Sample records for fibroblastic cell lines

  1. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.

  2. Expression of the FAP gene in non-fibroblast human cell lines. Development of cancer-associated fibroblast models.

    PubMed

    Tyulkina, D V; Pleshkan, V V; Alekseenko, I V; Kopantseva, M R; Sverdlov, E D

    2016-09-01

    The fibroblast activation protein (FAP) is selectively expressed in cancer-associated fibroblasts (CAFs) and facilitates tumor progression, which makes this protein an attractive therapeutic target. There are difficulties in obtaining CAFs for studying the function and suppression of FAP. In this work, the expression level of FAP was determined by PCR assay in 25 human cell lines and 8 surgical samples of tumor stroma. The expression of FAP was observed in all tumor stroma samples and in four cell lines: NGP-127, SJCRH30, SJSA-1, and A375. The level of FAP expression in NGP-127, SJCRH30, and SJSA-1 lines as well as in CAFs of patients was comparable, which makes these cell lines a possible model for studying FAP.

  3. [Establishment of fibroblast cell line and its biological characteristics in Matou goat].

    PubMed

    Li, Tianda; Liu, Chousheng; Wang, Zhigang; Zhang, Liping; Sun, Xiuzhu; Zhao, Junjin; Meng, Fei; Luo, Guihe; Zhu, Jinqing

    2008-12-01

    Taking Matou goat ear margin as the study material, we succeeded in established a fibroblast cell line by the method of explant culture directly. Observations on morphology, dynamic growth, determination of viability, analysis of karyotype, test of microorganism and other characteristics were detected. Results showed: Population Doubling Time (PDT) of cells was approximately 36 h; Cell viability was 96.7% after thawing; The status of cell After passage was constant; Analysis of chromosomal karyotyps indicated that diploid (2n=60) account for 98% in the cell line. Every index in the cell line met all the standard quality controls of ATCC in USA. The established of Matou goat ear fibroblast cell line has not only important genetic resources preserved at the cell level, but also valuable material for genome, postgenome and somatic cell nuclear transfer research.

  4. Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line.

    PubMed

    Shourideh, Mojgan; DePriest, Adam; Mohler, James L; Wilson, Elizabeth M; Koochekpour, Shahriar

    2016-09-01

    The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse β-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc. © 2016

  5. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    PubMed

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  6. Establishment of an immortal cynomolgus macaque fibroblast cell line for propagation of cynomolgus macaque cytomegalovirus (CyCMV).

    PubMed

    Ambagala, Aruna P; Marsh, Angie K; Chan, Jacqueline K; Mason, Rosemarie; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Willer, David O; MacDonald, Kelly S

    2013-05-01

    Cynomolgus macaques are widely used as an animal model in biomedical research. We have established an immortalized cynomolgus macaque fibroblast cell line (MSF-T) by transducing primary dermal fibroblasts isolated from a 13-year-old male cynomolgus macaque with a retrovirus vector expressing human telomerase reverse transcriptase (hTERT). The MSF-T cells showed increased telomerase enzyme activity and reached over 200 in vitro passages compared to the non-transduced dermal fibroblasts, which reached senescence after 43 passages. The MSF-T cell line is free of mycoplasma contamination and is permissive to the newly identified cynomolgus macaque cytomegalovirus (CyCMV). CyCMV productively infects MSF-T cells and induces down-regulation of MHC class I expression. The MSF-T cell line will be extremely useful for the propagation of CyCMV and other cynomolgus herspesviruses in host-derived fibroblast cells, allowing for the retention of host-specific viral genes. Moreover, this cell line will be beneficial for many in vitro experiments related to this animal model.

  7. Conditioned media from a renal cell carcinoma cell line demonstrates the presence of basic fibroblast growth factor.

    PubMed

    Mydlo, J H; Zajac, J; Macchia, R J

    1993-09-01

    In a previous report, we demonstrated the isolation and purification of a heparin binding growth factor from human renal carcinoma, and suggested that this growth factor may play a role in the neovascularity and growth of the tumor. In this report, we demonstrate that the growth of the renal cell carcinoma cell line RC29 is stimulated by the addition of exogenous fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha). Also, media conditioned by this cell line was able to stimulate growth of the A431 vulvar tumor cell line, known for its high concentration of EGF receptors, 3T3 fibroblasts, human umbilical vein (HUV) cells and RC29 cells. Using heparin-sepharose chromatography and then SDS polyacrylamide gel electrophoresis (PAGE), we were able to demonstrate several proteins in the conditioned media of the RC29 cell line. Using Western blot analysis, we detected that at least one of the proteins expressed in this conditioned media was FGF and that it belongs to the basic, not acidic, family of fibroblast growth factors. These findings suggest that renal tumors may express growth factors that may play a direct role in maintaining their unrestricted proliferation.

  8. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda ( Ailurus fulgens).

    PubMed

    Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong

    2009-05-01

    In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.

  9. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  10. Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line.

    PubMed

    Boyer, B; Tucker, G C; Vallés, A M; Gavrilovic, J; Thiery, J P

    1989-01-01

    Two distinct mechanisms by which bladder carcinoma cells of the NBT-II cell line dissociate and migrate away from an in vitro reconstituted epithelial sheet were examined as regards intercellular adhesion and cell locomotion. Scattering of NBT-II bladder carcinoma cell line was promoted by 2 distinct culture protocols: (i) deposition of some components of the extracellular matrix onto the culture substratum (glass or plastic) induced cell dispersion of the epithelial sheet of carcinoma cells, and (ii) addition of Ultroser G, a serum substitute, to the culture medium induced scattering and acquisition of motility of NBT-II cells. Under both culture conditions, NBT-II cells dissociated, lost their epithelial morphology, acquired fibroblastic shape and migrated actively. We show that, among different extracellular matrix proteins, only collagens were able to promote the transition towards fibroblastic phenotype (referred as epithelium-to-mesenchyme transition or EMT). Furthermore, the native 3-dimensional helical structure of collagens was required for their function. During induction of EMT of NBT-II cells with Ultroser G, the junctions between epithelial cells were split, polarized epithelial cell organization was lost, and the resulting individual cells became motile and assumed a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy techniques, we demonstrate that this change is accompanied by redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by reorganization of the cytokeratin and the actin-fodrin filament systems. Intermediate-sized filaments of the vimentin type were formed de novo in the fibroblastoid cell form. The observed transition towards fibroblastic phenotype (epithelium-to-mesenchyme transition or EMT) was fully reversed by removing the inducing factors from the culture medium, as shown by the disappearance of vimentin filaments and the reappearance of desmosomes in the newly formed

  11. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment.

    PubMed

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-10-01

    This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin.

    PubMed

    Xiang, Yang; Gao, Qian; Su, Weiting; Zeng, Lin; Wang, Jinhuan; Hu, Yi; Nie, Wenhui; Ma, Xutong; Zhang, Yong; Lee, Wenhui; Zhang, Yun

    2012-01-01

    The skin of the amphibian Bombina maxima is rich in biologically active proteins and peptides, most of which have mammalian analogues. The physiological functions of most of the mammalian analogues are still unknown. Thus, Bombina maxima skin may be a promising model to reveal the physiological role of these proteins and peptides because of their large capacity for secretion. To investigate the physiological role of these proteins and peptides in vitro, a fibroblast cell line was successfully established from Bombina maxima tadpole skin. The cell line grew to form a monolayer with cells of a uniform shape and abundant rough endoplasmic reticulum, which are typical characteristics of fibroblasts. Further identification at a molecular level revealed that they strongly expressed the fibroblast marker protein vimentin. The chromosome number of these cells is 2n = 28, and most of them were diploid. Growth property analysis showed that they grew well for 14 passages. However, cells showed decreased proliferative ability after passage 15. Thus, we tried to immortalize the cells through the overexpression of SV40 T antigen. After selecting by G418, cells stably expressed SV40 large T antigen and showed enhanced proliferative ability and increased telomerase activity. Signal transduction analysis revealed functional p42 mitogen-activated protein (MAP) kinase in immortalized Bombina maxima dermal fibroblasts. Primary fibroblast cells and the immortalized fibroblast cells from Bombina maxima cultured in the present study can be used to investigate the physiological role of Bombina maxima skin-secreted proteins and peptides. In addition, the methods for primary cell culturing and cell immortalization will be useful for culturing and immortalizing cells from other types of amphibians.

  13. In vitro study for laser gene transfer in BHK-21 fibroblast cell line

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, M.; Salem, D. S.; Salama, M. S.; Badr, Y.

    2009-02-01

    Modifications to our previously introduced system for laser microbeam cell surgery were carried out in the present work to match animal cells. These modifications included: 1- Using other laser system that used before, Excimer laser with 193 and 308 nm wavelengths. The used laser here, is He-Cd with low power and 441.5 nm wavelength in the visible region. 2- Instead of using pulsed laser, we used here CW He-Cd chopped by electrical chopper, which is synchronized with the mechanical motion of the mobile stage with step 40 microns, according to cell dimensions to avoid puncturing the same cell twice. The advantages of the modified here laser setup for gene transfer is: it is less damaging to the sensitive animal cell which has thin cell membrane. The present work aimed to: 1- Design a modified laser microbeam cell surgery, applicable to animal cells, such as fibroblast cells 2- To examine the efficiency of such system. 3- To assure gene transfer and its expression in the used cells. 4- To evaluate the ultra damages produced from using the laser beam as a modality for gene transfer. On the other wards, to introduce: safe, efficient and less damaging modality for gene transfer in animal cells. To achieve these goals, we applied the introduced here home-made laser setup with its synchronized parameters to introduce pBK-CMV phagemid, containing LacZ and neomycin resistance (neor )genes into BHK-21 fibroblast cell line. The results of the present work showed that: 1- Our modified laser microbeam cell surgery setup proved to be useful and efficient tool for gene transfer into fibroblast cells. 2- The presence and expression of LacZ gene was achieved using histochemical LacZ assay. 3- Selection of G418 antibiotic sensitivity assay confirmed the presence and expression towards stability of neor gene with time. 4- Presence of LacZ and neor genes in the genomic DNA of transfected fibroblast cells was indicated using PCR analysis. 5- Transmission electron microscopy indicated

  14. Study on characteristics of in vitro culture and intracellular transduction of exogenous proteins in fibroblast cell line of Liaoning cashmere goat.

    PubMed

    Hu, P F; Guan, W J; Li, X C; Zhang, W X; Li, C L; Ma, Y H

    2013-01-01

    Establishment of fibroblast cell lines of endangered goat breeds and research on the gene or protein functions based on the cells made a significant contribution to the conservation and utilization of genetic resources. In this study, a fibroblast cell line of Liaoning cashmere goat, frozen in 174 cryovials with 5 × 10(6) cells each, was successfully established from 60 goats ear marginal tissues using explant culture and cryopreservation techniques. Biological analysis of in vitro cultured cell line showed that, the cells were morphologically consistent with fibroblasts; the average viability of the cells was 94.9 % before freezing and 90.1 % after thawing; the growth process of cells was consisted of a lag phase, a logarithmic phase and a plateau phase; cell population doubling time was 65.5 h; more than 90 % of cells were diploid prior to the 6th generation; Neither microbial contamination nor cross-contamination was detected. To determine cell permeability, intracellular path and stability of exogenous proteins during the transduction, a TAT protein transduction domain was fused to the C-terminus of enhanced green fluorescent protein, the established fibroblast cell line was treated with the purified exogenous proteins at various concentrations by adding them to the cell culture media for 1-24 h and assayed cell morphology and protein presence, it was found that the purified exogenous proteins readily entered cells at a concentration of 0.1 mg/ml within 1.5 h and some of them could translocate into nucleus, moreover, the exogenous proteins appeared to be stable inside cells for up to 24 h.

  15. Establishment and characterization of pygmy killer whale (Feresa attenuata) dermal fibroblast cell line.

    PubMed

    Yajing, Sun; Rajput, Imran Rashid; Ying, Huang; Fei, Yu; Sanganyado, Edmond; Ping, Li; Jingzhen, Wang; Wenhua, Liu

    2018-01-01

    The pygmy killer whale (Feresa attenuata) (PKW) is a tropical and subtropical marine mammal commonly found in the Atlantic, Indian and Pacific oceans. Since the PKWs live in offshore protected territories, they are rarely seen onshore. Hence, PKW are one of the most poorly understood oceanic species of odontocetes. The dermal tissue comes primarily from stranding events that occur along the coast of the Shantou, Guangdong, China. The sampled tissues were immediately processed and attached on collagen-coated 6-well tissue culture plate. The complete medium (DMEM and Ham's F12, fetal bovine serum, antibiotic and essential amino acids) was added to the culture plates. The primary culture (PKW-LWH) cells were verified as fibroblast by vimentin and karyotype analyses, which revealed 42 autosomes and two sex chromosomes X and Y. Following transfection of PKW-LWH cells with a plasmid encoding, the SV40 large T-antigens and the transfected cells were isolated and expanded. Using RT-PCR, western blot, immunofluorescence analysis and SV40 large T-antigen stability was confirmed. The cell proliferation rate of the fibroblast cells, PKW-LWHT was faster than the primary cells PKW-LWH with the doubling time 68.9h and 14.4h, respectively. In this study, we established PKW dermal fibroblast cell line for the first time, providing a unique opportunity for in vitro studies on the effects of environmental pollutants and pathogens that could be determined in PKW and/or Cetaceans.

  16. Establishment and characterization of immortalized gingival epithelial and fibroblastic cell lines for the development of organotypic cultures.

    PubMed

    Bao, Kai; Akguel, Baki; Bostanci, Nagihan

    2014-01-01

    In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro. © 2014 S. Karger AG, Basel.

  17. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene

    PubMed Central

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-01-01

    Abstract Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-βRI indicative of altered TGF-β signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis. PMID:19432820

  18. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene.

    PubMed

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-05-01

    Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.

  19. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    PubMed

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  20. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    PubMed

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  1. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines.

    PubMed

    Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong

    2014-03-01

    To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p < 0.05). All of the tested denture adhesives showed mild to moderate cytotoxicity to primary HOKs (p < 0.001), whereas none of three was toxic to L929 cells (p > 0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p < 0.01). Denture adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  3. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-10-01

    This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.

  4. Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors

    USDA-ARS?s Scientific Manuscript database

    Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...

  5. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  6. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shiftedmore » of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.« less

  7. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  9. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  10. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  11. Biological evaluation of partially stabilized zirconia added HA/HDPE composites with osteoblast and fibroblast cell lines.

    PubMed

    Yari Sadi, Amir; Shokrgozar, Mohammad Ali; Homaeigohar, Seyed Shahin; Khavandi, Alireza

    2008-06-01

    In the present study, the biocompatibility of partially stabilized zirconia (PSZ) added hydroxyapatite (HA)--high density polyethylene (HDPE) composites was evaluated by proliferation and cell attachment assays on two osteoblast cell lines (G-292, Saos-2) and a type of fibroblast cell isolated from bone tissue namely HBF in different time intervals. Cell-material interactions on the surface of the composites were observed by scanning electron microscopy (SEM). The effect of composites on the behavior of osteoblast and fibroblast cells was compared with those of HDPE and Tissue Culture Poly Styrene (TPS) (as negative control) samples. Results showed that the composite samples supported a higher proliferation rate of osteoblast cells in the presence of composite samples as compared to the HDPE and TPS samples after 3, 7 and 14 days of incubation period. It was showed that an equal or in some cases an even higher proliferation rate of G-292 and Saos-2 osteoblast cells on composite samples in compare to negative controls in culture period (P < 0.05). The number of adhered cells on the composite samples was equal and in some cases higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods (P < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were seen to be undergoing cell division.

  12. Cellular characteristics of primary and immortal canine embryonic fibroblast cells.

    PubMed

    You, Seungkwon; Moon, Jai-Hee; Kim, Tae-Kyung; Kim, Sung-Chan; Kim, Jai-Woo; Yoon, Du-Hak; Kwak, Sungwook; Hong, Ki-Chang; Choi, Yun-Jaie; Kim, Hyunggee

    2004-08-31

    Using normal canine embryonic fibroblasts (CaEF) that were shown to be senescent at passages 7th-9th, we established two spontaneously immortalized CaEF cell lines (designated CGFR-Ca-1 and -2) from normal senescent CaEF cells, and an immortal CaEF cell line by exogenous introduction of a catalytic telomerase subunit (designated CGFR-Ca-3). Immortal CGFR- Ca-1, -2 and -3 cell lines grew faster than primary CaEF counterpart in the presence of either 0.1% or 10% FBS. Cell cycle analysis demonstrated that all three immortal CaEF cell lines contained a significantly high proportion of S-phase cells compared to primary CaEF cells. CGFR-Ca-1 and -3 cell lines showed a loss of p53 mRNA and protein expression leading to inactivation of p53 regulatory function, while the CGFR-Ca-2 cell line was found to have the inactive mutant p53. Unlike the CGFR-Ca-3 cell line that down-regulated p16INK4a mRNA due to its promoter methylation but had an intact p16INK4a regulatory function, CGFR-Ca-1 and -2 cell lines expressed p16INK4a mRNA but had a functionally inactive p16INK4a regulatory pathway as judged by the lack of obvious differences in cell growth and phenotype when reconstituted with wild-type p16INK4a. All CGFR-Ca-1, -2 and -3 cell lines were shown to be untransformed but immortal as determined by anchorage-dependent assay, while these cell lines were fully transformed when overexpressed oncogenic H-rasG12V. Taken together, similar to the nature of murine embryo fibroblasts, the present study suggests that normal primary CaEF cells have relatively short in vitro lifespans and should be spontaneously immortalized at high frequency.

  13. Biocompatibility of bio based calcium carbonate nanocrystals aragonite polymorph on NIH 3T3 fibroblast cell line.

    PubMed

    Kamba, Abdullahi Shafiu; Ismail, Maznah; Ibrahim, Tengku Azmi Tengku; Zakaria, Zuki Abu Bakar

    2014-01-01

    Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line. Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope. The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed. The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.

  14. Analysis of repair and PCNA complex formation induced by ionizing radiation in human fibroblast cell lines.

    PubMed

    Karmakar, P; Balajee, A S; Natarajan, A T

    2001-05-01

    Proliferating cell nuclear antigen (PCNA), an auxiliary factor for DNA polymerase delta and epsilon, is involved in both DNA replication and repair. Previous studies in vitro have demonstrated the requirement of PCNA in the resynthesis step of nucleotide excision repair (NER) and base excision repair (BER). Using a native chromatin template isolated under near physiological conditions, we have analysed the involvement of PCNA in the BER pathway in different NER defective human cell lines. The repair sites and PCNA were visualized by indirect immunolabelling followed by fluorescence microscopy. The results indicate that exposure to X-rays triggers the induction of PCNA in all the three human fibroblast cell lines studied, namely normal, xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). In all the cell lines, induction of PCNA and repair patches occurred in a dose- and time-dependent fashion. Induction of repair patches in NER-deficient XP-A cells suggests that the X-ray-induced lesions are largely repaired via the BER pathway involving PCNA as one of the key components of this pathway. X-ray-induced repair synthesis was greatly inhibited by treatment of cells with DNA polymerase inhibitors aphidicolin and cytosine arabinoside. Interestingly, inhibition of repair resynthesis did not affect the intensity of PCNA staining in X-irradiated cells indicating that the PCNA may be required for the BER pathway at a step preceding the resynthesis step.

  15. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less

  16. Establishment and characterization of equine fibroblast cell lines transformed in vivo and in vitro by BPV-1: Model systems for equine sarcoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Z.Q.; Gault, E.A.; Gobeil, P.

    2008-04-10

    It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independentlymore » of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology.« less

  17. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  18. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    PubMed

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  19. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  20. In vitro adhesion of fibroblastic cells to titanium alloy discs treated with sodium hydroxide.

    PubMed

    Al Mustafa, Maisa; Agis, Hermann; Müller, Heinz-Dieter; Watzek, Georg; Gruber, Reinhard

    2015-01-01

    Adhesion of osteogenic cells on titanium surfaces is a prerequisite for osseointegration. Alkali treatment can increase the hydrophilicity of titanium implant surfaces, thereby supporting the adhesion of blood components. However, it is unclear if alkali treatment also supports the adhesion of cells with a fibroblastic morphology to titanium. Here, we have used a titanium alloy (Ti-6AL-4V) processed by alkali treatment to demonstrate the impact of hydrophilicity on the adhesion of primary human gingival fibroblast and bone cells. Also included were the osteosarcoma and fibroblastoma cell lines, MG63 and L929, respectively. Cell adhesion was determined by scanning electron microscopy. We also measured viability, proliferation, and protein synthesis of the adherent cells. Alkali treatment increased the adhesion of gingival fibroblasts, bone cells, and the two cell lines when seeded onto the titanium alloy surface for 1 h. At 3 h, no significant changes in cell adhesion were observed. Cells grown for 1 day on the titanium alloy surfaces processed by alkali treatment behave similarly to untreated controls with regard to viability, proliferation, and protein synthesis. Based on these preliminary In vitro findings, we conclude that alkali treatment can support the early adhesion of cells with fibroblastic characteristics to a titanium alloy surface. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.

    PubMed

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike

    2011-02-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.

  2. [A new method of in vitro chemosensitivity test using multicellular spheroids of cholangiocarcinoma cell line cocultured with fibroblasts].

    PubMed

    Kubota, S; Takezawa, T; Mori, Y; Takakuwa, T

    1992-09-01

    We applied the multicellular spheroids which consist of cholangiocarcinoma cell line (MEC) and human dermal fibroblasts (HDF) to in vitro chemosensitivity test. Five-day multicellular spheroids were incubated with 1.5 micrograms/ml of mitomycin C (MMC) for 24 hrs. Then, cell kinetics of MEC and HDF in a spheroid was determined by flow cytometric analysis. Twenty four hrs after treatment with MMC, both MEC and HDF were accumulated on S phase. Seven-day after treatment, DNA histogram in MEC returned to normal, but that of HDF was disappeared. These results showed that the multicellular assay could be more like on in vivo like chemosensitivity test.

  3. Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts

    PubMed Central

    Breton, Amandine; Sharma, Ruchi; Diaz, Andrea Catalina; Parham, Alea Gillian; Graham, Audrey; Neil, Claire; Whitelaw, Christopher Bruce; Milne, Elspeth

    2013-01-01

    Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine. PMID:22897112

  4. Immortalization of pig fibroblast cells by transposon-mediated ectopic expression of porcine telomerase reverse transcriptase.

    PubMed

    He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2016-08-01

    Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.

  5. Electronic waste leachate-mediated DNA fragmentation and cell death by apoptosis in mouse fibroblast (NIH/3T3) cell line.

    PubMed

    Alabi, Okunola A; Bakare, Adekunle A; Filippin-Monteiro, Fabíola B; Sierra, Jelver A; Creczynski-Pasa, Tânia B

    2013-08-01

    This study investigated the apoptotic effect of electronic waste on fibroblast cell line. Cells were treated with different concentrations of the leachate for 24h. Cell viability was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, nuclear morphology of cells was explored by acridine orange (AO)/ethidium bromide (EB) double staining, mitochondrial membrane potential was evaluated using JC-1 probe while cell cycle analysis was conducted using flow cytometry. The oxidative status was detected using DCFH-DA (dichlorofluorescin diacetate) probe and the relationship between cell death and ROS (reactive oxygen species) was investigated using N-acetylcysteine. Results showed an increased cell death as detected by MTT assay and AO/EB staining. Cell cycle analysis indicated an induction of sub/G1 events while JC-1 probe showed significant disruption of mitochondrial membrane potential. There was significant induction of ROS, while N-acetylcysteine protected the cells from DNA damage. These suggest apoptotic pathway as a possible mechanism of e-waste induced cyto-genotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Radiation sensitivity of Merkel cell carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT)more » assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.« less

  7. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  8. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression

    PubMed Central

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio

    2010-01-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980

  9. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture.

    PubMed

    Kiener, Hans P; Watts, Gerald F M; Cui, Yajun; Wright, John; Thornhill, Thomas S; Sköld, Markus; Behar, Samuel M; Niederreiter, Birgit; Lu, Jun; Cernadas, Manuela; Coyle, Anthony J; Sims, Gary P; Smolen, Josef; Warman, Matthew L; Brenner, Michael B; Lee, David M

    2010-03-01

    To define the intrinsic capacity of fibroblast-like synoviocytes (FLS) to establish a 3-dimensional (3-D) complex synovial lining architecture characterized by the multicellular organization of the compacted synovial lining and the elaboration of synovial fluid constituents. FLS were cultured in spherical extracellular matrix (ECM) micromasses for 3 weeks. The FLS micromass architecture was assessed histologically and compared with that of dermal fibroblast controls. Lubricin synthesis was measured via immunodetection. Basement membrane matrix and reticular fiber stains were performed to examine ECM organization. Primary human and mouse monocytes were prepared and cocultured with FLS in micromass to investigate cocompaction in the lining architecture. Cytokine stimuli were applied to determine the capacity for inflammatory architecture rearrangement. FLS, but not dermal fibroblasts, spontaneously formed a compacted lining architecture over 3 weeks in the 3-D ECM micromass organ cultures. These lining cells produced lubricin. FLS rearranged their surrounding ECM into a complex architecture resembling the synovial lining and supported the survival and cocompaction of monocyte/macrophages in the neo-lining structure. Furthermore, when stimulated by cytokines, FLS lining structures displayed features of the hyperplastic rheumatoid arthritis synovial lining. This 3-D micromass organ culture method demonstrates that many of the phenotypic characteristics of the normal and the hyperplastic synovial lining in vivo are intrinsic functions of FLS. Moreover, FLS promote survival and cocompaction of primary monocytes in a manner remarkably similar to that of synovial lining macrophages. These findings provide new insight into inherent functions of the FLS lineage and establish a powerful in vitro method for further investigation of this lineage.

  10. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  11. Spontaneous establishment of an Epstein-Barr virus-infected fibroblast line from the synovial tissue of a rheumatoid arthritis patient.

    PubMed Central

    Koide, J; Takada, K; Sugiura, M; Sekine, H; Ito, T; Saito, K; Mori, S; Takeuchi, T; Uchida, S; Abe, T

    1997-01-01

    An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA. PMID:9032386

  12. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts*

    PubMed Central

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W.

    2016-01-01

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4+ but not CD8+ cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. PMID:26699196

  13. Type I and type II interferons upregulate functional type I interleukin-1 receptor in a human fibroblast cell line TIG-1.

    PubMed

    Takii, T; Niki, N; Yang, D; Kimura, H; Ito, A; Hayashi, H; Onozaki, K

    1995-12-01

    The regulation of type I interleukin-1 receptor (IL-1R) expression by type I, interferon (IFN)-alpha A/D, and type II IFN, IFN-gamma, in a human fibroblast cell line TIG-1 was investigated. After 2 h stimulation with human IFN-alpha A/D or IFN-gamma, the levels of type I IL-1R mRNA increased. We previously reported that IL-1 upregulates transcription and cell surface molecules of type I IL-1R in TIG-1 cells through induction of prostaglandin (PG) E2 and cAMP accumulation. However, indomethacin was unable to inhibit the effect of IFNs, indicating that IFNs augment IL-1R expression through a pathway distinct from that of IL-1. The augmentation was also observed in other fibroblast cell lines. Nuclear run-on assays and studies of the stability of mRNA suggested that the increase in IL-1R mRNA was a result of the enhanced transcription of IL-1R gene. Binding studies using 125I-IL-1 alpha revealed that the number of cell surface IL-1R increased with no change in binding affinity by treatment with these IFNs. Pretreatment of the cells with IFNs enhanced IL-1-induced IL-6 production, indicating that IFNs upregulate functional IL-1R. IL-1 and IFNs are produced by the same cell types, as well as by the adjacent different cell types, and are concomitantly present in lesions of immune and inflammatory reactions. These results therefore suggest that IFNs exhibit synergistic effects with IL-1 through upregulation of IL-1R. Augmented production of IL-6 may also contribute to the reactions.

  14. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. Copyright © 2015 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.

  15. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozaki, K.; Kuriu, A.; Hirota, S.

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less

  16. Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF.

    PubMed

    Meng, G L; Zur Nieden, N I; Liu, S Y; Cormier, J T; Kallos, M S; Rancourt, D E

    2008-04-01

    In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Copyright 2007 Wiley-Liss, Inc.

  17. Interaction between head and neck squamous cell carcinoma cells and fibroblasts in the biosynthesis of PGE2

    PubMed Central

    Alcolea, Sonia; Antón, Rosa; Camacho, Mercedes; Soler, Marta; Alfranca, Arantzazu; Avilés-Jurado, Francesc-Xavier; Redondo, Juan-Miguel; Quer, Miquel; León, Xavier; Vila, Luis

    2012-01-01

    Prostaglandin (PG)E2 is relevant in tumor biology, and interactions between tumor and stroma cells dramatically influence tumor progression. We tested the hypothesis that cross-talk between head and neck squamous cell carcinoma (HNSCC) cells and fibroblasts could substantially enhance PGE2 biosynthesis. We observed an enhanced production of PGE2 in cocultures of HNSCC cell lines and fibroblasts, which was consistent with an upregulation of COX-2 and microsomal PGE-synthase-1 (mPGES-1) in fibroblasts. In cultured endothelial cells, medium from fibroblasts treated with tumor cell-conditioned medium induced in vitro angiogenesis, and in tumor cell induced migration and proliferation, these effects were sensitive to PGs inhibition. Proteomic analysis shows that tumor cells released IL-1, and tumor cell-induced COX-2 and mPGES-1 were suppressed by the IL-1-receptor antagonist. IL-1α levels were higher than those of IL-1β in the tumor cell-conditioning medium and in the secretion from samples obtained from 20 patients with HNSCC. Fractionation of tumor cell-conditioning media indicated that tumor cells secreted mature and unprocessed forms of IL-1. Our results support the concept that tumor-associated fibroblasts are a relevant source of PGE2 in the tumor mass. Because mPGES-1 seems to be essential for a substantial biosynthesis of PGE2, these findings also strengthen the concept that mPGES-1 may be \\a target for therapeutic intervention in patients with HNSCC. PMID:22308510

  18. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi; Karhemo, Piia-Riitta; Räsänen, Kati

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similarmore » secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.« less

  19. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID

  20. Establishment of proliferative tetraploid cells from telomerase-immortalized normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2016-06-01

    Aneuploidy is observed in the majority of human cancers and is considered to be causally related to carcinogenesis. Although malignant aneuploid cells are suggested to develop from polyploid cells formed in precancerous lesions, the mechanisms of this process remain elusive. This is partly because no experimental model is available where nontransformed polyploid human cells propagate in vitro. We previously showed that proliferative tetraploid cells can be established from normal human fibroblasts by treatment with the spindle poison demecolcine (DC). However, the limited lifespan of these cells hampered detailed analysis of a link between chromosomal instability and the oncogenic transformation of polyploid cells. Here, we report the establishment of proliferative tetraploid cells from the telomerase-immortalized normal human fibroblast cell line TIG-1. Treatment of immortalized diploid cells with DC for 4 days resulted in proliferation of cells with tetraploid DNA content and near-tetraploid/tetraploid chromosome counts. Established tetraploid cells had functional TP53 despite growing at almost the same rate as diploid cells. The frequency of clonal and sporadic chromosome aberrations in tetraploid cells was higher than in diploid cells and in one experiment, gradually increased with repeated subculture. This study suggests that tetraploid cells established from telomerase-immortalized normal human fibroblasts can be a valuable model for studying chromosomal instability and the oncogenic potential of polyploid cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts.

    PubMed

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W

    2016-02-19

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Fibroblasts regulate the migration of MCF7 mammary carcinoma cells in hydrated collagen gel.

    PubMed

    Rossi, L; Reverberi, D; Capurro, C; Aiello, C; Cipolla, M; Bonanno, M; Podestà, G

    1994-01-01

    We have defined a tissue culture method suitable to study cell-cell interactions in an environmental set close to in vivo conditions. It consists of heterotypic cell populations mixed together inside a collagen gel in a chamber slide for a period of up to 14 days. When the three-dimensional system is saturated, cells will start to move on the plastic surface as monolayers surrounding the gel, with a characteristic speed depending on cell type. Usually fibroblasts move fast, while epithelial cells demonstrate a much lower pace of migration. At any given time gel contraction can be measured, and thus the rate of cell expansion, by knowing the distance from the edge of the gel to the leading edge of cell migration. By using this approach it was found that MCF7 mammary carcinoma cells display a great variety of morphologies following their mixture with different fibroblastic cell lines. In particular, when MCF7 cells were mixed with fibroblasts from human fetus, dog thymus and rat kidney, they migrated up to the leading edge of the fibroblastic front as isolated single cells or as cellular aggregates, many of which became necrotic in time, or took on an elongated morphology. Selective necrosis of MCF7 cells was also induced with serum concentration of 15% and 20% FCS, but only when they were mixed with fibroblasts. No necrosis was induced in MCF7 cells cultured alone. From these observations it is suggested that necrosis may sometimes favor the detachment and infiltration of resistant epithelial tumor cells by increasing their autonomous behaviour. Fibroblasts seem to be instrumental in regulating this process.

  3. The primary growth of laryngeal squamous cell carcinoma cells in vitro is effectively supported by paired cancer-associated fibroblasts alone.

    PubMed

    Wang, Mei; Wu, Chunping; Guo, Yu; Cao, Xiaojuan; Zheng, Wenwei; Fan, Guo-Kang

    2017-05-01

    Most primarily cultured laryngeal squamous cell carcinoma cells are difficult to propagate in vitro and have a low survival rate. However, in our previous work to establish a laryngeal squamous cell carcinoma cell line, we found that laryngeal cancer-associated fibroblasts appeared to strongly inhibit the apoptosis of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In this study, we investigated whether paired laryngeal cancer-associated fibroblasts alone can effectively support the growth of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In all, 29 laryngeal squamous cell carcinoma specimens were collected and primarily cultured. The laryngeal squamous cell carcinoma cells were separated from cancer-associated fibroblasts by differential trypsinization and continuously subcultured. Morphological changes of the cultured laryngeal squamous cell carcinoma cells were observed. Immunocytofluorescence was used to authenticate the identity of the cancer-associated fibroblasts and laryngeal squamous cell carcinoma cells. Flow cytometry was used to quantify the proportion of apoptotic cells. Western blot was used to detect the protein levels of caspase-3. Enzyme-linked immunosorbent assay was used to detect the levels of chemokine (C-X-C motif) ligand 12, chemokine (C-X-C motif) ligand 7, hepatocyte growth factor, and fibroblast growth factor 1 in the supernatants of the laryngeal squamous cell carcinoma and control cells. AMD3100 (a chemokine (C-X-C motif) receptor 4 antagonist) and an anti-chemokine (C-X-C motif) ligand 7 antibody were used to block the tumor-supporting capacity of cancer-associated fibroblasts. Significant apoptotic changes were detected in the morphology of laryngeal squamous cell carcinoma cells detached from cancer-associated fibroblasts. The percentage of apoptotic laryngeal squamous cell carcinoma cells and the protein levels of caspase-3 increased gradually in subsequent subcultures. In contrast, no

  4. Induction of antiviral genes, Mx and vig-1, by dsRNA and Chum salmon reovirus in rainbow trout monocyte/macrophage and fibroblast cell lines.

    PubMed

    DeWitte-Orr, Stephanie J; Leong, Jo-Ann C; Bols, Niels C

    2007-09-01

    The expression of potential antiviral genes, Mx1, Mx2, Mx3 and vig-1, was studied in two rainbow trout cell lines: monocyte/macrophage RTS11 and fibroblast-like RTG-2. Transcripts were monitored by RT-PCR; Mx protein by Western blotting. In unstimulated cultures Mx1 and vig-1 transcripts were seen occasionally in RTS11 but rarely in RTG-2. A low level of Mx protein was seen in unstimulated RTS11 but not in RTG-2. In both cell lines, Mx and vig-1 transcripts were induced by a dsRNA, poly inosinic: poly cytidylic acid (poly IC), and by Chum salmon reovirus (CSV). Medium conditioned by cells previously exposed to poly IC or CSV and assumed to contain interferon (IFN) induced the antiviral genes in RTS11. However, RTG-2 responded only to medium conditioned by RTG-2 exposed previously to CSV. In both cell lines, poly IC and CSV induced Mx transcripts in the presence of cycloheximide, suggesting a direct induction mechanism, independent of IFN, was also possible. For CSV, ribavirin blocked induction in RTS11 but not in RTG-2, suggesting viral RNA synthesis was required for induction only in RTS11. In both RTS11 and RTG-2 cultures, Mx protein showed enhanced accumulation by 24h after exposure to poly IC and CSV, but subsequently Mx protein levels declined back to control levels in RTS11 but not in RTG-2. These results suggest that Mx can be regulated differently in macrophages and fibroblasts.

  5. Mesenchymal stem cells induce dermal fibroblast responses to injury

    PubMed Central

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2009-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury. PMID:19666021

  6. Mesenchymal stem cells induce dermal fibroblast responses to injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Andria N., E-mail: snosmith@u.washington.edu; Willis, Elise, E-mail: elise.willis@gmail.com; Chan, Vincent T.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. Whenmore » co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.« less

  7. Evaluation of human embryonic stem cells and their differentiated fibroblastic progenies as cellular models for in vitro genotoxicity screening.

    PubMed

    Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong

    2014-08-20

    This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.

  8. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells.

    PubMed

    Elshabrawy, Hatem A; Volin, Michael V; Essani, Abdul B; Chen, Zhenlong; McInnes, Iain B; Van Raemdonck, Katrien; Palasiewicz, Karol; Arami, Shiva; Gonzalez, Mark; Ashour, Hossam M; Kim, Seung-Jae; Zhou, Guofei; Fox, David A; Shahrara, Shiva

    2018-05-01

    IL-11 has been detected in inflamed joints; however, its role in the pathogenesis of arthritis is not yet clear. Studies were conducted to characterize the expression and functional significance of IL-11 and IL-11Rα in rheumatoid arthritis (RA). IL-11 levels were elevated in RA synovial fluid (SF) compared to osteoarthritis (OA) SF and plasma from RA, OA and normal individuals (NLs). Morphologic studies established that IL-11 was detected in lining fibroblasts and macrophages in addition to sublining endothelial cells and macrophages at higher levels in RA compared to NL synovial tissues. Since IL-11Rα was exclusively expressed in RA fibroblasts and endothelial cells, macrophages were not involved in IL-11 effector function. Ligation of IL-11 to IL-11Rα strongly provoked fibroblast infiltration into RA joint, while cell proliferation was unaffected by this process. Secretion of IL-8 and VEGF from IL-11 activated RA fibroblasts was responsible for the indirect effect of IL-11 on endothelial cell transmigration and tube formation. Moreover, IL-11 blockade impaired RA SF capacity to elicit endothelial cell transmigration and tube formation. We conclude that IL-11 binding to endothelial IL-11Rα can directly induce RA angiogenesis. In addition, secretion of proangiogenic factors from migrating fibroblasts potentiated by IL-11 can indirectly contribute to RA neovascularization.

  9. In vitro effects of histone deacetylase inhibitors and mitomycin C on tenon capsule fibroblasts and conjunctival melanoma cells.

    PubMed

    Cunneen, Thomas S; Conway, R Max; Madigan, Michele C

    2009-04-01

    To investigate the effects of mitomycin C and the histone deacetylase inhibitors sodium butyrate and trichostatin on the viability and growth of conjunctival melanoma cell lines and Tenon capsule fibroblasts. Cells were treated with a range of concentrations of sodium butyrate, trichostatin, and mitomycin C. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assays were performed 48 hours after treatment. Treated cells were stained with acridine orange/ethidium bromide to assess for cell death. Cell-cycle changes in histone deacetylase inhibitor-treated melanoma cells were quantified using flow cytometry. All agents induced dose-dependent cell death in the melanoma cell lines; however, sodium butyrate and trichostatin were relatively nontoxic to Tenon capsule fibroblasts. Acridine orange/ethidium bromide staining indicated that sodium butyrate and trichostatin induced apoptotic cell death. At low doses, sodium butyrate and trichostatin induced a G1 cell-cycle block in the melanoma cells. Sodium butyrate and trichostatin induced cell death in melanoma cells, comparable with mitomycin C, with minimal effect on Tenon capsule fibroblasts. In addition, they induced a G1 cell-cycle block. These findings support the need for further investigation into the in vivo efficacy of these agents.

  10. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    PubMed

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Immortalisation of a human diploid fibroblast cell strain: a DT-diaphorase paradox.

    PubMed Central

    Kuehl, B. L.; Brezden, C. B.; Traver, R. D.; Siegel, D.; Ross, D.; Renzing, J.; Rauth, A. M.

    1996-01-01

    Transfection of a normal human diploid fibroblast cell strain, GM38, with a simian virus 40 (SV40) large T antigen containing plasmid, yielded an immortal cell line, G38-8X, which had a similar sensitivity as the parental cell strain to the quinone-containing chemotherapeutic agent mitomycin C (MMC), under both aerobic and hypoxic exposure conditions. The activity level of DT-diaphorase was similar in both the parental GM38 and G38-8X cells. Although DT-diaphorase could be detected by Western blot analysis, using two mouse anti-human monoclonal antibodies, in GM38 cells, it was not detected in the G38-8X cells. G38-8X cells have a slightly increased P450R activity (2-fold), and have elevated P-glycoprotein levels compared with the parental GM38 cell strain. The immortal G38-8X cell line is 2-fold more resistant to ionising radiation than the parental GM38 cell strain (D10 approximately 5 Gy). Although these SV40 large T antigen immortalised human diploid fibroblasts behaved similarly to their parental cell strain in terms of MMC sensitivity and DT-diaphorase activity, careful characterisation revealed that these cells had enhanced P-glycoprotein activity and had a decreased sensitivity to ionising radiation. Images Figure 3 PMID:8763839

  12. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  13. [Effects of fasudil on bleomycin-induced pulmonary fibrosis in mice and on the biological behaviors in NIH3T3 mouse fibroblast cell line].

    PubMed

    Jiang, Chunguo; Huang, Hui; Liu, Jia; Wang, Yanxun; Zhao, Yuyue; Xu, Zuojun

    2014-09-01

    To determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice and to determine the effects and mechanisms of fasudil on the biological behaviors in NIH3T3 mouse fibroblast cell line. The BPF model was induced by a single dosage of 2.5 mg/kg bleomycin intratracheal injection in mice and fasudil intraperitoneal injection was given to the mice. The fibrosis degree was determined pathologically by using the Ashcroft scoring method and biochemically by hydroxyproline assay in lung tissue. NIH3T3 mouse fibroblast cell line was cultured in vitro and fasudil was given to the cell. The proliferation activity in NIH3T3 cells were detected by MTT assay and flat colony forming experiment. The migration activity in NIH3T3 cells were detected by scratch test and transwell chamber experiment. The expression of CyclinD1, MMP2 and TIMP1 mRNA in NIH3T3 cells was detected by RT-PCR. The expression of CyclinD1, MMP2 and TIMP1 protein and the level of MYPT1 phosphorylation in NIH3T3 cells was detected by Western blot. Compare to the mice administrated by bleomycin, the Ashcroft score and hydroxyproline content were significantly decreased in the mice administered fasudil. Administration of fasudil can reduce the ability of proliferation and migration in a dose-dependent manner in NIH3T3 cells. The effect of fasudil was possibly related to increase the production of TIMP1 and decrease the production of CyclinD1 and MMP2. Administration of fasudil can attenuate pulmonary fibrosis both in vivo and in vitro. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.

  14. Serum-free keloid fibroblast cell culture: an in vitro model for the study of aberrant wound healing.

    PubMed

    Koch, R J; Goode, R L; Simpson, G T

    1997-04-01

    The purpose of this study was to develop an in vitro serum-free keloid fibroblast model. Keloid formation remains a problem for every surgeon. Prior evaluations of fibroblast characteristics in vitro, especially those of growth factor measurement, have been confounded by the presence of serum-containing tissue culture media. The serum itself contains growth factors, yet has been a "necessary evil" to sustain cell growth. The design of this study is laboratory-based and uses keloid fibroblasts obtained from five patients undergoing facial (ear lobule) keloid removal in a university-affiliated clinic. Keloid fibroblasts were established in primary cell culture and then propagated in a serum-free environment. The main outcome measures included sustained keloid fibroblast growth and viability, which was comparable to serum-based models. The keloid fibroblast cell cultures exhibited logarithmic growth, sustained a high cellular viability, maintained a monolayer, and displayed contact inhibition. Demonstrating model consistency, there was no statistically significant difference between the mean cell counts of the five keloid fibroblast cell lines at each experimental time point. The in vitro growth of keloid fibroblasts in a serum-free model has not been done previous to this study. The results of this study indicate that the proliferative characteristics described are comparable to those of serum-based models. The described model will facilitate the evaluation of potential wound healing modulators, and cellular effects and collagen modifications of laser resurfacing techniques, and may serve as a harvest source for contaminant-free fibroblast autoimplants. Perhaps its greatest utility will be in the evaluation of endogenous and exogenous growth factors.

  15. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells

    PubMed Central

    Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen

    2013-01-01

    We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495

  16. Functional characterization of cell hybrids generated by induced fusion of primary porcine mesenchymal stem cells with an immortal murine cell line.

    PubMed

    Islam, M Q; Ringe, J; Reichmann, E; Migotti, R; Sittinger, M; da S Meirelles, L; Nardi, N B; Magnusson, P; Islam, K

    2006-10-01

    Bone marrow mesenchymal stem cells (MSC) integrate into various organs and contribute to the regeneration of diverse tissues. However, the mechanistic basis of the plasticity of MSC is not fully understood. The change of cell fate has been suggested to occur through cell fusion. We have generated hybrid cell lines by polyethylene-glycol-mediated cell fusion of primary porcine MSC with the immortal murine fibroblast cell line F7, a derivative of the GM05267 cell line. The hybrid cell lines display fibroblastic morphology and proliferate like immortal cells. They contain tetraploid to hexaploid porcine chromosomes accompanied by hypo-diploid murine chromosomes. Interestingly, many hybrid cell lines also express high levels of tissue-nonspecific alkaline phosphatase, which is considered to be a marker of undifferentiated embryonic stem cells. All tested hybrid cell lines retain osteogenic differentiation, a few of them also retain adipogenic potential, but none retain chondrogenic differentiation. Conditioned media from hybrid cells enhance the proliferation of both early-passage and late-passage porcine MSC, indicating that the hybrid cells secrete diffusible growth stimulatory factors. Murine F7 cells thus have the unique property of generating immortal cell hybrids containing unusually high numbers of chromosomes derived from normal cells. These hybrid cells can be employed in various studies to improve our understanding of regenerative biology. This is the first report, to our knowledge, describing the generation of experimentally induced cell hybrids by using normal primary MSC.

  17. Cytoglobin inhibits migration through PI3K/AKT/mTOR pathway in fibroblast cells.

    PubMed

    Demirci, Selami; Doğan, Ayşegül; Apdik, Hüseyin; Tuysuz, Emre Can; Gulluoglu, Sukru; Bayrak, Omer Faruk; Şahin, Fikrettin

    2018-01-01

    Cell proliferation and migration are crucial in many physiological processes including development, cancer, tissue repair, and wound healing. Cell migration is regulated by several signaling molecules. Identification of genes related to cell migration is required to understand molecular mechanism of non-healing chronic wounds which is a major concern in clinics. In the current study, the role of cytoglobin (CYGB) gene in fıbroblast cell migration and proliferation was described. L929 mouse fibroblast cells were transduced with lentiviral particles for CYGB and GFP, and analyzed for cell proliferation and migration ability. Fibroblast cells overexpressing CYGB displayed decreased cell proliferation, colony formation capacity, and cell migration. Phosphorylation levels of mTOR and two downstream effectors S6 and 4E-BP1 which take part in PI3K/AKT/mTOR signaling declined in CYGB-overexpressing cells. Microarray analysis indicated that CYGB overexpression leads to downregulation of cell proliferation, migration, and tumor growth associated genes in L929 cell line. This study demonstrated the role of CYGB in fibroblast cell motility and proliferation. CYGB could be a promising candidate for further studies as a potential target for diseases related to cell migration such as cancer and chronic wound treatment.

  18. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    PubMed

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell

  19. Ectromelia Virus Affects Mitochondrial Network Morphology, Distribution, and Physiology in Murine Fibroblasts and Macrophage Cell Line

    PubMed Central

    Gregorczyk, Karolina P.; Wyżewski, Zbigniew; Szczepanowska, Joanna; Mielcarska, Matylda B.; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Niemiałtowski, Marek G.

    2018-01-01

    Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission–fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis. PMID:29772718

  20. Ectromelia Virus Affects Mitochondrial Network Morphology, Distribution, and Physiology in Murine Fibroblasts and Macrophage Cell Line.

    PubMed

    Gregorczyk, Karolina P; Wyżewski, Zbigniew; Szczepanowska, Joanna; Toka, Felix N; Mielcarska, Matylda B; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Struzik, Justyna; Niemiałtowski, Marek G; Szulc-Dąbrowska, Lidia

    2018-05-16

    Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission⁻fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis.

  1. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    PubMed

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  2. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  3. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    PubMed

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  4. Establishing a reference dataset for the authentication of spinal muscular atrophy cell lines using STR profiling and digital PCR.

    PubMed

    Stabley, Deborah L; Holbrook, Jennifer; Harris, Ashlee W; Swoboda, Kathryn J; Crawford, Thomas O; Sol-Church, Katia; Butchbach, Matthew E R

    2017-05-01

    Fibroblasts and lymphoblastoid cell lines (LCLs) derived from individuals with spinal muscular atrophy (SMA) have been and continue to be essential for translational SMA research. Authentication of cell lines helps ensure reproducibility and rigor in biomedical research. This quality control measure identifies mislabeling or cross-contamination of cell lines and prevents misinterpretation of data. Unfortunately, authentication of SMA cell lines used in various studies has not been possible because of a lack of a reference. In this study, we provide said reference so that SMA cell lines can be subsequently authenticated. We use short tandem repeat (STR) profiling and digital PCR (dPCR), which quantifies SMN1 and SMN2 copy numbers, to generate molecular identity codes for fibroblasts and LCLs that are commonly used in SMA research. Using these molecular identity codes, we clarify the familial relationships within a set of fibroblasts commonly used in SMA research. This study presents the first cell line reference set for the SMA research community and demonstrates its usefulness for re-identification and authentication of lines commonly used as in vitro models for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts.

    PubMed

    Vicente, Carolina Meloni; Ricci, Ritchelli; Nader, Helena Bonciani; Toma, Leny

    2013-05-25

    The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells.

  6. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp; Nobe, Hiromi; Department of Physical Therapy, Bunkyo-Gakuin University

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibersmore » and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.« less

  7. Cell Toxicity in Fibroblasts, Tenocytes, and Human Mesenchymal Stem Cells-A Comparison of Necrosis and Apoptosis-Inducing Ability in Ropivacaine, Bupivacaine, and Triamcinolone.

    PubMed

    Zhang, Anja Z; Ficklscherer, Andreas; Gülecyüz, Mehmet F; Paulus, Alexander C; Niethammer, Thomas R; Jansson, Volkmar; Müller, Peter E

    2017-04-01

    To analyze the ability of ropivacaine, bupivacaine, and triamcinolone to induce apoptosis and necrosis in fibroblasts, tenocytes, and human mesenchymal stem cells. Human dermal fibroblasts, adipose-derived human mesenchymal stem cells (hMSCs), and tenocytes gained from the rotator cuff tendon were seeded with a cell density of 0.5 × 10 4 /cm 2 . One specimen of ropivacaine, bupivacaine, and triamcinolone was tested separately on the cells with separate concentrations of 0.5%, 0.25%, and 0.125% for each specimen. The negative control received no agent, only a change of medium. The incubation period for each agent was 30 minutes. After a change of medium and 1 hour, 24 hours, and 7 days of incubation, 10 4  cells were harvested and analyzed via fluorescence-activated cell sorting with double-staining with annexin V and propidium iodide. Statistical analysis to determine significant difference (P < .05) between the groups with SPSS statistics 23 through one-way analysis of variance with a univariate general linear model was performed. Bupivacaine showed necrosis-inducing effects on fibroblasts and tenocytes, with the necrotic effect peaking at 0.5% and 0.25%. Ropivacaine and triamcinolone caused no significant necrosis. Compared with fibroblasts and tenocytes, hMSCs did not show significant necrotic or apoptotic effects after exposure to bupivacaine. Overall, no significant differences in apoptosis were detected between different cell lines, varying concentrations, or time measurements. Bupivacaine 0.5% and 0.25% have the most necrosis-inducing effects on fibroblasts and tenocytes. Ropivacaine caused less necrosis than bupivaine. Compared with fibroblasts and tenocytes, hMSCs were not affected by necrosis using any of the tested agents. A significant apoptosis-inducing effect could not be detected for the different cell lines. Possible cell toxicity raises questions of concern for intra-articular injections using local anesthetics and corticosteroids. The

  8. 9-AAA inhibits growth and induces apoptosis in human melanoma A375 and rat prostate adenocarcinoma AT-2 and Mat-LyLu cell lines but does not affect the growth and viability of normal fibroblasts.

    PubMed

    Korohoda, Włodzimierz; Hapek, Anna; Pietrzak, Monika; Ryszawy, Damian; Madeja, Zbigniew

    2016-11-01

    The present study found that, similarly to 5-fluorouracil, low concentrations (1-10 µM) of 9-aminoacridine (9-AAA) inhibited the growth of the two rat prostate cancer AT-2 and Mat-LyLu cell lines and the human melanoma A375 cell line. However, at the same concentrations, 9-AAA had no effect on the growth and apoptosis of normal human skin fibroblasts (HSFs). The differences between the cellular responses of the AT-2 and Mat-LyLu cell lines, which differ in malignancy, were found to be relatively small compared with the differences between normal HSFs and the cancer cell lines. Visible effects on the cell growth and survival of tumor cell lines were observed after 24-48 h of treatment with 9-AAA, and increased over time. The inhibition of cancer cell growth was found to be due to the gradually increasing number of cells dying by apoptosis, which was observed using two methods, direct counting and FlowSight analysis. Simultaneously, cell motile activity decreased to the same degree in cancer and normal cells within the first 8 h of incubation in the presence of 9-AAA. The results presented in the current study suggest that short-lasting tests for potential anticancer substances can be insufficient; which may result in cell type-dependent differences in the responses of cells to tested compounds that act with a delay being overlooked. The observed differences in responses between normal human fibroblasts and cancer cells to 9-AAA show the requirement for additional studies to be performed simultaneously on differently reacting cancer and normal cells, to determine the molecular mechanisms responsible for these differences.

  9. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.

    PubMed

    Harris, David M; Hazan-Haley, Inbal; Coombes, Kevin; Bueso-Ramos, Carlos; Liu, Jie; Liu, Zhiming; Li, Ping; Ravoori, Murali; Abruzzo, Lynne; Han, Lin; Singh, Sheela; Sun, Michael; Kundra, Vikas; Kurzrock, Razelle; Estrov, Zeev

    2011-01-01

    Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.

  10. Transformation of Human Mesenchymal Cells and Skin Fibroblasts into Hematopoietic Cells

    PubMed Central

    Harris, David M.; Hazan-Haley, Inbal; Coombes, Kevin; Bueso-Ramos, Carlos; Liu, Jie; Liu, Zhiming; Li, Ping; Ravoori, Murali; Abruzzo, Lynne; Han, Lin; Singh, Sheela; Sun, Michael; Kundra, Vikas; Kurzrock, Razelle; Estrov, Zeev

    2011-01-01

    Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy. PMID:21731684

  11. Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure.

    PubMed

    Ramos Silva, Camila; Cabral, Fernanda Viana; de Camargo, Claudinei Francisco Morais; Núñez, Silvia Cristina; Mateus Yoshimura, Tania; de Lima Luna, Arthur Cássio; Maria, Durvanei Augusto; Ribeiro, Martha Simões

    2016-12-01

    Ionizing radiation (IR) induces DNA damage and low-level laser therapy (LLLT) has been investigated to prevent or repair detrimental outcomes resulting from IR exposure. Few in vitro studies, however, explore the biological mechanisms underlying those LLLT benefits. Thus, in this work, fibroblasts and tumor cells are submitted to IR with doses of 2.5 Gy and 10 Gy. After twenty-four-h, the cells are exposed to LLLT with fluences of 30 J cm -2 , 90 J cm -2 , and 150 J cm -2 . Cellular viability, cell cycle phases, cell proliferation index and senescence are evaluated on days 1 and 4 after LLLT irradiation. For fibroblasts, LLLT promotes - in a fluence-dependent manner - increments in cell viability and proliferation, while a reduction in the senescence was observed. Regarding tumor cells, no influences of LLLT on cell viability are noticed. Whereas LLLT enhances cell populations in S and G 2 /M cell cycle phases for both cellular lines, a decrease in proliferation and increase in senescence was verified only for tumor cells. Putting together, the results suggest that fibroblasts and tumor cells present different responses to LLLT following exposure to gamma-radiation, and these promising results should stimulate further investigations. Senescence of tumor cells and fibroblasts on the 4 th day after ionizing radiation (IR) and low-level laser therapy (LLLT) exposures. The number of senescent cells increased significantly for tumor cells (a) while for fibroblasts no increment was observed (b). The blue collor indicates senescence activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts.

    PubMed

    Jung, Jae-A; Yoon, Young-Don; Lee, Hyup-Woo; Kang, So-Ra; Han, Seung-Kyu

    2018-02-01

    Various types of skin substitutes composed of fibroblasts and/or keratinocytes have been used for the treatment of diabetic ulcers. However, the effects have generally not been very dramatic. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialised for cartilage repair as a first cell therapy product using allogeneic stem cells. In a previous pilot study, we reported that hUCB-MSCs have a superior wound-healing capability compared with fibroblasts. The present study was designed to compare the treatment effect of hUCB-MSCs with that of fibroblasts on the diabetic wound healing in vitro. Diabetic fibroblasts were cocultured with healthy fibroblasts or hUCB-MSCs. Five groups were evaluated: group I, diabetic fibroblasts without coculture; groups II and III, diabetic fibroblasts cocultured with healthy fibroblasts or hUCB-MSCs; and groups IV and V, no cell cocultured with healthy fibroblasts or hUCB-MSCs. After a 3-day incubation, cell proliferation, collagen synthesis levels and glycosaminoglycan levels, which are the major contributing factors in wound healing, were measured. As a result, a hUCB-MSC-treated group showed higher cell proliferation, collagen synthesis and glycosaminoglycan level than a fibroblast-treated group. In particular, there were significant statistical differences in collagen synthesis and glycosaminoglycan levels (P = 0·029 and P = 0·019, respectively). In conclusion, these results demonstrate that hUCB-MSCs may have a superior effect to fibroblasts in stimulating diabetic wound healing. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: Comparison of fibroblasts and diverse cancer cell lines

    PubMed Central

    Zoellner, Hans; Paknejad, Navid; Manova, Katia; Moore, Malcolm

    2016-01-01

    Differing stimuli affect cell-stiffness while cancer metastasis further relates to cell-stiffness. Cell-stiffness determined by atomic Force Microscopy (AFM) has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. 90 μm square fields were recorded from 10 sites of cultured Human Dermal Fibroblasts (HDF), and 3 sites each for melanoma (MM39, WM175, MeIRMu), osteosarcoma (SAOS-2, U2OS), and ovarian carcinoma (COLO316, PEO4) cell lines, each site providing 1,024 measurements as 32x32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analyzed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p<0.0001), and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness-fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded, and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high height levels. We suggest our stiffness-fingerprint analytical method provides a more nuanced description than previously reported, and will facilitate study of the stiffness response to cell stimulation. PMID:26357955

  14. IFN-ε Is Constitutively Expressed by Cells of the Reproductive Tract and Is Inefficiently Secreted by Fibroblasts and Cell Lines

    PubMed Central

    Hermant, Pascale; Francius, Cédric; Clotman, Frédéric; Michiels, Thomas

    2013-01-01

    Type-I interferons (IFNs) form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum. Our data confirm the lack of induction of IFN-ε expression after viral infection and the constitutive expression of IFN-ε by cells of the female but also of the male reproductive organs. Interestingly, when expressed from transfected expression plasmids in 293T, HeLa or Neuro2A cells, the mouse and human IFN-ε precursors were inefficiently processed and secretion of IFN-ε was minimal. Analysis of chimeric constructs produced between IFN-ε and limitin (IFN-ζ) showed that both the signal peptide and the mature moiety of IFN-ε contribute to poor processing of the precursor. Immunofluorescent detection of FLAG-tagged IFN-ε in transfected cells suggested that IFN-ε and chimeric proteins were defective for progression through the secretory pathway. IFN-ε did not, however, act intracellularly and impart an antiviral state to producing cells. Given the constitutive expression of IFN-ε in specialized cells and the poor processing of IFN-ε precursor in fibroblasts and cell lines, we hypothesize that IFN-ε secretion may require a co-factor specifically expressed in cells of the reproductive organs, that might secure the system against aberrant release of this IFN. PMID:23951133

  15. Establishment and characterization of a new fish cell line from head kidney of half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Zheng, Yuan; Wang, Na; Xie, Ming-Shu; Sha, Zhen-Xia; Chen, Song-Lin

    2012-12-01

    A new cell line (TSHKC) derived from half-smooth tongue sole (Cynoglossus semilaevis) head kidney was developed. The cell line was subcultured for 40 passages over a period of 360 days. The cell line was optimally maintained in minimum essential medium supplemented with HEPES, antibiotics, fetal bovine serum, 2-Mercaptoethanol (2-Me), sodium pyruvate and basic fibroblast growth factor. The suitable growth temperature for TSHKC cells was 24 °C, and microscopically, TSHKC cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TSHKC cell line had a normal diploid karyotype with 2n = 42, contained the heterogametic W chromosome. The TSHKC cell line was found to be susceptible to lymphocystis disease virus. The fluorescent signals were observed in TSHKC when the cells were transfected with green fluorescent protein and red fluorescent protein reporter plasmids.

  16. Derivation of an induced pluripotent stem cell line (MUSIi004-A) from dermal fibroblasts of a 48-year-old spinocerebellar ataxia type 3 patient.

    PubMed

    Ritthaphai, Alisa; Wattanapanitch, Methichit; Pithukpakorn, Manop; Heepchantree, Worapa; Soi-Ampornkul, Rungtip; Mahaisavariya, Panchalee; Triwongwaranat, Daranporn; Pattanapanyasat, Kovit; Vatanashevanopakorn, Chinnavuth

    2018-05-21

    Dermal fibroblasts were obtained from a 48-year-old female patient with spinocerebellar ataxia type 3 (SCA3). Fibroblasts were reprogrammed by nucleofection with episomal plasmids, carrying L-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1 and shRNA against p53. The SCA3 patient-specific iPSC line, MUSIi004-A, was characterized by immunofluorescence staining to verify the expression of pluripotent markers. The iPSC line exhibited an ability to differentiate into three germ layers by embryoid body (EB) formation. Karyotypic analysis of the MUSIi004-A line was normal. The mutant allele was still present in the iPSC line. This iPSC line represents a useful tool for studying neurodegeneration in SCA3. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).

    PubMed

    Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L

    2010-12-01

    A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.

  18. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    PubMed

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  19. Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    PubMed Central

    Apostolopoulou, Maria; Ligon, Lee

    2012-01-01

    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis. PMID:22413011

  20. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells

    PubMed Central

    2013-01-01

    Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy. PMID:23796020

  1. In vitro effects of Apixaban on 5 different cancer cell lines

    PubMed Central

    Guasti, Luigina; Moretto, Paola; Vigetti, Davide; Ageno, Walter; Dentali, Francesco; Maresca, Andrea M.; Campiotti, Leonardo; Grandi, Anna M.; Passi, Alberto

    2017-01-01

    Background Cancer is associated with hypercoagulability. However, several data suggest that anticoagulant drugs may have an effect on tumor development and progression mediated by both coagulation dependent processes and non-coagulation dependent processes. Therefore, we investigated the in vitro effects of Apixaban on cell proliferation, mortality, cell migration, gene expression and matrix metalloproteinase in 5 different cancer cell lines. Methods The following cancer cell lines, and 2 normal fibroblast cultures (lung and dermal fibroblasts), were studied: OVCAR3 (ovarian cancer), MDA MB 231 (breast cancer), CaCO-2 (colon cancer), LNCaP (prostate cancer) and U937 (histiocytic lymphoma). Proliferation and cell mortality were assessed in control cells and Apixaban treated cultures (dose from 0.1 to 5 μg/ml, 0 to 96-h). Necrosis/Apoptosis (fluorescence microscopy), cell migration (24-h after scratch test), matrix metalloproteinase (MMP) activity and mRNA expression (RT PCR) of p16, p21, p53 and HAS were also assessed. Results High-dose (5 μg/ml) Apixaban incubation was associated with a significantly reduced proliferation in 3 cancer cell lines (OVCAR3, CaCO-2 and LNCaP) and with increased cancer cell mortality in all, except LNCaP, cancer lines. Apoptosis seems to account for the increased mortality. The migration capacity seems to be impaired after high-dose Apixaban incubation in OVCAR3 and CaCO-2 cells. Data on mRNA expression suggest a consistent increase in tumor suppression gene p16 in all cell lines. Conclusions Our data suggest that high-dose Apixaban may be able to interfere with cancer cell in vitro, reducing proliferation and increasing cancer cell mortality through apoptosis in several cancer cell lines. PMID:29023465

  2. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.

    PubMed

    Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin

    2018-05-01

    Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.

  3. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways.

    PubMed

    Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V

    2017-01-02

    Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.

  4. Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.

    PubMed

    Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A

    2017-01-01

    Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Halomethane-induced cytotoxicity and cell proliferation in human lung MRC-5 fibroblasts and NL20-TA epithelial cells.

    PubMed

    Nájera-Martínez, Minerva; García-Latorre, Ethel A; Reyes-Maldonado, Elba; Domínguez-López, M Lilia; Vega-López, Armando

    2012-09-01

    Halomethanes (HMs) can be formed during the chlorination process to obtain drinking water. In liver cells, HMs had been shown to be mutagenic and carcinogenic; however, their bioactivation by CYP 2E1 and GSTT1 is required. Although inhalation is the most common pathway of exposure, reports on the toxic effects induced by HMs in human lung are contradictory. The aim of this study was therefore to evaluate in vitro cytotoxicity and cell proliferation induced by CH(2)Cl(2), CHCl(3) and BrCHCl(2) in human lung NL20-TA epithelial cells and MRC-5 fibroblasts, and their relationship with CYP 2E1 and GSTT1 activity. High concentrations of these HMs induced cytotoxicity, particularly in cells treated with BrCHCl(2). Low concentrations of BrCHCl(2) stimulated hyperproliferation of fibroblasts, the most probable consequence of which is regenerative proliferation related to collagen induction. Fibroblasts exposed to BrCHCl(2) exhibited low levels of CYP 2E1 activity suggesting that released bromine is able to alter this activity by affecting the active site or auto regulating the activity itself. GSTT1 was up to ten times more active than CYP 2E1 in both cell lines, indicating that potential lung damage is due to formation of pro-carcinogens such as formaldehyde.

  6. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts.

    PubMed

    Rozenchan, Patricia Bortman; Carraro, Dirce Maria; Brentani, Helena; de Carvalho Mota, Louise Danielle; Bastos, Elen Pereira; e Ferreira, Elisa Napolitano; Torres, Cesar H; Katayama, Maria Lúcia Hirata; Roela, Rosimeire Aparecida; Lyra, Eduardo C; Soares, Fernando Augusto; Folgueira, Maria Aparecida Azevedo Koike; Góes, João Carlos Guedes Sampaio; Brentani, Maria Mitzi

    2009-12-15

    The importance of epithelial-stroma interaction in normal breast development and tumor progression has been recognized. To identify genes that were regulated by these reciprocal interactions, we cocultured a nonmalignant (MCF10A) and a breast cancer derived (MDA-MB231) basal cell lines, with fibroblasts isolated from breast benign-disease adjacent tissues (NAF) or with carcinoma-associated fibroblasts (CAF), in a transwell system. Gene expression profiles of each coculture pair were compared with the correspondent monocultures, using a customized microarray. Contrariwise to large alterations in epithelial cells genomic profiles, fibroblasts were less affected. In MDA-MB231 highly represented genes downregulated by CAF derived factors coded for proteins important for the specificity of vectorial transport between ER and golgi, possibly affecting cell polarity whereas the response of MCF10A comprised an induction of genes coding for stress responsive proteins, representing a prosurvival effect. While NAF downregulated genes encoding proteins associated to glycolipid and fatty acid biosynthesis in MDA-MB231, potentially affecting membrane biogenesis, in MCF10A, genes critical for growth control and adhesion were altered. NAFs responded to coculture with MDA-MB231 by a decrease in the expression of genes induced by TGFbeta1 and associated to motility. However, there was little change in NAFs gene expression profile influenced by MCF10A. CAFs responded to the presence of both epithelial cells inducing genes implicated in cell proliferation. Our data indicate that interactions between breast fibroblasts and basal epithelial cells resulted in alterations in the genomic profiles of both cell types which may help to clarify some aspects of this heterotypic signaling. Copyright (c) 2009 UICC.

  7. Fibroblast Growth Factor Receptors Are Components of Autocrine Signaling Networks in Head and Neck Squamous Cell Carcinoma Cells

    PubMed Central

    Marshall, Marianne E.; Hinz, Trista K.; Kono, Scott A.; Singleton, Katherine R.; Bichon, Brady; Ware, Kathryn E.; Marek, Lindsay; Frederick, Barbara A.; Raben, David; Heasley, Lynn E.

    2011-01-01

    Purpose We previously reported that a fibroblast growth factor (FGF) receptor (FGFR) signaling pathway drives growth of lung cancer cell lines of squamous and large cell histologies. Herein, we explored FGFR dependency in cell lines derived from the tobacco-related malignancy, head and neck squamous cell carcinoma (HNSCC). Experimental Design FGF and FGFR mRNA and protein expression was assessed in nine HNSCC cell lines. Dependence on secreted FGF2 for cell growth was tested with FP-1039, an FGFR1-Fc fusion protein. FGFR and EGFR-dependence was defined by sensitivity to multiple inhibitors selective for FGFRs or EGFR. Results FGF2 was expressed in eight of the nine HNSCC cell lines examined. Also, FGFR2 and FGFR3 were frequently expressed while only two lines expressed FGFR1. FP-1039 inhibited growth of HNSCC cell lines expressing FGF2, identifying FGF2 as an autocrine growth factor. FGFR inhibitors selectively reduced in vitro growth and ERK signaling in three HNSCC cell lines while three distinct lines exhibited responsiveness to both EGFR and FGFR inhibitors. Combinations of these drugs yielded additive growth inhibition. Finally, three cell lines were highly sensitive to EGFR TKIs with no contribution from FGFR pathways. Conclusions FGFR signaling was dominant or co-dominant with EGFR in six HNSCC lines while three lines exhibited little or no role for FGFRs and were highly EGFR-dependent. Thus, the HNSCC cell lines can be divided into subsets defined by sensitivity to EGFR and FGFR-specific TKIs. FGFR inhibitors may represent novel therapeutics to deploy alone or in combination with EGFR inhibitors in HNSCC. PMID:21673064

  8. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  9. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    PubMed

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  10. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    PubMed

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  11. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    PubMed

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  12. Effect of Fibroblast-Like Cells of Mesenchymal Origin of Cytotoxic Activity of Lymphocytes against NK-Sensitive Target Cells.

    PubMed

    Lupatov, A Yu; Kim, Ya S; Bystrykh, O A; Vakhrushev, I V; Pavlovich, S V; Yarygin, K N; Sukhikh, G T

    2017-02-01

    We studied immunosuppressive properties of skin fibroblasts and mesenchymal stromal cells against NK cells. In vitro experiments showed that mesenchymal stromal cells isolated from human umbilical cord and human skin fibroblasts can considerably attenuate cytotoxic activity of NK cells against Jurkat cells sensitive to NK-mediated lysis. NK cells cultured in lymphocyte population exhibited higher cytotoxic activity than isolated NK cells. Mesenchymal stromal cells or fibroblasts added 1:1 to lymphocyte culture almost completely suppressed NK cell cytotoxicity. This suggests that fibroblast-like cells can suppress not only isolated NK cells, but also NK cells in natural cell microenvironment.

  13. Engulfment of ceramic particles by fibroblasts does not alter cell behavior.

    PubMed

    Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis

    2017-02-17

    Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was

  14. Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors

    PubMed Central

    Ehrbar, Martin; Pérez-Pomares, José M.

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  15. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells.

    PubMed

    Molina-Molina, M; Machahua-Huamani, C; Vicens-Zygmunt, V; Llatjós, R; Escobar, I; Sala-Llinas, E; Luburich-Hernaiz, P; Dorca, J; Montes-Worboys, A

    2018-04-27

    Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.

  16. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

    PubMed

    Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A

    2017-10-01

    The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  17. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  18. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  19. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

    PubMed Central

    Senevirathne, Mahinda; Kim, Soo-Hyun

    2010-01-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H2O2-induced cell damage in vitro. PMID:20607062

  20. ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts

    PubMed Central

    Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.

    2013-01-01

    The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107

  1. Stimulation of plasmin activity in cultured human fibroblast cells by Porphyromonas endodontalis.

    PubMed

    Oikawa, T; Ogura, N; Akiba, M; Abiko, Y; Takiguchi, H; Izumi, H

    1993-09-01

    1. Plasmin activity in the conditioned medium of Gin-1 cells, a human gingival fibroblast cell line, was stimulated by Porphyromonas endodontalis, a putative pathogen of oral submucous abscesses, in a time- and dose-dependent manner. 2. P. endodontalis stimulated the activity of plasminogen activator in both the conditioned medium and the cell lysate. The plasminogen activator in Gin-1 cells was approx. 50 kDa by zymography. 3. The conditioned medium of Gin-1 cells exposed to P. endodontalis stimulated the conversion of human serum prekallikrein to kallikrein. 4. These results suggested that P. endodontalis stimulates the plasminogen activator-plasmin system in Gin-1 cells, and that activated plasmin plays a role in the progress of periodontal tissue inflammation.

  2. SU-C-204-04: Irradiation of Human Cell Lines Using Various Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; McMahon, S; Kaminuma, T

    2016-06-15

    Purpose: The purpose of this study is to investigate and quantify the biological effects of ion radiation using several human cell lines. We aim to answer the question of whether carbon ion the most ideal ion species for heavy ion radiotherapy. Methods: The cells were irradiated at different positions along the pristine Bragg peak of several ions with different atomic number. The biological effectiveness was evaluated using the clonogenic cell survival assay. Irradiation of three human lung cancer cell lines and a fibroblast cell line were undertaken using the charged particle beam at the NASA Space Radiation Laboratory at Brookhavenmore » National Lab. Four mono-energetic ion beams (carbon, oxygen, helium and lithium) were used to irradiate the cells. Water or media-filled T25 flasks were lined up along the beam line so that the cell-containing surfaces of the flasks were placed at a specific depth along the pristine Bragg curve. Four depths along the curve, representing entrance point, rising peak, peak and distal fall off, were selected to determine biological effectiveness. Gaf-chromic films were placed between the flasks to monitor the irradiation as soon as it was finished. Results: For all ion radiations, the maximum cell killing effect occurs at either peak or distal fall off, depending on the cell lines. For instance, for the fibroblast cell line AGO1522, RBEs of 1.4, 1.2, 1.4 and 1.9 were observed at the Bragg peak for Helium, Lithium, Carbon and Oxygen ions. Comparing positions, RBEs of 0.9, 1.2, 1.4 and 1.8 were observed for carbon irradiation of AGO-1522 cells positions corresponding to entrance, rising peak, peak and distal fall off. Conclusion: RBE values differ with position in the Bragg peak, ion species and cell line. Ions other than carbon may prove more effective in certain irradiation conditions and may contribute to optimized heavy ion therapy.« less

  3. Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts.

    PubMed

    Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2017-05-05

    The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue

  4. Effects of mitomycin-C on normal dermal fibroblasts.

    PubMed

    Chen, Theodore; Kunnavatana, Shaun S; Koch, R James

    2006-04-01

    To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.

  5. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    PubMed

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  6. Cytotoxicity of four denture adhesives on human gingival fibroblast cells.

    PubMed

    Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-02-01

    The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.

  7. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  8. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines

    PubMed Central

    Jiménez Pérez, Zuly Elizabeth; Mathiyalagan, Ramya; Markus, Josua; Kim, Yeon-Ju; Kang, Hyun Mi; Abbai, Ragavendran; Seo, Kwang Hoon; Wang, Dandan; Soshnikova, Veronika; Yang, Deok Chun

    2017-01-01

    There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE) and the ability of ginseng berry (GB) as novel material for the biosynthesis of gold nanoparticles (GBAuNPs) and silver nanoparticles (GBAgNPs) was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE) and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals compared to GBE. GBAuNPs and GBAgNPs effectively inhibited mushroom tyrosinase, while GBAgNPs showed antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, GBAuNPs were nontoxic to human dermal fibroblast and murine melanoma cell lines, and GBAgNPs showed cytotoxic effect on murine melanoma cell lines. The current results evidently suggest that GBAgNPs can act as potential

  9. Differential activation of human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts in vitro

    PubMed Central

    2012-01-01

    Background In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. Methods The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. Results We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4

  10. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays.

    PubMed

    Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M

    2017-01-01

    The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.

  11. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue Guiping; Du Lirui; Xia Tao

    2005-08-05

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in themore » serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation.« less

  12. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in

  13. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yanfu; Chai, Jiake, E-mail: cjk304@126.com; Sun, Tianjun

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. Inmore » this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  14. Comparison of gene expression profiles in primary and immortalized human pterygium fibroblast cells.

    PubMed

    Hou, Aihua; Voorhoeve, P Mathijs; Lan, Wanwen; Tin, Minqi; Tong, Louis

    2013-11-01

    Pterygium is a fibrovascular growth on the ocular surface with corneal tissue destruction, matrix degradation and varying extents of chronic inflammation. To facilitate investigation of pterygium etiology, we immortalized pterygium fibroblast cells and profiled their global transcript levels compared to primary cultured cells. Fibroblast cells were cultured from surgically excised pterygium tissue using the explant method and propagated to passage number 2-4. We hypothesized that intervention with 3 critical molecular intermediates may be necessary to propage these cells. Primary fibroblast cells were immortalized sequentially by a retroviral construct containing the human telomerase reverse transcriptase gene and another retroviral expression vector expressing p53/p16 shRNAs. Primary and immortalized fibroblast cells were evaluated for differences in global gene transcript levels using an Agilent Genechip microarray. Light microscopic morphology of immortalized cells was similar to primary pterygium fibroblast at passage 2-4. Telomerase reverse transcriptase was expressed, and p53 and p16 levels were reduced in immortalized pterygium fibroblast cells. There were 3308 significantly dysregulated genes showing at least 2 fold changes in transcript levels between immortalized and primary cultured cells (2005 genes were up-regulated and 1303 genes were down-regulated). Overall, 13.58% (95% CI: 13.08-14.10) of transcripts in immortalized cells were differentially expressed by at least 2 folds compared to primary cells. Pterygium primary fibroblast cells were successfully immortalized to at least passage 11. Although a variety of genes are differentially expressed between immortalized and primary cells, only genes related to cell cycle are significantly changed, suggesting that the immortalized cells may be used as an in vitro model for pterygium pathology. © 2013 Elsevier Inc. All rights reserved.

  15. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao

    2014-06-01

    Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of

  16. Characterization of the camel skin cell line Dubca.

    PubMed

    Klopries, M; Wernery, U; Kaaden, O R

    1995-01-01

    A skin fibroblast cell culture was established from a 2-month-old dromedary foetus. The cells were transformed by infection with SV40 and cloned in soft agar. The established cell line is now designated Dubca cells (Dubai camel) and has been in permanent culture for 95 passages. The cell culture was examined morphologically, chromosome preparations made and DNA fingerprinting performed by hybridization with the oligonucleotide probe (GTG)5. SV40 large T antigen was detected by western blotting. The viral host range was determined by infection with viruses of different families. Camelpox virus (CaPV) bovine herpesvirus-1 (BHV-1), vesicular stomatitis virus (VSV) and border disease virus (BDV) could be propagated in these cells.

  17. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  18. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon's fibroblasts.

    PubMed

    Wang, Xiao Yang; Crowston, Jonathan G; White, Andrew J R; Zoellner, Hans; Healey, Paul R

    2014-08-01

    The aim of the study was to investigate, using a native mitomycin-C-resistant human Tenon's fibroblast cell line, the possibility that interferon-alpha and gamma could be used with Fas agonists as an alternative anti-fibrotic strategy to mitomycin-C in trabeculectomy. A clinically resistant and in vitro verified mitomycin-C-resistant human Tenon's fibroblast cell line was pretreated with interferon-alpha and interferon-gamma for 48 h before stimulation with an agonistic Fas antibody (CH11) for 2 days to induce cell death. Cell death assays were undertaken. Changes in apoptosis-related proteins were determined by flow cytometry and Western blot. Pretreatment with interferon-alpha or interferon-gamma for 48 h increased Fas, Fas-associated protein with death domain and caspase-8 expression. Protein expression was further increased by combined exposure to interferon-alpha and gamma. Pretreatment with cytokines had no effect on Fas-L and Bcl-2. Interferon-alpha alone did not change the rate of induced cell death. A combination of interferon-alpha and gamma synergistically increased the sensitivity of mitomycin-C-resistant human Tenon's fibroblast cell line to induced cell death. An antagonistic anti-Fas antibody (ZB4) completely blocked induced cell death. Broad caspase inhibitors specific for caspases-8 and -3 reduced induced deaths in interferon pretreated mitomycin-C-resistant human Tenon's fibroblast cell line in a dose-dependent manner. Interferon-alpha and interferon-gamma render mitomycin-C-resistant human Tenon's fibroblast cell line sensitive to Fas-mediated apoptosis. The mechanism involves increased death-inducing signalling complex formation by upregulation of Fas, Fas-associated protein with death domain and caspase-8 expression. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  19. Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun

    2016-09-01

    The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.

  20. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  1. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells.

    PubMed

    Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie

    2012-08-01

    The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.

  2. Effect of traditional plants in Sri Lanka on skin fibroblast cell number.

    PubMed

    Sano, Katsura; Someya, Takao; Hara, Kotaro; Sagane, Yoshimasa; Watanabe, Toshihiro; Wijesekara, R G S

    2018-08-01

    This article describes the effects of extracts of several plants collected in Sri Lanka on the cell number of human skin fibroblasts. This study especially focuses on the plants traditionally used in indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below (English name, "local name in Sri Lanka," scientific name). Bougainvillea plant, "bouganvilla," Bougainvillea grabla (Nature׳s Beauty Creations Ltd., 2014) [1], purple fruited pea eggplant,"welthibbatu," Solanum trilobatum (Nature׳s Beauty Creations Ltd., 2014) [2], country borage plant, "kapparawalliya," Plectranthus amboinicus  (Nature׳s Beauty Creations Ltd., 2014) [3], malabar nut plant, "adhatoda," Justicia adhatoda (Nature׳s Beauty Creations Ltd., 2014) [4], long pepper plant,"thippili," Piper longum (Nature׳s Beauty Creations Ltd., 2014) [5], holy basil plant, "maduruthala," Ocimum tenuiflorum (Nature׳s Beauty Creations Ltd., 2014) [6], air plant, "akkapana," Kalanchoe pinnata (Nature׳s Beauty Creations Ltd., 2014) [7], plumed cockscomb plant, "kiri-henda," Celosia argentea (Nature׳s Beauty Creations Ltd., 2014) [8], neem plant,"kohomba," Azadirachta indica (Nature׳s Beauty Creations Ltd., 2014) [9], emblic myrobalan plant, "nelli," Phyllanthus emblica (Nature׳s Beauty Creations Ltd., 2014) [10]. Human skin fibroblast cells were treated with various concentration of plant extracts (0-3.0%), and the cell viability of cells were detected using calcein assay. The cell viabillity profiles are provided as line graphs.

  3. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    PubMed

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  4. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts

    PubMed Central

    Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P

    2010-01-01

    Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528

  5. Characterization of interleukin-4-stimulated nasal polyp fibroblasts.

    PubMed

    Steinke, John W; Crouse, Charles D; Bradley, Dewayne; Hise, Kathleen; Lynch, Kevin; Kountakis, Stilianos E; Borish, Larry

    2004-02-01

    Chronic hyperplastic eosinophilic sinusitis is an inflammatory disease that results in the accumulation of eosinophils, fibroblasts, mast cells, and goblet cells at the site of injury. A common feature of this disease is the presence of nasal polyposis (NP). The current studies were designed to assess the contribution of interleukin (IL)-4 to fibroblast-mediated inflammation in chronic hyperplastic eosinophilic sinusitis/NP. In addition, we hypothesized that cysteinyl leukotrienes (CysLT) may directly influence fibroblast-mediated fibrotic and remodeling pathways in this disorder. Fibroblasts were isolated from NP tissue. All fibroblast lines expressed the IL-4 receptor. IL-4 induced changes in mRNA and protein expression of fibrotic (transforming growth factor-beta1 and -beta2) and inflammatory cytokines and chemokines (IL-6 and CCL11) by fibroblasts as measured by semiquantitative and quantitative polymerase chain reaction, RNase protection assay, and enzyme-linked immunosorbent assay. The expression of CysLT and other proinflammatory lipid receptors on fibroblasts was evaluated. CysLT1 and CysLT2 receptors were not expressed on fibroblasts; however, LPA(1) receptor was constitutively expressed and LPA(2) receptor expression was upregulated by IL-4. The metabolic cascade involved in CysLT synthesis was not expressed in fibroblasts and could not be induced by IL-4 treatment.

  6. Cytotoxicity of Etch-and-Rinse, Self-Etch, and Universal Dental Adhesive Systems in Fibroblast Cell Line 3T3

    PubMed Central

    Bernardo, Cintia Fernanda de Freitas; de Souza, Francielly Fernanda de Freitas A.; Michél, Milton Domingos; Ribeiro, Camila Nunes de Morais; Germano, Sandro; Maluf, Daniela Florencio

    2017-01-01

    The aim of this study was to evaluate in fibroblast cultures the direct cytotoxic effects of etch-and-rinse, self-etch, and universal adhesive systems. The sterile glass cover slips (n = 3) were then immersed in culture medium to obtain the eluates for the experimental groups: (1) Adper™ Single Bond 2; (2) Ambar; (3) Adper™ Scotchbond™ Multi-Purpose; (4) Scotchbond™ Universal; (5) Ambar Universal; and (6) OptiBond All-In-One. As a negative control, sterile glass cover slips were immersed in culture medium only. After 24 h, the eluate obtained was applied on fibroblast culture. Cell viability and cell morphology were evaluated by MTT assay and SEM, respectively. Data were analyzed by Kruskal–Wallis and Mann–Whitney tests (α = 0.05). All adhesive systems except universal reduced cell viability in 3T3 cells to between 26.04% and 56.57%, and Scotchbond Universal and Ambar Universal reduced cell viability to 2.13% and 3.57%, respectively, when compared to the negative control. Cytoplasmic membrane shrinkage and cell-free areas with residual membrane fragments from dead cells were observed. In conclusion, improvements in universal adhesive system formulations and their mechanisms of action are not accompanied by increased toxicity compared with those in other systems, warranting commitment to the use of these dentin-pulp complexes. PMID:29109829

  7. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts.

    PubMed

    Mediavilla-Varela, Melanie; Boateng, Kingsley; Noyes, David; Antonia, Scott J

    2016-03-02

    Anti-fibrotic drugs such as pirfenidone have been developed for the treatment of idiopathic pulmonary fibrosis. Because activated fibroblasts in inflammatory conditions have similar characteristics as cancer-associated fibroblasts (CAFs) and CAFs contribute actively to the malignant phenotype, we believe that anti-fibrotic drugs have the potential to be repurposed as anti-cancer drugs. The effects of pirfenidone alone and in combination with cisplatin on human patient-derived CAF cell lines and non-small cell lung cancer (NSCLC) cell lines were examined. The impact on cell death in vitro as well as tumor growth in a mouse model was determined. Annexin V/PI staining and Western blot analysis were used to characterize cell death. Synergy was assessed with the combination index method using Calcusyn software. Pirfenidone alone induced apoptotic cell death in lung CAFs at a high concentration (1.5 mg/mL). However, co-culture in vitro experiments and co-implantation in vivo experiments showed that the combination of low doses of cisplatin (10 μM) and low doses of pirfenidone (0.5 mg/mL), in both CAFs and tumors, lead to increased cell death and decreased tumor progression, respectively. Furthermore, the combination of cisplatin and pirfenidone in NSCLC cells (A549 and H157 cells) leads to increased apoptosis and synergistic cell death. Our studies reveal for the first time that the combination of cisplatin and pirfenidone is active in preclinical models of NSCLC and therefore may be a new therapeutic approach in this disease.

  8. Fibroblast growth factor 2 restrains Ras-driven proliferation of malignant cells by triggering RhoA-mediated senescence.

    PubMed

    Costa, Erico T; Forti, Fábio L; Matos, Tatiana G F; Dermargos, Alexandre; Nakano, Fábio; Salotti, Jacqueline; Rocha, Kátia M; Asprino, Paula F; Yoshihara, Celina K; Koga, Marianna M; Armelin, Hugo A

    2008-08-01

    Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.

  9. Development of Fibroblast Cell Lines From the Cow Used to Sequence the Bovine Genome

    USDA-ARS?s Scientific Manuscript database

    Two cell lines, designated MARC.BGCF.2 and MARC.BGCF.1-3, were initiated from skin biopsies obtained from the Hereford cow whose DNA was used in sequencing the bovine genome. These cell lines were submitted to American Type Culture Collection (ATCC, Manassas, VA, USA) and will be made publicly avai...

  10. Mechanism of induction of fibroblast to corneal endothelial cell.

    PubMed

    Jiang, Yan; Fu, Wei-Cai; Zhang, Lin

    2014-08-01

    To explore mechanism of nduction of fibroblast to corneal endothelial cell. Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed. As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane. Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium

  12. Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts.

    PubMed

    Aoki, Mikiko; Koga, Kaori; Hamasaki, Makoto; Egawa, Nagayasu; Nabeshima, Kazuki

    2017-06-01

    Emmprin (extracellular matrix metalloproteinase inducer, CD147) is a glycosylated transmembrane protein, consisting of two immunoglobulin domains, that stimulates the production of matrix metalloproteinases (MMPs) by tumor-associated fibroblasts. These effects play important roles in tumor invasion and metastasis. However, the precise mechanisms by which emmprin acts on fibroblasts have not been fully elucidated, especially in sarcoma cells. Previously, we demonstrated that emmprin, expressed in conditioned medium collected from the epithelioid sarcoma cell line (FU-EPS-1), stimulates MMP-2 production via interactions with fibroblasts. In this study, we used microvesicles derived from sarcoma cells, and determined whether emmprin exists in the microvesicles, which enhance the production of MMP-2 via fibroblasts. Microvesicles released from FU-EPS-1 cells were shown to contain full-length emmprin, identified as a 45-kDa protein characterized by polylactosamine glycosylation. Microvesicles collected from FU-EPS-1 cells transfected with emmprin-specific siRNA or transduced with shRNA displayed significantly reduced MMP-2 production by fibroblasts compared with those from control-transfected cells. Our findings show that emmprin is released through microvesicle shedding in sarcoma cells, and emmprin in microvesicles regulates MMP-2 production by influencing the activity of fibroblasts located at sites distant from the tumor cells.

  13. 4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin

    PubMed Central

    1984-01-01

    The 4F2 monoclonal antibody (mAb) has been shown to recognize a 120- kilodalton glycoprotein expressed on the cell surface of human peripheral blood monocytes, activated (but not resting) T or B cells, and T and B lymphoblastoid cell lines. In this report we show that 4F2 mAb specifically binds to the surface of adherent human embryonic fibroblasts but fails to bind to normal adult fibroblasts. Moreover, 4F2 antigen was expressed on sarcoma-derived or SV40-transformed adult fibroblastic cells. Finally, addition of 4F2 mAb inhibited the growth of cultured HT-1080 fibrosarcoma cell line, but had no inhibitory effect on various embryonic and adult normal or transformed fibroblasts. PMID:6538202

  14. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1

    PubMed Central

    Christiansen, Victoria J; Jackson, Kenneth W; Lee, Kyung N; Downs, Tamyra D; McKee, Patrick A

    2013-01-01

    Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth. PMID:23555181

  15. Lewis lung carcinoma progression is facilitated by TIG-3 fibroblast cells.

    PubMed

    Yamauchi, Yoshikane; Izumi, Yotaro; Asakura, Keisuke; Kawai, Kenji; Wakui, Masatoshi; Ohmura, Mitsuyo; Suematsu, Makoto; Nomori, Hiroaki

    2013-09-01

    The interactions of tumor cells with stromal fibroblasts influence tumor biology, but the exact mechanisms involved are still unclear. In the present study, we evaluated the effects of a human lung fibroblast cell line, TIG-3, on Lewis lung carcinoma (LLC) cells both in vitro and in vivo. LLC and TIG-3 cells were co-cultured/co-implanted in vitro and in vivo. Cell invasion was assayed. Local tumor growth, as well as lung metastasis, were evaluated after subcutaneous cell co-implantation into NOD/SCID/γ-null (NOG) mice. LLC, and TIG-3 cells were pre-treated with either SB431542, a small molecule TGF-β receptor antagonist, or siRNA for transforming growth factor (TGF)-β before co-culture or co-implantation, and the effects of pre-treatments were compared both in cell culture and in mice. Subcutaneous LLC tumor growth (L group) in NOG mice was significantly increased by co-implantation of TIG-3 cells (L+T group) at four weeks. The number of macroscopic lung metastases was also significantly increased in the L+T group in comparison to the L group. In vitro cell invasion was significantly increased in the L+T group in comparison to the L group. In vitro expression of phosphorylated-SMAD3 was significantly increased in the L+T group in comparison to the L group. Furthermore, pre-treatment with either SB431542 or siRNA for TGF-β reduced the invasiveness both in culture and in mice. This study suggested that in vitro as well as in vivo progression of LLC was facilitated by co-culture/co-implantation with TIG-3 cells, and that this process was at least in part dependent on TGF-β-mediated interactions.

  16. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    PubMed

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  17. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    PubMed

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed

  18. Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.

    PubMed

    Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao

    2016-08-01

    Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding.

  19. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells.

    PubMed

    Chang, Chia-Wei; Lai, Yi-Shin; Pawlik, Kevin M; Liu, Kaimao; Sun, Chiao-Wang; Li, Chao; Schoeb, Trenton R; Townes, Tim M

    2009-05-01

    We report the derivation of induced pluripotent stem (iPS) cells from adult skin fibroblasts using a single, polycistronic lentiviral vector encoding the reprogramming factors Oct4, Sox2, and Klf4. Porcine teschovirus-1 2A sequences that trigger ribosome skipping were inserted between human cDNAs for these factors, and the polycistron was subcloned downstream of the elongation factor 1 alpha promoter in a self-inactivating (SIN) lentiviral vector containing a loxP site in the truncated 3' long terminal repeat (LTR). Adult skin fibroblasts from a humanized mouse model of sickle cell disease were transduced with this single lentiviral vector, and iPS cell colonies were picked within 30 days. These cells expressed endogenous Oct4, Sox2, Nanog, alkaline phosphatase, stage-specific embryonic antigen-1, and other markers of pluripotency. The iPS cells produced teratomas containing tissue derived from all three germ layers after injection into immunocompromised mice and formed high-level chimeras after injection into murine blastocysts. iPS cell lines with as few as three lentiviral insertions were obtained. Expression of Cre recombinase in these iPS cells resulted in deletion of the lentiviral vector, and sequencing of insertion sites demonstrated that remnant 291-bp SIN LTRs containing a single loxP site did not interrupt coding sequences, promoters, or known regulatory elements. These results suggest that a single, polycistronic "hit and run" vector can safely and effectively reprogram adult dermal fibroblasts into iPS cells.

  20. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    PubMed

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  1. Fetal Fibroblasts and Keratinocytes with Immunosuppressive Properties for Allogeneic Cell-Based Wound Therapy

    PubMed Central

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651

  2. FLAX OIL FROM TRANSGENIC LINUM USITATISSIMUM SELECTIVELY INHIBITS IN VITRO PROLIFERATION OF HUMAN CANCER CELL LINES.

    PubMed

    Gebarowski, Tomasz; Gebczak, Katarzyna; Wiatrak, Benita; Kulma, Anna; Pelc, Katarzyna; Czuj, Tadeusz; Szopa, Jan; Gasiorowski, Kazimierz

    2017-03-01

    Emulsions made of oils from transgenic flaxseeds significantly decreased in vitro proliferation of six tested human cancer cell lines in 48-h cultures, as assessed with the standard sulforhodamine assay. However, the emulsions also increased proliferation rate of normal human dermal fibroblasts and, to a lower extend, of keratinocytes. Both inhibition of in vitro proliferation of human cancer cell lines and stimulation of proliferation of normal dermal fibroblasts and keratinocytes were especially strong with the emulsion type B and with emulsion type M. Oils from seeds of transgenic flax type B and M should be considered as valuable adjunct to standard cytostatic therapy of human cancers and also could be applied to improve the treatment of skin lesions in wound healing.

  3. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  4. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines.

    PubMed

    Barrett, Robert; Ornelas, Loren; Yeager, Nicole; Mandefro, Berhan; Sahabian, Anais; Lenaeus, Lindsay; Targan, Stephan R; Svendsen, Clive N; Sareen, Dhruv

    2014-12-01

    Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for many applications, including disease modeling to elucidate mechanisms involved in disease pathogenesis, drug screening, and ultimately regenerative medicine therapies. A frequently used starting source of cells for reprogramming has been dermal fibroblasts isolated from skin biopsies. However, numerous repositories containing lymphoblastoid cell lines (LCLs) generated from a wide array of patients also exist in abundance. To date, this rich bioresource has been severely underused for iPSC generation. We first attempted to create iPSCs from LCLs using two existing methods but were unsuccessful. Here we report a new and more reliable method for LCL reprogramming using episomal plasmids expressing pluripotency factors and p53 shRNA in combination with small molecules. The LCL-derived iPSCs (LCL-iPSCs) exhibited identical characteristics to fibroblast-derived iPSCs (fib-iPSCs), wherein they retained their genotype, exhibited a normal pluripotency profile, and readily differentiated into all three germ-layer cell types. As expected, they also maintained rearrangement of the heavy chain immunoglobulin locus. Importantly, we also show efficient iPSC generation from LCLs of patients with spinal muscular atrophy and inflammatory bowel disease. These LCL-iPSCs retained the disease mutation and could differentiate into neurons, spinal motor neurons, and intestinal organoids, all of which were virtually indistinguishable from differentiated cells derived from fib-iPSCs. This method for reliably deriving iPSCs from patient LCLs paves the way for using invaluable worldwide LCL repositories to generate new human iPSC lines, thus providing an enormous bioresource for disease modeling, drug discovery, and regenerative medicine applications. ©AlphaMed Press.

  5. X ray sensitivity of diploid skin fibroblasts from patients with Fanconi's anemia

    NASA Technical Reports Server (NTRS)

    Kale, Ranjini

    1989-01-01

    Experiments were performed on Fanconi's anemia and normal human fibroblast cell lines growing in culture in an attempt to correlate cell cycle kinetics with genomic damage and determine their bearing on the mechanism of chromosome aberration induction. FA fibroblasts showed a significantly increased susceptibility to chromosomal breakage by x rays in the G2 phase of the cell cycle. No such response was observed in fibroblasts irradiated in the G0 phase. The observed increases in achromatic lesions and in chromatid deletions in FA cells as compared with normal cells appear to indicate that FA cells are deficient in strand break repair and also possibly in base damage excision repair. Experiments are now in progress to further elucidate the mechanisms involved.

  6. In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.

    PubMed

    Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E

    2012-10-01

    Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. © 2013 Wiley Periodicals, Inc.

  8. Photodynamic therapy mediates innate immune responses via fibroblast-macrophage interactions.

    PubMed

    Zulaziz, N; Azhim, A; Himeno, N; Tanaka, M; Satoh, Y; Kinoshita, M; Miyazaki, H; Saitoh, D; Shinomiya, N; Morimoto, Y

    2015-10-01

    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.

  9. Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation.

    PubMed

    Caley, Matthew; Wall, Ivan B; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W; Stephens, Phil

    2018-03-27

    Background : Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives : To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results : Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions : These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.

  10. TSPAN12 is a critical factor for cancer–fibroblast cell contact-mediated cancer invasion

    PubMed Central

    Otomo, Ryo; Otsubo, Chihiro; Matsushima-Hibiya, Yuko; Miyazaki, Makoto; Tashiro, Fumio; Ichikawa, Hitoshi; Kohno, Takashi; Ochiya, Takahiro; Yokota, Jun; Nakagama, Hitoshi; Taya, Yoichi; Enari, Masato

    2014-01-01

    Communication between cancer cells and their microenvironment controls cancer progression. Although the tumor suppressor p53 functions in a cell-autonomous manner, it has also recently been shown to function in a non–cell-autonomous fashion. Although functional defects have been reported in p53 in stromal cells surrounding cancer, including mutations in the p53 gene and decreased p53 expression, the role of p53 in stromal cells during cancer progression remains unclear. We herein show that the expression of α-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts (CAFs), was increased by the ablation of p53 in lung fibroblasts. CAFs enhanced the invasion and proliferation of lung cancer cells when cocultured with p53-depleted fibroblasts and required contact between cancer and stromal cells. A comprehensive analysis using a DNA chip revealed that tetraspanin 12 (TSPAN12), which belongs to the tetraspanin protein family, was derepressed by p53 knockdown. TSPAN12 knockdown in p53-depleted fibroblasts inhibited cancer cell proliferation and invasion elicited by coculturing with p53-depleted fibroblasts in vitro, and inhibited tumor growth in vivo. It also decreased CXC chemokine ligand 6 (CXCL6) secretion through the β-catenin signaling pathway, suggesting that cancer cell contact with TSPAN12 in fibroblasts transduced β-catenin signaling into fibroblasts, leading to the secretion of CXCL6 to efficiently promote invasion. These results suggest that stroma-derived p53 plays a pivotal role in epithelial cancer progression and that TSPAN12 and CXCL6 are potential targets for lung cancer therapy. PMID:25512506

  11. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  12. Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts.

    PubMed

    Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar

    2002-02-01

    Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.

  13. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    PubMed Central

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  14. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (P<0.05) compared to the other tested doses (1, 2, 3, 4, 6 and 7 J/cm2) and sham irradiated controls. In conclusion, the LLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  16. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  17. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  18. Human Gingival Fibroblasts Display a Non-Fibrotic Phenotype Distinct from Skin Fibroblasts in Three-Dimensional Cultures

    PubMed Central

    Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Cheung, Godwin; Kim, Ben; Larjava, Hannu; Häkkinen, Lari

    2014-01-01

    Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype. PMID

  19. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells.

    PubMed

    Patel, Vivekkumar; Singh, Vivek P; Pinnamaneni, Jaya Pratap; Sanagasetti, Deepthi; Olive, Jacqueline; Mathison, Megumi; Cooney, Austin; Flores, Elsa R; Crystal, Ronald G; Yang, Jianchang; Rosengart, Todd K

    2018-04-13

    Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. p63 Knockout ( -/- ) and knockdown murine embryonic fibroblasts (MEFs), p63 -/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). Flow cytometry revealed that a significantly greater number of p63 -/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63 -/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63 -/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  20. Establishment and Characterization of a New Muscle Cell Line of Zebrafish (Danio rerio) as an In Vitro Model for Gene Expression Studies.

    PubMed

    Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S

    2016-01-01

    A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.

  1. Remodeling of the fibroblast cytoskeletal architecture during the replication cycle of Ectromelia virus: A morphological in vitro study in a murine cell line.

    PubMed

    Szulc-Dabrowska, Lidia; Gregorczyk, Karolina P; Struzik, Justyna; Boratynska-Jasinska, Anna; Szczepanowska, Joanna; Wyzewski, Zbigniew; Toka, Felix N; Gierynska, Malgorzata; Ostrowska, Agnieszka; Niemialtowski, Marek G

    2016-08-01

    Ectromelia virus (ECTV, the causative agent of mousepox), which represents the same genus as variola virus (VARV, the agent responsible for smallpox in humans), has served for years as a model virus for studying mechanisms of poxvirus-induced disease. Despite increasing knowledge on the interaction between ECTV and its natural host-the mouse-surprisingly, still little is known about the cell biology of ECTV infection. Because pathogen interaction with the cytoskeleton is still a growing area of research in the virus-host cell interplay, the aim of the present study was to evaluate the consequences of ECTV infection on the cytoskeleton in a murine fibroblast cell line. The viral effect on the cytoskeleton was reflected by changes in migration of the cells and rearrangement of the architecture of tubulin, vimentin, and actin filaments. The virus-induced cytoskeletal rearrangements observed in these studies contributed to the efficient cell-to-cell spread of infection, which is an important feature of ECTV virulence. Additionally, during later stages of infection L929 cells produced two main types of actin-based cellular protrusions: short (actin tails and "dendrites") and long (cytoplasmic corridors). Due to diversity of filopodial extensions induced by the virus, we suggest that ECTV represents a valuable new model for studying processes and pathways that regulate the formation of cytoskeleton-based cellular structures. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The in vitro assessment of dipyridophenazine complexes in H-ras oncogene transformed rat embryo fibroblast 5RP7 cell line.

    PubMed

    Kaplan, Ayse; Benkli, Kadriye; Koparal, Ayse Tansu

    2018-01-08

    Purpose The aim of this study is to detect apoptotic and cytotoxic/antiproliferative effects of a ligand substance and its metal derivatives. The substances were investigated by using an h-ras oncogene transformed rat embryo fibroblast cell line (5RP7). Methods The cytotoxic influences of dipyrido[3,2-a:2',3'c]phenazine ligand, dipyrido[3,2-a:2',3'c] phenazine-platinum(II) complex ([Pt(dppz)Cl 2 ]) and dipyrido[3,2-a:2',3'c] phenazine-gold(III) complex ([Au(dppz)Cl 2 ]Cl) were determined with MTT (3[4,5-dimetiltiyazol2-yl]-2,5-difeniltetrazolyum bromid) assay on 5RP7 cells. Results Dipyrido[3,2-a:2',3'c] phenazine, dipyrido[3,2-a:2',3'c] phenazine-platinum(II) complex ([Pt(dppz)Cl 2 ]) and dipyrido[3,2-a:2',3'c] phenazine-gold(III) complexes ([Au(dppz)Cl 2 ]Cl) caused significant increase in cytotoxicity in a dose and time dependent manner. The effects of dipyridophenazine ligand (dppz) and its metal derivatives on apoptosis were monitorized using cytotoxic dose (10 μM) DAPI fluorescent staining. It was shown that dppz and its compounds induced apoptosis. Conclusions These findings show that dpzz and its complexes can be studied as novel alternative chemotherapeutics in cancer treatment.

  3. Perimysial fibroblasts of extraocular muscle, as unique as the muscle fibers.

    PubMed

    Kusner, Linda L; Young, Andrew; Tjoe, Steven; Leahy, Patrick; Kaminski, Henry J

    2010-01-01

    Extraocular muscle (EOM) has a distinct skeletal muscle phenotype. The hypothesis for the study was that fibroblasts support the unique EOM phenotype and that perimysial fibroblasts derived from EOM have properties that distinguish them from fibroblasts derived from other skeletal muscle. Perimysial fibroblasts from leg muscle (LM-Fibro) and EOM (EOM-Fibro) of mice were derived and maintained in culture. EOM- and LM-Fibro were assessed morphologically and for vimentin, smooth muscle actin, and Thy-1 immunoreactivity. DNA microarray analysis was performed on LM- and EOM-Fibro grown in conditions that support myoblast differentiation. To assess trophic interactions, co-cultures of myoblasts from established cell lines, CL-EOM and CL-LM with, EOM- or LM-Fibro were performed in direct contact and in a permeable filter support culture. The degree of myotube maturation was assessed by the percentage of myotubes with more than three myonuclei per myotube. EOM- and LM-Fibro cells exhibited distinct morphologies. Both cell types proliferated as a monolayer and expressed vimentin. Fifty-five percent (SD 4.4%) of EOM-Fibro were Thy-1 positive compared with only 24% (SD 4.4%) of LM-Fibro. DNA microarray analysis demonstrated differential expression of structural, immune response, and metabolism-related genes between EOM- and LM-Fibro. Co-cultures demonstrated that mature myotube formation in EOM-derived cell lines was supported to a greater extent by EOM-Fibro than by LM-Fibro, compared with CL-EOM grown with LM-Fibro. Fibroblasts from EOM demonstrate distinct properties that distinguish them from leg muscle-derived fibroblasts. The distinct properties of EOM-Fibro may support the unique EOM phenotype and contribute to their differential involvement in disease.

  4. The relationship of fibroblast translocations to cell morphology and stress fibre density.

    PubMed

    Lewis, L; Verna, J M; Levinstone, D; Sher, S; Marek, L; Bell, E

    1982-02-01

    Translocation of human fibroblasts in culture was studied using techniques of time-lapse cinemicrography, indirect immunofluorescence, and computer analysis. An inverse relationship between the velocity of cells during the last hour of life and the density of stress fibers seen by immune staining was demonstrated. Translocating cells generally assumed one of two interconvertible morphologies: a triangular tailed shape or tailed fibroblast (TF), and a tailless form that resembled a half-moon, which we call a half-moon fibroblast (HMF). The tail of TFs formed only on regions of substrate that had been previously traversed by cells. The half-moon morphology developed either on previously used or on virgin substrate. Cells adopted the HMF rather than the TF morphology with a four-fold greater frequency. HMFs translocated slightly faster than TFs. The foregoing observation suggest that the fibroblast tail is not an organelle essential for translocation. Since our technique allowed us to distinguish between cells which were cycling and those which had left cycle, we compared their velocities and found them to be similar. Also the average velocities of cells of different population-doubling levels (10th, 30th, 40th) were approximately equal.

  5. Convenient method of establishing permanent lines of xeroderma pigmentosum cells. [Ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohda, H.; Oikawa, A.; Katsuki, T.

    Nine lymphoblastoid cell lines were established after transformation by Epstein-Barr virus of peripheral lymphocytes from four xeroderma pigmentosum (XP) patients, the parents of one XP patient, and three normal donors. All these cell lines proliferate as suspension in Roswell Park Memorial Institute Medium 1640 supplemented with 20% fetal bovine serum, without detectable release of infectious Epstein-Barr virus. Some characteristics of these cell lines, such as growth rates, chromosome numbers, uv sensitivities, and activities of unscheduled DNA syntheses induced by uv, 4-nitroquinoline 1-oxide, and N-methyl-N'-nitro-N-nitrosoguanidine, were determined. Results confirm that the properties related to XP are not altered by transformation withmore » Epstein-Barr virus and are the same in degrees of defect as are those of dermal fibroblasts from the respective individuals. These XP and normal lymphoblastoid cell lines should be especially useful for biochemical studies on the mechanism of DNA repair, because they are easy to grow in mass culture.« less

  6. Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts.

    PubMed

    Brunetti, Dario; Perota, Andrea; Lagutina, Irina; Colleoni, Silvia; Duchi, Roberto; Calabrese, Fiorella; Seveso, Michela; Cozzi, Emanuele; Lazzari, Giovanna; Lucchini, Franco; Galli, Cesare

    2008-12-01

    The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.

  7. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.

    PubMed

    Wada, Rie; Muraoka, Naoto; Inagawa, Kohei; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Kaneda, Ruri; Suzuki, Tomoyuki; Kamiya, Kaichiro; Tohyama, Shugo; Yuasa, Shinsuke; Kokaji, Kiyokazu; Aeba, Ryo; Yozu, Ryohei; Yamagishi, Hiroyuki; Kitamura, Toshio; Fukuda, Keiichi; Ieda, Masaki

    2013-07-30

    Heart disease remains a leading cause of death worldwide. Owing to the limited regenerative capacity of heart tissue, cardiac regenerative therapy has emerged as an attractive approach. Direct reprogramming of human cardiac fibroblasts (HCFs) into cardiomyocytes may hold great potential for this purpose. We reported previously that induced cardiomyocyte-like cells (iCMs) can be directly generated from mouse cardiac fibroblasts in vitro and vivo by transduction of three transcription factors: Gata4, Mef2c, and Tbx5, collectively termed GMT. In the present study, we sought to determine whether human fibroblasts also could be converted to iCMs by defined factors. Our initial finding that GMT was not sufficient for cardiac induction in HCFs prompted us to screen for additional factors to promote cardiac reprogramming by analyzing multiple cardiac-specific gene induction with quantitative RT-PCR. The addition of Mesp1 and Myocd to GMT up-regulated a broader spectrum of cardiac genes in HCFs more efficiently compared with GMT alone. The HCFs and human dermal fibroblasts transduced with GMT, Mesp1, and Myocd (GMTMM) changed the cell morphology from a spindle shape to a rod-like or polygonal shape, expressed multiple cardiac-specific proteins, increased a broad range of cardiac genes and concomitantly suppressed fibroblast genes, and exhibited spontaneous Ca(2+) oscillations. Moreover, the cells matured to exhibit action potentials and contract synchronously in coculture with murine cardiomyocytes. A 5-ethynyl-2'-deoxyuridine assay revealed that the iCMs thus generated do not pass through a mitotic cell state. These findings demonstrate that human fibroblasts can be directly converted to iCMs by defined factors, which may facilitate future applications in regenerative medicine.

  8. An avian cell line designed for production of highly attenuated viruses.

    PubMed

    Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker

    2009-01-29

    Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.

  9. Inhibition of interleukin-17-stimulated interleukin-6 and -8 production by cranberry components in human gingival fibroblasts and epithelial cells.

    PubMed

    Tipton, D A; Cho, S; Zacharia, N; Dabbous, M K

    2013-10-01

    Gingival epithelial cells and fibroblasts participate in periodontal inflammation and destruction, producing interleukin (IL)-6, a regulator of osteoclastic bone resorption, and the neutrophil chemoattractant IL-8. IL-17, a product of T-helper 17 cells, may play a role in periodontitis by stimulating cytokine production by gingival cells. The cranberry (Vaccinium macrocarpon) is rich in polyphenols, particularly proanthocyanidins, which have antioxidant and other beneficial properties. Cranberry components inhibit pro-inflammatory activities of lipopolysaccharide-stimulated human macrophages, gingival fibroblasts, and epithelial cells, but little is known of its effects on IL-17-stimulated cytokine production. The objectives were to determine the effects of IL-17 ± cranberry components on IL-6 and IL-8 production by human gingival epithelial cells and fibroblasts. Cranberry high molecular weight non-dialyzable material (NDM), which is rich in proanthocyanidins, was derived from cranberry juice. Human gingival epithelial cells and normal human gingival fibroblasts were incubated with NDM (5-50 μg/mL), IL-17 (0.5-100 ng/mL), or NDM + IL-17 in serum-free medium for 6 d. IL-6 and IL-8 in culture supernatants were measured by ELISA. Membrane damage and viability were assessed by lactate dehydrogenase activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Data were analyzed using ANOVA and Scheffe's F procedure for post hoc comparisons. In both cell lines, IL-17 (≥ ~5-10 ng/mL) significantly stimulated production of IL-6 (p < 0.005) and IL-8 (p < 0.03). Non-toxic levels of NDM inhibited constitutive IL-6 and IL-8 production by epithelial cells (p ≤ 0.01) and fibroblasts (p ≤ 0.03) as well as IL-17-stimulated cytokine production by epithelial cells [IL-6 (maximum ~80% inhibition; p ≤ 0.0001); IL-8 (maximum ~70% inhibition; p ≤ 0.03)] and fibroblasts [IL-6 (maximum ~90% inhibition; p ≤ 0.0001); IL

  10. The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines.

    PubMed

    Patchett, Amanda L; Darby, Jocelyn M; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M

    2016-01-01

    The survival of the Tasmanian devil (Sarcophilus harrisii) is threatened by devil facial tumour disease (DFTD). This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7) signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy.

  11. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays.

    PubMed

    Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao

    2014-07-21

    Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.

  12. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    PubMed

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  13. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.

    PubMed

    Khor, Hwei Ling; Kuan, Yujun; Kukula, Hildegard; Tamada, Kaoru; Knoll, Wolfgang; Moeller, Martin; Hutmacher, Dietmar W

    2007-05-01

    Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.

  14. In Vitro Comparison of Cytotoxicity of Four Root Canal Sealers on Human Gingival Fibroblasts

    PubMed Central

    Konjhodzic-Prcic, Alma; Gorduysus, Omer; Kucukkaya, Selen; Atila, Burcu; Muftuoglu, Sevda; Zeybek, Dilara

    2015-01-01

    The goal of this in vitro study was to evaluate the relative biocompatibility of four endodontic sealers on the cell culture of the human fibroblast through cytotoxicity. Materials and Methods: In this study four endodontics sealers was used GuttaFlow (Roeko)silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealers were tested on primary cell lines of human gingival fibroblasts. Experiments were preformed in laboratories of Hacettepe University of Ankara, Turkey and Faculty of Dentistry, University of Sarajevo, Bosnia and Herzegovina Cytotoxicity was determinate using WST-1 assay. Results: Results were analyzed by SPSS 19 program. Kolgomorov-Smirnov test, Shapiro-Wilk and descriptive statistics also were used, as well as Kriskall-Wallis, ANOVA test and T- test. According to our results all four sealers showed different cytotoxicity effects on human gingival fibroblast cell culture, but all of them are slightly cytotoxic. Conclusions: According to results of this study it can be concluded: all four sealers showed different cytotoxicity effects on primary cell lines of human gingival fibroblasts, but all of them are slightly cytotoxicity. PMID:25870472

  15. [Acetyl-11-keto-beta-boswellic acid and arsenic trioxide regulate the productions and activities of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1].

    PubMed

    Liang, Ya-hui; Li, Ping; Zhao, Jing-xia; Liu, Xin; Huang, Qi-fu

    2010-11-01

    In order to reveal the treatment mechanism of Chinese medicine with the effect of activating blood and resolving putridity, we selected acetyl-11-keto-beta-boswellic acid (AKBA) and arsenic trioxide (ATO), the main monomeric components of frankincense and arsenolite which are two most commonly used Chinese medicine with effect of activating blood and resolving putridity. We combined AKBA and ATO as a compound, and explored its regulatory role in productions and activities of matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 in human skin fibroblasts (HSFbs) and human acute monocytic leukemia cell line THP-1 in inflammatory state. In order to simulate the inflammatory micro-environment of chronic wounds, we established 3 cell models: HSFb model activated by tumor necrosis factor-alpha (TNF-α), THP-1 cell model activated by phorbol-12-myristate-13-acetate (PMA) and HSFb-THP-1 cell coculture system. AKBA and ATO were cocultured with these cell models. Enzyme-linked immunosorbent assay (ELISA), gelatin zymography assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to test the secretions, activities and mRNA expressions of MMP-1, MMP-2 and MMP-9. In the study of the regulatory mechanism of AKBA and ATO on MMPs, AKBA and ATO were cocultured with the cell models. ELISA was used to test the secretions of TNF-α and interleukin-1beta (IL-β) and Western blot was used to test the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated proteinkinase (p38MAPK). Compound of AKBA and ATO inhibited MMP-1, MMP-2 and MMP-9 mRNA expressions, secretions and activities respectively in HSFbs and THP-1 cells in inflammatory state (P<0.05, P<0.01). Also compound of AKBA and ATO inhibited secretions of TNF-α and IL-1β in THP-1 cells and cell coculture system (P<0.01). It also decreased the phosphorylation of ERK1/2 and p38 MAPK in HSFbs and THP-1 cells (P<0.05, P<0.01). The combined use of AKBA and ATO which

  16. Unchanged thymidine triphosphate pools and thymidine metabolism in two lines of thymidine kinase 2-mutated fibroblasts.

    PubMed

    Frangini, Miriam; Rampazzo, Chiara; Franzolin, Elisa; Lara, Mari-Carmen; Vilà, Maya R; Martí, Ramon; Bianchi, Vera

    2009-02-01

    Mitochondrial thymidine kinase (TK2) catalyzes the phosphorylation of thymidine in mitochondria. Its function becomes essential for dTTP synthesis in noncycling cells, where cytosolic dTTP synthesis via R1/R2 ribonucleotide reductase and thymidine kinase 1 is turned down. Mutations in the nuclear gene for TK2 cause a fatal mtDNA depletion syndrome. Only selected cell types are affected, suggesting that the other cells compensate for the TK2 deficiency by adapting the enzyme network that regulates dTTP synthesis outside S-phase. Here we looked for such metabolic adaptation in quiescent cultures of fibroblasts from two TK2-deficient patients with a slow-progressing syndrome. In cell extracts, we measured the activities of TK2, deoxycytidine kinase, thymidine phosphorylase, deoxynucleotidases and the amounts of the three ribonucleotide reductase subunits. Patient cells contained 40% or 5% TK2 activity and unchanged activities of the other enzymes. However, their mitochondrial and cytosolic dTTP pools were unchanged, and also the overall composition of the dNTP pools was normal. TK2-dependent phosphorylation of [(3)H]thymidine in intact cells and the turnover of the dTTP pool showed that even the fibroblasts with 5% residual TK2 activity synthesized dTTP at an almost normal rate. Normal fibroblasts apparently contain more TK2 than needed to maintain dTTP during quiescence, which would explain why TK2-mutated fibroblasts do not manifest mtDNA depletion despite their reduced TK2 activity.

  17. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    PubMed

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p < 0.05), while in the case of HBF an equal or even higher number of cells adhered to PE was observed. The number of adhered osteoblast cells was almost equal and in some days even higher than the number of adhered cells on negative control sample, while in the case of fibroblast this difference was significantly higher than TPS (p < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were observed to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast

  18. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less

  19. Comparison of fibroblast cell regeneration in three different concentrations of Wharton’s Jelly mesenchymal stem cells conditioned medium (WJMSCs-CM)

    NASA Astrophysics Data System (ADS)

    Untoro, E. G.; Asrianti, D.; Usman, M.; Meidyawati, R.; Margono, A.

    2017-08-01

    Wharton’s Jelly-derived mesenchymal stem cells (WJMSCs) have gained interest as an alternative source of stem cells for regenerative medicine. Although many studies have characterized Wharton’s Jelly biologically, the effects of different concentrations in a cultured medium have not yet been compared. Damaged fibroblasts, the primary components of irreversible dental pulpitis, irreversibly impair the ability to regenerate and lead to the disruption of extracellular matrix. This study was performed to evaluate the potency of three WJMSCs-CM concentrations in improving serum-starved fibroblasts. Fibroblasts were cultivated in five passages, and divided into four groups. The first group (the control group) consisted of fibroblast cells that had been treated using starvation methods. The other groups (the treatment groups) were treated with various concentration of WJMSCs-CM (50%, 25% and 12.5%). Proliferative ability was evaluated using a cell count method and analyzed with a one-way ANOVA. Cultivation of serum-starved fibroblasts produced significantly higher cell counts in 12.5% WJMSCs-CM compared to the 50% group. It can be concluded that 12.5% WJMSCs-CM is the most efficient concentration for fibroblast proliferation.

  20. Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation

    PubMed Central

    Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.

    2015-01-01

    Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the

  1. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    PubMed

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  2. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene.

    PubMed

    Wang, Kai; Jin, Song; Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.

  3. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene

    PubMed Central

    Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells. PMID:28196103

  4. Transformation of primary chick embryo fibroblasts by Marek's disease virus.

    PubMed

    Buranathai, C; Rodriguez, J; Grose, C

    1997-12-08

    Marek's disease virus (MDV) is an alphaherpesvirus, which can mediate the malignant transformation of lymphocytes to form lymphomas in chickens. In this study, we demonstrate that MDV can transform primary chick embryo fibroblasts (CEF). The cell line derived from primary CEF infected with the GA strain of MDV was called CEM(MDV). The fibroblast nature of CEM(MDV) was verified by absence of cytokeratin type II. The CEM(MDV) phenotype differed from either primary CEF or MDV-infected CEF. CEM(MDV) were extensively vacuolated, with unusual multilamellar structures in the cytoplasm, The nuclei were considerably larger than those in primary CEF and were uniformly positive for proliferating cell nuclear antigen. The cell line was subcultured for more than 10 generations; however, CEM(MDV) did not support a fully productive MDV infection, because complete nucleocapsids were not detected and infectivity assays showed that cell line produced no infectious virus. PCR analyses demonstrated that this cell line carried both polypeptide 38 (pp38) and Meq DNA, MDV-specific genes associated with transformation. In addition, examination by laser scanning confocal microscopy revealed that CEM(MDV) constitutively produced MDV MEQ protein in nuclei and pp38 as well as glycoprotein B in the cytoplasm and on the plasma membrane. Growth in soft agar assay demonstrated that CEM(MDV) formed colonies, similar to HeLa and human melanoma cells. Retroviral insertion was not detected in DNA from the CEM(MDV) line.

  5. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis.

    PubMed

    Eiro, Noemi; González, Lucía; Martínez-Ordoñez, Anxo; Fernandez-Garcia, Belen; González, Luis O; Cid, Sandra; Dominguez, Francisco; Perez-Fernandez, Román; Vizoso, Francisco J

    2018-03-01

    It has been reported that stromal cell features may affect the clinical outcome of breast cancer patients. Cancer associated fibroblasts (CAFs) represent one of the most abundant cell types within the breast cancer stroma. Here, we aimed to explore the influence of CAFs on breast cancer gene expression, as well as on invasion and angiogenesis. qRT-PCR was used to evaluate the expression of several cancer progression related genes (S100A4, TGFβ, FGF2, FGF7, PDGFA, PDGFB, VEGFA, IL-6, IL-8, uPA, MMP2, MMP9, MMP11 and TIMP1) in the human breast cancer-derived cell lines MCF-7 and MDA-MB-231, before and after co-culture with CAFs. Stromal mononuclear inflammatory cell (MIC) MMP11 expression was used to stratify primary tumors. In addition, we assessed the in vitro effects of CAFs on both MDA-MB-231 breast cancer cell invasion and endothelial cell (HUVEC) tube formation. We found that the expression levels of most of the genes tested were significantly increased in both breast cancer-derived cell lines after co-culture with CAFs from either MMP11+ or MMP11- MIC tumors. IL-6 and IL-8 showed an increased expression in both cancer-derived cell lines after co-culture with CAFs from MMP11+ MIC tumors. We also found that the invasive and angiogenic capacities of, respectively, MDA-MB-231 and HUVEC cells were increased after co-culture with CAFs, especially those from MMP11+ MIC tumors. Our data indicate that tumor-derived CAFs can induce up-regulation of genes involved in breast cancer progression. Our data additionally indicate that CAFs, especially those derived from MMP11+ MIC tumors, can promote breast cancer cell invasion and angiogenesis.

  6. Establishment and characterization of a new marine fish cell line from ovary of barfin flounder ( Verasper moseri)

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia

    2015-12-01

    A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.

  7. Cell-Cell Communication Between Fibroblast and 3T3-L1 Cells Under Co-culturing in Oxidative Stress Condition Induced by H2O2.

    PubMed

    Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho

    2016-10-01

    The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H 2 O 2 -induced oxidative stress condition. H 2 O 2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H 2 O 2 -induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H 2 O 2 -induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H 2 O 2 -induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.

  8. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    PubMed

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  9. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells

    PubMed Central

    Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication. PMID:28886142

  10. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.

    PubMed

    Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.

  11. Establishment and characterization of a new human functional cell line from a choriocarcinoma.

    PubMed

    Okabe, T; Sasaki, N; Matsuzaki, M; Imai, Y; Kaneko, Y; Matsuzaki, F; Takaku, F; Tsushima, T

    1983-10-01

    A new human functional tumor cell line, designated as T3M-3, has been established from a xenotransplanted choriocarcinoma grown in nude mice. One of the biggest problems of the in vitro culture of these tumor cells using the xenotransplanted tumors had been the dense contamination of fibroblasts of host nude mouse origin. In the present study, these fibroblasts were completely removed by incubating the cells with antiserum raised against nude mouse spleen cells. The cell line established from the remaining tumor cells has been successfully propagated in vitro for as long as 4 years. These cells show the morphology of epithelioid cells containing a prominent nucleus with one or two large nucleoli. The cells grow in a monolayered sheet with the population-doubling time of 19 hr. The cells show perfect tumor takes when they are reinoculated into nude mice. Chromosomal analysis revealed that the cell is a human aneuploid one with a hypotriploid mode. These cultured cells maintained well the function of secreting large amounts of human chorionic gonadotropin, progesterone, and estrogen. The secretion of human chorionic gonadotropin and progesterone by these cells is enhanced by stimulation with tumor promoters, such as 12-O-tetradecanoylphorbol-13-acetate and teleocidin B, or with epidermal growth factor in a dose-and time-dependent manner. Interestingly, however, the tumor promoters did not exert a marked effect on the cellular binding of epidermal growth factor, indicating that the receptors for these reagents in T3M-3 cells are not shared by epidermal growth factor.

  12. Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming.

    PubMed

    Tai, Dapeng; Liu, Pengxia; Gao, Jing; Jin, Muzi; Xu, Teng; Zuo, Yongchun; Liang, Hao; Liu, Dongjun

    2015-08-01

    Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.

  13. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  14. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts.

    PubMed

    Liu, Ying; Geng, Yue-Hang; Yang, Hui; Yang, Han; Zhou, Yan-Ting; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2018-05-04

    Our previous work has demonstrated that extracellular ATP is an important pro-invasive factor, and in this study, we tapped into a possible mechanism involved. We discovered that ATP could upregulate both the intracellular expression and secretion of S100A4 in breast cancer cells and fibroblasts. Apart from stimulating breast cancer cell motility via intracellular S100A4, ATP enhanced the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblast (CAF)-like cells, which in turn secreted S100A4 to further promote cancer cell motility. Both apyrase and niclosamide treatments could inhibit metastasis of inoculated tumors to lung, liver and kidney in mice model, and CAFs from these treated tumors exhibited weakened migration-stimulating capacity for breast cancer cells. Collectively, our data indicate that extracellular ATP promotes the interactions between breast cancer cells and fibroblasts, which work collaboratively via production of S100A4 to exacerbate breast cancer metastasis. Copyright © 2018. Published by Elsevier B.V.

  15. Establishment of an immortal chicken embryo liver-derived cell line.

    PubMed

    Lee, Jeongyoon; Foster, Douglas N; Bottje, Walter G; Jang, Hyeon-Min; Chandra, Yohanna G; Gentles, Lauren E; Kong, Byung-Whi

    2013-06-01

    A continuously growing immortal cell substrate can be used for virus propagation, diagnostic purposes, and vaccine production. The aim of this study was to develop an immortal chicken cell line for efficient propagation of avian infectious viruses. From the various chicken embryo cells that were tested for life span extension, an immortalized chicken embryo liver (CEL) cell line, named CEL-im, was derived spontaneously without either oncogenic viruses or carcinogenic chemical treatment. Currently, CEL-im cells are growing 0.8 to 1.1 population doublings per day and have reached 120 passages. The CEL-im cell line is permissive for poultry infectious viruses, including avian metapneumovirus (AMPV), Marek's disease virus serotype 1 (MDV-1), and infectious laryngotracheitis virus. The CEL-im cells produced high AMPV titer (>10(5) pfu/mL), whereas very low titers (~10 pfu/mL) for MDV-1 and infectious laryngotracheitis virus were produced. To identify genetic alterations in the immortal CEL-im cell line, telomerase activity and mRNA expression for major cell cycle regulatory genes were determined during the immortalizing process. The CEL-im cell line has negative telomerase activity, and when compared with the primary passage 2 CEL cell counterpart, mRNA expression of tumor suppressor protein p53, mouse double minute 2 (Mdm2), cyclin dependent kinase (CDK) inhibitor p21 (p21(WAF)), and CDK inhibitor p16 (p16(INK4)) were downregulated in the CEL-im cell line, whereas retinoblastoma (Rb), transcription factor E2F, member 1 (E2F-1), and alternative reading frame of p16(INK4) (ARF) were upregulated. These results are similar to genetic alterations found previously in immortal chicken embryo fibroblast (CEF) cell lines that showed efficient propagation of MDV-1. Therefore, this newly established CEL-im cell line can serve as an alternative cell substrate for the propagation of poultry viruses, such as AMPV.

  16. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    PubMed

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low

  17. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Kayamori, Kou; Katsube, Ken-Ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.

  18. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma

    PubMed Central

    Kayamori, Kou; Katsube, Ken-ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs. PMID:27124156

  19. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  20. Microarray gene-expression study in fibroblast and lymphoblastoid cell lines from antipsychotic-naïve first-episode schizophrenia patients.

    PubMed

    Gassó, Patricia; Mas, Sergi; Rodríguez, Natalia; Boloc, Daniel; García-Cerro, Susana; Bernardo, Miquel; Lafuente, Amalia; Parellada, Eduard

    2017-12-01

    Schizophrenia (SZ) is a chronic psychiatric disorder whose onset of symptoms occurs in late adolescence and early adulthood. The etiology is complex and involves important gene-environment interactions. Microarray gene-expression studies on SZ have identified alterations in several biological processes. The heterogeneity in the results can be attributed to the use of different sample types and other important confounding factors including age, illness chronicity and antipsychotic exposure. The aim of the present microarray study was to analyze, for the first time to our knowledge, differences in gene expression profiles in 18 fibroblast (FCLs) and 14 lymphoblastoid cell lines (LCLs) from antipsychotic-naïve first-episode schizophrenia (FES) patients and healthy controls. We used an analytical approach based on protein-protein interaction network construction and functional annotation analysis to identify the biological processes that are altered in SZ. Significant differences in the expression of 32 genes were found when LCLs were assessed. The network and gene set enrichment approach revealed the involvement of similar biological processes in FCLs and LCLs, including apoptosis and related biological terms such as cell cycle, autophagy, cytoskeleton organization and response to stress and stimulus. Metabolism and other processes, including signal transduction, kinase activity and phosphorylation, were also identified. These results were replicated in two independent cohorts using the same analytical approach. This provides more evidence for altered apoptotic processes in antipsychotic-naïve FES patients and other important biological functions such as cytoskeleton organization and metabolism. The convergent results obtained in both peripheral cell models support their usefulness for transcriptome studies on SZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  2. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  3. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.

    PubMed

    Kim, H; You, S; Foster, L K; Farris, J; Foster, D N

    2001-08-23

    The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.

  4. Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis

    PubMed Central

    Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian

    2013-01-01

    Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807

  5. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    PubMed

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  6. Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts.

    PubMed

    Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L

    2017-12-22

    For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.

  7. Development and characterization of a cell line TTCF from endangered mahseer Tor tor (Ham.).

    PubMed

    Yadav, K; Lakra, W S; Sharma, J; Goswami, M; Singh, Akhilesh

    2012-08-01

    Tor tor is an important game and food fish of India with a distribution throughout Asia from the trans-Himalayan region to the Mekong River basin to Malaysia, Pakistan, Bangladesh and Indonesia. A new cell line named TTCF was developed from the caudal fin of T. tor for the first time. The cell line was optimally maintained at 28°C in Leibovitz-15 (L-15) medium supplemented with 20% fetal bovine serum (FBS). The propagation of TTCF cells showed a high plating efficiency of 63.00%. The cytogenetic analysis revealed a diploid count of 100 chromosomes at passage 15, 30, 45 and 60 passages. The viability of the TTCF cell line was found to be 72% after 6 months of cryopreservation in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 578- and 655-bp sequences of 16S rRNA and cytochrome oxidase subunit I (COI) genes of mitochondrial DNA (mtDNA) respectively. TTCF cells were successfully transfected with green fluorescent protein (GFP) reporter plasmids. Further, immunocytochemistry studies confirm its fibroblastic morphology of cells. Genotoxicity assessment of H₂O₂ in TTCF cell line revealed the utility of TTCF cell line as in vitro model for aquatic toxicological studies.

  8. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measuredmore » using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.« less

  9. Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro.

    PubMed

    Bodel, P

    1978-05-01

    Tumor-associated fever occurs commonly in acute leukemias and lymphomas. We investigated the capacity for in vitro production of pyrogen by three mouse histiocytic lymphoma cell lines (J-774, PU5-1.8, p 388 D1), one myelomonoyctic line (WEHI-3), and tow lymphoma-derived lines, RAW-8 and R-8. Pyrogen was released spontaneously into the culture medium during growth by all cell lines with macrophage or myeloid characteristics including lysozyme production; R-8 cells, of presumed B-lymphocyte origin, did not produce pyrogen. When injected into mice, the pyrogens gave fever curves typical of endogenous pyrogen, were inactived by heating to 56 degrees C and by pronase digestion, and appeared to be secreted continuously by viable cells. Two pyrogenic molecular species produced by H-774 cells were identified by Sephadex filtration, one of mol wt approximately equal to 30,000, and the other greater than or equal to 60,000. By contrast, three carcinoma cell lines of human origin and SV-40 3T3 mouse fibroblasts did not produce pyrogen in vitro. These results suggest that some malignant cells derived from phagocytic cells of bone marrow origin retain their capacity for pyrogen production, and may spontaneously secrete pyrogen during growth.

  10. Oocyte extract improves epigenetic reprogramming of yak fibroblast cells and cloned embryo development.

    PubMed

    Xiong, X R; Li, J; Fu, M; Gao, C; Wang, Y; Zhong, J C

    2013-02-01

    The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. Silibinin prevents prostate cancer cell-mediated differentiation of naïve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2.

    PubMed

    Ting, Harold J; Deep, Gagan; Jain, Anil K; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M; Cramer, Scott D; Agarwal, Chapla; Agarwal, Rajesh

    2015-09-01

    Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin's direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased alpha-smooth muscle actin (α-SMA) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of α-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate TM. © 2014 Wiley Periodicals, Inc.

  12. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    PubMed

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  13. Examination of a modified cell cycle synchronization method and bovine nuclear transfer using synchronized early G1 phase fibroblast cells.

    PubMed

    Urakawa, Manami; Ideta, Atsushi; Sawada, Tokihiko; Aoyagi, Yoshito

    2004-08-01

    Somatic cell nuclear transfer has a low success rate, due to a high incidence of fetal loss and increased perinatal morbidity/mortality. One factor that may affect the successful development of nuclear transfer embryos is the cell cycle stage of the donor cell. In order to establish a cell cycle synchronization method that can consistently produce cloned embryos and offspring, we examined the effects of different combinations of three cell treatments on the recovery rate of mitotic phase cells using bovine fetal fibroblasts. In the first experiment, we examined the recovery rate of mitotic phase cells by a combination of treatment with a metaphase arrestant (1 microM 2-methoxyestradiol), shaking the plate and selecting cells with a diameter of 20 microns. As a result, 99% of mitotic phase cells were recovered by repeating the combined treatment of metaphase arrestant and shaking, and collection of cells with a specific diameter. In the second experiment, nuclear transfer was carried out using early G1 phase cells by choosing pairs of bridged cells derived from mitotic phase cells recovered by the combined treatment of 1 microM 2-methoxyestradiol and shaking, and collection of cells with a diameter of 20 microns. The reconstructed embryos were transferred to recipient heifers to determine post-implantation development. Development of embryos reconstructed from early G1 phase cells from the >/=6 cells stage on Day 3 to the morula-blastocyst stage on Day 6 was 100%. Ten blastocysts constructed from two cell lines were transferred into 10 recipient heifers. Nine of the 10 recipients delivered single live calves. In conclusion, mitotic phase bovine fibroblast cells were easily recovered by the combined treatments of 1 microM 2-methoxyestradiol, shaking, and selecting cells of the appropriate diameter. Furthermore, nuclear transfer using cells in the early G1 phase as donor cells gave a high rate of offspring production.

  14. Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres.

    PubMed

    Fong, Chui-Yee; Richards, Mark; Bongso, Ariff

    2006-08-01

    Human embryonic stem cells (hESC) that differentiate into all three primordial germ layers have been established. Differentiation of these cells into desirable lineages offers hope for future transplantation therapies. Currently, hESC lines are derived from the inner cell mass (ICM) of blastocysts, leading to destruction of the embryo, and thus the process is ethically controversial. Successful attempts at deriving hESC lines from blastomeres without destruction of the ensuing embryo have not been reported. One or two blastomeres are routinely biopsied from 8-cell embryos for preimplantation genetic diagnosis. In this study it was therefore attempted to derive hESC lines from paired blastomeres. Of 66 pairs of 8-cell stage blastomeres, four pairs produced two morula and two blastocyst-like structures. When plated on mitomycin-C-treated mouse embryonic fibroblasts, one morula and one blastocyst-like structure separately produced small colonies containing hESC-like cells with prominent nucleoli and high nuclear-cytoplasmic ratios. When these colonies were detached and plated onto fresh feeders, there was no further colony formation or ensuing hESC lines. The results showed that it might not be possible to derive hESC lines directly from paired blastomeres. A minimum number of blastomeres in close contact with one another may be required to successfully generate an hESC line as blastomeres, like ICM and hESC cells, may be 'social' cells.

  15. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  16. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  17. Effects of mesenchymal stem cell and fibroblast coating on immunogenic potential of prosthetic meshes in vitro.

    PubMed

    Gao, Yue; Krpata, David M; Criss, Cory N; Liu, Lijia; Posielski, Natasza; Rosen, Michael J; Novitsky, Yuri W

    2014-08-01

    The aim of this study was to reveal the effect of fibroblast or mesenchymal stem cell (MSC) coating on the mesh-induced production of IL-1β, IL-6, and VEGF by macrophages. Four commonly used surgical meshes were tested in this study, including Parietex, SoftMesh, TIGR, and Strattice. One-square-centimeter pieces of each mesh were placed on top of a monolayer of human fibroblasts or rat MSCs. The coating status was monitored with a light microscope. The human promonocytic cell line U937 was induced to differentiate into macrophages (MΦ). Three weeks later, meshes were transferred to new 24-well plates and cocultured with the MΦs for 72 h. Culture medium was collected and analyzed for IL-1β, IL-6, and VEGF production using standard ELISA essays. Parallel mesh samples were fixed with paraformaldehyde or glutaraldehyde for histology or transmission electronic microscopy (TEM) analyses, respectively. Uncoated meshes induced increased production of all three cytokines compared with macrophages cultured alone. HF coating further increased the production of both IL-6 and VEGF but reduced IL-1β production. Except for the SoftMesh group, MSC coating significantly blunted release of all cytokines to levels even lower than with MΦs cultured alone. MΦs tended to deteriorate in the presence of MSCs. Both histology and TEM revealed intimate interactions between cell-coated meshes and MΦs. Cytokine response to fibroblast coating varied, while MSC coating blunted the immunogenic effect of both synthetic and biologic meshes in vitro. Cell coating appears to affect mesh biocompatibility and may become a key process in mesh evolution.

  18. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    PubMed

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    membrane. MPC proliferation, differentiation and fusion were assessed from cells stained for BrdU, desmin and myogenin. On biopsy cross-sections, fibroblast number was seen to increase, along with myogenic cell number, by d7 and increase further by d30, where fibroblasts were observed to be preferentially located immediately surrounding regenerating muscle fibres. In vitro, the presence of fibroblasts in direct contact with MPCs was found to moderately stimulate MPC proliferation and strongly stimulate both MPC differentiation and MPC fusion. It thus appears, in humans, that fibroblasts exert a strong positive regulatory influence on MPC activity, in line with observations during in vivo skeletal muscle regeneration. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  19. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos

    PubMed Central

    Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde

    2009-01-01

    BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307

  20. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    PubMed

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  1. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    PubMed

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    fibroblast lines Hs27 and HFL1. Serum-free culture media can be used for in vitro studies of several osteosarcoma cell lines, but the optimal medium varies between cell lines and thus depends on: (i) the cell lines to be investigated/compared; (ii) the functional characteristic that is evaluated (proliferation, cytokine release); and (iii) whether coculture experiments are included.

  2. Radiosensitivity of fibroblasts obtained from a cafe-au-lait spot and normal-appearing skin of a patient with neurofibromatosis (NF-6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannan, M.A.; Smith, B.P.; Sigut, D.

    Fibroblast cells derived from a cafe-au-lait spot and normal-appearing skin of a neurofibromatosis (NF-6) patient were studied for radiosensitivity in comparison with two normal cell lines used as controls. No difference in radiosensitivity was observed between the patient's cell lines and the controls using acute gamma-irradiation. However, a markedly increased radiosensitivity of the fibroblasts obtained from the patient's skin of normal appearance was demonstrated after chronic gamma-irradiation. The cells from the cafe-au-lait spot showed intermediate sensitivity to chronic irradiation as compared with the control cell lines and the fibroblasts derived from the normal skin of the patient. These results showedmore » the usefulness of chronic irradiation in detecting increased cellular radiosensitivity which may result from a unique DNA repair defect in an NF patient. We suggest that enhanced genetic changes in radiosensitive NF patients may lead to formation of cafe-au-lait lesions and certain tumors. Such a transformation may be associated with production of radiotolerant cells.« less

  3. Establishment and Maintenance of Primary Fibroblast Repositories for Rare Diseases-Friedreich's Ataxia Example.

    PubMed

    Li, Yanjie; Polak, Urszula; Clark, Amanda D; Bhalla, Angela D; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David; Butler, Jill S; Napierala, Marek

    2016-08-01

    Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community.

  4. Establishment and Maintenance of Primary Fibroblast Repositories for Rare Diseases—Friedreich's Ataxia Example

    PubMed Central

    Li, Yanjie; Polak, Urszula; Clark, Amanda D.; Bhalla, Angela D.; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David

    2016-01-01

    Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community. PMID:27002638

  5. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations.

    PubMed

    von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M

    2012-07-01

    The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.

  6. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells.

    PubMed

    Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen

    2015-11-01

    Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the

  7. Altered chromosome 6 in immortal human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal tomore » 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.« less

  8. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  9. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  10. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway.

    PubMed

    Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng

    2018-04-01

    Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  11. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors

    PubMed Central

    Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2011-01-01

    Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062

  12. Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts.

    PubMed

    Hatanaka, Miho; Higashi, Yuko; Fukushige, Tomoko; Baba, Naoko; Kawai, Kazuhiro; Hashiguchi, Teruto; Su, Juan; Zeng, Weiqi; Chen, Xiang; Kanekura, Takuro

    2014-12-01

    Cluster of differentiation 147 (CD147)/basigin on the malignant tumor cell surface is critical for tumor proliferation, invasiveness, metastasis, and angiogenesis. CD147 expressed on malignant melanoma cells can induce tumor cell invasion by stimulating the production of matrix metalloproteinases (MMPs) by surrounding fibroblasts. Membrane vesicles, microvesicles and exosomes have attracted attention, as vehicles of functional molecules and their association with CD147 has been reported. Cleaved CD147 fragments released from tumor cells were reported to interact with fibroblasts. We investigated the intercellular mechanisms by which CD147 stimulates fibroblasts to induce MMP2 activity. CD147 was knocked-down using short hairpin RNA (shRNA). The stimulatory effect of CD147 in cell culture supernatants, microvesicles, and exosomes on the enzymatic activity of MMP2 was examined by gelatin zymography. Supernatants from A375 control cells induced increased enzymatic activity of fibroblasts; such activity was significantly lower in CD147 knock-down cells. Cleaved CD147 plays a pivotal role in stimulating fibroblasts to induce MMP2 activity. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. The hallmarks of fibroblast ageing.

    PubMed

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    PubMed

    Liu, Shuo; Niger, Corinne; Koh, Eugene Y; Stains, Joseph P

    2015-01-01

    Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs) could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis)-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases like

  15. Simultaneous monitoring of independent gene expression patterns in two types of cocultured fibroblasts with different color-emitting luciferases

    PubMed Central

    Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2008-01-01

    Background Luciferase assay systems enable the real-time monitoring of gene expression in living cells. We have developed a dual-color luciferase assay system in which the expression of multiple genes can be tracked simultaneously using green- and red-emitting beetle luciferases. We have applied the system to monitoring independent gene expressions in two types of cocultured fibroblasts in real time. Results Two Rat-1 cell lines were established that stably express either green- or red-emitting luciferases under the control of the mBmal1 promoter, a canonical clock gene. We cocultured these cell lines, and gene expression profiles in both were monitored simultaneously. The circadian rhythms of these cell lines are independent, oscillating following their intrinsic circadian phases, even when cocultured. Furthermore, the independent rhythms were synchronized by medium change as an external stimulus. Conclusion Using this system, we successfully monitored independent gene expression patterns in two lines of cocultured fibroblasts. PMID:18416852

  16. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway

    PubMed Central

    2014-01-01

    Background Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. Results FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCϒ, NWASP, ARP2/3, and ROCK had no influence this. Conclusions FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies. PMID:24885257

  17. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway.

    PubMed

    Jia, Jun; Martin, Tracey Amanda; Ye, Lin; Jiang, Wen Guo

    2014-05-21

    Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCΥ, NWASP, ARP2/3, and ROCK had no influence this. FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies.

  18. Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.

    PubMed

    Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng

    2016-10-15

    The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, Tbx5

    PubMed Central

    Chen, J.X.; Krane, M.; Deutsch, M. A.; Wang, L.; Rav-Acha, M.; Gregoire, S.; Engels, M. C.; Rajarajan, K.; Karra, R.; Abel, E. D.; Wu, J. C.; Milan, D.; Wu, S. M.

    2012-01-01

    Rationale Direct reprogramming of fibroblasts into cardiomyocytes is a novel strategy for cardiac regeneration. However, the key determinants involved in this process are unknown. Objective To assess the efficiency of direct fibroblast reprogramming via viral overexpression of GATA4, Mef2c, and Tbx5 (GMT). Methods and Results We induced GMT overexpression in murine tail tip fibroblasts (TTFs) and cardiac fibroblasts (CFs) from multiple lines of transgenic mice carrying different cardiomyocyte lineage reporters. We found that the induction of GMT overexpression in TTFs and CFs is inefficient at inducing molecular and electrophysiological phenotypes of mature cardiomyocytes. In addition, transplantation of GMT infected CFs into injured mouse hearts resulted in decreased cell survival with minimal induction of cardiomyocyte genes. Conclusions Significant challenges remain in our ability to convert fibroblasts into cardiomyocyte-like cells and a greater understanding of cardiovascular epigenetics is needed to increase the translational potential of this strategy. PMID:22581928

  20. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  1. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    PubMed

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  2. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro

    PubMed Central

    Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology. PMID:27536196

  3. Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner.

    PubMed

    van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal

    2013-10-03

    Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.

  4. Cell-populated collagen lattice contraction model for the investigation of fibroblast collagen interactions.

    PubMed

    Ehrlich, H Paul; Moyer, Kurtis E

    2013-01-01

    The fibroblast-populated collagen lattice (FPCL) was intended to act as the dermal component for "skin-equivalent" or artificial skin developed for skin grafting burn patients. The "skin-equivalent" was clinically unsuccessful as a skin graft, but today it is successfully used as a dressing for the management of chronic wounds. The FPCL has, however, become an instrument for investigating cell-connective tissue interactions within a three-dimensional matrix. Through the capacity of cell compaction of collagen fibrils, the FPCL undergoes a reduction in volume referred to as lattice contraction. Lattice contraction proceeds by cell-generated forces that reduce the water mass between collagen fibers, generating a closer relationship between collagen fibers. The compaction of collagen fibers is responsible for the reduction in the FPCL volume. Cell-generated forces through the linkage of collagen fibers with fibroblast's cytoskeletal actin-rich microfilament structures are responsible for the completion of the collagen matrix compaction. The type of culture dish used to cast FPCL as well as the cell number will dictate the mechanism for compacting collagen matrices. Fibroblasts, at moderate density, cast as an FPCL within a petri dish and released from the surface of the dish soon after casting compact collagen fibers through cell tractional forces. Fibroblasts at moderate density cast as an FPCL within a tissue culture dish and not released for 4 days upon release show rapid lattice contraction through a mechanism of cell contraction forces. Fibroblasts at high density cast in an FPCL within a petri dish, released from the surface of the dish soon after casting, compact a collagen lattice very rapidly through forces related to cell elongation. The advantage of the FPCL contraction model is the study of cells in the three-dimensional environment, which is similar to the environment from which these cells were isolated. In this chapter methods are described for

  5. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  6. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo

  7. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.

    PubMed

    Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  8. Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.

    PubMed

    Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D

    1997-04-01

    Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel

  9. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.

    PubMed

    Erdogan, Begum; Ao, Mingfang; White, Lauren M; Means, Anna L; Brewer, Bryson M; Yang, Lijie; Washington, M Kay; Shi, Chanjuan; Franco, Omar E; Weaver, Alissa M; Hayward, Simon W; Li, Deyu; Webb, Donna J

    2017-11-06

    Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. © 2017 Erdogan et al.

  10. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin

    PubMed Central

    Ao, Mingfang; White, Lauren M.; Means, Anna L.; Yang, Lijie; Washington, M. Kay; Franco, Omar E.; Li, Deyu; Webb, Donna J.

    2017-01-01

    Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF–cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α–mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. PMID:29021221

  11. Generation of an induced pluripotent stem cell line from chorionic villi of a Turner syndrome spontaneous abortion.

    PubMed

    Parveen, Shagufta; Panicker, M M; Gupta, Pawan Kumar

    2017-03-01

    A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. A Role for Fibroblasts in Mediating the Effects of Tobacco-Induced Epithelial Cell Growth and Invasion

    PubMed Central

    Coppe, Jean-Philippe; Boysen, Megan; Ho Sun, Chung; Wong, Brian J.F.; Kang, Mo K.; Park, No-Hee; Desprez, Pierre-Yves; Campisi, Judith; Krtolica, Ana

    2009-01-01

    Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. PMID:18644973

  13. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts

    PubMed Central

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  14. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts.

    PubMed

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-07-28

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.

  15. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment.

    PubMed

    Salvatore, Viviana; Focaroli, Stefano; Teti, Gabriella; Mazzotti, Antonio; Falconi, Mirella

    2015-10-06

    The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells. In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown. In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs. These findings demonstrated that the tumor microenvironment has an influence on the

  16. Induction of pluripotent stem cells from fibroblast cultures.

    PubMed

    Takahashi, Kazutoshi; Okita, Keisuke; Nakagawa, Masato; Yamanaka, Shinya

    2007-01-01

    Clinical application of embryonic stem (ES) cells faces difficulties regarding use of embryos, as well as tissue rejection after implantation. One way to circumvent these issues is to generate pluripotent stem cells directly from somatic cells. Somatic cells can be reprogrammed to an embryonic-like state by the injection of a nucleus into an enucleated oocyte or by fusion with ES cells. However, little is known about the mechanisms underlying these processes. We have recently shown that the combination of four transcription factors can generate ES-like pluripotent stem cells directly from mouse fibroblast cultures. The cells, named induced pluripotent stem (iPS) cells, can be differentiated into three germ layers and committed to chimeric mice. Here we describe detailed methods and tips for the generation of iPS cells.

  17. Very late antigen integrins are involved in the adhesive interaction of lymphoid cells to human gingival fibroblasts.

    PubMed Central

    Murakami, S; Saho, T; Shimabukuro, Y; Isoda, R; Miki, Y; Okada, H

    1993-01-01

    To date, it is still unclear how the trafficking and retention of activated lymphocytes in periodontal lesions are regulated. In this study, we investigated the molecular basis for the adhesive interactions between lymphocytes and human gingival fibroblasts (HGF). Peripheral blood T lymphocytes (PBT) exhibited binding ability, but only when the calls were activated with phorbol 12-myristate 13-acetate (PMA). Among several human cell lines tested, PMA-stimulated Molt-4, a human T-cell leukaemia line, also displayed significant binding ability to HGF. In order to clarify the molecule(s) involved in this cell-cell interaction, a panel of monoclonal antibodies (mAb) was prepared to PMA-activated Molt-4 and one clone, 4-145, was selected on the basis of its ability to block the binding of PMA-activated Molt-4 to HGF. Moreover, 4-145 inhibited the binding of not only activated Molt-4 but also activated PBT and other cell types to HGF. Biochemical and flow cytometric analyses revealed that 4-145 probably recognizes the beta 1 chain of very late antigen (VLA) integrins. Blocking experiments using mAb specific for the alpha-chain of VLA integrins demonstrated the involvement of alpha 4 (VLA-4) and, to a lesser extent, alpha 5 (VLA-5) chains in the adhesive interactions between T cells and HGF. Despite the significant involvement of VLA integrins in the adhesive interaction between PBT and HGF, the binding of PBT to human dermal fibroblasts (HDF) was not abrogated by 4-145, suggesting that HGF and HDF differ in their requirement of VLA integrins for adhesion to activated PBT. Furthermore, the fact that vascular cell adhesion molecule-1 (VCAM-1), one of the ligands of VLA-4, was not detected on HGF by flow cytometry and anti-fibronectin (FN) Ab did not block the adhesive interaction to HGF suggests that not-yet-identified ligand(s) for VLA-4 might be present on HGF. Images Figure 4 PMID:8406571

  18. Involvement of basic fibroblast growth factor in suramin-induced inhibition of V79/AP4 fibroblast cell proliferation.

    PubMed Central

    Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.

    1993-01-01

    The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616

  19. Fibroblasts Lead the Way: A Unified View of 3D Cell Motility.

    PubMed

    Petrie, Ryan J; Yamada, Kenneth M

    2015-11-01

    Primary human fibroblasts are remarkably adaptable, able to migrate in differing types of physiological 3D tissue and on rigid 2D tissue culture surfaces. The crawling behavior of these and other vertebrate cells has been studied intensively, which has helped generate the concept of the cell motility cycle as a comprehensive model of 2D cell migration. However, this model fails to explain how cells force their large nuclei through the confines of a 3D matrix environment and why primary fibroblasts can use more than one mechanism to move in 3D. Recent work shows that the intracellular localization of myosin II activity is governed by cell-matrix interactions to both force the nucleus through the extracellular matrix (ECM) and dictate the type of protrusions used to migrate in 3D. Published by Elsevier Ltd.

  20. Basal Cell Carcinoma in Gorlin's Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?

    PubMed

    Gache, Yannick; Brellier, Florence; Rouanet, Sophie; Al-Qaraghuli, Sahar; Goncalves-Maia, Maria; Burty-Valin, Elodie; Barnay, Stéphanie; Scarzello, Sabine; Ruat, Martial; Sevenet, Nicolas; Avril, Marie-Françoise; Magnaldo, Thierry

    2015-01-01

    Basal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings

  1. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    PubMed Central

    Li, Dong; Secher, Jan O.; Mashayekhi, Kaveh; Nielsen, Troels T.; Hyttel, Poul; Freude, Kristine K.

    2017-01-01

    ABSTRACT Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig. PMID:28426281

  2. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    PubMed

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Peripheral Blood Mononuclear Cells Enhance the Anabolic Effects of Platelet-Rich Plasma on Anterior Cruciate Ligament Fibroblasts

    PubMed Central

    Yoshida, Ryu; Murray, Martha M.

    2012-01-01

    Use of platelet-rich plasma (PRP) has shown promise in various orthopaedic applications, including treatment of anterior cruciate ligament (ACL) injuries. However, various components of blood, including peripheral blood mononuclear cells (PBMCs), are removed in the process of making PRP. It is yet unknown whether these PBMCs have a positive or negative effect on fibroblast behavior. To begin to define the effect of PBMCs on ACL fibroblasts, ACL fibroblasts were cultured on three-dimensional collagen scaffolds for 14 days with and without PBMCs. ACL fibroblasts exposed to PBMCs showed increased type I and type III procollagen gene expression, collagen protein expression, and cell proliferation when the cells were cultured in the presence of platelets and plasma. However, addition of PBMCs to cells cultured without the presence of platelets had no effect. The increase in collagen gene and protein expression was accompanied by an increase in IL-6 expression by the PBMCs with exposure to the platelets. Our results suggest that the interaction between platelets and PBMCs leads to an IL-6 mediated increase in collagen expression by ACL fibroblasts. PMID:22767425

  4. Possible involvement of loss of imprinting in immortalization of human fibroblasts.

    PubMed

    Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki

    2011-04-01

    Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.

  5. Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition

    PubMed Central

    Hattori, Noriko; Carrino, David A.; Lauer, Mark E.; Vasanji, Amit; Wylie, James D.; Nelson, Courtney M.; Apte, Suneel S.

    2011-01-01

    The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5−/− mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5−/− cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcanhdf/+) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5−/− cells resulted from increased PCM versican content, we generated Adamts5−/−;Vcanhdf/+ mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5−/− mice. In Adamts5−/− fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates. PMID:21828051

  6. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    PubMed

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  7. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    NASA Technical Reports Server (NTRS)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  8. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture.

    PubMed

    Janson, David; Saintigny, Gaëlle; Mahé, Christian; El Ghalbzouri, Abdoelwaheb

    2013-01-01

    The dermis can be divided into two morphologically different layers: the papillary and reticular dermis. Fibroblasts isolated from these layers behave differently when cultured in vitro. During skin ageing, the papillary dermis decreases in volume. Based on the functional differences in vitro, it is hypothesized that the loss of papillary fibroblasts contributes to skin ageing. In this study, we aimed to mimic certain aspects of skin ageing by using high-passage cultures of reticular and papillary fibroblasts and investigated the effect of these cells on skin morphogenesis in reconstructed human skin equivalents. Skin equivalents generated with reticular fibroblasts showed a reduced terminal differentiation and fewer proliferating basal keratinocytes. Aged in vitro papillary fibroblasts had increased expression of biomarkers specific to reticular fibroblasts. The phenotype and morphology of skin equivalents generated with high-passage papillary fibroblasts resembled that of reticular fibroblasts. This demonstrates that papillary fibroblasts can differentiate into reticular fibroblasts in vitro. Therefore, we hypothesize that papillary fibroblasts represent an undifferentiated phenotype, while reticular fibroblasts represent a more differentiated population. The differentiation process could be a new target for anti-skin-ageing strategies. © 2013 John Wiley & Sons A/S.

  9. Fourier analysis of the cell shape of paired human urothelial cell lines of the same origin but of different grades of transformation.

    PubMed

    Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M

    1986-01-01

    The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Live fate-mapping of joint-associated fibroblasts visualizes expansion of cell contributions during zebrafish fin regeneration.

    PubMed

    Tornini, Valerie A; Thompson, John D; Allen, Raymond L; Poss, Kenneth D

    2017-08-15

    The blastema is a mass of progenitor cells responsible for regeneration of amputated salamander limbs and fish fins. Previous studies have indicated that resident cell sources producing the blastema contribute lineage-restricted progeny to regenerating tissue. However, these studies have labeled general cell types rather than granular cell subpopulations, and they do not explain the developmental transitions that must occur for distal structures to arise from cells with proximal identities in the appendage stump. Here, we find that regulatory sequences of tph1b , which encodes an enzyme that synthesizes serotonin, mark a subpopulation of fibroblast-like cells restricted to the joints of uninjured adult zebrafish fins. Amputation stimulates serotonin production in regenerating fin fibroblasts, yet targeted tph1b mutations abrogating this response do not disrupt fin regeneration. In uninjured animals, tph1b -expressing cells contribute fibroblast progeny that remain restricted to joints throughout life. By contrast, upon amputation, tph1b + joint cells give rise to fibroblasts that distribute across the entire lengths of regenerating fin rays. Our experiments visualize and quantify how incorporation into an appendage blastema broadens the progeny contributions of a cellular subpopulation that normally has proximodistal restrictions. © 2017. Published by The Company of Biologists Ltd.

  11. Cell death induced by hydroxyapatite on L929 fibroblast cells.

    PubMed

    Inayat-Hussain, S H; Rajab, N F; Roslie, H; Hussin, A A; Ali, A M; Annuar, B O

    2004-05-01

    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.

  12. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    fibroblast   growth   factor   receptors  and  their  prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth

  13. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines.

    PubMed

    Fujimori, Koki; Tezuka, Toshiki; Ishiura, Hiroyuki; Mitsui, Jun; Doi, Koichiro; Yoshimura, Jun; Tada, Hirobumi; Matsumoto, Takuya; Isoda, Miho; Hashimoto, Ryota; Hattori, Nubutaka; Takahashi, Takuya; Morishita, Shinichi; Tsuji, Shoji; Akamatsu, Wado; Okano, Hideyuki

    2016-10-03

    Patient-specific induced pluripotent stem cells (iPSCs) facilitate understanding of the etiology of diseases, discovery of new drugs and development of novel therapeutic interventions. A frequently used starting source of cells for generating iPSCs has been dermal fibroblasts (DFs) isolated from skin biopsies. However, there are also numerous repositories containing lymphoblastoid B-cell lines (LCLs) generated from a variety of patients. To date, this rich bioresource of LCLs has been underused for generating iPSCs, and its use would greatly expand the range of targeted diseases that could be studied by using patient-specific iPSCs. However, it remains unclear whether patient's LCL-derived iPSCs (LiPSCs) can function as a disease model. Therefore, we generated Parkinson's disease patient-specific LiPSCs and evaluated their utility as tools for modeling neurological diseases. We established iPSCs from two LCL clones, which were derived from a healthy donor and a patient carrying PARK2 mutations, by using existing non-integrating episomal protocols. Whole genome sequencing (WGS) and comparative genomic hybridization (CGH) analyses showed that the appearance of somatic variations in the genomes of the iPSCs did not vary substantially according to the original cell types (LCLs, T-cells and fibroblasts). Furthermore, LiPSCs could be differentiated into functional neurons by using the direct neurosphere conversion method (dNS method), and they showed several Parkinson's disease phenotypes that were similar to those of DF-iPSCs. These data indicate that the global LCL repositories can be used as a resource for generating iPSCs and disease models. Thus, LCLs are the powerful tools for generating iPSCs and modeling neurological diseases.

  14. Small interfering RNA mediated Poly (ADP-ribose) Polymerase-1 inhibition upregulates the heat shock response in a murine fibroblast cell line

    PubMed Central

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a highly conserved multifunctional enzyme, and its catalytic activity is stimulated by DNA breaks. The activation of PARP-1 and subsequent depletion of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) contributes to significant cytotoxicity in inflammation of various etiologies. On the contrary, induction of heat shock response and production of heat shock protein 70 (HSP-70) is a cytoprotective defense mechanism in inflammation. Recent data suggests that PARP-1 modulates the expression of a number of cellular proteins at the transcriptional level. In this study, small interfering RNA (siRNA) mediated PARP-1 knockdown in murine wild-type fibroblasts augmented heat shock response as compared to untreated cells (as evaluated by quantitative analysis of HSP-70 mRNA and HSP-70 protein expression). These events were associated with increased DNA binding of the heat shock factor-1 (HSF-1), the major transcription factor of the heat shock response. Co-immunoprecipitation experiments in nuclear extracts of the wild type cells demonstrated that PARP-1directly interacted with HSF-1. These data demonstrate that, in wild type fibroblasts, PARP-1 plays a pivotal role in modulating the heat shock response both through direct interaction with HSF-1 and poly (ADP-ribosylation). PMID:21345219

  15. Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting

    PubMed Central

    Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.

    2017-01-01

    The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426

  16. Effect of hyperbaric oxygen on BDNF-release and neuroprotection: Investigations with human mesenchymal stem cells and genetically modified NIH3T3 fibroblasts as putative cell therapeutics.

    PubMed

    Schulze, Jennifer; Kaiser, Odett; Paasche, Gerrit; Lamm, Hans; Pich, Andreas; Hoffmann, Andrea; Lenarz, Thomas; Warnecke, Athanasia

    2017-01-01

    Hyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode. Human mesenchymal stem cells (MSC) secrete a variety of different neurotrophic factors and may be used for the development of a biohybrid electrode in order to release endogenously-derived neuroprotective factors for the protection of residual SGN and for a guided outgrowth of dendrites in the direction of the CI electrode. HBOT could be used to influence cell behaviour after transplantation to the inner ear. The aim of this study was to investigate the effect of HBOT on the proliferation, BDNF-release and secretion of neuroprotective factors. Thus, model cells (an immortalized fibroblast cell line (NIH3T3)-native and genetically modified) and MSCs were repeatedly (3 x - 10 x) exposed to 100% oxygen at different pressures. The effects of HBO on cell proliferation were investigated in relation to normoxic and normobaric conditions (NOR). Moreover, the neuroprotective and neuroregenerative effects of HBO-treated cells were analysed by cultivation of SGN in conditioned medium. Both, the genetically modified NIH3T3/BDNF and native NIH3T3 fibroblasts, showed a highly significant increased proliferation after five days of HBOT in comparison to normoxic controls. By contrast, the number of MSCs was decreased in MSCs treated with 2.0 bar of HBO. Treating SGN cultures with supernatants of fibroblasts and MSCs significantly increased the survival rate of SGN. HBO treatment did not influence (increase / reduce) this effect. Secretome analysis showed that HBO treatment altered the protein expression pattern in MSCs.

  17. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    PubMed

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  18. Alarmins from corneal epithelial cells upregulate CCL11 and VCAM-1 in corneal fibroblasts.

    PubMed

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Matsuda, Akira; Ebihara, Nobuyuki; Fukushima, Atsuki

    2013-08-27

    Severe ocular allergic diseases are characterized by pronounced conjunctival inflammation triggered by T helper 2 (Th2) cells and corneal epithelial damage induced by eosinophils. To examine the role of alarmins released by damaged corneal epithelial cells in tissue eosinophilia, we investigated the effects of a supernatant derived from necrotic human corneal epithelial (HCE) cells on expression of the chemokine CCL11 (eotaxin) and the adhesion molecule VCAM-1 in human corneal fibroblasts. An alarmin preparation was obtained as the material released from HCE cells after three cycles of freezing and thawing. CCL11 released into culture medium and cell surface expression of VCAM-1 were measured with enzyme-linked immunosorbent assays, and the amounts of CCL11 and VCAM-1 mRNAs were quantitated by reverse transcription and real-time polymerase chain reaction analysis. Signaling by the transcription factor NF-κB was evaluated by immunoblot and immunofluorescence analyses. The combination of the necrotic HCE cell supernatant and either interleukin (IL)-4 or IL-13 induced synergistic increases in CCL11 release, VCAM-1 expression, and the abundance of CCL11 and VCAM-1 mRNAs in corneal fibroblasts. The necrotic HCE cell supernatant also induced NF-κB activation in corneal fibroblasts, whereas an inhibitor of NF-κB and IL-1 receptor antagonist each attenuated CCL11 release induced by the alarmin preparation and either IL-4 or IL-13. Alarmins including IL-1 released from necrotic corneal epithelial cells cooperate with Th2 cytokines to induce CCL11 production and VCAM-1 expression in corneal fibroblasts, and may thereby play an important role in tissue eosinophilia associated with ocular allergic diseases.

  19. Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation.

    PubMed

    Parameswaran, V; Ishaq Ahmed, V P; Shukla, Ravi; Bhonde, R R; Sahul Hameed, A S

    2007-01-01

    Two new cell lines, SIMH and SIGE, were derived from the heart of milkfish (Chanos chanos), a euryhaline teleost, and from the eye of grouper (Epinephelus coioides), respectively. These cell lines were maintained in Leibovitz's L-15 supplemented with 20% fetal bovine serum (FBS). The SIMH cell line was subcultured more than 50 times over a period of 210 days and SIGE cell line has been subcultured 100 times over a period of 1 1/2 years. The SIMH cell line consists predominantly of fibroblastic-like cells. The SIGE cell line consists predominantly of epithelial cells. Both the cell lines were able to grow at temperatures between 25 and 32 degrees C with an optimum temperature of 28 degrees C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 28 degrees C with optimum growth at the concentrations of 15% or 20% FBS. Seven marine fish viruses were tested to determine the susceptibility of these cell lines. The SIGE cell line was found to be susceptible to nodavirus, MABV NC-1 and Y6, and the infection was confirmed by cytopathic effect (CPE) and reverse transcriptase-polymerase chain reaction. When these cells were transfected with pEGFP-N1 vector DNA, significant fluorescent signals were observed, suggesting that these cell lines can be a useful tool for transgenic and genetic manipulation studies. Further, these cell lines are characterized by immunocytochemistry using confocal laser scanning microscopy (CFLSM).

  20. Quantitative Evaluation of Myostatin Gene in Stably Transfected Caprine Fibroblast Cells by Anti-Myostatin shRNA.

    PubMed

    Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra

    2015-09-01

    Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.

  1. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived solublemore » factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.« less

  2. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  3. Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells.

    PubMed

    Stöckl, Petra; Zankl, Christina; Hütter, Eveline; Unterluggauer, Hermann; Laun, Peter; Heeren, Gino; Bogengruber, Edith; Herndler-Brandstetter, Dietmar; Breitenbach, Michael; Jansen-Dürr, Pidder

    2007-09-15

    The mitochondrial theory of aging predicts that functional alterations in mitochondria leading to reactive oxygen species (ROS) production contribute to the aging process in most if not all species. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between impaired mitochondrial coupling and premature senescence. Chronic exposure of human fibroblasts to the chemical uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) led to a temporary, reversible uncoupling of oxidative phosphorylation. FCCP inhibited cell proliferation in a dose-dependent manner, and a significant proportion of the cells entered premature senescence within 12 days. Unexpectedly, chronic exposure of cells to FCCP led to a significant increase in ROS production, and the inhibitory effect of FCCP on cell proliferation was eliminated by the antioxidant N-acetyl-cysteine. However, antioxidant treatment did not prevent premature senescence, suggesting that a reduction in the level of oxidative phosphorylation contributes to phenotypical changes characteristic of senescent human fibroblasts. To assess whether this mechanism might be conserved in evolution, the influence of mitochondrial uncoupling on replicative life span of yeast cells was also addressed. Similar to our findings in human fibroblasts, partial uncoupling of oxidative phsophorylation in yeast cells led to a substantial decrease in the mother-cell-specific life span and a concomitant incrase in ROS, indicating that life span shortening by mild mitochondrial uncoupling may represent a "public" mechanism of aging.

  4. Targeting Carcinoma-Associated Fibroblasts Within the Tumor Stroma With a Fibroblast Activation Protein-Activated Prodrug

    PubMed Central

    2012-01-01

    Background Fibroblasts undergo a morphological transformation to a reactive phenotype in the tumor microenvironment characterized by the expression of proteins such as fibroblast activation protein (FAP), a post-prolyl endopeptidase with expression largely restricted to carcinoma-associated fibroblasts. Thapsigargin (TG) is a highly toxic natural plant product that triggers a rise in intracellular calcium levels and apoptosis. FAP is therefore a provocative target for the activation of prodrugs consisting of a FAP-specific peptide coupled to a potent cytotoxic analog of TG. Methods The efficacy of FAP-activated peptidyl-TG prodrugs was tested in vitro in cell proliferation assays and effects on intracellular calcium in human cancer cell lines. The effects of FAP-activated prodrugs on tumor growth and host toxicity were tested in Balb-C nude MCF-7 and LNCaP xenograft mice (n = 9–11 per group). P values were calculated using permutation tests based on 50 000 permutations. Mixed effects models were used to account for correlations among replicate measures. All statistical tests were two-sided. Results FAP-activated prodrugs killed human cancer cells at low nanomolar concentrations (MCF-7 cells: IC50 = 3.5nM). Amino acid-12ADT analogs from FAP-cleaved prodrugs, but not uncleaved prodrugs, produced a rapid rise in intracellular calcium within minutes of exposure. Immunohistochemical analysis of xenografts exposed to FAP-prodrugs documented stromal-selective cell death of fibroblasts, pericytes, and endothelial cells of sufficient magnitude to inhibit growth of MCF-7 and LNCaP xenografts with minimal systemic toxicity, whereas non-FAP cleavable prodrugs were inactive. MCF-7 and LNCaP xenografts treated with a FAP-activated prodrug had maximal treated-to-control tumor volume ratios of 0.36 (treated: mean = 0.206mm3, 95% CI = 0.068 to 0.344mm3; control: mean = 0.580mm3, 95% CI = 0.267 to 0.893mm3) and 0.24 (treated: mean = 0.131mm3, 95% CI = 0.09 to 0.180mm3; control

  5. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    PubMed

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  6. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    PubMed Central

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  7. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human

  8. Effects of Aloe vera on gap junctional intercellular communication and proliferation of human diabetic and nondiabetic skin fibroblasts.

    PubMed

    Abdullah, Kay M; Abdullah, Ahmed; Johnson, Mary Lynn; Bilski, Jerzy J; Petry, Kimberly; Redmer, Dale A; Reynolds, Lawrence P; Grazul-Bilska, Anna T

    2003-10-01

    To evaluate the effects of Aloe vera on gap junctional intercellular communication (GJIC) and proliferation of human skin fibroblasts in the presence or absence of basic fibroblast growth factor (FGF-2). In vitro study using human type II diabetic and nondiabetic skin fibroblast cell lines. Diabetic (n = 4) and nondiabetic (n = 4) human skin fibroblast cell lines were purchased from Coriell Institute for Medical Research (Camden, NJ). The cells were cultured with or without Aloe vera extract in increasing concentrations (0%, 0.625%, 1.25%, 2.5%, 5%, 10%, and 20%; v/v) in culture medium and with or without FGF-2 (30 ng/mL). GJIC was evaluated after 48-hour incubation with treatments by laser cytometry. Cells were counted after 72-hour incubation with treatments by using a Coulter counter. The rate of GJIC was greater (p < 0.01) for diabetic than for nondiabetic fibroblasts (3.5 +/- 0.1 versus 3.0 +/- 0.1% per minute during the first 4 minutes after photobleaching). GJIC was increased ( p < 0.05) for diabetic fibroblasts in the presence of 2.5% and 5% of Aloe vera extract (4.2 +/- 0.1 and 4.0 +/- 0.2 versus 3.5 +/- 0.1% per minute for control, respectively). FGF-2 stimulated (p < 0.01) GJIC for diabetic (4.0 +/- 0.1 versus 3.5 +/- 0.1% per minute for control) and nondiabetic (3.5 +/- 0.1 versus 3.0 +/- 0.1% per minute for control) fibroblasts. Aloe vera extract did not affect GJIC of nondiabetic fibroblast cultured without FGF-2. However, Aloe vera extract decreased (p < 0.05) FGF-2 stimulatory effects on GJIC of diabetic and nondiabetic fibroblasts. Proliferation of diabetic fibroblasts was increased (p < 0.05) by 1.25% and 2.5% Aloe vera extract in medium. Proliferation of nondiabetic fibroblasts was not affected by Aloe vera extract. FGF-2 increased (p < 0.05) proliferation of nondiabetic fibroblasts and FGF-2 did not affect proliferation of diabetic fibroblasts. Aloe vera extract decreased (p < 0.05) FGF-2 stimulatory effects on proliferation of nondiabetic

  9. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less

  10. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types

    PubMed Central

    Noss, Erika H.; Nguyen, Hung N.; Chang, Sook Kyung; Watts, Gerald F. M.; Brenner, Michael B.

    2015-01-01

    Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14+ monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6–producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types. PMID:26578807

  11. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion.

    PubMed

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-06-10

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

  12. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montani, Claudia; Steimberg, Nathalie; Boniotti, Jennifer

    2014-11-01

    Cell differentiation and response to hormonal signals were studied in a 3D environment on an in-house generated mouse fibroblast cell line expressing a reporter gene under the control of estrogen responsive sequences (EREs). 3D cell culture conditions were obtained in a Rotary Cell Culture System; (RCCS™), a microgravity based bioreactor that promotes the aggregation of cells into multicellular spheroids (MCS). In this bioreactor the cells maintained a better differentiated phenotype and more closely resembled in vivo tissue. The RCCS™ cultured fibroblasts showed higher expression of genes regulating cell assembly, differentiation and hormonal functions. Microarray analysis showed that genes related tomore » cell cycle, proliferation, cytoskeleton, migration, adhesion and motility were all down-regulated in 3D as compared to 2D conditions, as well as oncogene expression and inflammatory cytokines. Controlled remodeling of ECM, which is an essential aspect of cell organization, homeostasis and tissue was affected by the culture method as assessed by immunolocalization of β-tubulin. Markers of cell organization, homeostasis and tissue repair, metalloproteinase 2 (MMP2) and its physiological inhibitor (TIMP4) changed expression in association with the relative formation of cell aggregates. The fibroblasts cultured in the RCCS™ maintain a better responsiveness to estrogens, measured as expression of ERα and regulation of an ERE-dependent reporter and of the endogenous target genes CBP, Rarb, MMP1 and Dbp. Our data highlight the interest of this 3D culture model for its potential application in the field of cell response to hormonal signals and the pharmaco-toxicological analyses of chemicals and natural molecules endowed of estrogenic potential. - Highlights: • We here characterized the first cell line derived from an estrogen reporter mouse. • In the RCCS cells express an immortalized behavior but not a transformed phenotype. • The RCCS provides a

  13. AIP mutations impair AhR signaling in pituitary adenoma patients fibroblasts and in GH3 cells.

    PubMed

    Lecoq, Anne-Lise; Viengchareun, Say; Hage, Mirella; Bouligand, Jérôme; Young, Jacques; Boutron, Audrey; Zizzari, Philippe; Lombès, Marc; Chanson, Philippe; Kamenický, Peter

    2016-05-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas through unknown molecular mechanisms. The best-known interacting partner of AIP is the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the effects of xenobiotics implicated in carcinogenesis. As 75% of AIP mutations disrupt the physical and/or functional interaction with AhR, we postulated that the tumorigenic potential of AIP mutations might result from altered AhR signaling. We evaluated the impact of AIP mutations on the AhR signaling pathway, first in fibroblasts from AIP-mutated patients with pituitary adenomas, by comparison with fibroblasts from healthy subjects, then in transfected pituitary GH3 cells. The AIP protein level in mutated fibroblasts was about half of that in cells from healthy subjects, but AhR expression was unaffected. Gene expression analyses showed significant modifications in the expression of the AhR target genes CYP1B1 and AHRR in AIP-mutated fibroblasts, both before and after stimulation with the endogenous AhR ligand kynurenine. Kynurenine increased Cyp1b1 expression to a greater extent in GH3 cells overexpressing wild type compared with cells expressing mutant AIP Knockdown of endogenous Aip in these cells attenuated Cyp1b1 induction by the AhR ligand. Both mutant AIP expression and knockdown of endogenous Aip affected the kynurenine-dependent GH secretion of GH3 cells. This study of human fibroblasts bearing endogenous heterozygous AIP mutations and transfected pituitary GH3 cells shows that AIP mutations affect the AIP protein level and alter AhR transcriptional activity in a gene- and tissue-dependent manner. © 2016 Society for Endocrinology.

  14. Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells.

    PubMed

    Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A

    2017-10-31

    Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.

  15. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells

    PubMed Central

    Li, Minglun; Ping, Gong; Plathow, Christian; Trinh, Thuy; Lipson, Kenneth E; Hauser, Kai; Krempien, Robert; Debus, Juergen; Abdollahi, Amir; Huber, Peter E

    2006-01-01

    Background Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Methods Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. Results In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation

  16. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts

    PubMed Central

    Rudisch, Albin; Dewhurst, Matthew Richard; Horga, Luminita Gabriela; Kramer, Nina; Harrer, Nathalie; Dong, Meng; van der Kuip, Heiko; Wernitznig, Andreas; Bernthaler, Andreas; Dolznig, Helmut; Sommergruber, Wolfgang

    2015-01-01

    We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the “cytokine fingerprints” identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay. PMID:25919140

  17. Synthesis and biological activity of M6-P and M6-P analogs on fibroblast and keratinocyte proliferation.

    PubMed

    Clavel, Caroline; Barragan-Montero, Véronique; Garric, Xavier; Molès, Jean-Pierre; Montero, Jean-Louis

    2005-09-01

    A new synthetic route to obtain the carboxylate analog of mannose 6-phosphate (M6-P) is presented. The effects of the M6-P, the carboxylate and two other analogs (the phosphonate and the alpha,beta ethylenic carboxylate) on the proliferation of human keratinocytes and dermal fibroblasts as well as on the proliferation of a murine fibroblast cell line, 3T3-J2 are tested. We observed that M6-P is a potent inhibitor of proliferation of both fibroblasts and keratinocytes. Among its analogs, the phosphonate showed a similar effect on human dermal fibroblasts but not on keratinocytes.

  18. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells.

    PubMed

    Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P

    2006-10-30

    Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.

  19. Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.

    PubMed Central

    Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D

    1997-01-01

    Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel

  20. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells.

    PubMed

    Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza

    2017-01-01

    Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.

  1. Question of bone marrow stromal fibroblast traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less

  2. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion

    PubMed Central

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-01-01

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion. PMID:25973543

  3. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-09-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from (14C)acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal atmore » 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells.« less

  4. Osthole activates glucose uptake but blocks full activation in L929 fibroblast cells, and inhibits uptake in HCLE cells

    PubMed Central

    Alabi, Ola D.; Gunnink, Stephen M.; Kuiper, Benjamin D.; Kerk, Samuel A.; Braun, Emily; Louters, Larry L.

    2016-01-01

    Aims Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1. Main Methods We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators. Key findings Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 µM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells. Significance The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration. PMID:24657891

  5. Osthole activates glucose uptake but blocks full activation in L929 fibroblast cells, and inhibits uptake in HCLE cells.

    PubMed

    Alabi, Ola D; Gunnink, Stephen M; Kuiper, Benjamin D; Kerk, Samuel A; Braun, Emily; Louters, Larry L

    2014-05-02

    Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1. We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators. Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 μM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells. The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Oncogenes induce the cancer-associated fibroblast phenotype

    PubMed Central

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-01-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382

  7. Chromatid repulsion associated with Roberts/SC phocomelia syndrome is reduced in malignant cells and not expressed in interspecies somatic-cell hybrids.

    PubMed Central

    Krassikoff, N E; Cowan, J M; Parry, D M; Francke, U

    1986-01-01

    Different cell types from a female patient with Roberts/SC phocomelia syndrome were evaluated quantitatively for the presence of repulsion of heterochromatin and satellite regions of mitotic chromosomes. Whereas EBV-transformed lymphoblasts from an established cell line revealed these phenomena at frequencies equal to those in PHA-stimulated lymphocytes and cultured skin fibroblasts, aneuploid cells from a metastatic melanoma displayed them at 50% lower frequency. Cocultivation of the patient's fibroblasts with either an immortal Chinese hamster cell line or with a human male fibroblast strain carrying a t(4;6)(p14;q21) translocation showed that the phenomenon was not corrected or induced by a diffusible factor or by cell-to-cell contact. In each experiment, only the patient's metaphase spreads revealed chromatid repulsion. In fusion hybrids between the patient's fibroblasts and an established Chinese hamster cell line, the human chromosomes behaved perfectly normally, suggesting that the gene product which is missing or mutant in Roberts/SC phocomelia syndrome is supplied by the Chinese hamster genome. Images Fig. 1 Fig. 2 Fig. 3 PMID:3788975

  8. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    PubMed Central

    2011-01-01

    Background Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. Methods We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. Results We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is β1-integrin/FAK mediated. Conclusion Cancer cell invasiveness can be affected by

  9. Elevated small GTPase activation influences the cell proliferation signaling control in Niemann-Pick type C fibroblasts.

    PubMed

    Corey, Deborah A; Kelley, Thomas J

    2007-07-01

    Niemann-Pick type C (NPC) disease is characterized at the cellular level by the intracellular accumulation of free cholesterol. We have previously identified a similar phenotype in cystic fibrosis (CF) cell models that results in the activation of the small GTPase RhoA. The hypothesis of this study was that NPC cells would also exhibit an increase in small GTPase activation. An examination of the active, GTP-bound form of GTPases revealed a basal increase in the content of the active-form Ras and RhoA small GTPases in NPC fibroblasts compared to wt controls. To assess whether this increase in GTP-bound Ras and RhoA manifests a functional outcome, the expression of the proliferation control proteins p21/waf1 and cyclin D were examined. Consistent with increased GTPase signaling, p21/waf1 expression is reduced and cyclin D expression is elevated in NPC fibroblasts. Interestingly, cell growth rate is not altered in NPC fibroblasts compared to wt cells. However, NPC sensitivity to statin treatment is reversed by addition of the isoprenoid geranylgeranyl pyrophosphate (GGPP), a modifier of RhoA. It is concluded that Ras and RhoA basal activation is elevated in NPC fibroblasts and has an impact on cell survival pathways.

  10. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    NASA Astrophysics Data System (ADS)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  11. Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2.

    PubMed

    Shintani, T; Takatsu, F; Rosli, S N Z; Usui, E; Hamada, A; Sumi, K; Hayashido, Y; Toratani, S; Okamoto, Tetsuji

    2017-10-01

    Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D 3 , i.e., 1α,25(OH) 2 D 3 (1,25D 3 ), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D 3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH) 2 D 3 , for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D 3 . Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the

  12. Effect of Procyanidin-rich Extract from Natural Cocoa Powder on Cellular Viability, Cell Cycle Progression, and Chemoresistance in Human Epithelial Ovarian Carcinoma Cell Lines

    PubMed Central

    Taparia, Shruti; Khanna, Aparna

    2016-01-01

    Background: Over the last 400 years, cocoa and chocolate have been described as having potential medicinal value, being consumed as a beverage or eaten as food. Concentration–dependant, antiproliferation, and cytotoxic effects of some of their polyphenolic constituents have been demonstrated against various cancers. Such an effect remains to be demonstrated in ovarian cancer Objective: To investigate the effect of cocoa procyanidins against ovarian cancer in vitro using OAW42 and OVCAR3 cell lines. Materials and Methods: Cocoa procyanidins were extracted and enriched from non alkalized cocoa powder. The polyphenolic content and antioxidant activity were determined. Effect on cell viability was determined after the treatment with ≤1000 μg/mL cocoa procyanidin-rich extract on OAW42 and OVCAR3 and normal human dermal fibroblasts. Similarly, chemosensitization effect was determined by pretreating cancer cell lines with extract followed by doxorubicin hydrochloride treatment. The effect of treatment on cell cycle and P-glycoprotein (P-gp) expression was determined using flow cytometry. Results: The cocoa extract showed high polyphenolic content and antioxidant activity. Treatment with extract caused cytotoxicity and chemosensitization in OAW42 and OVCAR3 cell lines. Normal dermal fibroblasts showed an increase in cell viability post treatment with extract. Treatment with extract affected the cell cycle and an increasing percentage of cells in hypodiploid sub-G1/G0 phase was observed. Treatment of OVCAR3 with the extract caused reduction of P-gp expression. Conclusion: Cocoa procyanidins were found to be selectively cytotoxic against epithelial ovarian cancer, interfered with the normal cell cycle and sensitized cells to subsequent chemotherapeutic treatment. Chemosensitization was found to be associated with P-gp reduction in OVCAR3 cells. SUMMARY Among the naturally occurring flavonoids, procyanidins have been shown to be effective against cancersNon alkalized

  13. Rapid fibroblast removal from high density human embryonic stem cell cultures.

    PubMed

    Turner, William S; McCloskey, Kara E

    2012-10-28

    Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation(1). This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity(4). Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types(5-8)). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.

  14. Cell Proliferation and Epidermal Growth Factor Signaling in Non-small Cell Lung Adenocarcinoma Cell Lines Are Dependent on Rin1

    PubMed Central

    Tomshine, Jin C.; Severson, Sandra R.; Wigle, Dennis A.; Sun, Zhifu; Beleford, Daniah A. T.; Shridhar, Vijayalakshmi; Horazdovsky, Bruce F.

    2009-01-01

    Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature. PMID:19570984

  15. A simple non-invasive protocol to establish primary cell lines from tail and toe explants for cytogenetic studies in Australian dragon lizards (Squamata: Agamidae)

    PubMed Central

    O’Meally, Denis; Quinn, Alexander E.; Sarre, Stephen D.; Georges, Arthur; Marshall Graves, Jennifer A.

    2009-01-01

    Primary cell lines were established from cultures of tail and toe clips of five species of Australian dragon lizards: Tympanocryptis pinguicolla, Tympanocryptis sp., Ctenophorus fordi, Amphibolurus norrisi and Pogona vitticeps. The start of exponential cell growth ranged from 1 to 5 weeks. Cultures from all specimens had fibroblastic morphology. Cell lines were propagated continuously up to ten passages, cryopreserved and recovered successfully. We found no reduction in cell viability after short term (<6 months) storage at −80 °C. Mitotic metaphase chromosomes were harvested from these cell lines and used in differential staining, banding and fluorescent in situ hybridisation. Cell lines maintained normal diploidy in all species. This study reports a simple non-invasive method for establishing primary cell lines from Australian dragon lizards without sacrifice. The method is likely to be applicable to a range of species. Such cell lines provide a virtually unlimited source of material for cytogenetic, evolutionary and genomic studies. PMID:19199067

  16. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.

    PubMed

    Ho, Lin; Hsu, Shan-Hui

    2018-04-01

    3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be

  17. Molecular and cytogenetic analysis of human diploid fibroblast cells transformed by simian virus 40: What causes immortalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patsalis, P.C.

    1993-01-01

    Transformation of human diploid fibroblasts (HF) with SV40 can result in extension of life span beyond the normal limit of senescence and in a minority of cases, immortalization. This study used comparison of matched parental (diploid) and immortalized cell lines to determine if any single genetic factor could be related to the immortalization phenomena. The integration site of SV40 was shown to be at chromosome 5q21 by cytologic hybridization. A comparison of mortal and immortal cells showed no alterations involving the integrated SV40 genome per se. Karyotypic analysis of matched cell lines identified a specific chromosomal breakpoint (6q21) in immortalizedmore » cells that was not present in the parental line. Hybridization analysis confirmed that sequences on the distal portion of 6q are lost in immortalized cells. Two single copy DNAs which flank the breakpoint were identified and used to further define the exact breakpoint on 6q13. FISH analysis demonstrated the region 6q13 [yields] 21 as belonging to another chromosome and confirmed the 6q13 breakpoint. A survey of random translocations and other anomalies occurring in the immortalized lines was also made. Some of these are regions known to contain oncogenes and transforming proteins. The MCC tumor suppressor gene was rearranged and deregulated. The genes DCC, Bel-2, APC were also found to be deregulated. The authors propose that deletion of specific sequences due to breakage of chromosome 6q represent one of the mutational events responsible for immortalization of SV40 transformed HF. In addition, the MCC and possibly other genes are involved in the progression of immortalization.« less

  18. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xueting; Fang, Shencun; Liu, Haijun

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resultedmore » in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D

  19. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  20. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    PubMed

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture.

  1. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts.

    PubMed

    Buskermolen, Jeroen K; Reijnders, Christianne M A; Spiekstra, Sander W; Steinberg, Thorsten; Kleverlaan, Cornelis J; Feilzer, Albert J; Bakker, Astrid D; Gibbs, Susan

    2016-08-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and

  2. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts

    PubMed Central

    Buskermolen, Jeroen K.; Reijnders, Christianne M.A.; Spiekstra, Sander W.; Steinberg, Thorsten; Kleverlaan, Cornelis J.; Feilzer, Albert J.; Bakker, Astrid D.

    2016-01-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and

  3. Establishment and Characterization of a Testicular Cell Line from the Half-Smooth Tongue Sole, Cynoglossus semilaevis

    PubMed Central

    Zhang, Bo; Wang, Xianli; Sha, Zhenxia; Yang, Changgeng; Liu, Shanshan; Wang, Na; Chen, Song-Lin

    2011-01-01

    Spermatogenesis within the adult testis is an excellent system for studying stem cell renewal and differentiation, which is under the control of testicular somatic cells. In order to understanding spermatogenesis in the half-smooth tongue sole (Cynoglossus semilaevis) as a marine fish model of aquaculture importance, we established a cell line called CSGC from a juvenile gonad of this organism. CSGC is composed of fibroblast-like cells, retains a diploid karyotype of 42 chromosomes, lacks the heterogametic W chromosome, lacks a female specific marker and expresses the dmrt, a marker for testicular somatic cells. Therefore, CSGC appears to consist of testicular somatic cell cells. We show that this cell line is effective for infection by the turbot reddish body iridovirus and flounder lymphocystis disease virus as evidenced by the appearance of cytopathic effect and virus propagation in the virus-infected cells, and most convincingly, the observation of viral particles by electon microscopy, demonstrateing that CSGC is suitable to study interactions between virus and host cells. As a first fish testicular somatic cell line of the ZZ-ZW genetic sex determination system, CSGC will be a useful tool to study sex-related events and interactions between somatic cells and germ cells during spermatogenesis. PMID:21547062

  4. Six cloned calves produced from adult fibroblast cells after long-term culture

    PubMed Central

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  5. Failure in activation of the canonical NF-κB pathway by human T-cell leukemia virus type 1 Tax in non-hematopoietic cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizukoshi, Terumi; Komori, Hideyuki; Mizuguchi, Mariko

    2013-09-01

    Human T-cell leukemia virus type 1 (HTLV-1) Tax (Tax1) plays crucial roles in leukemogenesis in part through activation of NF-κB. In this study, we demonstrated that Tax1 activated an NF-κB binding (gpκB) site of the gp34/OX40 ligand gene in a cell type-dependent manner. Our examination showed that the gpκΒ site and authentic NF-κB (IgκB) site were activated by Tax1 in hematopoietic cell lines. Non-hematopoietic cell lines including hepatoma and fibroblast cell lines were not permissive to Tax1-mediated activation of the gpκB site, while the IgκB site was activated in those cells in association with binding of RelB. However RelA bindingmore » was not observed in the gpκB and IgκB sites. Our results suggest that HTLV-1 Tax1 fails to activate the canonical pathway of NF-κB in non-hematopoietic cell lines. Cell type-dependent activation of NF-κB by Tax1 could be associated with pathogenesis by HTLV-1 infection. - Highlights: • HTLV-1 Tax1 does not activate RelA of NF-κB in non-hematopoietic cell lines. • Tax1 activates the NF-κB non-canonical pathway in non-hematopoietic cell lines. • Tax1 does not induce RelA nuclear translocation in those cell lines, unlike TNFα. • The OX40L promoter κB site is activated by ectopic, but not endogenous, RelA.« less

  6. Increased fibroblast density in actinic cheilitis: association with tryptase-positive mast cells, actinic elastosis and epithelial p53 and COX-2 expression.

    PubMed

    Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra

    2012-01-01

    Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.

  7. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact Between Epithelial Cells and Fibroblasts

    DTIC Science & Technology

    2013-04-01

    by employing a microfluidic -based compartmentalized 3D co-culture platform enabling both contact-free and contact-associated co-cultures. 15...SUBJECT TERMS Heterocellular contact between cancer cells and stromal fibroblasts, Microfluidics , 3D 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...and human mammary fibroblasts (HMFs) in breast cancer progression by employing a microfluidic - based compartmentalized 3D co-culture platform

  8. Time-dependent micromechanical responses of breast cancer cells and adjacent fibroblasts to electric treatment.

    PubMed

    Yizraeli, Maayan Lia; Weihs, Daphne

    2011-12-01

    Direct-current, low-intensity, electric fields were suggested as a minimally invasive treatment for various cancers. The tumor microenvironment may affect treatment efficacy, albeit it has not generally been considered when evaluating novel anti-cancer treatments. We evaluate the effects of electric treatment on epithelial, breast-cancer cells, co-cultured with non-cancerous fibroblasts, a simplified model for the tumor-microenvironment. We evaluate changes in morphology, cytoskeleton, and focus on dynamic intracellular structure and mechanics. Multiple-particle tracking was used within living cells to quantify time-dependent structural and mechanical changes. Cancer cells suffer severe cell death and exhibit transient rounding and changes in internal structural and mechanics. Interestingly, treating cancer cells in co-culture with fibroblasts delays and reduces their responses to treatment. Our particle-tracking data indicates a mechanism relating the observed changes in intracellular transport to transient changes in the microtubule network and its motors. In contrast, fibroblasts are only minimally affected by treatment, separately or in co-culture. To conclude, intracellular mechanics reveal time-dependent responses after treatment, unavailable by bulk measurements. This time-dependence could provide a window of opportunity for continued treatment. We demonstrate the importance of evaluating anti-cancer treatments within their microenvironment, which can affect response magnitude and time-course.

  9. Essential Oil Content of the Rhizome of Curcuma purpurascens Bl. (Temu Tis) and Its Antiproliferative Effect on Selected Human Carcinoma Cell Lines

    PubMed Central

    Hong, Sok-Lai; Lee, Guan-Serm; Ahmed Hamdi, Omer Abdalla; Awang, Khalijah; Aznam Nugroho, Nurfina

    2014-01-01

    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death. PMID:25177723

  10. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials.

    PubMed

    Bermejo-Nogales, A; Fernández-Cruz, M L; Navas, J M

    2017-11-01

    Risk assessment of engineered nanomaterials (ENMs) is being hindered by the sheer production volume of these materials. In this regard, the grouping and ranking of ENMs appears as a promising strategy. Here we sought to evaluate the usefulness of in vitro systems based on fish cell lines for ranking a set of ENMs on the basis of their cytotoxicity. We used the topminnow (Poeciliopsis lucida) liver cell line (PLHC-1) and the rainbow trout (Oncorhynchus mykiss) fibroblast-like gonadal cell line (RTG-2). ENMs were obtained from the EU Joint Research Centre repository. The size frequency distribution of ENM suspensions in cell culture media was characterized. Cytotoxicity was evaluated after 24 h of exposure. PLHC-1 cells exhibited higher sensitivity to the ENMs than RTG-2 cells. ZnO-NM was found to exert toxicity mainly by altering lysosome function and metabolic activity, while multi-walled carbon nanotubes (MWCNTs) caused plasma membrane disruption at high concentrations. The hazard ranking for toxicity (ZnO-NM > MWCNT ≥ CeO 2 -NM = SiO 2 -NM) was inversely related to the ranking in size detected in culture medium. Our findings reveal the suitability of fish cell lines for establishing hazard rankings of ENMs in the framework of integrated approaches to testing and assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.

    PubMed

    Qian, Li; Berry, Emily C; Fu, Ji-dong; Ieda, Masaki; Srivastava, Deepak

    2013-06-01

    Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.

  12. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    PubMed

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Antitumoral effect of vanadium compounds in malignant melanoma cell lines.

    PubMed

    Rozzo, Carla; Sanna, Daniele; Garribba, Eugenio; Serra, Maria; Cantara, Alessio; Palmieri, Giuseppe; Pisano, Marina

    2017-09-01

    In this study we evaluated the anticancer activity against malignant melanoma (MM) of four different vanadium species: the inorganic anion vanadate(V) (indicated with VN), and three oxidovanadium(IV) complexes, [V IV O(dhp) 2 ] where dhp - is the anion 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS2), [V IV O(mpp) 2 ] where mpp - is 1-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS3), and [V IV O(ppp) 2 ] where ppp - is 1-phenyl-2-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS4). The antitumor effects of these compounds were studied against two different MM cell lines (A375 and CN-mel) and a fibroblast cell line (BJ) as normal control. All tested V compounds exert antiproliferative activity on MM cells in a dose dependent manner (IC 50 ranges from 2.4μM up to 14μM) being A375 the most sensitive cell line. VN and VS2 were the two most active compounds against A375 (IC 50 of 4.7 and 2.6μM, respectively), causing apoptosis and cell cycle block. The experimental data indicate that the cell cycle arrest occurs at different phases for the two V species analyzed (G2 checkpoint for VN and G0/G1 for VS2), showing the importance of the chemical form in determining their mechanism of action. These results add more insights into the landscape of vanadium versatility in biological systems and into its role as a potential cancer therapeutic agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of cryopreservation and in vitro culture of bovine fibroblasts on histone acetylation levels and in vitro development of hand-made cloned embryos

    USGS Publications Warehouse

    Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.

    2011-01-01

    In this study, the relative acetylation levels of histone 3 in lysine 9 (H3K9ac) in cultured and cryopreserved bovine fibroblasts was measured and we determined the influence of the epigenetic status of three cultured (C1, C2 and C3) donor cell lines on the in vitro development of reconstructed bovine embryos. Results showed that cryopreservation did not alter the overall acetylation levels of H3K9 in bovine fibroblasts analysed immediately after thawing (frozen/thawed) compared with fibroblasts cultured for a period of time after thawing. However, reduced cleavage rates were noted in embryos reconstructed with fibroblasts used immediately after thawing. Cell passage affects the levels of H3K9ac in bovine fibroblasts, decreasing after P1 and donor cells with lower H3K9ac produced a greater frequency of embryo development to the blastocyst stage. Cryopreservation did not influence the total cell and ICM numbers, or the ICM/TPD ratios of reconstructed embryos. However, the genetic source of donor cells did influence the total number of cells and the trophectoderm cell numbers, and the cell passage influenced the total ICM cell numbers. ?? Copyright Cambridge University Press 2010.

  15. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599

  16. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    PubMed

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  17. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPIImore » expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.« less

  18. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts.

    PubMed

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone; Huai, Jisen; Mandal, Pankaj Kumar; Niedermann, Gabriele

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

  19. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia.

    PubMed

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.

  20. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    PubMed Central

    Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2013-01-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871

  1. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    PubMed

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  3. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE PAGES

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; ...

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE 2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE 2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  4. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE 2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE 2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  5. Fibroblast Growth Factor-based Signaling through Synthetic Heparan Sulfate Blocks Copolymers Studied Using High Cell Density Three-dimensional Cell Printing*

    PubMed Central

    Sterner, Eric; Masuko, Sayaka; Li, Guoyun; Li, Lingyun; Green, Dixy E.; Otto, Nigel J.; Xu, Yongmei; DeAngelis, Paul L.; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2014-01-01

    Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model. PMID:24563485

  6. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp; Ikeda, Ayaka; Yoshida, Chiaki

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitromore » and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum

  7. Effects of rutin on the physicochemical properties of skin fibroblasts membrane disruption following UV radiation.

    PubMed

    Dobrzyńska, Izabela; Gęgotek, Agnieszka; Gajko, Ewelina; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew A

    2018-02-25

    Human skin provides the body's first line of defense against physical and environmental assaults. This study sought to determine how rutin affects the membrane electrical properties, sialic acid content, and lipid peroxidation levels of fibroblast membranes after disruption by ultraviolet (UV) radiation. Changes in cell function may affect the basal electrical surface properties of cell membranes, and changes can be detected by electrokinetic measurements. The charge density of the fibroblast membrane surface was measured as a function of pH. A four-component equilibrium model was used to describe the interaction between ions in solution and ions on the membrane surface. Agreement was found between experimental and theoretical charge variation curves of fibroblast cells between pH 2.5 and 8. Sialic acid content was determined by Svennerholm's resorcinol method, and lipid peroxidation was estimated by measuring the malondialdehyde level. Compared to untreated cells, ultraviolet A (UVA)- or ultraviolet B (UVB)-treated skin cell membranes exhibited higher concentrations of acidic functional groups and higher average association constants with hydroxyl ions, but lower average association constants with hydrogen ions. Moreover, our results showed that UVA and UVB radiation is associated with increased levels of sialic acid and lipid peroxidation products in fibroblasts. Rutin protected cells from some deleterious UV-associated membrane changes, including changes in electrical properties, oxidative state, and biological functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Collagen Gel Contraction by Fibroblasts: The Role of Myosin 2 and Gravity Effects

    NASA Technical Reports Server (NTRS)

    Johnson-Wint, Barbara P.; Malouvier, Alexandre; Holton, Emily

    1996-01-01

    Several lines of evidence suggest that collagen organization by connective tissue cells is sensitive to force. For instance, in flight experiments on rats the collagen fibrils which were produced under weightlessness and which were immediately next to the tendon fibroblasts were shown to be oriented randomly around the cells while the older fibrils right next to these and which were produced under 1 G, were highly organized.

  9. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals.

    PubMed

    Secher, Jan O; Liu, Ying; Petkov, Stoyan; Luo, Yonglun; Li, Dong; Hall, Vanessa J; Schmidt, Mette; Callesen, Henrik; Bentzon, Jacob F; Sørensen, Charlotte B; Freude, Kristine K; Hyttel, Poul

    2017-03-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines

    NASA Astrophysics Data System (ADS)

    Netchareonsirisuk, Ponsawan; Puthong, Songchan; Dubas, Stephan; Palaga, Tanapat; Komolpis, Kittinan

    2016-11-01

    Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5-15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO3 alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC50), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84-90 %) than necrosis (8-12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.

  11. Molecular Genetic Analysis of an Endotoxin Nonresponder Mutant Cell Line

    PubMed Central

    Schromm, Andra B.; Lien, Egil; Henneke, Philipp; Chow, Jesse C.; Yoshimura, Atsutoshi; Heine, Holger; Latz, Eicke; Monks, Brian G.; Schwartz, David A.; Miyake, Kensuke; Golenbock, Douglas T.

    2001-01-01

    Somatic cell mutagenesis is a powerful tool for characterizing receptor systems. We reported previously two complementation groups of mutant cell lines derived from CD14-transfected Chinese hamster ovary–K1 fibroblasts defective in responses to bacterial endotoxin. Both classes of mutants expressed a normal gene product for Toll-like receptor (TLR)4, and fully responded to stimulation by tumor necrosis factor (TNF)-α or interleukin (IL)-1β. We identified the lesion in one of the complementation groups in the gene for MD-2, a putative TLR4 coreceptor. The nonresponder phenotype of this mutant was reversed by transfection with MD-2. Cloning of MD-2 from the nonresponder cell line revealed a point mutation in a highly conserved region resulting in a C95Y amino acid exchange. Both forms of MD-2 colocalized with TLR4 on the cell surface after transfection, but only the wild-type cDNA reverted the lipopolysaccharide (LPS) nonresponder phenotype. Furthermore, soluble MD-2, but not soluble MD-2C95Y, functioned to enable LPS responses in cells that expressed TLR4. Thus, MD-2 is a required component of the LPS signaling complex and can function as a soluble receptor for cells that do not otherwise express it. We hypothesize that MD-2 conformationally affects the extracellular domain of TLR4, perhaps resulting in a change in affinity for LPS or functioning as a portion of the true ligand for TLR4. PMID:11435474

  12. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    PubMed

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  13. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  14. Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.

    PubMed

    Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C

    2010-08-01

    Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.

  15. Fibroblastic connective tissue nevus.

    PubMed

    Velez, Moises J; Billings, Steven D; Weaver, Joshua A

    2016-01-01

    Fibroblastic connective tissue nevus (FCTN) is a newly recognized, benign cutaneous mesenchymal lesion of fibroblasts/myofibroblastic lineage, which expands the classification of connective tissue nevi. We present three cases of FCTN and discuss significant clinical, morphologic and immunophenotypic overlap with dermatomyofibroma. Our cases were from young women, aged 32, 24 and 10, and presented as 1.2 and 1 cm nodules on the posterior neck and right upper flank, respectively while presenting as a linear plaque of the right posterior thigh in the latter case. The lesions showed a poorly circumscribed proliferation of hypercellular spindle cells arranged in short to longer intersecting fascicles entrapping adnexal structures. Superficial adipose tissue was also entrapped in one case. The spindle cells had fibroblastic features with pale eosinophilic cytoplasmic extensions and inconspicuous nucleoli. The spindle cells were positive for CD34 in two cases. One case was negative for CD34, smooth muscle actin (SMA), desmin and S100. The overall features were consistent with a diagnosis of FCTN. In two cases, we further elucidated the fibroblastic differentiation of the spindle cells in FCTN with electron microscopy, which has not been previously described. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts

    PubMed Central

    Wu, Yuehong; Li, Ouyang; He, Chengwen; Li, Yong; Li, Min; Liu, Xiaoming; Wang, Yujiong; He, Yulong

    2017-01-01

    Induced pluripotent stem cells (iPS) represent an important tool to develop disease-modeling assays, drug testing assays and cell-based replacement therapies. The application of iPS in these fields requires the development of suitable animal models. Of the suitable species, guinea pigs are particularly important and offer significant advantages. Successful iPS generation has been accomplished in a number of species; however, it has not been reported in the guinea pig. The present study successfully generated iPS from guinea pigs (giPS) using single polycistronic virus transduction with mouse octamer-binding transcription factor 4 (Oct4), sex determining region Y-box 2 (Sox2), Kruppel-like factor 4 and c-Myc. The giPS cell lines were cultured in media containing leukemia inhibitory factor and guinea pig fibroblast cells were used as feeder cells. These cultures were expanded under feeder-free culture conditions using ESGRO Complete Plus Clonal Grade medium containing 15% fetal bovine serum on gelatin-coated dishes. The resultant cells had a normal karyotype, exhibited alkaline phosphatase activity and expressed the pluripotency markers Oct4, Sox2 and Nanog. The cells differentiated in vivo to form teratomas that contained all three germ layers of the tissue cells. The generation of giPS may facilitate future studies investigating the mechanisms underlying innate immunity, particularly for tuberculosis. These experiments provide proof of principle that iPS technology may be adapted to use the guinea pig as a model of human diseases. PMID:28393187

  17. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    PubMed

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  18. Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart.

    PubMed

    Trial, JoAnn; Entman, Mark L; Cieslik, Katarzyna A

    2016-02-01

    Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells.

    PubMed

    Sales, Kurt J; Boddy, Sheila C; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N

    2007-08-01

    Prostaglandin (PG) F(2alpha) is a potent bioactive lipid in the female reproductive tract, and exerts its function after coupling with its heptahelical G-protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of fibroblast growth factor (FGF) 2, FGF receptor 1 (FGFR1), and FP receptor, colocalized within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF(2alpha)-FP receptor interaction in modulating FGF2 expression and signaling using an endometrial adenocarcinoma cell line stably expressing the FP receptor to the levels detected in endometrial adenocarcinomas (FPS cells) and endometrial adenocarcinoma tissue explants. PGF(2alpha)-FP receptor activation rapidly induced FGF2 mRNA expression, and elevated FGF2 protein expression and secretion into the culture medium in FPS cells and endometrial adenocarcinoma explants. The effect of PGF(2alpha) on the expression and secretion of FGF2 could be abolished by treatment of FPS cells and endometrial tissues with an FP receptor antagonist (AL8810) and inhibitor of ERK (PD98059). Furthermore, we have shown that FGF2 can promote the expression of FGF2 and cyclooxygenase-2, and enhance proliferation of endometrial adenocarcinoma cells via the FGFR1 and ERK pathways, thereby establishing a positive feedback loop to regulate neoplastic epithelial cell function in endometrial adenocarcinomas.

  20. Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme.

    PubMed Central

    Sutherland, B M; Rice, M; Wagner, E K

    1975-01-01

    Fibroblasts from patients with xeroderma pigmentosum contain low levels of photoreactivating enzyme in comparison to normal cells. Levels vary from 0 (line 1199) to 50 (line 1259) percent of normal. The depressed enzyme levels are not an artifact of low growth rate, age of cell donor, cell culture conditions, assay conditions, the presence of inhibitors, or mycoplasma contamination. We show that human fibroblasts can monomerize pyrimidine dimers in vivo. PMID:1054487

  1. Establishment and characterization of a fin cell line from blunt snout bream, Megalobrama amblycephala.

    PubMed

    Zhu, Dong-Mei; Yang, Kun; Wang, Wei-Min; Song, Wen

    2013-12-01

    This study established and characterized a new cell line (MAF) from the fin of blunt snout bream (Megalobrama amblycephala), a freshwater fish cultivated in China. MAF cells proliferated well in medium 199 supplemented with 10 % fetal bovine serum at 28 °C and have been subcultured more than 95 times in almost a year. MAF cells were revived at 90-95 % viability after 3-6 months of storage in liquid nitrogen. Karyotyping indicated that the modal chromosome number of MAF cells was 48. The MAF cell line consisted predominantly of fibroblastic and epithelial-like cells from M. amblycephala, which was confirmed by immunofluorescence and mitochondrial 12s rRNA sequencing. Viral susceptibility tests showed that MAF cells were susceptible to infection by snakehead rhabdovirus, spring viremia carp virus, and channel catfish virus, which was demonstrated by the presence of cytopathic effect, high viral titers, and PCR products. Bacterial cytotoxicity studies showed that extracellular products from Aeromonas hydrophila were toxic to MAF cells. Cu²⁺ was also cytotoxic to MAF cells, and the 24-h IC₅₀ value was 144.48 μmol/l. When MAF cells were transfected with pEGFP-N1 plasmid, bright fluorescent signals were observed, and the transfection efficiency reached up to 5 %. These results suggest that the MAF cell line may provide a valuable tool for studying virus pathogenesis, as well as cytotoxicity testing and genetic manipulation studies.

  2. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    DTIC Science & Technology

    1995-04-13

    rhodamine-coupled goat anti -mouse antibody . A rare , fused Cl 1 D giant cell was selected to show (Al, while extensive fusion was common throughout the...mouse anti - MHV-AS9 antiserum. To quantify the lev el of susceptibility of cells to MHV infection , ten randomly selected fields for each sample...named CealO) was discovered and found to be co-expressed with MHVR in the CI 1 D and F40 lines of mouse fibroblasts. A monoclonal anti - MHVR

  3. Propagation of senescent mice using nuclear transfer embryonic stem cell lines.

    PubMed

    Mizutani, Eiji; Ono, Tetsuo; Li, Chong; Maki-Suetsugu, Rinako; Wakayama, Teruhiko

    2008-09-01

    Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.

  4. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  5. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened.

  6. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    PubMed Central

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  7. Ex vivo culture of tumor cells from N-methyl-N-nitrosourea-induced bladder cancer in rats: Development of organoids and an immortalized cell line.

    PubMed

    Yoshida, Takahiro; Kates, Max; Sopko, Nikolai A; Liu, Xiaopu; Singh, Alok K; Bishai, William R; Joice, Gregory; McConkey, David J; Bivalacqua, Trinity J

    2018-04-01

    We ex vivo cultured primary tumor cells from N-methyl-N-nitrosourea (MNU)-induced bladder tumors in rats and established an immortalized cell line from them. Bladder tumors in rats were induced by instillation of MNU into the murine bladder. Primary tumor cells were prepared by the cancer-tissue originated spheroid method. An immortalized cell line was established by co-culture with fibroblasts. The cultured tumor cells were molecularly and functionally characterized by quantitative real-time polymerase chain reaction, Western blot, growth assay, and transwell migration assay. Primary tumor cells were successfully prepared as multicellular spheroids from MNU-induced bladder tumors. The differentiation marker expression patterns observed in the original tumors were largely retained in the spheroids. We succeeded in establishing a cell line from the spheroids and named it T-MNU-1. Although basal markers (CK14 and CK5) were enriched in T-MNU-1 compared to the spheroids, T-MNU-1 expressed both luminal and basal markers. T-MNU-1 was able to migrate through a transwell. Tumor cells in MNU-induced bladder tumors were successfully cultured ex vivo as organoids, and an immortalized cell line was also established from them. The ex vivo models offer a platform that enables analysis of intrinsic characteristics of tumor cells excluding influence of microenvironment in MNU-induced bladder tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Recombinogenic Telomeres in Diploid Sorex granarius (Soricidae, Eulipotyphla) Fibroblast Cells

    PubMed Central

    Draskovic, I.; Minina, J. M.; Karamysheva, T. V.; Novo, C. L.; Liu, W.-Y.; Porreca, R. M.; Gibaud, A.; Zvereva, M. E.; Skvortsov, D. A.; Rubtsov, N. B.

    2014-01-01

    The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism. PMID:24842907

  10. Isolation of Primary Fibroblast Culture from Wildlife: the Panthera onca Case to Preserve a South American Endangered Species.

    PubMed

    Mestre-Citrinovitz, Ana Cecilia; Sestelo, Adrián Jorge; Ceballos, María Belén; Barañao, José Lino; Saragüeta, Patricia

    2016-10-10

    Cell line establishment of somatic cells is a valuable resource to preserve genetic material of rare, difficult-to-find, endangered and giant species like Jaguar (Panthera onca), the largest South American felid. This unit focuses on the isolation and culture of fibroblasts from Jaguar skin and muscle biopsies, and ear cartilage dissection immediately after death to preserve one of the several endangered species in this biome. These culture techniques enabled us to contribute 570 samples from 45 autochthonous and endangered species, including Jaguar. The fibroblasts obtained are a part of the Genetic Bank of Buenos Aires Zoo with the 6700 samples, including tissues such as muscle, ovarian, testicular, blood, fibroblast cultures, sperm, hair, and fluids and cells from 450 individuals of 87 different species. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. BAG3 protects bovine papillomavirus type 1-transformed equine fibroblasts against pro-death signals.

    PubMed

    Cotugno, Roberta; Gallotta, Dario; d'Avenia, Morena; Corteggio, Annunziata; Altamura, Gennaro; Roperto, Franco; Belisario, Maria Antonietta; Borzacchiello, Giuseppe

    2013-07-22

    In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival.

  12. BAG3 protects Bovine Papillomavirus type 1-transformed equine fibroblasts against pro-death signals

    PubMed Central

    2013-01-01

    In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival. PMID:23876161

  13. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  14. Mechanisms of ozone toxicity in cultured cells. I. Reduced clonogenic ability of polyunsaturated fatty acid-supplemented fibroblasts. Effect of vitamin E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konings, A.W.

    1986-01-01

    The direct action of ozone on viability and survival of normal and modified mouse lung fibroblasts has been studied. By cell manipulation of fibroblasts in culture, the content of polyunsaturated fatty acids (PUFA) in the phospholipids was increased from about 6% to about 40%. The cellular content of alpha-tocopherol (alpha-T) (vitamin E) could be drastically enhanced. Vitamin E supplementation to the cell did not influence the PUFA manipulation. Normal, PUFA, and PUFA(alpha-T) fibroblasts were exposed to ozone by bubbling 10 ppm through the cell suspensions for different periods of time (0-6 h). No significant effects of the ozone exposure couldmore » be established when normal fibroblasts were used. The PUFA fibroblasts, however, were very vulnerable to ozone toxicity, both in terms of dye uptake (Trypan blue) and cell death (clonogenic ability). When alpha-tocopherol was present in the cell (200 ng/10(6) cells), a clear protection against ozone toxicity was found. It is concluded that ozone toxicity might be higher under conditions of a relative high amount of polyunsaturated fatty acids in the membrane phospholipids of the cell and a low cellular antioxidant capacity. Cellular membranes are probably an important target for ozone-induced cell death.« less

  15. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts

    PubMed Central

    Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy

    2015-01-01

    Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin–positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts. PMID:26100252

  16. In vitro effects of preservative-free and preserved prostaglandin analogs on primary cultured human conjunctival fibroblast cells.

    PubMed

    Kim, Eun Joo; Kim, Yeoun-Hee; Kang, Sun-Hee; Lee, Kyoo Won; Park, Young Jeung

    2013-12-01

    Long-term use of topical medication is needed for glaucoma treatment. One of the most commonly prescribed classes of hypotensive agents are prostaglandin analogs (PGs) used as both first-line monotherapy; as well as in combination therapy with other hypotensive agents. Several side effects of eye drops can be caused by preservatives. The purpose of this study was to evaluate the effects of PGs with varying concentrations of benzalkonium chloride (BAC), alternative preservatives, or no preservatives on human conjunctival fibroblast cells. Primary human conjunctival fibroblast cells were used in these experiments. Cells were exposed to the following drugs: BAC at different concentrations, bimatoprost 0.01% (with BAC 0.02%), latanoprost 0.005% (with BAC 0.02%), tafluprost 0.0015% with/without 0.001% BAC and travoprost 0.004% (with 0.001% Polyquad) for 15 and 30 minutes. Cell cytotoxicity was evaluated by phase-contrast microscopy to monitor morphological changes of cells, Counting Kit-8 (CCK-8) assay to cell viability, and fluorescent activated cell sorting (FACS) analysis to measure apoptosis. BAC caused cell shrinkage and detachment from the plate in a dose-dependent manner. Morphological changes were observed in cells treated with bimatoprost 0.01% and latanoprost 0.005%. However, mild cell shrinkage was noted in cells treated with tafluprost 0.0015%, while a non-toxic effect was noted with travoprost 0.004% and preservative-free tafluprost 0.0015%. CCK-8 assay and FACS analysis showed all groups had a significantly decreased cell viability and higher apoptosis rate compared with the control group. However, travoprost 0.004% and preservative-free tafluprost 0.0015% showed lower cytotoxicity and apoptosis rate than other drugs. This in vitro study revealed that BAC-induced cytotoxicity is dose-dependent, although it is important to emphasize that the clinical significance of toxicity differences observed among the different PGs formulations has not yet been firmly

  17. In Vitro Effects of Preservative-free and Preserved Prostaglandin Analogs on Primary Cultured Human Conjunctival Fibroblast Cells

    PubMed Central

    Kim, Eun Joo; Kim, Yeoun-Hee; Kang, Sun-Hee; Lee, Kyoo Won

    2013-01-01

    Purpose Long-term use of topical medication is needed for glaucoma treatment. One of the most commonly prescribed classes of hypotensive agents are prostaglandin analogs (PGs) used as both first-line monotherapy; as well as in combination therapy with other hypotensive agents. Several side effects of eye drops can be caused by preservatives. The purpose of this study was to evaluate the effects of PGs with varying concentrations of benzalkonium chloride (BAC), alternative preservatives, or no preservatives on human conjunctival fibroblast cells. Methods Primary human conjunctival fibroblast cells were used in these experiments. Cells were exposed to the following drugs: BAC at different concentrations, bimatoprost 0.01% (with BAC 0.02%), latanoprost 0.005% (with BAC 0.02%), tafluprost 0.0015% with/without 0.001% BAC and travoprost 0.004% (with 0.001% Polyquad) for 15 and 30 minutes. Cell cytotoxicity was evaluated by phase-contrast microscopy to monitor morphological changes of cells, Counting Kit-8 (CCK-8) assay to cell viability, and fluorescent activated cell sorting (FACS) analysis to measure apoptosis. Results BAC caused cell shrinkage and detachment from the plate in a dose-dependent manner. Morphological changes were observed in cells treated with bimatoprost 0.01% and latanoprost 0.005%. However, mild cell shrinkage was noted in cells treated with tafluprost 0.0015%, while a non-toxic effect was noted with travoprost 0.004% and preservative-free tafluprost 0.0015%. CCK-8 assay and FACS analysis showed all groups had a significantly decreased cell viability and higher apoptosis rate compared with the control group. However, travoprost 0.004% and preservative-free tafluprost 0.0015% showed lower cytotoxicity and apoptosis rate than other drugs. Conclusions This in vitro study revealed that BAC-induced cytotoxicity is dose-dependent, although it is important to emphasize that the clinical significance of toxicity differences observed among the different PGs

  18. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  19. The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines

    PubMed Central

    Gruhlke, Martin C. H.; Nicco, Carole; Batteux, Frederic; Slusarenko, Alan J.

    2016-01-01

    Garlic (Allium sativum L.) has been used as a spice and medicinal plant since ancient times. Garlic produces the thiol-reactive defence substance, allicin, upon wounding. The effects of allicin on human lung epithelium carcinoma (A549), mouse fibroblast (3T3), human umbilical vein endothelial cell (HUVEC), human colon carcinoma (HT29) and human breast cancer (MCF7) cell lines were tested. To estimate toxic effects of allicin, we used a standard MTT-test (methylthiazoltetrazolium) for cell viability and 3H-thymidine incorporation for cell proliferation. The glutathione pool was measured using monobromobimane and the formation of reactive species was identified using 2′,7′-dichlorofluoresceine-diacetate. The YO-PRO-1 iodide staining procedure was used to estimate apoptosis. Allicin reduced cell viability and cell proliferation in a concentration dependent manner. In the bimane test, it was observed that cells treated with allicin showed reduced fluorescence, suggesting glutathione oxidation. The cell lines tested differed in sensitivity to allicin in regard to viability, cell proliferation and glutathione oxidation. The 3T3 and MCF-7 cells showed a higher proportion of apoptosis compared to the other cell types. These data show that mammalian cell lines differ in their sensitivity and responses to allicin. PMID:28035949

  20. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  1. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts.

    PubMed

    Wu, Yuehong; Li, Ouyang; He, Chengwen; Li, Yong; Li, Min; Liu, Xiaoming Liu; Wang, Yujiong; He, Yulong

    2017-06-01

    Induced pluripotent stem cells (iPS) represent an important tool to develop disease‑modeling assays, drug testing assays and cell‑based replacement therapies. The application of iPS in these fields requires the development of suitable animal models. Of the suitable species, guinea pigs are particularly important and offer significant advantages. Successful iPS generation has been accomplished in a number of species; however, it has not been reported in the guinea pig. The present study successfully generated iPS from guinea pigs (giPS) using single polycistronic virus transduction with mouse octamer‑binding transcription factor 4 (Oct4), sex determining region Y‑box 2 (Sox2), Kruppel‑like factor 4 and c‑Myc. The giPS cell lines were cultured in media containing leukemia inhibitory factor and guinea pig fibroblast cells were used as feeder cells. These cultures were expanded under feeder‑free culture conditions using ESGRO Complete Plus Clonal Grade medium containing 15% fetal bovine serum on gelatin‑coated dishes. The resultant cells had a normal karyotype, exhibited alkaline phosphatase activity and expressed the pluripotency markers Oct4, Sox2 and Nanog. The cells differentiated in vivo to form teratomas that contained all three germ layers of the tissue cells. The generation of giPS may facilitate future studies investigating the mechanisms underlying innate immunity, particularly for tuberculosis. These experiments provide proof of principle that iPS technology may be adapted to use the guinea pig as a model of human diseases.

  2. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells.

    PubMed

    Lee, Hyung-Ok; Mullins, Stefanie R; Franco-Barraza, Janusz; Valianou, Matthildi; Cukierman, Edna; Cheng, Jonathan D

    2011-06-13

    Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is β1-integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor

  3. Fibroblasts Protect Melanoma Cells from the Cytotoxic Effects of Doxorubicin

    PubMed Central

    Tiago, Manoela; de Oliveira, Edson Mendes; Brohem, Carla Abdo; Pennacchi, Paula Comune; Paes, Rafael Duarte; Haga, Raquel Brandão; Campa, Ana; de Moraes Barros, Silvia Berlanga; Smalley, Keiran S.

    2014-01-01

    Melanoma is the most aggressive form of skin cancer and until recently, it was extremely resistant to radio-, immuno-, and chemotherapy. Despite the latest success of BRAF V600E-targeted therapies, responses are typically short lived and relapse is all but certain. Furthermore, a percentage (40%) of melanoma cells is BRAF wild type. Emerging evidence suggests a role for normal host cells in the occurrence of drug resistance. In the current study, we compared a variety of cell culture models with an organotypic incomplete skin culture model (the “dermal equivalent”) to investigate the role of the tissue microenvironment in the response of melanoma cells to the chemotherapeutic agent doxorubicin (Dox). In the dermal equivalent model, consisting of fibroblasts embedded in type I collagen matrix, melanoma cells showed a decreased cytotoxic response when compared with less complex culture conditions, such as seeding on plastic cell culture plate (as monolayers cultures) or on collagen gel. We further investigated the role of the microenvironment in p53 induction and caspase 3 and 9 cleavage. Melanoma cell lines cultured on dermal equivalent showed decreased expression of p53 after Dox treatment, and this outcome was accompanied by induction of interleukin IL-6, IL-8, and matrix metalloproteinases 2 and 9. Here, we show that the growth of melanoma cells in the dermal equivalent model inflects drug responses by recapitulating important pro-survival features of the tumor microenvironment. These studies indicate that the presence of stroma enhances the drug resistance of melanoma in vitro, more closely mirroring the in vivo phenotype. Our data, thus, demonstrate the utility of organotypic cell culture models in providing essential context-dependent information critical for the development of new therapeutic strategies for melanoma. We believe that the organotypic model represents an improved screening platform to investigate novel anti-cancer agents, as it provides

  4. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer

    PubMed Central

    Konjhodzic-Prcic, Alma; Jakupovic, Selma; Hasic-Brankovic, Lajla; Vukovic, Amra

    2015-01-01

    Introduction: The purpose of the current study was to estimate the biocompatibility of endodontic sealers with different bases on L929 mouse fibroblasts permanent cell line using Multiscan EX Spectrophotometer. Materials and Methods: Endodontics sealers used in this study were GuttaFlow (Roeko) silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealer were tested trough time, freshly mixed 24 h, 48h and 7 days after setting. Biocompatibility was determinate on permanent cell lines L929 mouse fibroblasts trough cytotoxicity using MTT assay. Level of absorption was measured with multi scan EX spectrophotometer on length 420-600 nm. Results: Sealer based on calcium hydroxide Apexit Plus, GuttaFlow silicone based sealer and AH plus epoxy resin based sealer, have shown a low cytotoxicity through the all periods of time on culture of L292 mouse fibroblasts. Methacrylate based sealer, Endorez showed moderate cytotoxicity when freshly mixed and after 7 days. After 24 hours the visibility of the cells was 74,0% and after 48 hours 65,1%. which is slightly cytotoxic. Conclusions: According to results of this study there is a statistically significant difference among the groups p<0,05 for all the tested sealers. Apexit Plus, GuttaFlow and AH plus can be considered as biocompatibile. EndoREZ sealer which is based on methacrylate, after 7 days shows 50,1% of visible live cells which is considered as moderate cytotoxicity. PMID:26236077

  5. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer.

    PubMed

    Konjhodzic-Prcic, Alma; Jakupovic, Selma; Hasic-Brankovic, Lajla; Vukovic, Amra

    2015-06-01

    The purpose of the current study was to estimate the biocompatibility of endodontic sealers with different bases on L929 mouse fibroblasts permanent cell line using Multiscan EX Spectrophotometer. Endodontics sealers used in this study were GuttaFlow (Roeko) silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealer were tested trough time, freshly mixed 24 h, 48h and 7 days after setting. Biocompatibility was determinate on permanent cell lines L929 mouse fibroblasts trough cytotoxicity using MTT assay. Level of absorption was measured with multi scan EX spectrophotometer on length 420-600 nm. Sealer based on calcium hydroxide Apexit Plus, GuttaFlow silicone based sealer and AH plus epoxy resin based sealer, have shown a low cytotoxicity through the all periods of time on culture of L292 mouse fibroblasts. Methacrylate based sealer, Endorez showed moderate cytotoxicity when freshly mixed and after 7 days. After 24 hours the visibility of the cells was 74,0% and after 48 hours 65,1%. which is slightly cytotoxic. According to results of this study there is a statistically significant difference among the groups p<0,05 for all the tested sealers. Apexit Plus, GuttaFlow and AH plus can be considered as biocompatibile. EndoREZ sealer which is based on methacrylate, after 7 days shows 50,1% of visible live cells which is considered as moderate cytotoxicity.

  6. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  7. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  8. Effects of human umbilical cord blood-derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing.

    PubMed

    Moon, Kyung-Chul; Lee, Jong-Seok; Han, Seung-Kyu; Lee, Hyup-Woo; Dhong, Eun-Sang

    2017-07-01

    A previous study demonstrated that human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have superior wound-healing activity compared with fibroblasts in vitro. However, wound healing in vivo is a complex process that involves multiple factors. The purpose of this study was to compare the effects of hUCB-MSCs and fibroblasts on diabetic wound healing in vivo. This study especially focused on collagen synthesis and angiogenesis, which are considered to be the important factors affecting diabetic wound healing. Porous polyethylene discs were loaded with either fibroblasts or hUCB-MSCs, and a third group, which served as a control, was not loaded with cells. The discs were then implanted in the back of diabetic mice. During the first and the second week after implantation, the discs were harvested, and collagen level and microvascular density were compared. In terms of collagen synthesis, the hUCB-MSC group showed the highest collagen level (117.7 ± 8.9 ng/mL), followed by the fibroblast group (83.2 ± 5.2 ng/mL) and the no-cell group (60.0 ± 4.7 ng/mL) in the second week after implantation. In terms of angiogenesis, the microvascular density in the hUCB-MSC group was 56.8 ± 16.4, which was much higher than that in the fibroblast group (14.3 ± 4.0) and the no-cell group (5.7 ± 2.1) in the second week after implantation. These results demonstrate that hUCB-MSCs are superior to fibroblasts in terms of their effect on diabetic wound healing in vivo. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks.

    PubMed

    Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.

  10. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks

    PubMed Central

    Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236

  11. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less

  12. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays.

    PubMed

    Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Daumer, Kristin M; Milliman, Janet N; Chiavarina, Barbara; Migneco, Gemma; Witkiewicz, Agnieszka K; Martinez-Cantarin, Maria P; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2010-06-15

    Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFβ/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating "synthetic" cancer associated fibroblasts (CAFs). More specifically, these "synthetic" CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti

  14. TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts.

    PubMed

    Jovanović, Bojana; Pickup, Michael W; Chytil, Anna; Gorska, Agnieszka E; Johnson, Kimberly C; Moses, Harold L; Owens, Philip

    2016-11-04

    The TGF-β pathway plays a major role in tumor progression through regulation of epithelial and stromal cell signaling. Dysfunction of the pathway can lead to carcinoma progression and metastasis. To gain insight into the stromal role of the TGF-β pathway in breast cancer, we performed laser capture microdissection (LCM) from breast cancer patients and reduction mammoplasty patients. Microdissected tumor stroma and normal breast stroma were examined for gene expression. Expression of the TGF-β type III receptor ( TGFBR3 ) was greatly decreased in the tumor stroma compared to control healthy breast tissue. These results demonstrated a 44-fold decrease in TGFBR3 mRNA in tumor stroma in comparison to control tissue. We investigated publicly available databases, and have identified that TGFBR3 mRNA levels are decreased in tumor stroma. We next investigated fibroblast cell lines derived from cancerous and normal breast tissue and found that in addition to mRNA levels, TβRIII protein levels were significantly reduced. Having previously identified that cancer-associated fibroblasts secrete greater levels of tumor promoting cytokines, we investigated the consequences of soluble-TβRIII (sTβRIII) on fibroblasts. Fibroblast conditioned medium was analyzed for 102 human secreted cytokines and distinct changes in response to sTβRIII were observed. Next, we used the fibroblast-conditioned medium to stimulate human monocyte cell line THP-1. These results indicate a distinct transcriptional response depending on sTβRIII treatment and whether it was derived from normal or cancerous breast tissue. We conclude that the effect of TβRIII has distinct roles not only in cancer-associated fibroblasts but that sTβRIII has distinct paracrine functions in the tumor microenvironment.

  15. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  17. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  18. Variation in the loss of O6-methylguanine-DNA methyltransferase during immortalization of human fibroblasts.

    PubMed

    Green, M H; Karran, P; Lowe, J E; Priestley, A; Arlett, C F; Mayne, L

    1990-01-01

    We have examined O6-methylguanine-DNA methyltransferase (MT) activity in four human fibroblast cell lines during immortalization. Transfection of primary fibroblasts with the plasmid pSV3gpt or pSV3neo, which encode the SV40 large T antigen, confers a transformed phenotype but not immediate immortality. After a period of growth (pre-crisis) the cells enter a quiescent phase (crisis) from which an immortal clone of cells eventually grows out. From measurements of MT activity in extracts of cells taken at different defined stages of the immortalization process, we conclude that the establishment of a Mex- (MT-deficient) cell population is not specifically associated with cellular transformation or with any particular stage of immortalization. It appears that in different cell populations the change from Mex+ to Mex- may occur at different times during the immortalization process and that the change may be very abrupt.

  19. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts.

    PubMed

    Faulknor, Renea A; Olekson, Melissa A; Nativ, Nir I; Ghodbane, Mehdi; Gray, Andrea J; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. SB431542, an inhibitor of transforming growth factor-β1 (TGF-β1)-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. Copyright © 2015. Published by Elsevier Inc.

  20. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule.

    PubMed

    Witek, Małgorzata A; Aufforth, Rachel D; Wang, Hong; Kamande, Joyce W; Jackson, Joshua M; Pullagurla, Swathi R; Hupert, Mateusz L; Usary, Jerry; Wysham, Weiya Z; Hilliard, Dawud; Montgomery, Stephanie; Bae-Jump, Victoria; Carey, Lisa A; Gehrig, Paola A; Milowsky, Matthew I; Perou, Charles M; Soper, John T; Whang, Young E; Yeh, Jen Jen; Martin, George; Soper, Steven A

    2017-01-01

    Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.

  1. Endoplasmic reticulum and lysosomal Ca²⁺ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts.

    PubMed

    Kilpatrick, Bethan S; Magalhaes, Joana; Beavan, Michelle S; McNeill, Alisdair; Gegg, Matthew E; Cleeter, Michael W J; Bloor-Young, Duncan; Churchill, Grant C; Duchen, Michael R; Schapira, Anthony H; Patel, Sandip

    2016-01-01

    Mutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in β-glucocerebrosidase. We show that endoplasmic reticulum (ER) Ca(2+) release was potentiated in GD and PD patient fibroblasts but not in cells from asymptomatic carriers. ER Ca(2+) signalling was also potentiated in fibroblasts from aged healthy subjects relative to younger individuals but not further increased in aged PD patient cells. Chemical or molecular inhibition of β-glucocerebrosidase in fibroblasts and a neuronal cell line did not affect ER Ca(2+) signalling suggesting defects are independent of enzymatic activity loss. Conversely, lysosomal Ca(2+) store content was reduced in PD fibroblasts and associated with age-dependent alterations in lysosomal morphology. Accelerated remodelling of Ca(2+) stores by pathogenic GBA1 mutations may therefore feature in PD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells

    PubMed Central

    Nishikawa, Yukihiro; Okuzaki, Daisuke; Fukushima, Kohshiro; Mukai, Satomi; Ohno, Shouichi; Ozaki, Yuki; Yabuta, Norikazu; Nojima, Hiroshi

    2015-01-01

    Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death. PMID:26230090

  3. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    PubMed

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  4. Generation of human cortical neurons from a new immortal fetal neural stem cell line.

    PubMed

    Cacci, E; Villa, A; Parmar, M; Cavallaro, M; Mandahl, N; Lindvall, O; Martinez-Serrano, A; Kokaia, Z

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.

  5. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed Central

    Pörn, M I; Slotte, J P

    1990-01-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406

  6. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats.

    PubMed

    Li, Na; Luo, Heng-Cong; Yang, Chuan; Deng, Jun-Jie; Ren, Meng; Xie, Xiao-Ying; Lin, Diao-Zhu; Yan, Li; Zhang, Li-Ming

    2014-01-01

    Excessive expression of matrix metalloproteinase-9 (MMP-9) is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of β-cyclodextrin (β-CD) core and poly(amidoamine) dendron arms (β-CD-[D₃]₇) could be used as the gene carrier of small interfering RNA (siRNA) to reduce MMP-9 expression for enhanced diabetic wound healing. The cytotoxicity of β-CD-(D₃)₇ was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MMT) method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of β-CD-(D₃)₇/MMP-9-small interfering RNA (siRNA) complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT) polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by β-CD-(D₃)₇/MMP-9-siRNA complexes. The β-CD-(D₃)₇/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. β-CD-(D₃)₇ exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The β-CD-(D₃)₇/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01). Animal experiments revealed that the treatment by β-CD-(D₃)₇/MMP-9-siRNA complexes enhanced wound closure in diabetic rats on day 7 post-wounding (P<0.05). β-CD-(D₃)₇ may be used as an efficient carrier for the delivery of MMP-9-siRNA to reduce MMP-9 expression in skin fibroblast cells and promote wound healing in diabetic rats.

  7. EMMPRIN Is Secreted by Human Uterine Epithelial Cells in Microvesicles and Stimulates Metalloproteinase Production by Human Uterine Fibroblast Cells

    PubMed Central

    Dayger, C. A.; Mehrotra, P.; Belton, R. J.; Nowak, R. A.

    2012-01-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C. PMID:22729071

  8. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    PubMed

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  9. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  10. Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells.

    PubMed

    Yu, G; Okawa, H; Okita, K; Kamano, Y; Wang, F; Saeki, M; Yatani, H; Egusa, H

    2016-01-01

    Human gingival fibroblasts (hGFs) present an attractive source of induced pluripotent stem cells (iPSCs), which are expected to be a powerful tool for regenerative dentistry. However, problems to be addressed prior to clinical application include the use of animal-derived feeder cells for cultures. The aim of this study was to establish an autologous hGF-derived iPSC (hGF-iPSC) culture system by evaluating the feeder ability of hGFs. In both serum-containing and serum-free media, hGFs showed higher proliferation than human dermal fibroblasts (hDFs). Three hGF strains were isolated under serum-free conditions, although 2 showed impaired proliferation. When hGF-iPSCs were transferred onto mitomycin C-inactivated hGFs, hDFs, or mouse-derived SNL feeders, hGF and SNL feeders were clearly hGF-iPSC supportive for more than 50 passages, whereas hDF feeders were only able to maintain undifferentiated hGF-iPSC growth for a few passages. After 20 passages on hGF feeders, embryonic stem cell marker expression and CpG methylation at the NANOG and OCT3/4 promoters were similar for hGF-iPSCs cultured on hGF and SNL feeder cells. Long-term cultures of hGF-iPSCs on hGF feeders sustained their normal karyotype and pluripotency. On hGF feeders, hGF-iPSC colonies were surrounded by many colony-derived fibroblast-like cells, and the size of intact colonies at 7 d after passage was significantly larger than that on SNL feeders. Allogeneic hGF strains also maintained hGF-iPSCs for 10 passages. Compared with hDFs, hGFs showed a higher production of laminin-332, laminin α5 chain, and insulin-like growth factor-II, which have been reported to sustain the long-term self-renewal of pluripotent stem cells. These results suggest that hGFs possess an excellent feeder capability and thus can be used as alternatives to conventional mouse-derived SNL and hDF feeders. In addition, our findings suggest that hGF feeders are promising candidates for animal component-free ex vivo expansion of

  11. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression

    PubMed Central

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K.; Wang, Yang; Yip, Yim Ling; Law, Simon Y. K.; Chan, Kin Tak; Lee, Nikki P. Y.; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L. M.

    2017-01-01

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression. PMID:28186102

  12. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression.

    PubMed

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K; Wang, Yang; Yip, Yim Ling; Law, Simon Y K; Chan, Kin Tak; Lee, Nikki P Y; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L M

    2017-02-10

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.

  13. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  14. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    PubMed Central

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  15. Epidermal regulation of dermal fibroblast activity.

    PubMed

    Garner, W L

    1998-07-01

    Although the association between delayed burn wound healing and subsequent hypertrophic scar formation is well-established, the mechanism for this relationship is unknown. Unhealed burn wounds lack an epidermis, suggesting a possible regulatory role for the epidermis in controlling dermal fibroblast matrix synthesis. Therefore, we examined the effect of epidermal cells and media conditioned by epidermal cells on fibroblast collagen synthesis and replication. Purified fibroblast and keratinocyte cell strains were developed from discarded normal adult human skin. Conditioned media were created by incubation of cytokine-free and serum-free medium with either confluent fibroblast or keratinocyte cultures for 18 hours (n = 3). Nearly confluent fibroblast cultures were exposed for 48 hours to graded concentrations of either unconditioned medium (control), conditioned medium, or varying numbers of keratinocytes. Replication was quantified by the incorporation of 3H-thymidine. Collagen synthesis was measured by the incorporation of 3H-proline into collagenase-sensitive protein. Data were compared using analysis of variance (ANOVA) and linear regression. Keratinocyte conditioned medium induced a significant increase in replication (n = 3) (p = 0.004) and a decrease in collagen synthesis (n = 6) (p < 0.001). In contrast, neither fibroblast conditioned medium nor control medium had an effect on fibroblast replication or collagen synthesis. Co-culture of fibroblast with a graded number of keratinocytes similarly decreased collagen synthesis (n = 6) (p < 0.001). Dermal fibroblast collagen synthesis appears to be regulated by a soluble keratinocyte product. This result suggests a mechanism for the clinical observation that unhealed burn wounds, which lack the epidermis, demonstrate excess collagen production and scar. Clinical strategies to decrease hypertrophic scar should include an attempt at early wound closure with skin grafting or the application of cultured epithelial

  16. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms.

    PubMed

    Bavik, Claes; Coleman, Ilsa; Dean, James P; Knudsen, Beatrice; Plymate, Steven; Nelson, Peter S

    2006-01-15

    The greatest risk factor for developing carcinoma of the prostate is advanced age. Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment. In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging. In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium. We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion. We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth. Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively. The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts. Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium. These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate

  17. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    PubMed

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  18. From fibroblasts and stem cells: implications for cell therapies and somatic cloning.

    PubMed

    Kues, Wilfried A; Carnwath, Joseph W; Niemann, Heiner

    2005-01-01

    Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.

  19. CellLineNavigator: a workbench for cancer cell line analysis

    PubMed Central

    Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas

    2013-01-01

    The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487

  20. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells

    PubMed Central

    Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon

    2015-01-01

    Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537

  1. Induction of Apoptosis of 2,4′,6-Trihydroxybenzophenone in HT-29 Colon Carcinoma Cell Line

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar

    2014-01-01

    2,4′,6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins. PMID:24579081

  2. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    PubMed

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes.

    PubMed

    Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V

    1988-12-01

    We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.

  4. The protective effects of N-Acetl-cysteine, oxo-thiazolidine-carboxylate, acetaminophen and their combinations against sulfur mustard cytotoxicity on human skin fibroblast cell line (HF2FF).

    PubMed

    Saberi, Mehdi; Zaree Mahmodabady, Ali

    2009-10-01

    Using human skin-fibroblast cell line HF2FF, the efficacy of some drugs was evaluated against sulfur mustard (SM) cytotoxicity. The drugs were the sulfhydryl containing molecule including N-acetylcysteine (NAC), 2-oxo-thiazolidine-4-carboxylate (OTC) and acetaminophen as glutathione (GSH) stimulator pathway. The protective effects of NAC (0.1 mM), OTC (1.8 mM), and acetaminophen (25 mM) alone or in combination with each other were evaluated on SM (180 M)-induced cytotoxicity. NAC and OTC were applied with SM simultaneously and acetaminophen 30 min before SM exposure, incubated for 1 h and then were rinsed and incubated with fresh medium. The efficacy was evaluated by determination of cells viability, intracellular GSH level and catalase activity 1 and 24 h post SM exposure or co-treatments. The cells viability was decreased 21.8% and 55.2%, respectively for 1 and 24 h post SM (1 h exposure) incubation. So, the 1-h SM exposure and 24-h treatment incubation were selected for evaluation. While, NAC alone treatment increased the cells viability (25%), GSH level (320%) and catalase activity (18%), the most effective combination was NAC plus OTC and acetaminophen which increased more significantly the cells viability (about 40%), GSH level (470%) and catalase activity (100%). The most effective combination was NAC (0.1 mM) plus OTC (1.8 mM) and acetaminophen (25 mM) which should be used before or concomitant with SM exposure. These drugs may reduce SM toxicity possibly by increment of GSH level and catalase activity. This efficacy needs to be confirmed by in vivo study.

  5. Stimulatory effects of histamine on migration of nasal fibroblasts.

    PubMed

    Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man

    2015-10-01

    Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.

  6. Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025

  7. Complementation of a Fanconi anemia group A cell line by UbA{sup 52}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, R.E.; Heina, J.A.; Jakobs, P.M.

    1994-09-01

    Cells from patients with Fanconi anemia (FA) display chromosomal instability and increased sensitivity to mitomycin C (MMC) and diepoxybutane (DEB) relative to normal cells. Several genes act in this pathway of DNA damage processing based upon four known complementation groups in FA. We have made a cDNA expression library in a vector with a G418 selectable marker to identify FA genes other than the FA-C group. Approximately 1 x 10{sup 6} independent cDNA clones were isolated with an average cDNA size of 1.5 kb. Five cell lines resistant to MMC and DEB were isolated from 6 x 10{sup 6} G418-resistantmore » transfectants from 65 individual transfections of the FA-A fibroblast line GM6914. The isolated cell lines also showed normal chromosome stability. The same cDNA (600 bp) was recovered from three independent cell lines by PCR using flanking sequence primers. The gene has sequence identity with a known gene, the ubiquitin fusion gene, UbA{sub 52}. Interestingly, each of the cDNAs were inserted in antisense orientation relative to the cytomegalovirus (CMV) promoter as determined by sequencing and PCR using UbA{sub 52}-specific internal primers. Southern blot analysis indicated the cell lines had distinct chromosomal insertion sites. Mutation analysis by chemical cleavage showed no reading frame mutations, indicating that UbA{sub 52} is not the FA-A gene. Re-transfection with the UbA{sub 52} gene in antisense gave complementation for MMC, DEB and chromosome stability to varying degrees. Re-transfection of the antisense construct with the CMV promotor removed or with a sense construct did not alter the MMC sensitivity. We conclude that the antisense UbA{sub 52} gene has a non-specific effect, perhaps acting by altering the cell cycle or susceptibility to apoptosis.« less

  8. T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.

    PubMed

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-03-01

    To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.

  9. Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts.

    PubMed

    Fehrholz, Markus; Glaser, Kirsten; Speer, Christian P; Seidenspinner, Silvia; Ottensmeier, Barbara; Kunzmann, Steffen

    2017-03-23

    Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells. The human airway epithelial cell line H441 and the fetal lung fibroblast strain IMR-90 were exposed to different glucocorticoids (dexamethasone, budesonide, betamethasone, prednisolone, hydrocortisone) and caffeine. mRNA and protein expression of CTGF, TGF-β1-3, and TNF-α were determined by means of quantitative real-time PCR and immunoblotting. H441 cells were additionally treated with cAMP, the adenylyl cyclase activator forskolin, and the selective phosphodiesterase (PDE)-4 inhibitor cilomilast to mimic caffeine-mediated PDE inhibition. Treatment with different glucocorticoids (1 μM) significantly increased CTGF mRNA levels in H441 (p < 0.0001) and IMR-90 cells (p < 0.01). Upon simultaneous exposure to caffeine (10 mM), both glucocorticoid-induced mRNA and protein expression were significantly reduced in IMR-90 cells (p < 0.0001). Of note, 24 h exposure to caffeine alone significantly suppressed basal expression of CTGF mRNA and protein in IMR-90 cells. Caffeine-induced reduction of CTGF mRNA expression seemed to be independent of cAMP levels, adenylyl cyclase activation, or PDE-4 inhibition. While dexamethasone or caffeine treatment did not affect TGF-β1 mRNA in H441 cells, increased expression of TGF-β2 and

  10. Down-Regulation of Myeloid Cell Leukemia 1 by Epigallocatechin-3-Gallate Sensitizes Rheumatoid Arthritis Synovial Fibroblasts to Tumor Necrosis Factor α–Induced Apoptosis

    PubMed Central

    Ahmed, Salahuddin; Silverman, Matthew D.; Marotte, Hubert; Kwan, Kevin; Matuszczak, Natalie; Koch, Alisa E.

    2010-01-01

    Objective Overexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) in down-regulating Mcl-1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα-induced apoptosis. Methods EGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP-ribose) polymerase (PARP), Mcl-1, Bcl-2, Akt, and nuclear translocation of NF-κB. Results In RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα-induced Mcl-1 protein expression in a concentration- and time-dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl-1 expression in RA synovial fibroblasts and affected Mcl-1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl-1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down-regulation of the TNFα-induced Akt and NF-κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα-induced PARP cleavage and apoptotic cell death. Conclusion Our findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα-induced apoptosis by specifically blocking Mcl-1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA. PMID:19404960

  11. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    PubMed Central

    Kasper, Grit; Reule, Matthias; Tschirschmann, Miriam; Dankert, Niels; Stout-Weider, Karen; Lauster, Roland; Schrock, Evelin; Mennerich, Detlev; Duda, Georg N; Lehmann, Kerstin E

    2007-01-01

    Background Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation

  12. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity.

    PubMed

    Pinchuk, Irina V; Saada, Jamal I; Beswick, Ellen J; Boya, Gushyalatha; Qiu, Sumin M; Mifflin, Randy C; Raju, Gottumukkala S; Reyes, Victor E; Powell, Don W

    2008-10-01

    A prominent role for inhibitory molecules PD-L1 and PD-L2 in peripheral tolerance has been proposed. However, the phenotype and function of PD-L-expressing cells in human gut remains unclear. Recent studies suggest that colonic myofibroblasts (CMFs) and fibroblasts are important in the switch from acute inflammation to adaptive immunity. In the normal human colon, CMFs represent a distinct population of major histocompatibility complex class II(+) cells involved in the regulation of mucosal CD4(+) T-cell responses. PD-L1 and PD-L2 expression on human CMFs was determined using Western blot, fluorescence-activated cell sorter analysis and confocal microscopy. Lymphoproliferation assays and cytokine enzyme-linked immunosorbent assays were used to evaluate the role of B7 costimulators expressed by CMFs with regard to the regulation of preactivated T-helper cell responses. We demonstrate here the expression of PD-L1/2 molecules by normal human CMF and fibroblasts in situ and in culture. Both molecules support suppressive functions of CMFs in the regulation of activated CD4(+) T-helper cell proliferative responses; blocking this interaction reverses the suppressive effect of CMFs on T-cell proliferation and leads to increased production of the major T-cell growth factor, interleukin (IL)-2. PD-L1/2-mediated CMF suppressive functions are mainly due to the inhibition of IL-2 production, because supplementation of the coculture media with exogenous IL-2 led to partial recovery of activated T-cell proliferation. Our data suggest that stromal myofibroblasts and fibroblasts may limit T-helper cell proliferative activity in the gut and, thus, might play a prominent role in mucosal intestinal tolerance.

  13. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6)

    PubMed Central

    Dormady, Shane P.; Zhang, Xin-Min; Basch, Ross S.

    2000-01-01

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively γ-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be γ-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  14. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  15. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    PubMed

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  16. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    PubMed

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  17. A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment.

    PubMed

    Caires, Hugo R; Barros da Silva, Patrícia; Barbosa, Mário A; Almeida, Catarina R

    2018-03-01

    The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts. Primary human macrophages yielded the highest fibroblast recruitment when interacting with chitosan scaffolds but not polylactic acid. Interestingly, when there were MSC and fibroblasts in the same environment, macrophages in chitosan scaffolds again promoted a significant increase on fibroblast recruitment, but not of MSC. However, macrophages that were firstly allowed to interact with MSC within the scaffolds were no longer able to recruit fibroblasts. This study illustrates the potential to use different scaffolds to regulate the dynamics of recruitment of proregenerative or fibrotic cell types through immunomodulation. Overall, this work strengths the idea that ex vivo predictive systems need to consider the different players involved in the biological response to biomaterials and that timing of arrival of specific cell types will affect the outcome. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Effect of the Heat-Treated Ti6Al4V Alloy on the Fibroblastic Cell Response

    PubMed Central

    Chávez-Díaz, Mercedes Paulina; Escudero-Rincón, María Lorenza; Arce-Estrada, Elsa Miriam; Cabrera-Sierra, Román

    2017-01-01

    Two heat treatments were carried out below (Ti6Al4V800) and above (Ti6Al4V1050) Ti6Al4V beta-phase transformation temperature (980 °C), with the purpose of studying the effect of microstructure on the adhesion and proliferation of fibroblast cells, as well as their electrochemical behavior. These alloys were seeded with 10,000 L929 fibroblast cells and immersed for 7 days in the cell culture at 37 °C, pH 7.40, 5% CO2 and 100% relative humidity. Cell adhesion was characterized by Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) techniques. Polygonal and elongated cell morphology was observed independent of Ti6Al4V microstructure. Besides, C, O, P, S, Na and Cl signals were detected by Energy Dispersive X-Ray Spectroscopy (EDX), associated with the synthesis of organic compounds excreted by the cells, including protein adsorption from the medium. In certain areas on Ti6Al4V and Ti6Al4V800 alloys, cells were agglomerated (island type), likely related to the globular microstructure; meanwhile, larger cellular coverage is shown for Ti6Al4V1050 alloy, forming more than one layer on the surface, where only Ca was recorded. Impedance diagrams showed a similar passive behavior for the different Ti6Al4V alloys, mainly due to TiO2 overlaying the contribution of the organic compounds excreted by fibroblast cells. PMID:29301205

  19. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2010-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2009 – 14 September 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth ...8 Appendices…………………………………………………………………………… 8 Supporting Data……………………………………………………………………... 8 Fibroblast Growth Factor -2: an

  20. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells

    PubMed Central

    2013-01-01

    Introduction Malignant pleural mesothelioma (MPM) is an incurable malignant disease, which results from chronic exposition to asbestos in at least 70% of the cases. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts as well as on particular cancer types. Because of its expression on the cell surface, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by retroviral transfer of chimeric antigen receptors (CAR) against tumor-associated antigens (TAA) and therefore represent a therapeutic strategy of adoptive immunotherapy. Methods To evaluate FAP expression immunohistochemistry was performed in tumor tissue from MPM patients. CD8+ human T cells were retrovirally transduced with an anti-FAP-F19-∆CD28/CD3ζ-CAR. T cell function was evaluated in vitro by cytokine release and cytotoxicity assays. In vivo function was tested with an intraperitoneal xenograft tumor model in immunodeficient mice. Results FAP was found to be expressed in all subtypes of MPM. Additionally, FAP expression was evaluated in healthy adult tissue samples and was only detected in specific areas in the pancreas, the placenta and very weakly for cervix and uterus. Expression of the anti-FAP-F19-∆CD28/CD3ζ-CAR in CD8+ T cells resulted in antigen-specific IFNγ release. Additionally, FAP-specific re-directed T cells lysed FAP positive mesothelioma cells and inflammatory fibroblasts in an antigen-specific manner in vitro. Furthermore, FAP-specific re-directed T cells inhibited the growth of FAP positive human tumor cells in the peritoneal cavity of mice and significantly prolonged survival of mice. Conclusion FAP re-directed CD8+ T cells showed antigen-specific functionality in vitro and in vivo. Furthermore, FAP expression was verified in all MPM histotypes. Therefore, our data support performing a phase I clinical trial in which MPM patients are treated with adoptively transferred FAP-specific re

  1. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  2. Collaborative and Defensive Fibroblasts in Tumor Progression and Therapy Resistance.

    PubMed

    Chiavarina, Barbara; Turtoi, Andrei

    2017-01-01

    Tumor microenvironment is a complex network of epithelial cancer cells and non-transformed stromal cells. Of the many stromal cell types, fibroblasts are the most numerous ones and are traditionally viewed as supportive elements of cancer progression. Many studies show that cancer cells engage in active crosstalk with associated fibroblasts in order to obtain key resources, such as growth factors and nutrients. The facets of fibroblast "complicity to murder" in cancer are multiple. However, recent therapeutic attempts aiming at depleting fibroblasts from tumors, perturbed rather simplistic picture. Contrary to the expectations, tumors devoid of fibroblasts accelerated their progression while patients faced poorer outcomes. These studies remind us of the physiologic roles fibroblasts have in maintaining tissue homeostasis even in the presence of cancer. It is becoming increasingly clear that our research focus on advanced tumors has biased our understanding of fibroblast role in tumor biology. The numerous events where the fibroblasts protect the tissue from malignant transformation remain largely unacknowledged, as the tumors are invisible. The present review has the ambition to offer a more balanced view of fibroblasts functions in cancer progression and therapy resistance. We will address the question whether it is possible to synergize the efforts with fibroblasts as the therapeutic concept against tumor progression and therapy resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells

    NASA Astrophysics Data System (ADS)

    Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro

    2018-01-01

    Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.

  4. Direct Reprogramming of Murine Fibroblasts to Hematopoietic Progenitor Cells

    PubMed Central

    Batta, Kiran; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2014-01-01

    Summary Recent reports have shown that somatic cells, under appropriate culture conditions, could be directly reprogrammed to cardiac, hepatic, or neuronal phenotype by lineage-specific transcription factors. In this study, we demonstrate that both embryonic and adult somatic fibroblasts can be efficiently reprogrammed to clonal multilineage hematopoietic progenitors by the ectopic expression of the transcription factors ERG, GATA2, LMO2, RUNX1c, and SCL. These reprogrammed cells were stably expanded on stromal cells and possessed short-term reconstitution ability in vivo. Loss of p53 function facilitated reprogramming to blood, and p53−/− reprogrammed cells efficiently generated erythroid, megakaryocytic, myeloid, and lymphoid lineages. Genome-wide analyses revealed that generation of hematopoietic progenitors was preceded by the appearance of hemogenic endothelial cells expressing endothelial and hematopoietic genes. Altogether, our findings suggest that direct reprogramming could represent a valid alternative approach to the differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) for disease modeling and autologous blood cell therapies. PMID:25466247

  5. The fate of radiation induced giant-nucleated cells of human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Almahwasi, A. A.; Jeynes, J. C.; Bradley, D. A.; Regan, P. H.

    2017-11-01

    Radiation-induced giant-nucleated cells (GCs) have been observed to occur within survivors of irradiated cancerous and within healthy cells, both in vivo and in vitro. The expression of such morphological alterations is associated with genomic instability. This study was designed to investigate the fate of GCs induced in a normal human fibroblast cell line (AG1522) after exposure to 0.2, 1 or 2 Gy of X-ray or proton irradiation. The total of 79 individual AG1522 GCs present at 7, 14 or 21 days after each dose point were analysed from fluorescence microscopy images captured over approximately 120 h. The GCs were identified at the beginning of the observation period for each time point post-irradiation and the area of the cell nucleus was measured (μm2) using a cell-recognition MATLAB code. The results demonstrate that the majority of GCs had undergone a prolonged mitotic arrest, which might be an indication of the survival strategy. The live cell microscopy confirms that a giant-nucleated cell formed 14 days after exposure to 0.2 Gy of proton irradiation was divided into two asymmetrical normal-sized cells. These results suggest that a small fraction of GCs can proliferate and form progeny. Some of GCs had disappeared from the microscopy fields. The rate of their loss was decreased as the dose increased but there remains the potential for them to have progeny that could continue to proliferate, ultimately contributing to development of cancer risk. This important method to access delayed effects in normal tissues could act as a potential radioprotective assay for a dose-limiting parameter when applying radiotherapy. These results might have important implications in evaluating risk estimates for patients during radiation therapy treatment.

  6. M-FISH Analysis of Chromosome Aberrations in Human Fibroblast Cells After In Vitro Exposure to Low- and High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis

    2002-01-01

    The recently commercialized multiplex fluorescence in situ hybridization (m-FISH) technique, which allows human chromosomes to be painted in 24 different colors, was used to analyze chromosome aberrations in diploid human fibroblast cells after in vitro radiation exposure. Confluent flasks of a normal primary fibroblast cell line (AG 1522) were irradiated at high dose rates with either gamma rays or 200 MeV/nucleon Fe ions (LET = 440 keV/micron), incubated at 37 C for 24 hours after exposure, and subsequently subcultured. A chemically induced premature chromosome condensation technique was used to collect chromosome samples 32 hours after subculture. Results showed that the fraction of exchanges which were identified as complex, i.e. involving misrejoining of three or more DSB, were higher in the Fe-irradiated samples compared with the gamma-irradiated samples, as has been shown previously using FISH with one or two painted chromosomes . The ratios of complex/simple type exchanges were similar for samples irradiated with 0.7 Gy and 3 Gy of Fe ions, although exchanges involving five or more breaks were found only in 3 Gy irradiated samples. The fraction of incomplete exchanges was also higher in Fe- than gamma-irradiated samples. Data on the distribution of individual chromosome involvement in interchromosomal exchanges will be presented.

  7. Altered protein expression profile associated with phenotypic changes in lung fibroblasts co-cultured with gold nanoparticle-treated small airway epithelial cells.

    PubMed

    Ng, Cheng-Teng; Yung, Lin-Yue Lanry; Swa, Hannah Lee-Foon; Poh, Rebecca Wan-Yan; Gunaratne, Jayantha; Bay, Boon-Huat

    2015-01-01

    Despite the availability of toxicity studies on cellular exposure to gold nanoparticles (AuNPs), there is scarcity of information with regard to the bystander effects induced by AuNPs on neighboring cells not exposed to the NPs. In this study, we showed that exposure of small airway epithelial cells (SAECs) to AuNPs induced changes in protein expression associated with functional effects in neighboring MRC5 lung fibroblasts in a co-culture system. Uptake of 20 nm size AuNPs by SAECs was first verified by focused ion beam scanning electron microscopy. Subsequently, pretreated SAECs were co-cultured with unexposed MRC5 lung fibroblasts, which then underwent proteome profiling using a quantitative proteomic approach. Stable-isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry identified 109 proteins (which included 47 up-regulated and 62 down-regulated proteins) that were differentially expressed in the lung fibroblasts co-cultured with AuNP pretreated SAECs. There was altered expression of proteins such as Paxillin, breast cancer anti-estrogen resistance 1 and Caveolin-1, which are known to be involved in the cell adhesion process. Morphological studies revealed that there was a concomitant increase in cell adhesion and altered F-actin stress fiber arrangement involving vinculin in the lung fibroblasts. It is likely that phenotypic changes observed in the underlying lung fibroblasts were mediated by AuNP-induced downstream signals in the pretreated SAECs and cell-cell cross talk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacci, E.; Villa, A.; Parmar, M.

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markersmore » like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.« less

  9. Establishment and partial characterization of a cell line from burbot Lota lota maculosa: susceptibility to IHNV, IPNV and VHSV.

    USGS Publications Warehouse

    Batts, William N.; Polinski, Mark P.; Drennan, John D.; Ireland, Susan C.; Cain, Kenneth D.

    2010-01-01

    This study describes the development and partial characterization of a continuous fibroblastic-like cell line (BEF-1) developed from late stage embryos of North American burbot Lota lota maculosa. This cell line has been maintained for over 5 yr and 100 passages in vitro. Cells were cultured using Eagle’s minimum essential medium with Earle’s salts (MEM) supplemented with GlutaMAX™, and 10% fetal bovine serum (FBS), pH 7.4. The addition of penicillin-streptomycin-neomycin (PSN) antibiotic mixture (0.05, 0.05, 0.1 mg ml–1, respectively) did not negatively influence cell replication; however, the antimycotic Fungizone™ (2.5 µg ml–1, amphotericin B) caused cell rounding and resulted in a severe decrease in cell proliferation. Optimal incubation temperature has been observed between 15 and 23°C, and at these temperatures cultures are routinely passed using standard trypsinization methods every 5 to 7 d at a split ratio of 1:3 or 1:4. The cell line was susceptible to isolates of the M and U North American genotypes of infectious hematopoietic necrosis virus (IHNV), and to isolates of genotypes I, IVa, and IVb of viral hemorrhagic septicemia virus (VHSV). In contrast, the cell line was refractory to infection by 2 North American isolates of infectious pancreatic necrosis virus (IPNV) from serotypes A1 and A9. This cell line provides a new laboratory tool, will allow further investigation into viral diseases of burbot and possibly other species, and is the first immortalized cell line reported from a species in the Gadidae (cod) family.

  10. Establishment and partial characterization of a cell line from burbot Lota lota maculosa: susceptibility to IHNV, IPNV and VHSV.

    PubMed

    Polinski, Mark P; Drennan, John D; Batts, William N; Ireland, Susan C; Cain, Kenneth D

    2010-05-18

    This study describes the development and partial characterization of a continuous fibroblastic-like cell line (BEF-1) developed from late stage embryos of North American burbot Lota lota maculosa. This cell line has been maintained for over 5 yr and 100 passages in vitro. Cells were cultured using Eagle's minimum essential medium with Earle's salts (MEM) supplemented with GlutaMAX, and 10% fetal bovine serum (FBS), pH 7.4. The addition of penicillin-streptomycin-neomycin (PSN) antibiotic mixture (0.05, 0.05, 0.1 mg m(-1), respectively) did not negatively influence cell replication; however, the antimycotic FungizoneTM (2.5 microg m(-1), amphotericin B) caused cell rounding and resulted in a severe decrease in cell proliferation. Optimal incubation temperature has been observed between 15 and 23 degrees C, and at these temperatures cultures are routinely passed using standard trypsinization methods every 5 to 7 d at a split ratio of 1:3 or 1:4. The cell line was susceptible to isolates of the M and U North American genotypes of infectious hematopoietic necrosis virus (IHNV), and to isolates of genotypes I, IVa, and IVb of viral hemorrhagic septicemia virus (VHSV). In contrast, the cell line was refractory to infection by 2 North American isolates of infectious pancreatic necrosis virus (IPNV) from serotypes A1 and A9. This cell line provides a new laboratory tool, will allow further investigation into viral diseases of burbot and possibly other species, and is the first immortalized cell line reported from a species in the Gadidae (cod) family.

  11. Cell cycle synchronization and analysis of apoptosis-related gene in skin fibroblasts from domestic cat (Felis silvestris catus) and kodkod (Leopardus guigna).

    PubMed

    Veraguas, D; Gallegos, P F; Castro, F O; Rodriguez-Alvarez, L

    2017-10-01

    The kodkod population is in constant decrease and the somatic cell nuclear transfer (SCNT) might help to preserve the genetic pool of this species. The cell cycle synchronization of donor cells plays a crucial role in SCNT. The objective of this research was to evaluate two different methods for quiescence induction, serum starvation (SS) and contact inhibition (CI), both for 1, 3 and 5 days, on skin fibroblast from domestic cat and kodkod. Flow cytometry analysis revealed that in domestic cat, SS and CI, both at 3 and 5 days, increased the percentage of fibroblasts in G0/G1 compared to growing cells (GC) (p < .05). In kodkod, only SS for 3 and 5 days and CI for 1 and 3 days increased the percentage of fibroblasts in G0/G1 compared to GC (p < .05). Viability analysis by differential staining revealed that SS for 5 days decreased the proportion of live fibroblasts in domestic cat and kodkod (p < .05). Regarding gene expression analysis, in domestic cat fibroblasts, no differences were found in the BAX/BCL2 ratio in SS and CI (both at 1, 3 and 5 days) compared to GC. In kodkod fibroblasts, BAX/BCL2 ratio was increased in CI at 3 and 5 days compared to SS at 3 and 5 days (p < .05). In conclusion, in kodkod fibroblasts SS for 5 days and CI after 3 days might have a negative impact on cellular viability. According to these results, we suggest SS for 3 days for cell cycle synchronization in kodkod fibroblasts. © 2017 Blackwell Verlag GmbH.

  12. Determine the yield of micronucleated cells in primary human fibroblasts exposed to focused soft X-rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. Prise

    This project was a small part of a larger collaborative study headed by Dr Aloke Chatterjee, (Lawrence Berkeley National Laboratory) and including Drs Les Braby, John Ford (Texas A&M) and Kathy Held (MGH Boston), which was developing an integrated theoretical and experimental model of the radiation-induced bystander response. Our part of the study has been to determine the effectiveness of soft X-rays at inducing chromosomal damage under conditions of direct and bystander exposure. The aim was to compare this with the effectiveness of the low energy 60 kV electron microbeam available at Texas A&M. Previous studies have been performed withmore » primary human fibroblasts measuring micronuclei formation to determine the relative yields of direct versus bystander mediated micronuclei formation after cells were individually irradiated utilizing our novel focused soft X-ray microprobe, which is capable of producing localized submicron beams of carbon-K (278 eV) X-rays. Only a brief overview is given here as the study has been published in several papers. Our original hypothesis was to study yields of bystander-induced micronucleated cells in both wild-type and mutant fibroblast from mouse embryo fibroblasts. Difficulties with the level of background micronuclei in the MEFs prevented systematic studies of bystander responses in the laboratories involved in the collaboration. We then performed these studies with AG1522 primary human fibroblast cells using a siRNA approach developed by John Ford at Texas A&M to knock down DNA PKcs in the first instance. Our soft X-ray source has been in routine use for carbon-K X-rays and is now available with Aluminium-K (1.49 keV) and titanium-K (4.5 keV), although the dose-rate from titanium is still too low at present for most experiments, where large numbers of cells need to be exposed. A separately funded project developed a new soft X-ray microprobe which will give much greater flexibility for changing energies and giving high

  13. Cathepsin B is the driving force of esophageal cell invasion in a fibroblast-dependent manner.

    PubMed

    Andl, Claudia D; McCowan, Kelsey M; Allison, Gillian L; Rustgi, Anil K

    2010-06-01

    Esophageal cancer, which frequently exhibits coordinated loss of E-cadherin (Ecad) and transforming growth factor beta (TGFbeta) receptor II (TbetaRII), has a high mortality rate. In a three-dimensional organotypic culture model system, esophageal keratinocytes expressing dominant-negative mutant versions of both Ecad and TbetaRII (ECdnT) invade into the underlying matrix embedded with fibroblasts. We also find that cathepsin B induction is necessary for fibroblast-mediated invasion. Furthermore, the ECdnT cells in this physiological context activate fibroblasts through the secretion of TGFbeta1, which, in turn, is activated by cathepsin B. These results suggest that the interplay between the epithelial compartment and the surrounding microenvironment is crucial to invasion into the extracellular matrix.

  14. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  15. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  16. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    PubMed Central

    Reijnders, Christianne M.A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely

  17. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts.

    PubMed

    Reijnders, Christianne M A; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J; Gibbs, Susan

    2015-09-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin-eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely

  18. Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells.

    PubMed

    Ishimoto, Takatsugu; Miyake, Keisuke; Nandi, Tannistha; Yashiro, Masakazu; Onishi, Nobuyuki; Huang, Kie Kyon; Lin, Suling Joyce; Kalpana, Ramnarayanan; Tay, Su Ting; Suzuki, Yuka; Cho, Byoung Chul; Kuroda, Daisuke; Arima, Kota; Izumi, Daisuke; Iwatsuki, Masaaki; Baba, Yoshifumi; Oki, Eiji; Watanabe, Masayuki; Saya, Hideyuki; Hirakawa, Kosei; Baba, Hideo; Tan, Patrick

    2017-07-01

    Fibroblasts that interact with cancer cells are called cancer-associated fibroblasts (CAFs), which promote progression of different tumor types. We investigated the characteristics and functions of CAFs in diffuse-type gastric cancers (DGCs) by analyzing features of their genome and gene expression patterns. We isolated CAFs and adjacent non-cancer fibroblasts (NFs) from 110 gastric cancer (GC) tissues from patients who underwent gastrectomy in Japan from 2008 through 2016. Cells were identified using specific markers of various cell types by immunoblot and flow cytometry. We selected pairs of CAFs and NFs for whole-exome and RNA sequencing analyses, and compared expression of specific genes using quantitative reverse transcription PCR. Protein levels and phosphorylation were compared by immunoblot and immunofluorescence analyses. Rhomboid 5 homolog 2 (RHBDF2) was overexpressed from a transgene in fibroblasts or knocked down using small interfering RNAs. Motility and invasiveness of isolated fibroblasts and GC cell lines (AGS, KATOIII, MKN45, NUGC3, NUGC4, OCUM-2MD3 and OCUM-12 cell lines) were quantified by real-time imaging analyses. We analyzed 7 independent sets of DNA microarray data from patients with GC and associated expression levels of specific genes with patient survival times. Nude mice were given injections of OCUM-2MD3 in the stomach wall; tumors and metastases were collected and analyzed by immunohistochemistry. Many of the genes with increased expression in CAFs compared with NFs were associated with transforming growth factor beta 1 (TGFB1) activity. When CAFs were cultured in extracellular matrix, they became more motile than NFs; DGC cells incubated with CAFs were also more motile and invasive in vitro than DGC cells not incubated with CAFs. When injected into nude mice, CAF-incubated DGC cells invaded a greater number of lymphatic vessels than NF-incubated DGC cells. We identified RHBDF2 as a gene overexpressed in CAFs compared with NFs

  19. Metabolic Profile of Oral Squamous Carcinoma Cell Lines Relies on a Higher Demand of Lipid Metabolism in Metastatic Cells

    PubMed Central

    Sant’Anna-Silva, Ana Carolina B.; Santos, Gilson C.; Campos, Samir P. Costa; Oliveira Gomes, André Marco; Pérez-Valencia, Juan Alberto; Rumjanek, Franklin David

    2018-01-01

    Tumor cells are subjected to a broad range of selective pressures. As a result of the imposed stress, subpopulations of surviving cells exhibit individual biochemical phenotypes that reflect metabolic reprograming. The present work aimed at investigating metabolic parameters of cells displaying increasing degrees of metastatic potential. The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines derived from human tongue squamous cell carcinoma lineages displaying increasing metastatic potential (SCC9 ZsG, LN1 and LN2) were analyzed by 1H NMR (nuclear magnetic resonance) spectroscopy. Living, intact cells were also examined by the non-invasive method of fluorescence lifetime imaging microscopy (FLIM) based on the auto fluorescence of endogenous NADH. The cell lines reproducibly exhibited distinct metabolic profiles confirmed by Partial Least-Square Discriminant Analysis (PLS-DA) of the spectra. Measurement of endogenous free and bound NAD(P)H relative concentrations in the intact cell lines showed that ZsG and LN1 cells displayed high heterogeneity in the energy metabolism, indicating that the cells would oscillate between glycolysis and oxidative metabolism depending on the microenvironment’s composition. However, LN2 cells appeared to have more contributions to the oxidative status, displaying a lower NAD(P)H free/bound ratio. Functional experiments of energy metabolism, mitochondrial physiology, and proliferation assays revealed that all lineages exhibited similar energy features, although resorting to different bioenergetics strategies to face metabolic demands. These differentiated functions may also promote metastasis. We propose that lipid metabolism is related to the increased invasiveness as a result of the accumulation of malonate, methyl malonic acid, n-acetyl and unsaturated fatty acids (CH2)n in parallel with the metastatic potential progression, thus suggesting that the NAD(P)H reflected the lipid catabolic

  20. Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: tumor allies and foes.

    PubMed

    Ronca, Roberto; Van Ginderachter, Jo A; Turtoi, Andrei

    2018-01-01

    Tumor stroma is composed of many cellular subtypes, of which the most abundant are fibroblasts, macrophages and endothelial cells. During the process of tissue injury, these three cellular subtypes must coordinate their activity to efficiently contribute to tissue regeneration. In tumor, this mechanism is hijacked by cancer cells, which rewire the interaction of stromal cells to benefit tumor development. The present review aims at summarizing most relevant information concerning both pro-tumorigenic and anti-tumorigenic actions implicating the three stromal cell subtypes as well as their mutual interactions. Although stromal cells are generally regarded as tumor-supportive and at will manipulated by cancer cells, several novel studies point at many defaults in cancer cell-mediated stromal reprograming. Indeed, parts of initial tissue-protective and homeostatic functions of the stromal cells remain in place even after tumor development. Both tumor-supportive and tumor-suppressive functions have been well described for macrophages, whereas similar results are emerging for fibroblasts and endothelial cells. Recent success of immunotherapies have finally brought the long awaited proof that stroma is key for efficient tumor targeting. However, a better understanding of paracrine stromal interactions is needed in order to encourage drug development not only aiming at disruption of tumor-supportive communication but also re-enforcing, existing, tumor-suppressive mechanisms.

  1. Effects of 13 T Static Magnetic Fields (SMF) in the Cell Cycle Distribution and Cell Viability in Immortalized Hamster Cells and Human Primary Fibroblasts Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Guoping; Chen, Shaopeng; Zhao, Ye; Zhu, Lingyan; Huang, Pei; Bao, Lingzhi; Wang, Jun; Wang, Lei; Wu, Lijun; Wu, Yuejin; Xu, An

    2010-02-01

    Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster cells after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.

  2. High p-Smad2 expression in stromal fibroblasts predicts poor survival in patients with clinical stage I to IIIA non-small cell lung cancer.

    PubMed

    Chen, Yongbing; Xing, Pengfei; Chen, Yuanyuan; Zou, Li; Zhang, Yongsheng; Li, Feng; Lu, Xueguan

    2014-11-05

    Increasing evidence indicates that the TGFβ/Smad signaling pathway plays a prominent role in tumor initiation, progression, and metastasis. Therefore, we investigate the expression of p-Smad2 in surgical resection specimens from non-small cell lung cancer, and evaluate the prognostic significance of p-Smad2 expression in stromal fibroblasts and cancer cells for patients with clinical stage I to IIIA non-small cell lung cancer. The immunohistochemical expression of p-Smad2 was evaluated in 78 formalin-fixed paraffin-embedded surgical resection specimens from clinical stage I to IIIA non-small cell lung cancer. Correlations between p-Smad2 expression and clinicopathologic characteristics were determined by Chi-square test. The prognostic significance of p-Smad2 expression in stromal fibroblasts and cancer cells with regard to overall survival was determined by Kaplan-Meier. There were 38.5% (30/78) and 92.3% (72/78) patients with high p-Smad2 expression in stromal fibroblasts and cancer cells, respectively. There was a positive correlation between the p-Smad2 expression level in stromal fibroblasts and the p-Smad2 expression level in cancer cells (χ2=4.176, P=0.045). No significant correlation of p-Smad2 expression in stromal fibroblasts or cancer cells with any of clinicopathologic characteristics was found. The 3-year overall survival rates with low and high p-Smad2 expression in stromal fibroblasts were 53.7% and 37.7%, respectively (χ2=3.86, P=0.049). No significant association was found between low and high p-Smad2 expression in cancer cells with respect to overall survival, respectively (χ2=0.34, P=0.562). The results suggested that high p-Smad2 expression in stromal fibroblasts predicted poor survival in patients with clinical stage I to IIIA non-small cell lung cancer.

  3. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    PubMed

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  4. Pirfenidone and nintedanib modulate properties of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis.

    PubMed

    Lehtonen, Siri T; Veijola, Anniina; Karvonen, Henna; Lappi-Blanco, Elisa; Sormunen, Raija; Korpela, Saara; Zagai, Ulrika; Sköld, Magnus C; Kaarteenaho, Riitta

    2016-02-04

    Idiopathic pulmonary fibrosis (IPF) is an incurable lung disease with a poor prognosis. Fibroblasts and myofibroblasts are the key cells in the fibrotic process. Recently two drugs, pirfenidone and nintedanib, were approved for clinical use as they are able to slow down the disease progression. The mechanisms by which these two drugs act in in vitro cell systems are not known. The aim of this study was therefore to examine the effects of pirfenidone and nintedanib on fibroblasts and myofibroblasts structure and function established from patients with or without IPF. Stromal cells were collected and cultured from control lung (n = 4) or IPF (n = 7). The cells were treated with pirfenidone and/or nintedanib and the effect of treatment was evaluated by measuring cell proliferation, alpha smooth muscle actin (α-SMA) and fibronectin expression by Western analysis and/or immunoelectron microscopy, ultrastructural properties by transmission electron microscopy and functional properties by collagen gel contraction and invasion assays. Both pirfenidone and nintedanib reduced in vitro proliferation of fibroblastic cells in a dose dependent manner. The number of cells from control lung was reduced to 47 % (p = 0.04) and of IPF cells to 42 % (p = 0.04) by 1 mM pirfenidone and correspondingly to 67 % (p = 0.04) and 68 % (p = 0.04), by 1 μM nintedanib. If both drugs were used together, a further reduced proliferation was observed. Both pirfenidone and nintedanib were able to reduce the amount of α-SMA and the myofibroblastic appearance although the level of reduction was cell line dependent. In functional assays, the effect of both drugs was also variable. We conclude that the ultrastructure and function of fibroblasts and myofibroblasts are affected by pirfenidone and nintedanib. Combination of the drugs reduced cell proliferation more than either of them individually. Human lung derived cell culture systems represent a potential platform for

  5. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts.

    PubMed

    Lamprecht, Sergio; Sigal-Batikoff, Ina; Shany, Shraga; Abu-Freha, Naim; Ling, Eduard; Delinasios, George J; Moyal-Atias, Keren; Delinasios, John G; Fich, Alexander

    2018-02-27

    It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs-the most abundant cell population of the tumor microenvironment (TME)-as target cells.

  6. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts.

    PubMed

    Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L

    2014-05-01

    Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Effects of diamines on ornithine decarboxylase activity in control and virally transformed mouse fibroblasts.

    PubMed Central

    Bethell, D R; Pegg, A E

    1979-01-01

    1. The induction of ornithine decarboxylase activity in mouse 3T3 fibroblasts or an SV-40 transformed 3T3 cell line by serum was prevented by addition of the naturally occurring polyamines putrescine (butane-1,4-diamine) and spermidine. Much higher concentrations of these amines were required to fully suppress ornithine decarboxylase activity in the transformed SV-3T3 cells than in the 3T3 fibroblasts. 2. Synthetic alpha omega-diamines with 3--12 carbon atoms also prevented the increase in ornithine decarboxylase activity induced by serum in these cells. The longer chain diamines were somewhat more potent than propane-1,3-diamine in this effect, but the synthetic diamines were less active than putrescine in the 3T3 cells. There was little difference between the responses of 3T3 and SV-3T3 cells to the synthetic diamines propane-1,3-diamine and heptane-1,7-diamine. 3. These results are discussed in relation to the control of polyamine synthesis in mammalian cells. PMID:486108

  8. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    PubMed

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  9. Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells.

    PubMed

    Peng, Yanxian; Bocker, Michael Thomas; Holm, Jennifer; Toh, Wei Seong; Hughes, Christopher Stephen; Kidwai, Fahad; Lajoie, Gilles Andre; Cao, Tong; Lyko, Frank; Raghunath, Michael

    2012-11-01

    Stable pluripotent feeder-free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel™ (BD Singapore) is a murine sarcoma-derived extracellular matrix (ECM) widely used as a cell-free support combined with conditioned or chemically defined media; however, inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time-consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study, we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI-38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization, the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically-defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance, only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel, contained no vitronectin but did contain collagen XII, ig-h3 and novel for hESC-supporting human matrices, substantial amounts of transglutaminase 2. Genome-wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM- and Matrigel-cultured hESCs; however, distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus, human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Effects of neuropeptides on human lung fibroblast proliferation and chemotaxis.

    PubMed

    Harrison, N K; Dawes, K E; Kwon, O J; Barnes, P J; Laurent, G J; Chung, K F

    1995-02-01

    An increase in subepithelial mesenchymal cells and associated connective tissue is a feature of bronchial asthma. We determined whether neuropeptides could modulate fibroblast activity, particularly with respect to proliferation and chemotaxis. Human lung fibroblasts were cultured with neurokinin A (NKA), substance P (SP), vasoactive intestinal peptide (VIP), and calcitonin-gene-related peptide (CGRP). After 48 h, fibroblast proliferation was measured by a colorimetric assay based on the uptake and subsequent release of methylene blue. The chemotactic response to neuropeptides was determined with the use of a modified Boyden chamber. Both NKA and SP (10(-7)-10(-4) M) stimulated human lung fibroblast proliferation in HFL1 and IMR-90 fibroblasts. VIP and CGRP had no effect on fibroblast proliferation. NKA alone stimulated fibroblast chemotaxis maximally at 10(-10) M. Neutral endopeptidase (NEP) activity of 0.52 and 5.2 pmol/10(6) cells was assayed in IMR-90 and Hs68 fibroblasts, respectively. Phosphoramidon (5 x 10(-6)-10(-5) M), an NEP inhibitor, enhanced fibroblast proliferation in a dose-dependent manner. Thus neuropeptides have the potential to cause activation of mesenchymal cells, and neuropeptide release may contribute to the structural abnormalities observed in asthmatic airways.

  11. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    PubMed

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen.

    PubMed

    Banerjee, Arinjay; Rapin, Noreen; Miller, Megan; Griebel, Philip; Zhou, Yan; Munster, Vincent; Misra, Vikram

    2016-11-01

    It is speculated that bats are important reservoir hosts for numerous viruses, with 27 viral families reportedly detected in bats. Majority of these viruses have not been isolated and there is little information regarding their biology in bats. Establishing a well-characterized bat cell line supporting the replication of bat-borne viruses would facilitate the analysis of virus-host interactions in an in vitro model. Currently, few bat cell lines have been developed and only Tb1-Lu, derived from Tadarida brasiliensis is commercially available. Here we describe a method to establish and immortalize big brown bat (Eptesicus fuscus) kidney (Efk3) cells using the Myotis polyomavirus T-antigen. Subclones of this cell line expressed both epithelial and fibroblast markers to varying extents. Cell clones expressed interferon beta in response to poly(I:C) stimulation and supported the replication of four different viruses, namely, vesicular stomatitis virus (VSV), porcine epidemic diarrhea coronavirus (PED-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and herpes simplex virus (HSV). To our knowledge, this is the first bat cell line from a northern latitude insectivorous bat developed using a novel technology. The cell line has the potential to be used for isolation of bat viruses and for studying virus-bat interactions in culture. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines.

    PubMed

    Abdi-Ali, A; Worobec, E A; Deezagi, A; Malekzadeh, F

    2004-05-01

    Pyocin typing of 82 Pseudomonas aeruginosa strains, collected from different Iranian clinical sources, revealed that one isolate, P. aeruginosa 42A, produced pyocin S2, a protease-sensitive bacteriocin. Pyocin S2 production was induced by mitomycin C (2 micro g/mL) in the pyocin S2 producer P. aeruginosa 42A. Pyocin S2 was purified using ion exchange chromatography with CM-Sepharose CL-6B and sodium phosphate buffer (pH 8) from an 80% ammonium sulfate precipitate of whole-cell lysates. Pyocin activity of the fractions was detected using the Govan spot testing method. The purity of the active fraction was confirmed by SDS-PAGE, where a single band with a molecular mass of 74 kDa was detected. Cytotoxic effects of purified pyocin S2 and partially purified pyocin from P. aeruginosa 42A on the human tumor cell lines HepG2 and Im9 and the normal human cell line HFFF (Human Foetal Foreskin Fibroblast) were studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrated that partially purified pyocin and pyocin S2 exhibited substantial inhibitory effects on the growth of the tumor cell lines HepG2 and Im9, while no inhibitory effects were observed on the normal cell line HFFF. Pure lipopolysaccharide was used as a control and was found to have no inhibitory effect on any of the cell lines tested.

  14. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells.

    PubMed

    Wiley, Shu Z; Sriram, Krishna; Liang, Wenjing; Chang, Sarah E; French, Randall; McCann, Thalia; Sicklick, Jason; Nishihara, Hiroshi; Lowy, Andrew M; Insel, Paul A

    2018-03-01

    The microenvironment of pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma (desmoplasia) generated by pancreatic cancer-associated fibroblasts (CAFs) derived from pancreatic stellate cells (PSCs) and pancreatic fibroblasts (PFs). Using an unbiased GPCRomic array approach, we identified 82 G-protein-coupled receptors (GPCRs) commonly expressed by CAFs derived from 5 primary PDAC tumors. Compared with PSCs and PFs, CAFs have increased expression of GPR68 (a proton-sensing GPCR), with the results confirmed by immunoblotting, The Cancer Genome Atlas data, and immunohistochemistry of PDAC tumors. Co-culture of PSCs with PDAC cells, or incubation with TNF-α, induced GPR68 expression. GPR68 activation (by decreasing the extracellular pH) enhanced IL-6 expression via a cAMP/PKA/cAMP response element binding protein signaling pathway. Knockdown of GPR68 by short interfering RNA diminished low pH-induced production of IL-6 and enhancement of PDAC cell proliferation by CAF conditioned media. CAFs from other gastrointestinal cancers also express GPR68. PDAC cells thus induce expression by CAFs of GPR68, which senses the acidic microenvironment, thereby increasing production of fibrotic markers and IL-6 and promoting PDAC cell proliferation. CAF-expressed GPR68 is a mediator of low-pH-promoted regulation of the tumor microenvironments, in particular to PDAC cell-CAF interaction and may be a novel therapeutic target for pancreatic and perhaps other types of cancers.-Wiley, S. Z., Sriram, K., Liang, W., Chang, S. E., French, R., McCann, T., Sicklick, J., Nishihara, H., Lowy, A. M., Insel, P. A. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells.

  15. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.

    PubMed

    Brown, Jacqueline; Bothma, Hannelie; Veale, Robin; Willem, Pascale

    2011-06-28

    To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

  16. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes

    PubMed Central

    Brown, Jacqueline; Bothma, Hannelie; Veale, Robin; Willem, Pascale

    2011-01-01

    AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. CONCLUSION: The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines. PMID:21734802

  17. Lysine hydroxylation of collagen in a fibroblast cell culture system

    NASA Technical Reports Server (NTRS)

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  18. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  19. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors

    PubMed Central

    Seip, Kotryna; Nygaard, Vigdis; Haugen, Mads H.; Engesæter, Birgit Ø.; Mælandsmo, Gunhild M.; Prasmickaite, Lina

    2016-01-01

    The knowledge on how tumor-associated stroma influences efficacy of anti-cancer therapy just started to emerge. Here we show that lung fibroblasts reduce melanoma sensitivity to the BRAF inhibitor (BRAFi) vemurafenib only if the two cell types are in close proximity. In the presence of fibroblasts, the adjacent melanoma cells acquire de-differentiated mesenchymal-like phenotype. Upon treatment with BRAFi, such melanoma cells maintain high levels of phospho ribosomal protein S6 (pS6), i.e. active mTOR signaling, which is suppressed in the BRAFi sensitive cells without stromal contacts. Inhibitors of PI3K/mTOR in combination with BRAFi eradicate pS6high cell subpopulations and potentiate anti-cancer effects in melanoma protected by the fibroblasts. mTOR and BRAF co-inhibition also delayed the development of early-stage lung metastases in vivo. In conclusion, we demonstrate that upon influence from fibroblasts, melanoma cells undergo a phenotype switch to the mesenchymal state, which can support PI3K/mTOR signaling. The lost sensitivity to BRAFi in such cells can be overcome by co-targeting PI3K/mTOR. This knowledge could be explored for designing BRAFi combination therapies aiming to eliminate both stroma-protected and non-protected counterparts of metastases. PMID:26918352

  20. Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2).

    PubMed

    Dvorak, Kaitlyn M; Pettee, Krista M; Rubinic-Minotti, Kaitlin; Su, Robin; Nestor-Kalinoski, Andrea; Eisenmann, Kathryn M

    2018-01-01

    The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells.