Taki, Majid; Wuilpart, Marc

    2017-05-01

    Supercontinuum generation (SCG) in optical fibers arises from the spectral broadening of an intense light, which results from the interplay of both linear and nonlinear optical effects. In this Letter, a nondestructive optical time domain reflectometry method is proposed for the first time, to the best of our knowledge, to measure the spatial (longitudinal) evolution of the SC induced along an optical fiber. The method was experimentally tested on highly nonlinear fibers. The experimental results are in a good agreement with the optical spectra measured at the fiber outputs.

  18. Ripple distribution for nonlinear fiber-optic channels.

    PubMed

    Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei

    2017-02-06

    We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.

  19. Femtosecond nonlinear fiber optics in the ionization regime.

    PubMed

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  20. Confocal Endomicroscopy: Instrumentation and Medical Applications

    PubMed Central

    Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.

    2013-01-01

    Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069

  1. Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy

    NASA Astrophysics Data System (ADS)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2017-02-01

    We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.

  2. Signaling on the continuous spectrum of nonlinear optical fiber.

    PubMed

    Tavakkolnia, Iman; Safari, Majid

    2017-08-07

    This paper studies different signaling techniques on the continuous spectrum (CS) of nonlinear optical fiber defined by nonlinear Fourier transform. Three different signaling techniques are proposed and analyzed based on the statistics of the noise added to CS after propagation along the nonlinear optical fiber. The proposed methods are compared in terms of error performance, distance reach, and complexity. Furthermore, the effect of chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated. It is demonstrated that, for a given sequence of CS symbols, an optimal bandwidth (or symbol rate) can be determined so that the temporal duration of the propagated signal at the end of the fiber is minimized. In effect, the required guard interval between the subsequently transmitted data packets in time is minimized and the effective data rate is significantly enhanced. Moreover, by selecting the proper signaling method and design criteria a distance reach of 7100 km is reported by only singling on CS at a rate of 9.6 Gbps.

  3. Numerical simulation of incoherent optical wave propagation in nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Fernandez, Arnaud; Balac, Stéphane; Mugnier, Alain; Mahé, Fabrice; Texier-Picard, Rozenn; Chartier, Thierry; Pureur, David

    2013-11-01

    The present work concerns the study of pulsed laser systems containing a fiber amplifier for boosting optical output power. In this paper, this fiber amplification device is included into a MOPFA laser, a master oscillator coupled with fiber amplifier, usually a cladding-pumped high-power amplifier often based on an ytterbium-doped fiber. An experimental study has established that the observed nonlinear effects (such as Kerr effect, four waves mixing, Raman effect) could behave very differently depending on the characteristics of the optical source emitted by the master laser. However, it has not yet been possible to determine from the experimental data if the statistics of the photons is alone responsible for the various nonlinear scenarios observed. Therefore, we have developed a numerical simulation software for solving the generalized nonlinear Schrödinger equation with a stochastic source term in order to validate the hypothesis that the coherence properties of the master laser are mainly liable for the behavior of the observed nonlinear effects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  4. Pulse Shepherding in Nonlinear Fiber Optics

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1996-01-01

    In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.

  5. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  6. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo

    PubMed Central

    Liang, Kaicheng; Wang, Zhao; Ahsen, Osman O.; Lee, Hsiang-Chieh; Potsaid, Benjamin M.; Jayaraman, Vijaysekhar; Cable, Alex; Mashimo, Hiroshi; Li, Xingde; Fujimoto, James G.

    2018-01-01

    Devices that perform wide field-of-view (FOV) precision optical scanning are important for endoscopic assessment and diagnosis of luminal organ disease such as in gastroenterology. Optical scanning for in vivo endoscopic imaging has traditionally relied on one or more proximal mechanical actuators, limiting scan accuracy and imaging speed. There is a need for rapid and precise two-dimensional (2D) microscanning technologies to enable the translation of benchtop scanning microscopies to in vivo endoscopic imaging. We demonstrate a new cycloid scanner in a tethered capsule for ultrahigh speed, side-viewing optical coherence tomography (OCT) endomicroscopy in vivo. The cycloid capsule incorporates two scanners: a piezoelectrically actuated resonant fiber scanner to perform a precision, small FOV, fast scan and a micromotor scanner to perform a wide FOV, slow scan. Together these scanners distally scan the beam circumferentially in a 2D cycloid pattern, generating an unwrapped 1 mm × 38 mm strip FOV. Sequential strip volumes can be acquired with proximal pullback to image centimeter-long regions. Using ultrahigh speed 1.3 μm wavelength swept-source OCT at a 1.17 MHz axial scan rate, we imaged the human rectum at 3 volumes/s. Each OCT strip volume had 166 × 2322 axial scans with 8.5 μm axial and 30 μm transverse resolution. We further demonstrate OCT angiography at 0.5 volumes/s, producing volumetric images of vasculature. In addition to OCT applications, cycloid scanning promises to enable precision 2D optical scanning for other imaging modalities, including fluorescence confocal and nonlinear microscopy. PMID:29682598

  7. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    PubMed

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  8. Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1997-01-01

    A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.

  9. Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime.

    PubMed

    Liu, Xiang; Chandrasekhar, S; Winzer, P J; Chraplyvy, A R; Tkach, R W; Zhu, B; Taunay, T F; Fishteyn, M; DiGiovanni, D J

    2012-08-13

    Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications.

  10. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Modulation of radiation in a fiber Sagnac interferometer induced by an external field

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Kasymdzhanov, M. A.; Mirtadzhiev, F. M.; Tartakovskiĭ, G. Kh; Khabibullaev, P. K.

    1988-12-01

    A study was made of the influence of the Kerr nonlinearity of a fiber waveguide on fluctuations of the output signal from a fiber-optic interferometer. The intensity fluctuations were modeled using the radiation from a pulsed high-power laser with a controlled intensity and pulse profile. Interferograms of the output radiation were obtained for different interferometer configurations. A comparison of the experiment and theory made it possible to explain the observed changes in the signal and to estimate the phase noise due to the Kerr nonlinearity in the investigated fiber waveguide.

  11. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  12. All-optical switching application based on optical nonlinearity of Yb(3+) doped aluminosilicate glass fiber with a long-period fiber gratings pair.

    PubMed

    Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek

    2004-02-23

    We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.

  13. Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.

    PubMed

    Fu, Ling; Gu, Min

    2006-05-15

    A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.

  14. Generalized dispersive wave emission in nonlinear fiber optics.

    PubMed

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  15. Fiber bundle based endomicroscopy prototype with two collection channels for simultaneous coherent anti-Stokes Raman scattering and second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhengfan; Satira, Zachary A.; Wang, Xi; Xu, Xiaoyun; Chen, Xu; Wong, Kelvin; Chen, Shufen; Xin, Jianguo; Wong, Stephen T. C.

    2014-02-01

    Label-free multiphoton imaging is promising for replacing biopsy and could offer new strategies for intraoperative or surgical applications. Coherent anti-Stokes Raman scattering (CARS) imaging could provide lipid-band contrast, and second harmonic generation (SHG) imaging is useful for imaging collagen, tendon and muscle fibers. A combination of these two imaging modalities could provide rich information and this combination has been studied by researchers to investigate diseases through microscopy imaging. The combination of these two imaging modalities in endomicroscopy imaging has been rarely investigated. In this research, a fiber bundle consisted of one excitation fiber and 18 collection fibers was developed in our endomicroscopy prototype. The 18 collection fibers were divided into two collection channels with 9 fibers in each channel. These two channels could be used together as one channel for effective signal collection or used separately for simplifying detection part of the system. Differences of collection pattern of these two channels were investigated. Collection difference of central excitation fiber and surrounding 18 fibers was also investigated, which reveals the potential ability of this system to measure forward to backward (F/B) ratio in SHG imaging. CARS imaging of mouse adipocyte and SHG imaging of mouse tail tendon were performed to demonstrate the CARS and SHG tissue imaging performance of this system. Simultaneous CARS and SHG imaging ability of this system was demonstrated by mouse tail imaging. This fiber bundle based endomicroscopy imaging prototype, offers a promising platform for constructing efficient fiber-based CARS and SHG multimodal endomicroscopes for label free intraoperative imaging applications.

  16. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    PubMed

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  17. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  18. Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers.

    PubMed

    An, Honglin; Fleming, Simon

    2005-05-02

    The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.

  19. Influence of wavelength-dependent-loss on dispersive wave in nonlinear optical fibers.

    PubMed

    Herrera, Rodrigo Acuna

    2012-11-01

    In this work, we study numerically the influence of wavelength-dependent loss on the generation of dispersive waves (DWs) in nonlinear fiber. This kind of loss can be obtained, for instance, by the acousto-optic effect in fiber optics. We show that this loss lowers DW frequency in an opposite way that the Raman effect does. Also, we see that the Raman effect does not change the DW frequency too much when wavelength-dependent loss is included. Finally, we show that the DW frequency is not practically affected by fiber length.

  20. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    NASA Astrophysics Data System (ADS)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  1. Graphene-clad tapered fiber: effective nonlinearity and propagation losses.

    PubMed

    Gorbach, A V; Marini, A; Skryabin, D V

    2013-12-15

    We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations in asymptotic expansion of Maxwell equations. We analyze the effective nonlinear and attenuation coefficients due to the graphene layer. Based on the recent experimental measurements of the nonlinear graphene conductivity, we predict considerable enhancement of the effective nonlinearity for subwavelength fiber core diameters.

  2. Higher-order modulation instability in nonlinear fiber optics.

    PubMed

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  3. Modeling of dispersion and nonlinear characteristics of tapered photonic crystal fibers for applications in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Pakarzadeh, H.; Rezaei, S. M.

    2016-01-01

    In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.

  4. Precluding nonlinear ISI in direct detection long-haul fiber optic systems

    NASA Technical Reports Server (NTRS)

    Swenson, Norman L.; Shoop, Barry L.; Cioffi, John M.

    1991-01-01

    Long-distance, high-rate fiber optic systems employing directly modulated 1.55-micron single-mode lasers and conventional single-mode fiber suffer severe intersymbol interference (ISI) with a large nonlinear component. A method of reducing the nonlinearity of the ISI, thereby making linear equalization more viable, is investigated. It is shown that the degree of nonlinearity is highly dependent on the choice of laser bias current, and that in some cases the ISI nonlinearity can be significantly reduced by biasing the laser substantially above threshold. Simulation results predict that an increase in signal-to-nonlinear-distortion ratio as high as 25 dB can be achieved for synchronously spaced samples at an optimal sampling phase by increasing the bias current from 1.2 times threshold to 3.5 times threshold. The high SDR indicates that a linear tapped delay line equalizer could be used to mitigate ISI. Furthermore, the shape of the pulse response suggests that partial response precoding and digital feedback equalization would be particularly effective for this channel.

  5. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  6. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    PubMed

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

  7. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system.

    PubMed

    Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang

    2017-10-30

    In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.

  8. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle.

    PubMed

    Andresen, Esben Ravn; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé

    2013-03-01

    We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

  9. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    NASA Astrophysics Data System (ADS)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  10. Nonlinear optics in the LP(02) higher-order mode of a fiber.

    PubMed

    Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A

    2013-07-29

    The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

  11. Optical properties of solid-core photonic crystal fibers filled with nonlinear absorbers.

    PubMed

    Butler, James J; Bowcock, Alec S; Sueoka, Stacey R; Montgomery, Steven R; Flom, Steven R; Friebele, E Joseph; Wright, Barbara M; Peele, John R; Pong, Richard G S; Shirk, James S; Hu, Jonathan; Menyuk, Curtis R; Taunay, T F

    2013-09-09

    A theoretical and experimental investigation of the transmission of solid-core photonic crystal fibers (PCFs) filled with nonlinear absorbers shows a sharp change in the threshold for optical limiting and in leakage loss as the refractive index of the material in the holes approaches that of the glass matrix. Theoretical calculations of the mode profiles and leakage loss of the PCF are in agreement with experimental results and indicate that the change in limiting response is due to the interaction of the evanescent field of the guided mode with the nonlinear absorbers in the holes.

  12. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  13. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  14. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates. Copyright © 2015, American Association for the Advancement of Science.

  15. NONLINEAR AND FIBER OPTICS: Propagation of femtosecond solitons in a fiber-optic loop

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Mirtadzhiev, F. M.; Khaĭdarov, D. V.; Kuznetsov, A. V.; Okhotnikov, A. G.

    1991-03-01

    An investigation was made of the propagation of fundamental femtosecond soliton pulses in a fiber-optic loop, which is an element with promising applications in logic operations. It is shown that such a loop can filter off the nonsoliton component effectively. The conditions for high-contrast self-switching of fundamental solitons in a fiber-optic loop are identified.

  16. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  17. Optical and mechanical response of high temperature optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Sirkis, Jim

    1991-01-01

    The National Aerospace Plane (NASP) will experience temperatures as high as 2500 F at critical locations in its structure. Optical fiber sensors were proposed as a means of monitoring the temperature in these critical regions by either bonding the optical fiber to, or embedding the optical fiber in, metal matrix composite (MMC) components. Unfortunately, the anticipated NASP temperature ranges exceed the glass transition region of the optical fiber glass. The attempt is made to define the operating temperature range of optical fiber sensors from both optical and mechanical perspectives. A full non-linear optical analysis was performed by modeling the optical response of an isolated sensor cyclically driven through the glass transition region.

  18. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  19. Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.

  20. Investigation of Optical Fibers for Nonlinear Optics.

    DTIC Science & Technology

    1983-02-01

    fiber made v a hoc extrusi - n method (Ref I). The flber is then olaced between -wo oat f drive rollers, as shown in Figure I. A small heater coil s used...62 C 0030 UNCLASSIFED F/ 020/6 N IND 883 i1 0 1 ___ _Ill ; II 11112 1111121 MICROCOPy RESOLUTION TEST CHART NATNty AFOSR INVESTIGATION OF OPTICAL...3RCWTH The traveling zone method of facr-ca-:no SC iihers -s ’:nike an., other fiber arowth technaue. : n -his mehncd we .a. .wzn a olcr.stzalne (PC

  1. Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Feng, Xinhuan; Tam, Hwa-yaw; Liu, Heliang; Wai, P. K. A.

    2006-12-01

    A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.

  2. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  3. Nonlinear effects of a modal domain optical fiber sensor in a vibration suppression control loop for a flexible structure

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.

    1993-01-01

    Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.

  4. All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1.

    PubMed

    Lee, Ju Han; Kikuchi, Kazuro; Nagashima, Tatsuo; Hasegawa, Tomoharu; Ohara, Seiki; Sugimoto, Naoki

    2005-04-18

    We experimentally demonstrate the use of our fabricated 1-m-long Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter. The wavelength converter, composed of the 1-m Bi-NLF readily achieves error-free wavelength conversion of an 80-Gbit/s input signal.

  5. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  6. Fabrication and optical characterization of silica optical fibers containing gold nanoparticles.

    PubMed

    de Oliveira, Rafael E P; Sjödin, Niclas; Fokine, Michael; Margulis, Walter; de Matos, Christiano J S; Norin, Lars

    2015-01-14

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  7. Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom in a whispering-gallery-mode microtoroid resonator

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying

    2014-11-01

    Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.

  8. Materials Development for Next Generation Optical Fiber

    PubMed Central

    Ballato, John; Dragic, Peter

    2014-01-01

    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  9. Bright-dark and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations in a twin-core nonlinear optical fiber

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Qiang; Tian, Bo; Liu, Lei; Chai, Han-Peng

    2017-11-01

    In this paper, we investigate the coupled cubic-quintic nonlinear Schrödinger equations, which can describe the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in a twin-core nonlinear optical fiber. Through the Kadomtsev-Petviashvili hierarchy reduction, we present the bright-dark and dark-dark soliton solutions in terms of the Grammian for such equations. With the help of analytic and graphic analysis, head-on and overtaking elastic interactions between the two solitons are presented, as well as the bound-state solitons. Particularly, we find the inelastic interaction between the bright-dark two solitons. One of the electromagnetic fields presents the V-shape profile, while the other one presents the Y-shape profile.

  10. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  11. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  12. Tapered polysilicon core fibers for nonlinear photonics.

    PubMed

    Suhailin, Fariza H; Shen, Li; Healy, Noel; Xiao, Limin; Jones, Maxwell; Hawkins, Thomas; Ballato, John; Gibson, Ursula J; Peacock, Anna C

    2016-04-01

    We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1  μm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems.

  13. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  14. Multicolor probe-based confocal laser endomicroscopy: a new world for in vivo and real-time cellular imaging

    NASA Astrophysics Data System (ADS)

    Vercauteren, Tom; Doussoux, François; Cazaux, Matthieu; Schmid, Guillaume; Linard, Nicolas; Durin, Marie-Amélie; Gharbi, Hédi; Lacombe, François

    2013-03-01

    Since its inception in the field of in vivo imaging, endomicroscopy through optical fiber bundles, or probe-based Confocal Laser Endomicroscopy (pCLE), has extensively proven the benefit of in situ and real-time examination of living tissues at the microscopic scale. By continuously increasing image quality, reducing invasiveness and improving system ergonomics, Mauna Kea Technologies has turned pCLE not only into an irreplaceable research instrument for small animal imaging, but also into an accurate clinical decision making tool with applications as diverse as gastrointestinal endoscopy, pulmonology and urology. The current implementation of pCLE relies on a single fluorescence spectral band making different sources of in vivo information challenging to distinguish. Extending the pCLE approach to multi-color endomicroscopy therefore appears as a natural plan. Coupling simultaneous multi-laser excitation with minimally invasive, microscopic resolution, thin and flexible optics, allows the fusion of complementary and valuable biological information, thus paving the way to a combination of morphological and functional imaging. This paper will detail the architecture of a new system, Cellvizio Dual Band, capable of video rate in vivo and in situ multi-spectral fluorescence imaging with a microscopic resolution. In its standard configuration, the system simultaneously operates at 488 and 660 nm, where it automatically performs the necessary spectral, photometric and geometric calibrations to provide unambiguously co-registered images in real-time. The main hardware and software features, including calibration procedures and sub-micron registration algorithms, will be presented as well as a panorama of its current applications, illustrated with recent results in the field of pre-clinical imaging.

  15. Experimental observation of disorder induced self-focusing in optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonetti, Marco, E-mail: marco.leonetti@roma1.infn.it; Karbasi, Salman; Mafi, Arash

    2014-10-27

    We observed disorder induced focusing nonlinearity activated by a monochromatic light beam in optical fibers composed by two kinds of plastics. The two materials, arranged in disordered fashion, support modes with a degree of localization which increases with the intensity of the optical beam. The temporal response of the optical fiber demonstrates the thermal origin of this nonlinearity. Measurements of the localization length as a function of the input power with broadband and monochromatic inputs show the effectiveness of focusing action with respect to the case of homogeneous fibers.

  16. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less

  17. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    PubMed

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  18. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle.

    PubMed

    Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome

    2009-01-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  19. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle

    NASA Astrophysics Data System (ADS)

    Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome

    2009-05-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  20. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  1. Nonlinear-optical studies of organic liquids and polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Vigil, Steven Richard

    We present the results of non-resonant optical Kerr effect measurements of the neat organic liquids nitrobenzene, carbon disulfide, carbon tetrachloride, and methyl-methacrylate. We also present the results of one- photon resonant optical Kerr effect measurements of solutions of the organic dyes indole squarylium and silicon-phthalocyanine:methylmethacrylate (separately) in carbon tetrachloride. Fits of the molecular third-order susceptibility theory to the one-photon resonant data indicate the presence of high-lying two-photon states for each of the dye molecules studied. We also present results concerning light coupling in dye- doped dual-core polymer optical fibers. Measurements of the coupling length at low intensity are in agreement with linear coupling length calculations. Intensity- dependent coupling is observed as the intensity launched into the fiber is increased.

  2. Infrared fiber optic focal plane dispersers

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.

    1981-01-01

    Far infrared transmissive fiber optics as a component in the design of integrated far infrared focal plane array utilization is discussed. A tightly packed bundle of fibers is placed at the focal plane, where an array of infrared detectors would normally reside, and then fanned out in two or three dimensions to individual detectors. Subsequently, the detectors are multiplexed by cryogenic electronics for relay of the data. A second possible application is frequency up-conversion (v sub 1 + v sub 2 = v sub 3), which takes advantage of the nonlinear optical index of refraction of certain infrared transmissive materials in fiber form. Again, a fiber bundle is utilized as above, but now a laser of frequency v sub 1 is mixed with the incoming radiation of frequency v sub 1 within the nonlinear fiber material. The sum, v sub 2 is then detected by near infrared or visible detectors which are more sensitive than those available at v sub 2. Due to the geometrical size limitations of detectors such as photomultipliers, the focal plane dispersal technique is advantageous for imaging up-conversion.

  3. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser

    PubMed Central

    Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan

    2017-01-01

    A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340

  4. All-optical control of group velocity dispersion in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2012-12-15

    We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.

  5. Nonlinear optical polymers for electro-optic signal processing

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.

    1991-01-01

    Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.

  6. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two

  7. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  8. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  9. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    NASA Astrophysics Data System (ADS)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  10. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  11. A theoretical investigation of soliton induced supercontinuum generation in liquid core photonic crystal fiber and dual core optical fiber

    NASA Astrophysics Data System (ADS)

    Porsezian, K.; Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Ganapathy, R.

    2013-07-01

    The supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) with versatile nonlinear response and the spectral broadening in dual core optical fiber is presented. The analysis is presented in two phase, phase I deals with the SCG in LCPCF with the effect of saturable nonlinearity and re-orientational nonlinearity. We identify and discuss the generic nature of the saturable nonlinearity and reorientational nonlinearity in the SCG, using suitable model. For the physical explanation, modulational instability and soliton fission techniques is implemented to investigate the impact of saturable nonlinear response and slow nonlinear response, respectively. It is observed that the saturable nonlinearity inevitably suppresses the MI and the subsequent SCG. On the other hand, the re-orientational nonlinearity contributes to the slow nonlinear response in addition to the conventional fast response due to the electronic contribution. The phase II features the exclusive investigation of the spectral broadening in the dual core optical fiber.

  12. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  13. Polarization chaos and random bit generation in nonlinear fiber optics induced by a time-delayed counter-propagating feedback loop.

    PubMed

    Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J

    2018-01-22

    In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

  14. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

    NASA Astrophysics Data System (ADS)

    Seth, Sohan; Akram, Ahsan R.; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K. I.

    2016-08-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure.

  15. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones.

    PubMed

    Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R

    2015-01-01

    Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.

  16. Emerging enhanced imaging technologies of the esophagus: spectroscopy, confocal laser endomicroscopy, and optical coherence tomography.

    PubMed

    Robles, Lourdes Y; Singh, Satish; Fisichella, Piero Marco

    2015-05-15

    Despite advances in diagnoses and therapy, esophageal adenocarcinoma remains a highly lethal neoplasm. Hence, a great interest has been placed in detecting early lesions and in the detection of Barrett esophagus (BE). Advanced imaging technologies of the esophagus have then been developed with the aim of improving biopsy sensitivity and detection of preplastic and neoplastic cells. The purpose of this article was to review emerging imaging technologies for esophageal pathology, spectroscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT). We conducted a PubMed search using the search string "esophagus or esophageal or oesophageal or oesophagus" and "Barrett or esophageal neoplasm" and "spectroscopy or optical spectroscopy" and "confocal laser endomicroscopy" and "confocal microscopy" and "optical coherence tomography." The first and senior author separately reviewed all articles. Our search identified: 19 in vivo studies with spectroscopy that accounted for 1021 patients and 4 ex vivo studies; 14 clinical CLE in vivo studies that accounted for 941 patients and 1 ex vivo study with 13 patients; and 17 clinical OCT in vivo studies that accounted for 773 patients and 2 ex vivo studies. Human studies using spectroscopy had a very high sensitivity and specificity for the detection of BE. CLE showed a high interobserver agreement in diagnosing esophageal pathology and an accuracy of predicting neoplasia. We also found several clinical studies that reported excellent diagnostic sensitivity and specificity for the detection of BE using OCT. Advanced imaging technology for the detection of esophageal lesions is a promising field that aims to improve the detection of early esophageal lesions. Although advancing imaging techniques improve diagnostic sensitivities and specificities, their integration into diagnostic protocols has yet to be perfected. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.

    PubMed

    Loomba, Shally; Kaur, Harleen

    2013-12-01

    We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.

  18. 3D simulation for solitons used in optical fibers

    NASA Astrophysics Data System (ADS)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  19. 200-m optical fiber with an integrated electrode and its poling.

    PubMed

    Lee, Kenneth; Hu, Peifang; Blows, Justin L; Thorncraft, David; Baxter, John

    2004-09-15

    More than 200 m of germanosilica optical fiber is manufactured with an internal wire electrode running parallel to the core. In this new fabrication method the wire is integrated into the fiber during the draw process. This length of fiber is an order of magnitude longer than other previously reported fibers with internal electrodes. The optical loss is less than our measurement floor of 0.5 dB/m at 1550 nm. A 0.9-m section of the fiber is thermally poled, inducing a permanent second-order nonlinearity of 0.0125 pm/V. Methods to increase the induced nonlinearity are discussed. Integrating the wire into the fiber during the draw allows lengths of fiber with internal electrodes greater than 1 km to be manufactured and subsequently poled.

  20. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management.

    PubMed

    Yang, Peilong; Teng, Hao; Fang, Shaobo; Hu, Zhongqi; Chang, Guoqing; Wang, Junli; Wei, Zhiyi

    2018-04-15

    We implement an ultrafast Yb-doped all-fiber laser which incorporates tapered single-mode fibers for managing nonlinearity and dispersion. The tapered fiber placed in the oscillator cavity aims to broaden the optical spectrum of the intracavity pulse. At the oscillator output, we use another tapered fiber to perform pulse compression. The resulting 66.1-MHz Yb-doped all-fiber oscillator self-starts and generates 0.4-nJ, 65-fs pulses, which can serve as a compact and robust seed source for subsequent high-power, high-energy amplifiers.

  1. Endomicroscopy for assessing mucosal healing in patients with ulcerative colitis.

    PubMed

    Gheorghe, Cristian; Cotruta, Bogdan; Iacob, Razvan; Becheanu, Gabriel; Dumbrava, Mona; Gheorghe, Liana

    2011-12-01

    The assessment of tissue healing has emerged as an important treatment goal in patients with inflammatory bowel disease. In patients with ulcerative colitis (UC), mucosal healing may represent the ultimate therapeutic goal due to the fact that the inflammation is limited to the mucosal layer. Mucosal and histological healing may indicate a subset of UC patients in long-term clinical, endoscopic and histological remission in whom immunomodulators, biologics, and even aminosalicylates may be withdrawn. Confocal laser endomicroscopy allows the assessment of residual cellular inflammation, crypt and vessel architecture distortion during ongoing endoscopy, and therefore permits a real-time evaluation of histological healing in patients with ulcerative proctitis. Images of conventional optical microscopy and confocal laser endomicroscopy in patients with ulcerative proctitis in remission are presented.

  2. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    PubMed

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  3. Nonlinear Optics with 2D Layered Materials.

    PubMed

    Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei

    2018-06-01

    2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  5. Multimodal fiber source for nonlinear microscopy based on a dissipative soliton laser

    PubMed Central

    Lamb, Erin S.; Wise, Frank W.

    2015-01-01

    Recent developments in high energy femtosecond fiber lasers have enabled robust and lower-cost sources for multiphoton-fluorescence and harmonic-generation imaging. However, picosecond pulses are better suited for Raman scattering microscopy, so the ideal multimodal source for nonlinear microcopy needs to provide both durations. Here we present spectral compression of a high-power femtosecond fiber laser as a route to producing transform-limited picosecond pulses. These pulses pump a fiber optical parametric oscillator to yield a robust fiber source capable of providing the synchronized picosecond pulse trains needed for Raman scattering microscopy. Thus, this system can be used as a multimodal platform for nonlinear microscopy techniques. PMID:26417497

  6. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    NASA Astrophysics Data System (ADS)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  7. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  8. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  9. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    PubMed

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-09-09

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  10. Dual-mode endomicroscopy for detection of epithelial dysplasia in the mouth: a descriptive pilot study

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Poh, Catherine F.; Lam, Sylvia; Lane, Pierre; Guillaud, Martial; MacAulay, Calum E.

    2017-08-01

    Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.

  11. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    NASA Astrophysics Data System (ADS)

    Wang, Zifei; Glesk, Ivan; Chen, Lawrence R.

    2018-02-01

    The nonlinear optical loop mirror (NOLM) has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK) signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ)-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  12. Mathematical model of the two-point bending test for strength measurement of optical fibers

    NASA Astrophysics Data System (ADS)

    Srubshchik, Leonid S.

    1999-12-01

    The mathematical and numerical analysis of two nonlinear problems of solid mechanics related to the breaking strength of coated optical glass fibers are presented. Both of these problems are concerned with the two-point bending technique which measures the strength of optical fibers by straining them in a bending mode between two parallel plates. The plates are squeezed together until the fiber fractures. The process gives a measurement of fiber strength. The present theory of this test is based on the elastica theory of an unshearable and inextensible rod. However, within the limits of the elastics theory the tensile and shear stresses cannot be determined. In this paper we study the behavior of optical glass fiber on the base of a geometrically exact nonlinear Cosserat theory in which a rod can suffer flexure, extension, and shear. We adopt the specific nonlinear stress-strain relations in silica and titania-doped silica glass fibers and show that it does not yield essential changes in the results as compared with the results for the linear stress-strain relations. We obtain the governing equations of the motion of the fiber in the two-point bending test taking into account the friction between the test fiber and the rigid plates. We develop the computational methods to solve the initial and equilibrium free-boundary nonlinear planar problems. We derive formulas for tensile and shear stresses which allow us to calculate tension in the fiber. The numerical results show that frictional forces play an important role. The interaction of optical fiber and rigid plates is treated by means of the classical contact theory.

  13. Demonstration of theoretical and experimental simulations in fiber optics course

    NASA Astrophysics Data System (ADS)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  14. N-dark-dark solitons for the coupled higher-order nonlinear Schrödinger equations in optical fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Qiang; Wang, Yue

    2017-11-01

    In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark-dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.

  15. A novel structure photonic crystal fiber based on bismuth-oxide for optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Jin, Cang; Yuan, Jinhui; Yu, Chongxiu

    2010-11-01

    The heavy metal oxide glasses containing bismuth such as bismuth sesquioxide show unique high refractive index. In addition, the bismuth-oxide based glass does not include toxic elements such as Pb, As, Se, Te, and exhibits well chemical, mechanical and thermal stability. Hence, it is used to fabricate high nonlinear fiber for nonlinear optical application. Although the bismuth-oxide based high nonlinear fiber can be fusion-spliced to conventional silica fibers and have above advantages, yet it suffers from large group velocity dispersion because of material chromatic dispersion which restricts its utility. In regard to this, the micro-structure was introduced to adjust the dispersion of bismuth-oxide high nonlinear fiber in the 1550nm wave-band. In this paper, a hexagonal solid-core micro-structure is developed to balance its dispersion and nonlinearity. Our simulation and calculation results show that the bismuth-oxide based photonic crystal fiber has near zero dispersion around 1550nm where the optical parametric amplification suitable wavelength is. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model filed distribution were simulated, respectively.

  16. Endomicroscopy imaging of epithelial structures using tissue autofluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.

    2011-04-01

    We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.

  17. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  18. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  19. Optical fiber sources and transmission controls for multi-Tb/s systems

    NASA Astrophysics Data System (ADS)

    Nowak, George Adelbert

    The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber

  20. Varifocal MOEMS fiber scanner for confocal endomicroscopy.

    PubMed

    Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2014-12-15

    Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.

  1. Optical solitons to the resonance nonlinear Schrödinger equation by Sine-Gordon equation method

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    In this paper, we examined the optical solitons to the resonant nonlinear Schrödinger equation (R-NLSE) which describes the propagation of solitons through optical fibers. Three types of nonlinear media fibers are studied. They are; quadratic-cubic law, Kerr law and parabolic law. Dark, bright, dark-bright or combined optical and singular soliton solutions are derived using the sine-Gordon equation method (SGEM). The constraint conditions that naturally fall out of the solution structure which guarantee the existence of these solitons are also reported.

  2. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy

    PubMed Central

    Zhang, Yuying; Akins, Meredith L.; Murari, Kartikeya; Xi, Jiefeng; Li, Ming-Jun; Luby-Phelps, Katherine; Mahendroo, Mala; Li, Xingde

    2012-01-01

    We report the development of an all-fiber-optic scanning endomicroscope capable of high-resolution second harmonic generation (SHG) imaging of biological tissues and demonstrate its utility for monitoring the remodeling of cervical collagen during gestation in mice. The endomicroscope has an overall 2.0 mm diameter and consists of a single customized double-clad fiber, a compact rapid two-dimensional beam scanner, and a miniature compound objective lens for excitation beam delivery, scanning, focusing, and efficient SHG signal collection. Endomicroscopic SHG images of murine cervical tissue sections at different stages of normal pregnancy reveal progressive, quantifiable changes in cervical collagen morphology with resolution similar to that of bench-top SHG microscopy. SHG endomicroscopic imaging of ex vivo murine and human cervical tissues through intact epithelium has also been performed. Our findings demonstrate the feasibility of SHG endomicroscopy technology for staging normal pregnancy, and suggest its potential application as a minimally invasive tool for clinical assessment of abnormal cervical remodeling associated with preterm birth. PMID:22826263

  3. Fiber optic systems in the UV region

    NASA Astrophysics Data System (ADS)

    Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.

    2000-05-01

    Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.

  4. Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Brzdąkiewicz, K. A.; Laudyn, U. A.; Karpierz, M. A.; Woliński, T. R.; Wójcik, J.

    2006-12-01

    We investigate linear and nonlinear light propagation in the photonic crystal fibers infiltrated with nematic liquid crystals. Such a photonic structure, with periodic modulation of refractive index, which could be additionally controlled by the temperature and by the optical power, allows for the study of discrete optical phenomena. Our theoretical investigations, carried out with the near infrared wavelength of 830 nm, for both focusing and defocusing Kerr-type nonlinearity, show the possibility of the transverse light localization, which can result in the discrete soliton generation. In addition, we present the preliminary experimental results on the linear light propagation in the photonic crystal fiber with the glycerin-water solution and 6CHBT nematics, as the guest materials.

  5. Microfluidic flow rate detection based on integrated optical fiber cantilever.

    PubMed

    Lien, Victor; Vollmer, Frank

    2007-10-01

    We demonstrate an integrated microfluidic flow sensor with ultra-wide dynamic range, suitable for high throughput applications such as flow cytometry and particle sorting/counting. A fiber-tip cantilever transduces flow rates to optical signal readout, and we demonstrate a dynamic range from 0 to 1500 microL min(-1) for operation in water. Fiber-optic sensor alignment is guided by preformed microfluidic channels, and the dynamic range can be adjusted in a one-step chemical etch. An overall non-linear response is attributed to the far-field angular distribution of single-mode fiber output.

  6. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  7. Advanced Optical Fiber Communication Systems.

    DTIC Science & Technology

    1993-02-28

    feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately

  8. Nonlinear characterization of silver nanocrystals incorporated tellurite glasses for fiber development

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Tan, Wenjiang; Si, Jinhai; Zhan, Huan; He, Jianli; Lin, Aoxiang

    2011-12-01

    To develop high nonlinear optical fibers for all-optical switching applications, 7.5 wt% AgNO3 was incorporated into tellurite glasses with composition of 75TeO2-20ZnO-5Na2CO3 (TZN75) under precisely-controlled experimental conditions to form 7.5Ag-TZN75 glass. Surface Plasmon resonance absorption peak of Ag nanocrystals embedded in 7.5Ag-TZN75 glass was found to center at 552 nm. By degenerated four-wave mixing method, the non-resonant nonlinear refractive index, n2, of 7.5Ag-TZN75 glass was measured to be 7.54×10-19 m2•W-1 at 1500 nm, about 3 times of the reference TZN75 glass without any dopant and 27 times of the silicate glasses and fibers, and the response time is about 1 picosecond.

  9. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holleis, S.; Hoinkes, T.; Wuttke, C.

    2014-04-21

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less

  10. Exact dark soliton solutions for a family of N coupled nonlinear Schrödinger equations in optical fiber media.

    PubMed

    Nakkeeran, K

    2001-10-01

    We consider a family of N coupled nonlinear Schrödinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.

  11. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com; Mahalingam, A.; Uthayakumar, A.

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons,more » study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.« less

  12. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  13. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  14. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  15. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  16. Analysis of second order harmonic distortion due to transmitter non-linearity and chromatic and modal dispersion of optical OFDM SSB modulated signals in SMF-MMF fiber links

    NASA Astrophysics Data System (ADS)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2017-01-01

    Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.

  17. Eliminating crystals in non-oxide optical fiber preforms and optical fibers

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R. (Inventor); Tucker, Dennis S. (Inventor)

    2010-01-01

    A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.

  18. Flat and ultra-broadband two-pump fiber optical parametric amplifiers based on photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong

    2018-06-01

    A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.

  19. Flat and ultra-broadband two-pump fiber optical parametric amplifiers based on photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong

    2018-03-01

    A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.

  20. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  1. A Fiber-Optic System Generating Pulses of High Spectral Density

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  2. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  3. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  4. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  5. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  6. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  7. Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber

    DOE PAGES

    Domingue, Scott R.; Bartels, Randy A.

    2014-12-04

    Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less

  8. Dark-dark solitons for a coupled variable-coefficient higher-order nonlinear Schrödinger system in an inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong

    2017-12-01

    In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.

  9. Gordon Research Conference on Nonlinear Optics and Lasers

    NASA Astrophysics Data System (ADS)

    Haus, Hermann

    1992-02-01

    The topics chosen were production of X rays with high power lasers, generation of millimeter waves with femtosecond pulses, microcavities and microlasers, second harmonic generation in fibers and advances in photorefractivity and parallel optical processing. It introduces ways of thinking and scientific methods in fields that are related, but would not generally appear in specialized conferences. There were three such examples: the methods of nonlinear optics as applied to electronic signal processing, the concept of squeezing (special quantum states of the electromagnetic field) as used to explain the generation of gravitational waves in the expanding universe, and particle interferometers with particle- instead of wave-gratings. By asking Nobel laureate Bloembergen one year in advance to give the traditional after dinner speech, we were privileged to hear him speak of the history of optics over the centuries resulting in the various principles of linear optics, and the highly accelerated pace of discovery of the analogous principles in nonlinear optics.

  10. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  11. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  12. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  13. Mitigation of nonlinear fiber distortion using optical phase conjugation for mode-division multiplexed transmission

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Gao, Guanjun; Zhang, Jie; Fei, Aimei; Cvijetic, Milorad

    2018-07-01

    We have investigated and proposed the use of optical phase conjugation (OPC) technique to mitigate the impact of fiber nonlinearities in mode-division multiplexed transmission systems. Numerical simulations are performed for three wavelengths, each loaded with 200 Gb/s dual-polarization 16-level quadrature amplitude modulation (DP-16QAM) format, in weakly guided two-mode fiber. It is known that differential mode group delay (DMGD) in mode-division multiplexed (MDM) transmission systems could be beneficial for system performance of MDM system with MIMO compensation in place. On the other side, for MDM system with OPC in place, the presence of DMGD may limit the overall benefits since signal power evolution per spatial modes should be symmetrical at the system midpoint in order to realize an effective compensation of the nonlinear effects. Our simulation results show that in the reference case (in the absence of DMGD), the employment of OPC module would lead to an average Q-factor improvement of approximately 10 dB. At the same time, in the presence of DMGD, an average Q-factor improvement would be ∼2.8 dB for WDM case. In addition, due to asymmetrical signal power map, the penalties induced by a periodic amplification process cannot be ideally compensated by the midpoint insertion of OPC. However, by accounting the impacts of both DMGD and asymmetrical signal power map, the insertion of the OPC system will still lead to an average Q-factor improvement of ∼1 dB for WDM channel arrangement.

  14. Tethered capsule OCT endomicroscopy for upper gastrointestinal tract imaging by using ball lens probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Gora, Michalina J.; Reddy, Rohith; Trasischker, Wolfgang; Poupart, Oriane; Lu, Weina; Carruth, Robert W.; Grant, Catriona N.; Soomro, Amna R.; Tiernan, Aubrey R.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-03-01

    While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule's optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.

  15. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  16. Drop-in compatible entanglement for optical-fiber networks.

    PubMed

    Hall, Matthew A; Altepeter, Joseph B; Kumar, Prem

    2009-08-17

    A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% +/- 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source's drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state's fidelity with a maximally entangled state is 98.4% +/- 1.4%). (c) 2009 Optical Society of America

  17. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  18. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  19. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  20. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1995-08-01

    The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.

  1. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    PubMed Central

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  2. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    PubMed

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  3. Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Yang, Junyi; Xiao, Zhengguo; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of 1-(pyrene-1-y1)-3-(3-methylthiophene) acrylic keton named PMTAK was investigated by using Z-scan technique. The light sources for picoseconds(ps) and femtosecond(fs) Z-scan were a mode-locked Nd: YAG laser (21 ps, 532 nm,10 Hz) and an Yb: KGW based fiber laser (190 fs, 515 nm,532 nm, 20 Hz), respectively. In the two cases, reverse saturation absorption(RSA) are observed. The dynamics of the sample's optical nonlinearity is discussed via the femtosecond time-resolved pump probe with phase object at 515nm. We believe that the molecules in excited state of particle population count is caused by two-photon absorption(TPA). The five-level theoretical model is used to analysis the optical nonlinear mechanism. Combining with the result of picosecond Z-scan experiment, a set of optical nonlinear parameters are calculated out. The femtosecond Z-scan experiment is taken to confirm these parameters. The obvious excited-state nonlinearity is found by the set of parameters. The result shows that the sample has good optical nonlinearity which indicates it has potential applications in nonlinear optics field.

  4. Strength measurement of optical fibers by bending

    NASA Astrophysics Data System (ADS)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  5. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  6. High-order statistical equalizer for nonlinearity compensation in dispersion-managed coherent optical communications.

    PubMed

    Koike-Akino, Toshiaki; Duan, Chunjie; Parsons, Kieran; Kojima, Keisuke; Yoshida, Tsuyoshi; Sugihara, Takashi; Mizuochi, Takashi

    2012-07-02

    Fiber nonlinearity has become a major limiting factor to realize ultra-high-speed optical communications. We propose a fractionally-spaced equalizer which exploits a trained high-order statistics to deal with data-pattern dependent nonlinear impairments in fiber-optic communications. The computer simulation reveals that the proposed 3-tap equalizer improves Q-factor by more than 2 dB for long-haul transmissions of 5,230 km distance and 40 Gbps data rate. We also demonstrate that the joint use of a digital backpropagation (DBP) and the proposed equalizer offers an additional 1-2 dB performance improvement due to the channel shortening gain. A performance in high-speed transmissions of 100 Gbps and beyond is evaluated as well.

  7. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  8. Intermodal Parametric Frequency Conversion in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Demas, Jeffrey D.

    Lasers are an essential technology enabling countless fields of optics, however, their operation wavelengths are limited to isolated regions across the optical spectrum due to the need for suitable gain media. Parametric frequency conversion (PFC) is an attractive means to convert existing lasers to new colors using nonlinear optical interactions rather than the material properties of the host medium, allowing for the development of high power laser sources across the entire optical spectrum. PFC in bulk chi(2) crystals has led to the development of the optical parametric oscillator, which is currently the standard source for high power light at non-traditional wavelengths in the laboratory setting. Ideally, however, one could implement PFC in an optical fiber, thus leveraging the crucial benefits of a guided-wave geometry: alignment-free, compact, and robust operation. Four-wave mixing (FWM) is a nonlinear effect in optical fibers that can be used to convert frequencies, the major challenge being conservation of momentum, or phase matching, between the interacting light waves. Phase matching can be satisfied through the interaction of different spatial modes in a multi-mode fiber, however, previous demonstrations have been limited by mode stability and narrow-band FWM gain. Alternatively, phase matching within the fundamental mode can be realized in high-confinement waveguides (such as photonic crystal fibers), but achieving the anomalous waveguide dispersion necessary for phase matching at pump wavelengths near ˜1 mum (where the highest power fiber lasers emit) comes at the cost of reducing the effective area of the mode, thus limiting power-handling. Here, we specifically consider the class of Bessel-like LP0,m modes in step-index fibers. It has been shown that these modes can be selectively excited and guided stably for long lengths of fiber, and mode stability increases with mode order 'm'. The effective area of modes in these fibers can be very large (>6000

  9. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, John S.

    1996-01-01

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  10. Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm.

    PubMed

    Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G

    2004-12-15

    Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.

  11. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  12. Fiber optics structural mechanics and nanotechnology based new generation of fiber coatings

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2006-02-01

    This paper consists of two parts - review and extension. The review part deals with typical fiber optics structures (bare, single- and dual-coated fibers; fibers experiencing low temperature micro-bending; fibers soldered into ferrules or adhesively bonded into capillaries; role of the non-linear stress-strain relationship, etc.) subjected to thermally induced and/or mechanical loading in bending, tension, compression, or to various combinations of such loadings. The emphasis is on the state-of-the-art in the area of optical fiber coatings and the functional (optical), mechanical and environmental problems that occur in polymer-coated or metallized fibers. The solutions to the examined problems are obtained using analytical methods (predictive models) of structural mechanics. The review is based primarily on the author's research conducted at Bell Laboratories, Murray Hill, NJ, during his eighteen years tenure with this company. The extension part addresses a new generation of optical fiber coatings and deals with the application of a newly developed (by the ERS/Siloptix Co.) nano-particle material (NPM) that is used as an attractive substitute for the existing optical fiber coatings. This NPM-based coating has all the merits of polymer and metal coatings, but is free of their shortcomings. The developed material is an unconventional inhomogeneous "smart" composite material, which is equivalent to a homogeneous material with the following major properties: low Young's modulus, immunity to corrosion, good-to-excellent adhesion to adjacent material(s), non-volatile, stable properties at temperature extremes (from -220°C to +350°C), very long (practically infinite) lifetime, "active" hydrophobicity - the material provides a moisture barrier (to both water and water vapor), and, if necessary, can even "wick" moisture away from the contact surface; ability for "self-healing" and "healing": the NPM is able to restore its own dimensions, when damaged, and is able to

  13. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  14. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, J.S.

    1996-10-01

    A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.

  15. Nonlinear characterization of elasticity using quantitative optical coherence elastography.

    PubMed

    Qiu, Yi; Zaki, Farzana R; Chandra, Namas; Chester, Shawn A; Liu, Xuan

    2016-11-01

    Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.

  16. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  17. Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2010-01-01

    Spectrally-isolated narrowband Cherenkov radiation from commercial nonlinear photonic crystal fibers is demonstrated as an ultrafast optical source with a visible tuning range of 485–690 nm, which complementarily extends the near-infrared tuning range of 690–1020 nm from the corresponding femtosecond Ti:sapphire pump laser. Pump-to-signal conversion efficiency routinely surpasses 10%, enabling multimilliwatt visible output across the entire tuning range. Appropriate selection of fiber parameters and pumping conditions efficiently suppresses the supercontinuum generation typically associated with Cherenkov radiation. PMID:19506636

  18. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  19. Stable nonlinear Mach-Zehnder fiber switch

    DOEpatents

    Digonnet, Michel J. F.; Shaw, H. John; Pantell, Richard H.; Sadowski, Robert W.

    1999-01-01

    An all-optical fiber switch is implemented within a short Mach-Zehnder interferometer configuration. The Mach-Zehnder switch is constructed to have a high temperature stability so as to minimize temperature gradients and other thermal effects which result in undesirable instability at the output of the switch. The Mach-Zehnder switch of the preferred embodiment is advantageously less than 2 cm in length between couplers to be sufficiently short to be thermally stable, and full switching is accomplished by heavily doping one or both of the arms between the couplers so as to provide a highly nonlinear region within one or both of the arms. A pump input source is used to affect the propagation characteristics of one of the arms to control the output coupling ratio of the switch. Because of the high nonlinearity of the pump input arm, low pump powers can be used, thereby alleviating difficulties and high cost associated with high pump input powers.

  20. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  1. Nonlinear light-matter interactions in engineered optical media

    NASA Astrophysics Data System (ADS)

    Litchinitser, Natalia

    In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This

  2. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  3. Optical fiber sensors measurement system and special fibers improvement

    NASA Astrophysics Data System (ADS)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  4. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  5. Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenjun; Tian Bo, E-mail: tian.bupt@yahoo.com.c; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191

    2010-08-15

    Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed withmore » the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.« less

  6. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  7. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    NASA Astrophysics Data System (ADS)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  8. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  9. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  10. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  11. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  12. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  13. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  14. Polarization locked vector solitons and axis instability in optical fiber.

    PubMed

    Cundiff, Steven T.; Collings, Brandon C.; Bergman, Keren

    2000-09-01

    We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be +/-pi/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and present a physical explanation of both of these states and the stability of the polarization locked vector solitons. (c) 2000 American Institute of Physics.

  15. Polarization locked vector solitons and axis instability in optical fiber

    NASA Astrophysics Data System (ADS)

    Cundiff, Steven T.; Collings, Brandon C.; Bergman, Keren

    2000-09-01

    We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be ±π/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and present a physical explanation of both of these states and the stability of the polarization locked vector solitons.

  16. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials.

    PubMed

    Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  17. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  18. Optical fiber-based biosensors.

    PubMed

    Monk, David J; Walt, David R

    2004-08-01

    This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.

  19. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  20. The Application of Fiber Optic Wavelength Division Multiplexing in RF Avionics

    NASA Technical Reports Server (NTRS)

    Ngo, Duc; Nguyen, Hung; Atiquzzaman, Mohammed; Sluss, James J., Jr.; Refai, Hakki H.

    2004-01-01

    This paper demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment to support analog RF signal transmission. We investigate the simultaneous transmission of four RF signals (channels) over a single optical fiber. These four analog channels are sequentially multiplexed and demultiplexed at different points along a fiber optic backbone to more closely emulate the conditions found onboard aircraft. We present data from measurements of signal-to-noise ratio (SNR), transmission response (loss and gain), group delay that defines phase distortion, and dynamic range that defines nonlinear distortion. The data indicate that WDM is well-suited for avionics applications.

  1. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration < 250 fs (more than 20 bound pulses when obtained multi-bound soliton generation with intertemporal width 5 ps) at a repetition rate 11.3 MHz (with signal-to-noise ratio at fundamental frequency > 59 dB) and relative intensity noise <-101 dBc / Hz.

  2. Estimating the Volterra Series Transfer Function over coherent optical OFDM for efficient monitoring of the fiber channel nonlinearity.

    PubMed

    Shulkind, Gal; Nazarathy, Moshe

    2012-12-17

    We present an efficient method for system identification (nonlinear channel estimation) of third order nonlinear Volterra Series Transfer Function (VSTF) characterizing the four-wave-mixing nonlinear process over a coherent OFDM fiber link. Despite the seemingly large number of degrees of freedom in the VSTF (cubic in the number of frequency points) we identified a compressed VSTF representation which does not entail loss of information. Additional slightly lossy compression may be obtained by discarding very low power VSTF coefficients associated with regions of destructive interference in the FWM phased array effect. Based on this two-staged VSTF compressed representation, we develop a robust and efficient algorithm of nonlinear system identification (optical performance monitoring) estimating the VSTF by transmission of an extended training sequence over the OFDM link, performing just a matrix-vector multiplication at the receiver by a pseudo-inverse matrix which is pre-evaluated offline. For 512 (1024) frequency samples per channel, the VSTF measurement takes less than 1 (10) msec to complete with computational complexity of one real-valued multiply-add operation per time sample. Relative to a naïve exhaustive three-tone-test, our algorithm is far more tolerant of ASE additive noise and its acquisition time is orders of magnitude faster.

  3. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  4. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  5. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  6. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  7. All fiber nonlinear microscopy at 1550 nm using a double-clad fiber coupler

    NASA Astrophysics Data System (ADS)

    Perrillat-Bottonet, Thomas; Strupler, Mathias; Leduc, Mikael; Majeau, Lucas; Godbout, Nicolas; Boudoux, Caroline

    2017-02-01

    Nonlinear microscopy has already shown its impact in biological research, namely in the fields of neurobiology, immunology, cancer research and embryology. Typically, these microscopes operate under free space propagation, using a dichroic mirror to separate the nonlinear signals from the excitation laser. While powerful such implementations are difficult to translate from the laboratory to a clinical setting where the environment is less controlled. Therefore, we propose an alignment-free all-fiber nonlinear microscopy system at 1550 nm based on double-clad fibers (DCF). As sectioning is performed through nonlinear effects, nonlinear microscopy does not require a detection pinhole, and. the DCF inner cladding can be used for efficient collection of nonlinear signals. The built system allows for multiplexing second harmonic generation (SHG) and two-photon excitation fluorescence (2PEF), collected from the inner cladding; and reflectance confocal microscopy (RCM), detected from the core acting as the confocal pinhole. Finally, an asymmetric double-clad fiber coupler (DCFC) is used to address efficiently both DCF channels. This all-fiber system is more compact and less sensitive to alignment, but requires carefully managing the transmission of the femtosecond pulse in the fiber. This is addressed using dispersion compensation fiber, pulse compression and solitonic propagation. Additionally, with a source centered at 1550 nm, we benefit from reduced sample scattering thus increasing the depth of field in comparison with systems operating at 800 nm. Overall we believe that the developed system could be transferred in clinics to enable in-vivo and in-situ imaging of human patient.

  8. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  9. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy

    PubMed Central

    Ughi, Giovanni J.; Gora, Michalina J.; Swager, Anne-Fré; Soomro, Amna; Grant, Catriona; Tiernan, Aubrey; Rosenberg, Mireille; Sauk, Jenny S.; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-01-01

    Optical coherence tomography (OCT) is an optical diagnostic modality that can acquire cross-sectional images of the microscopic structure of the esophagus, including Barrett’s esophagus (BE) and associated dysplasia. We developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires high-resolution images of entire gastrointestinal (GI) tract luminal organs. This device has a potential to become a screening method that identifies patients with an abnormal esophagus that should be further referred for upper endoscopy. Currently, the characterization of the OCT-TCE esophageal wall data set is performed manually, which is time-consuming and inefficient. Additionally, since the capsule optics optimally focus light approximately 500 µm outside the capsule wall and the best quality images are obtained when the tissue is in full contact with the capsule, it is crucial to provide feedback for the operator about tissue contact during the imaging procedure. In this study, we developed a fully automated algorithm for the segmentation of in vivo OCT-TCE data sets and characterization of the esophageal wall. The algorithm provides a two-dimensional representation of both the contact map from the data collected in human clinical studies as well as a tissue map depicting areas of BE with or without dysplasia. Results suggest that these techniques can potentially improve the current TCE data acquisition procedure and provide an efficient characterization of the diseased esophageal wall. PMID:26977350

  10. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  11. Optical-fiber-based Mueller optical coherence tomography.

    PubMed

    Jiao, Shuliang; Yu, Wurong; Stoica, George; Wang, Lihong V

    2003-07-15

    An optical-fiber-based multichannel polarization-sensitive Mueller optical coherence tomography (OCT) system was built to acquire the Jones or Mueller matrix of a scattering medium, such as biological tissue. For the first time to our knowledge, fiber-based polarization-sensitive OCT was dynamically calibrated to eliminate the polarization distortion caused by the single-mode optical fiber in the sample arm, thereby overcoming a key technical impediment to the application of optical fibers in this technology. The round-trip Jones matrix of the sampling fiber was acquired from the reflecting surface of the sample for each depth scan (A scan) with our OCT system. A new rigorous algorithm was then used to retrieve the calibrated polarization properties of the sample. This algorithm was validated with experimental data. The skin of a rat was imaged with this fiber-based system.

  12. Nonlinear laminate analysis for metal matrix fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  13. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  14. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    DTIC Science & Technology

    2014-12-23

    coupled for d = 2λ . Results are shown for the TE polarization , where the transverse electric field vector is pointing in the vertical direction in these...16, 42–44 (1991). 6. D. U. Noske, N. Pandit, and J. R. Taylor, “Subpicosecond soliton pulse formation from self-mode- locked erbium fibre laser using...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode- Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  15. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  16. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  17. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  18. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  19. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  20. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  1. Continuum generation in optical fibers for high-resolution holographic coherence domain imaging application

    NASA Astrophysics Data System (ADS)

    Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.

    2009-02-01

    High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.

  2. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  3. Nonlinear multilayers as optical limiters

    NASA Astrophysics Data System (ADS)

    Turner-Valle, Jennifer Anne

    1998-10-01

    In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.

  4. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  5. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  6. Fiber Optics,

    DTIC Science & Technology

    1986-04-04

    effectiveness of new ships and ship systems. The basis of this new technology is the optical fiber, a thin, flex- ible glass or plastic waveguide through...His photophone used unguiled modulated sunlight to transmit speech about 700 feet (213 m). In 1910, researchers performed theoretical investigations...somewhat more con- troversial use of optical fibers in terms of cost effectiveness is in LANs, or as we sometimes call them in the Navy, "data transfer

  7. Fiber bundle endomicroscopy with multi-illumination for three-dimensional reflectance image reconstruction

    NASA Astrophysics Data System (ADS)

    Ando, Yoriko; Sawahata, Hirohito; Kawano, Takeshi; Koida, Kowa; Numano, Rika

    2018-02-01

    Bundled fiber optics allow in vivo imaging at deep sites in a body. The intrinsic optical contrast detects detailed structures in blood vessels and organs. We developed a bundled-fiber-coupled endomicroscope, enabling stereoscopic three-dimensional (3-D) reflectance imaging with a multipositional illumination scheme. Two illumination sites were attached to obtain reflectance images with left and right illumination. Depth was estimated by the horizontal disparity between the two images under alternative illuminations and was calibrated by the targets with known depths. This depth reconstruction was applied to an animal model to obtain the 3-D structure of blood vessels of the cerebral cortex (Cereb cortex) and preputial gland (Pre gla). The 3-D endomicroscope could be instrumental to microlevel reflectance imaging, improving the precision in subjective depth perception, spatial orientation, and identification of anatomical structures.

  8. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  9. Microstructured optical fiber photonic wires with subwavelength core diameter.

    PubMed

    Lizé, Yannick; Mägi, Eric; Ta'eed, Vahid; Bolger, Jeremy; Steinvurzel, Paul; Eggleton, Benjamin

    2004-07-12

    We demonstrate fabrication of robust, low-loss silica photonic wires using tapered microstructured silica optical fiber. The fiber is tapered by a factor of fifty while retaining the internal structure and leaving the air holes completely open. The air holes isolate the core mode from the surrounding environment, making it insensitive to surface contamination and contact leakage, suggesting applications as nanowires for photonic circuits . We describe a transition between two different operation regimes of our photonic wire from the embedded regime, where the mode is isolated from the environment, to the evanescent regime, where more than 70% of the mode intensity can propagate outside of the fiber. Interesting dispersion and nonlinear properties are identified.

  10. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  11. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  12. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  13. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  14. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  15. Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation

    NASA Astrophysics Data System (ADS)

    Lozano-Hernandez, T.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Hernandez-Garcia, J. M.; Sierra-Hernandez, J. M.

    2018-02-01

    We present an experimental study of liquid refractive index effects into Ytterbium ring fiber laser cavity configuration. The laser is operated using a bi-tapered optical fiber immersed in water-alcohol concentrations. When the tapered fiber is dipped into a distilled water, a single lasing line with a peak power centered at 1025 nm is achieved. Afterward, by changing the polarization state into the cavity the lasing line can be switched. Moreover, by modifying the refractive index liquid surrounding media the lasing lines can be controlled and special liquid provide nonlinear response. The laser offers compactness, low effective cost and good stability.

  16. Sealed fiber-optic bundle feedthrough

    DOEpatents

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  17. Optical fibers and their applications 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2013-01-01

    XIVth Conference on Optical Fibers and Their Applications, Nałęczów 2012, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations from 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałęczów 2012. The papers from the conference presentations will be published in Proc.SPIE. The next conference from this series is scheduled for January 2014 in Białowieża.

  18. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  19. Coherent fiber supercontinuum for biophotonics

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2013-01-01

    Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging. PMID:24358056

  20. Upconversion fiber-optic confocal microscopy under near-infrared pumping.

    PubMed

    Kim, Do-Hyun; Kang, Jin U; Ilev, Ilko K

    2008-03-01

    We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55 microm. The upconversion confocal design allows the use of conventional Si detectors and 1.55 microm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11 microm, respectively.

  1. Nonlinear optical THz generation and sensing applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2012-03-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.

  2. Effect of control-beam polarization and power on optical time-domain demultiplexing in a new nonlinear optical loop mirror design

    NASA Astrophysics Data System (ADS)

    Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef

    2009-05-01

    A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.

  3. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  4. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  5. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    PubMed

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  6. Experimental study of the reversible behavior of modulational instability in optical fibers

    NASA Astrophysics Data System (ADS)

    van Simaeys, Gaetan; Emplit, Philippe; Haelterman, Marc

    2002-03-01

    We report what is to our knowledge the first clear-cut experimental evidence of the reversibility of modulational instability in dispersive Kerr media. It was possible to perform this experiment with standard telecommunication fiber because we used a specially designed 550-ps square-pulse laser source based on the two-wavelength configuration of a nonlinear optical loop mirror. Our observations demonstrate that reversibility is due to well-balanced and synchronous energy transfer among a significant number of spectral wave components. These results provide what we believe is the first evidence, in the field of nonlinear optics, of the universal Fermi-Pasta-Ulam recurrence phenomenon that has been predicted for a large number of conservative nonlinear systems, including those described by a nonlinear Schrödinger equation that is relevant to the context of the present study.

  7. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  8. Optical Phase Conjugation via Stimulated Brillouin Scattering in Multimode Optical Fiber

    DTIC Science & Technology

    1990-09-01

    3.78 x 10- 5 cm - 1 (16.4 dB/km). . . 27 9. The evolution of the transmitted and backscattered powers as the pump power is scaled in a 200 m fiber...km and a gain coef- * ficient of 10.2 x 10- 9 cm/W ............................ 33 v 0 Figure Page 12. Laser power stability. The zero level is at...gain was 10.2 x 10- 9 cm/W with an error of 10%. Most importantly, nonlinear optical phase conjugation was demonstrated for the first time

  9. Confocal laser endomicroscopy: in vivo endoscopic tissue analysis.

    PubMed

    Smith, Christine; Ogilvie, Jeanette; McClelland, Laurie

    2008-01-01

    In today's fast-paced world of instant messaging, high-speed Internet, and cell phones, patients want results of procedures in the same high-speed fashion. The development of the new technique of confocal laser endomicroscopy and the restructuring of the endoscope may enable quick procedure results to be delivered. First used in Germany and Australia for research and now available for clinical use, confocal laser endomicroscopy has been approved by the Food and Drug Administration for marketing and clinical use in the United States. This article provides the gastroenterology nurse with information about how the confocal laser endomicroscope works, assisting with the procedure, and pre- and postprocedure patient instructions.

  10. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  11. Optical solitons and modulation instability analysis with (3 + 1)-dimensional nonlinear Shrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the (3 + 1)-dimensional nonlinear Shrödinger equation (NLSE) that serves as the model to study the propagation of optical solitons through nonlinear optical fibers. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the solitary wave ansatz with Jaccobi elliptic function methods, we present the exact dark, bright and dark-bright or combined optical solitons to the model. The intensity as well as the nonlinear phase shift of the solitons are reported. The modulation instability aspects are discussed using the concept of linear stability analysis. The MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  12. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.

    PubMed

    Barclay, Paul; Srinivasan, Kartik; Painter, Oskar

    2005-02-07

    A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.

  13. Chemistry Research of Optical Fibers.

    DTIC Science & Technology

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  14. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  15. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  16. Wideband fiber optic communications link

    NASA Astrophysics Data System (ADS)

    Bray, J. R.

    1984-12-01

    This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.

  17. Easy and safe coated optical fiber direct connection without handling bare optical fiber

    NASA Astrophysics Data System (ADS)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Kurashima, Toshio

    2015-06-01

    We propose a novel field installable splicing technique for the direct connection of 250 μm diameter coated optical fiber that does not require bare optical fiber to be handled. Our proposed technique can realize a low insertion loss over a wide field installation temperature range of -10-40 °C. The keys to coated optical fiber direct connection are a cleaving technique and a technique for removing coated optical fiber. As the cleaving technique, we employed a method where the fiber is stretched and then a blade is pushed perpendicularly against the stretched fiber. As a result we confirmed that fiber endfaces cleaved at -10-40 °C were all mirror endfaces. With the removal technique, the coating is removed inside the connecting component by incorporating a circular cone shaped coating removal part. A mechanical splice based on these techniques successfully achieved a low insertion loss of less than 0.11 dB and a return loss of more than 50 dB at -10, 20, and 40 °C. In addition, the temperature cycle characteristics were stable over a wide temperature range of -40-75 °C.

  18. Optical-Fiber Leak Detector

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.

    1994-01-01

    Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.

  19. Overview of Fiber-Optical Sensors

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  20. Wavefront Processing Through Integrated Fiber Optics.

    NASA Astrophysics Data System (ADS)

    Khan, Romel Rabiul

    This thesis is devoted to the development of a new technology of integrated fiber optics. Through the use of fusion splicing and etching several dissimilar optical fibers can be integrated into a single fiber providing wave-front processing capabilities not previously possible. Optical fibers have been utilized for their unique capabilities; such as, remote beam delivery and immunity from electromagnetic noise. In this thesis, the understanding of integrated fiber optics through fusion splicing is furthered both theoretically and experimentally. Most of the common optical components such as lenses, apertures, and modulators can be implemented through the use of fiber optics and then integrated together through fusion splicing, resulting in an alignment-free, rugged and miniaturized system. For example, a short length of multimode graded-index fiber can be used as either a lens or a window to relay an image. A step-index multimode fiber provides a spacer or an aperture. Other special arrangements can be exploited to do in-line modulation in both amplitude and phase. The power of this technique is demonstrated by focusing on a few applications where significant advantages are obtained through this technology. In laser light scattering fiber optic systems, integrated fiber optics is used for delivering and receiving light from small scattering volumes in a spatially constrained environment. When applied for the detection of cataracts in the human eye lens, laser light scattering probes with integrated fiber optics could obtain a map of the eye lens and provide invaluable data for further understanding of cataractogenesis. Use of integrated fiber optics in the high resolution structural analysis of aircraft propeller blades is also presented. Coupling of laser diode to monomode fiber through integrated fiber optics is analyzed. The generation of nondiffracting Bessel-Gauss beams using integrated fiber optics is described. The significance of the Bessel-Gauss beam lies

  1. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  2. Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.

    PubMed

    Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario

    2013-10-21

    The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.

  3. Career Directions--Fiber Optic Installer

    ERIC Educational Resources Information Center

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  4. Seismic damage identification using multi-line distributed fiber optic sensor system

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Hou, Shuang

    2005-06-01

    Determination of the actual nonlinear inelastic response mechanisms developed by civil structures such as buildings and bridges during strong earthquakes and post-earthquake damage assessment of these structures represent very difficult challenges for earthquake structural engineers. One of the main reasons is that the traditional sensor can't serve for such a long period to cover an earthquake and the seismic damage location in the structure can't be predicted in advance definitely. It is thought that the seismic damage of reinforced concrete (RC) structure can be related to the maximum response the structure, which can also be related to the cracks on the concrete. A distributed fiber optic sensor was developed to detect the cracks on the reinforced concrete structure under load. Fiber optic couples were used in the sensor system to extend the sensor system's capacity from one random point detection to more. An optical time domain reflectometer (OTDR) is employed for interrogation of the sensor signal. Fiber optic sensors are attached on the surface of the concrete by the epoxy glue. By choosing the strength of epoxy, the damage state of the concrete can be responded to the occurrence of the Fresnel scattering in the fiber optic sensor. Experiments involved monotonic loading to failure. Finally, the experimental results in terms of crack detection capability are presented and discussed.

  5. Unsymmetrical squaraines for nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)

    1996-01-01

    Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.

  6. Single-shot, high-resolution, fiber-based phase-diversity photodetection of optical pulses

    NASA Astrophysics Data System (ADS)

    Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.

    2016-03-01

    Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.

  7. Ultrashort optical waveguide excitations in uniaxial silica fibers: elastic collision scenarios.

    PubMed

    Kuetche, Victor K; Youssoufa, Saliou; Kofane, Timoleon C

    2014-12-01

    In this work, we investigate the dynamics of an uniaxial silica fiber under the viewpoint of propagation of ultimately ultrashort optical waveguide channels. As a result, we unveil the existence of three typical kinds of ultrabroadband excitations whose profiles strongly depend upon their angular momenta. Looking forward to surveying their scattering features, we unearth some underlying head-on scenarios of elastic collisions. Accordingly, we address some useful and straightforward applications in nonlinear optics through secured data transmission systems, as well as laser physics and soliton theory with optical soliton dynamics.

  8. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.

    PubMed

    Du, Yuhuan; Guo, Yingqing

    2016-07-15

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.

  9. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor

    PubMed Central

    Du, Yuhuan; Guo, Yingqing

    2016-01-01

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976

  10. Excitation of photonic atoms (dielectric microspheres) on optical fibers: application to room-temperature persistent spectral hole burning

    NASA Astrophysics Data System (ADS)

    Serpenguzel, Ali; Arnold, Stephen; Griffel, Giora

    1995-05-01

    Recently, photonic atoms (dielectric microspheres) have enjoyed the attention of the optical spectroscopy community. A variety of linear and nonlinear optical processes have been observed in liquid microdroplets. But solid state photonic devices using these properties are scarce. A first of these applications is the room temperature microparticle hole-burning memory. New applications can be envisioned if microparticle resonances can be coupled to traveling waves in optical fibers. In this paper we demonstrate the excitation of narrow morphology dependent resonances of microparticles placed on an optical fiber. Furthermore we reveal a model for this process which describes the coupling efficiency in terms of the geometrical and material properties of the microparticle-fiber system.

  11. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    NASA Astrophysics Data System (ADS)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other

  12. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  13. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser.

    PubMed

    Juan, Yu-Shan; Lin, Fan-Yi

    2010-04-26

    We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

  14. Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.

    PubMed

    Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-02-05

    We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.

  15. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  16. Fiber-optic proximity sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Hermann, W. A.; Primus, H. C.

    1980-01-01

    Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.

  17. All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.

    PubMed

    Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun

    2016-04-04

    An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications.

  18. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  19. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  20. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  1. Fiber optic combiner and duplicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The investigation of the possible development of two optical devices, one to take two images as inputs and to present their arithmetic sum as a single output, the other to take one image as input and present two identical images as outputs is described. Significant engineering time was invested in establishing precision fiber optics drawing capabilities, real time monitoring of the fiber size and exact measuring of fiber optics ribbons. Various assembly procedures and tooling designs were investigated and prototype models were built and evaluated that established technical assurance that the device was feasible and could be fabricated. Although the interleaver specification in its entirety was not achieved, the techniques developed in the course of the program improved the quality of images transmitted by fiber optic arrays by at least an order of magnitude. These techniques are already being applied to the manufacture of precise fiber optic components.

  2. Fiber Optic Microswitch For Industrial Use

    NASA Astrophysics Data System (ADS)

    Desforges, F. X.; Jeunhomme, L. B.; Graindorge, Ph.; LeBoudec, G.

    1988-03-01

    Process control instrumentation is a large potential market for fiber optic sensors and particulary for fiber optic microswitches. Use of such devices brings a lot of advantages such as lighter cables, E.M. immunity, intrinsic security due to optical measurement, no grounding problems and so on. However, commercially available fiber optic microswitches exhibit high insertion losses as well as non optimal mechanical design. In fact, these drawbacks are due to operation principles which are based on a mobile shutter displaced between two fibers. The fiber optic microswitch we present here, has been specially designed for harsh environments (oil industry). The patented operation principle uses only one fiber placed in front of a retroreflecting material by the mean of a fiber optic connector. The use of this retroreflector material allows an important reduction of the position tolerances required in two fibers devices, as well as easier fabrication and potential mass production of the optical microswitch. Moreover, such a configuration yields good performances in term of reflection coefficient leading to large dynamic range and consequently large distances (up to 250 m) between the optical microswitch and its optoelectronic instrument. Optomechanical design of the microswitch as well as electronic design of the optoelectronic instrument will be examined and discussed.

  3. Realization of fiber optic displacement sensors

    NASA Astrophysics Data System (ADS)

    Guzowski, Bartlomiej; Lakomski, Mateusz

    2018-03-01

    Fiber optic sensors are very promising because of their inherent advantages such as very small size, hard environment tolerance and impact of electromagnetic fields. In this paper three different types of Intensity Fiber Optic Displacement Sensors (I-FODS) are presented. Three configurations of I-FODS were realized in two varieties. In the first one, the cleaved multimode optical fibers (MMF) were used to collect reflected light, while in the second variety the MMF ended with ball lenses were chosen. To ensure an accurate alignment of optical fibers in the sensor head the MTP C9730 optical fiber ferrules were used. In this paper the influence of distribution of transmitting and detecting optical fibers on sensitivity and linear range of operation of developed I-FODS were investigated. We have shown, that I-FODS with ball lenses receive average 10.5% more reflected power in comparison to the cleaved optical fibers and they increase linearity range of I-FODS by 33%. In this paper, an analysis of each type of the realized sensor and detailed discussion are given.

  4. Optical-Fiber Fluorosensors With Polarized Light Sources

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  5. High-accuracy fiber-optic shape sensing

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.

    2007-04-01

    We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.

  6. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  7. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  8. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  9. Confocal endomicroscopy: Is it time to move on?

    PubMed

    Robles-Medranda, Carlos

    2016-01-10

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers.

  10. Architectures of fiber optic network in telecommunications

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  11. Optical system components for navigation grade fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  12. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  13. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  14. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  15. Fiber optic detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  17. Research on spectrum broadening covering visible light of a fiber femtosecond optical frequency comb for absolute frequency measurement

    NASA Astrophysics Data System (ADS)

    Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo

    2018-03-01

    As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.

  18. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  19. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  20. Optical fiber technology development in Poland

    NASA Astrophysics Data System (ADS)

    Wójcik, Waldemar; Romaniuk, Ryszard

    2010-09-01

    Optical fiber technology is an important branch of science and technology, but also economy. Together with related disciplines it creates wider areas like optoelectronics and photonics. Optical fiber technology is developed in this country rather dynamically, proportionally to the available funds designed locally for research and applications. Recently this development was enhanced with considerable funds from European Operational Funds Innovative Economy POIG and Human Capital POKL. The paper summarizes the development of optical fiber technology in Poland from academic perspective during the period of last 2-3 years. The digest is very probably not full. An emphasis is put on development of optical fiber manufacturing methods. This development was illustrated by a few examples of optical fiber applications.

  1. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  2. Fiber optic to integrated optical chip coupler

    NASA Technical Reports Server (NTRS)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  3. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  4. Methods and apparatus for optical switching using electrically movable optical fibers

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM

    2007-03-13

    Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.

  5. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  6. A novel optical fiber displacement sensor of wider measurement range based on neural network

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Dai, Xue Feng; Wang, Yu Tian

    2006-02-01

    By studying on the output characteristics of random type optical fiber sensor and semicircular type optical fiber sensor, the ratio of the two output signals was used as the output signal of the whole system. Then the measurement range was enlarged, the linearity was improved, and the errors of reflective and absorbent changing of target surface are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network(ANN) is set up. So the intrinsic errors such as effects of fluctuations in the light, circuit excursion, the intensity losses in the fiber lines and the additional losses in the receiving fiber caused by bends are eliminated. By discussing in theory and experiment, the error of nonlinear is 2.9%, the measuring range reaches to 5-6mm and the relative accuracy is 2%.And this sensor has such characteristics as no electromagnetic interference, simple construction, high sensitivity, good accuracy and stability. Also the multi-point sensor system can be used to on-line and non-touch monitor in working locales.

  7. Time-reversed wave mixing in nonlinear optics

    PubMed Central

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-01-01

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906

  8. Controlling formation and suppression of fiber-optical rogue waves.

    PubMed

    Brée, Carsten; Steinmeyer, Günter; Babushkin, Ihar; Morgner, Uwe; Demircan, Ayhan

    2016-08-01

    Fiber-optical rogue waves appear as rare but extreme events during optical supercontinuum generation in photonic crystal fibers. This process is typically initiated by the decay of a high-order fundamental soliton into fundamental solitons. Collisions between these solitons as well as with dispersive radiation affect the soliton trajectory in frequency and time upon further propagation. Launching an additional dispersive wave at carefully chosen delay and wavelength enables statistical manipulation of the soliton trajectory in such a way that the probability of rogue wave formation is either enhanced or reduced. To enable efficient control, parameters of the dispersive wave have to be chosen to allow trapping of dispersive radiation in the nonlinear index depression created by the soliton. Under certain conditions, direct manipulation of soliton properties is possible by the dispersive wave. In other more complex scenarios, control is possible via increasing or decreasing the number of intersoliton collisions. The control mechanism reaches a remarkable efficiency, enabling control of relatively large soliton energies. This scenario appears promising for highly dynamic all-optical control of supercontinua.

  9. Shedding Light on Fiber Optics.

    ERIC Educational Resources Information Center

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  10. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  11. Piezoelectric bimorph optical-fiber sensor.

    PubMed

    Sun, Fengguo; Xiao, Gaozhi; Zhang, Zhiyi; Grover, Chander P

    2004-03-20

    We propose and demonstrate a novel high-voltage optical-fiber sensor. This sensor consists of an emitting fiber, a receiving fiber, and a piezoelectric bimorph transducer. The emitting fiber is fixed in a base, whereas the receiving fiber is mounted on the free end of the piezoelectric bimorph transducer. When a voltage is applied to the piezoelectric bimorph transducer, its free end is displaced over a distance delta. The displacement induces a loss in the optical coupling between the emitting and the receiving fiber. The voltage can be measured by monitoring the coupling loss.

  12. Quantum and classical properties of soliton propagation in optical fibers

    NASA Astrophysics Data System (ADS)

    Krylov, Dmitriy

    2001-05-01

    Quantum and classical aspects of nonlinear optical pulse propagation in optical fibers are studied with the emphasis on temporal solitons. The theoretical and experimental investigation focuses on phenomena that can fundamentally limit transmission and detection of optical signals in fiber-optic communication systems that employ solitons. In transmission experiments the first evidence is presented that a pre-chirped high-order soliton pulse propagating in a low anomalous dispersion optical fiber will irreversibly break up into an ordered train of fundamental (N = 1) solitons. The experimental results confirm previous analytical predictions and show excellent agreement with numerical simulations. This phenomenon presents a fundamental limitation on systems that utilize dispersion-management or pre-chirping of optical pulses, and has to be taken into consideration when designing such systems. The experiments also show that the breakup process can be repeated by cascading two independent breakup stages. Each stage accepts a single input pulse and produces two independent pulses. The stages are cascaded to produce a one-to-four breakup. Solitons are also shown to be ideally suited for investigating non-classical properties of light. Based on the general quantum theory of optical pulse propagation, a new scheme for generating amplitude-squeezed solitons is designed and implemented in a highly asymmetric fiber Sagnac interferometer. A record reduction of 5.7dB (73%) and, with correction for linear losses, 7.0dB (81%) in photon-number fluctuations below the shot-noise level is measured by direct detection. The same scheme is also shown to generate significant classical noise reduction and is limited by Raman effects in fiber. Such large squeezing levels can be employed in practical fiber optic communication systems to achieve noiseless amplification and better signal to noise ratios in direct detection. The photon number states can also be used in quantum non- demolition

  13. Optically Tuned Fiber Gratings

    DTIC Science & Technology

    1998-03-01

    why we use a bulk polarization beam splitter . The fibre grating length was 50 cm with centre wavelength at 1550 nm. Fig.8 shows results of the...characteristics of glasses with enhanced non -linearity. In accordance with the specification, a fiber grating should be tuned within the range of 1...intensity pulse and has successfully demonstrated optically-tuned fiber grating. 19980617 115 14. SUBJECT TERMS Fibre Optics, Non -linear Optical

  14. Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber

    NASA Astrophysics Data System (ADS)

    Konev, Leonid S.; Shpolyanskiy, Yuri A.

    2013-05-01

    We simulated propagation of few-cycle femtosecond pulses in fused silica fiber based on the set of first-order equations for forward and backward waves that generalizes widely used equation of unidirectional approximation. Appearance of a weak reflected field in conditions default to the unidirectional approach is observed numerically. It arises from nonmatched initial field distribution with the nonlinear medium response. Besides additional field propagating forward along with the input pulse is revealed. The analytical solution of a simplified set of equations valid over distances of a few wavelengths confirms generation of reflected and forward-propagating parts of the backward wave. It allowed us to find matched conditions when the reflected field is eliminated and estimate the amplitude of backward wave via medium properties. The amplitude has the order of the nonlinear contribution to the refractive index divided by the linear refractive index. It is small for the fused silica so the conclusions obtained in the unidirectional approach are valid. The backward wave should be proportionally higher in media with stronger nonlinear response. We did not observe in simulations additional self-reflection not related to non-matched boundary conditions.

  15. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  16. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  17. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  18. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    PubMed

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  19. Lightning vulnerability of fiber-optic cables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less

  20. Compensated Fiber-Optic Frequency Distribution Equipment

    DTIC Science & Technology

    2010-11-01

    fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link

  1. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    PubMed

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  2. Nonlinear optical interactions in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.

    2017-03-01

    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  3. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  4. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  5. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  6. 1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung

    2005-02-07

    Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.

  7. Alternative Controller for a Fiber-Optic Switch

    NASA Technical Reports Server (NTRS)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  8. A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal

    2018-02-01

    Using non-linear effects such as cross-gain modulation (XGM) and cross-phase modulation (XPM) inside two highly non-linear fibres (HNLF) arranged in cascaded configuration, a simultaneous half/full-subtracter is proposed. The proposed simultaneous half/full-subtracter design is attractive due to several features such as input data pattern independence and usage of minimal number of non-linear elements i.e. HNLFs. Proof of concept simulations have been conducted at 100 Gbps rate, indicating fine performance, as extinction ratio (dB) > 6.28 dB and eye opening factors (EO) > 77.1072% are recorded for each implemented output. The proposed simultaneous half/full-subtracter can be used as a key component in all-optical information processing circuits.

  9. Effects of fiber manipulation methods on optical fiber properties

    NASA Astrophysics Data System (ADS)

    Reynolds, Robert O.; Bechter, Andrew; Crass, Jonathan

    2016-07-01

    Optical fibers are routinely used to couple high-resolution spectrographs to modern telescopes, enabling important advantages in areas such as the search for extrasolar planets using spectroscopic radial velocity measurements of candidate stars. Optical fibers partially scramble the input illumination, and this feature enables a fiber feed to provide more uniform illumination to the spectrograph optics, thereby reducing systematic errors in radial velocity measurements. However fibers suffer from focal ratio degradation (FRD), a spreading of the beam at the output of the fiber with respect to that at the fiber input, which results in losses in throughput and resolution. Modal noise, a measurement uncertainty caused by inherent fiber properties and evident as a varying spatial intensity at the fiber exit plane, reduces the signal to noise ratio in the data. Devices such as double scramblers are often used to improve scrambling, and better fiber end preparation can mitigate FRD. Many instruments agitate the fiber during an observation to reduce modal noise, and stretching the fiber during use has been shown to offer a greater reduction in that noise. But effects of agitation and stretching on fiber parameters such as total transmission and focal ratio degradation have not been adequately studied. In this paper we present measurements of transmission loss and focal ratio degradation for both agitated and stretched fibers.

  10. Optical Quasi-Soliton Solutions for the Cubic-Quintic Nonlinear SCHRÖDINGER Equation with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Zhang, Jie-Fang

    Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.

  11. Fiber Ring Optical Gyroscope (FROG)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.

  12. Optical fibers for FTTH application

    NASA Astrophysics Data System (ADS)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  13. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  14. Highly non-linear solid core photonic crystal fiber with one nano hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwar, Rahul Kumar, E-mail: rahul0889@gmail.com; Bhardwaj, Vanita, E-mail: bhardwajphy12@gmail.com; Singh, Vinod Kumar, E-mail: singh.vk.ap@ismdhanbad.co.in

    2015-08-28

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for themore » SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.« less

  15. Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Biswas, Anjan; Milović, Daniela; Belić, Milivoj

    2016-05-01

    We consider a high-order nonlinear Schrödinger equation with competing cubic-quintic-septic nonlinearities, non-Kerr quintic nonlinearity, self-steepening, and self-frequency shift. The model describes the propagation of ultrashort (femtosecond) optical pulses in highly nonlinear optical fibers. A new ansatz is adopted to obtain nonlinear chirp associated with the propagating femtosecond soliton pulses. It is shown that the resultant elliptic equation of the problem is of high order, contains several new terms and is more general than the earlier reported results, thus providing a systematic way to find exact chirped soliton solutions of the septic model. Novel soliton solutions, including chirped bright, dark, kink and fractional-transform soliton solutions are obtained for special choices of parameters. Furthermore, we present the parameter domains in which these optical solitons exist. The nonlinear chirp associated with each of the solitonic solutions is also determined. It is shown that the chirping is proportional to the intensity of the wave and depends on higher-order nonlinearities. Of special interest is the soliton solution of the bright and dark type, determined for the general case when all coefficients in the equation have nonzero values. These results can be useful for possible chirped-soliton-based applications of highly nonlinear optical fiber systems.

  16. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  17. Novel Fiber-Optic Ring Acoustic Emission Sensor

    PubMed Central

    Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-01

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments. PMID:29342858

  18. Transmission degradation and preservation for tapered optical fibers in rubidium vapor.

    PubMed

    Lai, Meimei; Franson, James D; Pittman, Todd B

    2013-04-20

    The use of subwavelength diameter tapered optical fibers (TOFs) in warm rubidium vapor has recently been identified as a promising system for realizing ultralow-power nonlinear optical effects. However, at the relatively high atomic densities needed for many of these experiments, rubidium atoms accumulating on the TOF surface can cause a significant loss of overall transmission through the fiber. Here we report direct measurements of the time scale associated with this transmission degradation for various rubidium density conditions. Transmission is affected almost immediately after the introduction of rubidium vapor into the system, and declines rapidly as the density is increased. More significantly, we show how a heating element designed to raise the TOF temperature can be used to reduce this transmission loss and dramatically extend the effective TOF transmission lifetime.

  19. Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.

    PubMed

    Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe

    2017-11-27

    The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.

  20. Spatiotemporal light-beam compression from nonlinear mode coupling

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan

    2018-04-01

    We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.

  1. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  2. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  3. Harsh environment fiber optic connectors/testing

    NASA Astrophysics Data System (ADS)

    Parker, Douglas A.

    2014-09-01

    Fiber optic systems are used frequently in military, aerospace and commercial aviation programs. There is a long history of implementing fiber optic data transfer for aircraft control, for harsh environment use in local area networks and more recently for in-flight entertainment systems. The advantages of fiber optics include high data rate capacity, low weight, immunity to EMI/RFI, and security from signal tapping. Technicians must be trained particularly to install and maintain fiber systems, but it is not necessarily more difficult than wire systems. However, the testing of the fiber optic interconnection system must be conducted in a standardized manner to assure proper performance. Testing can be conducted with slight differences in the set-up and procedure that produce significantly different test results. This paper reviews various options of interconnect configurations and discusses how these options can affect the performance, maintenance required and longevity of a fiber optic system, depending on the environment. Proper test methods are discussed. There is a review of the essentials of proper fiber optic testing and impact of changing such test parameters as input launch conditions, wavelength considerations, power meter options and the basic methods of testing. This becomes important right from the start when the supplier test data differs from the user's data check upon receiving the product. It also is important in periodic testing. Properly conducting the fiber optic testing will eliminate confusion and produce meaningful test results for a given harsh environment application.

  4. Dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang

    2017-04-01

    Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.

  5. Fiber-Optic Terahertz Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  6. Nonlinear optical inves

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Arfan, A.; Allahham, A.

    2017-03-01

    Z-scan technique was used to investigate the nonlinear optical properties of Quinine and 1-(carboxymethyl)-6-methoxy-4-(3-(3-vinylpiperidin-4-yl) propanoyl) quinolin-1-ium chloride (Quinotoxine) salts. The two salts were characterized using UV-visible, FTIR and NMR measurements. The characterization spectra confirm the expected molecular structure of the prepared ;Quinotoxine ; salt. The z-scan measurements were performed with a CW Diode laser at 635 nm wavelength and 26 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient of the samples were determined. Our results reveal that the σex is higher than the σg indicating that the reverse saturable absorption (RSA) is the dominating mechanism for the observed absorption nonlinearities. The results suggest that this material should be considered as a promising candidate for future optical devices applications.

  7. Embedding Optical Fibers In Cast Metal Parts

    NASA Technical Reports Server (NTRS)

    Gibler, William N.; Atkins, Robert A.; Lee, Chung E.; Taylor, Henry F.

    1995-01-01

    Use of metal strain reliefs eliminates breakage of fibers during casting process. Technique for embedding fused silica optical fibers in cast metal parts devised. Optical fiber embedded in flange, fitting, or wall of vacuum or pressure chamber, to provide hermetically sealed feedthrough for optical transmission of measurement or control signals. Another example, optical-fiber temperature sensor embedded in metal structural component to measure strain or temperature inside component.

  8. FIBER AND INTEGRATED OPTICS: Multiplexed optical-fiber sensors with autodyne detection

    NASA Astrophysics Data System (ADS)

    Potapov, V. T.; Mamedov, A. M.; Shatalin, S. V.; Yushkaĭtis, R. V.

    1993-09-01

    A method is proposed for multiplexing optical-fiber interference sensors. The method involves autodyne reception of frequency-modulated radiation reflected back to the laser. The response of a He-Ne laser with a linearly varying generation frequency to radiation reflected back from a single-mode fiber is studied. The spectrum of beats caused in the laser radiation by the reflection is shown to be governed by the distribution of reflectors along the fiber. The phases of the spectral components contain information about the phase shift of the reflected optical signal. A hydrophone array with a sensitivity of 30 μrad/Hz1/2 is described. A distributed temperature sensor with a spatial resolution of 1 m is also described.

  9. Intrinsic polymer optical fiber sensors for high-strain applications

    NASA Astrophysics Data System (ADS)

    Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn

    2006-03-01

    This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.

  10. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  11. Fiber-optic push-pull sensor systems

    NASA Technical Reports Server (NTRS)

    Gardner, David L.; Brown, David A.; Garrett, Steven L.

    1991-01-01

    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.

  12. Refractive index retrieving of polarization maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  13. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  14. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  15. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  16. Thermal Strain Analysis of Optic Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-01

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407

  17. Robust Mapping of Incoherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.

    2007-01-01

    A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.

  18. Fiber optic engine for micro projection display.

    PubMed

    Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan

    2010-03-01

    A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.

  19. Impact of optical and structural aging in As₂S₃ microstructured optical fibers on mid-infrared supercontinuum generation.

    PubMed

    Mouawad, O; Amrani, F; Kibler, B; Picot-Clémente, J; Strutynski, C; Fatome, J; Désévédavy, F; Gadret, G; Jules, J-C; Heintz, O; Lesniewska, E; Smektala, F

    2014-10-06

    We analyze optical and structural aging in As₂S₃ microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As₂S₃ MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process is well confirmed by the good matching between previous experimental results and the reported numerical simulations based on the generalized nonlinear Schrödinger equation.

  20. Education kits for fiber optics, optoelectronics, and optical communications

    NASA Astrophysics Data System (ADS)

    Hájek, Martin; Švrček, Miroslav

    2007-04-01

    Our company MIKROKOM, s.r.o. is engaged for many years in development of education equipment and kits for fiber optics, optoelectronics and optical communications. We would like to inform competitors of conference about results of this long-time development. Requirements on education kits and equipment in a modern and dynamic area as is optical communications and fiber optics are quite difficult. The education kits should to clearly introduce students to given issue - the most important physical principles and technical approaches, but it should to introduce also to new and modern technologies, which are quickly changing and developing. On the other hand should be these tools and kits reasonable for the schools. In our paper we would like to describe possible ways of development of this education kits and equipment and present our results of long-time work, which covers very wide range. On the one hand we developed equipment and kits for clear demonstration of physical effects using plastic optical fibers POF, next we prepare kits with a glass fibers, which are the most used fibers in practice and after as much as the kits, which covers broad range of passive and active elements of the optical networks and systems and which makes possible to create complex optical transmission connection. This kind of systems with using corresponding tools and equipment introduce the students to properties, manipulation, measurement and usage of optical fibers, traces and many active and passive components. Furthermore, with using different sorts of optical sources, photodetectors, fiber optics couplers etc., students can get acquainted with all optoelectronics transmission system, which uses different sorts of signals. Special part will be devoted also to effort mentioned before - to implement modern technologies such as e.g. Wavelength Division Multiplex (WDM) into the education kits. Our presentation will inform auditors about development of mentioned education kits and

  1. Multimodal nonlinear microscope based on a compact fiber-format laser source

    NASA Astrophysics Data System (ADS)

    Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2018-01-01

    We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.

  2. A multicore optical fiber for distributed sensing

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Burgess, David T.; Hines, Mike; Zhu, Beyuan

    2014-06-01

    With advancements in optical fiber technology, the incorporation of multiple sensing functionalities within a single fiber structure opens the possibility to deploy dielectric, fully distributed, long-length optical sensors in an extremely small cross section. To illustrate the concept, we designed and manufactured a multicore optical fiber with three graded-index (GI) multimode (MM) cores and one single mode (SM) core. The fiber was coated with both a silicone primary layer and an ETFE buffer for high temperature applications. The fiber properties such as geometry, crosstalk and attenuation are described. A method for coupling the signal from the individual cores into separate optical fibers is also presented.

  3. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  4. Fiber-optic liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  5. Fiber-optic-bundle-based optical coherence tomography.

    PubMed

    Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping

    2005-07-15

    A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.

  6. Integrability and solitons for the higher-order nonlinear Schrödinger equation with space-dependent coefficients in an optical fiber

    NASA Astrophysics Data System (ADS)

    Su, Jing-Jing; Gao, Yi-Tian

    2018-03-01

    Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.

  7. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    NASA Astrophysics Data System (ADS)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  8. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    PubMed

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  9. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  10. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  11. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  12. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  13. Influence of cross-phase modulation in SPM-based nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Pitois, Stéphane

    2005-09-01

    We study the role of cross-phase modulation (CPM) occurring between the two counter-propagating parts of a signal wave in a standard SPM-based nonlinear optical fiber loop mirror (NOLM). For pulse train with high duty-cycle, we experimentally observe the influence of cross-phase modulation on NOLM transmittivity. Finally, we propose a solution based on properly designed dispersion imbalanced NOLM to overcome undesirable CPM effects.

  14. Synopsis of fiber optics in harsh environments

    NASA Astrophysics Data System (ADS)

    Pirich, Ronald

    2014-09-01

    Fiber optic technology is making significant advances for use in a number of harsh environments, such as air and space platforms. Many of these applications involve integration into systems which make extensive use of optical fiber for high bandwidth signal transmission. The large signal transmission bandwidth of optical fiber has a large and positive impact on the overall performance and weight of the cable harness. There are many benefits of fiber optic systems for air and space harsh environment applications, including minimal electromagnetic interference and environmental effects, lightweight and smaller diameter cables, greater bandwidth, integrated prognostics and diagnostics and the ability to be easily upgraded. To qualify and use a fiber optic cable in space and air harsh environments requires treatment of the cable assembly as a system and understanding the design and behavior of its parts. Many parameters affect an optical fiber's ability to withstand a harsh temperature and radiation environment. The space radiation environment is dependent on orbital altitude, inclination and time, contains energetic magnetically-trapped electrons in the outer Van Allen radiation belt, trapped protons in the inner belt and solar event protons and ions. Both transient and permanent temperature and radiation have an attenuation effect on the performance of the cable fiber. This paper presents an overview of defining fiber optic system and component performance by identifying operating and storage environmental requirements, using appropriate standards to be used in fiber optic cable assembly manufacturing and integration, developing inspection methods and fixtures compliant with the selected standards and developing a fiber optic product process that assures compliance with each design requirement.

  15. Non-linear behavior of fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Bagchi, D.; Rosen, B. W.

    1974-01-01

    The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

  16. Liquid-filled hollow core microstructured polymer optical fiber.

    PubMed

    Cox, F M; Argyros, A; Large, M C J

    2006-05-01

    Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.

  17. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  18. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  19. Bidirectional optical coupler for plastic optical fibers.

    PubMed

    Sugita, Tatsuya; Abe, Tomiya; Hirano, Kouki; Itoh, Yuzo

    2005-05-20

    We have developed a low-loss bidirectional optical coupler for high-speed optical communication with plastic optical fibers (POFs). The coupler, which is fabricated by an injection molding method that uses poly (methyl methacrylate), has an antisymmetric tapered shape. We show that the coupler has low insertion and branching losses. The tapered shape of the receiving branch reduces beam diameter and increases detection efficiency coupling to a photodetector, whose area is smaller than that of the plastic optical fiber. The possibility of more than 15-m bidirectional transmission with a signaling bit rate up to 500 Mbits/s for simplex step-index POFs is demonstrated.

  20. Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang

    2005-10-31

    Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

  1. Propagating modes in gain-guided optical fibers.

    PubMed

    Siegman, A E

    2003-08-01

    Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.

  2. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  3. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  4. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  5. Switchable dual-wavelength SLM narrow linewidth fiber laser based on nonlinear amplifying loop mirror

    NASA Astrophysics Data System (ADS)

    Fu, Pan; Feng, Xiao-qiang; Lu, Baole; Qi, Xin-yuan; Chen, Haowei; Sun, Bo; Jiang, Man; Wang, Kaile; Bai, Jintao

    2018-01-01

    We demonstrate a stable switchable dual-wavelength single longitudinal mode (SLM) narrow linewidth ytterbium-doped fiber (YDF) laser using a nonlinear amplifying fiber loop mirror (NALM) at 1064 nm. The NALM of intensity-dependent transmission acts as a saturable absorber filter and an amplitude equalizer to suppress mode competition and the fiber Bragg grating (FBG) pair is used as one wavelength selection component. By properly adjusting the polarization controllers (PCs), the switchable dual-wavelength SLM fiber laser can be operated steadily at room temperature. The optical signal-to-noise ratio (OSNR) is better than 50 dB for both lasing wavelengths. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 17.07 kHz and 18.64 kHz with a 20 dB linewidth, which means the laser linewidth is approximate 853 Hz and 932 Hz FWHM. Correspondingly, the measured relative intensity noise (RIN) is less than -120 dB/Hz at frequencies over 5.0 MHz.

  6. Microbend fiber-optic chemical sensor

    DOEpatents

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  7. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  8. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  9. Nanosecond electrical and optical pulses and self phase conjugation from photorefractive lithium niobate fibers and crystals

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.

    2007-09-01

    We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.

  10. Optical fiber sensors for harsh environments

    DOEpatents

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  11. Fiber-Optic Strain Sensors With Linear Characteristics

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.

  12. Making Optical-Fiber Chemical Detectors More Sensitive

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.

  13. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  14. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    PubMed

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  15. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  16. Two mode optical fiber in space optics communication

    NASA Astrophysics Data System (ADS)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  17. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  18. Curved Piezoelectric Actuators for Stretching Optical Fibers

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  19. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  20. Optical fiber cable chemical stripping fixture

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  1. Impact of nonlinearity phenomenon FWM in DWDM optical link considering dispersive fiber

    NASA Astrophysics Data System (ADS)

    Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.

    2013-12-01

    The increasing demand of network traffic requires new research centers; improve their communications networks, due to the excessive use of mobile and portable devices wanting to have greater access to the network by downloading interactive content quickly and effectively. For our case analyze optical network link through simulation results assuming a DWDM (Dense wavelength Division Multiplexing) optical link, considering the nonlinearity phenomenon FWM (Four Mixed Wavelength) in order to compare their performance, assuming transmission bit rates to 2.5 Gbps and 10 Gbps, using three primary wavelengths of 1450 nm, 1550 nm and 1650 nm for the transmission of information, whose separation is 100 GHz to generate 16 channels or user information. Tests were conducted to analyze optical amplifiers EDFAs link robustness at a maximum distance of 200 km and identify parameters OSNR, SNR and BER, for a robust and effective transmission

  2. Spectrum-Modulating Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus

    1989-01-01

    Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.

  3. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    PubMed Central

    Pérez-Prieto, Sandra; López-Cardona, Juan D.; Blanco, Enrique; Moreno-López, Jorge

    2018-01-01

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point. PMID:29415477

  4. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    PubMed

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  5. Fiber bundle phase conjugate mirror

    DOEpatents

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  6. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  7. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    crystal fiber cladding . Advanced Optical Fibers for High Power Fiber Lasers http://dx.doi.org/10.5772/58958 223 lengths above the second-order mode cut...brightness multimode diode lasers for a given pump waveguide dimen‐ sion. In conventional double- clad fibers, low-index polymer coatings are typically used to...was below 0.2. The fiber was passive and there was no laser demonstration in this first attempt. The first cladding - pumping demonstration in an

  8. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  9. Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement.

    PubMed

    Savaliya, Priten; Dhawan, Anuj

    2016-10-01

    Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.

  10. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Nanjing University of Posts and Communications, Nanjing 210003; Popa, D., E-mail: dp387@cam.ac.uk

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  11. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    PubMed

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  12. Vibrating Optical Fibers to Make Laser Speckle Disappear

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley

    2005-01-01

    In optical systems in which laser illumination is delivered via multimode optical fibers, laser speckle can be rendered incoherent by a simple but highly effective technique. The need to eliminate speckle arises because speckle can make it difficult to observe edges and other sharp features, thereby making it difficult to perform precision alignment of optical components. The basic ideas of the technique is to vibrate the optical fiber(s) to cause shifting of electromagnetic modes within the fiber(s) and consequent shifting of the speckle pattern in the light emerging from the fiber(s). If the frequency of vibration is high enough, a human eye cannot follow the shifting speckle pattern, so that instead of speckle, a human observer sees a smoothed pattern of light corresponding to a mixture of many electromagnetic modes. If necessary, the optical fiber(s) could be vibrated manually. However, in a typical laboratory situation, it would be more practical to attach a vibrating mechanism to the fiber(s) for routine use as part of the fiber-optic illuminator. In experiments, a commercially available small, gentle, quiet, variable- speed vibratory device was used in this way, with the result that the appearance of speckle was eliminated, as expected. Figures 1 and 2 illustrate the difference.

  13. Nonlinear optical properties of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  14. Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings.

    PubMed

    Bachim, Brent L; Ogunsola, Oluwafemi O; Gaylord, Thomas K

    2005-08-15

    Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

  15. Single-Crystal Germanium Core Optoelectronic Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaoyu; Page, Ryan L.; Chaudhuri, Subhasis

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  16. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  17. Machine Tests Optical Fibers In Flexure

    NASA Technical Reports Server (NTRS)

    Darejeh, Hadi; Thomas, Henry; Delcher, Ray

    1993-01-01

    Machine repeatedly flexes single optical fiber or cable or bundle of optical fibers at low temperature. Liquid nitrogen surrounds specimen as it is bent back and forth by motion of piston. Machine inexpensive to build and operate. Tests under repeatable conditions so candidate fibers, cables, and bundles evaluated for general robustness before subjected to expensive shock and vibration tests.

  18. Fiber-Optic/Photoelastic Flow Sensors

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.

    1995-01-01

    Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.

  19. Ultrathin Nonlinear Metasurface for Optical Image Encoding.

    PubMed

    Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas

    2017-05-10

    Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.

  20. Optical fiber strain sensor with improved linearity range

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1995-01-01

    A strain sensor is constructed from a two mode optical fiber. When the optical fiber is surface mounted in a straight line and the object to which the optical fiber is mounted is subjected to strain within a predetermined range, the light intensity of any point at the output of the optical fiber will have a linear relationship to strain, provided the intermodal phase difference is less than 0.17 radians.

  1. MAS Bulletin. GY-90 Fiber Optic Gyro

    DTIC Science & Technology

    1989-07-20

    487 GY.9O Fiber Optic Gyro Background. Elettronica San Giorgio ELSAG S.p.A., Genoa, Italy, has developed a fiber optic gyro (FOG) for use on short...to the length of ELSAG S.p.A., Naval Systems Division, Via G. Puccini, 2-16154 the optical path and an extremely long optical path can be Genoa, Italy...Telephone 39 10/60011, Fax 39 10/607329, Telex achieved in a small size by using a many-turn coil of optical fiber. 270660/213847 ELSAG 1. There are

  2. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  3. Endomicroscopy and electromyography of neuromuscular junctions in situ

    PubMed Central

    Brown, Rosalind; Dissanayake, Kosala N; Skehel, Paul A; Ribchester, Richard R

    2014-01-01

    Objective Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. Methods We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: WldS mice, which coexpress the Wallerian-degeneration Slow (WldS) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). Results We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. Interpretation Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics. PMID:25540801

  4. Two classes of capillary optical fibers: refractive and photonic

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2008-11-01

    This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.

  5. Optical fiber meta-tips

    NASA Astrophysics Data System (ADS)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  6. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  7. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, R. R.

    1981-01-01

    Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard electrical equipment or used directly in optical devices, such as optical digital computer.

  8. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  9. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  10. Fabrication of Fiber Optic Grating Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)

    2005-01-01

    An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

  11. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  12. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  13. Nonlinear Real-Time Optical Signal Processing

    DTIC Science & Technology

    1990-09-01

    pattern recognition. Additional work concerns the relationship of parallel computation paradigms to optical computing and halftone screen techniques...paradigms to optical computing and halftone screen techniques for implementing general nonlinear functions. 3\\ 2 Research Progress This section...Vol. 23, No. 8, pp. 34-57, 1986. 2.4 Nonlinear Optical Processing with Halftones : Degradation and Compen- sation Models This paper is concerned with

  14. Study of fiber optics standardization, reliability, and applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The use of fiber optics in space applications is investigated. Manufacturers and users detailed the problems they were having with the use or manufacture of fiber optic components. The general consensus of all the companies/agencies interviewed is that fiber optics is a maturing technology and will definitely have a place in future NASA system designs. The use of fiber optics was found to have two main advantages - weight savings and increased bandwidth.

  15. Portable fiber-optic taper coupled optical microscopy platform

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping

    2017-04-01

    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  16. Microwave fiber optics delay line

    NASA Astrophysics Data System (ADS)

    Slayman, C.; Yen, H. W.

    1980-01-01

    A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.

  17. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.

    PubMed

    Sun, Wen-Rong; Liu, De-Yin; Xie, Xi-Yang

    2017-04-01

    We report the existence and properties of vector breather and semirational rogue-wave solutions for the coupled higher-order nonlinear Schrödinger equations, which describe the propagation of ultrashort optical pulses in birefringent optical fibers. Analytic vector breather and semirational rogue-wave solutions are obtained with Darboux dressing transformation. We observe that the superposition of the dark and bright contributions in each of the two wave components can give rise to complicated breather and semirational rogue-wave dynamics. We show that the bright-dark type vector solitons (or breather-like vector solitons) with nonconstant speed interplay with Akhmediev breathers, Kuznetsov-Ma solitons, and rogue waves. By adjusting parameters, we note that the rogue wave and bright-dark soliton merge, generating the boomeron-type bright-dark solitons. We prove that the rogue wave can be excited in the baseband modulation instability regime. These results may provide evidence of the collision between the mixed ultrashort soliton and rogue wave.

  18. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  19. Using Fiber Optic Distributed Acoustic Sensing to Measure Hydromechanics in a Crystalline Rock Aquifer

    NASA Astrophysics Data System (ADS)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2016-12-01

    Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in

  20. Fiber optic cables for severe environment

    NASA Astrophysics Data System (ADS)

    Massarani, M. G.

    1982-10-01

    The most severe challenges to the fiber optic cable are related to nuclear weapons testing and other military applications. Nuclear experiments are conducted in deep underground holes. Cables connect the experimental device to recording stations positioned at a certain distance from ground zero. Attractive features provided by fiber optic cable technology include large cost advantages in cable purchase price, savings in handling cost due to the lighter weight, immunity to electromagnetic pulses (EMP), and the capability to transmit high data rates. Details of underground nuclear testing are discussed, taking into account the underground nuclear test environment, and questions of fiber optic cable design for the underground experiments. The use of fiber optics for the Ground Launched Cruise Missile Weapons System (GLCM) is also considered. Attention is given to the GLCM environment, and the proposed cable for GLCM application.

  1. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  2. Flight testing of a fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Finney, M. J.; Tregay, G. W.; Calabrese, P. R.

    1993-01-01

    A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.

  3. Integrated Optical Circuit Engineering For Optical Fiber Gyrocopes

    NASA Astrophysics Data System (ADS)

    Bristow, Julian P.; We, Albert C.; Keur, M.; Lukas, Greg; Ott, Daniel M...; Sriram, S.

    1988-03-01

    Fiber optic gyroscopes are of interest for low-cost, high performance rotation sensors. Integrated optical implementations of the processing optics offer the hope of mass-production, and associated cost reductions. The development of a suitable integrated optical system has been reported by other authors at a wavelength of 850nm [1]. Despite strong technical advantages at 1.3μm wavelength [2], no results have yet appeared. This wavelength is preferred for telecommunications applications applications, thus significantly reduced fiber costs may be realized. Lithium niobate is relatively immune from the photorefractive effect at this wavelength, whereas it is not at at 850nm [3].

  4. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  5. Mid-IR soliton compression in silicon optical fibers and fiber tapers.

    PubMed

    Peacock, Anna C

    2012-03-01

    Numerical simulations are used to investigate soliton compression in silicon core optical fibers at 2.3 μm in the mid-infrared waveguide regime. Compression in both standard silicon fibers and fiber tapers is compared to establish the relative compression ratios for a range of input pulse conditions. The results show that tapered fibers can be used to obtain higher levels of compression for moderate soliton orders and thus lower input powers. © 2012 Optical Society of America

  6. Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers.

    PubMed

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  7. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  8. FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers

    NASA Astrophysics Data System (ADS)

    Bulyuk, A. N.

    1992-10-01

    The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.

  9. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  10. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    DTIC Science & Technology

    2013-01-01

    Avalanche photodiode. A 10 m long HNLF fabricated by Sumitomo with a core diameter of 4 microns is fusion spliced to a single mode fiber for a...parametric down conversion (SPDC) was first observed in χ(2) nonlinear crystal [3]. However, the compatibility of a nonlinear crystal source with fiber and...PAIR IN A SHORT HIGHLY NON-LINEAR FIBER 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8750-12-1-0136 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  11. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  12. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    NASA Astrophysics Data System (ADS)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  13. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  14. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  15. Optical sensors based on plastic fibers.

    PubMed

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  16. A Novel Method of Diagnosing Aberrant Pancreas: Needle-based Confocal Laser Endomicroscopy.

    PubMed

    Yasuda, Muneji; Hara, Kazuo; Kurita, Yusuke; Tanaka, Hiroki; Obata, Masahiro; Kuraoka, Naosuke; Matsumoto, Shimpei; Ito, Ayako; Iwaya, Hiromichi; Toriyama, Kazuhiro; Okuno, Nozomi; Kuwahara, Takamichi; Hijioka, Susumu; Mizuno, Nobumasa; Onishi, Sachiyo; Hirayama, Yutaka; Ishihara, Makoto; Tanaka, Tsutomu; Tajika, Masahiro; Niwa, Yasumasa

    2018-05-18

    Aberrant pancreas is defined as pancreatic tissue present outside of the pancreas and is often found incidentally during esophagogastroduodenoscopy. Obtaining sufficient tissue to differentiate aberrant pancreas from other subepithelial lesions is sometimes difficult. Due to the lack of a definitive diagnosis, patients often undergo unnecessary surgery. We herein report the first case of aberrant pancreas in which the concomitant use of needle-based probe confocal laser endomicroscopy and fine-needle aspiration supported the final diagnosis. Needle-based probe confocal laser endomicroscopy provides a real-time in vivo histopathology evaluation and may be a feasible means of diagnosing aberrant pancreas.

  17. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  18. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, Melvin A.

    1992-01-01

    A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

  19. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    NASA Astrophysics Data System (ADS)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  20. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  1. Embedded fiber optic ultrasonic sensors and generators

    NASA Astrophysics Data System (ADS)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  2. Computational imaging through a fiber-optic bundle

    NASA Astrophysics Data System (ADS)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  3. Performance of optical fibers in space radiation environment

    NASA Astrophysics Data System (ADS)

    Alam, M.; Abramczyk, J.; Manyam, U.; Farroni, J.; Guertin, D.

    2017-11-01

    The use of optical fibers in low earth orbiting (LEO) satellites is a source of concern due to the radiation environment in which these satellites operate and the reliability of devices based on these fibers. Although radiation induced damage in optical fibers cannot be avoided, it can certainly be minimized by intelligent engineering. Qualifying fibers for use in space is both time consuming and expensive, and manufacturers of satellites and their payloads have started to ask for radiation performance data from optical fiber vendors. Over time, Nufern has developed fiber designs, compositions and processes to make radiation hard fibers. Radiation performance data of a variety of fibers that find application in space radiation environment are presented.

  4. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  5. Dispersion properties of plasma cladded annular optical fiber

    NASA Astrophysics Data System (ADS)

    KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.

    2018-05-01

    One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.

  6. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, M.A.

    1992-11-10

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  7. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  8. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  9. Optical fiber sensor based on a polymer optical fiber macro-bend to study thermal expansion of metals

    NASA Astrophysics Data System (ADS)

    Pakdeevanich, Paradorn

    2018-05-01

    Thermal expansion is an important parameter for characterization of metals. As metal is heated, the molecules vibrate more violently and expand in all direction. Investigators have focused to study the thermal strain. However, the amount of expansion is difficult to measure. An attempt has been made to develop an apparatus using optical technique. The principle of this system is the transformation of length changes into changes of light intensity. The purpose of this work is to design and develop an optical fiber sensor based on a macro-bend of a polymer optical fiber. In this system, thermal expansion of metal was converted into the rolling of a needle in which placed beneath a flat bar of metal. Optical fiber sensor was attached to the ended section of a needle. As the crimp tube of the fiber sensor was moved due to thermal expansion of metal, the bend radii of optical fiber sensor was changed. As a sequence, the loss induced by the bending effect was depended on the expansion of metal that changed with temperature. In this study, we utilized optical fiber sensor to monitor and compare the thermal expansion of copper, brass and aluminum. According to our experimental results, the linear response with temperature was reported. The measured values of coefficient of thermal expansion was analyzed to be 0.45, 0.35 and 0.32 a.u./°C for aluminum bar, brass bar and copper bar, respectively. In addition, the effect of the size of the diameter of a needle on the response of bending loss was investigated.

  10. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  11. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  12. Confocal laser endomicroscopy for brain tumor surgery: a milestone journey from microscopy to cellular surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Charalampaki, Cleopatra

    2017-02-01

    The aim in brain tumor surgery is maximal tumor resection with minimal damage of normal neuronal tissue. Today diagnosis of tumor and definition of tumor borders intraoperatively is based on various visualization methods as well as on the histopathologic examination of a limited number of biopsy specimens via frozen sections. Unfortunately, intraoperative histopathology bears several shortcomings, and many biopsies are inconclusive. Therefore, the desirable treatment could be to have the ability to identify intraoperative cellular structures, and differentiate tumor from normal functional brain tissue on a cellular level. To achieve this goal new technological equipment integrated with new surgical concepts is needed.Confocal Laser Endomicroscopy (CLE) is an imaging technique which provides microscopic information of tissue in real-time. We are able to use these technique to perform intraoperative "optical biopsies" in bringing the microscope inside to the patients brain through miniaturized fiber-optic probes, and allow real-time histopathology. In our knowledge we are worldwide the only one neurosurgical group using CLE intraoperative for brain tumor surgery. We can detect and characterize intraoperative tumor cells, providing immediate online diagnosis without the need for frozen sections. It also provides delineation of borders between tumor and normal tissue on a cellular level, making surgical margins more accurate than ever before. The applications of CLE-assisted neurosurgery help to accurate the therapy by extending the resection borders and protecting the functionality of normal brain tissue in critical eloquent areas.

  13. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  14. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  15. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  16. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  17. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  18. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  19. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    NASA Astrophysics Data System (ADS)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  20. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, D.P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber. 5 figs.

  1. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  2. PCS optical fibers for an automobile data bus

    NASA Astrophysics Data System (ADS)

    Clarkin, James P.; Timmerman, Richard J.; Stolte, Gary W.; Klein, Karl-Friedrich

    2005-02-01

    Optical fibers have been used for data communications in automobiles for several years. The fiber of choice thus far has been a plastic core/plastic clad optical fiber (POF) consisting of the plastic polymethylmethacrylate (PMMA). The POF fiber provides a low cost fiber with relatively easy termination. However, increasing demands regarding temperature performance, transmission losses and bandwidth have pushed the current limits of the POF fiber, and the automotive industry is now moving towards an optical fiber with a silica glass core/plastic clad (PCS). PCS optical fibers have been used successfully in industrial, medical, sensor, military and data communications systems for over two decades. The PCS fiber is now being adapted specifically for automotive use. In the following, the design criteria and design alternatives for the PCS as well as optical, thermal, and mechanical testing results for key automotive parameters are described. The fiber design tested was 200&mum synthetic silica core/230&mum fluoropolymer cladding/1510&mum nylon buffer. Key attributes such as 700 - 900 nm spectral attenuation, 125°C thermal soak, -40 to 125°C thermal cycling, bending losses, mechanical strength, termination capability, and cost are discussed and compared. Overall, a specifically designed PCS fiber is expected to be acceptable for the use in an automotive data bus, and will show improvement in optical transmission, temperature range and bandwidth. However, the final selection of buffer and jacket materials and properties will be most dependent on the selection of a reliable and economical termination method.

  3. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  4. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  5. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  6. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  7. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  8. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  9. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  10. Fiber Optics: A New World of Possibilities in Light.

    ERIC Educational Resources Information Center

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  11. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  12. Electrical and Nonlinear Optical Studies of Specific Organic Molecular and Nonconjugated Conductive Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan

    film of poly(beta-pinene) on bare multi-mode optical fiber and doping it with iodine. The doped fibers were of excellent optical quality. Two-photon absorption experiments were conducted using these waveguides and large changes in transmission upto 28% was observed in 15cm long fiber. More work needs to be done to confirm this result. This is a significant step in the direction of making these materials a viable choice for ultrafast (femtosecond time-scale) optical devices. To summarize, these works included detailed investigations of structural, electrical and nonlinear optical characteristics of specific molecular crystal films and nonconjugated conducting polymers.

  13. Investigation on thermally-induced optical nonlinearity of alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cheng, Xuemei; He, Bo; Ren, Zhaoyu; Zhang, Ying; Chen, Haowei; Bai, Jintao

    2018-06-01

    In this work, we studied the thermally-induced optical nonlinearity of alcohols by analyzing the far-filed diffraction rings patterns, which are generated when the alcohols are illuminated by a laser beam resonant to their overtones. We deduced the nonlinear refractive index coefficient n2 generated by thermal nonlinear optical effect to be - (20.53 ± 00.03) ×10-8cm2 /W , which is much higher than that of Kerr effect (7.7 ×10-16cm2 /W). The results also demonstrated that the thermally-induced optical nonlinearity increased with the laser power and sample concentration increasing. The notable nonlinearity suggests that thermal effect has potentials in many applications such as optical spatial modulation, and trapping and guiding of atoms.

  14. AVIRIS foreoptics, fiber optics and on-board calibrator

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P.; Chrien, Thomas G.; Steimle, L.

    1987-01-01

    The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.

  15. Random-hole optical fiber evanescent-wave gas sensing.

    PubMed

    Pickrell, G; Peng, W; Wang, A

    2004-07-01

    Research on development of optical gas sensors based on evanescent-wave absorption in random-hole optical fibers is described. A process to produce random-hole optical fibers was recently developed that uses a novel in situ bubble formation technique. Gas molecules that exhibit characteristic vibrational absorption lines in the near-IR region that correspond to the transmission window for silica optical fiber have been detected through the evanescent field of the guided mode in the pore region. The presence of the gas molecules in the holes of the fiber appears as a loss at wavelengths that are characteristic of the particular gas species present in the holes. An experimental setup was constructed with these holey fibers for detection of acetylene gas. The results clearly demonstrate the characteristic absorptions in the optical spectra that correspond to the narrow-line absorptions of the acetylene gas, and this represents what is to our knowledge the first report of random-hole fiber gas sensing in the literature.

  16. Cable delay compensator for microwave signal distribution over optical fibers

    NASA Astrophysics Data System (ADS)

    Primas, Lori E.

    1990-12-01

    The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.

  17. Optical Fiber Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  18. Optical-Fiber-Welding Machine

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Mann, W. A.; Goldstein, R.

    1985-01-01

    Technique yields joints with average transmissivity of 91.6 percent. Electric arc passed over butted fiber ends to melt them together. Maximum optical transmissivity of joint achieved with optimum choice of discharge current, translation speed, and axial compression of fibers. Practical welding machine enables delicate and tedious joining operation performed routinely.

  19. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  20. Characterization and application of optical fibers: 1. Application of optical fibers in gas concentration and radiation dose measurements. 2. Polarization effects in fiber communication systems

    NASA Astrophysics Data System (ADS)

    Lu, Ping

    The thesis consists of two research directions: Optical fiber applications in gas concentration and radiation dose measurements; and polarization effects in fiber optic communication systems. Part I of the thesis presents two optical fiber applications. (1) An infrared (IR) fiber bundle has been designed and fabricated to measure gas concentrations in a chemical vapor deposition (CVD) chamber using Fourier transform infrared spectroscopy. This fiber bundle covers the IR range from 0.5 to 20 mum and reduces the light beam divergence in the CVD chamber, which makes it possible to measure gas concentrations in a region near the substrate surface. Semi-ellipsoid mirrors have been designed and used to increase the collection efficiency of infrared radiation and to compensate the loss introduced by the fiber bundle. (2) A fiber optic radiation sensor based on radiation-induced fiber loss is reported. The gamma radiation-induced loss spectra in various fibers have been studied. Among all the fibers tested, 5% P-doped fiber shows the highest sensitivity to gamma radiation. The wavelength and dose rate dependence of radiation-induced loss in 5% P-doped fiber are investigated and the possibility of using this fiber as a radiation sensor for radiation therapy is discussed. Part II of the thesis examines two polarization effects, polarization mode dispersion (PMD) and polarization dependent loss (PDL), in fiber optic communication systems based on the waveplate models. A new waveplate model, capable of generating any PMD and PDL values, is proposed to overcome the limitations of the conventional waveplate model. Using both models the statistical distributions of PDL and differential group delay (DGD) have been studied considering the presence of biased elliptical birefringence. The principal state of polarization (PSP) of an optical pulse is proposed for a fiber having both PMD and PDL. PMD and PDL of a pulse for a fiber consisting of two polarization maintaining fiber