Sample records for fibroblasts lacking peroxisome

  1. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Asish K; Wei, Jun; Wu, Minghua

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI),more » and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.« less

  2. Abnormality in catalase import into peroxisomes leads to severe neurological disorder

    PubMed Central

    Sheikh, Faruk G.; Pahan, Kalipada; Khan, Mushfiquddin; Barbosa, Ernest; Singh, Inderjit

    1998-01-01

    Peroxisomal disorders are lethal inherited diseases caused by either defects in peroxisome assembly or dysfunction of single or multiple enzymatic function(s). The peroxisomal matrix proteins are targeted to peroxisomes via the interaction of peroxisomal targeting signal sequences 1 and 2 (PTS1 or PTS2) with their respective cytosolic receptors. We have studied human skin fibroblast cell lines that have multiple peroxisomal dysfunctions with normal packaging of PTS1 and PTS2 signal-containing proteins but lack catalase in peroxisomes. To understand the defect in targeting of catalase to peroxisomes and the loss of multiple enzyme activities, we transfected the mutant cells with normal catalase modified to contain either PTS1 or PTS2 signal sequence. We demonstrate the integrity of these pathways by targeting catalase into peroxisomes via PTS1 or PTS2 pathways. Furthermore, restoration of peroxisomal functions by targeting catalase-SKL protein (a catalase fused to the PTS1 sequence) to peroxisomes indicates that loss of multiple functions may be due to their inactivation by H2O2 or other oxygen species in these catalase-negative peroxisomes. In addition to enzyme activities, targeting of catalase-SKL chimera to peroxisomes also corrected the in situ levels of fatty acids and plasmalogens in these mutant cell lines. In normal fibroblasts treated with aminotriazole to inhibit catalase, we found that peroxisomal functions were inhibited to the level found in mutant cells, an observation that supports the conclusion that multiple peroxisomal enzyme defects in these patients are caused by H2O2 toxicity in catalase-negative peroxisomes. Moreover, targeting of catalase to peroxisomes via PTS1 and PTS2 pathways in these mutant cell lines suggests that there is another pathway for catalase import into peroxisomes and that an abnormality in this pathway manifests as a peroxisomal disease. PMID:9501198

  3. Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders.

    PubMed

    Klouwer, Femke C C; Huffnagel, Irene C; Ferdinandusse, Sacha; Waterham, Hans R; Wanders, Ronald J A; Engelen, Marc; Poll-The, Bwee Tien

    2016-08-01

    Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders, X-linked adrenoleukodystrophy, and multiple single enzyme deficiencies. There are several core phenotypes caused by peroxisomal dysfunction that clinicians can recognize. The diagnosis is suggested by biochemical testing in blood and urine and confirmed by functional assays in cultured skin fibroblasts, followed by mutation analysis. This review describes the phenotype of the main peroxisomal disorders and possible pitfalls in (laboratory) diagnosis to aid clinicians in the recognition of this group of diseases. Georg Thieme Verlag KG Stuttgart · New York.

  4. Peroxisomes in brain development and function☆

    PubMed Central

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-01-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  5. Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities.

    PubMed

    Wang, Xiao-Ming; Yik, Wing Yan; Zhang, Peilin; Lu, Wange; Huang, Ning; Kim, Bo Ram; Shibata, Darryl; Zitting, Madison; Chow, Robert H; Moser, Ann B; Steinberg, Steven J; Hacia, Joseph G

    2015-08-29

    Zellweger spectrum disorder (PBD-ZSD) is a disease continuum caused by mutations in a subset of PEX genes required for normal peroxisome assembly and function. They highlight the importance of peroxisomes in the development and functions of the central nervous system, liver, and other organs. To date, the underlying bases for the cell-type specificity of disease are not fully elucidated. Primary skin fibroblasts from seven PBD-ZSD patients with biallelic PEX1, PEX10, PEX12, or PEX26 mutations and three healthy donors were transduced with retroviral vectors expressing Yamanaka reprogramming factors. Candidate induced pluripotent stem cells (iPSCs) were subject to global gene expression, DNA methylation, copy number variation, genotyping, in vitro differentiation and teratoma formation assays. Confirmed iPSCs were differentiated into neural progenitor cells (NPCs), neurons, oligodendrocyte precursor cells (OPCs), and hepatocyte-like cell cultures with peroxisome assembly evaluated by microscopy. Saturated very long chain fatty acid (sVLCFA) and plasmalogen levels were determined in primary fibroblasts and their derivatives. iPSCs were derived from seven PBD-ZSD patient-derived fibroblasts with mild to severe peroxisome assembly defects. Although patient and control skin fibroblasts had similar gene expression profiles, genes related to mitochondrial functions and organelle cross-talk were differentially expressed among corresponding iPSCs. Mitochondrial DNA levels were consistent among patient and control fibroblasts, but varied among all iPSCs. Relative to matching controls, sVLCFA levels were elevated in patient-derived fibroblasts, reduced in patient-derived iPSCs, and not significantly different in patient-derived NPCs. All cell types derived from donors with biallelic null mutations in a PEX gene showed plasmalogen deficiencies. Reporter gene assays compatible with high content screening (HCS) indicated patient-derived OPC and hepatocyte-like cell cultures had

  6. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    PubMed

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  7. A PEX6-defective peroxisomal biogenesis disorder with severe phenotype in an infant, versus mild phenotype resembling Usher syndrome in the affected parents.

    PubMed

    Raas-Rothschild, Annick; Wanders, Ronald J A; Mooijer, Petra A W; Gootjes, Jeannette; Waterham, Hans R; Gutman, Alisa; Suzuki, Yasuyuki; Shimozawa, Nobuyuki; Kondo, Naomi; Eshel, Gideon; Espeel, Marc; Roels, Frank; Korman, Stanley H

    2002-04-01

    Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.

  8. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiuguo; Tanaka, Naoki; Nakajima, Takero

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  9. An ER-peroxisome tether exerts peroxisome population control in yeast

    PubMed Central

    Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A

    2013-01-01

    Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers. PMID:23900285

  10. PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

    PubMed Central

    Schlüter, Agatha; Fourcade, Stéphane; Domènech-Estévez, Enric; Gabaldón, Toni; Huerta-Cepas, Jaime; Berthommier, Guillaume; Ripp, Raymond; Wanders, Ronald J. A.; Poch, Olivier; Pujol, Aurora

    2007-01-01

    Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle. PMID:17135190

  11. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders

    PubMed Central

    Law, Kelsey B.; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O.; Moser, Ann; Brumell, John H.; Braverman, Nancy

    2017-01-01

    ABSTRACT Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs. PMID:28521612

  12. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders.

    PubMed

    Law, Kelsey B; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O; Moser, Ann; Brumell, John H; Braverman, Nancy; Kim, Peter K

    2017-05-04

    Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.

  13. A New Yeast Peroxin, Pex36, a Functional Homolog of Mammalian PEX16, Functions in the ER-to-Peroxisome Traffic of Peroxisomal Membrane Proteins.

    PubMed

    Farré, Jean-Claude; Carolino, Krypton; Stasyk, Oleh V; Stasyk, Olena G; Hodzic, Zlatan; Agrawal, Gaurav; Till, Andreas; Proietto, Marco; Cregg, James; Sibirny, Andriy A; Subramani, Suresh

    2017-11-24

    Peroxisomal membrane proteins (PMPs) traffic to peroxisomes by two mechanisms: direct insertion from the cytosol into the peroxisomal membrane and indirect trafficking to peroxisomes via the endoplasmic reticulum (ER). In mammals and yeast, several PMPs traffic via the ER in a Pex3- and Pex19-dependent manner. In Komagataella phaffii (formerly called Pichia pastoris) specifically, the indirect traffic of Pex2, but not of Pex11 or Pex17, depends on Pex3, but all PMPs tested for indirect trafficking require Pex19. In mammals, the indirect traffic of PMPs also requires PEX16, a protein that is absent in most yeast species. In this study, we isolated PEX36, a new gene in K. phaffii, which encodes a PMP. Pex36 is required for cell growth in conditions that require peroxisomes for the metabolism of certain carbon sources. This growth defect in cells lacking Pex36 can be rescued by the expression of human PEX16, Saccharomyces cerevisiae Pex34, or by overexpression of the endogenous K. phaffii Pex25. Pex36 is not an essential protein for peroxisome proliferation, but in the absence of the functionally redundant protein, Pex25, it becomes essential and less than 20% of these cells show import-incompetent, peroxisome-like structures (peroxisome remnants). In the absence of both proteins, peroxisome biogenesis and the intra-ER sorting of Pex2 and Pex11C are seriously impaired, likely by affecting Pex3 and Pex19 function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles.

    PubMed

    Antonenkov, Vasily D; Sormunen, Raija T; Hiltunen, J Kalervo

    2004-12-01

    It has been known for a long time that mammalian peroxisomes are extremely fragile in vitro. Changes in the morphological appearance and leakage of proteins from purified particles demonstrate that peroxisomes are damaged during isolation. However, some properties of purified peroxisomes, e.g., the latency of catalase, imply that their membranes are not disrupted. In the current study, we tried to ascertain the mechanism of this unusual behavior of peroxisomes in vitro. Biochemical and morphological examination of isolated peroxisomes subjected to sonication or to freezing and thawing showed that the membrane of the particles seals after disruption, restoring permeability properties. Transient damage of the membrane leads to the formation of peroxisomal "ghosts" containing nucleoid but nearly devoid of matrix proteins. The rate of leakage of matrix proteins from broken particles depended inversely on their molecular size. The effect of polyethylene glycols on peroxisomal integrity indicated that these particles are osmotically sensitive. Peroxisomes suffered an osmotic lysis during isolation that was resistant to commonly used low-molecular-mass osmoprotectors, e.g., sucrose. Damage to peroxisomes was partially prevented by applying more "bulky" osmoprotectors, e.g., polyethylene glycol 1500. A method was developed for the isolation of highly purified and nearly intact peroxisomes from rat liver by using polyethylene glycol 1500 as an osmoprotector.

  15. Peroxisomes are oxidative organelles.

    PubMed

    Antonenkov, Vasily D; Grunau, Silke; Ohlmeier, Steffen; Hiltunen, J Kalervo

    2010-08-15

    Peroxisomes are multifunctional organelles with an important role in the generation and decomposition of reactive oxygen species (ROS). In this review, the ROS-producing enzymes, as well as the antioxidative defense system in mammalian peroxisomes, are described. In addition, various conditions leading to disturbances in peroxisomal ROS metabolism, such as abnormal peroxisomal biogenesis, hypocatalasemia, and proliferation of peroxisomes are discussed. We also review the role of mammalian peroxisomes in some physiological and pathological processes involving ROS that lead to mitochondrial abnormalities, defects in cell proliferation, and alterations in the central nervous system, alcoholic cardiomyopathy, and aging. Antioxid.

  16. Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARalpha)-regulated peroxisomal acyl-CoA thioesterases.

    PubMed

    Westin, Maria A K; Alexson, Stefan E H; Hunt, Mary C

    2004-05-21

    Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A. PTE-Ia and PTE-Ic show 82% sequence identity at the amino acid level, and a putative peroxisomal type 1 targeting signal of -AKL was identified at the carboxyl-terminal end of both proteins. Localization experiments using green fluorescent fusion protein showed PTE-Ia and PTE-Ic to be localized in peroxisomes. Despite their high level of sequence identity, we show that PTE-Ia is mainly active on long-chain acyl-CoAs, whereas PTE-Ic is mainly active on medium-chain acyl-CoAs. Lack of regulation of enzyme activity by free CoASH suggests that PTE-Ia and PTE-Ic regulate intraperoxisomal levels of acyl-CoA, and they may have a function in termination of beta-oxidation of fatty acids of different chain lengths. Tissue expression studies revealed that PTE-Ia is highly expressed in kidney, whereas PTE-Ic is most highly expressed in spleen, brain, testis, and proximal and distal intestine. Both PTE-Ia and PTE-Ic were highly up-regulated in mouse liver by treatment with the peroxisome proliferator WY-14,643 and by fasting in a peroxisome proliferator-activated receptor alpha-dependent manner. These data show that PTE-Ia and PTE-Ic have different functions based on different substrate specificities and tissue expression.

  17. Peroxisomes in parasitic protists.

    PubMed

    Gabaldón, Toni; Ginger, Michael L; Michels, Paul A M

    Representatives of all major lineages of eukaryotes contain peroxisomes with similar morphology and mode of biogenesis, indicating a monophyletic origin of the organelles within the common ancestor of all eukaryotes. Peroxisomes originated from the endoplasmic reticulum, but despite a common origin and shared morphological features, peroxisomes from different organisms show a remarkable diversity of enzyme content and the metabolic processes present can vary dependent on nutritional or developmental conditions. A common characteristic and probable evolutionary driver for the origin of the organelle is an involvement in lipid metabolism, notably H 2 O 2 -dependent fatty-acid oxidation. Subsequent evolution of the organelle in different lineages involved multiple acquisitions of metabolic processes-often involving retargeting enzymes from other cell compartments-and losses. Information about peroxisomes in protists is still scarce, but available evidence, including new bioinformatics data reported here, indicate striking diversity amongst free-living and parasitic protists from different phylogenetic supergroups. Peroxisomes in only some protists show major involvement in H 2 O 2 -dependent metabolism, as in peroxisomes of mammalian, plant and fungal cells. Compartmentalization of glycolytic and gluconeogenic enzymes inside peroxisomes is characteristic of kinetoplastids and diplonemids, where the organelles are hence called glycosomes, whereas several other excavate parasites (Giardia, Trichomonas) have lost peroxisomes. Amongst alveolates and amoebozoans patterns of peroxisome loss are more complicated. Often, a link is apparent between the niches occupied by the parasitic protists, nutrient availability, and the absence of the organelles or their presence with a specific enzymatic content. In trypanosomatids, essentiality of peroxisomes may be considered for use in anti-parasite drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at themore » gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.« less

  19. Transient complex peroxisomal interactions

    PubMed Central

    Bonekamp, Nina A.; Schrader, Michael

    2012-01-01

    Mitochondria and peroxisomes are ubiquitous subcellular organelles that fulfill essential metabolic functions, rendering them indispensable for human development and health. Both are highly dynamic organelles that can undergo remarkable changes in morphology and number to accomplish cellular needs. While mitochondrial dynamics are also regulated by frequent fusion events, the fusion of mature peroxisomes in mammalian cells remained a matter of debate. In our recent study, we clarified systematically that there is no complete fusion of mature peroxisomes analogous to mitochondria. Moreover, in contrast to key division components such as DLP1, Fis1 or Mff, mitochondrial fusion proteins were not localized to peroxisomes. However, we discovered and characterized novel transient, complex interactions between individual peroxisomes which may contribute to the homogenization of the often heterogeneous peroxisomal compartment, e.g., by distribution of metabolites, signals or other “molecular information” via interperoxisomal contact sites. PMID:23336019

  20. ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoxi, E-mail: xiaoxi.liu@uky.edu; Liu, Jingjing, E-mail: jingjing.liu0@gmail.com; Lester, Joshua D., E-mail: joshua.lester@uky.edu

    2015-01-02

    Highlights: • We examined the D2 localization and the proteome of D2-containing compartment in mouse adipose tissue. • We confirmed the presence of D2 on a subcellular compartment that has typical structure as a microperoxisome. • We demonstrated the scarcity of peroxisome markers on D2-containing compartment. • The D2-containing compartment may be a subpopulation of peroxisome in mouse adipose tissue. • Proteomic data suggests potential association between D2-containing compartment and mitochondria and ER. - Abstract: ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Bothmore » D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.« less

  1. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  2. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport

    PubMed Central

    Oliver, William R.; Shenk, Jennifer L.; Snaith, Mike R.; Russell, Caroline S.; Plunket, Kelli D.; Bodkin, Noni L.; Lewis, Michael C.; Winegar, Deborah A.; Sznaidman, Marcos L.; Lambert, Millard H.; Xu, H. Eric; Sternbach, Daniel D.; Kliewer, Steven A.; Hansen, Barbara C.; Willson, Timothy M.

    2001-01-01

    The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X. PMID:11309497

  3. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse

    PubMed Central

    Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.

    2017-01-01

    Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802

  4. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids*

    PubMed Central

    Yagita, Yuichi; Shinohara, Kyoko; Abe, Yuichi; Nakagawa, Keiko; Al-Owain, Mohammed; Alkuraya, Fowzan S.; Fujiki, Yukio

    2017-01-01

    Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder. PMID:27899449

  5. Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis.

    PubMed

    Weller, Sabine; Cajigas, Ivelisse; Morrell, James; Obie, Cassandra; Steel, Gary; Gould, Stephen J; Valle, David

    2005-06-01

    Matsumoto and colleagues recently identified PEX26 as the gene responsible for complementation group 8 of the peroxisome biogenesis disorders and showed that it encodes an integral peroxisomal membrane protein with a single C-terminal transmembrane domain and a cytosolic N-terminus that interacts with the PEX1/PEX6 heterodimer through direct binding to the latter. They proposed that PEX26 functions as the peroxisomal docking factor for the PEX1/PEX6 heterodimer. Here, we identify new PEX26 disease alleles, localize the PEX6-binding domain to the N-terminal half of the protein (aa 29-174), and show that, at the cellular level, PEX26 deficiency impairs peroxisomal import of both PTS1- and PTS2-targeted matrix proteins. Also, we find that PEX26 undergoes alternative splicing to produce several splice forms--including one, PEX26- delta ex5, that maintains frame and encodes an isoform lacking the transmembrane domain of full-length PEX26 (PEX26-FL). Despite its cytosolic location, PEX26- delta ex5 rescues peroxisome biogenesis in PEX26-deficient cells as efficiently as does PEX26-FL. To test our observation that a peroxisomal location is not required for PEX26 function, we made a chimeric protein (PEX26-Mito) with PEX26 as its N-terminus and the targeting segment of a mitochondrial outer membrane protein (OMP25) at its C-terminus. We found PEX26-Mito localized to the mitochondria and directed all detectable PEX6 and a fraction of PEX1 to this extraperoxisomal location; yet PEX26-Mito retains the full ability to rescue peroxisome biogenesis in PEX26-deficient cells. On the basis of these observations, we suggest that a peroxisomal localization of PEX26 and PEX6 is not required for their function and that the interaction of PEX6 with PEX1 is dynamic. This model predicts that, once activated in an extraperoxisomal location, PEX1 moves to the peroxisome and completes the function of the PEX1/6 heterodimer.

  6. Detection and Immunolabeling of Peroxisomal Proteins.

    PubMed

    Schrader, Tina A; Islinger, Markus; Schrader, Michael

    2017-01-01

    Peroxisomes are essential organelles in mammals which contribute to cellular lipid metabolism and redox homeostasis. The spectrum of their functions in human health and disease is far from being complete, and unexpected and novel roles of peroxisomes are being discovered. To date, those include novel biological roles in antiviral defence, as intracellular signaling platforms and as protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex network of interacting subcellular compartments which involves metabolic cooperation, cross-talk and membrane contacts. As potentially novel peroxisomal proteins are continuously discovered, there is great interest in the verification of their peroxisomal localization. Here, we present protocols used successfully in our laboratory for the detection and immunolabeling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and fluorescence-based techniques as well as reagents to determine peroxisome-specific targeting and localization of candidate proteins.

  7. Peroxisome-mitochondria interplay and disease.

    PubMed

    Schrader, Michael; Costello, Joseph; Godinho, Luis F; Islinger, Markus

    2015-07-01

    Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.

  8. Peroxisome Mini-Libraries: Systematic Approaches to Study Peroxisomes Made Easy.

    PubMed

    Dahan, Noa; Schuldiner, Maya; Zalckvar, Einat

    2017-01-01

    High-throughput methodologies have been extensively used in the budding yeast, Saccharomyces cerevisiae, to uncover fundamental principles of cell biology. Over the years, several collections of yeast strains (libraries) were built to enable systematic exploration of cellular functions. However, using these libraries experimentally is often labor intensive and restricted to laboratories that hold high throughput platforms. Utilizing the available full genome libraries we handpicked a subset of strains that represent all known and predicted peroxisomal proteins as well as proteins that have central roles in peroxisome biology. These smaller collections of strains, mini-libraries, can be rapidly and easily used for complicated screens by any lab. Since one of the libraries is built such that it can be easily modified in the tag, promoter and selection, we also discuss how these collections form the basis for creating a diversity of new peroxisomal libraries for future studies. Using manual tools, available in any yeast lab, coupled with few simple genetic approaches, we will show how these libraries can be "mixed and matched" to create tailor made libraries for screening. These yeast collections may now be exploited to study uncharted territories in the biology of peroxisomes by anyone, anywhere.

  9. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of humanmore » ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.« less

  10. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Localization of the peroxisome proliferator-activated receptor in the brain.

    PubMed

    Kainu, T; Wikström, A C; Gustafsson, J A; Pelto-Huikko, M

    1994-12-20

    This paper describes the localization of the alpha-type peroxisome proliferator-activated receptor (PPAR alpha) in the rat brain using immunocytochemistry and in situ hybridization. Expression of PPAR alpha mRNA was highest in the granular cells of the cerebellar cortex and in the dentate gyrus, with a somewhat lower expression in areas CA1-CA4 of the hippocampus. PPAR alpha mRNA was also found in some neurones of the cerebral cortex (layers II-IV) and the molecular layer of the cerebellar cortex, and in the olfactory tubercle. Immunocytochemistry revealed nuclear PPAR alpha-immunoreactivity (-IR) in the same areas as seen with the in situ hybridization. Furthermore, PPAR alpha-IR was also localized in oligodendrocytes, whereas the other glial cell types appeared to lack PPAR alpha. These results suggest that peroxisome proliferators and chemicals acting similarly have effects on discrete populations of neurones. The presence of PPAR alpha in oligodendrocytes lends further support to the suggestion that peroxisomes are important in the assembly and degradation of myelin.

  12. Carbohydrate Metabolism Is Perturbed in Peroxisome-deficient Hepatocytes Due to Mitochondrial Dysfunction, AMP-activated Protein Kinase (AMPK) Activation, and Peroxisome Proliferator-activated Receptor γ Coactivator 1α (PGC-1α) Suppression*

    PubMed Central

    Peeters, Annelies; Fraisl, Peter; van den Berg, Sjoerd; Ver Loren van Themaat, Emiel; Van Kampen, Antoine; Rider, Mark H.; Takemori, Hiroshi; van Dijk, Ko Willems; Van Veldhoven, Paul P.; Carmeliet, Peter; Baes, Myriam

    2011-01-01

    Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5−/− mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD+/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5−/− mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies. PMID

  13. Proteome Analysis of Peroxisomes from Etiolated Arabidopsis Seedlings Identifies a Peroxisomal Protease Involved in β-Oxidation and Development1[C][W][OPEN

    PubMed Central

    Quan, Sheng; Yang, Pingfang; Cassin-Ross, Gaëlle; Kaur, Navneet; Switzenberg, Robert; Aung, Kyaw; Li, Jiying; Hu, Jianping

    2013-01-01

    Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment. PMID:24130194

  14. Peroxisomal membrane permeability and solute transfer.

    PubMed

    Antonenkov, Vasily D; Hiltunen, J Kalervo

    2006-12-01

    The review is dedicated to recent progress in the study of peroxisomal membrane permeability to solutes which has been a matter of debate for more than 40 years. Apparently, the mammalian peroxisomal membrane is freely permeable to small solute molecules owing to the presence of pore-forming channels. However, the membrane forms a permeability barrier for 'bulky' solutes including cofactors (NAD/H, NADP/H, CoA, and acetyl/acyl-CoA esters) and ATP. Therefore, peroxisomes need specific protein transporters to transfer these compounds across the membrane. Recent electrophysiological studies have revealed channel-forming activities in the mammalian peroxisomal membrane. The possible involvement of the channels in the transfer of small metabolites and in the formation of peroxisomal shuttle systems is described.

  15. Thalidomide inhibits adipogenesis of orbital fibroblasts in Graves' ophthalmopathy.

    PubMed

    Zhang, Chu; Zhang, Xianfeng; Ma, Lizhen; Peng, Fengying; Huang, Jiao; Han, Hui

    2012-04-01

    The expansion of orbital adipose tissue is a main pathophysiology of Graves' ophthalmopathy (GO), which is an inflammatory autoimmune disease in the orbital region. The effects of immunosuppressive drugs on adipogenesis of orbital fibroblasts have not been determined. Thalidomide, as an immunosuppressive drug, has recently been used in the therapy of many autoimmune diseases. In this study, we analyzed the effects of thalidomide on adipogenesis and found that adipocyte differentiation from preadipocytes in the orbital region was enhanced, which was demonstrated by enhanced expression of peroxisome proliferator activated receptor γ (PPARγ), ap2, and thyroid-stimulating hormone receptor (TSHR). The expression of inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) was also increased in GO. Thalidomide dose-dependently inhibited adipogenesis of 3T3-L1 preadipocytes and orbital fibroblasts from GO patients. Along with the inhibited adipogenesis, the expression of TSHR, TNFα, and IL-6 was also down-regulated. We discovered that the mechanism for thalidomide inhibiting adipogenesis was the down-regulation of PPARγ, rather than C/EBPβ and C/EBPδ. We suggest that, besides its canonical anti-TNFα effect, thalidomide plays a role in inhibiting adipogenesis of orbital fibroblasts in GO patients.

  16. Transfer of metabolites across the peroxisomal membrane.

    PubMed

    Antonenkov, Vasily D; Hiltunen, J Kalervo

    2012-09-01

    Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content.

    PubMed

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I

    2002-02-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.

  18. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content

    PubMed Central

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I.

    2010-01-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-α ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic β-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content. PMID:11788372

  19. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    ERIC Educational Resources Information Center

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…

  20. In Vivo Regulation of Hepatitis B Virus Replication by Peroxisome Proliferators†

    PubMed Central

    Guidotti, Luca G.; Eggers, Carrie M.; Raney, Anneke K.; Chi, Susan Y.; Peters, Jeffrey M.; Gonzalez, Frank J.; McLachlan, Alan

    1999-01-01

    The role of the peroxisome proliferator-activated receptor α (PPARα) in regulating hepatitis B virus (HBV) transcription and replication in vivo was investigated in an HBV transgenic mouse model. Treatment of HBV transgenic mice with the peroxisome proliferators Wy-14,643 and clofibric acid resulted in a less than twofold increase in HBV transcription rates and steady-state levels of HBV RNAs in the livers of these mice. In male mice, this increase in transcription was associated with a 2- to 3-fold increase in replication intermediates, whereas in female mice it was associated with a 7- to 14-fold increase in replication intermediates. The observed increases in transcription and replication were dependent on PPARα. HBV transgenic mice lacking this nuclear hormone receptor showed similar levels of HBV transcripts and replication intermediates as untreated HBV transgenic mice expressing PPARα but failed to demonstrate alterations in either RNA or DNA synthesis in response to peroxisome proliferators. Therefore, it appears that very modest alterations in transcription can, under certain circumstances, result in relatively large increases in HBV replication in HBV transgenic mice. PMID:10559356

  1. Compartmentation Studies on Spinach Leaf Peroxisomes 1

    PubMed Central

    Heupel, Ralf; Markgraf, Therese; Robinson, David G.; Heldt, Hans Walter

    1991-01-01

    In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted in a reduction in latency accompanied by a partial solubilization of the above mentioned enzymes. The extent of enzyme solubilization was different, being highest with glutamate glyoxylate aminotransferase and lowest with malate dehydrogenase. Osmotic shock resulted in only a partial reduction of enzyme latency. Electron microscopy revealed that the osmotically shocked peroxisomes remained compact, with smaller particle size and pleomorphic morphology but without a continuous boundary membrane. Neither in intact nor in osmotically shocked peroxisomes was a lag phase observed in the formation of glycerate upon the addition of glycolate, serine, malate, and NAD. Apparently, the intermediates, glyoxylate, hydroxypyruvate, and NADH, were confined within the peroxisomal matrix in such a way that they did not readily leak out into the surrounding medium. We conclude that the observed compartmentation of peroxisomal metabolism is not due to the peroxisomal boundary membrane as a permeability barrier, but is a function of the structural arrangement of enzymes in the peroxisomal matrix allowing metabolite channeling. ImagesFigure 3 PMID:16668283

  2. Epidermal regulation of dermal fibroblast activity.

    PubMed

    Garner, W L

    1998-07-01

    Although the association between delayed burn wound healing and subsequent hypertrophic scar formation is well-established, the mechanism for this relationship is unknown. Unhealed burn wounds lack an epidermis, suggesting a possible regulatory role for the epidermis in controlling dermal fibroblast matrix synthesis. Therefore, we examined the effect of epidermal cells and media conditioned by epidermal cells on fibroblast collagen synthesis and replication. Purified fibroblast and keratinocyte cell strains were developed from discarded normal adult human skin. Conditioned media were created by incubation of cytokine-free and serum-free medium with either confluent fibroblast or keratinocyte cultures for 18 hours (n = 3). Nearly confluent fibroblast cultures were exposed for 48 hours to graded concentrations of either unconditioned medium (control), conditioned medium, or varying numbers of keratinocytes. Replication was quantified by the incorporation of 3H-thymidine. Collagen synthesis was measured by the incorporation of 3H-proline into collagenase-sensitive protein. Data were compared using analysis of variance (ANOVA) and linear regression. Keratinocyte conditioned medium induced a significant increase in replication (n = 3) (p = 0.004) and a decrease in collagen synthesis (n = 6) (p < 0.001). In contrast, neither fibroblast conditioned medium nor control medium had an effect on fibroblast replication or collagen synthesis. Co-culture of fibroblast with a graded number of keratinocytes similarly decreased collagen synthesis (n = 6) (p < 0.001). Dermal fibroblast collagen synthesis appears to be regulated by a soluble keratinocyte product. This result suggests a mechanism for the clinical observation that unhealed burn wounds, which lack the epidermis, demonstrate excess collagen production and scar. Clinical strategies to decrease hypertrophic scar should include an attempt at early wound closure with skin grafting or the application of cultured epithelial

  3. Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts.

    PubMed

    Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan

    2012-03-01

    Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.

  4. The Peroxisome-Mitochondria Connection: How and Why?

    PubMed Central

    Fransen, Marc; Lismont, Celien; Walton, Paul

    2017-01-01

    Over the past decades, peroxisomes have emerged as key regulators in overall cellular lipid and reactive oxygen species metabolism. In mammals, these organelles have also been recognized as important hubs in redox-, lipid-, inflammatory-, and innate immune-signaling networks. To exert these activities, peroxisomes must interact both functionally and physically with other cell organelles. This review provides a comprehensive look of what is currently known about the interconnectivity between peroxisomes and mitochondria within mammalian cells. We first outline how peroxisomal and mitochondrial abundance are controlled by common sets of cis- and trans-acting factors. Next, we discuss how peroxisomes and mitochondria may communicate with each other at the molecular level. In addition, we reflect on how these organelles cooperate in various metabolic and signaling pathways. Finally, we address why peroxisomes and mitochondria have to maintain a healthy relationship and why defects in one organelle may cause dysfunction in the other. Gaining a better insight into these issues is pivotal to understanding how these organelles function in their environment, both in health and disease. PMID:28538669

  5. Catalase degradation in sunflower cotyledons during peroxisome transition from glyoxysomal to leaf peroxisomal function. [Helianthus annuus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eising, R.; Gerhardt, B.

    1987-06-01

    First order rate constant for the degradation (degradation constants) of catalase in the cotyledons of sunflower (Helianthus annuus L.) were determined by measuring the loss of catalase containing /sup 14/C-labeled heme. During greening of the cotyledons, a period when peroxisomes change from glyoxysomal to leaf peroxisomal function, the degradation of glyoxysomal catalase is significantly slower than during all other stages of cotyledon development in light or darkness. The degradation constant during the transition stage of peroxisome function amounts to 0.205 day/sup -1/ in contrast to the constants ranging from 0.304 day/sup -1/ to 0.515 day/sup -1/ during the other developmentalmore » stages. Density labeling experiments comprising labeling of catalase with /sup 2/H/sub 2/O and its isopycnic centrifugation on CsCl gradients demonstrated that the determinations of the degradation constants were not substantially affected by reutilization of /sup 14/C-labeled compounds for catalase synthesis. The degradation constants for both glyoxysomal catalase and catalase synthesized during the transition of peroxisome function do not differ. This was shown by labeling the catalases with different isotopes and measuring the isotope ratio during the development of the cotyledons. The results are inconsistent with the concept that an accelerated and selective degradation of glyoxysomes underlies the change in peroxisome function. The data suggest that catalase degradation is at least partially due to an individual turnover of catalase and does not only result from a turnover of the whole peroxisomes.« less

  6. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae.

    PubMed Central

    Erdmann, R; Veenhuis, M; Mertens, D; Kunau, W H

    1989-01-01

    Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absence of detectable peroxisomes at the ultrastructural level. These lesions (pas1-1 and pas2) are shown to be nonallelic and recessive. Crossing of pas1-1 and pas2 strains resulted in diploid cells that had regained the ability to grow on oleic acid as sole carbon source and to form peroxisomes. These pas mutants may provide useful tools for future studies on the molecular mechanisms involved in peroxisomal assembly. Images PMID:2568633

  7. Peroxisome proliferator-activated receptor-α agonists protect cortical neurons from inflammatory mediators and improve peroxisomal function.

    PubMed

    Gray, Elizabeth; Ginty, Mark; Kemp, Kevin; Scolding, Neil; Wilkins, Alastair

    2011-04-01

    Inflammation is known to cause significant neuronal damage and axonal injury in many neurological disorders. Among the range of inflammatory mediators, nitric oxide is a potent neurotoxic agent. Recent evidence has suggested that cellular peroxisomes may be important in protecting neurons from inflammatory damage. To assess the influence of peroxisomal activation on nitric oxide-mediated neurotoxicity, we investigated the effects of the peroxisomal proliferator-activated receptor (PPAR)-α agonist fenofibrate on cortical neurons exposed to a nitric oxide donor or co-cultured with activated microglia. Fenofibrate protected neurons and axons against both nitric oxide donor-induced and microglia-derived nitric oxide-induced toxicity. Moreover, cortical neurons treated with this compound showed a significant increase in gene expression of ABCD3 (the gene encoding for peroxisomal membrane protein-70), with a concomitant increase in protein levels of PPAR-α and catalase, which was associated with a functional increase in the activity of this enzyme. Collectively, these observations provide evidence that modulation of PPAR-α activity and peroxisomal function by fenofibrate attenuates nitric oxide-mediated neuronal and axonal damage, suggesting a new therapeutic approach to protect against neurodegenerative changes associated with neuroinflammation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    PubMed

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi, E-mail: y3oishi@nodai.ac.jp

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis alongmore » with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.« less

  10. Be different--the diversity of peroxisomes in the animal kingdom.

    PubMed

    Islinger, M; Cardoso, M J R; Schrader, M

    2010-08-01

    Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    PubMed

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus.

    PubMed

    Reverberi, Massimo; Punelli, Marta; Smith, Carrie A; Zjalic, Slaven; Scarpari, Marzia; Scala, Valeria; Cardinali, Giorgia; Aspite, Nicaela; Pinzari, Flavia; Payne, Gary A; Fabbri, Anna A; Fanelli, Corrado

    2012-01-01

    In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids β-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal β-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal β-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids β-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis.

  13. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Qian, Guofeng; Karnati, Srikanth; Baumgart-Vogt, Eveline

    2015-01-01

    Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression

  14. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    PubMed

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Lipid profiling of parkin-mutant human skin fibroblasts.

    PubMed

    Lobasso, Simona; Tanzarella, Paola; Vergara, Daniele; Maffia, Michele; Cocco, Tiziana; Corcelli, Angela

    2017-12-01

    Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD. © 2017 Wiley Periodicals, Inc.

  16. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  17. The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.

    PubMed

    Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin

    2013-06-01

    Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts.

  18. Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics.

    PubMed

    Reumann, Sigrun; Bartel, Bonnie

    2016-12-01

    Peroxisomes are essential for life in plants. These organelles house a variety of metabolic processes that generate and inactivate reactive oxygen species. Our knowledge of pathways and mechanisms that depend on peroxisomes and their constituent enzymes continues to grow, and in this review we highlight recent advances in understanding the identity and biological functions of peroxisomal enzymes and metabolic processes. We also review how peroxisomal matrix and membrane proteins enter the organelle from their sites of synthesis. Peroxisome homeostasis is regulated by specific degradation mechanisms, and we discuss the contributions of specialized autophagy and a peroxisomal protease to the degradation of entire peroxisomes and peroxisomal enzymes that are damaged or superfluous. Finally, we review how peroxisomes can flexibly change their morphology to facilitate inter-organellar contacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Defects in Peroxisomal 6-Phosphogluconate Dehydrogenase Isoform PGD2 Prevent Gametophytic Interaction in Arabidopsis thaliana1[OPEN

    PubMed Central

    Hölscher, Christian; Meyer, Tanja; Fischer, Kerstin

    2016-01-01

    We studied the localization of 6-phosphogluconate dehydrogenase (PGD) isoforms of Arabidopsis (Arabidopsis thaliana). Similar polypeptide lengths of PGD1, PGD2, and PGD3 obscured which isoform may represent the cytosolic and/or plastidic enzyme plus whether PGD2 with a peroxisomal targeting motif also might target plastids. Reporter-fusion analyses in protoplasts revealed that, with a free N terminus, PGD1 and PGD3 accumulate in the cytosol and chloroplasts, whereas PGD2 remains in the cytosol. Mutagenesis of a conserved second ATG enhanced the plastidic localization of PGD1 and PGD3 but not PGD2. Amino-terminal deletions of PGD2 fusions with a free C terminus resulted in peroxisomal import after dimerization, and PGD2 could be immunodetected in purified peroxisomes. Repeated selfing of pgd2 transfer (T-)DNA alleles yielded no homozygous mutants, although siliques and seeds of heterozygous plants developed normally. Detailed analyses of the C-terminally truncated PGD2-1 protein showed that peroxisomal import and catalytic activity are abolished. Reciprocal backcrosses of pgd2-1 suggested that missing PGD activity in peroxisomes primarily affects the male gametophyte. Tetrad analyses in the quartet1-2 background revealed that pgd2-1 pollen is vital and in vitro germination normal, but pollen tube growth inside stylar tissues appeared less directed. Mutual gametophytic sterility was overcome by complementation with a genomic construct but not with a version lacking the first ATG. These analyses showed that peroxisomal PGD2 activity is required for guided growth of the male gametophytes and pollen tube-ovule interaction. Our report finally demonstrates an essential role of oxidative pentose-phosphate pathway reactions in peroxisomes, likely needed to sustain critical levels of nitric oxide and/or jasmonic acid, whose biosynthesis both depend on NADPH provision. PMID:26941195

  20. Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants.

    PubMed

    Cross, Laura L; Ebeed, Heba Talat; Baker, Alison

    2016-05-01

    Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins are controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis are discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Testosterone-induced modulation of peroxisomal morphology and peroxisome-related gene expression in brown trout (Salmo trutta f. fario) primary hepatocytes.

    PubMed

    Lopes, Célia; Malhão, Fernanda; Guimarães, Cláudia; Pinheiro, Ivone; Gonçalves, José F; Castro, L Filipe C; Rocha, Eduardo; Madureira, Tânia V

    2017-12-01

    Disruption of androgenic signaling has been linked to possible cross-modulation with other hormone-mediated pathways. Therefore, our objective was to explore effects caused by testosterone - T (1, 10 and 50μM) in peroxisomal signaling of brown trout hepatocytes. To study the underlying paths involved, several co-exposure conditions were tested, with flutamide - F (anti-androgen) and ICI 182,780 - ICI (anti-estrogen). Molecular and morphological approaches were both evaluated. Peroxisome proliferator-activated receptor alpha (PPARα), catalase and urate oxidase were the selected targets for gene expression analysis. The vitellogenin A gene was also included as a biomarker of estrogenicity. Peroxisome relative volumes were estimated by immunofluorescence, and transmission electron microscopy was used for qualitative morphological control. The single exposures of T caused a significant down-regulation of urate oxidase (10 and 50μM) and a general up-regulation of vitellogenin. A significant reduction of peroxisome relative volumes and smaller peroxisome profiles were observed at 50μM. Co-administration of T and ICI reversed the morphological modifications and vitellogenin levels. The simultaneous exposure of T and F caused a significant and concentration-dependent diminishing in vitellogenin expression. Together, the findings suggest that in the tested model, T acted via both androgen and estrogen receptors to shape the peroxisomal related targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS

    PubMed Central

    Alexander, Angela; Kim, Jinhee; Powell, Reid T.; Dere, Ruhee; Tait-Mulder, Jacqueline; Lee, Ji-Hoon; Paull, Tanya T.; Pandita, Raj K.; Charaka, Vijaya K.; Pandita, Tej K.; Kastan, Michael B.; Walker, Cheryl Lyn

    2015-01-01

    Peroxisomes are highly metabolic, autonomously replicating organelles that generate ROS as a by product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to reactive oxygen species (ROS), ATM signaling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser141, which promotes PEX5 mono-ubiquitination at K209, and recognition of ubiquitinated PEX5 by the autophagy adapter protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy. PMID:26344566

  3. Peroxisomes in the nervous system of Aplysia californica: a cytochemical study.

    PubMed

    Beard, M E; Holtzman, E

    1985-08-01

    We have studied the distribution of peroxisomes in the abdominal ganglion of Aplysia californica using electron microscopic cytochemical methods. Reaction product for catalase was observed in small ovoid or dumb-bell-shaped bodies in the perikarya of many of the neurons. The abundance of these catalase-reactive peroxisomes is considerably greater than is the case in vertebrate neurons. While the non-neuronal cells of the Aplysia abdominal ganglion do contain appreciable peroxisome populations, there were few peroxisomes in glial cytoplasm directly adjacent to the perikarya, again contrasting with vertebrate ganglia in which the satellite cells are a principal site of peroxisomes. Peroxisomes are present throughout the perikaryal cytoplasm. In the regions in which lipochrome granules abound, peroxisomes are frequently seen closely associated with these granules; glycogen is abundant nearby. The association of peroxisomes, lipochrome granules and glycogen is interesting in view of the propinquities of peroxisomes to lipid droplets and lipofuscin granules reported for non-neuronal vertebrate tissues, and in view of the growing evidence indicating that some of the roles of peroxisomes are in lipid metabolism and in gluconeogenesis. Some of the lipochrome granules themselves show reaction product in ganglia incubated to demonstrate catalase activity and some react in tissue incubated to demonstrate acid phosphatase activity. Such observations suggest that the enzymatic capacities of the lipochrome granules merit further studies, and that the granules may be of complex or heterogeneous nature.

  4. Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition

    PubMed Central

    Hattori, Noriko; Carrino, David A.; Lauer, Mark E.; Vasanji, Amit; Wylie, James D.; Nelson, Courtney M.; Apte, Suneel S.

    2011-01-01

    The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5−/− mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5−/− cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcanhdf/+) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5−/− cells resulted from increased PCM versican content, we generated Adamts5−/−;Vcanhdf/+ mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5−/− mice. In Adamts5−/− fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates. PMID:21828051

  5. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    DOE PAGES

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    2016-03-30

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  6. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  7. Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes.

    PubMed

    Madureira, Tânia Vieira; Pinheiro, Ivone; Malhão, Fernanda; Lopes, Célia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2017-06-01

    Peroxisome proliferators cause species-specific effects, which seem to be primarily transduced by peroxisome proliferator-activated receptor alpha (PPARα). Interestingly, PPARα has a close interrelationship with estrogenic signaling, and this latter has already been promptly activated in brown trout primary hepatocytes. Thus, and further exploring this model, we assess here the reactivity of two PPARα agonists in direct peroxisomal routes and, in parallel the cross-interferences in estrogen receptor (ER) mediated paths. To achieve these goals, three independent in vitro studies were performed using single exposures to clofibrate - CLF (50, 500 and 1000μM), Wy-14,643 - Wy (50 and 150μM), GW6471 - GW (1 and 10μM), and mixtures, including PPARα agonist or antagonist plus an ER agonist or antagonist. Endpoints included gene expression analysis of peroxisome/lipidic related genes (encoding apolipoprotein AI - ApoAI, fatty acid binding protein 1 - Fabp1, catalase - Cat, 17 beta-hydroxysteroid dehydrogenase 4 - 17β-HSD4, peroxin 11 alpha - Pex11α, PPARαBb, PPARαBa and urate oxidase - Uox) and those encoding estrogenic targets (ERα, ERβ-1 and vitellogenin A - VtgA). A quantitative morphological approach by using a pre-validated catalase immunofluorescence technique allowed checking possible changes in peroxisomes. Our results show a low responsiveness of trout hepatocytes to model PPARα agonists in direct target receptor pathways. Additionally, we unveiled interferences in estrogenic signaling caused by Wy, leading to an up-regulation VtgA and ERα at 150μM; these effects seem counteracted with a co-exposure to an ER antagonist. The present data stress the potential of this in vitro model for further exploring the physiological/toxicological implications related with this nuclear receptor cross-regulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    PubMed

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  9. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    PubMed

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-06-01

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here, we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na + and Li + stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. © 2017 John Wiley & Sons Ltd.

  10. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico

    2010-05-01

    Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1

  11. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates)

    PubMed Central

    Ludewig-Klingner, Ann-Kathrin; Michael, Victoria; Jarek, Michael; Brinkmann, Henner

    2018-01-01

    Abstract The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa. PMID:29202176

  12. Analysis of Peroxisome Biogenesis in Pollen by Confocal Microscopy and Transmission Electron Microscopy.

    PubMed

    Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai

    2017-01-01

    Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).

  13. The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells

    PubMed Central

    2005-01-01

    Background The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol. Results We demonstrate that MFP is an authentic microtubule-binding protein, as it localized to the cortical microtubule array in vivo, in addition to its expected targeting to the peroxisome matrix. MFP does not, however, interact with the three mitotic microtubule arrays. Microtubule co-sedimentation assays of truncated versions of MFP revealed that multiple microtubule-binding domains are present on the MFP polypeptide. This indicates that these regions function together to achieve high-affinity binding of the full-length protein. Real-time imaging of a transiently expressed green fluorescent protein-MFP chimera in living plant cells illustrated that a dynamic, spatial interaction exits between peroxisomes and cortical microtubules as peroxisomes move along actin filaments or oscillate at fixed locations. Conclusion Plant MFP is associated with the cortical microtubule array, in addition to its expected localization in the peroxisome. This observation, coupled with apparent interactions that frequently occur between microtubules and peroxisomes in the cell cortex, supports the hypothesis that MFP is concentrated on microtubules in order to facilitate the regulated import of MFP into peroxisomes. PMID:16313672

  14. A new role for ATM in selective autophagy of peroxisomes (pexophagy).

    PubMed

    Tripathi, Durga Nand; Zhang, Jiangwei; Jing, Ji; Dere, Ruhee; Walker, Cheryl Lyn

    2016-01-01

    Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a "first responder" to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitination of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy.

  15. A new role for ATM in selective autophagy of peroxisomes (pexophagy)

    PubMed Central

    Tripathi, Durga Nand; Zhang, Jiangwei; Jing, Ji; Dere, Ruhee; Walker, Cheryl Lyn

    2016-01-01

    abstract Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a “first responder” to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitnation of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy. PMID:27050462

  16. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLoache, William; Russ, Zachary; Samson, Jennifer

    The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurementsmore » of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  17. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase.

    PubMed Central

    Zhang, B; Marcus, S L; Sajjadi, F G; Alvares, K; Reddy, J K; Subramani, S; Rachubinski, R A; Capone, J P

    1992-01-01

    Ciprofibrate, a hypolipidemic drug that acts as a peroxisome proliferator, induces the transcription of genes encoding peroxisomal beta-oxidation enzymes. To identify cis-acting promoter elements involved in this induction, 5.8 kilobase pairs of promoter sequence from the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (EC 4.2.1.17/EC 1.1.1.35) was inserted upstream of a luciferase reporter gene. Transfection of this expression vector into rat hepatoma H4IIEC3 cells in the presence of ciprofibrate resulted in a 5- to 10-fold, cell type-specific increase in luciferase activity as compared to cells transfected in the absence of drug. A peroxisome proliferator-responsive element (PPRE) was localized to a 196-nucleotide region centered at position -2943 from the transcription start site. This PPRE conferred ciprofibrate responsiveness on a heterologous promoter and functioned independently of orientation or position. Gel retardation analysis with nuclear extracts demonstrated that ciprofibrate-treated or untreated H4IIEC3 cells, but not HeLa cells or monkey kidney cells, contained sequence-specific DNA binding factors that interact with the PPRE. These results have implications for understanding the mechanisms of coordinated transcriptional induction of genes encoding peroxisomal proteins by hypolipidemic agents and other peroxisome proliferators. Images PMID:1502166

  18. Peroxisome protein import: a complex journey.

    PubMed

    Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L

    2016-06-15

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).

  19. Using laser scanning cytometry to measure PPAR-mediated peroxisome proliferation and beta oxidation.

    PubMed

    Pruimboom-Brees, Ingrid M; Brees, Dominique J J E; Shen, Amy C; Keener, Mary; Francone, Omar; Amacher, David E; Loy, James K; Kerlin, Roy L

    2005-01-01

    Laser scanning cytometry (LSC) is a new technology that combines the properties and advantages of flow cytometry (FC) and immunohistochemistry (IHC), thus providing qualitative and quantitative information on protein expression with the additional perspective provided by cell and tissue localization. Formalin-fixed, paraffin embedded liver sections from rats exposed to a Peroxisome Proliferator Activated Receptor (PPAR) agonist were stained with antibodies against peroxisomal targeting signal-1 (PTS-1) (a highly conserved tripeptide contained within all peroxisomal enzymes), Acyl CoA oxidase (AOX) (the rate limiting enzyme of peroxisomal beta oxidation), and catalase (an inducible peroxisomal antioxidant enzyme) to evaluate peroxisomal beta oxidation, oxidative stress, and peroxisome proliferation. The LSC showed increased AOX, catalase, and PTS-1 expression in centrilobular hepatocytes that correlated favorably with the microscopic observation of centrilobular hepatocellular hypertrophy and with the palmitoyl CoA biochemical assay for peroxisomal beta oxidation, and provided additional morphologic information about peroxisome proliferation and tissue patterns of activation. Therefore, the LSC provides qualitative and quantitative evaluation of peroxisome activity with similar sensitivity but higher throughput than the traditional biochemical methods. The additional benefits of the LSC include the direct correlation between histopathologic observations and peroxisomal alterations and the potential utilization of archived formalin-fixed tissues from a variety of organs and species.

  20. Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 Is a Key Regulator of Peroxisome Biogenesis and Plays Critical Roles during Pollen Maturation and Germination in Planta[W

    PubMed Central

    Li, Xin-Ran; Li, Hong-Ju; Yuan, Li; Liu, Man; Shi, Dong-Qiao; Liu, Jie; Yang, Wei-Cai

    2014-01-01

    Pollen undergo a maturation process to sustain pollen viability and prepare them for germination. Molecular mechanisms controlling these processes remain largely unknown. Here, we report an Arabidopsis thaliana mutant, dayu (dau), which impairs pollen maturation and in vivo germination. Molecular analysis indicated that DAU encodes the peroxisomal membrane protein ABERRANT PEROXISOME MORPHOLOGY9 (APEM9). DAU is transiently expressed from bicellular pollen to mature pollen during male gametogenesis. DAU interacts with peroxisomal membrane proteins PEROXIN13 (PEX13) and PEX16 in planta. Consistently, both peroxisome biogenesis and peroxisome protein import are impaired in dau pollen. In addition, the jasmonic acid (JA) level is significantly decreased in dau pollen, and the dau mutant phenotype is partially rescued by exogenous application of JA, indicating that the male sterility is mainly due to JA deficiency. In addition, the phenotypic survey of peroxin mutants indicates that the PEXs most likely play different roles in pollen germination. Taken together, these data indicate that DAU/APEM9 plays critical roles in peroxisome biogenesis and function, which is essential for JA production and pollen maturation and germination. PMID:24510720

  1. Mind the Organelle Gap - Peroxisome Contact Sites in Disease.

    PubMed

    Castro, Inês Gomes; Schuldiner, Maya; Zalckvar, Einat

    2018-03-01

    The eukaryotic cell is organized as a complex grid system where membrane-bound cellular compartments, organelles, must be localized to the right place at the right time. One way to facilitate correct organelle localization and organelle cooperation is through membrane contact sites, areas of close proximity between two organelles that are bridged by protein/lipid complexes. It is now clear that all organelles physically contact each other. The main focus of this review is contact sites of peroxisomes, central metabolic hubs whose defects lead to a variety of diseases. New peroxisome contacts, their tethering complexes and functions have been recently discovered. However, if and how peroxisome contacts contribute to the development of peroxisome-related diseases is still a mystery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    PubMed

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2018-03-01

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2 -/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2 -/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2 -/- macrophages led to decreased inflammatory activation of Mfp2 -/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2 -/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization. © 2017 John Wiley & Sons Ltd.

  3. Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy.

    PubMed

    Moruno-Manchon, Jose F; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Townley, Debra M; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S; Sood, Anil K; Tsvetkov, Andrey S

    2018-01-01

    Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-β-cyclodextrin (HPβCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

    PubMed Central

    Schueren, Fabian; Lingner, Thomas; George, Rosemol; Hofhuis, Julia; Dickel, Corinna; Gärtner, Jutta; Thoms, Sven

    2014-01-01

    Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI: http://dx.doi.org/10.7554/eLife.03640.001 PMID:25247702

  5. An efficient screen for peroxisome-deficient mutants of Pichia pastoris.

    PubMed Central

    Liu, H; Tan, X; Veenhuis, M; McCollum, D; Cregg, J M

    1992-01-01

    We describe a rapid and efficient screen for peroxisome-deficient (per) mutants in the yeast Pichia pastoris. The screen relies on the unusual ability of P. pastoris to grow on two carbon sources, methanol and oleic acid, both of which absolutely require peroxisomes to be metabolized. A collection of 280 methanol utilization-defective (Mut-) P. pastoris mutants was isolated, organized into 46 complementation groups, and tested for those that were also oleate-utilization defective (Out-) but still capable of growth on ethanol and glucose. Mutants in 10 groups met this phenotypic description, and 8 of these were observed by electron microscopy to be peroxisome deficient (Per-). In each per mutant, Mut-, Out-, and Per- phenotypes were tightly linked and therefore were most likely due to a mutation at a single locus. Subcellular fractionation experiments indicated that the peroxisomal marker enzyme catalase was mislocalized to the cytosol in both methanol- and oleate-induced cultures of the mutants. In contrast, alcohol oxidase, a peroxisomal methanol utilization pathway enzyme, was virtually absent from per mutant cells. The relative ease of per mutant isolation in P. pastoris, in conjunction with well-developed procedures for its molecular and genetic manipulation, makes this organism an attractive system for studies on peroxisome biogenesis. Images PMID:1629154

  6. A Fox2-dependent fatty acid ß-oxidation pathway coexists both in peroxisomes and mitochondria of the ascomycete yeast Candida lusitaniae.

    PubMed

    Gabriel, Frédéric; Accoceberry, Isabelle; Bessoule, Jean-Jacques; Salin, Bénédicte; Lucas-Guérin, Marine; Manon, Stephen; Dementhon, Karine; Noël, Thierry

    2014-01-01

    It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.

  7. A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    PubMed Central

    Gonzalez, Nicola H.; Felsner, Gregor; Schramm, Frederic D.; Klingl, Andreas; Maier, Uwe-G.; Bolte, Kathrin

    2011-01-01

    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1. PMID:21966495

  8. Assessing heterogeneity of peroxisomes: isolation of two subpopulations from rat liver.

    PubMed

    Islinger, Markus; Abdolzade-Bavil, Afsaneh; Liebler, Sven; Weber, Gerhardt; Völkl, Alfred

    2012-01-01

    Peroxisomes exhibit a heterogeneous morphological appearance in rat liver tissue. In this respect, the isolation and subsequent biochemical characterization of peroxisome species from different subcellular prefractions should help to solve the question of whether peroxisomes indeed diverge into functionally specialized subgroups in one tissue. As a means to address this question, we provide a detailed separation protocol for the isolation of peroxisomes from both the light (LM-Po) and the heavy (HM-Po) mitochondrial prefraction for their subsequent comparative analysis. Both isolation strategies rely on centrifugation in individually adapted Optiprep gradients. In case of the heavy mitochondrial fraction, free flow electrophoresis is appended as an additional separation step to yield peroxisomes of sufficient purity. In view of their morphology, peroxisomes isolated from both fractions are surrounded by a continuous single membrane and contain a gray-opaque inner matrix. However, beyond this overall similar appearance, HM-Po exhibit a smaller average diameter, float at lower density, and show a more negative average membrane charge when compared to LM-Po.

  9. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  10. Profiling of acyl-CoA oxidase-deficient and peroxisome proliferator Wy14,643-treated mouse liver protein by surface-enhanced laser desorption/ionization ProteinChip Biology System.

    PubMed

    Chu, Ruiyin; Zhang, Weihua; Lim, Hanjo; Yeldandi, Anjana V; Herring, Chris; Brumfield, Laura; Reddy, Janardan K; Davison, Matthew

    2002-01-01

    Peroxisome proliferators induce hepatic peroxisome proliferation and hepatocellular carcinomas in rodents. These chemicals increase the expression of the peroxisomal beta-oxidation pathway and the cytochrome P-450 4A family, which metabolizes lipids, including fatty acids. Mice lacking fatty acyl-CoA oxidase (AOX-/-), the first enzyme of the peroxisomal beta-oxidation system, exhibit extensive microvesicular steatohepatitis, leading to hepatocellular regeneration and massive peroxisome proliferation. To investigate proteins involved in peroxisome proliferation, we adopted a novel surface-enhanced laser desorption/ionization (SELDI) ProteinChip technology to compare the protein profiles of control (wild-type), AOX-/-, and wild-type mice treated with peroxisome proliferator, Wy-14,643. The results indicated that the protein profiles of AOX-/- mice were similar to the wild-type mice treated with Wy14,643, but significantly different from the nontreated wild-type mice. Using four different ProteinChip Arrays, a total of 40 protein peaks showed more than twofold changes. Among these differentially expressed peaks, a downregulated peak was identified as the major urinary protein in both AOX-/- and Wyl4,643-treated mice by SELDI. The identification of MUP was further confirmed by two-dimensional electrophoresis and liquid chromatography coupled tandem mass spectrometry (LC-MS-MS). This SELDI method offers several technical advantages for detection of differentially expressed proteins, including ease and speed of screening, no need for chromatographic processing, and small sample size.

  11. Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane

    PubMed Central

    Yoshida, Yumi; Niwa, Hajime; Honsho, Masanori; Itoyama, Akinori; Fujiki, Yukio

    2015-01-01

    Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pβ caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1) and mitochondrial fission factor (Mff), as knockdown of these proteins diminished peroxisomal fission after Pex11pβ overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pβ was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pβ protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pβ strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1. PMID:25910939

  12. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M.

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive againstmore » xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.« less

  13. A Fox2-Dependent Fatty Acid ß-Oxidation Pathway Coexists Both in Peroxisomes and Mitochondria of the Ascomycete Yeast Candida lusitaniae

    PubMed Central

    Bessoule, Jean-Jacques; Salin, Bénédicte; Lucas-Guérin, Marine; Manon, Stephen; Dementhon, Karine; Noël, Thierry

    2014-01-01

    It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner. PMID:25486052

  14. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  15. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum

    PubMed Central

    Wanders, Ronald J. A.; Waterham, Hans R.; Ferdinandusse, Sacha

    2016-01-01

    Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved. PMID:26858947

  16. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  17. Lipid rafts are essential for peroxisome biogenesis in HepG2 cells.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; Hoekstra, Mark; Pellicoro, Antonella; van den Heuvel, Fiona A J; Heegsma, Janette; van Ijzendoorn, Sven C D; Holzinger, Andreas; Imanaka, Tsuneo; Moshage, Han; Faber, Klaas Nico

    2010-08-01

    Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.

  18. Sensitive and real-time determination of H2O2 release from intact peroxisomes.

    PubMed Central

    Mueller, Sebastian; Weber, Angelika; Fritz, Reiner; Mütze, Sabine; Rost, Daniel; Walczak, Henning; Völkl, Alfred; Stremmel, Wolfgang

    2002-01-01

    Peroxisomes are essential and ubiquitous cell organelles having a key role in mammalian lipid and oxygen metabolism. The presence of flavine oxidases makes them an important intracellular source of H(2)O(2): an obligate product of peroxisomal redox reactions and a key reactive oxygen species. Peroxisomes proliferate in response to external signals triggered by peroxisome-proliferator-activated receptor signalling pathways. Peroxisome-derived oxidative stress as a consequence of this proliferation is increasingly recognized to participate in pathologies ranging from carcinogenesis in rodents to alcoholic and non-alcoholic steatosis hepatitis in humans. To date, no sensitive approach exists to record H(2)O(2) turnover of peroxisomes in real time. Here, we introduce a sensitive chemiluminescence method that allows the monitoring of H(2)O(2) generation and degradation in real time in suspensions of intact peroxisomes. Importantly, removal, as well as release of, H(2)O(2) can be assessed at nanomolar, non-toxic concentrations in the same sample. Owing to the kinetic properties of catalase and oxidases, H(2)O(2) forms fast steady-state concentrations in the presence of various peroxisomal substrates. Substrate screening suggests that urate, glycolate and activated fatty acids are the most important sources for H(2)O(2) in rodents. Kinetic studies imply further that peroxisomes contribute significantly to the beta-oxidation of medium-chain fatty acids, in addition to their essential role in the breakdown of long and very long ones. These observations establish a direct quantitative release of H(2)O(2) from intact peroxisomes. The experimental approach offers new possibilities for functionally studying H(2)O(2) metabolism, substrate transport and turnover in peroxisomes of eukaryotic cells. PMID:11964148

  19. Induction, immunochemical identity and immunofluorescence localization of an 80 000-molecular-weight peroxisome-proliferation-associated polypeptide (polypeptide PPA-80) and peroxisomal enoyl-CoA hydratase of mouse liver and renal cortex.

    PubMed

    Lalwani, N D; Reddy, M K; Mangkornkanok-Mark, M; Reddy, J K

    1981-07-15

    The hypolipidaemic drugs methyl clofenapate, BR-931, Wy-14643 and procetofen induced a marked proliferation of peroxisomes in the parenchymal cells of liver and the proximal-convoluted-tubular epithelium of mouse kidney. The proliferation of peroxisomes was associated with 6-12-fold increase in the peroxisomal palmitoyl-CoA oxidizing capacity of the mouse liver. Enhanced activity of the peroxisomal palmitoyl-CoA oxidation system was also found in the renal-cortical homogenates of hypolipidaemic-drug-treated mice. The activity of enoyl-CoA hydratase in the mouse liver increased 30-50-fold and in the kidney cortex 3-5-fold with hypolipidaemic-drug-induced peroxisome proliferation in these tissues, and over 95% of this induced activity was found to be heat-labile peroxisomal enzyme in both organs. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of large-particle and microsomal fractions obtained from the liver and kidney cortex of mice treated with hypolipidaemic peroxisome proliferators demonstrated a substantial increase in the quantity of an 80000-mol.wt. peroxisome-proliferation-associated polypeptide (polypeptide PPA-80). The heat-labile peroxisomal enoyl-CoA hydratase was purified from the livers of mice treated with the hypolipidaemic drug methyl clofenapate; the antibodies raised against this electrophoretically homogeneous protein yielded a single immunoprecipitin band with purified mouse liver enoyl-CoA hydratase and with liver and kidney cortical extracts of normal and hypolipidaemic-drug-treated mice. These anti-(mouse liver enoyl-CoA hydratase) antibodies also cross-reacted with purified rat liver enoyl-CoA hydratase and with the polypeptide PPA-80 obtained from rat and mouse liver. Immunofluorescence studies with anti-(polypeptide PPA-80) and anti-(peroxisomal enoyl-CoA hydratase) provided visual evidence for the localization and induction of polypeptide PPA-80 and peroxisomal enoyl-CoA hydratase in the liver and kidney respectively

  20. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    PubMed

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  1. Molecular analysis of peroxisome proliferation in the hamster.

    PubMed

    Choudhury, Agharul I; Sims, Helen M; Horley, Neill J; Roberts, Ruth A; Tomlinson, Simon R; Salter, Andrew M; Bruce, Mary; Shaw, P Nicholas; Kendall, David; Barrett, David A; Bell, David R

    2004-05-15

    Three novel P450 members of the cytochrome P450 4A family were cloned as partial cDNAs from hamster liver, characterised as novel members of the CYP4A subfamily, and designated CYP4A17, 18, and 19. Hamsters were treated with the peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, methylclofenapate (MCP) or Wy-14,643, and shown to develop hepatomegaly and induction of CYP4A17 RNA, and concomitant induction of lauric acid 12- hydroxylase. This treatment also resulted in hypolipidaemia, which was most pronounced in the VLDL fraction, with up to 50% reduction in VLDL-triglycerides; by contrast, blood cholesterol concentration was unaffected by this treatment. These data show that hamster is highly responsive to induction of CYP4A by peroxisome proliferators. To characterise the molecular basis of peroxisome proliferation, the hamster PPARalpha was cloned and shown to encode a 468-amino-acid protein, which is highly similar to rat and mouse PPARalpha proteins. The level of expression of hamster PPARalpha in liver is intermediate between mouse and guinea pig. These results fail to support the hypothesis that the level of PPARalpha in liver is directly responsible for species differences in peroxisome proliferation.

  2. Peroxisomal ATP-binding cassette transporters form mainly tetramers

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Raas, Quentin; Dias, Alexandre M. M.; Pecqueur, Delphine; Truntzer, Caroline; Lucchi, Géraldine; Ducoroy, Patrick; Falson, Pierre; Savary, Stéphane; Trompier, Doriane

    2017-01-01

    ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane. PMID:28258215

  3. Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling

    PubMed Central

    You, Jaehwan; Hou, Shangmei; Malik-Soni, Natasha; Xu, Zaikun; Kumar, Anil; Rachubinski, Richard A.; Frappier, Lori

    2015-01-01

    ABSTRACT Flaviviruses are significant human pathogens that have an enormous impact on the global health burden. Currently, there are very few vaccines against or therapeutic treatments for flaviviruses, and our understanding of how these viruses cause disease is limited. Evidence suggests that the capsid proteins of flaviviruses play critical nonstructural roles during infection, and therefore, elucidating how these viral proteins affect cellular signaling pathways could lead to novel targets for antiviral therapy. We used affinity purification to identify host cell proteins that interact with the capsid proteins of West Nile and dengue viruses. One of the cellular proteins that formed a stable complex with flavivirus capsid proteins is the peroxisome biogenesis factor Pex19. Intriguingly, flavivirus infection resulted in a significant loss of peroxisomes, an effect that may be due in part to capsid expression. We posited that capsid protein-mediated sequestration and/or degradation of Pex19 results in loss of peroxisomes, a situation that could result in reduced early antiviral signaling. In support of this hypothesis, we observed that induction of the lambda interferon mRNA in response to a viral RNA mimic was reduced by more than 80%. Together, our findings indicate that inhibition of peroxisome biogenesis may be a novel mechanism by which flaviviruses evade the innate immune system during early stages of infection. IMPORTANCE RNA viruses infect hundreds of millions of people each year, causing significant morbidity and mortality. Chief among these pathogens are the flaviviruses, which include dengue virus and West Nile virus. Despite their medical importance, there are very few prophylactic or therapeutic treatments for these viruses. Moreover, the manner in which they subvert the innate immune response in order to establish infection in mammalian cells is not well understood. Recently, peroxisomes were reported to function in early antiviral signaling, but

  4. The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana

    PubMed Central

    Rinaldi, Mauro A.; Patel, Ashish B.; Park, Jaeseok; Lee, Koeun; Strader, Lucia C.; Bartel, Bonnie

    2016-01-01

    Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana. This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development. PMID:27605050

  5. Peroxisomal Alanine: Glyoxylate Aminotransferase AGT1 Is Indispensable for Appressorium Function of the Rice Blast Pathogen, Magnaporthe oryzae

    PubMed Central

    Bhadauria, Vijai; Banniza, Sabine; Vandenberg, Albert; Selvaraj, Gopalan; Wei, Yangdou

    2012-01-01

    The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes

  6. Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism

    PubMed Central

    Dallaire, Patrice; Bellmann, Kerstin; Laplante, Mathieu; Gélinas, Stéphanie; Centeno-Baez, Carolina; Penfornis, Patrice; Peyot, Marie-Line; Latour, Martin G.; Lamontagne, Julien; Trujillo, Maria E.; Scherer, Philipp E.; Prentki, Marc; Deshaies, Yves; Marette, André

    2008-01-01

    OBJECTIVE—Synthetic ligands for peroxisome proliferator–activated receptor-γ (PPAR-γ) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS—iNOS−/− and iNOS+/+ were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS—Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS−/− and obese iNOS+/+ mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS−/− mice. PPAR-γ transcriptional activity was increased in adipose tissue of iNOS−/− mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-γ activity. CONCLUSIONS—Our results identify the iNOS/NO pathway as a critical modulator of PPAR-γ activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-γ agonism in an animal model of obesity and insulin resistance. PMID:18458147

  7. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair

    PubMed Central

    Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.

    2014-01-01

    Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916

  8. Peroxisome proliferation due to di(2-ethylhexyl) phthalate (DEHP): species differences and possible mechanisms.

    PubMed Central

    Elcombe, C R; Mitchell, A M

    1986-01-01

    The exposure of cultured rat hepatocytes to mono(2-ethylhexyl)phthalate (MEHP) for 72 hr resulted in marked induction of peroxisomal enzyme activity (beta-oxidation; cyanide-insensitive palmitoyl CoA oxidase) and concomitant increases in the number of peroxisomes. Similar treatment of cultured guinea pig, marmoset, or human hepatocytes revealed little or no effect of MEHP. In order to eliminate possible confounding influences of biotransformation, the proximate peroxisome proliferator(s) derived from MEHP have been identified. Using cultured hepatocytes these agents were found to be metabolite VI [mono(2-ethyl-5-oxohexyl) phthalate] and metabolite IX [mono(2-ethyl-5-hydroxyhexyl) phthalate]. The addition of these "active" metabolites to cultured guinea pig, marmoset, or human hepatocytes again revealed little effect upon peroxisomes or related enzyme activities (peroxisomal beta-oxidation or microsomal lauric acid hydroxylation). These studies demonstrate a marked species difference in the response of hepatocytes to MEHP-elicited peroxisome proliferation. Preliminary studies have also suggested that peroxisome proliferation due to MEHP may be due to an initial biochemical lesion of fatty acid metabolism. Images FIGURE 4. a FIGURE 4. b PMID:3104023

  9. Peroxisomal enzymes in the liver of rats with experimental diabetes mellitus type 2.

    PubMed

    Turecký, L; Kupčová, V; Uhlíková, E; Mojto, V

    2014-01-01

    Diabetes mellitus is relatively frequently associated with fatty liver disease. Increased oxidative stress probably plays an important role in the development of this hepatopathy. One of possible sources of reactive oxygen species in liver is peroxisomal system. There are several reports about changes of peroxisomal enzymes in experimental diabetes, mainly enzymes of fatty acid oxidation. The aim of our study was to investigate the possible changes of activities of liver peroxisomal enzymes, other than enzymes of beta-oxidation, in experimental diabetes mellitus type 2. Biochemical changes in liver of experimental animals suggest the presence of liver steatosis. The changes of serum parameters in experimental group are similar to changes in serum of patients with non-alcoholic fatty liver disease. We have shown that diabetes mellitus influenced peroxisomal enzymes by the different way. Despite of well-known induction of peroxisomal beta-oxidation, the activities of catalase, aminoacid oxidase and NADH-cytochrome b(5) reductase were not significantly changed and the activities of glycolate oxidase and NADP-isocitrate dehydrogenase were significantly decreased. The effect of diabetes on liver peroxisomes is probably due to the increased supply of fatty acids to liver in diabetic state and also due to increased oxidative stress. The changes of metabolic activity of peroxisomal compartment may participate on the development of diabetic hepatopathy.

  10. Import of peroxisomal hydroxypyruvate reductase into glyoxysomes.

    PubMed

    Sautter, C; Sautter, E; Hock, B

    1988-11-01

    A new procedure was used to purify the peroxisomal matrix enzyme hydroxypyruvate reductase (HPR) from green leaves of pumpkin (Cucurbita pepo L.) and spinach (Spinacia oleracea L.). Monospecific antibodies were prepared against this enzyme in rabbits. Immunoprecipitation of HPR from watermelon (Citrullus vulgaris Schrad.) yielded a single protein with a subunit molecular weight of 45 kDa. Immunohistochemical labeling of HPR was found exclusively in watermelon microbodies. Isolated polyadenylated mRNA from light-grown watermelon cotyledons was injected into Xenopus laevis oocytes. The heterologous in-vivo translation product of HPR exhibited the same molecular weight as the immunoprecipitate from watermelon cotyledons, indicating the lack of a cleavable extra sequence. The watermelon HPR translated in oocytes was imported into isolated glyoxysomes from castor bean (Ricinus communis L.) endosperm and remained resistant to proteolysis after the addition of proteinase K. The HPR did not change its apparent molecular weight during sequestration; however, it may have changed its conformation.

  11. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture.

    PubMed

    Janson, David; Saintigny, Gaëlle; Mahé, Christian; El Ghalbzouri, Abdoelwaheb

    2013-01-01

    The dermis can be divided into two morphologically different layers: the papillary and reticular dermis. Fibroblasts isolated from these layers behave differently when cultured in vitro. During skin ageing, the papillary dermis decreases in volume. Based on the functional differences in vitro, it is hypothesized that the loss of papillary fibroblasts contributes to skin ageing. In this study, we aimed to mimic certain aspects of skin ageing by using high-passage cultures of reticular and papillary fibroblasts and investigated the effect of these cells on skin morphogenesis in reconstructed human skin equivalents. Skin equivalents generated with reticular fibroblasts showed a reduced terminal differentiation and fewer proliferating basal keratinocytes. Aged in vitro papillary fibroblasts had increased expression of biomarkers specific to reticular fibroblasts. The phenotype and morphology of skin equivalents generated with high-passage papillary fibroblasts resembled that of reticular fibroblasts. This demonstrates that papillary fibroblasts can differentiate into reticular fibroblasts in vitro. Therefore, we hypothesize that papillary fibroblasts represent an undifferentiated phenotype, while reticular fibroblasts represent a more differentiated population. The differentiation process could be a new target for anti-skin-ageing strategies. © 2013 John Wiley & Sons A/S.

  12. Nucleotide-dependent assembly of the peroxisomal receptor export complex

    PubMed Central

    Grimm, Immanuel; Saffian, Delia; Girzalsky, Wolfgang; Erdmann, Ralf

    2016-01-01

    Pex1p and Pex6p are two AAA-ATPases required for biogenesis of peroxisomes. Both proteins form a hetero-hexameric complex in an ATP-dependent manner, which has a dual localization in the cytosol and at the peroxisomal membrane. At the peroxisomal membrane, the complex is responsible for the release of the import receptor Pex5p at the end of the matrix protein import cycle. In this study, we analyzed the recruitment of the AAA-complex to its anchor protein Pex15p at the peroxisomal membrane. We show that the AAA-complex is properly assembled even under ADP-conditions and is able to bind efficiently to Pex15p in vivo. We reconstituted binding of the Pex1/6p-complex to Pex15p in vitro and show that Pex6p mediates binding to the cytosolic part of Pex15p via a direct interaction. Analysis of the isolated complex revealed a stoichiometry of Pex1p/Pex6p/Pex15p of 3:3:3, indicating that each Pex6p molecule of the AAA-complex binds Pex15p. Binding of the AAA-complex to Pex15p in particular and to the import machinery in general is stabilized when ATP is bound to the second AAA-domain of Pex6p and its hydrolysis is prevented. The data indicate that receptor release in peroxisomal protein import is associated with a nucleotide-depending Pex1/6p-cycle of Pex15p-binding and release. PMID:26842748

  13. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis

    DOE PAGES

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    2016-10-31

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  14. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    DOE PAGES

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Usingmore » microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  15. Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons.

    PubMed Central

    Bueno, P; Varela, J; Gimeénez-Gallego, G; del Río, L A

    1995-01-01

    The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed. PMID:7630940

  16. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.

    PubMed

    Herr, Andreas; Fischer, Reinhard

    2014-09-01

    Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves.

    PubMed Central

    Jimenez, A.; Hernandez, J. A.; Del Rio, L. A.; Sevilla, F.

    1997-01-01

    The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles. PMID:12223704

  18. Occludin confers adhesiveness when expressed in fibroblasts.

    PubMed

    Van Itallie, C M; Anderson, J M

    1997-05-01

    Occludin is an integral membrane protein specifically associated with tight junctions. Previous studies suggest it is likely to function in forming the intercellular seal. In the present study, we expressed occludin under an inducible promotor in occludin-null fibroblasts to determine whether this protein confers intercellular adhesion. When human occludin is stably expressed in NRK and Rat-1 fibroblasts, which lack endogenous occludin and tight junctions but do have well developed ZO-1-containing adherens-like junctions, occludin colocalizes with ZO-1 to points of cell-cell contact. In contrast, L-cell fibroblasts which lack cadherin-based adherens junctions, target neither ZO-1 nor occludin to sites of cell contact. Occludin-induced adhesion was next quantified using a suspended cell assay. In NRK and Rat-1 cells, occludin expression induces adhesion in the absence of calcium, thus independent of cadherin-cadherin contacts. In contrast, L-cells are nonadhesive in this assay and show no increase in adhesion after induction of occludin expression. Binding of an antibody to the first of the putative extracellular loops of occludin confirmed that this sequence was exposed on the cell surface, and synthetic peptides containing the amino acid sequence of this loop inhibit adhesion induced by occludin expression. These results suggest that the extracellular surface of occludin is directly involved in cell-cell adhesion and the ability to confer adhesiveness correlates with the ability to colocalize with its cytoplasmic binding protein, ZO-1.

  19. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells

    PubMed Central

    Voitsekhovskaja, Olga V.; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism. PMID:25477890

  20. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells.

    PubMed

    Voitsekhovskaja, Olga V; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.

  1. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    PubMed

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  2. An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates.

    PubMed

    Antonenkov, Vasily D; Mindthoff, Sabrina; Grunau, Silke; Erdmann, Ralf; Hiltunen, J Kalervo

    2009-12-01

    The separate localization of glyoxylate cycle enzymes in the peroxisomes and the cytosol of the yeast Saccharomyces cerevisiae indicates that the peroxisomal membrane must permit the flow of metabolites between the two compartments. The transfer of these metabolites may require peroxisomal membrane channel(s). We used an electrophysiological approach (reconstitution assay in lipid bilayers) to assess the ability of peroxisomal membrane channels to conduct different solutes including metabolites of the glyoxylate cycle. At least two distinct channel-forming activities were detected in peroxisomal preparations. One of these activities was highly inducible by dithiothreitol and showed large-amplitude current increments when 1M KCl was used as a bath solution. Single-channel analysis revealed that the inducible channel is anion-selective (P(Cl(-)) / P(K(+)) = 2.6; P(citrate)/P(K(+)) = 1.6) and displays flickering at holding potentials over + or - 30mV directed upward or downward relative to the main open state of the channel. The channel inducible by DTT facilitates the transfer of solutes with a molecular mass up to 400Da, sufficient to allow the transmembrane trafficking of glyoxylate cycle intermediates between the peroxisomal lumen and the cytoplasm.

  3. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    PubMed

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-07-22

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway.

  4. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    PubMed

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  5. Detection and Quantification of Free Radicals in Peroxisomal Disorders: A Comparative Study with Oxidative Stress Parameters.

    PubMed

    Abd-Elmaksoud, Sohair Abd-El Mawgood; El-Bassyouni, Hala; Afifi, Hanan; Thomas, Manal Micheal; Ibrahim, Alshaymaa Ahmed; Shalaby, Aliaa; Hamid, Tamer Ahmed Abdel; Hamid, Nehal Abdel; El-Ghobary, Hany

    2015-11-01

    Free radicals have been thought to participate in pathogenesis of peroxisomal disorders. The aim of the work is to detect free oxide radicals in blood of patients with peroxisomal disorders and to study their relation with various oxidative stress parameters. Twenty patients with peroxisomal disorders and 14 age and sex matched healthy subjects were included in the study. Patients with peroxisomal disorders were subdivided according to diagnosis into peroxisomal biogenesis disorders and single enzyme deficiency. Oxidative stress was evaluated in both patients and control subjects by assessment of free radicals, malondialdehyde, nitric oxide metabolites and superoxide dismutase. There was increase in free radicals, malondialdehyde, nitric oxide metabolites in patients compared with control subjects. However, there was decrease in superoxide dismutase levels in patients compared with control subjects. We concluded that there is excess free radicals production accompanied with decrease in antioxidant defenses in patients with peroxisomal disorders. These results strongly support a role of free radicals in the pathophysiology of peroxisomal disorders and strengthen the importance of oxidative stress phenomenon in peroxisomal disorders pathogenesis.

  6. Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum.

    PubMed Central

    Mullen, R T; Lisenbee, C S; Miernyk, J A; Trelease, R N

    1999-01-01

    The peroxisomal isoform of ascorbate peroxidase (APX) is a novel membrane isoform that functions in the regeneration of NAD(+) and protection against toxic reactive oxygen species. The intracellular localization and sorting of peroxisomal APX were examined both in vivo and in vitro. Epitope-tagged peroxisomal APX, which was expressed transiently in tobacco BY-2 cells, localized to a reticular/circular network that resembled endoplasmic reticulum (ER; 3,3'-dihexyloxacarbocyanine iodide-stained membranes) and to peroxisomes. The reticular network did not colocalize with other organelle marker proteins, including three ER reticuloplasmins. However, in vitro, peroxisomal APX inserted post-translationally into the ER but not into other purified organelle membranes (including peroxisomal membranes). Insertion into the ER depended on the presence of molecular chaperones and ATP. These results suggest that regions of the ER serve as a possible intermediate in the sorting pathway of peroxisomal APX. Insight into this hypothesis was obtained from in vivo experiments with brefeldin A (BFA), a toxin that blocks vesicle-mediated protein export from ER. A transiently expressed chloramphenicol acetyltransferase-peroxisomal APX (CAT-pAPX) fusion protein accumulated only in the reticular/circular network in BFA-treated cells; after subsequent removal of BFA from these cells, the CAT-pAPX was distributed to preexisting peroxisomes. Thus, plant peroxisomal APX, a representative enzymatic peroxisomal membrane protein, is sorted to peroxisomes through an indirect pathway involving a preperoxisomal compartment with characteristics of a distinct subdomain of the ER, possibly a peroxisomal ER subdomain. PMID:10559442

  7. Peroxisomal Proteostasis Involves a Lon Family Protein That Functions as Protease and Chaperone*

    PubMed Central

    Bartoszewska, Magdalena; Williams, Chris; Kikhney, Alexey; Opaliński, Łukasz; van Roermund, Carlo W. T.; de Boer, Rinse; Veenhuis, Marten; van der Klei, Ida J.

    2012-01-01

    Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities. PMID:22733816

  8. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-04-01

    Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m 2 ; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes ( PEXs ) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1- 14 C]palmitic acid and [1- 14 C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1 ) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated ( P < 0.05), 2 ) PGC-1α , PMP70 , key PEXs , and peroxisomal β-oxidation mRNA expression levels were significantly upregulated ( P < 0.05), and 3 ) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed ( P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells. Copyright © 2017 the American Physiological Society.

  9. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    PubMed

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  10. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    PubMed Central

    Ortega-Galisteo, Ana P.; Rodríguez-Serrano, María; Pazmiño, Diana M.; Gupta, Dharmendra K.; Sandalio, Luisa M.; Romero-Puertas, María C.

    2012-01-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress. PMID:22213812

  11. Covalent Label Transfer between Peroxisomal Importomer Components Reveals Export-driven Import Interactions.

    PubMed

    Bhogal, Moninder S; Lanyon-Hogg, Thomas; Johnston, Katherine A; Warriner, Stuart L; Baker, Alison

    2016-01-29

    Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal malate dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes because of high degrees of protease susceptibility or resistance, respectively. Here we present a means for analysis of in vitro import through a covalent biotin label transfer and employ this method to the import of PEX5C. Label transfer demonstrates that the PEX5C construct is monomeric under the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labeling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and, strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    PubMed

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  13. Peroxisomal Targeting, Import, and Assembly of Alcohol Oxidase in Pichia pastoris

    PubMed Central

    Waterham, Hans R.; Russell, Kimberly A.; de Vries, Yne; Cregg, James M.

    1997-01-01

    Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal proteins that are able to oligomerize before import. To further investigate the import of AOX, we first identified its peroxisomal targeting signal (PTS). We found that sequences essential for targeting AOX are primarily located within the four COOH-terminal amino acids of the protein leucine-alanine-arginine-phenylalanine COOH (LARF). To examine whether AOX can oligomerize before import, we coexpressed AOX without its PTS along with wild-type AOX and determined whether the mutant AOX could be coimported into peroxisomes. To identify the mutant form of AOX, the COOH-terminal LARF sequence of the protein was replaced with a hemagglutinin epitope tag (AOX–HA). Coexpression of AOX–HA with wild-type AOX (AOX-WT) did not result in an increase in the proportion of AOX–HA present in octameric active AOX, suggesting that newly synthesized AOX–HA cannot oligomerize with AOX-WT in the cytoplasm. Thus, AOX cannot initiate oligomerization in the cytoplasm, but must first be targeted to the organelle before assembly begins. PMID:9396748

  14. Peroxisome Degradation by Microautophagy in Pichia pastoris: Identification of Specific Steps and Morphological Intermediates

    PubMed Central

    Sakai, Yasuyoshi; Koller, Antonius; Rangell, Linda K.; Keller, Gilbert A.; Subramani, Suresh

    1998-01-01

    We used the dye N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl) pyridinium dibromide (FM4-64) and a fusion protein, consisting of the green fluorescent protein appended to the peroxisomal targeting signal, Ser-Lys-Leu (SKL), to label the vacuolar membrane and the peroxisomal matrix, respectively, in living Pichia pastoris cells and followed by fluorescence microscopy the morphological and kinetic intermediates in the vacuolar degradation of peroxisomes by microautophagy and macroautophagy. Structures corresponding to the intermediates were also identified by electron microscopy. The kinetics of appearance and disappearance of these intermediates is consistent with a precursor–product relationship between intermediates, which form the basis of a model for microautophagy. Inhibitors affecting different steps of microautophagy did not impair peroxisome delivery to the vacuole via macroautophagy, although inhibition of vacuolar proteases affected the final vacuolar degradation of green fluorescent protein (S65T mutant version [GFP])-SKL via both autophagic pathways. P. pastoris mutants defective in peroxisome microautophagy (pag mutants) were isolated and characterized for the presence or absence of the intermediates. These mutants, comprising 6 complementation groups, support the model for microautophagy. Our studies indicate that the microautophagic degradation of peroxisomes proceeds via specific intermediates, whose generation and/or processing is controlled by PAG gene products, and shed light on the poorly understood phenomenon of peroxisome homeostasis. PMID:9566964

  15. MECHANISMS INVOLVED IN THE ENHANCED SUSCEPTIBILITY OF SENESCENT RATS TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA (PPARA), CELL PROLIFERATION AND OXIDATIVE STRESS

    EPA Science Inventory

    Mechanisms involved in the ENHANCED SUSCEPTIBILITY of SENESCENT Rats TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: Role of peroxisome proliferator-activated receptor alpha (PPARa), cell proliferation and oxidative stress

    Jihan A. Youssef1, Pierre Ammann2, B...

  16. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels.

    PubMed

    Kobayashi, Tetsu; Kim, HuiJung; Liu, Xiangde; Sugiura, Hisatoshi; Kohyama, Tadashi; Fang, Qiuhong; Wen, Fu-Qiang; Abe, Shinji; Wang, Xingqi; Atkinson, Jeffrey J; Shipley, James M; Senior, Robert M; Rennard, Stephen I

    2014-06-01

    Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts. Copyright © 2014 the American Physiological Society.

  17. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    PubMed Central

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  18. Peroxisomal Ascorbate Peroxidase Resides within a Subdomain of Rough Endoplasmic Reticulum in Wild-Type Arabidopsis Cells1

    PubMed Central

    Lisenbee, Cayle S.; Heinze, Michael; Trelease, Richard N.

    2003-01-01

    Previously we reported (R.T. Mullen, C.S. Lisenbee, J.A. Miernyk, R.N. Trelease [1999] Plant Cell 11: 2167–2185) that overexpressed ascorbate peroxidase (APX), a peroxisomal membrane protein, sorted indirectly to Bright Yellow-2 cell peroxisomes via a subdomain of the endoplasmic reticulum (ER; peroxisomal endoplasmic reticulum [pER]). More recently, a pER-like compartment also was identified in pumpkin (Cucurbita pepo) and transformed Arabidopsis cells (K. Nito, K. Yamaguchi, M. Kondo, M. Hayashi, M. Nishimura [2001] Plant Cell Physiol 42: 20–27). Here, we characterize more extensively the localization of endogenous Arabidopsis peroxisomal APX (AtAPX) in cultured wild-type Arabidopsis cells (Arabidopsis var. Landsberg erecta). AtAPX was detected in peroxisomes, but not in an ER subcompartment, using immunofluorescence microscopy. However, AtAPX was detected readily with immunoblots in both peroxisomal and ER fractions recovered from sucrose (Suc) density gradients. Most AtAPX in microsomes (200,000g, 1 h pellet) applied to gradients exhibited a Mg2+-induced shift from a distribution throughout gradients (approximately 18%–40% [w/w] Suc) to ≥42% (w/w) Suc regions of gradients, including pellets, indicative of localization in rough ER vesicles. Immunogold electron microscopy of the latter fractions verified these findings. Further analyses of peroxisomal and rough ER vesicle fractions revealed that AtAPX in both fractions was similarly associated with and located mostly on the cytosolic face of the membranes. Thus, at the steady state, endogenous peroxisomal AtAPX resides at different levels in rough ER and peroxisomes. Collectively, these findings show that rather than being a transiently induced sorting compartment formed in response to overexpressed peroxisomal APX, portions of rough ER (pER) in wild-type cells serve as a constitutive sorting compartment likely involved in posttranslational routing of constitutively synthesized peroxisomal APX. PMID

  19. Factors influencing palmitoyl-CoA oxidation by rat liver peroxisomal fractions. Substrate concentration, organelle integrity and ATP.

    PubMed Central

    Thomas, J; Debeer, L J; De Schepper, P J; Mannaerts, G P

    1980-01-01

    1. The first dehydrogenation step of peroxisomal beta-oxidation involves the reduction of O2 to H2O2. Production rates of H2O2 and acetyl units by purified rat liver peroxisomes oxidizing palmitoyl-CoA were equal, indicating that H2O2 production is a reliable index for the release of acetyl units during peroxisomal fatty-acid oxidation. 2. Measurements of H2O2 and acid-soluble oxidation products during [1-14C]palmitoyl-CoA oxidation by purified peroxisomes revealed that the number of acetyl units released per molecule of palmitoyl-CoA oxidized rapidly decreased with increasing unbound palmitoyl-CoA concentrations. Structural damage to the peroxisomes caused by detergents or other treatments also decreased the number of acetyl units released. Under conditions where oxidation proceeded linearly with time the theoretical maximum of 5 acetyl units released per molecule of palmitoyl-CoA oxidized [Lazarow (1978) J. Biol. Chem. 253, 1522--1528] was never reached. 3. Expressed in terms of acetyl units produced and measured at low unbound-palmitoyl-CoA concentrations, mitochondrial oxidation was 10--20-fold higher than peroxisomal oxidation. 4. ATP stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold. The ATP effect required the presence of Mg2+ and was lost when peroxisomal membranes were disrupted by Triton X-100 or high concentrations of unbound palmitoyl-CoA. 5. Disruption of peroxisomes by detergents, freeze--thawing, osmotic or mechanical treatment did not stimulate palmitoyl-CoA oxidation in the presence of ATP, indicating that peroxisomal fatty-acid-CoA oxidation was not latent. In the absence of ATP, Triton X-100 stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold. PMID:7470063

  20. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  1. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.

    PubMed Central

    Kliewer, S A; Forman, B M; Blumberg, B; Ong, E S; Borgmeyer, U; Mangelsdorf, D J; Umesono, K; Evans, R M

    1994-01-01

    To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in mammals, we have cloned and characterized two PPAR alpha-related cDNAs (designated PPAR gamma and -delta, respectively) from mouse. The three PPAR isoforms display widely divergent patterns of expression during embryogenesis and in the adult. Surprisingly, PPAR gamma and -delta are not activated by pirinixic acid (Wy 14,643), a potent peroxisome proliferator and activator of PPAR alpha. However, PPAR gamma and -delta are activated by the structurally distinct peroxisome proliferator LY-171883 and linoleic acid, respectively, indicating that each of the isoforms can act as a regulated activator of transcription. These data suggest that tissue-specific responsiveness to peroxisome proliferators, including certain fatty acids, is in part a consequence of differential expression of multiple, pharmacologically distinct PPAR isoforms. Images PMID:8041794

  2. The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP.

    PubMed

    van Roermund, Carlo W T; Schroers, Martin G; Wiese, Jan; Facchinelli, Fabio; Kurz, Samantha; Wilkinson, Sabrina; Charton, Lennart; Wanders, Ronald J A; Waterham, Hans R; Weber, Andreas P M; Link, Nicole

    2016-07-01

    Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes

    PubMed Central

    Antonenkov, Vasily D.; Sormunen, Raija T.; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P.; Hiltunen, J. Kalervo

    2005-01-01

    The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal β-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed. PMID:16262600

  4. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes.

    PubMed

    Antonenkov, Vasily D; Sormunen, Raija T; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P; Hiltunen, J Kalervo

    2006-03-01

    The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal beta-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed.

  5. Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice.

    PubMed

    Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo

    2014-07-01

    Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.

  6. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1.

    PubMed

    Dobriyal, Neha; Tripathi, Prerna; Sarkar, Susrita; Tak, Yogesh; Verma, Amit K; Sahi, Chandan

    2017-05-01

    J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.

  7. Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels.

    PubMed

    Mindthoff, Sabrina; Grunau, Silke; Steinfort, Laura L; Girzalsky, Wolfgang; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D

    2016-02-01

    More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits.

    PubMed

    Lopez-Huertas, Eduardo; del Río, Luis A

    2014-10-15

    The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate-glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Determination of Peroxisomal pH in Living Mammalian Cells Using pHRed.

    PubMed

    Godinho, Luis F; Schrader, Michael

    2017-01-01

    Organelle pH homeostasis is crucial for maintaining proper cellular function. The nature of the peroxisomal pH remains somewhat controversial, with several studies reporting conflicting results. Here, we describe in detail a rapid and accurate method for the measurement of peroxisomal pH, using the pHRed sensor protein and confocal microscopy of living mammalian cells. pHRed, a ratiometric sensor of pH, is targeted to the peroxisomes by virtue of a C-terminal targeting sequence. The probe has a maximum fluorescence emission at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm, allowing for ratiometric imaging and determination of intracellular pH in live cell microscopy.

  10. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane

    PubMed Central

    Weir, Nicholas R; Kamber, Roarke A; Martenson, James S

    2017-01-01

    Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence. PMID:28906250

  11. Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease

    PubMed Central

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara

    2017-01-01

    Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans. PMID:28811869

  12. Targeted Elimination of Peroxisomes During Viral Infection: Lessons from HIV and Other Viruses.

    PubMed

    Wong, Cheung Pang; Xu, Zaikun; Power, Christopher; Hobman, Tom C

    2018-05-01

    Peroxisomes are membrane-bound organelles that are best known for their roles in lipid metabolism. Mounting evidence indicates that they are also important nodes for antiviral signaling. While research over the past few decades has revealed effective viral strategies to block antiviral signalling pathways from the plasma membrane, mitochondria and/or the nucleus, until recently, very little was known about how viruses interfere with peroxisome-based antiviral signaling. In this essay, we review how viruses use a variety of strategies to interfere with peroxisome biogenesis, a phenomenon that has implications for evasion of the host immune system as well as pathogenesis.

  13. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    PubMed

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  14. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less

  15. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ) in vitro.

    PubMed

    Dionisi, Mauro; Alexander, Stephen P H; Bennett, Andrew J

    2012-05-14

    Oleamide (ODA) is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) as potential targets for ODA action. Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  16. Urate oxidase is imported into peroxisomes recognizing the C-terminal SKL motif of proteins.

    PubMed

    Miura, S; Oda, T; Funai, T; Ito, M; Okada, Y; Ichiyama, A

    1994-07-01

    Rat liver urate oxidase synthesized from cDNA through coupled transcription and translation was incubated at 26 degrees C for 60 min with purified peroxisomes from rat liver. Urate oxidase was efficiently imported into the peroxisomes, as determined by resistance to externally added proteinase K. The amount of imported urate oxidase increased with time and the import was temperature dependent. A synthetic peptide composed of the C-terminal 10 amino acid residues of acyl-CoA oxidase (the C-terminal tripeptide is Ser-Lys-Leu) inhibited the import of urate oxidase, whereas other peptides, in which the C-terminal Ser-Lys-Leu (SKL) sequence was deleted or mutated, were not effective. Two mutant urate oxidase proteins in which the C-terminal Ser-Arg-Leu (SRL) sequence was deleted or mutated to Ser-Glu-Leu (SEL) were not imported into peroxisomes. With substitution of a lysine residue for arginine in the SRL tripeptide at the C-terminus the import activity was retained. These results show that urate oxidase is important into peroxisomes via a common pathway with acyl-CoA oxidase, and that the C-terminal SRL sequence functions as a peroxisomal-targeting signal.

  17. Aleglitazar, a dual peroxisome proliferator-activated receptor-α and -γ agonist, protects cardiomyocytes against the adverse effects of hyperglycaemia.

    PubMed

    Chen, Yan; Chen, Hongmei; Birnbaum, Yochai; Nanhwan, Manjyot K; Bajaj, Mandeep; Ye, Yumei; Qian, Jinqiao

    2017-03-01

    To assess the effects of Aleglitazar on hyperglycaemia-induced apoptosis. We incubated human cardiomyocytes, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout or wild-type mice in normoglycaemic or hyperglycaemic conditions (glucose 25 mM). Cells were treated with different concentrations of Aleglitazar for 48 h. We measured viability, apoptosis, caspase-3 activity, cytochrome-C release, total antioxidant capacity and reactive oxygen species formation in the treated cardiomyocytes. Human cardiomyocytes were transfected with short interfering RNA against peroxisome proliferator-activated receptor-α or peroxisome proliferator-activated receptor-γ. Aleglitazar attenuated hyperglycaemia-induced apoptosis, caspase-3 activity and cytochrome-C release and increased viability in human cardiomyocyte, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout and wild-type mice. Hyperglycaemia reduced the antioxidant capacity and Aleglitazar significantly blunted this effect. Hyperglycaemia-induced reactive oxygen species production was attenuated by Aleglitazar in both human cardiomyocyte and wild-type mice cardiomyocytes. Aleglitazar improved cell viability in cells exposed to hyperglycaemia. The protective effect was partially blocked by short interfering RNA against peroxisome proliferator-activated receptor-α alone and short interfering RNA against peroxisome proliferator-activated receptor-γ alone and completely blocked by short interfering RNA to both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ. Aleglitazar protects cardiomyocytes against hyperglycaemia-induced apoptosis by combined activation of both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ in a short-term vitro model.

  18. Peroxisomal palmitoyl-CoA oxidation in the Zucker rat.

    PubMed Central

    Brady, P S; Hoppel, C L

    1983-01-01

    The effects of 3 or 6 days of starvation on hepatic peroxisomal palmitoyl-CoA oxidation were examined in adult lean and obese Zucker rats. When expressed either per mg of DNA or per total liver, obese rats had almost 2-fold higher oxidation rates than the lean rats. Within 6 days of starvation rates fell by 50% among both phenotypes. When data were expressed per 100 g body wt., lean and obese rats had similar rates, falling from a mean of 0.57 to 0.28 mumol/min per 100 g body wt. within 6 days of starvation. Peroxisomal oxidative changes paralleled mitochondrial beta-oxidative changes. PMID:6882399

  19. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  20. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  1. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers.

    PubMed

    Nazarko, Taras Y; Polupanov, Andriy S; Manjithaya, Ravi R; Subramani, Suresh; Sibirny, Andriy A

    2007-01-01

    Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.

  2. Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells

    PubMed Central

    Wang, Jueqiong; Lu, Liu; Kok, Chung H.; Saunders, Verity A.; Goyne, Jarrad M.; Dang, Phuong; Leclercq, Tamara M.; Hughes, Timothy P.; White, Deborah L.

    2017-01-01

    Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to BCR-ABL kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; P<0.0001), suggesting that peroxisome proliferator-activated receptor γ activation has a negative impact on the intracellular uptake of imatinib and consequent BCR-ABL kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor γ activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor γ agonist pioglitazone was reported to act synergistically with imatinib, targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in

  3. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  4. Phosphorylation of Pex11p does not regulate peroxisomal fission in the yeast Hansenula polymorpha

    PubMed Central

    Thomas, Ann S.; Krikken, Arjen M.; van der Klei, Ida J.; Williams, Chris P.

    2015-01-01

    Pex11p plays a crucial role in peroxisomal fission. Studies in Saccharomyces cerevisiae and Pichia pastoris indicated that Pex11p is activated by phosphorylation, which results in enhanced peroxisome proliferation. In S. cerevisiae but not in P. pastoris, Pex11p phosphorylation was shown to regulate the protein’s trafficking to peroxisomes. However, phosphorylation of PpPex11p was proposed to influence its interaction with Fis1p, another component of the organellar fission machinery. Here, we have examined the role of Pex11p phosphorylation in the yeast Hansenula polymorpha. Employing mass spectrometry, we demonstrate that HpPex11p is also phosphorylated on a Serine residue present at a similar position to that of ScPex11p and PpPex11p. Furthermore, through the use of mutants designed to mimic both phosphorylated and unphosphorylated forms of HpPex11p, we have investigated the role of this post-translational modification. Our data demonstrate that mutations to the phosphorylation site do not disturb the function of Pex11p in peroxisomal fission, nor do they alter the localization of Pex11p. Also, no effect on peroxisome inheritance was observed. Taken together, these data lead us to conclude that peroxisomal fission in H. polymorpha is not modulated by phosphorylation of Pex11p. PMID:26099236

  5. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    PubMed

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  6. Extraction of the number of peroxisomes in yeast cells by automated image analysis.

    PubMed

    Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli

    2006-01-01

    An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.

  7. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity.

    PubMed

    Kassmann, Celia M; Quintes, Susanne; Rietdorf, Jens; Möbius, Wiebke; Sereda, Michael Werner; Nientiedt, Tobias; Saher, Gesine; Baes, Myriam; Nave, Klaus-Armin

    2011-07-21

    Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. A model of autophagy size selectivity by receptor clustering on peroxisomes

    NASA Astrophysics Data System (ADS)

    Brown, Aidan I.; Rutenberg, Andrew D.

    2017-05-01

    Selective autophagy must not only select the correct type of organelle, but also must discriminate between individual organelles of the same kind so that some but not all of the organelles are removed. We propose that physical clustering of autophagy receptor proteins on the organelle surface can provide an appropriate all-or-none signal for organelle degradation. We explore this proposal using a computational model restricted to peroxisomes and the relatively well characterized pexophagy receptor proteins NBR1 and p62. We find that larger peroxisomes nucleate NBR1 clusters first and lose them last through competitive coarsening. This results in significant size-selectivity that favors large peroxisomes, and can explain the increased catalase signal that results from siRNA inhibition of p62. Excess ubiquitin, resulting from damaged organelles, suppresses size-selectivity but not cluster formation. Our proposed selectivity mechanism thus allows all damaged organelles to be degraded, while otherwise selecting only a portion of organelles for degradation.

  9. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction.

    PubMed

    van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; de Moraes, Roberta Allgayer; Zhang, Ling; Wolters, Justina C; Bischoff, Rainer; Wanders, Ronald J; Houten, Sander M; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M; Jonker, Johan W; Kim, Peter K; Bandsma, Robert H J

    2016-12-01

    Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid β-oxidation pathways. Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several β-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial β-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. Severe malnutrition in children is associated with metabolic disturbances

  10. Peroxisomal plant metabolism - an update on nitric oxide, Ca2+ and the NADPH recycling network.

    PubMed

    Corpas, Francisco J; Barroso, Juan B

    2018-01-29

    Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H 2 O 2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca 2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO 2 -FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca 2+ , calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO 2 -FA. © 2018. Published by The Company of Biologists Ltd.

  11. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts

    PubMed Central

    Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi

    2015-01-01

    Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848

  12. Effects of cranberry components on human aggressive periodontitis gingival fibroblasts.

    PubMed

    Tipton, D A; Babu, J P; Dabbous, M Kh

    2013-08-01

    Aggressive periodontitis (AgP) causes rapid periodontal breakdown involving AgP gingival fibroblast production of cytokines [i.e. interleukin (IL)-6, a bone metabolism regulator], and matrix metalloproteinase (MMP)-3. Lipopolysaccharide upregulates fibroblast IL-6 and MMP-3, via transcription factors (i.e. NF-κB). Cranberry (Vaccinium macrocarpon) inhibits lipopolysaccharide-stimulated macrophage and normal gingival fibroblast activities, but little is known of its effects on AgP fibroblasts. Objectives of this study are to use AgP fibroblasts, to determine cytotoxicity of cranberry components or periodontopathogen (Fusobacterium nucleatum, Porphyromonas gingivalis) lipopolysaccharide ± cranberry components, and effects of cranberry components on lipopolysaccharide-stimulated NF-κB activation and IL-6 and MMP-3 production. AgP fibroblasts were incubated ≤ 6 d with high molecular weight non-dialyzable material (NDM) (derived from cranberry juice (1-500 μg/mL) or lipopolysaccharide (1 μg/mL) ± NDM. Membrane damage and viability were assessed by enzyme activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Secreted IL-6 and MMP-3 were measured by ELISA. NF-κB p65 was measured via binding to an oligonucleotide containing the NF-κB consensus site. Data were analyzed using analysis of variance and Scheffe's F procedure for post hoc comparisons. Short-term exposure to NDM, or lipopolysaccharide ± NDM caused no membrane damage. NDM (≤ 100 μg/mL) or lipopolysaccharide ± NDM had no effect on viability ≤ 7 d exposure. NDM (50 μg/mL) inhibited lipopolysaccharide-stimulated p65 (P ≤ 0.003) and constitutive or lipopolysaccharide-stimulated MMP-3 (P ≤ 0.02). NDM increased AgP fibroblast constitutive or lipopolysaccharide-stimulated IL-6 (P ≤ 0.0001), but inhibited normal human gingival fibroblast IL-6 (P ≤ 0.01). Lack of toxicity of low NDM concentrations, and its inhibition of NF-κB and MMP-3, suggest that

  13. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  14. Genomic and Proteomic Evidence for the Presence of a Peroxisome in the Apicomplexan Parasite Toxoplasma gondii and Other Coccidia

    PubMed Central

    Przyborski, Jude M; Maier, Uwe G

    2017-01-01

    Abstract Apicomplexans are successful parasites responsible for severe human diseases including malaria, toxoplasmosis, and cryptosporidiosis. For many years, it has been discussed whether these parasites are in possession of peroxisomes, highly variable eukaryotic organelles usually involved in fatty acid degradation and cellular detoxification. Conflicting experimental data has been published. With the age of genomics, ever more high quality apicomplexan genomes have become available, that now allow a new assessment of the dispute. Here, we provide bioinformatic evidence for the presence of peroxisomes in Toxoplasma gondii and other coccidians. For these organisms, we have identified a complete set of peroxins, probably responsible for peroxisome biogenesis, division, and protein import. Moreover, via a global screening for peroxisomal targeting signals, we were able to show that a complete set of fatty acid β-oxidation enzymes is equipped with either PTS1 or PTS2 sequences, most likely mediating transport of these factors to putative peroxisomes in all investigated Coccidia. Our results further imply a life cycle stage-specific presence of peroxisomes in T. gondii and suggest several independent losses of peroxisomes during the evolution of apicomplexan parasites. PMID:29126146

  15. Dynamic Regulation of Platelet-Derived Growth Factor Receptor α Expression in Alveolar Fibroblasts during Realveolarization

    PubMed Central

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn

    2012-01-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α–expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α–positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α–green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α–GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α–GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α–positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial–mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable

  16. Role of ALDP (ABCD1) and Mitochondria in X-Linked Adrenoleukodystrophy

    PubMed Central

    McGuinness, M. C.; Lu, J.-F.; Zhang, H.-P.; Dong, G.-X.; Heinzer, A. K.; Watkins, P. A.; Powers, J.; Smith, K. D.

    2003-01-01

    Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C>22:0) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA β-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA β-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA β-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA β-oxidation and that VLCFA levels are not determined by the rate of VLCFA β-oxidation. The rate of peroxisomal VLCFA β-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid β-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA β-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice. PMID:12509471

  17. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi; Karhemo, Piia-Riitta; Räsänen, Kati

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similarmore » secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.« less

  18. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids.

    PubMed

    Morales, Jorge; Hashimoto, Muneaki; Williams, Tom A; Hirawake-Mogi, Hiroko; Makiuchi, Takashi; Tsubouchi, Akiko; Kaga, Naoko; Taka, Hikari; Fujimura, Tsutomu; Koike, Masato; Mita, Toshihiro; Bringaud, Frédéric; Concepción, Juan L; Hashimoto, Tetsuo; Embley, T Martin; Nara, Takeshi

    2016-05-11

    The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives. © 2016 The Author(s).

  19. Investigation of the Hepatotoxic and Immunotoxic Effects of the Peroxisome Proliferator Perfluorodecanoic Acid

    DTIC Science & Technology

    1991-04-30

    np. A #127 6Investigation of the Hepatotoxic and OHIO Immunotoxic Effects of the Peroxisome AJE Proliferator Perfluorodecanoic Acid Donald E. Frazier...Investigation of the Hepatotoxic and Immunotoxic Effects G-AFOSR 90-0371 of the Peroxisome Proliferator Perfluorodecanoic Acid TA - 2312/A5 L AUTMOS) Donald E...involved evaluation of the immunotoxic and toxic effects of perfluorodecanoic acid (PFDA). Eight day exposure to PFDA caused thymic atrophy with marked

  20. Peroxisomal Malate Dehydrogenase Is Not Essential for Photorespiration in Arabidopsis But Its Absence Causes an Increase in the Stoichiometry of Photorespiratory CO2 Release1[W][OA

    PubMed Central

    Cousins, Asaph B.; Pracharoenwattana, Itsara; Zhou, Wenxu; Smith, Steven M.; Badger, Murray R.

    2008-01-01

    Peroxisomes are important for recycling carbon and nitrogen that would otherwise be lost during photorespiration. The reduction of hydroxypyruvate to glycerate catalyzed by hydroxypyruvate reductase (HPR) in the peroxisomes is thought to be facilitated by the production of NADH by peroxisomal malate dehydrogenase (PMDH). PMDH, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana), reduces NAD+ to NADH via the oxidation of malate supplied from the cytoplasm to oxaloacetate. A double mutant lacking the expression of both PMDH genes was viable in air and had rates of photosynthesis only slightly lower than in the wild type. This is in contrast to other photorespiratory mutants, which have severely reduced rates of photosynthesis and require high CO2 to grow. The pmdh mutant had a higher O2-dependent CO2 compensation point than the wild type, implying that either Rubisco specificity had changed or that the rate of CO2 released per Rubisco oxygenation was increased in the pmdh plants. Rates of gross O2 evolution and uptake were similar in the pmdh and wild-type plants, indicating that chloroplast linear electron transport and photorespiratory O2 uptake were similar between genotypes. The CO2 postillumination burst and the rate of CO2 released during photorespiration were both greater in the pmdh mutant compared with the wild type, suggesting that the ratio of photorespiratory CO2 release to Rubisco oxygenation was altered in the pmdh mutant. Without PMDH in the peroxisome, the CO2 released per Rubisco oxygenation reaction can be increased by over 50%. In summary, PMDH is essential for maintaining optimal rates of photorespiration in air; however, in its absence, significant rates of photorespiration are still possible, indicating that there are additional mechanisms for supplying reductant to the peroxisomal HPR reaction or that the HPR reaction is altogether circumvented. PMID:18685043

  1. Control of peroxisome proliferator-activated receptor gamma2 stability and activity by SUMOylation.

    PubMed

    Floyd, Z Elizabeth; Stephens, Jacqueline M

    2004-06-01

    To determine whether small ubiquitin-related modifier (SUMO)ylation of lysine 107 plays a role in regulating the activity of peroxisome proliferator-activated receptor gamma (PPARgamma). Transient expression of wild-type and K107R-PPARgamma2 in the NIH 3T3 fibroblast cell line was carried out in conjunction with half-life studies, luciferase activity assays, and indirect immunofluorescence localization studies. Additional in vitro analysis was carried out using recombinant SUMOylation pathway proteins along with in vitro transcribed and translated wild-type or K107R-PPARgamma2 to examine the SUMO-1 modification state of wild-type and SUMO-deficient K107R-PPARgamma2. While examining PPARgamma2 for potential ubiquitylation sites, we identified a strong consensus site for SUMO modification that contains lysine 107. In vitro, SUMOylation studies showed that lysine 107 of PPARgamma2 is a major SUMOylation site and that at least one other SUMOylation site is present in PPARgamma. In addition, our results demonstrated that SUMO-1 affects PPARgamma stability and transcriptional activity but not the nuclear localization of PPARgamma. These results indicated that SUMOylation plays a role in regulating PPARgamma, both indirectly and directly by modification of lysine 107. Because PPARgamma is regulated in numerous animal models of obesity, understanding the covalent modifications of PPARgamma may enhance our understanding of the metabolic syndrome.

  2. Cyclin D1 Repression of Peroxisome Proliferator-Activated Receptor γ Expression and Transactivation

    PubMed Central

    Wang, Chenguang; Pattabiraman, Nagarajan; Zhou, Jian Nian; Fu, Maofu; Sakamaki, Toshiyuki; Albanese, Chris; Li, Zhiping; Wu, Kongming; Hulit, James; Neumeister, Peter; Novikoff, Phyllis M.; Brownlee, Michael; Scherer, Philipp E.; Jones, Joan G.; Whitney, Kathleen D.; Donehower, Lawrence A.; Harris, Emily L.; Rohan, Thomas; Johns, David C.; Pestell, Richard G.

    2003-01-01

    The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPARγ induces hepatic steatosis, and liganded PPARγ promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPARγ function, transactivation, expression, and promoter activity. PPARγ transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPARγ ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPARγ-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1−/− fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPARγ ligands of PPARγ and PPARγ-responsive genes, and cyclin D1−/− mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPARγ in vivo. The inhibition of PPARγ function by cyclin D1 is a new mechanism of signal transduction cross talk between PPARγ ligands and mitogenic signals that induce cyclin D1. PMID:12917338

  3. Cellular Dysfunction in the Diabetic Fibroblast

    PubMed Central

    Lerman, Oren Z.; Galiano, Robert D.; Armour, Mary; Levine, Jamie P.; Gurtner, Geoffrey C.

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O2), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 ± 1.3 pg/ml versus 34.8 ± 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show

  4. Fibroblast heterogeneity: implications for human disease.

    PubMed

    Lynch, Magnus D; Watt, Fiona M

    2018-01-02

    Fibroblasts synthesize the extracellular matrix of connective tissue and play an essential role in maintaining the structural integrity of most tissues. Researchers have long suspected that fibroblasts exhibit functional specialization according to their organ of origin, body site, and spatial location. In recent years, a number of approaches have revealed the existence of fibroblast subtypes in mice. Here, we discuss fibroblast heterogeneity with a focus on the mammalian dermis, which has proven an accessible and tractable system for the dissection of these relationships. We begin by considering differences in fibroblast identity according to anatomical site of origin. Subsequently, we discuss new results relating to the existence of multiple fibroblast subtypes within the mouse dermis. We consider the developmental origin of fibroblasts and how this influences heterogeneity and lineage restriction. We discuss the mechanisms by which fibroblast heterogeneity arises, including intrinsic specification by transcriptional regulatory networks and epigenetic factors in combination with extrinsic effects of the spatial context within tissue. Finally, we discuss how fibroblast heterogeneity may provide insights into pathological states including wound healing, fibrotic diseases, and aging. Our evolving understanding suggests that ex vivo expansion or in vivo inhibition of specific fibroblast subtypes may have important therapeutic applications.

  5. Genetics Home Reference: peroxisomal acyl-CoA oxidase deficiency

    MedlinePlus

    ... of certain fat molecules called very long-chain fatty acids (VLCFAs). Specifically, it is involved in the first step of a process called the peroxisomal fatty acid beta-oxidation pathway. This process shortens the VLCFA ...

  6. PED/PEA-15 Controls Fibroblast Motility and Wound Closure by ERK1/2-Dependent Mechanisms

    PubMed Central

    Buonomo, Roberta; Giacco, Ferdinando; Vasaturo, Angela; Caserta, Sergio; Guido, Stefano; Pagliara, Valentina; Garbi, Corrado; Mansueto, Gelsomina; Cassese, Angela; Perruolo, Giuseppe; Oriente, Francesco; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2012-01-01

    Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2. J. Cell. Physiol. 227: 2106–2116, 2012. © 2011 Wiley Periodicals, Inc. PMID:21780113

  7. Triptonide inhibits the pathological functions of gastric cancer-associated fibroblasts.

    PubMed

    Wang, Zhenfei; Ma, Daguang; Wang, Changshan; Zhu, Zhe; Yang, Yongyan; Zeng, Fenfang; Yuan, Jianlong; Liu, Xia; Gao, Yue; Chen, Yongxia; Jia, Yongfeng

    2017-12-01

    Direct attacks on tumour cells with chemotherapeutic drugs have the drawbacks of accelerating tumour metastasis and inducing tumour stem cell phenotypes. Inhibition of tumour-associated fibroblasts, which provide nourishment and support to tumour cells, is a novel and promising anti-tumour strategy. However, effective drugs against tumour-associated fibroblasts are currently lacking. In the present study, we explored the possibility of inhibiting the pathological functions of tumour-associated fibroblasts with triptonide. Paired gastric normal fibroblasts (GNFs) and gastric cancer-associated fibroblasts (GCAFs) were obtained from resected tissues. GCAFs showed higher capacities to induce colony formation, migration, and invasion of gastric cancer cells than GNFs. Triptonide treatment strongly inhibited the colony formation-, migration-, and invasion-promoting capacities of GCAFs. The expression of microRNA-301a was higher and that of microRNA-149 was lower in GCAFs than in GNFs. Triptonide treatment significantly down-regulated microRNA-301a expression and up-regulated microRNA-149 expression in GCAFs. Re-establishment of microRNA expression balance increased the production and secretion of tissue inhibitor of metalloproteinase 2, a tumour suppressive factor, and suppressed the production and secretion of IL-6, an oncogenic factor, in GCAFs. Moreover, triptonide treatment abolished the ability of GCAFs to induce epithelial-mesenchymal transition in gastric cancer cells. These results indicate that triptonide inhibits the malignancy-promoting capacity of GCAFs by correcting abnormalities in microRNA expression. Thus, triptonide is a promisingly therapeutic agent for gastric cancer treatment, and traditional herbs may be a valuable source for developing new drugs that can regulate the tumour microenvironment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Intermediates of peroxisomal beta-oxidation. A study of the fatty acyl-CoA esters which accumulate during peroxisomal beta-oxidation of [U-14C]hexadecanoate.

    PubMed Central

    Bartlett, K; Hovik, R; Eaton, S; Watmough, N J; Osmundsen, H

    1990-01-01

    1. 14C-labelled fatty acyl-CoA esters resulting from beta-oxidation of [U-14C]hexadecanoate by peroxisomal fractions isolated from rats treated with clofibrate showed the presence of the full range of saturated intermediates down to acetyl-CoA. 2. The pattern of intermediates generated was fairly constant. At low concentrations of [U-14C]hexadecanoate (50 microM), decanoyl-CoA was present in lowest amounts. At higher concentrations of [U-14C]hexadecanoate (greater than 100 microM), all intermediates of chain length shorter than 12 carbon atoms (except acetyl-CoA) were present at similar low concentrations; the process of beta-oxidation now resembling chain-shortening of hexadecanoate by two cycles of beta-oxidation. 3. In the absence of an NAD(+)-regenerating system [pyruvate and lactate dehydrogenase (EC 1.1.1.28)] 2-enoyl- and 3-hydroxyacyl-CoA esters were generated, suggesting that re-oxidation of NADH is essential for optimal rates of peroxisomal beta-oxidation in vitro. 4. At high concentrations of [U-14C]hexadecanoate (greater than 100 microM), 3-oxohexadecanoyl-CoA was produced, suggesting that thiolase (acetyl-CoA acetyltransferase; EC 2.3.1.9) can become rate-limiting for peroxisomal beta-oxidation. Images Fig. 2. Fig. 3. Fig. 4. PMID:2396977

  9. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    PubMed

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  10. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  11. Interaction between Calpain 5, Peroxisome proliferator-activated receptor-gamma and Peroxisome proliferator-activated receptor-delta genes: a polygenic approach to obesity

    PubMed Central

    Sáez, María E; Grilo, Antonio; Morón, Francisco J; Manzano, Luis; Martínez-Larrad, María T; González-Pérez, Antonio; Serrano-Hernando, Javier; Ruiz, Agustín; Ramírez-Lorca, Reposo; Serrano-Ríos, Manuel

    2008-01-01

    Context Obesity is a multifactorial disorder, that is, a disease determined by the combined effect of genes and environment. In this context, polygenic approaches are needed. Objective To investigate the possibility of the existence of a crosstalk between the CALPAIN 10 homologue CALPAIN 5 and nuclear receptors of the peroxisome proliferator-activated receptors family. Design Cross-sectional, genetic association study and gene-gene interaction analysis. Subjects The study sample comprise 1953 individuals, 725 obese (defined as body mass index ≥ 30) and 1228 non obese subjects. Results In the monogenic analysis, only the peroxisome proliferator-activated receptor delta (PPARD) gene was associated with obesity (OR = 1.43 [1.04–1.97], p = 0.027). In addition, we have found a significant interaction between CAPN5 and PPARD genes (p = 0.038) that reduces the risk for obesity in a 55%. Conclusion Our results suggest that CAPN5 and PPARD gene products may also interact in vivo. PMID:18657264

  12. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  13. The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin.

    PubMed

    Collings, David A; Harper, John D I; Vaughn, Kevin C

    2003-12-01

    We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the beta-oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.

  14. Evaluation of pharmacological induction of fatty acid beta-oxidation in X-linked adrenoleukodystrophy.

    PubMed

    McGuinness, M C; Zhang, H P; Smith, K D

    2001-01-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies. Copyright 2001 Academic Press.

  15. Application of automatic image analysis for morphometric studies of peroxisomes stained cytochemically for catalase. II. Light-microscopic application.

    PubMed

    Beier, K; Fahimi, H D

    1987-01-01

    The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semithin (0.25 and 1 micron) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for light-microscopic analysis may account for the differences. The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.

  16. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal

    PubMed Central

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS. PMID:28824680

  17. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal.

    PubMed

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.

  18. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    PubMed Central

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  19. Peroxisome proliferators induce apoptosis in hepatoma cells.

    PubMed

    Canuto, R A; Muzio, G; Bonelli, G; Maggiora, M; Autelli, R; Barbiero, G; Costelli, P; Brossa, O; Baccino, F M

    1998-01-01

    In the AH-130 hepatoma, a poorly differentiated tumor, maintained by weekly transplantations in rats, a low percentage of cells spontaneously underwent apoptosis, mainly during the transition from logarithmic- to stationary-growth phase. It was possible to induce massive apoptosis of cells by treating them with clofibrate, a peroxisome proliferator and hypolipidemic drug. Similar results were obtained with HepG2 cells. With 1 mM clofibrate, apoptosis began to manifest itself after 1 h of treatment in vitro, and was assessed by morphological analysis, by DNA fragmentation carried out with agarose gel electrophoresis, and with flow cytometric determination of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. The mechanisms whereby clofibrate induces apoptosis are still unclear. Since the peroxisome proliferator-activated receptor was expressed at a very low level and was not stimulated by clofibrate in the AH-130 hepatoma cells, its involvement seems unlikely. Moreover, lipid peroxidation was not increased after clofibrate treatment. Phospholipids and cholesterol were significantly decreased. The decreased cholesterol content might suggest an inhibition of the mevalonate pathway and, therefore, of isoprenylation of proteins involved in cell proliferation.

  20. Pharmacological Regulation of Peroxisome Number in Glia

    DTIC Science & Technology

    2008-09-01

    histone deacetylase HDL high - density lipoprotein LXR liver X receptor NPC Niemann Pick type C disease PBD peroxisome...transporters ABCA1 and ABCG1 with lipoproteins in the extracellular space, such as apoE; transportation to the liver occurs via high density lipoprotein ...mechanisms involved in the athero-protective effect of high density lipoproteins . Journal of internal medicine, 263, 256-273. Tobin, K. A., Steineger, H

  1. The hallmarks of fibroblast ageing.

    PubMed

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction.

    PubMed

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging.

  3. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  4. Peroxisome proliferators reduce spatial memory impairment, synaptic failure, and neurodegeneration in brains of a double transgenic mice model of Alzheimer's disease.

    PubMed

    Inestrosa, Nibaldo C; Carvajal, Francisco J; Zolezzi, Juan M; Tapia-Rojas, Cheril; Serrano, Felipe; Karmelic, Daniel; Toledo, Enrique M; Toro, Andrés; Toro, Jessica; Santos, Manuel J

    2013-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-β peptide (Aβ), increase of oxidative stress, and synaptic alterations. The scavenging of reactive oxygen species through their matrix enzyme catalase is one of the most recognized functions of peroxisomes. The induction of peroxisome proliferation is attained through different mechanisms by a set of structurally diverse molecules called peroxisome proliferators. In the present work, a double transgenic mouse model of AD that co-expresses a mutant human amyloid-β protein precursor (AβPPswe) and presenilin 1 without exon 9 (PS1dE9) was utilized in order to assess the effect of peroxisomal proliferation on Aβ neurotoxicity in vivo. Mice were tested for spatial memory and their brains analyzed by cytochemical, electrophysiological, and biochemical methods. We report here that peroxisomal proliferation significantly reduces (i) memory impairment, found in this model of AD; (ii) Aβ burden and plaque-associated acetylcholinesterase activity; (iii) neuroinflammation, measured by the extent of astrogliosis and microgliosis; and (iv) the decrease in postsynaptic proteins, while promoting synaptic plasticity in the form of long-term potentiation. We concluded that peroxisomal proliferation reduces various AD neuropathological markers and peroxisome proliferators may be considered as potential therapeutic agents against the disease.

  5. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  6. Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII.

    PubMed

    Li, Guannan; Li, Jing; Hao, Rong; Guo, Yan

    2017-08-20

    Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons.

    PubMed

    Rodríguez-Serrano, María; Romero-Puertas, María C; Pastori, Gabriela M; Corpas, Francisco J; Sandalio, Luisa M; del Río, Luis A; Palma, José M

    2007-01-01

    In this work the manganese superoxide dismutase (Mn-SOD) bound to peroxisomal membranes of watermelon cotyledons (Citrullus lanatus Schrad.) was purified to homogeneity and some of its molecular properties were determined. The stepwise purification procedure consisted of ammonium sulphate fractionation, batch anion-exchange chromatography, and anion-exchange and gel-filtration column chromatography using a fast protein liquid chromatography system. Peroxisomal membrane Mn-SOD (perMn-SOD; EC 1.15.1.1) was purified 5600-fold with a yield of 2.6 mug of enzyme g(-1) of cotyledons, and had a specific activity of 480 U mg(-1) of protein. The native molecular mass determined for perMn-SOD was 108 000 Da, and it was composed of four equal subunits of 27 kDa, which indicates that perMn-SOD is a homotetramer. Ultraviolet and visible absorption spectra of the enzyme showed a shoulder at 275 nm and two absorption maxima at 448 nm and 555 nm, respectively. By isoelectric focusing, a pI of 5.75 was determined for perMn-SOD. In immunoblot assays, purified perMn-SOD was recognized by a polyclonal antibody against Mn-SOD from pea leaves, and the peroxisomal enzyme rapidly dissociated in the presence of dithiothreitol and SDS. The potential binding of the Mn-SOD isozyme to the peroxisomal membrane was confirmed by immunoelectron microscopy analysis. The properties of perMn-SOD and the mitMn-SOD are compared and the possible function in peroxisomal membranes of the peripheral protein Mn-SOD is discussed.

  8. Evaluation of Whether Gemfibrozil is a Peroxisome Proliferator in Fish

    EPA Science Inventory

    Gemfibrozil is a pharmaceutical that indirectly modulates cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. An enzyme found in the pero...

  9. Peroxisome Proliferator Activated Receptor-α/Hypoxia Inducible Factor-1α Interplay Sustains Carbonic Anhydrase IX and Apoliprotein E Expression in Breast Cancer Stem Cells

    PubMed Central

    Papi, Alessio; Storci, Gianluca; Guarnieri, Tiziana; De Carolis, Sabrina; Bertoni, Sara; Avenia, Nicola; Sanguinetti, Alessandro; Sidoni, Angelo; Santini, Donatella; Ceccarelli, Claudio; Taffurelli, Mario; Orlandi, Marina; Bonafé, Massimiliano

    2013-01-01

    Aims Cancer stem cell biology is tightly connected to the regulation of the pro-inflammatory cytokine network. The concept of cancer stem cells “inflammatory addiction” leads to envisage the potential role of anti-inflammatory molecules as new anti-cancer targets. Here we report on the relationship between nuclear receptors activity and the modulation of the pro-inflammatory phenotype in breast cancer stem cells. Methods Breast cancer stem cells were expanded as mammospheres from normal and tumor human breast tissues and from tumorigenic (MCF7) and non tumorigenic (MCF10) human breast cell lines. Mammospheres were exposed to the supernatant of breast tumor and normal mammary gland tissue fibroblasts. Results In mammospheres exposed to the breast tumor fibroblasts supernatant, autocrine tumor necrosis factor-α signalling engenders the functional interplay between peroxisome proliferator activated receptor-α and hypoxia inducible factor-1α (PPARα/HIF1α). The two proteins promote mammospheres formation and enhance each other expression via miRNA130b/miRNA17-5p-dependent mechanism which is antagonized by PPARγ. Further, the PPARα/HIF1α interplay regulates the expression of the pro-inflammatory cytokine interleukin-6, the hypoxia survival factor carbonic anhydrase IX and the plasma lipid carrier apolipoprotein E. Conclusion Our data demonstrate the importance of exploring the role of nuclear receptors (PPARα/PPARγ) in the regulation of pro-inflammatory pathways, with the aim to thwart breast cancer stem cells functioning. PMID:23372804

  10. Properties of a fluorescent bezafibrate derivative (DNS-X). A new tool to study peroxisome proliferation and fatty acid beta-oxidation.

    PubMed

    Berlot, J P; Lutz, T; Cherkaoui Malki, M; Nicolas-Frances, V; Jannin, B; Latruffe, N

    2000-12-01

    The first peroxisome proliferator-activated receptor (PPAR) was cloned in 1990 by Issemann and Green. Many studies have reported the importance of this receptor in the control of gene expression of enzymes involved in lipid metabolic pathways including mitochondrial and peroxisomal fatty acid beta-oxidation, lipoprotein structure [apolipoprotein (apo) A2, apo CIII], and fatty acid synthase. By using radiolabeled molecules, it was shown that peroxisome proliferators bind and activate PPAR. As an alternative method, we developed a fluorescent dansyl (1-dimethylaminonaphthalene-5-sulfonyl) derivative peroxisome proliferator from bezafibrate (DNS-X), a hypolipidemic agent that exhibits an in vitro peroxisome proliferative activity on rat Fao-hepatic derived cultured cells. However, until now, the effect of this new compound on the liver of animals and subcellular localization was unknown. In addition to in vivo rat studies, we present a more efficient large-scale technique of DNS-X purification. Treating rats (DNS-X in the diet at 0.3% w/w) for 6 d leads to a hepatomegaly and a marked increase in liver peroxisomal palmitoyl-CoA oxidase activity. We also developed a method to localize and quantify DNS-X in tissues or cell compartment organelles. The primarily cytosolic distribution of DNS-X was confirmed by direct visualization using fluorescence microscopy of cultured Fao cells. Finally, transfection assay demonstrated that DNS-X enhanced the PPAR alpha activity as well as other peroxisome proliferators do.

  11. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  12. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.

    PubMed

    Lingner, Thomas; Kataya, Amr R; Antonicelli, Gerardo E; Benichou, Aline; Nilssen, Kjersti; Chen, Xiong-Yan; Siemsen, Tanja; Morgenstern, Burkhard; Meinicke, Peter; Reumann, Sigrun

    2011-04-01

    In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.

  13. Effects of downregulation of S100A8 protein expression on cell cycle and apoptosis of fibroblasts derived from hypertrophic scars.

    PubMed

    Yaundong, Lv; Dongyan, Wang; Lijun, Hao; Zhibo, Xiao

    2014-01-01

    Uncontrolled growth and lack of apoptosis in fibroblasts derived from a hypertrophic scar play an important role in pathology. The authors explore the contribution of S100A8 overexpression to the phenotype of cells and discuss how the downregulation of S100A8 could inhibit the growth and induce apoptosis of fibroblasts derived from hypertrophic scars. Fibroblasts were harvested from hypertrophic scar tissue in 8 patients treated with small interfering RNA against S100A8 in an in vitro culture. The effects of silencing S100A8 were analyzed by Western blot. Cellular proliferation and apoptosis were detected by flow cytometry. Fibroblasts treated with small interfering RNA targeting S100A8 showed a significant decrease in S100A8 protein 48 hours after treatment. They also proliferated significantly slower and showed more apoptosis than control fibroblasts. Inhibition of S100A8 resulted in significant growth reduction and apoptosis acceleration in fibroblasts derived from hypertrophic scars. Manipulation of S100A8 protein expression by gene silencing may represent something new in the treatment of hypertrophic scarring.

  14. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    PubMed

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation inmore » CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.« less

  16. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes.

    PubMed

    Antonenkov, Vasily D; Ohlmeier, Steffen; Sormunen, Raija T; Hiltunen, J Kalervo

    2007-05-25

    Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.

  17. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp; Nobe, Hiromi; Department of Physical Therapy, Bunkyo-Gakuin University

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibersmore » and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.« less

  18. PTS1 Peroxisomal Import Pathway Plays Shared and Distinct Roles to PTS2 Pathway in Development and Pathogenicity of Magnaporthe oryzae

    PubMed Central

    Wang, Jiaoyu; Zhang, Zhen; Wang, Yanli; Li, Ling; Chai, Rongyao; Mao, Xueqin; Jiang, Hua; Qiu, Haiping; Du, Xinfa; Lin, Fucheng; Sun, Guochang

    2013-01-01

    Peroxisomes participate in various important metabolisms and are required in pathogenicity of fungal plant pathogens. Peroxisomal matrix proteins are imported from cytoplasm into peroxisomes through peroxisomal targeting signal 1 (PTS1) or peroxisomal targeting signal 2 (PTS2) import pathway. PEX5 and PEX7 genes participate in the two pathways respectively. The involvement of PEX7 mediated PTS2 import pathway in fungal pathogenicity has been documented, while that of PTS1 remains unclear. Through null mutant analysis of MoPEX5, the PEX5 homolog in Magnaporthe oryzae, we report the crucial roles of PTS1 pathway in the development and host infection in the rice blast fungus, and compared with those of PTS2. We found that MoPEX5 disruption specifically blocked the PTS1 pathway. Δmopex5 was unable to use lipids as sole carbon source and lost pathogenicity completely. Similar as Δmopex7, Δmopex5 exhibited significant reduction in lipid utilization and mobilization, appressorial turgor genesis and H2O2 resistance. Additionally, Δmopex5 presented some distinct defects which were undetected in Δmopex7 in vegetative growth, conidial morphogenesis, appressorial morphogenesis and melanization. The results indicated that the PTS1 peroxisomal import pathway, in addition to PTS2, is required for fungal development and pathogenicity of the rice blast fungus, and also, as a main peroxisomal import pathway, played a more predominant role than PTS2. PMID:23405169

  19. Subcellular Localization Screening of Colletotrichum higginsianum Effector Candidates Identifies Fungal Proteins Targeted to Plant Peroxisomes, Golgi Bodies, and Microtubules.

    PubMed

    Robin, Guillaume P; Kleemann, Jochen; Neumann, Ulla; Cabre, Lisa; Dallery, Jean-Félix; Lapalu, Nicolas; O'Connell, Richard J

    2018-01-01

    The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum , encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium -mediated transformation to transiently express them as N -terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana , and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C -terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.

  20. Infarct-Induced Steroidogenic Acute Regulatory Protein: A Survival Role in Cardiac Fibroblasts

    PubMed Central

    Anuka, Eli; Yivgi-Ohana, Natalie; Eimerl, Sarah; Garfinkel, Benjamin; Melamed-Book, Naomi; Chepurkol, Elena; Aravot, Dan; Zinman, Tova; Shainberg, Asher; Hochhauser, Edith

    2013-01-01

    Steroidogenic acute regulatory protein (StAR) is indispensable for steroid hormone synthesis in the adrenal cortex and the gonadal tissues. This study reveals that StAR is also expressed at high levels in nonsteroidogenic cardiac fibroblasts confined to the left ventricle of mouse heart examined 3 days after permanent ligation of the left anterior descending coronary artery. Unlike StAR, CYP11A1 and 3β-hydroxysteroid dehydrogenase proteins were not observed in the postinfarction heart, suggesting an apparent lack of de novo cardiac steroidogenesis. Work with primary cultures of rat heart cells revealed that StAR is induced in fibroblasts responding to proapoptotic treatments with hydrogen peroxide or the kinase inhibitor staurosporine (STS). Such induction of StAR in culture was noted before spontaneous differentiation of the fibroblasts to myofibroblasts. STS induction of StAR in the cardiac fibroblasts conferred a marked resistance to apoptotic cell death. Consistent with that finding, down-regulation of StAR by RNA interference proportionally increased the number of STS-treated apoptotic cells. StAR down-regulation also resulted in a marked increase of BAX activation in the mitochondria, an event known to associate with the onset of apoptosis. Last, STS treatment of HeLa cells showed that apoptotic demise characterized by mitochondrial fission, cytochrome c release, and nuclear fragmentation is arrested in individual HeLa cells overexpressing StAR. Collectively, our in vivo and ex vivo evidence suggests that postinfarction expression of nonsteroidogenic StAR in cardiac fibroblasts has novel antiapoptotic activity, allowing myofibroblast precursor cells to survive the traumatized event, probably to differentiate and function in tissue repair at the infarction site. PMID:23831818

  1. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  2. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  3. Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves1

    PubMed Central

    Jiménez, Ana; Hernández, José A.; Pastori, Gabriela; del Río, Luis A.; Sevilla, Francisca

    1998-01-01

    We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria. PMID:9847106

  4. Question of bone marrow stromal fibroblast traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less

  5. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction

    PubMed Central

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  6. Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.

    PubMed

    Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C

    2008-08-15

    One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)

  7. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  8. Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts.

    PubMed

    Jung, Jae-A; Yoon, Young-Don; Lee, Hyup-Woo; Kang, So-Ra; Han, Seung-Kyu

    2018-02-01

    Various types of skin substitutes composed of fibroblasts and/or keratinocytes have been used for the treatment of diabetic ulcers. However, the effects have generally not been very dramatic. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialised for cartilage repair as a first cell therapy product using allogeneic stem cells. In a previous pilot study, we reported that hUCB-MSCs have a superior wound-healing capability compared with fibroblasts. The present study was designed to compare the treatment effect of hUCB-MSCs with that of fibroblasts on the diabetic wound healing in vitro. Diabetic fibroblasts were cocultured with healthy fibroblasts or hUCB-MSCs. Five groups were evaluated: group I, diabetic fibroblasts without coculture; groups II and III, diabetic fibroblasts cocultured with healthy fibroblasts or hUCB-MSCs; and groups IV and V, no cell cocultured with healthy fibroblasts or hUCB-MSCs. After a 3-day incubation, cell proliferation, collagen synthesis levels and glycosaminoglycan levels, which are the major contributing factors in wound healing, were measured. As a result, a hUCB-MSC-treated group showed higher cell proliferation, collagen synthesis and glycosaminoglycan level than a fibroblast-treated group. In particular, there were significant statistical differences in collagen synthesis and glycosaminoglycan levels (P = 0·029 and P = 0·019, respectively). In conclusion, these results demonstrate that hUCB-MSCs may have a superior effect to fibroblasts in stimulating diabetic wound healing. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. Purification of Peroxisomes and Mitochondria from Spinach Leaf by Percoll Gradient Centrifugation 1

    PubMed Central

    Schwitzguebel, Jean-Paul; Siegenthaler, Paul-André

    1984-01-01

    A procedure was developed to purify simultaneously peroxisomes and mitochondria from spinach (Spinacia oleracea L.) leaf under isoosmotic and low viscosity conditions. This method involved differential centrifugation and density gradient centrifugation on four layers of Percoll. Chlorophyll-free preparations of highly intact and active organelles were obtained and cross-contamination was negligible. Both organelles were stable for several hours, even if they remained in Percoll. Purified mitochondria were able to carry out the oxidation of different substrates with excellent respiratory control and ADP:O ratios. The method described in the present work was also suitable to purify mitochondria and peroxisomes from potato (Solanum tuberosum L.) tubers. PMID:16663685

  10. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells

    PubMed Central

    Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen

    2013-01-01

    We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495

  11. PPAR-α Agonist WY-14643 Inhibits LPS-Induced Inflammation in Synovial Fibroblasts via NF-kB Pathway.

    PubMed

    Huang, Degang; Zhao, Quanlai; Liu, Hongfei; Guo, Yongjie; Xu, Hongguang

    2016-08-01

    Osteoarthritis (OA), the most prevalent form of arthritis that results from breakdown of joint cartilage and underlying bone, has been viewed as a chronic condition manifested by persistence of inflammatory responses and infiltration of lymphocytes. Regulation of the inflammatory responses in synovial fibroblasts might be useful to prevent the development and deterioration of osteoarthritis. WY-14643, a potent peroxisome proliferator activator receptor-α (PPAR-α) agonist, has been described to beneficially regulate inflammation in many mammalian cells. Here, we investigate the potential anti-inflammatory role of WY-14643 in lipopolysaccharide (LPS)-induced synovial fibroblasts. WY-14643 greatly inhibited the production of NO and PGE2 induced by LPS. In addition, the mRNA expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelin-1 (ET-1), and tissue factor (TF) was significantly suppressed by WY-14643, as well as the secretion of pro-inflammatory cytokines including interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1). Furthermore, the transcription activity and nuclear translocation of NF-kB were found to be markedly decreased by WY-14643, while the phosphorylation of IkB was enhanced, indicating that the anti-inflammatory role of WY-14643 was meditated by NF-kB-dependent pathway. The application of WY-14643 failed to carry out its anti-inflammatory function in PPAR-α silenced cells, suggesting the role of PPAR-α. These findings may facilitate further studies investigating the translation of pharmacological PPAR-α activation into clinical therapy of OA.

  12. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    PubMed Central

    Thangapazham, Rajesh L.; Darling, Thomas N.; Meyerle, Jon

    2014-01-01

    Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices. PMID:24828202

  14. The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress.

    PubMed

    Walton, Paul A; Brees, Chantal; Lismont, Celien; Apanasets, Oksana; Fransen, Marc

    2017-10-01

    Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon. Therefore, we first established a simple and powerful approach to study peroxisomal protein import and protein-protein interactions in living cells in response to changes in redox state. By employing this approach, we confirm and extend previous observations that Cys-11 of human PEX5, the shuttling import receptor for peroxisomal matrix proteins containing a C-terminal peroxisomal targeting signal (PTS1), functions as a redox switch that modulates the protein's activity in response to intracellular oxidative stress. In addition, we show that oxidative stress affects the import of catalase, a non-canonical PTS1-containing protein, more than the import of a reporter protein containing a canonical PTS1. Furthermore, we demonstrate that changes in the local redox state do not affect PEX5-substrate binding and that human PEX5 does not oligomerize in cellulo, not even when the cells are exposed to oxidative stress. Finally, we present evidence that catalase retained in the cytosol can protect against H 2 O 2 -mediated redox changes in a manner that peroxisomally targeted catalase does not. Together, these findings lend credit to the idea that inefficient catalase import, when coupled with the role of PEX5 as a redox-regulated import receptor, constitutes a cellular defense mechanism to combat oxidative insults of extra-peroxisomal origin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Stimulatory effects of histamine on migration of nasal fibroblasts.

    PubMed

    Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man

    2015-10-01

    Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.

  16. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  17. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: A potential role for PPARδ in wound healing.

    PubMed

    Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Oh, Jae-Wook; Park, Chan-Kyu; Kim, Jin-Hoi; Do, Jung Tae; Kim, Jae-Hwan; Seo, Han Geuk

    2015-12-01

    The phenotypic changes that accompany differentiation of resident fibroblasts into myofibroblasts are important aspects of the wound healing process. Recent studies showed that peroxisome proliferator-activated receptor (PPAR) δ plays a critical role in wound healing. To determine whether the nuclear receptor PPARδ can modulate the differentiation of human dermal fibroblasts (HDFs) into myofibroblasts. These studies were undertaken in primary HDFs using Western blot analyses, small interfering (si)RNA-mediated gene silencing, reporter gene assays, chromatin immunoprecipitation (ChIP), migration assays, collagen gel contraction assays, and real-time PCR. Activation of PPARδ by GW501516, a specific ligand of PPARδ, specifically upregulated the myofibroblast marker α-smooth muscle actin (α-SMA) in a time- and concentration-dependent manner. This induction was significantly inhibited by the presence of siRNA against PPARδ, indicating that PPARδ is involved in myofibroblast transdifferentiation of HDFs. Ligand-activated PPARδ increased α-SMA promoter activity in a dual mode by directly binding a direct repeat-1 (DR1) site in the α-SMA promoter, and by inducing expression of transforming growth factor (TGF)-β, whose downstream effector Smad3 interacts with a Smad-binding element (SBE) in another region of the promoter. Mutations in these cis-elements totally abrogated transcriptional activation of the α-SMA gene by the PPARδ ligand; thus both sites represent novel types of PPARδ response elements. GW501516-activated PPARδ also increased the migration and contractile properties of HDFs, as demonstrated by Transwell and collagen lattice contraction assays, respectively. In addition, PPARδ-mediated upregulation of α-SMA was correlated with elevated expression of myofibroblast markers such as collagen I and fibronectin, with a concomitant reduction in expression of the epithelial marker E-cadherin. PPARδ plays pivotal roles in wound healing by promoting

  18. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  19. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes

    PubMed Central

    Palma, José M.; Sevilla, Francisca; Jiménez, Ana; del Río, Luis A.; Corpas, Francisco J.; Álvarez de Morales, Paz; Camejo, Daymi M.

    2015-01-01

    Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated. Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits. Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of

  20. The Cytoskeleton and the Peroxisomal-Targeted SNOWY COTYLEDON3 Protein Are Required for Chloroplast Development in Arabidopsis[W

    PubMed Central

    Albrecht, Verónica; Šimková, Klára; Carrie, Chris; Delannoy, Etienne; Giraud, Estelle; Whelan, Jim; Small, Ian David; Apel, Klaus; Badger, Murray R.; Pogson, Barry James

    2010-01-01

    Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO2 concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid β-oxidation or photorespiration, though there are so far undescribed changes in low and high CO2 sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis. PMID:20978221

  1. Characterization of interleukin-4-stimulated nasal polyp fibroblasts.

    PubMed

    Steinke, John W; Crouse, Charles D; Bradley, Dewayne; Hise, Kathleen; Lynch, Kevin; Kountakis, Stilianos E; Borish, Larry

    2004-02-01

    Chronic hyperplastic eosinophilic sinusitis is an inflammatory disease that results in the accumulation of eosinophils, fibroblasts, mast cells, and goblet cells at the site of injury. A common feature of this disease is the presence of nasal polyposis (NP). The current studies were designed to assess the contribution of interleukin (IL)-4 to fibroblast-mediated inflammation in chronic hyperplastic eosinophilic sinusitis/NP. In addition, we hypothesized that cysteinyl leukotrienes (CysLT) may directly influence fibroblast-mediated fibrotic and remodeling pathways in this disorder. Fibroblasts were isolated from NP tissue. All fibroblast lines expressed the IL-4 receptor. IL-4 induced changes in mRNA and protein expression of fibrotic (transforming growth factor-beta1 and -beta2) and inflammatory cytokines and chemokines (IL-6 and CCL11) by fibroblasts as measured by semiquantitative and quantitative polymerase chain reaction, RNase protection assay, and enzyme-linked immunosorbent assay. The expression of CysLT and other proinflammatory lipid receptors on fibroblasts was evaluated. CysLT1 and CysLT2 receptors were not expressed on fibroblasts; however, LPA(1) receptor was constitutively expressed and LPA(2) receptor expression was upregulated by IL-4. The metabolic cascade involved in CysLT synthesis was not expressed in fibroblasts and could not be induced by IL-4 treatment.

  2. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion

    PubMed Central

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296

  3. Fibroblast Senescence and Squamous Cell Carcinoma: How wounding therapies could be protective

    PubMed Central

    Travers, Jeffrey B.; Spandau, Dan F; Lewis, Davina A.; Machado, Christiane; Kingsley, Melanie; Mousdicas, Nico; Somani, Ally-Khan

    2014-01-01

    Background Squamous cell carcinoma (SCC), which has one of the highest incidences of all cancers in the United States, is an age-dependent disease as the majority of these cancers are diagnosed in people over 70 years of age. Recent findings have led to a new hypothesis on the pathogenesis of SCC. Objectives To evaluate the potential of preventive therapies to reduce the incidence of SCC in at-risk geriatric patients. Materials and Methods Survey of current literature on wounding therapies to prevent SCCs. Results This new hypothesis of SCC photocarcinogenesis states that senescent fibroblasts accumulate in geriatric dermis resulting in a reduction in dermal insulin-like growth factor-1 (IGF-1) expression. This lack of IGF-1 expression sensitizes epidermal keratinocytes to fail to suppress UVB-induced mutations leading to increased proclivity to photocarcinogenesis. Recent evidence suggests that dermal wounding therapies, specifically dermabrasion and fractionated laser resurfacing, can decrease the proportion of senescent dermal fibroblasts, increase dermal IGF-1 expression, and correct the inappropriate UVB response found in geriatric skin, thus protecting geriatric keratinocytes from UVB-induced SCC initiation. Conclusions In this review, we will discuss the translation of pioneering basic science results implicating commonly used dermal fibroblast rejuvenation procedures as preventative treatments for SCC. PMID:23437969

  4. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    PubMed

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  5. The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies.

    PubMed

    Grant, Phillip; Ahlemeyer, Barbara; Karnati, Srikanth; Berg, Timm; Stelzig, Ingra; Nenicu, Anca; Kuchelmeister, Klaus; Crane, Denis I; Baumgart-Vogt, Eveline

    2013-10-01

    Catalase and ABCD3 are frequently used as markers for the localization of peroxisomes in morphological experiments. Their abundance, however, is highly dependent on metabolic demands, reducing the validity of analyses of peroxisomal abundance and distribution based solely on these proteins. We therefore attempted to find a protein which can be used as an optimal marker for peroxisomes in a variety of species, tissues, cell types and also experimental designs, independently of peroxisomal metabolism. We found that the biogenesis protein peroxin 14 (PEX14) is present in comparable amounts in the membranes of every peroxisome and is optimally suited for immunoblotting, immunohistochemistry, immunofluorescence, and immunoelectron microscopy. Using antibodies against PEX14, we could visualize peroxisomes with almost undetectable catalase content in various mammalian tissue sections (submandibular and adrenal gland, kidney, testis, ovary, brain, and pancreas from mouse, cat, baboon, and human) and cell cultures (primary cells and cell lines). Peroxisome labeling with catalase often showed a similar tissue distribution to the mitochondrial enzyme mitochondrial superoxide dismutase (both responsible for the degradation of reactive oxygen species), whereas ABCD3 exhibited a distinct labeling only in cells involved in lipid metabolism. We increased the sensitivity of our methods by using QuantumDots™, which have higher emission yields compared to classic fluorochromes and are unsusceptible to photobleaching, thereby allowing more exact quantification without artificial mistakes due to heterogeneity of individual peroxisomes. We conclude that PEX14 is indeed the best marker for labeling of peroxisomes in a variety of tissues and cell types in a consistent fashion for comparative morphometry.

  6. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  7. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development

    PubMed Central

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio

    2015-01-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  8. Conserved and Novel Functions for Arabidopsis thaliana MIA40 in Assembly of Proteins in Mitochondria and Peroxisomes

    PubMed Central

    Carrie, Chris; Giraud, Estelle; Duncan, Owen; Xu, Lin; Wang, Yan; Huang, Shaobai; Clifton, Rachel; Murcha, Monika; Filipovska, Aleksandra; Rackham, Oliver; Vrielink, Alice; Whelan, James

    2010-01-01

    The disulfide relay system of the mitochondrial intermembrane space has been extensively characterized in Saccharomyces cerevisiae. It contains two essential components, Mia40 and Erv1. The genome of Arabidopsis thaliana contains a single gene for each of these components. Although insertional inactivation of Erv1 leads to a lethal phenotype, inactivation of Mia40 results in no detectable deleterious phenotype. A. thaliana Mia40 is targeted to and accumulates in mitochondria and peroxisomes. Inactivation of Mia40 results in an alteration of several proteins in mitochondria, an absence of copper/zinc superoxide dismutase (CSD1), the chaperone for superoxide dismutase (Ccs1) that inserts copper into CSD1, and a decrease in capacity and amount of complex I. In peroxisomes the absence of Mia40 leads to an absence of CSD3 and a decrease in abnormal inflorescence meristem 1 (Aim1), a β-oxidation pathway enzyme. Inactivation of Mia40 leads to an alteration of the transcriptome of A. thaliana, with genes encoding peroxisomal proteins, redox functions, and biotic stress significantly changing in abundance. Thus, the mechanistic operation of the mitochondrial disulfide relay system is different in A. thaliana compared with other systems, and Mia40 has taken on new roles in peroxisomes and mitochondria. PMID:20829360

  9. Fibroblastic connective tissue nevus.

    PubMed

    Velez, Moises J; Billings, Steven D; Weaver, Joshua A

    2016-01-01

    Fibroblastic connective tissue nevus (FCTN) is a newly recognized, benign cutaneous mesenchymal lesion of fibroblasts/myofibroblastic lineage, which expands the classification of connective tissue nevi. We present three cases of FCTN and discuss significant clinical, morphologic and immunophenotypic overlap with dermatomyofibroma. Our cases were from young women, aged 32, 24 and 10, and presented as 1.2 and 1 cm nodules on the posterior neck and right upper flank, respectively while presenting as a linear plaque of the right posterior thigh in the latter case. The lesions showed a poorly circumscribed proliferation of hypercellular spindle cells arranged in short to longer intersecting fascicles entrapping adnexal structures. Superficial adipose tissue was also entrapped in one case. The spindle cells had fibroblastic features with pale eosinophilic cytoplasmic extensions and inconspicuous nucleoli. The spindle cells were positive for CD34 in two cases. One case was negative for CD34, smooth muscle actin (SMA), desmin and S100. The overall features were consistent with a diagnosis of FCTN. In two cases, we further elucidated the fibroblastic differentiation of the spindle cells in FCTN with electron microscopy, which has not been previously described. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The influence of genistein on free radicals in normal dermal fibroblasts and keloid fibroblasts examined by EPR spectroscopy.

    PubMed

    Jurzak, Magdalena; Ramos, Paweł; Pilawa, Barbara

    2017-01-01

    Normal and keloid fibroblasts were examined using X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. The effect of genistein on the concentration of free radicals in both normal dermal and keloid fibroblasts after ultraviolet irradiation was investigated. The highest concentration of free radicals was seen in keloid fibroblasts, with normal fibroblasts containing a lower concentration. The concentration of free radicals in both normal and keloid fibroblasts was altered in a concentration-dependent manner by the presence of genistein. The change in intra-cellular free radical concentration after the ultraviolet irradiation of both normal and keloid fibroblasts is also discussed. The antioxidant properties of genistein, using its 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity as a model, were tested, and the effect of ultraviolet irradiation on its interaction with free radicals was examined. The electron paramagnetic resonance spectra of DPPH showed quenching by genistein. The interaction of genistein with DPPH free radicals in the absence of ultraviolet irradiation was shown to be slow, but this interaction was much faster under ultraviolet irradiation. Ultraviolet irradiation enhanced the free radical-scavenging activity of genistein.

  11. Oncogenes induce the cancer-associated fibroblast phenotype

    PubMed Central

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-01-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382

  12. Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia

    PubMed Central

    Fan, Yongjun; Wali, Gautam; Sutharsan, Ratneswary; Bellette, Bernadette; Crane, Denis I.; Sue, Carolyn M.; Mackay-Sim, Alan

    2014-01-01

    ABSTRACT Hereditary Spastic Paraplegia (HSP) is a genetically heterogeneous group of disorders, diagnosed by progressive gait disturbances with muscle weakness and spasticity, for which there are no treatments targeted at the underlying pathophysiology. Mutations in spastin are a common cause of HSP. Spastin is a microtubule-severing protein whose mutation in mouse causes defective axonal transport. In human patient-derived olfactory neurosphere-derived (ONS) cells, spastin mutations lead to lower levels of acetylated α-tubulin, a marker of stabilised microtubules, and to slower speed of peroxisome trafficking. Here we screened multiple concentrations of four tubulin-binding drugs for their ability to rescue levels of acetylated α-tubulin in patient-derived ONS cells. Drug doses that restored acetylated α-tubulin to levels in control-derived ONS cells were then selected for their ability to rescue peroxisome trafficking deficits. Automated microscopic screening identified very low doses of the four drugs (0.5 nM taxol, 0.5 nM vinblastine, 2 nM epothilone D, 10 µM noscapine) that rescued acetylated α-tubulin in patient-derived ONS cells. These same doses rescued peroxisome trafficking deficits, restoring peroxisome speeds to untreated control cell levels. These results demonstrate a novel approach for drug screening based on high throughput automated microscopy for acetylated α-tubulin followed by functional validation of microtubule-based peroxisome transport. From a clinical perspective, all the drugs tested are used clinically, but at much higher doses. Importantly, epothilone D and noscapine can enter the central nervous system, making them potential candidates for future clinical trials. PMID:24857849

  13. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  14. On the mechanism for PPAR agonists to enhance ABCA1 gene expression

    PubMed Central

    Ogata, Masaki; Tsujita, Maki; Hossain, Mohammad Anwar; Akita, Nobukatsu; Gonzalez, Frank J.; Staels, Bart; Suzuki, Shogo; Fukutomi, Tatsuya; Kimura, Genjiro; Yokoyama, Shinji

    2009-01-01

    Expression of ATP binding cassette transporter A1 (ABCA1), a major regulator of high density lipoprotein (HDL) biogenesis, is known to be up-regulated by the transcription factor liver X receptor (LXR) α, and expression is further enhanced by activation of the peroxisome proliferator activated receptors (PPARs). We investigated this complex regulatory network using specific PPAR agonists: four fibrates (fenofibrate, bezafibrate, gemfibrozil and LY518674), a PPAR δ agonist (GW501516) and a PPAR γ agonist (pioglitazone). All of these compounds increased the expression of LXRs, PPARs and ABCA1 mRNAs, and associated apoA-I-mediated lipid release in THP-1 macrophage, WI38 fibroblast and mouse fibroblast. When mouse fibroblasts lacking expression of PPAR α were examined, the effects of fenofibrate and LY518674 were markedly diminished while induction by other ligands were retained. The PPAR α promoter was activated by all of these compounds in an LXR α-dependent manner, and partially in a PPAR α-dependent manner, in mouse fibroblast. The LXR responsive element (LXRE)-luciferase activity was enhanced by all the compounds in an LXR α-dependent manner in mouse fibroblast. This activation was exclusively PPAR α-dependent by fenofibrate and LY518674, but nonexclusively by the others. We conclude that PPARs and LXRs are involved in the regulation of ABCA1 expression and HDL biogenesis in a cooperative signal transduction pathway. PMID:19201410

  15. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi.

    PubMed

    Knoblach, Barbara; Rachubinski, Richard A

    2016-08-01

    Eukaryotic cells are subcompartmentalized into discrete, membrane-enclosed organelles. These organelles must be preserved in cells over many generations to maintain the selective advantages afforded by compartmentalization. Cells use complex molecular mechanisms of organelle inheritance to achieve high accuracy in the sharing of organelles between daughter cells. Here we focus on how a multi-copy organelle, the peroxisome, is partitioned in yeast, mammalian cells, and filamentous fungi, which differ in their mode of cell division. Cells achieve equidistribution of their peroxisomes through organelle transport and retention processes that act coordinately, although the strategies employed vary considerably by organism. Nevertheless, we propose that mechanisms common across species apply to the partitioning of all membrane-enclosed organelles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification of transcriptional networks involved in peroxisome proliferator chemical-induced hepatocyte proliferation

    EPA Science Inventory

    Peroxisome proliferator chemical (PPC) exposure leads to increases in rodent liver tumors through a non-genotoxic mode of action (MOA). The PPC MOA includes increased oxidative stress, hepatocyte proliferation and decreased apoptosis. We investigated the putative genetic regulato...

  17. Enhanced peroxisomal β-oxidation metabolism in visceral adipose tissues of high-fat diet-fed obesity-resistant C57BL/6 mice

    PubMed Central

    XIE, WEI-DONG; WANG, HUA; ZHANG, JIN-FANG; LI, JIAN-NA; CAN, YI; QING, LV; KUNG, HSIANG-FU; ZHANG, YA-OU

    2011-01-01

    This study aimed to investigate the potential mechanisms of natural resistance to high-fat diet-induced obesity. Four-week-old C57BL/6 mice were fed a high-fat diet for 6 weeks and were then designated as high-fat diet-fed obesity-prone (HOP) and obesity-resistant (HOR) animals. Their blood biochemistry was evaluated, and visceral adipose tissue samples were subjected to proteomic, Western blot and quantitative real-time PCR (q-PCR) analyses. The HOR mice showed reduced visceral fat weight and size, as well as lowered serum lipid and leptin levels. Proteomic analysis showed that enoyl coenzyme A hydratase 1, peroxisomal (Ech1) expression was significantly increased in their visceral adipose tissues. Moreover, other proteins, such as α-tropomyosin, myosin light chain, urine-nucleoside phosphorylase and transgelin, were also significantly increased. Furthermore, q-PCR analysis showed that the expression of acyl-CoA oxidase 1 palmitoyl, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase responsible for peroxisomal β-oxidation was also up-regulated in the visceral adipose tissues of the HOR mice. The expression of peroxisome proliferator-activated receptor α (PPARα) was increased in the HOR mice as shown by Western blot analysis. Obesity-resistant animals show enhanced peroxisomal β-oxidation metabolism and reduced fat accumulation in visceral adipose tissues by up-regulating the expression of Ech1, peroxisomal or other related peroxisomal β-oxidation marker genes, which may be driven or enhanced by the up-regulation of the expression of PPARα. However, further validation in future studies is required. PMID:22977503

  18. Human serum reduces mitomycin-C cytotoxicity in human tenon's fibroblasts.

    PubMed

    Crowston, Jonathan G; Wang, Xiao Y; Khaw, Peng T; Zoellner, Hans; Healey, Paul R

    2006-03-01

    To determine the effect of human serum factors on mitomycin-C (MMC) cytotoxicity in cultured human subconjunctival Tenon's capsule fibroblasts. Fibroblast monolayers were treated with 5-minute applications of mitomycin-C (0.4 mg/mL) and incubated in culture medium with or without additional human serum. Fibroblast apoptosis was quantified by direct cell counts based on nuclear morphology, flow cytometry with annexin-V/propidium iodide, and a lactate dehydrogenase release assay. The number of viable fibroblasts and fibroblast proliferation were measured with a colorimetric MTT assay and by bromodeoxyuridine (BrdU) labeling. Mitomycin-C induced significant levels of fibroblast apoptosis. The addition of human serum resulted in a 40% reduction in MMC-induced fibroblast apoptosis (range, 31.3%-55.3%; P = 0.021) as determined by nuclear morphology and a 32.4% reduction measured by annexin-V/PI. There was a corresponding dose-dependent increase in the number of viable fibroblasts. Serum did not restore proliferation in MMC-treated fibroblasts. Factors present in human serum reduce MMC cytotoxicity in cultured human Tenon's fibroblasts. Human serum increased the number of viable fibroblasts by inhibiting MMC-induced fibroblast apoptosis. Serum factors access aqueous humor after trabeculectomy and may therefore influence the clinical outcome of MMC treatment.

  19. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    PubMed

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts

    PubMed Central

    Rouillard, Andrew D; Holmes, Jeffrey W

    2012-01-01

    Effective management of healing and remodelling after myocardial infarction is an important problem in modern cardiology practice. We have recently shown that the level of infarct anisotropy is a critical determinant of heart function following a large anterior infarction, which suggests that therapeutic gains may be realized by controlling infarct anisotropy. However, factors regulating infarct anisotropy are not well understood. Mechanical, structural and chemical guidance cues have all been shown to regulate alignment of fibroblasts and collagen in vitro, and prior studies have proposed that each of these cues could regulate anisotropy of infarct scar tissue, but understanding of fibroblast behaviour in the complex environment of a healing infarct is lacking. We developed an agent-based model of infarct healing that accounted for the combined influence of these cues on fibroblast alignment, collagen deposition and collagen remodelling. We pooled published experimental data from several sources in order to determine parameter values, then used the model to test the importance of each cue for predicting collagen alignment measurements from a set of recent cryoinfarction experiments. We found that although chemokine gradients and pre-existing matrix structures had important effects on collagen organization, a response of fibroblasts to mechanical cues was critical for correctly predicting collagen alignment in infarct scar. Many proposed therapies for myocardial infarction, such as injection of cells or polymers, alter the mechanics of the infarct region. Our modelling results suggest that such therapies could change the anisotropy of the healing infarct, which could have important functional consequences. This model is therefore a potentially important tool for predicting how such interventions change healing outcomes. PMID:22495588

  1. Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist.

    PubMed

    Januszewicz, Elzbieta; Pajak, Beata; Gajkowska, Barbara; Samluk, Lukasz; Djavadian, Rouzanna L; Hinton, Barry T; Nałecz, Katarzyna A

    2009-12-01

    In the brain beta-oxidation, which takes place in astrocytes, is not a major process of energy supply. Astrocytes synthesize important lipid metabolites, mainly due to the processes taking place in peroxisomes. One of the compounds necessary in the process of mitochondrial beta-oxidation and export of acyl moieties from peroxisomes is l-carnitine. Two Na-dependent plasma membrane carnitine transporters were shown previously to be present in astrocytes: a low affinity amino acid transporter B(0,+) and a high affinity cation/carnitine transporter OCTN2. The expression of OCTN2 is known to increase in peripheral tissues upon the stimulation of peroxisome proliferators-activator receptor alpha (PPARalpha), a nuclear receptor known to up-regulate several enzymes involved in fatty acid metabolism. The present study was focused on another high affinity carnitine transporter-OCTN3, its presence, regulation and activity in astrocytes. Experiments using the techniques of real-time PCR, Western blot and immunocytochemistry analysis demonstrated the expression of octn3 in rat astrocytes and, out of two rat sequences ascribed as similar to mouse OCTN3, XM_001073573 was found in these cells. PPARalpha activator-2-[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY-14,643) stimulated by 50% expression of octn3, while, on the contrary to peripheral tissues, it did not change the expression of octn2. This observation was correlated with an increased Na-independent activity of carnitine transport. Analysis by transmission electron microscopy showed an augmented intracellular localization of OCTN3 upon PPARalpha stimulation, mainly in peroxisomes, indicating a physiological role of OCTN3 as peroxisomal membrane transporter. These observations point to an important role of OCTN3 in peroxisomal fatty acid metabolism in astrocytes.

  2. Cytochemical Detection of Peroxisomes in Light and Electron Microscopy with 3,3'-diaminobenzidine.

    PubMed

    Fahimi, H Dariush

    2017-01-01

    Peroxisomes are ubiquitous dynamic and multifunctional organelles that contribute to numerous anabolic and catabolic pathways, being essential for human health and development. Their best known functions include the oxidation of fatty acids and metabolism of hydrogen peroxide with catalase as a marker enzyme. Indeed, historically, it was the cytochemical staining of catalase in many different cells and tissues that revealed the ubiquitous presence of peroxisomes in almost all animal and plant cells. In this chapter, the method for cytochemical staining of catalase with the alkaline 3, 3'-diaminobenzidine (DAB) is described. Since aldehyde fixation is a prerequisite for staining of catalase with DAB, a method for perfusion fixation of rat liver with glutaraldehyde is presented prior to the cytochemical staining method and the subsequent tissue processing for light and electron microscopy.

  3. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues.

    PubMed

    Yu, X X; Odle, J; Drackley, J K

    2001-11-01

    Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.

  4. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes.

    PubMed

    Meng, Wei; Hsiao, An-Shan; Gao, Caiji; Jiang, Liwen; Chye, Mee-Len

    2014-07-01

    Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH₂/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation.

    PubMed

    Speijer, Dave

    2011-02-01

    Oxygen radical formation in mitochondria is a highly important, but incompletely understood, attribute of eukaryotic cells. I propose a kinetic model in which the ratio between electrons entering the respiratory chain via FADH₂ or NADH is a major determinant in radical formation. During the breakdown of glucose, this ratio is low; during fatty acid breakdown, this ratio is much higher. The longer the fatty acid, the higher the ratio and the higher the level of radical formation. This means that very long chain fatty acids should be broken down without generation of FADH₂ for mitochondria. This is accomplished in peroxisomes, thus explaining their role and evolution. The model explains many recent observations regarding radical formation by the respiratory chain. It also sheds light on the reasons for the lack of neuronal fatty acid (beta-) oxidation and for beneficial aspects of unsaturated fatty acids. Last but not least, it has very important implications for all models describing eukaryotic origins.

  6. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  7. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling.

    PubMed

    Senavirathna, Lakmini Kumari; Huang, Chaoqun; Yang, Xiaoyun; Munteanu, Maria Cristina; Sathiaseelan, Roshini; Xu, Dao; Henke, Craig A; Liu, Lin

    2018-02-09

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.

  8. Effects of Cerium Oxide Nanoparticles on the Growth of Keratinocytes, Fibroblasts and Vascular Endothelial Cells in Cutaneous Wound Healing

    PubMed Central

    Chigurupati, Srinivasulu; Mughal, Mohamed R.; Okun, Eitan; Das, Soumen; Kumar, Amit; McCaffery, Michael; Seal, Sudipta; Mattson, Mark P.

    2012-01-01

    Rapid and effective wound healing requires a coordinated cellular response involving fibroblasts, keratinocytes and vascular endothelial cells (VECs). Impaired wound healing can result in multiple adverse health outcomes and, although antibiotics can forestall infection, treatments that accelerate wound healing are lacking. We now report that topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs. The Nanoceria penetrated into the wound tissue and reduced oxidative damage to cellular membranes and proteins, suggesting a therapeutic potential for topical treatment of wounds with antioxidant nanoparticles. PMID:23266256

  9. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.

  10. Activation of Peroxisome Proliferator–Activated Receptor β/δ Induces Lung Cancer Growth via Peroxisome Proliferator–Activated Receptor Coactivator γ-1α

    PubMed Central

    Han, ShouWei; Ritzenthaler, Jeffrey D.; Sun, XiaoJuan; Zheng, Ying; Roman, Jesse

    2009-01-01

    We previously demonstrated that a selective agonist of peroxisome proliferator–activated receptor β/δ (PPARβ/δ), GW501516, stimulated human non–small cell lung carcinoma (NSCLC) growth, partly through inhibition of phosphatase and tensin homolog deleted on chromosome 10 expression. Here, we show that GW501516 also decreases the phosphorylation of AMP-activated protein kinase α (AMPKα), a major regulator of energy metabolism. This was mediated through specific activation of PPARβ/δ, as a PPARβ/δ small interfering RNA inhibited the effect. However, AMPKα did not mediate the growth-promoting effects of GW501516, as silencing of AMPKα did not inhibit GW501516-induced cell proliferation. Instead, we found that GW501516 stimulated peroxisome proliferator–activated receptor coactivator γ (PGC)-1α, which activated the phosphatidylinositol 3 kinase (PI3-K)/Akt mitogenic pathway. An inhibitor of PI3-K, LY294002, had no effect on PGC-1α, consistent with PGC-1α being upstream of PI3-K/Akt. Of note, an activator of AMPKα, 5-amino-4-imidazole carboxamide riboside, inhibited the growth-promoting effects of GW501516, suggesting that although AMPKα is not responsible for the mitogenic effects of GW501516, its activation can oppose these events. This study unveils a novel mechanism by which GW501516 and activation of PPARβ/δ stimulate human lung carcinoma cell proliferation, and suggests that activation of AMPKα may oppose this effect. PMID:18776129

  11. Activation of peroxisome proliferator-activated receptor beta/delta induces lung cancer growth via peroxisome proliferator-activated receptor coactivator gamma-1alpha.

    PubMed

    Han, Shouwei; Ritzenthaler, Jeffrey D; Sun, Xiaojuan; Zheng, Ying; Roman, Jesse

    2009-03-01

    We previously demonstrated that a selective agonist of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta), GW501516, stimulated human non-small cell lung carcinoma (NSCLC) growth, partly through inhibition of phosphatase and tensin homolog deleted on chromosome 10 expression. Here, we show that GW501516 also decreases the phosphorylation of AMP-activated protein kinase alpha (AMPKalpha), a major regulator of energy metabolism. This was mediated through specific activation of PPARbeta/delta, as a PPARbeta/delta small interfering RNA inhibited the effect. However, AMPKalpha did not mediate the growth-promoting effects of GW501516, as silencing of AMPKalpha did not inhibit GW501516-induced cell proliferation. Instead, we found that GW501516 stimulated peroxisome proliferator-activated receptor coactivator gamma (PGC)-1alpha, which activated the phosphatidylinositol 3 kinase (PI3-K)/Akt mitogenic pathway. An inhibitor of PI3-K, LY294002, had no effect on PGC-1alpha, consistent with PGC-1alpha being upstream of PI3-K/Akt. Of note, an activator of AMPKalpha, 5-amino-4-imidazole carboxamide riboside, inhibited the growth-promoting effects of GW501516, suggesting that although AMPKalpha is not responsible for the mitogenic effects of GW501516, its activation can oppose these events. This study unveils a novel mechanism by which GW501516 and activation of PPARbeta/delta stimulate human lung carcinoma cell proliferation, and suggests that activation of AMPKalpha may oppose this effect.

  12. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts.

    PubMed

    Townley, William A; Cambrey, Alison D; Khaw, Peng T; Grobbelaar, Adriaan O

    2008-11-01

    Dupuytren's disease is a common fibroproliferative condition of the hand characterized by fibrotic lesions (nodules and cords), leading to disability through progressive digital contracture. Although the etiology of the disease is poorly understood, recent evidence suggests that abnormal matrix metalloproteinase (MMP) activity may play a role in cell-mediated collagen contraction and tissue scarring. The aim of this study was to investigate the efficacy of ilomastat, a broad-spectrum MMP inhibitor, in an in vitro model of Dupuytren fibroblast-mediated contraction. Nodule-derived and cord-derived fibroblasts were isolated from Dupuytren patients; carpal ligament-derived fibroblasts acted as control. Stress-release fibroblast-populated collagen lattices (FPCLs) were used as a model of contraction. FPCLs were allowed to develop mechanical stress (48 hours) during treatment with ilomastat (0-100 micromol/L), released, and allowed to contract over a 48-hour period. Contraction was estimated by measuring lattice area compared with untreated cells or treatment with a control peptide. MMP-1, MMP-2, and MT1-MMP levels were assessed by zymography, Western blotting, and enzyme-linked immunosorbent assay. Nodule-derived fibroblasts contracted lattices (69% +/- 2) to a greater extent than did cord-derived (55% +/- 3) or carpal ligament-derived (55% +/- 1) fibroblasts. Exposure to ilomastat led to significant inhibition of lattice contraction by all fibroblasts, although a reduction in lattice contraction by nodule-derived fibroblasts was most prominent (84% +/- 8). In addition, treatment with ilomastat led to a concomitant suppression of MMP-1 and MMP-2 activity, whereas MT1-MMP activity was found to be upregulated. Our results demonstrate that inhibition of MMP activity results in a reduction in extracellular matrix contraction by Dupuytren fibroblasts and suggest that MMP activity may be a critical target in preventing recurrent contracture caused by this disease.

  13. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission.

    PubMed

    Su, Juanjuan; Thomas, Ann S; Grabietz, Tanja; Landgraf, Christiane; Volkmer, Rudolf; Marrink, Siewert J; Williams, Chris; Melo, Manuel N

    2018-06-01

    Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein HSP70 family.

    PubMed Central

    Alvares, K; Carrillo, A; Yuan, P M; Kawano, H; Morimoto, R I; Reddy, J K

    1990-01-01

    Clofibrate and many of its structural analogues induce proliferation of peroxisomes in the hepatic parenchymal cells of rodents and certain nonrodent species including primates. This induction is tissue specific, occurring mainly in the liver parenchymal cells and to a lesser extent in the kidney cortical epithelium. The induction of peroxisomes is associated with a predictable pleiotropic response, characterized by hepatomegaly, and increased activities and mRNA levels of certain peroxisomal enzymes. Using affinity chromatography, we had previously isolated a protein that binds to clofibric acid. We now show that this protein is homologous with the heat shock protein HSP70 family by analysis of amino acid sequences of isolated peptides from trypsin-treated clofibric acid binding protein and by cross-reactivity with a monoclonal antibody raised against the conserved region of the 70-kDa heat shock proteins. The clofibric acid-Sepharose column could bind HSP70 proteins isolated from various species, which could then be eluted with either clofibric acid or ATP. Conversely, when a rat liver cytosol containing multiple members of the HSP70 family was passed through an ATP-agarose column, and eluted with clofibric acid, only P72 (HSC70) was eluted. These results suggest that clofibric acid, a peroxisome proliferator, preferentially interacts with P72 at or near the ATP binding site. Images PMID:2371272

  15. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    PubMed

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  17. Mesenchymal stem cells induce dermal fibroblast responses to injury

    PubMed Central

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2009-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury. PMID:19666021

  18. Mesenchymal stem cells induce dermal fibroblast responses to injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Andria N., E-mail: snosmith@u.washington.edu; Willis, Elise, E-mail: elise.willis@gmail.com; Chan, Vincent T.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. Whenmore » co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.« less

  19. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  20. Effects of neuropeptides on human lung fibroblast proliferation and chemotaxis.

    PubMed

    Harrison, N K; Dawes, K E; Kwon, O J; Barnes, P J; Laurent, G J; Chung, K F

    1995-02-01

    An increase in subepithelial mesenchymal cells and associated connective tissue is a feature of bronchial asthma. We determined whether neuropeptides could modulate fibroblast activity, particularly with respect to proliferation and chemotaxis. Human lung fibroblasts were cultured with neurokinin A (NKA), substance P (SP), vasoactive intestinal peptide (VIP), and calcitonin-gene-related peptide (CGRP). After 48 h, fibroblast proliferation was measured by a colorimetric assay based on the uptake and subsequent release of methylene blue. The chemotactic response to neuropeptides was determined with the use of a modified Boyden chamber. Both NKA and SP (10(-7)-10(-4) M) stimulated human lung fibroblast proliferation in HFL1 and IMR-90 fibroblasts. VIP and CGRP had no effect on fibroblast proliferation. NKA alone stimulated fibroblast chemotaxis maximally at 10(-10) M. Neutral endopeptidase (NEP) activity of 0.52 and 5.2 pmol/10(6) cells was assayed in IMR-90 and Hs68 fibroblasts, respectively. Phosphoramidon (5 x 10(-6)-10(-5) M), an NEP inhibitor, enhanced fibroblast proliferation in a dose-dependent manner. Thus neuropeptides have the potential to cause activation of mesenchymal cells, and neuropeptide release may contribute to the structural abnormalities observed in asthmatic airways.

  1. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  2. A mutant of barley lacking NADH-hydroxypyruvate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, R.; Lea, P.

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used tomore » show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.« less

  3. Collaborative and Defensive Fibroblasts in Tumor Progression and Therapy Resistance.

    PubMed

    Chiavarina, Barbara; Turtoi, Andrei

    2017-01-01

    Tumor microenvironment is a complex network of epithelial cancer cells and non-transformed stromal cells. Of the many stromal cell types, fibroblasts are the most numerous ones and are traditionally viewed as supportive elements of cancer progression. Many studies show that cancer cells engage in active crosstalk with associated fibroblasts in order to obtain key resources, such as growth factors and nutrients. The facets of fibroblast "complicity to murder" in cancer are multiple. However, recent therapeutic attempts aiming at depleting fibroblasts from tumors, perturbed rather simplistic picture. Contrary to the expectations, tumors devoid of fibroblasts accelerated their progression while patients faced poorer outcomes. These studies remind us of the physiologic roles fibroblasts have in maintaining tissue homeostasis even in the presence of cancer. It is becoming increasingly clear that our research focus on advanced tumors has biased our understanding of fibroblast role in tumor biology. The numerous events where the fibroblasts protect the tissue from malignant transformation remain largely unacknowledged, as the tumors are invisible. The present review has the ambition to offer a more balanced view of fibroblasts functions in cancer progression and therapy resistance. We will address the question whether it is possible to synergize the efforts with fibroblasts as the therapeutic concept against tumor progression and therapy resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Gap junction communications influence upon fibroblast synthesis of Type I collagen and fibronectin.

    PubMed

    Ehrlich, H Paul; Sun, Bonnie; Saggers, Gregory C; Kromath, Fatuma

    2006-07-01

    In rats polyvinyl alcohol sponge subcutaneous implants treated with gap junctional intercellular communications (GJIC) uncouplers showed reduced deposition of connective tissue. Do uncouplers inhibit the synthesis and deposition of a new connective tissue by fibroblasts? Confluent human dermal fibroblasts in serum-free medium received either endosulfan or oleamide, GJIC uncouplers. Collected media were subjected to Dot Blot analysis for native Type I collagen and fibronectin. Uncoupler-treated fibroblasts released less Type I collagen, while there was no change in fibronectin release. Collagen synthesis was restored to normal, when the uncouplers were removed, showing that these uncouplers were reversible and not toxic to cells. Northern blot analysis revealed procollagen alpha1 (I) mRNA was minimally affected by endosulfan. Oleamide-treated 17-day chick embryo calvaria explants were incubated with Type I collagen antibody, frozen, cryosectioned, and then subjected to rhodamine (Rh) tagged anti-mouse-IgG antibody, to detect newly deposited Type I collagen. Fluorescent antibody-collagen complexes were localized on the periphery of cells in control calvaria, but absent around cells in oleamide-treated calvaria. GJIC optimize collagen synthesis but not fibronectin synthesis. The lack of connective tissue deposited in granulation tissues treated with uncouplers appears related to the inhibition of collagen synthesis. These findings suggest that altering GJIC might control collagen deposition in scarring. 2006 Wiley-Liss, Inc.

  5. Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts.

    PubMed

    Mardones, Pablo; Chang, Jung Chin; Oude Elferink, Ronald P J

    2014-06-01

    The hydration of CO2 catalyzed by the ubiquitous carbonic anhydrase 2 (Ca2) is central for bicarbonate transport, bone metabolism and acid-base homeostasis in metazoans. There is evidence that in some tissues Ca2 expression can be acutely induced by cAMP, whereas in other cell types it is unresponsive to cAMP-mediated transcriptional activation. We isolated fibroblasts from wild type and mice lacking the ubiquitous chloride/bicarbonate exchanger (Ae2a,b(-/-) mice). In these cells the regulation of carbonic anhydrase 2 by cAMP was studied. We show that Ca2 expression is strongly inhibited by chronic incubation with dibutyryl-cAMP, forskolin or alkaline pH in cultured mouse fibroblasts. Furthermore, fibroblasts obtained from anion exchanger 2 deficient (Ae2a,b(-/-)) mice, which display intracellular alkalosis and increased cAMP production, express less than 10% of control Ca2 mRNA and protein. Surprisingly, inhibition of the bicarbonate-sensitive soluble adenylyl cyclase (sAC) was found to reduce CA2 expression instead of increasing it. CA2 expression is strongly regulated by intracellular pH and by cAMP, suggesting a role for soluble adenylyl cyclase. Regulation occurs in opposite directions which may be explained by an incoherent feedforward loop consisting of activation by pCREB and repression by ICER. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    PubMed

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Kitano, Hiroaki; Rosenthal, Nadia A; Boyd, Sarah E

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  7. Effects of polyhexamethylene guanidine phosphate on human gingival fibroblasts.

    PubMed

    Vitt, Anton; Slizen, Veronica; Boström, Elisabeth A; Yucel-Lindberg, Tülay; Kats, Anna; Sugars, Rachael V; Gustafsson, Anders; Buhlin, Kåre

    2017-10-01

    Polyhexamethylene guanidine phosphate (PHMG-P) was compared to chlorhexidine (CHX) in order to determine potential cytotoxic and immune-modulatory effects on human gingival fibroblasts. Cytotoxic effects of PHMG-P and CHX on human gingival fibroblasts were assessed using cell viability assay at various time points and concentrations. The effects of PHMG-P and CHX on the secretion of prostaglandin (PG) E 2 , interleukin (IL)-6, IL-8 and matrix metalloproteinase (MMP)-1 by non-stimulated or IL-1β stimulated fibroblasts were evaluated by enzyme-linked immunosorbent assays. PHMG-P concentration 0.00009% led to the total loss of fibroblast viability within 24 h, whereas inhibition of fibroblast viability by CHX occurred at significantly higher concentrations of 0.0009% (p < .001). Short-term exposure to 0.005% PHMG-P led to loss of fibroblast viability after 5 min, whilst cells exposed to 0.005% CHX survived 30 min of treatment (p < .001). IL-1β stimulation induced an inflammatory response with a significant increase in the secretion of PGE 2 , IL-6, IL-8 and MMP-1. Treatment of IL-1β stimulated fibroblasts in combination with PHMG-P or CHX at concentrations of 0.000045 or 0.0.00009% resulted in significantly decreased PGE 2 , IL-6, IL-8 and MMP-1 levels. PHMG-P or CHX alone did not affect the baseline secretion of PGE 2 , IL-6, IL-8 or MMP-1 by gingival fibroblasts. Cytotoxic effects on gingival fibroblasts were triggered by both PHMG-P and CHX at concentrations below those used in clinical practice. The tested antiseptics did not cause inflammation and reduced IL-1β-induced secretion of inflammatory mediators and collagenase by gingival fibroblasts, which suggests anti-inflammatory properties.

  8. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts.

    PubMed

    Wang, Zhongshan; Wu, Guofeng; Bai, Shizhu; Feng, Zhihong; Dong, Yan; Zhou, Jian; Qin, Haiyan; Zhao, Yimin

    2014-06-01

    Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites.

  9. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene

    PubMed Central

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-01-01

    Abstract Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-βRI indicative of altered TGF-β signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis. PMID:19432820

  10. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene.

    PubMed

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-05-01

    Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.

  11. Lack of Day/Night variation in fibroblast growth factor 21 levels in young healthy men.

    PubMed

    Foo, J-P; Aronis, K N; Chamberland, J P; Mantzoros, C S

    2015-06-01

    Fibroblast growth factor (FGF) 21 is an endocrine factor with an emerging role as a metabolic regulator. We previously reported the presence of a significant day/night variation of FGF-21 in energy-replete, healthy female subjects. However the day/night patterns of secretion in male subjects remain to be fully elucidated. To elucidate day/night pattern of FGF-21 levels in male subjects in the energy-replete state, its relationship to FFA and to investigate whether a sexual dimorphism exists in FGF-21 physiology. Eight healthy lean male subjects were studied for up to 5 days while on an isocaloric diet. Blood samples were obtained for measurement of FGF-21 and free fatty acids (FFA) hourly from 0800 AM on day 4 till 0800AM on day 5. FGF-21 did not exhibit any statistically significant day/night variation pattern of circulating FGF-21 levels during the isocaloric fed state in male subjects. FGF-21 levels in male subjects are closely cross-correlated with FFA levels, similar to female subjects. A sexual dimorphism exists in FGF-21 physiology; that as opposed to female subjects, no significant day/night variation exists in FGF-21 rhythm in male subjects in the energy-replete state. Circulating pattern of FGF-21, similar to the female subjects, was highly cross-correlated to the FFA levels in the male subjects, signifying that the sexual dimorphism in FGF-21 physiology may be related to the differing lipid metabolism in both the genders.

  12. AGEs trigger autophagy in diabetic skin tissues and fibroblasts.

    PubMed

    Sun, Kan; Wang, Wei; Wang, Chuan; Lao, Guojuan; Liu, Dan; Mai, Lifang; Yan, Li; Yang, Chuan; Ren, Meng

    2016-03-11

    Accumulation of advanced glycation end products (AGEs) contributes to the development of diabetic ulcers. Recent evidence indicates that AGEs administration enhanced autophagy in many cell types. As a positive trigger of autophagy, the effect of AGEs on autophagy in skin tissues and fibroblasts remains unknown. Skin tissues were isolated from Spreqne-Dawley rats and immunohistochemical staining was performed to analyze the location of LC3 and FOXO1 in skin tissues. Then primary cultured foreskin fibroblast cells with treated with AGEs and the effect of AGEs on autophagy was investigated. Protein level expressions of LC3, Beclin-1 and FOXO1 in fibroblasts were analyzed by Western blotting. Autophagic flux is detected with autophagy inhibitor chloroquine and mRFP-GFP-LC3 tandem construct. Compared with skin from normal rats, immunohistochemical staining shows a predominant LC3 localization in fibroblasts cytoplasm in diabetic rats. Elevated expression of FOXO1 also existed in diabetic rats dermis fibroblasts when compared with normal rats in immunohistochemical analysis. In human skin fibroblasts cells, AGEs administration stimulated the autophagy related LC3-II/LC3-I and Beclin-1 expressions and increased autophagy flux. In mRFP-GFP-LC3 puncta formation assays, both autolysosome and autophagosome were increased in human fibroblasts after treatment with AGEs. Fibroblasts exposed to AGEs also have increased FOXO1 expression compared with control group. AGEs could induce autophagy at least in part via regulating the FOXO1 activity in diabetic skin tissues and fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts.

    PubMed

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2018-03-04

    Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.

  14. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    PubMed

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  15. IDENTIFICATION OF EARLY MOLECULAR EVENTS AFTER PEROXISOME PROLIFERATOR EXPOSURE IN THE RODENT LIVER

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor α(PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPARα but do...

  16. Effects of mitomycin-C on normal dermal fibroblasts.

    PubMed

    Chen, Theodore; Kunnavatana, Shaun S; Koch, R James

    2006-04-01

    To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.

  17. Novel signatures of cancer-associated fibroblasts.

    PubMed

    Bozóky, Benedek; Savchenko, Andrii; Csermely, Péter; Korcsmáros, Tamás; Dúl, Zoltán; Pontén, Fredrik; Székely, László; Klein, George

    2013-07-15

    Increasing evidence indicates the importance of the tumor microenvironment, in particular cancer-associated fibroblasts, in cancer development and progression. In our study, we developed a novel, visually based method to identify new immunohistochemical signatures of these fibroblasts. The method employed a protein list based on 759 protein products of genes identified by RNA profiling from our previous study, comparing fibroblasts with differential growth-modulating effect on human cancers cells, and their first neighbors in the human protein interactome. These 2,654 proteins were analyzed in the Human Protein Atlas online database by comparing their immunohistochemical expression patterns in normal versus tumor-associated fibroblasts. Twelve new proteins differentially expressed in cancer-associated fibroblasts were identified (DLG1, BHLHE40, ROCK2, RAB31, AZI2, PKM2, ARHGAP31, ARHGAP26, ITCH, EGLN1, RNF19A and PLOD2), four of them can be connected to the Rho kinase signaling pathway. They were further analyzed in several additional tumor stromata and revealed that the majority showed congruence among the different tumors. Many of them were also positive in normal myofibroblast-like cells. The new signatures can be useful in immunohistochemical analysis of different tumor stromata and may also give us an insight into the pathways activated in them in their true in vivo context. The method itself could be used for other similar analysis to identify proteins expressed in other cell types in tumors and their surrounding microenvironment. Copyright © 2013 UICC.

  18. Site-Specific Differentiation of Fibroblasts in Normal and Scleroderma Skin

    DTIC Science & Technology

    2010-06-01

    SITE-SPECIFIC DIFFERENTIATION OF FIBROBLASTS IN NORMAL AND SCLERODERMA SKIN PRINCIPAL INVESTIGATOR: Howard Y. Chang, M.D., Ph.D...2010 4. TITLE AND SUBTITLE Site-Specific Differentiation of Fibroblasts in Normal and 5a. CONTRACT NUMBER Scleroderma Skin 5b. GRANT NUMBER...activated fibroblasts from SSc. 15. SUBJECT TERMS Scleroderma , fibroblasts, gene expression 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF

  19. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  20. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  1. Computational modeling for cardiac safety pharmacology analysis: Contribution of fibroblasts.

    PubMed

    Gao, Xin; Engel, Tyler; Carlson, Brian E; Wakatsuki, Tetsuro

    2017-09-01

    Drug-induced proarrhythmic potential is an important regulatory criterion in safety pharmacology. The application of in silico approaches to predict proarrhythmic potential of new compounds is under consideration as part of future guidelines. Current approaches simulate the electrophysiology of a single human adult ventricular cardiomyocyte. However, drug-induced proarrhythmic potential can be different when cardiomyocytes are surrounded by non-muscle cells. Incorporating fibroblasts in models of myocardium is important particularly for predicting a drugs cardiac liability in the aging population - a growing population who take more medications and exhibit increased cardiac fibrosis. In this study, we used computational models to investigate the effects of fibroblast coupling on the electrophysiology and response to drugs of cardiomyocytes. A computational model of cardiomyocyte electrophysiology and ion handling (O'Hara, Virag, Varro, & Rudy, 2011) is coupled to a passive model of fibroblast electrophysiology to test the effects of three compounds that block cardiomyocyte ion channels. Results are compared to model results without fibroblast coupling to see how fibroblasts affect cardiomyocyte action potential duration at 90% repolarization (APD 90 ) and propensity for early after depolarization (EAD). Simulation results show changes in cardiomyocyte APD 90 with increasing concentration of three drugs that affect cardiac function (dofetilide, vardenafil and nebivolol) when no fibroblasts are coupled to the cardiomyocyte. Coupling fibroblasts to cardiomyocytes markedly shortens APD 90 . Moreover, increasing the number of fibroblasts can augment the shortening effect. Coupling cardiomyocytes and fibroblasts are predicted to decrease proarrhythmic susceptibility under dofetilide, vardenafil and nebivolol block. However, this result is sensitive to parameters which define the electrophysiological function of the fibroblast. Fibroblast membrane capacitance and

  2. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  3. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-09-01

    Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  4. Lipid Droplets and Peroxisomes: Key Players in Cellular Lipid Homeostasis or A Matter of Fat—Store ’em Up or Burn ’em Down

    PubMed Central

    Kohlwein, Sepp D.; Veenhuis, Marten; van der Klei, Ida J.

    2013-01-01

    Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide. PMID:23275493

  5. Induction of peroxisomal beta-oxidation by a microbial catabolite of cholic acid in rat liver and cultured rat hepatocytes.

    PubMed Central

    Nishimaki-Mogami, T; Takahashi, A; Toyoda, K; Hayashi, Y

    1993-01-01

    The capability of (4R)-4-(2,3,4,6,6a beta,7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-3-oxo-1H-cyclopental[f]quinolin-7 beta-yl)valeric acid (DCQVA), a catabolite of cholic acid produced by enterobacteria, to induce peroxisome proliferation in vivo and in vitro was studied. Rats given 0.3% DCQVA in the diet for 2 weeks showed marked increases in peroxisomal beta-oxidation, mitochondrial 2,4-dienoyl-CoA reductase and microsomal laurate omega-oxidation activities in the liver compared with control rats given the diet without DCQVA. Cultured rat hepatocytes treated with DCQVA for 72 h also exhibited greatly enhanced beta-oxidation activity. The increased activity was concentration-dependent and the effective concentrations were comparable with those of clofibric acid that produced the same degree of induction in the assay. The results demonstrate that DCQVA is a potent peroxisome proliferator that occurs naturally in rat intestine. PMID:8216219

  6. Role of fibroblast-derived factors in the pathogenesis of melasma.

    PubMed

    Byun, J W; Park, I S; Choi, G S; Shin, J

    2016-08-01

    The hyperactive melanocytes present in melasma skin are confined to the epidermis, but epidermal ablation to treat melasma pigmentation may lead to disease recurrence and aggravation. Melanocyte function is regulated by interactions between melanocytes and neighbouring cells such as keratinocytes and fibroblasts. Because melasma skin usually shows dermal changes after exposure to sunlight, we hypothesized that sun-damaged fibroblasts might play a crucial role in the pathogenesis of melasma. In this study, the melanogenic role of primary cultured fibroblasts from human melasma skin was investigated. We explored whether primary cultured fibroblasts from melasma tissue have a melanogenic function on cultured human epidermal melanocytes and artificial skin. The cytokine profile derived from fibroblasts and their effect on the pigmented epidermal equivalents were investigated. Fibroblasts from the melasma lesion and perilesional skin increased melanogenesis in cultured human epidermal melanocytes and in artificial skin. Fibroblasts from the melasma lesion and perilesional skin secreted more nerve growth factor (NGF)-β than those in normal buttock skin, and also increased melanogenesis and the expression level of NGF-β in cultured human epidermal melanocytes and artificial skin. These results suggest that fibroblasts may play a role in melanogenesis and the pathogenesis of melasma. © 2016 British Association of Dermatologists.

  7. CHOLESTEROL REQUIREMENT OF PRIMARY DIPLOID HUMAN FIBROBLASTS

    PubMed Central

    Holmes, Richard; Helms, Judy; Mercer, Gretchen

    1969-01-01

    Primary cultures of fibroblast-like cells were obtained from skin and articular cartilage of human donors in the age bracket of 1 to 15 years. For growth these cultures required 1 mg/liter of cholesterol added to Medium A2 plus acetyl choline, Na pyruvate, and D-galactosamine HCl (APG) containing 10% lipoprotein-free human serum. Established cell lines did not require cholesterol for growth. Eagle's medium could be used in place of Medium A2 plus APG with the same results. Desmosterol could replace cholesterol but lansterol or 7 dehydrocholesterol could not. Other cholesterol precursors were tested and found to be inactive. With the proviso that cholesterol precursors entered the cell and had to be converted to cholesterol to function, it was concluded that the particular primaries studied lacked a functional enzyme system to reduce the double bond at carbon 7. PMID:5786984

  8. PPARÁ-DEPENDENT GENE EXPRESSION CHANGES IN THE MOUSE LIVER AFTER EXPOSURE TO PEROXISOME PROLIFERATORS

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ¿ (PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR&#...

  9. Bezafibrate induces a mitochondrial derangement in human cell lines: a PPAR-independent mechanism for a peroxisome proliferator.

    PubMed

    Scatena, R; Bottoni, P; Vincenzoni, F; Messana, I; Martorana, G E; Nocca, G; De Sole, P; Maggiano, N; Castagnola, M; Giardina, B

    2003-11-01

    Bezafibrate is a hypolipidemic drug that belongs to the group of peroxisome proliferators because it binds to peroxisome proliferator-activated receptors type alpha (PPARs). Peroxisome proliferators produce a myriad of extraperoxisomal effects, which are not necessarily dependent on their interaction with PPARs. An investigation on the peculiar activities of bezafibrate could clarify some of the molecular events and the relationship with the biochemical and pharmacological properties of this class of compounds. In this view, the human acute promyelocytic leukemia HL-60 cell line and human rabdomiosarcoma TE-671 cell line were cultured in media containing bezafibrate and a number of observations such as spectrophotometric analysis of mitochondrial respiratory chain enzymes, NMR metabolite determinations, phosphofructokinase enzymatic analysis, and differentiation assays were carried on. Bezafibrate induced a derangement of NADH cytochrome c reductase activity accompanied by metabolic alterations, mainly a shift to anaerobic glycolysis and an increase of fatty acid oxidation, as shown by NMR analysis of culture supernatants where acetate, lactate, and alanine levels increased. On the whole, the present results suggest a biochemical profile and a therapeutic role of this class of PPARs ligands more complex than those previously proposed.

  10. Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines.

    PubMed

    Braverman, Nancy E; Raymond, Gerald V; Rizzo, William B; Moser, Ann B; Wilkinson, Mark E; Stone, Edwin M; Steinberg, Steven J; Wangler, Michael F; Rush, Eric T; Hacia, Joseph G; Bose, Mousumi

    2016-03-01

    Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a heterogeneous group of genetic disorders caused by mutations in PEX genes responsible for normal peroxisome assembly and functions. As a result of impaired peroxisomal activities, individuals with PBD-ZSD can manifest a complex spectrum of clinical phenotypes that typically result in shortened life spans. The extreme variability in disease manifestation ranging from onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults presents practical challenges in disease diagnosis and medical management. Recent advances in biochemical methods for newborn screening and genetic testing have provided unprecedented opportunities for identifying patients at the earliest possible time and defining the molecular bases for their diseases. Here, we provide an overview of current clinical approaches for the diagnosis of PBD-ZSD and provide broad guidelines for the treatment of disease in its wide variety of forms. Although we anticipate future progress in the development of more effective targeted interventions, the current guidelines are meant to provide a starting point for the management of these complex conditions in the context of personalized health care. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Kanae; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka; Shishido, Mayumi

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Westernmore » blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.« less

  12. Profibrotic Phenotype of Conjunctival Fibroblasts from Mucous Membrane Pemphigoid

    PubMed Central

    Saw, Valerie P.J.; Schmidt, Enno; Offiah, Ifeoma; Galatowicz, Grazyna; Zillikens, Detlef; Dart, John K.G.; Calder, Virginia L.; Daniels, Julie T.

    2011-01-01

    Ocular mucous membrane pemphigoid is an immunobullous disease in which excessive conjunctival fibrosis causes blindness, and the pathogenesis of scarring is incompletely understood. To establish whether profibrotic fibroblasts with an altered phenotype exist in ocular mucous membrane pemphigoid, we compared the functional characteristics of pemphigoid conjunctival fibroblasts to normal conjunctival fibroblasts with respect to cell division; migration; collagen contraction; matrix metalloproteinase, secretion of collagen and chemokines; and myofibroblast differentiation. We found that pemphigoid fibroblasts showed increased cell division (P = 0.01), increased migration in serum-free medium (72 ± 18 migrated cells versus 33 ± 11, P = 0.04), increased collagen contraction in the presence of 10 ng/ml tumor necrosis factor-α, increased collagen type I secretion (P = 0.03), increased secretion of matrix metalloproteinase-3 (P = 0.03), and increased secretion of eotaxin in response to interleukin-13 (P = 0.04). Differences between pemphigoid and normal conjunctival fibroblasts with respect to collagen contraction and MMP secretion in the presence of interleukin-13 were also observed. Together, these findings indicate that pemphigoid conjunctival fibroblasts have a profibrotic phenotype that is maintained in vitro. No differences between pemphigoid fibroblasts obtained from acutely inflamed versus clinically uninflamed conjunctiva were observed. Developing effective antifibrotic therapies will require understanding of the mechanisms that both induce and maintain the profibrotic phenotype. PMID:21224056

  13. LXA{sub 4} actions direct fibroblast function and wound closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Bruno S.; Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX; Kantarci, Alpdogan

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation.more » The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights

  14. Transforming Growth Factor β Suppresses Peroxisome Proliferator–Activated Receptor γ Expression via Both SMAD Binding and Novel TGF-β Inhibitory Elements

    PubMed Central

    Lakshmi, Sowmya P.; Reddy, Aravind T.; Reddy, Raju C.

    2017-01-01

    Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other’s expression, and such PPARγ downregulation is prominent in fibrosis and mediated, via previously unknown SMAD-signaling mechanisms. Here we show that TGF-β induces association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive corepressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity. PMID:28100650

  15. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  16. Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts.

    PubMed

    Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2017-05-05

    The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue

  17. Fibroblasts in myocardial infarction: a role in inflammation and repair

    PubMed Central

    Shinde, Arti V.; Frangogiannis, Nikolaos G.

    2014-01-01

    Fibroblasts do not only serve as matrix-producing reparative cells, but exhibit a wide range of functions in inflammatory and immune responses, angiogenesis and neoplasia. The adult mammalian myocardium contains abundant fibroblasts enmeshed within the interstitial and perivascular extracellular matrix. The current review manuscript discusses the dynamic phenotypic and functional alterations of cardiac fibroblasts following myocardial infarction. Extensive necrosis of cardiomyocytes in the infarcted heart triggers an intense inflammatory reaction. In the early stages of infarct healing, fibroblasts become pro-inflammatory cells, activating the inflammasome and producing cytokines, chemokines and proteases. Pro-inflammatory cytokines (such as Interleukin-1) delay myofibroblast transformation, until the wound is cleared from dead cells and matrix debris. Resolution of the inflammatory infiltrate is associated with fibroblast migration, proliferation, matrix protein synthesis and myofibroblast conversion. Growth factors and matricellular proteins play an important role in myofibroblast activation during the proliferative phase of healing. Formation of a mature cross-linked scar is associated with clearance of fibroblasts, as poorly-understood inhibitory signals restrain the fibrotic response. However, in the non-infarcted remodeling myocardium, local fibroblasts may remain activated in response to volume and pressure overload and may promote interstitial fibrosis. Considering their abundance, their crucial role in cardiac inflammation and repair, and their involvement in myocardial dysfunction and arrhythmogenesis, cardiac fibroblasts may be key therapeutic targets in cardiac remodeling. PMID:24321195

  18. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  19. APC+/− alters colonic fibroblast proteome in FAP

    PubMed Central

    Dixon, Maketa P.; Blagoi, Elena L.; Nicolas, Emmanuelle; Seeholzer, Steven H.; Cheng, David; He, Yin A.; Coudry, Renata A.; Howard, Sharon D.; Riddle, Dawn M.; Cooper, Harry S.; Boman, Bruce M.; Conrad, Peggy; Crowell, James A.; Bellacosa, Alfonso; Knudson, Alfred; Yeung, Anthony T.; Kopelovich, Levy

    2011-01-01

    Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a “one-hit” effect. PMID:21411865

  20. Keratinocyte growth factor expression in human gingival fibroblasts and stimulation of in vitro gene expression by retinoic acid.

    PubMed

    Mackenzie, I C; Gao, Z

    2001-04-01

    Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.

  1. Endothelin-1 stimulates colon cancer adjacent fibroblasts.

    PubMed

    Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena

    2012-03-15

    Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.

  2. Characterization of Cholesterol Homeostasis in Telomerase-immortalized Tangier Disease Fibroblasts Reveals Marked Phenotype Variability*

    PubMed Central

    Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael

    2013-01-01

    We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu548:Leu575-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2–3-fold and 3–5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans. PMID:24196952

  3. Characterization of cholesterol homeostasis in telomerase-immortalized Tangier disease fibroblasts reveals marked phenotype variability.

    PubMed

    Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael

    2013-12-27

    We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu(548):Leu(575)-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2-3-fold and 3-5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans.

  4. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Swati; Yadav, Anuradha; Academy of Scientific and Innovative Research

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found thatmore » the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.« less

  5. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma.

    PubMed

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari, Abbas; Villadsen, René; Kassem, Moustapha; Petersen, Ole William; Rønnov-Jessen, Lone

    2016-11-03

    The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271 low /MUC1 high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. Lobular fibroblasts are CD105 high /CD26 low while interlobular fibroblasts are CD105 low /CD26 high . Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that

  6. Comparison of the effects of gemfibrozil and clofibric acid on peroxisomal enzymes and cholesterol synthesis of rat hepatocytes.

    PubMed

    Hashimoto, F; Taira, S; Hayashi, H

    1998-11-01

    We studied whether the peroxisomal proliferation, induction of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and activation of cholesterol synthesis by gemfibrozil shown in whole body (Hashimoto F., Ishikawa T., Hamada S. and Hayashi H., Biochemical. Pharm., 49, 1213-1221 (1995)) is also detected at a culture cell level, and we made a comparative analysis of the effects of clofibric acid. Gemfibrozil at 0.25 mM increased the activity of some peroxisomal enzymes (catalase and the cyanide-insensitive fatty acyl-CoA oxidizing system) after incubation for 72 h. However, contrary to whole body experiments, gemfibrozil decreased the activity of HMG-CoA reductase and cholesterol synthesis from [14C]acetate. At 1 mM, gemfibrozil decreased not only the activity of HMG-CoA reductase and cholesterol synthesis, but also the protein content of the cells and peroxisomal enzyme activity, indicating nonspecific inhibition at this concentration. Clofibric acid (0.25 and 1 mM) increased the activity of peroxisomal enzymes, but decreased the activity of HMG-CoA reductase and cholesterol synthesis. With respect to the direct effect on HMG-CoA reductase in the cell homogenate, gemfibrozil at 0.25 mm did not affect the activity, but it clearly inhibited the activity at 2 mM and above. Clofibric acid at 2 mM hardly affected the activity, but it clearly decreased the activity at 5 mM and over. That is, gemfibrozil directly inhibited the activity more strongly than clofibric acid. The direct inhibition of the enzyme itself required higher concentrations of both agents than did inhibition at the culture cell level. These results suggest that the cytotoxicity of gemfibrozil is greater than that of clofibric acid, and that gemfibrozil, as well as clofibric acid, can induce peroxisomal enzymes in the culture cell level. In contrast to whole body results, gemfibrozil may suppress cholesterol synthesis from [14C]acetate through the inhibition of HMG-CoA reductase at the culture

  7. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts.

    PubMed

    He, Ye; Tsou, Pei-Suen; Khanna, Dinesh; Sawalha, Amr H

    2018-05-14

    Emerging evidence supports a role for epigenetic regulation in the pathogenesis of scleroderma (SSc). We aimed to assess the role of methyl-CpG-binding protein 2 (MeCP2), a key epigenetic regulator, in fibroblast activation and fibrosis in SSc. Dermal fibroblasts were isolated from patients with diffuse cutaneous SSc (dcSSc) and from healthy controls. MeCP2 expression was measured by qPCR and western blot. Myofibroblast differentiation was evaluated by gel contraction assay in vitro. Fibroblast proliferation was analysed by ki67 immunofluorescence staining. A wound healing assay in vitro was used to determine fibroblast migration rates. RNA-seq was performed with and without MeCP2 knockdown in dcSSc to identify MeCP2-regulated genes. The expression of MeCP2 and its targets were modulated by siRNA or plasmid. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) using anti-MeCP2 antibody was performed to assess MeCP2 binding sites within MeCP2-regulated genes. Elevated expression of MeCP2 was detected in dcSSc fibroblasts compared with normal fibroblasts. Overexpressing MeCP2 in normal fibroblasts suppressed myofibroblast differentiation, fibroblast proliferation and fibroblast migration. RNA-seq in MeCP2-deficient dcSSc fibroblasts identified MeCP2-regulated genes involved in fibrosis, including PLAU , NID2 and ADA . Plasminogen activator urokinase (PLAU) overexpression in dcSSc fibroblasts reduced myofibroblast differentiation and fibroblast migration, while nidogen-2 (NID2) knockdown promoted myofibroblast differentiation and fibroblast migration. Adenosine deaminase (ADA) depletion in dcSSc fibroblasts inhibited cell migration rates. Taken together, antifibrotic effects of MeCP2 were mediated, at least partly, through modulating PLAU, NID2 and ADA. ChIP-seq further showed that MeCP2 directly binds regulatory sequences in NID2 and PLAU gene loci. This study demonstrates a novel role for MeCP2 in skin fibrosis and identifies MeCP2-regulated genes

  8. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    PubMed Central

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  9. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation.

    PubMed

    Ali, Shah R; Ranjbarvaziri, Sara; Talkhabi, Mahmood; Zhao, Peng; Subat, Ali; Hojjat, Armin; Kamran, Paniz; Müller, Antonia M S; Volz, Katharina S; Tang, Zhaoyi; Red-Horse, Kristy; Ardehali, Reza

    2014-09-12

    Fibrosis is mediated partly by extracellular matrix-depositing fibroblasts in the heart. Although these mesenchymal cells are reported to have multiple embryonic origins, the functional consequence of this heterogeneity is unknown. We sought to validate a panel of surface markers to prospectively identify cardiac fibroblasts. We elucidated the developmental origins of cardiac fibroblasts and characterized their corresponding phenotypes. We also determined proliferation rates of each developmental subset of fibroblasts after pressure overload injury. We showed that Thy1(+)CD45(-)CD31(-)CD11b(-)Ter119(-) cells constitute the majority of cardiac fibroblasts. We characterized these cells using flow cytometry, epifluorescence and confocal microscopy, and transcriptional profiling (using reverse transcription polymerase chain reaction and RNA-seq). We used lineage tracing, transplantation studies, and parabiosis to show that most adult cardiac fibroblasts derive from the epicardium, a minority arises from endothelial cells, and a small fraction from Pax3-expressing cells. We did not detect generation of cardiac fibroblasts by bone marrow or circulating cells. Interestingly, proliferation rates of fibroblast subsets on injury were identical, and the relative abundance of each lineage remained the same after injury. The anatomic distribution of fibroblast lineages also remained unchanged after pressure overload. Furthermore, RNA-seq analysis demonstrated that Tie2-derived and Tbx18-derived fibroblasts within each operation group exhibit similar gene expression profiles. The cellular expansion of cardiac fibroblasts after transaortic constriction surgery was not restricted to any single developmental subset. The parallel proliferation and activation of a heterogeneous population of fibroblasts on pressure overload could suggest that common signaling mechanisms stimulate their pathological response. © 2014 American Heart Association, Inc.

  10. Metabolites of Hypoxic Cardiomyocytes Induce the Migration of Cardiac Fibroblasts.

    PubMed

    Shi, Huairui; Zhang, Xuehong; He, Zekun; Wu, Zhiyong; Rao, Liya; Li, Yushu

    2017-01-01

    The migration of cardiac fibroblasts to the infarct region plays a major role in the repair process after myocardial necrosis or damage. However, few studies investigated whether early hypoxia in cardiomyocytes induces the migration of cardiac fibroblasts. The purpose of this study was to assess the role of metabolites of early hypoxic cardiomyocytes in the induction of cardiac fibroblast migration. Neonatal rat heart tissue was digested with a mixture of trypsin and collagenase at an appropriate ratio. Cardiomyocytes and cardiac fibroblasts were cultured via differential adhesion. The cardiomyocyte cultures were subjected to hypoxia for 2, 4, 6, 8, 10, and 12 h. The supernatants of the cardiomyocyte cultures were collected to determine the differences in cardiac fibroblast migration induced by hypoxic cardiomyocyte metabolites at various time points using a Transwell apparatus. Meanwhile, ELISA was performed to measure TNF-α, IL-1β and TGF-β expression levels in the cardiomyocyte metabolites at various time points. The metabolites of hypoxic cardiomyocytes significantly induced the migration of cardiac fibroblasts. The induction of cardiac fibroblast migration was significantly enhanced by cardiomyocyte metabolites in comparison to the control after 2, 4, and 6 h of hypoxia, and the effect was most significant after 2 h. The expression levels of TNF-α, IL-1β, IL-6, and TGF-β were substantially increased in the metabolites of cardiomyocytes, and neutralization with anti-TNF-α and anti-IL-1β antibodies markedly reduced the induction of cardiac fibroblast migration by the metabolites of hypoxic cardiomyocytes. The metabolites of early hypoxic cardiomyocytes can induce the migration of cardiac fibroblasts, and TNF-α and IL-1β may act as the initial chemotactic inducers. © 2017 The Author(s) Published by S. Karger AG, Basel.

  11. Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts

    PubMed Central

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722

  12. Characterization of Peroxisome Proliferator-Activated Receptor a (PPARa) -Independent Effects of PPARa Activators in the Rodent Liver: Di-(2-ethylhexyl) phthalate Also Activates the Constitutive Activated Receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferatoractivated receptor alpha (PPARa). Recent studies indicate that one such PPC, the plasticizer di2- et...

  13. Dimethylaminoethanol affects the viability of human cultured fibroblasts.

    PubMed

    Gragnani, Alfredo; Giannoccaro, Fabiana Bocci; Sobral, Christiane S; Moraes, A A F; França, Jeronimo P; Ferreira, A T; Ferreira, Lydia Masako

    2007-01-01

    In clinical practice, dimethylaminoethanol (DMAE) has been used in the fight against wrinkles and flaccidity in the cervicofacial region. The firming action of DMAE is explained by the fact that its molecule, considered to be a precursor of acetylcholine, alters muscle contraction. However, no experimental studies have confirmed this theory. Because the actual mechanism of DMAE action was not defined and there were no references in the literature regarding its direct action on fibroblasts, this study was performed to evaluate the direct action of DMAE on cultured human fibroblasts. Human fibroblasts obtained from discarded fragments of total skin from patients undergoing plastic or reconstructive surgical procedures performed within the Plastic Surgery Division at the Federal University of São Paulo were used for this study. The explant technique was used. The culture medium was supplemented with different concentrations of DMAE on the fourth cell passage, and the cell proliferation rate, cytosolic calcium levels, and cell cycle were evaluated. Statistical analysis was performed using analysis of variance (ANOVA) followed by a Newman-Keuls test for multiple comparisons. A decrease in fibroblast proliferation was associated with an increase in DMAE concentration. A longer treatment time with trypsin was required for the groups treated with DMAE in a dose-dependent manner. In the presence of DMAE, cytosolic calcium increased in a dose-dependent manner. Apoptosis also increased in groups treated with DMAE. Dimethylaminoethanol reduced the proliferation of fibroblasts, increased cytosolic calcium, and changed the cell cycle, causing an increase in apoptosis in cultured human fibroblasts.

  14. Identification of a transitional fibroblast function in very early rheumatoid arthritis

    PubMed Central

    Filer, Andrew; Ward, Lewis S C; Kemble, Samuel; Davies, Christopher S; Munir, Hafsa; Rogers, Rebekah; Raza, Karim; Buckley, Christopher Dominic; Nash, Gerard B; McGettrick, Helen M

    2017-01-01

    Objectives Synovial fibroblasts actively regulate the inflammatory infiltrate by communicating with neighbouring endothelial cells (EC). Surprisingly, little is known about how the development of rheumatoid arthritis (RA) alters these immunomodulatory properties. We examined the effects of phase of RA and disease outcome (resolving vs persistence) on fibroblast crosstalk with EC and regulation of lymphocyte recruitment. Methods Fibroblasts were isolated from patients without synovitis, with resolving arthritis, very early RA (VeRA; symptom ≤12 weeks) and established RA undergoing joint replacement (JRep) surgery. Endothelial-fibroblast cocultures were formed on opposite sides of porous filters. Lymphocyte adhesion from flow, secretion of soluble mediators and interleukin 6 (IL-6) signalling were assessed. Results Fibroblasts from non-inflamed and resolving arthritis were immunosuppressive, inhibiting lymphocyte recruitment to cytokine-treated endothelium. This effect was lost very early in the development of RA, such that fibroblasts no longer suppressed recruitment. Changes in IL-6 and transforming growth factor beta 1 (TGF-β1) signalling appeared critical for the loss of the immunosuppressive phenotype. In the absence of exogenous cytokines, JRep, but not VeRA, fibroblasts activated endothelium to support lymphocyte. Conclusions In RA, fibroblasts undergo two distinct changes in function: first a loss of immunosuppressive responses early in disease development, followed by the later acquisition of a stimulatory phenotype. Fibroblasts exhibit a transitional functional phenotype during the first 3 months of symptoms that contributes to the accumulation of persistent infiltrates. Finally, the role of IL-6 and TGF-β1 changes from immunosuppressive in resolving arthritis to stimulatory very early in the development of RA. Early interventions targeting ‘pathogenic’ fibroblasts may be required in order to restore protective regulatory processes. PMID:28847766

  15. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  16. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    PubMed

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  17. INDUCTION OF 6-THIOGUANINE RESISTANCE IN SYNTHRONIZED HUMAN FIBROBLAST CELLS TREATED WITH METHYL METHANESULFONATE, N-ACETOXY-2-ACETHYLAMINOFLUORENE AND N-METHYL-N'-NITRO-N-NITROSOGUANIDINE

    EPA Science Inventory

    Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells prog...

  18. Effect of mitomycin C on keloid fibroblasts: an in vitro study.

    PubMed

    Simman, Richard; Alani, Hashim; Williams, Frances

    2003-01-01

    Keloids are the result of aberrant wound healing of human skin after dermal injury. Therapeutic options include excision followed by radiation therapy, steroid injection, and compression with silicone sheets among others. Local invasion and recurrence after excision has provoked interest in treating keloids as neoplasms. The purpose of this study was to determine the effect of mitomycin C (MMC) on keloid fibroblasts. Keloid fibroblasts obtained from five different patients were exposed to MMC. A control group of normal and keloid cells was treated with phosphate buffered saline only. Contrast microscopy showed a decrease of fibroblast density during the 3 weeks after exposure for normal and keloid fibroblasts relative to untreated fibroblasts. This was confirmed by total cell counts ( = 0.1) and measurement of DNA synthesis. By the third week, there was a recovery in DNA synthesis and increased cell count for some of the treated fibroblasts. We concluded that at an appropriate concentration, MMC shows proliferation of keloid fibroblasts in vitro for a period of 3 weeks. This agent may be considered in clinical trials after surgical excision of keloids.

  19. Collagen matrix as a tool in studying fibroblastic cell behavior.

    PubMed

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.

  20. Collagen matrix as a tool in studying fibroblastic cell behavior

    PubMed Central

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes. PMID:25734486

  1. Localization of peroxisome proliferator-activated receptor in mouse and rat-tissues and demonstration of its nuclear translocation in transfected cv-1 cells.

    PubMed

    Huang, Q; Yeldandi, A; Alvares, K; Ide, H; Reddy, J; Rao, M

    1995-02-01

    Hepatocarcinogenesis in rodents induced by nongenotoxic peroxisome proliferators is postulated to be a receptor-mediated process. The peroxisome proliferator-activated receptors (PPAR) are members of the steroid hormone receptor superfamily, which participate in ligand-dependent transcriptional activation of peroxisomal fatty acid beta oxidation enzyme system genes in liver parenchymal cells of rats and mice. In order to study the tissue distribution and cellular localization of PPAR, we raised polyclonal antibodies against PPAR using a recombinant rat PPAR (rPPAR) expressed as a glutathione-S-transferase-rPPAR fusion protein. On immunoblot analysis the antibodies specifically recognized a 55 kDa PPAR protein in rat, mouse and human liver homogenates. Immunoblotting also showed that in the mouse and rat, PPAR is expressed in liver, kidney and heart, and only weakly in brain and testis. Immunohistochemical localization in the rat and mouse revealed that PPAR is highly expressed in perivenular (i.e., those surrounding hepatic vein) hepatocytes and very weakly in the cytoplasm of remaining hepatocytes. In the kidney, PPAR was visualized predominantly in the p(3) segments of proximal convoluted tubular epithelium. CV-1 cells transiently transfected with rPPAR cDNA construct showed predominant cytoplasmic fluorescence; treatment of these cells with ciprofibrate, a peroxisome proliferator, resulted in the nuclear translocation of PPAR signal.

  2. Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation.

    PubMed

    Sato, Yuki; Yanagita, Motoko

    2017-01-01

    Chronic kidney disease (CKD) is a leading cause of end stage renal disease (ESRD) and cardiovascular morbidity and mortality worldwide, resulting in a growing social and economic burden. The prevalence and burden of CKD is anticipated to further increase over the next decades as a result of aging. In the pathogenesis of CKD, irrespective of the etiology, resident fibroblasts are key players and have been demonstrated to play crucial roles for disease initiation and progression. In response to injury, resident fibroblasts transdifferentiate into myofibroblasts that express alpha smooth muscle actin (αSMA) and have an increased capacity to produce large amounts of extracellular matrix (ECM) proteins, leading to renal fibrosis. In addition to this fundamental role of fibroblasts as drivers for renal fibrosis, growing amounts of evidence have shown that resident fibroblasts are also actively involved in initiating and promoting inflammation during kidney injury. During the myofibroblastic transition described above, resident fibroblasts activate NF-κB signaling and produce pro-inflammatory cytokines and chemokines, promoting inflammation. Furthermore, under aging milieu, resident fibroblasts transdifferentiate into several distinct phenotypic fibroblasts, including CXCL13/CCL19-producing fibroblasts, retinoic acid-producing fibroblasts, and follicular dendritic cells, in response to injury and orchestrate tertiary lymphoid tissue (TLT) formation, which results in uncontrolled aberrant inflammation and retards tissue repair. Anti-inflammatory agents can improve myofibroblastic transdifferentiation and abolish TLT formation, suggesting that targeting these inflammatory fibroblasts can potentially ameliorate kidney disease. Beyond its conventional role as an executor of fibrosis, resident fibroblasts display more pro-inflammatory phenotypes and contribute actively to driving inflammation during kidney injury.

  3. Multifaced Roles of the αvβ3 Integrin in Ehlers–Danlos and Arterial Tortuosity Syndromes’ Dermal Fibroblasts

    PubMed Central

    Zoppi, Nicoletta; Chiarelli, Nicola; Ritelli, Marco; Colombi, Marina

    2018-01-01

    The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field. PMID:29587413

  4. Toxicologic Evaluation of Trichloroacetic Acid: Effects on Rat Liver Peroxisomes and Enzyme Altered Foci.

    DTIC Science & Technology

    1986-05-01

    studies with the hypolipid- emic agent gemfibrozil . J Natl Cancer Inst. 67:1105- 1120 (1981). 88. De La Iglesia, F.A., Pinns, S.M., Luca, J., and McGuire...E.J. Quantitative sterology of peroxisomes in hepatocytes from hyperlipoproteinemic patients receiv- ing gemfibrozil . Micron. 12:97-98 (1981). 89

  5. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

    PubMed

    Jaquemar, D; Schenker, T; Trueb, B

    1999-03-12

    We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.

  6. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells

    PubMed Central

    2013-01-01

    Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy. PMID:23796020

  7. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  8. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    PubMed

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  9. Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription.

    PubMed

    Park, So Youn; Shin, Hwa Kyoung; Lee, Jeong Hyun; Kim, Chi Dae; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan

    2009-05-01

    In a previous study, cilostazol promoted differentiation of 3T3-L1 fibroblasts into adipocytes and improved insulin sensitivity by stimulating peroxisome proliferator-activated receptor (PPAR) gamma transcription. This study evaluated the in vivo efficacy of cilostazol to protect a db/db mouse model of type 2 diabetes against altered metabolic abnormalities and proinflammatory markers via activation of PPARgamma transcription. Eight-week-old db/db mice were treated with cilostazol or rosiglitazone for 12 days. Cilostazol significantly decreased plasma glucose and triglyceride levels, as did rosiglitazone, a PPARgamma agonist. Elevated plasma insulin and resistin levels were significantly decreased by cilostazol, and decreased adiponectin mRNA expression was elevated along with increased plasma adiponectin. Cilostazol significantly increased both adipocyte fatty acid binding protein and fatty acid transport protein-1 mRNA expressions with increased glucose transport 4 in the adipose tissue. Cilostazol and rosiglitazone significantly suppressed proinflammatory markers (superoxide, tumor necrosis factor-alpha, and vascular cell adhesion molecule-1) in the carotid artery of db/db mice. In an in vitro study with 3T3-L1 fibroblasts, cilostazol significantly increased PPARgamma transcription activity, as did rosiglitazone. The transcription activity stimulated by cilostazol was attenuated by KT5720 [(9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9, 12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo [3,4-I][1,6]-benzodiazocine-10-carboxylic acid hexyl ester], a cAMP-dependent protein kinase inhibitor, and GW9662 (2-chloro-5-nitrobenzanilide), an antagonist of PPARgamma activity, indicative of implication of the phosphatidylinositol 3-kinase/Akt signal pathway. These results suggest that cilostazol may improve insulin sensitivity along with anti-inflammatory effects in type 2 diabetic patients via activation of both cAMP-dependent protein kinase and

  10. Leopard spot retinal pigmentation in infancy indicating a peroxisomal disorder.

    PubMed

    Lyons, C J; Castano, G; McCormick, A Q; Applegarth, D

    2004-02-01

    Neonatal adrenoleucodystrophy (NALD) is a rare disorder resulting from abnormal peroxisomal biogenesis. Affected patients present in infancy with developmental delay, hypotonia, and seizures. Blindness and nystagmus are prominent features. The authors suggest a characteristic leopard spot pigmentary pattern in the peripheral retina to be diagnostic. Three patients are reported with this presentation; the characteristic retinal appearance resulted in early diagnosis for one of these. Leopard spot retinopathy in an infant with hypotonia, seizures, developmental delay, with or without dysmorphic features and hearing impairment, is a clue to the diagnosis of NALD.

  11. AGE AND MULTIPLICATION OF FIBROBLASTS.

    PubMed

    Carrel, A; Ebeling, A H

    1921-11-30

    Pure cultures of fibroblasts displayed marked differences in their activity in the plasma of young, middle aged, and old chickens. The rate of cell multiplication varied in inverse ratio to the age of the animal from which the plasma was taken. There was a definite relation between the age of the animal and the amount of new tissue produced in its plasma in a given time (Text-figs. 1 to 10). The chart obtained by plotting the rate of cell proliferation in ordinates, and the age of the animal in abscissae, showed that the rate of growth decreased more quickly than the age increased (Text-fig. 12). The decrease in the rate of growth was 50 per cent during the first 3 years of life, while in the following 6 years it was only 30 per cent. When the duration of the life of the cultures in the four plasmas was compared, a curve was obtained which showed about the same characteristics (Text-fig. 11). The duration of life of the fibroblasts in vitro varied in inverse ratio to the age of the animal, and decreased more quickly than the age increased. As the differences in the amount of new tissue produced in the plasma of young, middle aged, and old chickens were large, the growth of a pure culture of fibroblasts could be employed as a reagent for detecting certain changes occurring in the plasma under the influence of age. But the method possesses the necessary accuracy only when it is used as has already been described, and by technicians thoroughly trained in the details of its application. A comparative study of the growth of fibroblasts in media containing no serum, and serum under low and high concentrations, was made in order to ascertain whether the decreasing rate of cell multiplication was due to the loss of an accelerating factor, or to the increase See PDF for Structure of an inhibiting one. In high and low concentrations of the serum of young animals, no difference in the rate of multiplication of fibroblasts was observed. This showed that the serum of an

  12. TNF-{alpha} similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Lars, E-mail: lars.mueller@uksh-kiel.de; Seggern, Lena von; Schumacher, Jennifer

    2010-07-02

    Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparablemore » up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.« less

  13. Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic In Vivo Features of Chronic Wounds

    PubMed Central

    Maione, Anna G.; Brudno, Yevgeny; Stojadinovic, Olivera; Park, Lara K.; Smith, Avi; Tellechea, Ana; Leal, Ermelindo C.; Kearney, Cathal J.; Veves, Aristidis; Tomic-Canic, Marjana; Mooney, David J.

    2015-01-01

    Diabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing. To address this need for realistic wound-healing models, we established patient-derived fibroblasts from DFUs and site-matched controls and used them to construct three-dimensional (3D) models of chronic wound healing. Incorporation of DFU-derived fibroblasts into these models accurately recapitulated the following key aspects of chronic ulcers: reduced stimulation of angiogenesis, increased keratinocyte proliferation, decreased re-epithelialization, and impaired extracellular matrix deposition. In addition to reflecting clinical attributes of DFUs, the wound-healing potential of DFU fibroblasts demonstrated in this suite of models correlated with in vivo wound closure in mice. Thus, the reported panel of 3D DFU models provides a more biologically relevant platform for elucidating the cell–cell and cell–matrix-related mechanisms responsible for chronic wound pathogenesis and may improve translation of in vitro findings into efficacious clinical applications. PMID:25343343

  14. Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition

    PubMed Central

    Law, Brittany A.; Carver, Wayne E.

    2013-01-01

    Background Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as Alcoholic Cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM and prior studies by this lab have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Methods Primary rat cardiac fibroblasts were cultured in the presence of ethanol and assayed for fibroblast activation by collagen gel contraction, alpha smooth muscle- actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I & III and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of of TGF-β in the response of cardiac fibroblasts to ethanol. Results Treatment of cardiac fibroblasts with ethanol at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the ethanol-induced fibroblast activation. Conclusions Ethanol treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by ethanol treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to ethanol. PMID:23528014

  15. C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism.

    PubMed

    Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline

    2016-03-01

    In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII.

  16. Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.

    PubMed

    Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao

    2016-08-01

    Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding.

  17. [Morphological fibroblastic changes in cytomegalovirus infection].

    PubMed

    Parkhomenko, Iu V; Solnyshkova, T G; Tishkivich, O A; Shakhgil'dian, V I; Nikonova, E A

    2006-01-01

    Cytomegalovirus (CMV) infection is widely spread among population. While immunocompetent patients suffer rarely from this virus, it can lead to a lethal outcome in immunocompromised patients. An electron microscopic study has detected fibroblastic morphological changes of a definite cytodestructive character. The nuclei of some fibroblasts have chromatine condensation. A clear zone arising due to vacuolization near this inclusion may reflect nuclear rearrangement leading to further CMV metamorphosis of the cell. This metamorphosis is characteristic of the changes developing in the cells of different parenchymatous organs.

  18. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts.

    PubMed

    Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Gallant-Behm, Corrie; Wiebe, Colin; Hart, David A; Koivisto, Leeni; Larjava, Hannu; Häkkinen, Lari

    2017-08-01

    Compared to skin, wound healing in oral mucosa is faster and produces less scarring, but the mechanisms involved are incompletely understood. Studies in mice have linked high expression of CD26 to a profibrotic fibroblast phenotype, but this has not been tested in models more relevant for humans. We hypothesized that CD26 is highly expressed by human skin fibroblasts (SFBLs), and this associates with a profibrotic phenotype distinct from gingival fibroblasts (GFBLs). We compared CD26 expression in human gingiva and skin and in gingival and hypertrophic-like scar-forming skin wound healing in a pig model, and used three-dimensional cultures of human GFBLs and SFBLs. In both humans and pigs, nonwounded skin contained abundantly CD26-positive fibroblasts, whereas in gingiva they were rare. During skin wound healing, CD26-positive cells accumulated over time and persisted in forming hypertrophic-like scars, whereas few CD26-positive cells were present in the regenerated gingival wounds. Cultured human SFBLs displayed significantly higher levels of CD26 than GFBLs. This was associated with an increased expression of profibrotic genes and transforming growth factor-β signaling in SFBLs. The profibrotic phenotype of SFBLs partially depended on expression of CD26, but was independent of its catalytic activity. Thus, a CD26-positive fibroblast population that is abundant in human skin but not in gingiva may drive the profibrotic response leading to excessive scarring. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    PubMed

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  1. Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice.

    PubMed

    Yoo, Youngchul; Park, Jong-Chan; Cho, Man-Ho; Yang, Jungil; Kim, Chi-Yeol; Jung, Ki-Hong; Jeon, Jong-Seong; An, Gynheung; Lee, Sang-Won

    2018-01-01

    Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae ( Xoo ), an agent of bacterial leaf blight of rice. The mutant (Δ rrsRLK ) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea . Δ rrsRLK showed significantly higher expression of OsPR1a , OsPR1b , OsLOX , RBBTI4 , and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H 2 O 2 ) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in Δ rrsRLK . These results suggest that the enhanced resistance in Δ rrsRLK is due to H 2 O 2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.

  2. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors.

    PubMed

    Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2015-12-01

    Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic

  3. Gemfibrozil modulates cytochrome P450 and peroxisome proliferation-inducible enzymes in the liver of the yellow European eel (Anguilla anguilla).

    PubMed

    Lyssimachou, Angeliki; Thibaut, Rémi; Gisbert, Enric; Porte, Cinta

    2014-01-01

    The human lipid regulator gemfibrozil (GEM) has been shown to induce peroxisome proliferation in rodents leading to hepatocarcinogenesis. Since GEM is found at biological active concentrations in the aquatic environment, the present study investigates the effects of this drug on the yellow European eel (Anguilla anguilla). Eels were injected with different concentrations of GEM (0.1 to 200 μg/g) and sampled 24- and 96-h post-injection. GEM was shown to inhibit CYP1A, CYP3A and CYP2K-like catalytic activities 24-h post-injection, but at 96-h post-injection, only CYP1A was significantly altered in fish injected with the highest GEM dose. On the contrary, GEM had little effect on the phase II enzymes examined (UDP-glucuronyltransferase and glutathione-S-transferase). Peroxisome proliferation inducible enzymes (liver peroxisomal acyl-CoA oxidase and catalase) were very weakly induced. No evidence of a significant effect on the endocrine system of eels was observed in terms of plasmatic steroid levels or testosterone esterification in the liver.

  4. PiSCP1 and PiCDPK2 Localize to Peroxisomes and Are Involved in Pollen Tube Growth in Petunia Inflata

    PubMed Central

    Guo, Feng; Yoon, Gyeong Mee; McCubbin, Andrew G.

    2013-01-01

    Petunia inflata small CDPK-interacting protein 1 (PiSCP1) was identified as a pollen expressed PiCDPK1 interacting protein using the yeast two hybrid system and the interaction confirmed using pull-down and phosphorylation assays. PiSCP1 is pollen specific and shares amino acid homology with uncharacterized proteins from diverse species of higher plants, but no protein of known function. Expression of PiSCP1-GFP in vivo inhibited pollen tube growth and was shown to localize to peroxisomes in growing pollen tubes. As PiCDPK1 is plasma membrane localized, we investigated the localization of a second isoform, PiCDPK2, and show that it co-localizes to peroxisomes with PiSCP1 and that the two proteins interact in the yeast 2 hybrid interaction assay, suggesting that interaction with the latter CDPK isoform is likely the one of biological relevance. Both PiCDPK2 and PiSCP1 affect pollen tube growth, presumably by mediating peroxisome function, however how they do so is currently not clear. PMID:27137367

  5. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    PubMed

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis

    PubMed Central

    Liu, Fei; Lagares, David; Choi, Kyoung Moo; Stopfer, Lauren; Marinković, Aleksandar; Vrbanac, Vladimir; Probst, Clemens K.; Hiemer, Samantha E.; Sisson, Thomas H.; Horowitz, Jeffrey C.; Rosas, Ivan O.; Fredenburgh, Laura E.; Feghali-Bostwick, Carol; Varelas, Xaralabos; Tager, Andrew M.

    2014-01-01

    Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis. PMID:25502501

  7. Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition.

    PubMed

    Law, Brittany A; Carver, Wayne E

    2013-08-01

    Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as alcoholic cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM, and prior studies by this laboratory have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date, there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Primary rat cardiac fibroblasts were cultured in the presence of ethanol (EtOH) and assayed for fibroblast activation by collagen gel contraction, alpha-smooth muscle actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I and III, and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of TGF-β in the response of cardiac fibroblasts to EtOH. Treatment for cardiac fibroblasts with EtOH at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the EtOH-induced fibroblast activation. EtOH treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by EtOH treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to EtOH. Copyright © 2013 by the Research Society on Alcoholism.

  8. [The regulation of peroxisomal matrix enzymes (alcohol oxidase and catalase) formation by the product of the gene Mth1 in methylotrophic yeast Pichia methanolica].

    PubMed

    Leonovich, O A; Kurales, Iu A; Dutova, T A; Isakova, E P; Deriabina, Iu I; Rabinovich, Ia M

    2009-01-01

    Two independent mutant strains of methylotrophic yeast Pichia methanolica (mth1 arg1 and mth2 arg4) from the initial line 616 (ade1 ade5) were investigated. The mutant strains possessed defects in genes MTH1 and MTH2 which resulted in the inability to assimilate methanol as a sole carbon source and the increased activity of alcohol oxidase (AO). The function of the AUG2 gene encoding one of the subunits of AO and CTA1, a probable homolog of peroxisomal catalase of Saccharomyces cereviseae, was investigated by analyses of the molecular forms of isoenzymes. It was shown that optimal conditions for the expression of the AUG2 gene on a medium supplemented with 3% of methanol leads to an increasing synthesis of peroxisomal catalase. The mutant mth1 possessed a dominant formation of AO isoform with electrophoretic mobility which is typical for isogenic form 9, the product of the AUG2 gene, and a decreased level of peroxisomal catalase. The restoration of growth of four spontaneous revertants of the mutant mth1 (Rmth1) on the methanol containing medium was accompanied by an increase in activity of AO isogenic form 9 and peroxisomal catalase. The obtained results confirmed the functional continuity of the structural gene AUG2 in mutant mth1. The correlation of activity of peroxisomal catalase and AO isogenic form 1 in different conditions evidenced the existence of common regulatory elements for genes AUG2 and CTA1 in methilotrophic yeast Pichia methanolica.

  9. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Tian; Wu, Dong; Ding, Wei

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCRmore » refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.« less

  10. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing

    NASA Astrophysics Data System (ADS)

    Cialdai, Francesca; Vignali, Leonardo; Morbidelli, Lucia; Colciago, Alessandra; Celotti, Fabio; Santi, Alice; Caselli, Anna; Cirri, Paolo; Monici, Monica

    2017-02-01

    Wound healing is crucial for the survival of an organism. Therefore, in the perspective of space exploration missions, it is important to understand if and how microgravity conditions affect the behavior of the cell populations involved in wound healing and the evolution of the process. Since fibroblasts are the major players in tissue repair, this study was focused on the behavior of fibroblasts in microgravity conditions, modeled by a RCCS. Cell cytoskeleton was studied by immunofluorescence microscopy, the ability to migrate was assessed by microchemotaxis and scratch assay, and the expression of markers of fibroblast activation, angiogenesis, and inflammation was assessed by western blot. Results revealed that after cell exposure to modeled microgravity conditions, a thorough rearrangement of microtubules occurred and α-SMA bundles were replaced by a tight network of faulty and disorganized filaments. Exposure to modeled microgravity induced a decrease in α-SMA and E-CAD expressions. Also, the expression of the pro-angiogenic protein VEGF decreased, while that of the inflammatory signal COX-2 increased. Fibroblast ability to adhere, migrate, and respond to chemoattractants (PRP), closely related to cytoskeleton integrity and membrane junctions, was significantly impaired. Nevertheless, PRP was able to partially restore fibroblast migration.

  11. Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-04-24

    Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other's expression, and such PPARγ down-regulation is prominent in fibrosis and mediated, via previously unknown SMAD-signaling mechanisms. Here, we show that TGF-β induces the association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive co-repressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated the partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. Factor XIIIa is expressed by fibroblasts in fibrovascular tumors.

    PubMed

    Nemeth, A J; Penneys, N S

    1989-10-01

    Factor XIIIa (FXIIIa), a blood and intracellularly produced coagulation factor, has been found in a variety of cell types including fibroblast-like mesenchymal cells, and has been shown to stimulate the proliferation of fibroblasts and some neoplastic cells in vitro. We have already shown that the dendritic fibroblasts composing the fibrous papule contain this factor. We hypothesized that histopathologically similar fibrovascular tumors may also express FXIIIa and, in this report, show that the large stellate fibroblasts found in acquired digital fibrokeratomas, angiofibromas (adenoma sebaceum of Pringle), and oral fibroma (oral fibrous hyperplasia) also express FXIIIa. We postulate that FXIIIa, possibly acting as a growth factor, may be a common denominator in the pathogenesis of these tumors. Another possibility is that these tumors may be the consequence of a local overproduction of FXIIIa in response to an, as yet, unidentified stimulus.

  13. Transcript characteristic of myostatin in sheep fibroblasts.

    PubMed

    Lu, Jian; Ren, Hangxing; Sheng, Xihui; Zhang, Xiaoning; Li, Shangang; Zhao, Fuping; Zhou, Xinlei; Zhang, Li; Wei, Caihong; Ding, Jiatong; Li, Bichun; Du, Lixin

    2012-08-01

    Myostatin, a secreted growth factor highly expressed in skeletal muscle, negatively regulates skeletal muscle growth and differentiation. Recently, myostatin is emerged as a potential target for anti-atrophy and anti-fibrotic therapies. Therefore, to investigate the regulation of myostatin in sheep adult fibroblasts, we used the RNA interference mediated by lentiviral vector to gene silence myostatin. Simultaneously, we also had constructed the sheep myostatin overexpression vector to further explore the function of myostatin in fibroblasts. The results here demonstrated that the lentiviral vector could significantly reduce myostatin gene both at mRNA and protein level by 71% and 67%, respectively (P < 0.01). Inhibition of myostatin also resulted in a remarkable increase of activin receptor 2B (ACV2B), p21, PPARγ, leptin, C/EBPβ, and MEF2A expression, and a decrease of Akt1, CDK2, MEF2C, and Myf5 expression. Ectopic myostatin mRNA and protein were also present in the fibroblasts transfection. Furthermore, we observed that overexpression of myostatin contributed to an increase of Akt1, CDK2, Myf5 and PPARγ, and a decrease of p21, C/EBPα and leptin at the transcript level. These results suggested that myostatin positively regulated Akt1, CDK2, Myf5, leptin, and C/EBPα, but negatively regulated p21 mRNA expression in adult fibroblasts, and it also expanded our understanding of the regulation mechanism of myostatin. Moreover, the lentiviral system inactivated myostatin gene in fibroblasts would be used to generate transgenic sheep and to ameliorate muscle fibrosis and atrophy by gene therapy in the future. Copyright © 2012 Wiley Periodicals, Inc.

  14. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova; Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated themore » effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.« less

  15. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  16. The Possible Pre- and Post-UVA Radiation Protective Effect of Amaranth Oil on Human Skin Fibroblast Cells.

    PubMed

    Wolosik, Katarzyna; Zareba, Ilona; Surazynski, Arkadiusz; Markowska, Agnieszka

    2017-07-01

    The health effects of Amaranth Oil (AO) are attributed to its specific chemical composition. That makes it an outstanding natural product for the prevention and treatment of ultraviolet (UV) irradiation-related pathologies such as sunburn, photoaging, photoimmunosuppression, and photocarcinogenesis. Most of the studies are taken on animal model, and there is a lack of research on the endogenous effect of AO on fibroblast level, where UVA takes it harmful place. The aim of this study was evaluation if AO can protect or abolish UVA exposure effect on human skin fibroblast. The 0.1% AO, 0.25% AO, and 0.5% AO concentration and irradiation for 15 min under UVA-emitting lamp were studied in various condition. In all experiments, the mean values for six assays ± standard deviations were calculated. Pretreatment with various concentrations of AO was tested. The highest concentration of AO where cell survival was observed was 0.5%. Cytotoxicity assays provided evidence for pre- and post-UVA protective effect of 0.1% AO among three tested concentrations. The results also provide evidence that UVA has inhibitory effect on collagen biosynthesis in confluent skin fibroblast, but presence of 0.1% AO abolishes pre- and post-UVA effect comparing to other used AO concentration. The assessment results on DNA biosynthesis show the significant abolished post-UVA effect when 0.1% and 0.5% of AO were added. AO gives pre- and post-UVA protection in low concentration. This provides the evidence for using it not as a main protective factor against UV but as one of the combined components in cosmetic formulation. The recommended Amaranth Oil (AO) concentration in cosmetic formulation is between 0.1 and 5%Pretreatment with various concentrations of AO suggests to use the highest 0.5% concentration of AO in human skin fibroblast culturesThe 0.1% of AO in fibroblast cultures, protects and abolishes effect of ultraviolet A (UVA) exposureUVA has inhibitory effect on collagen biosynthesis in

  17. Alterations in ROS Activity and Lysosomal pH Account for Distinct Patterns of Macroautophagy in LINCL and JNCL Fibroblasts

    PubMed Central

    Casanova, Bonaventura; Aguado, Carmen; Knecht, Erwin

    2013-01-01

    Neuronal Ceroid Lipofuscinoses (NCL) are lysosomal storage disorders characterized by the accumulation of lipofuscin within lysosomes. Late infantile (LINCL) and juvenile (JNCL) are their most common forms and are caused by loss-of-function mutations in tripeptidyl peptidase 1 (TPP1), a lysosomal endopeptidase, and CLN3 protein (CLN3p), whose location and function is still controversial. LINCL patients suffer more severely from NCL consequences than JNCL patients, in spite of having in common an abnormal accumulation of material with a similar composition in the lysosomes. To identify distinctive characteristics that could explain the differences in the severity of LINCL and JNCL pathologies, we compared the protein degradation mechanisms in patientś fibroblasts. Pulse-chase experiments show a significant decrease in protein degradation by macroautophagy in fibroblasts bearing TPP1 (CLN2) and CLN3p (CLN3) mutations. In CLN2 fibroblasts, LC3-II levels and other procedures indicate an impaired formation of autophagosomes, which confirms the pulse-chase experiments. This defect is linked to an accumulation of Reactive Oxygen Species (ROS), an upregulation of the Akt-mTOR signalling pathway and increased activities of the p38α and ERK1/2 MAPKs. In CLN3 fibroblasts, LC3-II analysis indicates impairment in autophagosome maturation and there is also a defect in fluid phase endocytosis, two alterations that can be related to an observed increase of 0.5 units in lysosomal pH. CLN3 fibroblasts also accumulate ROS but to a lower extent than CLN2. TPP1 activity is completely abrogated in CLN2 and partially diminished in CLN3 fibroblasts. TPP1 cleaves small hydrophobic proteins like subunit c of mitochondrial ATP synthase and the lack or a lower activity of this enzyme can contribute to lipofuscin accumulation. These alterations in TPP1 activity lead to an increased ROS production, especially in CLN2 in which it is aggravated by a decrease in catalase activity. This could

  18. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.

    PubMed

    Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  19. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient.

    PubMed Central

    Neat, C E; Thomassen, M S; Osmundsen, H

    1981-01-01

    1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids. PMID:6272750

  20. Potential effects of curcumin on peroxisome proliferator-activated receptor-gamma in vitro and in vivo

    USDA-ARS?s Scientific Manuscript database

    Natural peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin (Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biologi...

  1. Carrier detection of pyruvate carboxylase deficiency in fibroblasts and lymphocytes.

    PubMed

    Atkin, B M

    1979-10-01

    Pyruvate carboxylase (E.C. 6.4.1.1) activity was determined in the circulating peripheral lymphocytes and cultured skin fibroblasts from the family of a patient with hepatic, cerebral, renal cortical, leukocyte, and fibroblast pyruvate carboxylase deficiency (PC Portland deficiency). Lymphocyte activities were: mother, 33--39%; father, 11--29%; brother, 82--103%; and sister, 38--48% of the lowest normal. Fibroblasts from the patient's mother and father had 42 and 34%, respectively, of the activity of the lowest normal. These data demonstrate that the disease is inherited in an autosomal recessive manner and that lymphocytes and fibroblasts can be used to detect carriers. Neither pyruvate carboxylase nor mitochondrial PEPCK activity in lymphocytes was increased by a 21-hr fast.

  2. Characterization of the human peroxisome proliferator activated receptor delta gene and its expression.

    PubMed

    Skogsberg, J; Kannisto, K; Roshani, L; Gagne, E; Hamsten, A; Larsson, C; Ehrenborg, E

    2000-07-01

    Peroxisome proliferator activated receptors (PPARs) are nuclear receptors regulating the expression of genes involved in lipid and glucose metabolism. Three different PPARs; alpha (PPARA), gamma (PPARG) and delta (PPARD) have been characterized and they are distinguished from each other by tissue distribution and cell activation. In this study, the structure and detailed chromosomal localization of the human PPARD gene was determined. Three genomic clones containing the PPARD gene was isolated from a human P1 library. The gene spans approximately 85 kb of DNA and consists of 9 exons and 8 introns with exons ranging in size from 84 bp to 2.3 kb and introns ranging from 180 bp to 50 kb. All splice acceptor and donor sites conform to the consensus sequences including the AG-GT motif. Although PPARD lacks a TATA box, the gene is transcribed from a unique start site located 380 bp upstream of the ATG initiation codon. The 5' and 3' ends were mapped by rapid amplification of cDNA ends and the mRNA size of PPARD based upon the structure of the gene is 3803 bp. In addition, the chromosomal sublocalization of PPARD was determined by radiation hybrid mapping. The PPARD gene is located at 14 cR from the colipase gene and 15 cR from the serine kinase gene at chromosomal region 6p21.2.

  3. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    PubMed

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  4. Developmental Effects of Perfluorononanoic acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-alpha

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one ofthe perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated recept...

  5. Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated recep...

  6. [Enhancement of wound healing by taspine and its effect on fibroblast].

    PubMed

    Dong, Yalin; He, Langchong; Chen, Fang

    2005-07-01

    To study the effect of taspine on enhancement of skin wound healing and its effect on fibroblast proliferation and autocrine. The plerosis effect of taspine on experimental skin wound was observed in vivo. Different concentrations of taspine were added in vitro and MTT technique was applied to observe its effect on fibroblast proliferation, the levels of transforming growth factor-beta1 (TGF-13P) and epidermal growth factor (EGF) were determined by ELISA. In vivo, exo-applied taspine 300 microg and 150 microg accelerated the recovery of skin wound. In vitro, 0.50-0.4 microg/ml taspine could increase autocrine of TGF-beta1and EGF by fibroblast, but it showed no effect on L929 fibroblast proliferation. Taspine enhances wound healing by increasing the autocrine of TGF-beta1 and EGF by fibroblast.

  7. Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease.

    PubMed

    Pérez, María J; Ponce, Daniela P; Osorio-Fuentealba, Cesar; Behrens, Maria I; Quintanilla, Rodrigo A

    2017-01-01

    The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients.

  8. Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease

    PubMed Central

    Pérez, María J.; Ponce, Daniela P.; Osorio-Fuentealba, Cesar; Behrens, Maria I.; Quintanilla, Rodrigo A.

    2017-01-01

    The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients. PMID:29056898

  9. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.

    PubMed

    Ghaffari, Abdi; Li, Yunyaun; Karami, Ali; Ghaffari, Mazyar; Tredget, Edward E; Ghahary, Aziz

    2006-05-15

    Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for

  10. T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.

    PubMed

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-03-01

    To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.

  11. Effect of exposure to mitomycin C on cultured tympanic membrane fibroblasts.

    PubMed

    Jang, Chul Ho; Song, Chang-Hun; Pak, Sok Cheon

    2003-02-01

    Recently, attempts have been made to prolong the patency of myringotomy site with topical use of mitomycin C (MMC). It has been shown that MMC inhibits mitosis and proliferation of ocular fibroblasts, however, there are no studies of MMC's effect on tympanic membrane fibroblasts. To investigate the effects of MMC on cultured human tympanic membrane fibroblasts and understand the cellular basis of MMC for maintain myringotomy patency, cultured fibroblasts were exposed to various concentrations of MMC for periods of 5-10 min. Effect of MMC on cultured fibroblasts was assessed by microscopic observation and cell viability test. Dose-, time- dependent relationship of MMC on cultured fibroblasts was revealed. There was a significant difference between the inhibition effects of MMC at concentrations of 0.4 mg/ml and control following 5 and 10 min exposure intervals. Phase-contrast microscopy showed consistency with the antiproliferative effect of MMC at higher concentration. Therefore, it would appear that intraoperative use of MMC could be effective in delaying the healing of the myringotomy site and extending the period of time for myringotomy patency.

  12. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less

  13. Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.

    PubMed

    Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D

    2004-08-01

    Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.

  14. Rapamycin Inhibits Human Laryngotracheal Stenosis–derived Fibroblast Proliferation, Metabolism, and Function in Vitro

    PubMed Central

    Namba, Daryan R.; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D.; Horton, Maureen R.; Hillel, Alexander T.

    2015-01-01

    Objective To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)–derived fibroblasts. Study Design Controlled in vitro study. Setting Tertiary care hospital in a research university. Subjects and Methods Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10−10 M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10−9 M (high-dose) rapamycin dissolved in DMSO. Results The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Conclusions Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin’s anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. PMID:25754184

  15. Abnormal Collagen Metabolism in Cultured Skin Fibroblasts from Patients with Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    Rodemann, H. Peter; Bayreuther, Klaus

    1984-08-01

    Total collagen synthesis is decreased by about 29% (P < 0.01) in skin fibroblasts established in vitro from male patients with Duchenne muscular dystrophy (DMD) as compared with that in normal male skin fibroblasts in vitro. The reduction in collagen synthesis is associated with an approximately 2-fold increase in collagen degradation in DMD fibroblasts. Correlated to these alterations in the metabolism of collagen, DMD fibroblasts express a significantly higher hydroxyproline/proline ratio (DMD: 1.36-1.45; P < 0.01) than do normal fibroblasts (controls: 0.86-0.89). The increased hydroxylation of proline residues of collagen (composed of type I and type III) could be the cause for the enhanced degradation of collagen in DMD fibroblasts.

  16. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    PubMed Central

    Wei, Hongbo; Zhao, Lingzhou; Chen, Bangdao; Bai, Shizhu; Zhao, Yimin

    2014-01-01

    Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40–50 µm may be promising for application in the percutaneous part of an implant. PMID:25054322

  17. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  18. Fibroblast Electrical Remodeling in Heart Failure and Potential Effects on Atrial Fibrillation

    PubMed Central

    Aguilar, Martin; Qi, Xiao Yan; Huang, Hai; Nattel, Stanley

    2014-01-01

    Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ∼44%), whereas the Ba2+-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (−53 ± 2 mV vs. −42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K+-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia

  19. Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis

    PubMed Central

    Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian

    2013-01-01

    Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807

  20. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators

    PubMed Central

    Sirimahachaiyakul, Pornthep; Sood, Ravi F.; Muffley, Lara A.; Seaton, Max; Lin, Cheng-Ta; Qiao, Liang; Armaly, Jeffrey S.; Hocking, Anne M.; Gibran, Nicole S.

    2015-01-01

    Introduction Abnormal pigmentation following cutaneous injury causes significant patient distress and represents a barrier to recovery. Wound depth and patient characteristics influence scar pigmentation. However, we know little about the pathophysiology leading to hyperpigmentation in healed shallow wounds and hypopigmentation in deep dermal wound scars. We sought to determine whether dermal fibroblast signaling influences melanocyte responses. Methods and Materials Epidermal melanocytes from three Caucasians and three African-Americans were genotyped for single nucleotide polymorphisms (SNPs) across the entire genome. Melanocyte genetic profiles were determined using principal component analysis. We assessed melanocyte phenotype and gene expression in response to dermal fibroblast-conditioned medium and determined potential mesenchymal mediators by proteome profiling the fibroblast-conditioned medium. Results Six melanocyte samples demonstrated significant variability in phenotype and gene expression at baseline and in response to fibroblast-conditioned medium. Genetic profiling for SNPs in receptors for 13 identified soluble fibroblast-secreted mediators demonstrated considerable heterogeneity, potentially explaining the variable melanocyte responses to fibroblast-conditioned medium. Discussion Our data suggest that melanocytes respond to dermal fibroblast-derived mediators independent of keratinocytes and raise the possibility that mesenchymal-epidermal interactions influence skin pigmentation during cutaneous scarring. PMID:26418010

  1. A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver.

    PubMed

    Fidaleo, Marco; Arnauld, Ségolène; Clémencet, Marie-Claude; Chevillard, Grégory; Royer, Marie-Charlotte; De Bruycker, Melina; Wanders, Ronald J A; Athias, Anne; Gresti, Joseph; Clouet, Pierre; Degrace, Pascal; Kersten, Sander; Espeel, Marc; Latruffe, Norbert; Nicolas-Francès, Valérie; Mandard, Stéphane

    2011-05-01

    Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal β-oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). Here, we show that the magnitude of Wy-mediated induction of peroxisomal β-oxidation of radiolabeled (1-(14)C) palmitate was significantly reduced in mice deficient for Thb. In contrast, mitochondrial β-oxidation was unaltered in Thb(-/-) mice. Given that Wy-treatment induced Acox1 and MFP-1/-2 activity at a similar level in both genotypes, we concluded that the thiolase step alone was responsible for the reduced peroxisomal β-oxidation of fatty acids. Electron microscopic analysis and cytochemical localization of catalase indicated that peroxisome proliferation in the liver after Wy-treatment was normal in Thb(-/-) mice. Intriguingly, micro-array analysis revealed that mRNA levels of genes encoding cholesterol biosynthesis enzymes were upregulated by Wy in Wild-Type (WT) mice but not in Thb(-/-) mice, which was confirmed at the protein level for the selected genes. The non-induction of genes encoding cholesterol biosynthesis enzymes by Wy in Thb(-/-) mice appeared to be unrelated to defective SREBP-2 or PPARα signaling. No difference was observed in the plasma lathosterol/cholesterol ratio (a marker for de novo cholesterol biosynthesis) between Wy-treated WT and Thb(-/-) mice, suggesting functional compensation. Overall, we conclude that ThA and SCPx/SCP2 thiolases cannot fully compensate for the absence of ThB. In addition, our data indicate that ThB is involved in the regulation of genes encoding cholesterol biosynthesis enzymes in the liver, suggesting that the peroxisome could be a promising candidate for the correction of cholesterol imbalance in dyslipidemia. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration.

    PubMed

    McGowan, Stephen

    2017-03-01

    Although pulmonary alveolar interstitial fibroblasts are less specialized than their epithelial and endothelial neighbors, they play essential roles during development and in response to lung injury. At birth, they must adapt to the sudden mechanical changes imposed by the onset of respiration and to a higher ambient oxygen concentration. In diseases such as bronchopulmonary dysplasia and interstitial fibrosis, their adaptive responses are overwhelmed leading to compromised gas-exchange function. Thus, although fibroblasts do not directly participate in gas-exchange, they are essential for creating and maintaining an optimal environment at the alveolar epithelial-endothelial interface. This review summarizes new information and concepts about the ontogeny differentiation, and function of alveolar fibroblasts. Alveolar development will be emphasized, because the development of strategies to evoke alveolar repair and regeneration hinges on thoroughly understanding the way that resident fibroblasts populate specific locations in which extracellular matrix must be produced and remodeled. Other recent reviews have described the disruption that diseases cause to the fibroblast niche and so my objective is to illustrate how the unique developmental origins and differentiation pathways could be harnessed favorably to augment certain fibroblast subpopulations and to optimize the conditions for alveolar regeneration.

  3. Recent Updates on Peroxisome Proliferator-Activated Receptor δ Agonists for the Treatment of Metabolic Syndrome.

    PubMed

    Grewal, Ajmer S; Beniwal, Meenu; Pandita, Deepti; Sekhon, Bhupinder S; Lather, Viney

    2016-01-01

    Metabolic syndrome is a disorder described by reduced insulin sensitivity, overweight, hyperlipidaemia, high blood pressure and myocardial disorders, mainly due to high fat diet and lack of physical activity. The peroxisome proliferator activated receptors (PPARs) are type II nuclear hormone receptors that regulate a number of processes in living systems, such as metabolism of carbohydrates and fatty acids, growth and differentiation of cell, and inflammatory reactions. Alpha, gamma and delta are the three distinct isoforms of PPAR. The stimulation of PPARδ alters body's energy fuel preference from glucose to fat. The PPARδ isoform is expressed ubiquitously in all tissues, especially in those tissues which involved in metabolism of lipids like adipose tissue, liver, kidney, and muscle. Currently, PPARδ is an emerging therapeutic target for the pharmacological therapy of disorders associated with metabolic syndrome. Several PPARδ selective agonists had been reported in last ten years, many of them had been advanced into the late phase of clinical trials such as Endurobol (GW501516). However, no PPARδ agonists are yet approved for human use. The present work had been planned to cover wide variety of PPARδ agonists reported till now along with their potential role to tackle various metabolic disorders. The present review has been planned to focus mainly the most popular PPARδ agonists.

  4. Peroxisome Proliferator-Activated Receptor Alpha (PPARa), Beta (PPARI3), and Gamma (PPARy) Expression in Human Fetal Tissues.

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...

  5. Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion.

    PubMed

    Brentnall, Teresa A; Lai, Lisa A; Coleman, Joshua; Bronner, Mary P; Pan, Sheng; Chen, Ru

    2012-01-01

    Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (α-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of α-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells. Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in

  6. Peroxisome proliferator-binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver.

    PubMed Central

    Lalwani, N D; Alvares, K; Reddy, M K; Reddy, M N; Parikh, I; Reddy, J K

    1987-01-01

    Peroxisome proliferators (PP) induce a highly predictable pleiotropic response in rat and mouse liver that is characterized by hepatomegaly, increase in peroxisome number in hepatocytes, and induction of certain peroxisomal enzymes. The PP-binding protein (PPbP) was purified from rat liver cytosol by a two-step procedure involving affinity chromatography and ion-exchange chromatography. Three PP, nafenopin and its structural analogs clofibric acid and ciprofibrate, were used as affinity ligands and eluting agents. This procedure yields a major protein with an apparent Mr of 70,000 on NaDodSO4/PAGE in the presence of reducing agent and Mr 140,000 (Mr 140,000-160,000) on gel filtration and polyacrylamide gradient gel electrophoresis under nondenaturing conditions, indicating that the active protein is a dimer. This protein has an acidic pI of 4.2 under nondenaturing conditions, which rises to 5.6 under denaturing conditions. The isolation of the same Mr 70,000 protein with three different, but structurally related, agents as affinity ligands and the immunological identity of the isolated proteins constitute strong evidence that this protein is the PPbP capable of recognizing PP that are structurally related to clofibrate. The PPbP probably plays an important role in the regulation of PP-induced pleiotropic response. Images PMID:3474650

  7. Inhibition of fibroblast growth factor receptor with AZD4547 mitigates juvenile nasopharyngeal angiofibroma.

    PubMed

    Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary

    2017-10-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS

  8. Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.

    PubMed

    Haataja, Tatu J K; Koski, M Kristian; Hiltunen, J Kalervo; Glumoff, Tuomo

    2011-05-01

    All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.

  9. Human Gingival Fibroblasts Display a Non-Fibrotic Phenotype Distinct from Skin Fibroblasts in Three-Dimensional Cultures

    PubMed Central

    Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Cheung, Godwin; Kim, Ben; Larjava, Hannu; Häkkinen, Lari

    2014-01-01

    Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype. PMID

  10. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.

    PubMed

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L

    2008-06-15

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  11. Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.

    PubMed

    Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A

    2017-01-01

    Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast

  13. Quiescent and Proliferative Fibroblasts Exhibit Differential p300 HAT Activation through Control of 5-Methoxytryptophan Production

    PubMed Central

    Chu, Ling-yun; Chang, Tzu-Ching; Kuo, Cheng-Chin; Wu, Kenneth K.

    2014-01-01

    Quiescent fibroblasts possess unique genetic program and exhibit high metabolic activity distinct from proliferative fibroblasts. In response to inflammatory stimulation, quiescent fibroblasts are more active in expressing cyclooxygenase-2 and other proinflammatory genes than proliferative fibroblasts. The underlying transcriptional mechanism is unclear. Here we show that phorbol 12-myristate 13-acetate (PMA) and cytokines increased p300 histone acetyltransferase activity to a higher magnitude (> 2 fold) in quiescent fibroblasts than in proliferative fibroblasts. Binding of p300 to cyclooxygenase-2 promoter was reduced in proliferative fibroblasts. By ultrahigh-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometer and enzyme-immunoassay, we found that production of 5-methoxytryptophan was 2–3 folds higher in proliferative fibroblasts than that in quiescent fibroblasts. Addition of 5-methoxytryptophan and its metabolic precursor, 5-hydroxytryptophan, to quiescent fibroblasts suppressed PMA-induced p300 histone acetyltransferase activity and cyclooxygenase-2 expression to the level of proliferative fibroblasts. Silencing of tryptophan hydroxylase-1 or hydroxyindole O-methyltransferase in proliferative fibroblasts with siRNA resulted in elevation of PMA-induced p300 histone acetyltransferase activity to the level of that in quiescent fibroblasts, which was rescued by addition of 5-hydroxytryptophan or 5-methoxytryptophan. Our findings indicate that robust inflammatory gene expression in quiescent fibroblasts vs. proliferative fibroblasts is attributed to uncontrolled p300 histone acetyltransferase activation due to deficiency of 5-methoxytryptophan production. 5-methoxytryptophan thus is a potential valuable lead compound for new anti-inflammatory drug development. PMID:24523905

  14. Genetic variation in the peroxisome proliferator-activated receptor (PPAR) and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) gene families and type 2 diabetes

    PubMed Central

    Villegas, Raquel; Williams, Scott M.; Gao, Yu-Tang; Long, Jirong; Shi, Jiajun; Cai, Hui; Li, Honglan; Chen, Ching-Chu; Tai, E. Shyong; Hu, Frank; Cai, Qiuyin; Zheng, Wei; Shu, Xiao-Ou

    2014-01-01

    Summary We used a two-stage study design to evaluate whether variations in the peroxisome proliferator-activated receptors (PPAR) and the peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) gene families (PPARA, PPARG, PPARD, PPARGC1A, and PPARGC1B) are associated with T2D risk. Stage I used data from a genome-wide association study (GWAS) from Shanghai, China (1,019 T2D cases and 1,709 controls) and from a meta-analysis of data from the Asian Genetic Epidemiology Network for T2D (AGEN-T2D). Criteria for selection of SNPs for stage II were: 1) P<0.05 in single marker analysis in Shanghai GWAS and P<0.05 in the meta-analysis or 2) P<10−3 in the meta-analysis alone and 3) minor allele frequency ≥0.10. Nine SNPs from the PGC1 family were assessed in stage II (an independent set of middle-aged men and women from Shanghai with 1,700 T2D cases and 1,647 controls). One SNP in PPARGC1B, rs251464, was replicated in stage II (OR=0.87; 95% CI: 0.77–0.99). Gene-body mass index (BMI) and gene-exercise interactions and T2D risk were evaluated in a combined dataset (Shanghai GWAS and stage II data: 2,719 cases and 3,356 controls). One SNP in PPARGC1A, rs12640088, had a significant interaction with BMI. No interactions between the PPARGC1B gene and BMI or exercise were observed. PMID:24359475

  15. Binding, uptake, and release of nicotine by human gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, P.J.; Schuster, G.S.; Lubas, S.

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so,more » at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.« less

  16. Notch3 protein expression in skin fibroblasts from CADASIL patients.

    PubMed

    Qualtieri, Antonio; Ungaro, Carmine; Bagalà, Angelo; Bianchi, Silvia; Pantoni, Leonardo; Moccia, Marcello; Mazzei, Rosalucia

    2018-07-15

    CADASIL is an inherited cerebrovascular disease caused by mutations in the NOTCH3 gene. Notch signaling is involved in a broad spectrum of function, from the cell proliferation to apoptosis. Thus far, because the molecular mechanism underlying the pathological alterations remains unclear and taking into account that fibroblasts contribute to the integrity of the vasculature, our aims was to establish whether fibroblasts, in subjects carrying different NOTCH3 mutations, show abnormalities in the protein expression. We performed the investigation on skin fibroblasts in culture obtained from three CADASIL patients and normal subjects. The patients were genetically characterized, and carried a p.R61W, a p.C174T, and p.R103X, mutation respectively. Notch3 expression was first evaluated on fibroblasts by immunofluorescence analysis, then western blot on cellular extract was utilized to validate the immunofluorescence results. The Notch3 immunoreactivity was clearly detected along the cellular body and in the cellular nuclei of the control fibroblasts. We observed a marked, statistically significant, reduction of the fluorescence immunoreactivity in the fibroblasts from patient with the classical C174T cysteine mutation and a less pronounced reduction in the other two subject's samples with respect to the normal controls. These data were confirmed by the immunoblot analysis. Our results show that the investigated three NOTCH3 mutations are associated with a reduction of the levels of Notch3 expression in vitro. Because the smooth muscle cells appear to be predominantly involved in this cerebrovascular disease, our result, despite the limitation of the sample size examinated, clearly suggest that also fibroblasts, directly involved in making the vascular basal lamina and in maintaining the vascular integrity, may play an important role in the mechanism responsible for the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Blue light-irradiated human keloid fibroblasts: an in vitro study

    NASA Astrophysics Data System (ADS)

    Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo

    2018-02-01

    Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.

  18. Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.

    PubMed

    Della Mina, Erika; Borghesi, Alessandro; Zhou, Hao; Bougarn, Salim; Boughorbel, Sabri; Israel, Laura; Meloni, Ilaria; Chrabieh, Maya; Ling, Yun; Itan, Yuval; Renieri, Alessandra; Mazzucchelli, Iolanda; Basso, Sabrina; Pavone, Piero; Falsaperla, Raffaele; Ciccone, Roberto; Cerbo, Rosa Maria; Stronati, Mauro; Picard, Capucine; Zuffardi, Orsetta; Abel, Laurent; Chaussabel, Damien; Marr, Nico; Li, Xiaoxia; Casanova, Jean-Laurent; Puel, Anne

    2017-01-24

    Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM 2 CSK 4 , LTA, FSL-1), TLR1/2 (PAM 3 CSK 4 ), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1β. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1β. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.

  19. Mitomycin C-induced apoptosis in cultured human Tenon's capsule fibroblasts.

    PubMed

    Kim, J W; Kim, S K; Song, I H; Kim, I T

    1999-06-01

    To investigate the mitomycin C-induced apoptotic cell death of fibroblasts, the primarily cultured human Tenon's capsule fibroblasts were exposed to a clinically used dosage of 0.4 mg/ml of mitomycin C for 5 minutes. TUNEL (TdT-mediated dUTP-biotin nick end labeling) assay and electron microscopic studies were performed to determine the extent of mitomycin C-induced apoptosis. A flow cytometric study was performed to quantify the apoptotic cell population over time. The TUNEL stains were positive and electron microscopy showed features of apoptotic cell death in some fibroblasts 3 and 5 days after treatment. Flow cytometric analysis using Annexin V-propidium iodide double staining detected apoptotic cells 3 days after treatment. These apoptotic cell populations increased at 4 days and were sustained for one week. This study revealed that the clinical effects of mitomycin C on fibroblasts may be mediated not only by antiproliferative but also apoptotic cell death to some degree. Therefore, the apoptotic cell death of fibroblasts induced by mitomycin C should be considered to properly understand the mechanism of wound healing after trabeculectomy with adjunctive mitomycin C.

  20. Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice.

    PubMed

    Vapola, Miia H; Rokka, Aare; Sormunen, Raija T; Alhonen, Leena; Schmitz, Werner; Conzelmann, Ernst; Wärri, Anni; Grunau, Silke; Antonenkov, Vasily D; Hiltunen, J Kalervo

    2014-07-01

    To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2(-/-) mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2(-/-)mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal β-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2(-/-) mice. The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.

    PubMed

    Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D

    1997-04-01

    Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel

  2. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts

    PubMed Central

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421

  3. Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...SUBTITLE 5a. CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM...blocked by the addition of Pim inhibitors. These results suggest that the Pim protein kinase can regulate stromal cell biology to modulate epithelial

  4. Regulating Cancer Associated Fibroblast Biology in Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM ELEMENT NUMBER 6... biology to modulate epithelial growth and that inhibitors of this protein kinase have the potential to block this process and thus inhibit tumor growth

  5. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study.

    PubMed

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-03-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.

  6. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    PubMed Central

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  7. Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts.

    PubMed

    Aoki, Mikiko; Koga, Kaori; Hamasaki, Makoto; Egawa, Nagayasu; Nabeshima, Kazuki

    2017-06-01

    Emmprin (extracellular matrix metalloproteinase inducer, CD147) is a glycosylated transmembrane protein, consisting of two immunoglobulin domains, that stimulates the production of matrix metalloproteinases (MMPs) by tumor-associated fibroblasts. These effects play important roles in tumor invasion and metastasis. However, the precise mechanisms by which emmprin acts on fibroblasts have not been fully elucidated, especially in sarcoma cells. Previously, we demonstrated that emmprin, expressed in conditioned medium collected from the epithelioid sarcoma cell line (FU-EPS-1), stimulates MMP-2 production via interactions with fibroblasts. In this study, we used microvesicles derived from sarcoma cells, and determined whether emmprin exists in the microvesicles, which enhance the production of MMP-2 via fibroblasts. Microvesicles released from FU-EPS-1 cells were shown to contain full-length emmprin, identified as a 45-kDa protein characterized by polylactosamine glycosylation. Microvesicles collected from FU-EPS-1 cells transfected with emmprin-specific siRNA or transduced with shRNA displayed significantly reduced MMP-2 production by fibroblasts compared with those from control-transfected cells. Our findings show that emmprin is released through microvesicle shedding in sarcoma cells, and emmprin in microvesicles regulates MMP-2 production by influencing the activity of fibroblasts located at sites distant from the tumor cells.

  8. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts

    PubMed Central

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.

    2016-01-01

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  9. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp; Takeuchi, Kentaro; Inada, Hirohiko

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  10. Altered chloride metabolism in cultured cystic fibrosis skin fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, P.M.; Maloney, P.C.; Littlefield, J.W.

    1987-05-01

    An abnormal regulation of chloride permeability has been described for epithelial cells from patients with cystic fibrosis (CF). To learn more about the biochemical basis of this inherited disease, the authors have studied chloride metabolism in cultured CF fibroblasts by comparing the efflux of /sup 36/Cl/sup -/ from matched pairs of CF and normal fibroblasts. The rate constants describing /sup 36/Cl/sup -/ efflux did not differ between the two cell types, but in each of the four pairs tested the amount of /sup 36/Cl/sup -/ contained within CF cells was consistently reduced, by 25-30%, relative to normal cells. Comparisons ofmore » cell water content and /sup 22/Na/sup +/ efflux showed no differences between the two cell types, suggesting that overall intracellular chloride concentration is lower than normal in CF fibroblasts. Such data suggest that the CF gene defect is expressed in skin fibroblasts and that this defect may alter the regulation of intracellular Cl/sup -/ concentration, perhaps through changes in Cl/sup -/ permeability.« less

  11. ACTIVATION ASSAY FOR PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR- ALPHA (PPARÁ) BY PERFLUOROALKYL ACIDS (PFAAS) IN COS-1 CELLS

    EPA Science Inventory

    PFAAs have been found to elicit various physiological effects including peroxisome proliferation, indicating the mechanism of action for these chemicals could involve PPAR. This study investigates the ability of PFAAs to bind and activate mouse and human PPARα in COS-1 cell...

  12. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Xiaoying; Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen; Xu, Xingbo

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that highmore » inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.« less

  13. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics

    PubMed Central

    Rodríguez-Serrano, M.; Pazmiño, D. M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M. C.; Sandalio, L. M.

    2014-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·–, whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. PMID:24913628

  14. Pharmacologic activation of peroxisome proliferator-activating receptor-α accelerates hepatic fatty acid oxidation in neonatal pigs

    PubMed Central

    Shim, Kwanseob; Jacobi, Sheila; Odle, Jack; Lin, Xi

    2018-01-01

    Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.

  15. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.

    PubMed

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike

    2011-02-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.

  16. Evodiamine attenuates TGF-β1-induced fibroblast activation and endothelial to mesenchymal transition.

    PubMed

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  17. Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts.

    PubMed

    Kuragano, Masahiro; Murakami, Yota; Takahashi, Masayuki

    2018-03-25

    Nonmuscle myosin II (NMII) plays an essential role in directional cell migration. In this study, we investigated the roles of NMII isoforms (NMIIA and NMIIB) in the migration of human embryonic lung fibroblasts, which exhibit directionally persistent migration in an intrinsic manner. NMIIA-knockdown (KD) cells migrated unsteadily, but their direction of migration was approximately maintained. By contrast, NMIIB-KD cells occasionally reversed their direction of migration. Lamellipodium-like protrusions formed in the posterior region of NMIIB-KD cells prior to reversal of the migration direction. Moreover, NMIIB KD led to elongation of the posterior region in migrating cells, probably due to the lack of load-bearing stress fibers in this area. These results suggest that NMIIA plays a role in steering migration by maintaining stable protrusions in the anterior region, whereas NMIIB plays a role in maintenance of front-rear polarity by preventing aberrant protrusion formation in the posterior region. These distinct functions of NMIIA and NMIIB might promote intrinsic and directed migration of normal human fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. ACTION OF SERUM ON FIBROBLASTS IN VITRO

    PubMed Central

    Carrel, Alexis; Ebeling, Albert H.

    1923-01-01

    It may be concluded that, under the conditions of the experiments: 1. The duration of life of fibroblasts is not altered by the presence of 7 per cent serum in a medium composed of fibrin and Tyrode solution, but is slightly decreased when the concentration of the serum reaches 25 per cent. 2. Fibroblasts cultivated in serum or in Tyrode solution are only in a condition of survival; they do not build up new protoplasm from the serum proteins and their mass does not increase. 3. When embryonic tissue juice is added to the medium, the tissues increase in mass. But the rate of growth is the same in media containing 0 per cent and 10 per cent serum. In 25 per cent serum, however, the rate of growth slightly decreases. Even in the presence of embryonic tissue juice, serum does not increase the rate of growth of connective tissue. 4. The nitrogenous compounds contained in serum are not used as food material by fibroblasts growing in vitro. PMID:19868757

  19. Estrogens Induce Rapid Cytoskeleton Re-Organization in Human Dermal Fibroblasts via the Non-Classical Receptor GPR30

    PubMed Central

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation. PMID:25781607

  20. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30.

    PubMed

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.

  1. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  2. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.

    PubMed

    Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin

    2018-05-01

    Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.

  3. Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides.

    PubMed

    Saih, Fatima-Ezzahra; Andreoletti, Pierre; Mandard, Stéphane; Latruffe, Norbert; El Kebbaj, M'Hammed Saïd; Lizard, Gérard; Nasser, Boubker; Cherkaoui-Malki, Mustapha

    2017-01-07

    In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli -LPS decreased ACOX1 activity while Salmonella minnesota -LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activity activation and an anti-inflammatory effect by reducing nitric oxide (NO) LPS-dependent production. These results suggest that cactus extracts may possess a neuroprotective activity through the induction of peroxisomal antioxidant activity and the inhibition of NO production by activated microglial cells.

  4. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression

    PubMed Central

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio

    2010-01-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980

  5. T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts

    PubMed Central

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-01-01

    Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777

  6. A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts

    PubMed Central

    Rassouli, Olga; Liapakis, George; Lazaridis, Iakovos; Sakellaris, George; Gkountelias, Kostas; Gravanis, Achille; Margioris, Andrew N.

    2011-01-01

    Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis. PMID:21765902

  7. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.

    PubMed

    Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-02-19

    Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22

  8. The Living Scar – Cardiac Fibroblasts and the Injured Heart

    PubMed Central

    Rog-Zielinska, Eva A; Norris, Russell A; Kohl, Peter; Markwald, Roger

    2015-01-01

    Cardiac scars, often perceived as “dead” tissue, are very much alive, with heterocellular activity ensuring the maintenance of structural and mechanical integrity following heart injury. To form a scar, non-myocytes such as fibroblasts, proliferate and are recruited from intra- and extra-cardiac sources. Fibroblasts perform important autocrine and paracrine signalling functions. They also establish mechanical and, as is increasingly evident, electrical junctions with other cells. While fibroblasts were previously thought to act simply as electrical insulators, they may be electrically connected among themselves and, under certain circumstances, to other cells, including cardiomyocytes. A better understanding of these interactions will help target scar structure and function and facilitate the development of novel therapies aimed at modifying scar properties for patient benefit. This review explores available insight and recent concepts on fibroblast integration in the heart, and highlights potential avenues for harnessing their roles to optimise scar function following heart injury such as infarction, and therapeutic interventions such as ablation. PMID:26776094

  9. Circadian actin dynamics drive rhythmic fibroblast mobilisation during wound healing

    PubMed Central

    Hoyle, Nathaniel P.; Seinkmane, Estere; Putker, Marrit; Feeney, Kevin A.; Krogager, Toke P.; Chesham, Johanna E.; Bray, Liam K.; Thomas, Justyn M.; Dunn, Ken; Blaikley, John; O’Neill, John S.

    2017-01-01

    Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping which imparts a ~24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately impact the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse’s active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than night-time wounds. We suggest that circadian regulation of the cytoskeleton influences wound healing efficacy from the cellular to the organismal scale. PMID:29118260

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    PubMed

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  11. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times

  12. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts.

    PubMed

    Romero, A; Cáceres, M; Arancibia, R; Silva, D; Couve, E; Martínez, C; Martínez, J; Smith, P C

    2015-06-01

    Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis.

    PubMed

    Saferding, Victoria; Puchner, Antonia; Goncalves-Alves, Eliana; Hofmann, Melanie; Bonelli, Michael; Brunner, Julia S; Sahin, Emine; Niederreiter, Birgit; Hayer, Silvia; Kiener, Hans P; Einwallner, Elisa; Nehmar, Ramzi; Carapito, Raphael; Georgel, Philippe; Koenders, Marije I; Boldin, Mark; Schabbauer, Gernot; Kurowska-Stolarska, Mariola; Steiner, Günter; Smolen, Josef S; Redlich, Kurt; Blüml, Stephan

    2017-08-01

    Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effect of ICG on mitomycin C cytotoxicity in human tenon fibroblasts.

    PubMed

    Reeves, Graham; Wallis, Richard; Crowston, Jonathan G; Small, Keith M; Wells, Anthony P

    2007-08-01

    To examine the effects of indocyanine green (ICG) with and without mitomycin C (MMC) on proliferation of cultured human Tenon fibroblasts. Fibroblast monolayers were exposed to either MMC [0.4 mg/mL in phosphate buffered saline (PBS)] or PBS containing ICG (0.0625%, 0.125%, 0.25%, and 0.5% in 200 microL PBS) or a combination of MMC (0.4 mg/mL in PBS) and ICG (0.25% and 0.5%) for 5 minutes. Controls were exposed for 5 minutes to MMC, PBS, or culture medium containing no ICG. After treatment, the monolayers were washed and incubated in culture medium for 24, 48, 72 hours, and 1 week periods after which the number of viable cells was quantified. The presence of ICG alone, at concentrations ranging from 0.0625% to 0.5%, had no effect on the rate of fibroblast proliferation measured at any of the incubation periods. As expected, MMC treatment resulted in a significant reduction in viable fibroblast number (8.4+/-0.13x10(3)). ICG in combination with MMC did not significantly alter fibroblast numbers (8.5+/-0.05x10(3)) up to 1 week compared with MMC alone (8.4+/-0.12x10(3)). ICG at concentrations of 0.5% and below do not reduce proliferation of Tenon capsule fibroblasts. ICG did not potentiate or diminish the effect of MMC on Tenon capsule fibroblast proliferation.

  15. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology

    PubMed Central

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects. PMID:25851655

  16. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    PubMed

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  17. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells.

    PubMed

    Patel, Vivekkumar; Singh, Vivek P; Pinnamaneni, Jaya Pratap; Sanagasetti, Deepthi; Olive, Jacqueline; Mathison, Megumi; Cooney, Austin; Flores, Elsa R; Crystal, Ronald G; Yang, Jianchang; Rosengart, Todd K

    2018-04-13

    Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. p63 Knockout ( -/- ) and knockdown murine embryonic fibroblasts (MEFs), p63 -/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). Flow cytometry revealed that a significantly greater number of p63 -/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63 -/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63 -/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  18. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics.

    PubMed

    Rodríguez-Serrano, M; Pazmiño, D M; Sparkes, I; Rochetti, A; Hawes, C; Romero-Puertas, M C; Sandalio, L M

    2014-09-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa.

    PubMed

    Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A; Ruan, Songlin; Zhou, Weijun

    2016-01-01

    Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H 2 O 2 -producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na + /K + ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters ( OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1 , and OsAKT1 ) involved in Na + /K + homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na + and K + regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.

  20. Silibinin prevents prostate cancer cell-mediated differentiation of naïve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2.

    PubMed

    Ting, Harold J; Deep, Gagan; Jain, Anil K; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M; Cramer, Scott D; Agarwal, Chapla; Agarwal, Rajesh

    2015-09-01

    Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin's direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased alpha-smooth muscle actin (α-SMA) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of α-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate TM. © 2014 Wiley Periodicals, Inc.

  1. Correcting Nasojugal Groove with Autologous Cultured Fibroblast Injection: A Pilot Study.

    PubMed

    Moon, Kyung-Chul; Lee, Hyun-Su; Han, Seung-Kyu; Chung, Ho-Yun

    2018-06-01

    A new commercial drug that contains autologous cultured fibroblasts has been developed and approved by the United States Food and Drug Administration for improving the appearance of nasolabial folds. However, the treatment requires three sessions every 3-6 weeks. It is known that the skin overlying the nasojugal groove is thinner, and the wrinkle is generally shallower than nasolabial folds. Therefore, we hypothesized that the nasojugal groove could be improved by just one treatment session. Therefore, the purpose of this study was to evaluate the efficacy and safety of autologous cultured fibroblast injection to correct nasojugal grooves. Forty-six subjects with nasojugal grooves were enrolled in this study. They were injected with autologous cultured fibroblasts or placebo in one session. Blinded evaluators and subjects assessed the efficacy using a validated wrinkle assessment scale at 4, 12, and 24 weeks after the injection. Information of adverse events was collected at each visit. Based on the evaluators' assessment at 24 weeks after the injection, 76% of subjects treated with autologous cultured fibroblasts showed improvement whereas 0% of subjects treated with placebo showed improvement (P < 0.0001). Based on self-assessment at 24 weeks after the injection, 72% of subjects treated with autologous cultured fibroblasts and 45% of subjects treated with placebo showed improvement (P = 0.0662). There were no serious adverse events related to autologous cultured fibroblast injection. Autologous cultured fibroblast injection might be effective and safe to correct nasojugal grooves. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  2. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease

    PubMed Central

    Moreno-Fernandez, Maria E.; Giles, Daniel A.; Stankiewicz, Traci E.; Sheridan, Rachel; Karns, Rebekah; Cappelletti, Monica; Lampe, Kristin; Mukherjee, Rajib; Sina, Christian; Sallese, Anthony; Bridges, James P.; Hogan, Simon P.; Aronow, Bruce J.; Hoebe, Kasper

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression. PMID:29563328

  3. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1

  4. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  5. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    PubMed Central

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  6. Transcriptional response of dermal fibroblasts in direct current electric fields.

    PubMed

    Jennings, Jessica; Chen, Dongquan; Feldman, Dale

    2008-07-01

    During the course of normal wound healing, fibroblasts at the wound edge are exposed to electric fields (EFs) ranging from 40 to 200 mV/mm. Various forms of EFs influence fibroblast migration, proliferation, and protein synthesis. Thus, EFs may contribute to fibroblast activation during wound repair. To elucidate the role of EFs during the normal progression of healing, this study compares gene expression in normal adult dermal fibroblasts exposed to a 100 mV/mm EF for 1 h to non-stimulated controls. Significantly increased expression of 162 transcripts and decreased expression of 302 transcripts was detected using microarrays, with 126 transcripts above the level of 1.4-fold increases or decreases compared to the controls. Above the level of twofold, only 11 genes were significantly increased or decreased compared to controls. Many of these significantly regulated genes are associated with wound repair through the processes of matrix production, cellular signaling, and growth. Activity within specific cellular signaling pathways is noted, including TGF-beta, G-proteins, and inhibition of apoptosis. In addition, RT-PCR analysis of the expression of KLF6, FN1, RGS2, and JMJD1C over continued stimulation and at different field strengths suggests that there are specific windows of field characteristics for maximum induction of these genes. EFs thus appear to have an important role in controlling fibroblast activity in the process of wound healing.

  7. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  8. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Expression of the FAP gene in non-fibroblast human cell lines. Development of cancer-associated fibroblast models.

    PubMed

    Tyulkina, D V; Pleshkan, V V; Alekseenko, I V; Kopantseva, M R; Sverdlov, E D

    2016-09-01

    The fibroblast activation protein (FAP) is selectively expressed in cancer-associated fibroblasts (CAFs) and facilitates tumor progression, which makes this protein an attractive therapeutic target. There are difficulties in obtaining CAFs for studying the function and suppression of FAP. In this work, the expression level of FAP was determined by PCR assay in 25 human cell lines and 8 surgical samples of tumor stroma. The expression of FAP was observed in all tumor stroma samples and in four cell lines: NGP-127, SJCRH30, SJSA-1, and A375. The level of FAP expression in NGP-127, SJCRH30, and SJSA-1 lines as well as in CAFs of patients was comparable, which makes these cell lines a possible model for studying FAP.

  10. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  11. Epoxide metabolism in the liver of mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate)), a peroxisome proliferator.

    PubMed

    Moody, D E; Loury, D N; Hammock, B D

    1985-05-01

    An increase in cytosolic epoxide hydrolase (cEH) activity occurs in the livers of mice treated with peroxisome proliferating-hypolipidemic-nongenotoxic carcinogens. As increases in activity of epoxide metabolizing enzymes may reflect the carcinogenic mechanism, a detailed comparison of the response of cEH, microsomal epoxide hydrolase (mEH), and cytosolic glutathione S-transferase (cGST) activities using the geometrical isomers trans- and cis-stilbene oxide as substrates has been performed in livers from mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate]. The maximal increase of cEH activity occurred at lower dietary doses of clofibrate (0.5%) and within a shorter time (5 days) than mEH and cGST (2%, 14 days) activity. After 14 days at 0.5% clofibrate, cEH, mEH, and cGST activities were 250, 175, and 165% and 290, 220, and 75% of control values in male and female mice, respectively. Withdrawal of clofibrate from the diet resulted in a reversion of activities to control values within 7 days. Clofibrate treatment shifted the apparent subcellular compartmentation of all three enzymatic activities with an increase in the ratio of soluble to particulate activity. In particular, the relative specific activity of all three enzymes decreased in the light mitochondrial (peroxisomal) cell fraction, and an increase of a mEH-like activity (benzo[a]pyrene-4,5-oxide and cis-stilbene oxide hydrolysis) in the cytosol occurred. Both the increase of cEH activity and the appearance of mEH-like activity in the cytosol are novel responses of epoxide metabolizing enzymes, which may be related to the novel cellular responses that follow clofibrate treatment, peroxisome proliferation, hypolipidemia, and nongenotoxic carcinogenesis.

  12. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    PubMed

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  13. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.

    PubMed

    Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville

    2006-01-01

    Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.

  14. MicroRNA-124 Controls the Proliferative, Migratory, and Inflammatory Phenotype of Pulmonary Vascular Fibroblasts

    PubMed Central

    Wang, Daren; Zhang, Zhang; Li, Min; Frid, Maria G.; Flockton, Amanda R.; McKeon, B. Alexandre; Yeager, Michael E.; Fini, Mehdi A.; Morrell, Nicholas W.; Pullamsetti, Soni S.; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A.; Sucharov, Carmen C.; Stenmark, Kurt R.

    2014-01-01

    Rationale Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. Objective We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. Methods and Results We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti–miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract–binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3′ untranslated region of polypyrimidine tract–binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Conclusions Stable decreases in miR-124

  15. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    PubMed

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  16. Adiponectin Attenuates Lung Fibroblasts Activation and Pulmonary Fibrosis Induced by Paraquat

    PubMed Central

    He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05). Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05). APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a dose

  17. Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen.

    PubMed

    Babaei, Behzad; Davarian, Ali; Lee, Sheng-Lin; Pryse, Kenneth M; McConnaughey, William B; Elson, Elliot L; Genin, Guy M

    2016-06-01

    The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2s and 10-30s. Different finite time constants in the range of 1-7000s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000s, and to merge relaxation finite time constants in the 0.5-2s range into a single time content in the 1s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of

  18. Engulfment of ceramic particles by fibroblasts does not alter cell behavior.

    PubMed

    Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis

    2017-02-17

    Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was

  19. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    PubMed

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05). Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05). APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a dose

  20. In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion

    PubMed Central

    Shi, Qiang; Liu, Xiaoyan; Bai, Yuanyuan; Cui, Chuanjue; Li, Jun; Li, Yishi; Hu, Shengshou; Wei, Yingjie

    2011-01-01

    Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling. PMID:22132230

  1. THE ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS IN CARCINOGENESIS AND CHEMOPREVENTION

    PubMed Central

    Peters, Jeffrey M.; Shah, Yatrik M.; Gonzalez, Frank J.

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in regulating glucose and lipid homeostasis, inflammation, proliferation and differentiation. Although all of these functions might contribute to the influence of PPARs in carcinogenesis, there is a distinct need for a balanced review of the literature and additional experimentation to determine the potential for targeting PPARs for cancer therapy and cancer chemoprevention. As PPAR agonists include drugs used for the treatment of metabolic diseases, a more complete understanding of the roles of PPARs in cancer will aid in determining any increased cancer risk for patients undergoing therapy with PPAR agonists. PMID:22318237

  2. Peroxisome Proliferator-Activated Receptors Protect against Apoptosis via 14-3-3

    PubMed Central

    Wu, Kenneth K.

    2010-01-01

    Peroxisome proliferator-activated receptors (PPARs) were reported to prevent cells from stress-induced apoptosis and protect tissues against ischemia-reperfusion injury. The underlying transcriptional mechanism is unclear. Recent reports indicate that the antiapoptotic actions of ligand-activated PPARδ and PPARγ are mediated through enhanced binding of PPAR to the promoter of 14-3-3ε and upregulation of 14-3-3ε expression. We propose that ligand-activated PPARα exerts its anti-apoptotic actions via the identical pathway. The PPAR to 14-3-3 transcriptional axis plays an important role in protection of cell and tissue integrity and is a target for drug discovery. PMID:20862376

  3. Scleral fibroblast response to experimental glaucoma in mice

    PubMed Central

    Tezel, Gülgün; Cone-Kimball, Elizabeth; Steinhart, Matthew R.; Jefferys, Joan; Pease, Mary E.; Quigley, Harry A.

    2016-01-01

    Purpose To study the detailed cellular and molecular changes in the mouse sclera subjected to experimental glaucoma. Methods Three strains of mice underwent experimental bead-injection glaucoma and were euthanized at 3 days and 1, 3, and 6 weeks. Scleral protein expression was analyzed with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using 16O/18O labeling for quantification in 1- and 6-week tissues. Sclera protein samples were also analyzed with immunoblotting with specific antibodies to selected proteins. The proportion of proliferating scleral fibroblasts was quantified with Ki67 and 4’,6-diamidino-2-phenylindole (DAPI) labeling, and selected proteins were studied with immunohistochemistry. Results Proteomic analysis showed increases in molecules involved in integrin-linked kinase signaling and actin cytoskeleton signaling pathways at 1 and 6 weeks after experimental glaucoma. The peripapillary scleral region had more fibroblasts than equatorial sclera (p=0.001, n=217, multivariable regression models). There was a sixfold increase in proliferating fibroblasts in the experimental glaucoma sclera at 1 week and a threefold rise at 3 and 6 weeks (p=0.0005, univariate regression). Immunoblots confirmed increases for myosin, spectrin, and actinin at 1 week after glaucoma. Thrombospondin-1 (TSP-1), HINT1, vimentin, actinin, and α-smooth muscle actin were increased according to immunohistochemistry. Conclusions Scleral fibroblasts in experimental mouse glaucoma show increases in actin cytoskeleton and integrin-related signaling, increases in cell division, and features compatible with myofibroblast transition. PMID:26900327

  4. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2008-10-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as

  5. Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles.

    PubMed

    Sládek, Martin; Sumová, Alena

    2013-01-01

    The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.

  6. Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation

    PubMed Central

    Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.

    2015-01-01

    Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the

  7. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  8. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    PubMed Central

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  9. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    PubMed

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  10. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID

  11. Fibroblastic interactions with high-porosity Ti-6Al-4V metal foam.

    PubMed

    Cheung, Serene; Gauthier, Maxime; Lefebvre, Louis-Philippe; Dunbar, Michael; Filiaggi, Mark

    2007-08-01

    A novel metallic Ti-6Al-4V foam in development at the National Research Council of Canada was investigated for its ability to foster cell attachment and growth using a fibroblast cell culture model. The foam was manufactured via a powder metallurgical process that could produce interconnected porosity greater than 70%. Cell attachment was assessed after 6 and 24 h, while proliferation was examined after 3 and 7 days. Ingrown fibroblasts displayed a number of different morphologies; some fibroblasts were spread thinly in close apposition with the irregular surface, or more often had several anchorage points and extended in three dimensions as they spanned pore space. It was also demonstrated that fibroblasts were actively migrating through the porous scaffold over a 14-day period. In a 60-day extended culture, fibroblasts were bridging and filling macropores and had extensively infiltrated the foams. Overall, it was established that this foam was supportive of cell attachment and proliferation, migration through the porous network, and that it was capable of sustaining a large cell population.

  12. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium

  13. Immunostaining for peroxisome proliferator gamma distinguishes dedifferentiated liposarcoma from other retroperitoneal sarcomas.

    PubMed

    Horvai, Andrew E; Schaefer, Jochen T; Nakakura, Eric K; O'Donnell, Richard J

    2008-05-01

    Dedifferentiated liposarcoma can be readily diagnosed by the juxtaposition of a well-differentiated liposarcoma to a nonlipogenic sarcoma. However, if the lipogenic component is not abundant due to surgical sampling or small biopsy, dedifferentiated liposarcoma can be difficult to distinguish from other poorly different sarcomas. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a nuclear hormone receptor that plays a critical role in adipocyte differentiation. Prior studies have not only demonstrated PPAR-gamma mRNA in various subtypes of liposarcoma but have also shown that adipocyte differentiation can be induced in some liposarcomas by a PPAR-gamma agonist. In the present study, we investigated whether immunostaining for PPAR-gamma can be used to distinguish dedifferentiated liposarcoma from other retroperitoneal sarcomas. We examined a series of 40 dedifferentiated liposarcoma and compared the staining for PPAR-gamma to a series of 24 retroperitoneal sarcomas that lacked lipogenic differentiation. A monoclonal antibody against PPAR-gamma was used to stain formalin-fixed paraffin-embedded tissue. Specific nuclear immunostaining was present in 37/40 (93%) of the dedifferentiated liposarcoma and 6/24 (25%) of the other sarcomas (two leiomyosarcomas and four undifferentiated sarcomas). Interestingly, immunostaining for CDK4 and/or MDM2 was identified in three of the four PPAR-gamma-positive undifferentiated sarcomas, raising the possibility that these may represent dedifferentiated liposarcoma. This is the first study demonstrating the utility of PPAR-gamma immunohistochemistry in the diagnosis of dedifferentiated liposarcoma in tissue sections. Although not completely specific, the presence of PPAR-gamma staining, in combination with histologic findings and other markers, can aid in the diagnosis of dedifferentiated liposarcoma, particularly on small biopsies that may not sample the well-differentiated component.

  14. Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis.

    PubMed

    Oeljeklaus, Silke; Reinartz, Benedikt S; Wolf, Janina; Wiese, Sebastian; Tonillo, Jason; Podwojski, Katharina; Kuhlmann, Katja; Stephan, Christian; Meyer, Helmut E; Schliebs, Wolfgang; Brocard, Cécile; Erdmann, Ralf; Warscheid, Bettina

    2012-04-06

    The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.

  15. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured inmore » the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.« less

  16. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  17. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  18. Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling.

    PubMed

    Bansal, Trisha; Chatterjee, Emeli; Singh, Jasdeep; Ray, Arjun; Kundu, Bishwajit; Thankamani, V; Sengupta, Shantanu; Sarkar, Sagartirtha

    2017-10-06

    Cardiac hypertrophy and associated heart fibrosis remain a major cause of death worldwide. Phytochemicals have gained attention as alternative therapeutics for managing cardiovascular diseases. These include the extract from the plant Terminalia arjuna, which is a popular cardioprotectant and may prevent or slow progression of pathological hypertrophy to heart failure. Here, we investigated the mode of action of a principal bioactive T. arjuna compound, arjunolic acid (AA), in ameliorating hemodynamic load-induced cardiac fibrosis and identified its intracellular target. Our data revealed that AA significantly represses collagen expression and improves cardiac function during hypertrophy. We found that AA binds to and stabilizes the ligand-binding domain of peroxisome proliferator-activated receptor α (PPARα) and increases its expression during cardiac hypertrophy. PPARα knockdown during AA treatment in hypertrophy samples, including angiotensin II-treated adult cardiac fibroblasts and renal artery-ligated rat heart, suggests that AA-driven cardioprotection primarily arises from PPARα agonism. Moreover, AA-induced PPARα up-regulation leads to repression of TGF-β signaling, specifically by inhibiting TGF-β-activated kinase1 (TAK1) phosphorylation. We observed that PPARα directly interacts with TAK1, predominantly via PPARα N-terminal transactivation domain (AF-1) thereby masking the TAK1 kinase domain. The AA-induced PPARα-bound TAK1 level thereby shows inverse correlation with the phosphorylation level of TAK1 and subsequent reduction in p38 MAPK and NF-κBp65 activation, ultimately culminating in amelioration of excess collagen synthesis in cardiac hypertrophy. In conclusion, our findings unravel the mechanism of AA action in regressing hypertrophy-associated cardiac fibrosis by assigning a role of AA as a PPARα agonist that inactivates non-canonical TGF-β signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    PubMed

    Williams, Rachel C; Skelton, Andrew J; Todryk, Stephen M; Rowan, Andrew D; Preshaw, Philip M; Taylor, John J

    2016-01-01

    Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and

  20. Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.

    PubMed Central

    Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D

    1997-01-01

    Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel