Science.gov

Sample records for fibrosis cells correlates

  1. Accumulation of Intrahepatic TNF-α-Producing NKp44+ NK Cells Correlates With Liver Fibrosis and Viral Load in Chronic HCV Infection.

    PubMed

    Nel, Isabelle; Lucar, Olivier; Petitdemange, Caroline; Béziat, Vivien; Lapalus, Martine; Bédossa, Pierre; Debré, Patrice; Asselah, Tarik; Marcellin, Patrick; Vieillard, Vincent

    2016-05-01

    In the setting of chronic hepatitis C virus (HCV) infection, changes in natural killer (NK) cells have been shown to reflect activation in response to virus stimulation. The contribution of individual natural cytotoxicity receptors to HCV infection remains to be clarified. NKp44 is the sole specific natural cytotoxicity receptor expressed only on activated NK cells.In this study, peripheral blood and liver NK-cell subsets were purified from 31 patients with chronic C hepatitis or nonalcoholic steatohepatitis, and then characterized by flow cytometry. Their polyfunctional activity was determined by expression of the CD107a degranulation marker, together with intracellular cytokine production.Unlike the patients with nonalcoholic steatohepatitis, patients with chronic HCV infection had a higher frequency of NKp44 NK cells in the liver than in their peripheral blood (P < 0.0001). Intrahepatic NKp44 NK cells from HCV individuals produced higher levels of tumor necrosis factor-α than did NKp44 NK cells (P = 0.0011). Importantly, the frequency of intrahepatic NKp44 NK cells was correlated with both HCV-RNA levels (P = 0.0234) and stage of fibrosis (P = 0.0003).Our findings suggest that the accumulation of intrahepatic tumor necrosis factor-α-producing NKp44 resident NK cells play a role in the liver damage associated with chronic HCV infection. PMID:27175704

  2. Accumulation of Intrahepatic TNF-α-Producing NKp44+ NK Cells Correlates With Liver Fibrosis and Viral Load in Chronic HCV Infection

    PubMed Central

    Nel, Isabelle; Lucar, Olivier; Petitdemange, Caroline; Béziat, Vivien; Lapalus, Martine; Bédossa, Pierre; Debré, Patrice; Asselah, Tarik; Marcellin, Patrick; Vieillard, Vincent

    2016-01-01

    Abstract In the setting of chronic hepatitis C virus (HCV) infection, changes in natural killer (NK) cells have been shown to reflect activation in response to virus stimulation. The contribution of individual natural cytotoxicity receptors to HCV infection remains to be clarified. NKp44 is the sole specific natural cytotoxicity receptor expressed only on activated NK cells. In this study, peripheral blood and liver NK-cell subsets were purified from 31 patients with chronic C hepatitis or nonalcoholic steatohepatitis, and then characterized by flow cytometry. Their polyfunctional activity was determined by expression of the CD107a degranulation marker, together with intracellular cytokine production. Unlike the patients with nonalcoholic steatohepatitis, patients with chronic HCV infection had a higher frequency of NKp44+ NK cells in the liver than in their peripheral blood (P < 0.0001). Intrahepatic NKp44+ NK cells from HCV+ individuals produced higher levels of tumor necrosis factor-α than did NKp44− NK cells (P = 0.0011). Importantly, the frequency of intrahepatic NKp44+ NK cells was correlated with both HCV-RNA levels (P = 0.0234) and stage of fibrosis (P = 0.0003). Our findings suggest that the accumulation of intrahepatic tumor necrosis factor-α-producing NKp44+ resident NK cells play a role in the liver damage associated with chronic HCV infection. PMID:27175704

  3. Correlation of ionizing irradiation-induced late pulmonary fibrosis with long-term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules.

    PubMed

    Epperly, Michael W; Guo, Hongliang; Shields, Donna; Zhang, Xichen; Greenberger, Joel S

    2004-01-01

    Ionizing irradiation damage to the lung is associated with an acute inflammatory reaction, followed by a latent period and then late effects including predominantly pulmonary fibrosis. The cells mediating fibrosis have recently been shown to derive from the bone marrow hematopoietic microenvironment. Initiation of late pulmonary irradiation lung damage has been correlated with up-regulation of VCAM-1 and ICAM-1 in pulmonary endothelial cells, followed by infiltration of macrophages and bone marrow-derived fibroblasts forming the fibrotic lesions of organizing alveolitis/fibrosis. To determine whether the absence of expression of VCAM-1, ICAM-1, or other adhesion molecules known to be relevant to inflammatory cell attachment to lung endothelial cells was associated with a decrease in irradiation-induced lung fibrosis, homozygous deletion recombinant knockout mice lacking each of several adhesion molecules were tested compared to littermates for survival and development of organizing alveolitis following 20 Gy irradiation to both lungs. Bone marrow culture longevity has been shown to be a parameter, which correlates with both hematopoietic stem cell reserve and the integrity of fibroblast progenitors of the supportive hematopoietic microenvironment; radiation lung survival data were correlated to longevity of hematopoiesis in long-term bone marrow cultures established from tibia and femur bone marrow of the same mice. Homozygous deletion recombinant negative mice including VCAM-1-/-, ICAM-1-/-, E-Selectin-/-, or L-Selectin-/- were irradiated to 20 Gy to both lungs and followed for survival and percent organizing alveolitis at time of death compared to each normal littermate. A significant increase in survival (median 190 days) was detected with L-Selectin-/- compared to littermate control mice (median 140 days) or other groups. Long-term bone marrow cultures from L-Selectin-/- mice showed no detectable difference in marrow fibroblasts or hematopoietic cell biology

  4. Systematic phenotyping and correlation of biomarkers with lung function and histology in lung fibrosis.

    PubMed

    Fernandez, Isis E; Amarie, Oana V; Mutze, Kathrin; Königshoff, Melanie; Yildirim, Ali Önder; Eickelberg, Oliver

    2016-05-15

    To date, phenotyping and disease course prediction in idiopathic pulmonary fibrosis (IPF) primarily relies on lung function measures. Blood biomarkers were recently proposed for diagnostic and outcome prediction in IPF, yet their correlation with lung function and histology remains unclear. Here, we comprehensively assessed biomarkers in liquid biopsies and correlated their abundance with lung function and histology during the onset, progression, and resolution of lung fibrosis, with the aim to more precisely evaluate disease progression in the preclinical model of bleomycin-induced pulmonary fibrosis in vivo. Importantly, the strongest correlation of lung function with histological extent of fibrosis was observed at day 14, whereas lung function was unchanged at days 28 and 56, even when histological assessment showed marked fibrotic lesions. Although matrix metalloproteinase-7 (MMP-7), MMP-9, and PAI-1 were significantly elevated in broncheoalveolar lavage of fibrotic mice, only soluble ICAM-1 (sICAM-1) was elevated in the peripheral blood of fibrotic mice and was strongly correlated with the extent of fibrosis. Importantly, tissue-bound ICAM-1 was also elevated in lung homogenates, with prominent staining in hyperplastic type II alveolar epithelial and endothelial cells. In summary, we show that lung function decline is not a prerequisite for histologically evident fibrosis, particularly during the onset or resolution thereof. Plasma levels of sICAM-1 strongly correlate with the extent of lung fibrosis, and may thus be considered for the assessment of intraindividual therapeutic studies in preclinical studies of pulmonary fibrosis. PMID:26993522

  5. Cell therapy for cystic fibrosis.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2015-03-01

    Currently there is no cure for cystic fibrosis (CF). Treatments are focused on addressing the disease symptoms, with varying degrees of success. Regenerative medicine holds the promise of regenerating dysfunctional or damaged tissues and to enhance the body's own endogenous repair mechanisms. The discovery of endogenous and exogenous stem cells has provided valuable tools for development of novel treatments for CF. The ability of stem cells to differentiate into functional pulmonary cells, modulate inflammatory responses and contribute to pulmonary function has provided researchers with multiple approaches to develop effective treatment strategies. Several approaches show promise to produce viable therapeutic treatments to treat the underlying cause of CF, reduce the symptoms and mitigate long-term damage, and generate functional replacement organs for end-stage transplantation. This review provides an overview of the rapidly progressing field of cell therapy for CF, focusing on the various cell types utilized and current strategies that show promise to improve life expectancy and quality of life for CF patients. PMID:23894126

  6. The endothelial cell markers von Willebrand Factor (vWF), CD31 and CD34 are lost in glomerulonephritis and no longer correlate with the morphological indices of glomerular sclerosis, interstitial fibrosis, activity and chronicity.

    PubMed

    Gluhovschi, Cristina; Gluhovschi, Gheorghe; Potencz, Elena; Herman, Diana; Trandafirescu, Virginia; Petrica, Ligia; Velciov, Silvia; Bozdog, Gheorghe; Bob, Flaviu; Vernic, Corina; Cioca, Daniel

    2010-01-01

    Endothelial cells (ECs) are active participants of an inflammatory process in glomeruli. EC damage has been shown to play an important role in the progression of glomerulonephritis (GN). The degree of glomerular and peritubular capillary loss in models of progressive renal disease correlates with the severity of glomerulosclerosis and interstitial fibrosis. The aim of our study was to analyze the association of vWF, CD31 and CD34 immunoreactivity with the morphological indices of glomerular sclerosis, interstitial fibrosis, activity and chronicity in GN. A cross-sectional study of 22 patients with GN was conducted. Conventional stains (hematoxylin-eosin, periodic acid Schiff and Trichrome Gömöri stains) and immunohistochemistry (vWF, CD31 and CD34) were employed on kidney biopsies. Activity and chronicity of GN, as well as glomerular segmental sclerosis and interstitial fibrosis, were evaluated according to a scoring system initially used for lupus nephritis and antineutrophil-cytoplasmic-antibody-associated vasculitis. Immunohistochemistry was assessed using a semi-quantitative score. Statistical analysis was performed using EpiInfo 6.04. The mean patient age was 46.68+/-14.09; 14 patients were male, and eight were female. Performing Spearman's rank correlation test, no correlation was found between each marker and glomerular segmental sclerosis, interstitial fibrosis, activity and chronicity, which suggests a loss of these markers and microvasculature involvement. PMID:20675279

  7. Development of cystic fibrosis and noncystic fibrosis airway cell lines.

    PubMed

    Zabner, Joseph; Karp, Phil; Seiler, Michael; Phillips, Stacia L; Mitchell, Calista J; Saavedra, Mimi; Welsh, Michael; Klingelhutz, Aloysius J

    2003-05-01

    In this study, we utilized the reverse transcriptase component of telomerase, hTERT, and human papillomavirus type 16 (HPV-16) E6 and E7 genes to transform normal and cystic fibrosis (CF) human airway epithelial (HAE) cells. One cell line, designated NuLi-1 (normal lung, University of Iowa), was derived from HAE of normal genotype; three cell lines, designated CuFi (cystic fibrosis, University of Iowa)-1, CuFi-3, and CuFi-4, were derived from HAE of various CF genotypes. When grown at the air-liquid interface, the cell lines were capable of forming polarized differentiated epithelia that exhibited transepithelial resistance and maintained the ion channel physiology expected for the genotypes. The CF transmembrane conductance regulator defect in the CuFi cell lines could be corrected by infecting from the basolateral surface using adenoviral vectors. Using nuclear factor-kappaB promoter reporter constructs, we also demonstrated that the NuLi and CuFi cell lines retained nuclear factor-kappaB responses to lipopolysaccharide. These cell lines should therefore be useful as models for studying ion physiology, therapeutic intervention for CF, and innate immunity. PMID:12676769

  8. Dendritic Cell Regulation of Carbon Tetrachloride-induced Murine Liver Fibrosis Regression

    PubMed Central

    Jiao, JingJing; Sastre, David; Isabel Fiel, Maria; Lee, Ursula E.; Ghiassi-Nejad, Zahra; Ginhoux, Florent; Vivier, Eric; Friedman, Scott L.; Merad, Miriam; Aloman, Costica

    2011-01-01

    Although hepatic fibrosis typically follows chronic inflammation, fibrosis will often regress after cessation of liver injury. Here we examined whether liver dendritic cells (DC) play a role in liver fibrosis regression using carbon tetrachloride (CCl4) to induce liver injury. We examined DC dynamics during fibrosis regression and their capacity to modulate liver fibrosis regression upon cessation of injury. We show that conditional DC depletion soon after discontinuation of the liver insult leads to delayed fibrosis regression and reduced clearance of activated hepatic stellate cells, the key fibrogenic cell in liver. Conversely, DC expansion induced either by Flt3L (Fms-like tyrosine kinase-3 ligand) or adoptive transfer of purified DC accelerates liver fibrosis regression. DC modulation of fibrosis was partially dependent on MMP-9, as MMP-9 inhibition abolished Flt3L-mediated effect and the ability of transferred DC to accelerate fibrosis regression. In contrast, transfer of DC from MMP-9 deficient mice failed to improve fibrosis regression. Conclusion Altogether, these results suggest that DC increase fibrosis regression, and that the effect is correlated with their production of MMP-9. These results also suggest that Flt3L treatment during fibrosis resolution merits evaluation to accelerate regression of advanced liver fibrosis. PMID:21898476

  9. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni

    PubMed Central

    Pereira, Thiago A.; Syn, Wing-Kin; Machado, Mariana V.; Vidigal, Paula V.; Resende, Vivian; Voieta, Izabela; Xie, Guanhua; Otoni, Alba; Souza, Márcia M.; Santos, Elisângela T.; Chan, Isaac S.; Trindade, Guilherme V.M.; Choi, Steve S.; Witek, Rafal P.; Pereira, Fausto E.; Secor, William E.; Andrade, Zilton A.; Lambertucci, José Roberto

    2015-01-01

    Schistosomiasis is a major cause of portal hypertension worldwide. It associates with portal fibrosis that develops during chronic infection. The mechanisms by which the pathogen evokes these host responses remain unclear. We evaluated the hypothesis that schistosome eggs release factors that directly stimulate liver cells to produce osteopontin (OPN), a pro-fibrogenic protein that stimulates hepatic stellate cells to become myofibroblasts. We also investigated the utility of OPN as a biomarker of fibrosis and/or severity of portal hypertension. Cultured cholangiocytes, Kupffer cells and hepatic stellate cells were treated with soluble egg antigen (SEA); OPN production was quantified by quantitative reverse transcriptase polymerase chain reaction (qRTPCR) and ELISA; cell proliferation was assessed by BrdU (5-bromo-2'-deoxyuridine). Mice were infected with Schistosoma mansoni for 6 or 16 weeks to cause early or advanced fibrosis. Liver OPN was evaluated by qRTPCR and immunohistochemistry (IHC) and correlated with liver fibrosis and serum OPN. Livers from patients with schistosomiasis mansoni (early fibrosis n=15; advanced fibrosis n=72) or healthy adults (n=22) were immunostained for OPN and fibrosis markers. Results were correlated with plasma OPN levels and splenic vein pressures. SEA-induced cholangiocyte proliferation and OPN secretion (P<0.001 compared with controls). Cholangiocytes were OPN (+) in Schistosoma-infected mice and humans. Liver and serum OPN levels correlated with fibrosis stage (mice: r=0.861; human r=0.672, P=0.0001) and myofibroblast accumulation (mice: r=0.800; human: r=0.761, P=0.0001). Numbers of OPN (+) bile ductules strongly correlated with splenic vein pressure (r=0.778; P=0.001). S. mansoni egg antigens stimulate cholangiocyte proliferation and OPN secretion. OPN levels in liver and blood correlate with fibrosis stage and portal hypertension severity. PMID:26201095

  10. Natural Killer Cells and Liver Fibrosis

    PubMed Central

    Fasbender, Frank; Widera, Agata; Hengstler, Jan G.; Watzl, Carsten

    2016-01-01

    In the 40 years since the discovery of natural killer (NK) cells, it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue-resident NK cells with distinct phenotypical and functional characteristics have been identified. Here, we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects. PMID:26858722

  11. NADPH Oxidase NOX4 Mediates Stellate Cell Activation and Hepatocyte Cell Death during Liver Fibrosis Development

    PubMed Central

    Sancho, Patricia; Mainez, Jèssica; Crosas-Molist, Eva; Roncero, César; Fernández-Rodriguez, Conrado M.; Pinedo, Fernando; Huber, Heidemarie; Eferl, Robert; Mikulits, Wolfgang; Fabregat, Isabel

    2012-01-01

    A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2−/−/p19ARF−/−, Stat3Δhc/Mdr2−/−) and a model of experimental induced fibrosis (CCl4) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes. PMID:23049784

  12. Mesothelial cells in tissue repair and fibrosis

    PubMed Central

    Mutsaers, Steven E.; Birnie, Kimberly; Lansley, Sally; Herrick, Sarah E.; Lim, Chuan-Bian; Prêle, Cecilia M.

    2015-01-01

    Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process. PMID:26106328

  13. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    SciTech Connect

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent . E-mail: vbours@ulg.ac.be; Griffioen, Arjan W.

    2007-05-11

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.

  14. Pathological and radiological correlation in an autopsy case of combined pulmonary fibrosis and emphysema

    PubMed Central

    Karata, Hiroki; Tanaka, Tomonori; Egashira, Ryoko; Tabata, Kazuhiro; Otani, Kyoko; Hayashi, Ryuji; Hori, Takashi; Fukuoka, Junya

    2015-01-01

    We report an educational autopsy case of combined pulmonary fibrosis and emphysema. Radiological patterns of the upper lung were considered as mostly emphysema, but pathological observation revealed significant interstitial fibrosis of usual interstitial pneumonia as a major pathology. The patient eventually developed acute exacerbation of background interstitial pneumonia. Careful radiological and pathological correlation of the current case indicates that regions with distal acinar emphysema on computed tomography image may possess histologically marked dense fibrosis of lethal interstitial pneumonia. PMID:26185436

  15. Involvement of mast cells in the development of fibrosis in rats with postmyocarditis dilated cardiomyopathy.

    PubMed

    Palaniyandi Selvaraj, Suresh; Watanabe, Kenichi; Ma, Meilei; Tachikawa, Hitoshi; Kodama, Makoto; Aizawa, Yoshifusa

    2005-11-01

    Dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality. Occurrence of myocardial fibrosis is an important event in the ventricular remodeling process, which takes place during DCM. Mast cells are well known inflammatory cells implicated in various biological phenomena. The involvement of mast cells in the development of myocardial fibrosis of DCM in rats after autoimmune myocarditis remains unknown. Nine-week-old male Lewis rats were immunized with cardiac myosin and divided into vehicle treated (group V) and disodium cromoglycate (DSCG), a mast cell stabilizer (24 mg/kg i.p.) treated (group DSCG) groups. The animals were sacrificed after 60 d of immunization. The myocardium was excised and preserved for histopathology and protein analysis. Myocardial levels of transforming growth factor (TGF) beta1 and collagen-III were quantified. Staining of mast cells was performed by toluidine blue. A significant correlation was obtained between myocardial fibrosis and cardiac mast cell density. DSCG reduced myocardial fibrosis besides preventing infiltration and degranulation of mast cells. Our findings confirm the active participation of mast cells in the progression of myocardial fibrosis in rats with postmyocarditis DCM. PMID:16272703

  16. Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome?

    PubMed Central

    Meliconi, R; Lalli, E; Borzì, R M; Sturani, C; Galavotti, V; Gunella, G; Miniero, R; Facchini, A; Gasbarrini, G

    1990-01-01

    Most of the cells found in lung parenchyma in patients with idiopathic pulmonary fibrosis are activated T lymphocytes and macrophages. The serum levels of three markers of cell mediated immunity were measured in 20 patients with idiopathic pulmonary fibrosis, in 20 normal subjects and in 12 patients with sarcoidosis to evaluate their clinical and prognostic significance in idiopathic pulmonary fibrosis. The three markers were: soluble CD8 (from activated suppressor-cytotoxic lymphocytes), soluble interleukin (IL)-2 receptors (from activated T cells and macrophages), and neopterin (from activated macrophages). Patients with idiopathic pulmonary fibrosis had higher levels of all three markers than the control subjects. Soluble IL-2 receptor and neopterin tended to be lower (though not significantly) in patients with idiopathic pulmonary fibrosis than in those with sarcoidosis, whereas soluble CD8 was similar in the two groups of patients. No correlation was found between soluble IL-2 receptors or soluble CD8 and the clinical, radiological, and physiological measures of disease activity or with clinical outcome (after a mean follow up of 23 months). Tumour necrosis factor levels were also determined. Only 30% of patients with idiopathic pulmonary fibrosis or sarcoidosis had detectable circulating tumour necrosis factor; these patients had a lower percentage of bronchoalveolar lavage fluid neutrophils in their lavage fluid. Tumour necrosis factor levels did not correlate with clinical measures of severity or outcome. Thus our data support the hypothesis that cell mediated alveolitis occurs in idiopathic pulmonary fibrosis. They do not, however, provide evidence to support the use of these markers of cell mediated immunity to monitor the clinical course in these patients. PMID:2118691

  17. Senescence of activated stellate cells limits liver fibrosis

    PubMed Central

    Krizhanovsky, Valery; Yon, Monica; Dickins, Ross A.; Hearn, Stephen; Simon, Janelle; Miething, Cornelius; Yee, Herman; Zender, Lars; Lowe, Scott W.

    2011-01-01

    Summary Cellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to non-cancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stellate cells, which initially proliferate in response to liver damage and produce the extracellular matrix deposited in the fibrotic scar. In mice lacking key senescence regulators, stellate cells continue to proliferate, leading to excessive liver fibrosis. Furthermore, senescent activated stellate cells exhibit gene expression profile consistent with cell cycle exit, reduced secretion of extracellular matrix components, enhanced secretion of extracellular matrix degrading enzymes, and enhanced immune surveillance. Accordingly natural killer cells preferentially kill senescent activated stellate cells in vitro and in vivo, thereby facilitating the resolution of fibrosis. Therefore, the senescence program limits the fibrogenic response to acute tissue damage. PMID:18724938

  18. IL-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis

    PubMed Central

    Fuschiotti, Patrizia; Larregina, Adriana T.; Ho, Johnan; Feghali-Bostwick, Carol; Medsger, Thomas A.

    2012-01-01

    OBJECTIVE Fibrosis is a major contributor to morbidity and mortality in systemic sclerosis (SSc). T cells are the predominant inflammatory infiltrate in affected tissues and are thought to produce cytokines that drive the synthesis of extracellular matrix proteins by fibroblasts, resulting in excessive fibrosis. We showed that aberrant IL-13 production by peripheral blood effector CD8+ T cells from SSc patients correlates with the extent of skin fibrosis. Here we investigate the role of IL-13 production by CD8+ T cells in dermal fibrosis, an early and specific manifestation of SSc. METHODS Extracellular matrix production by normal dermal fibroblasts co-cultured with SSc CD8+ T-cell-supernatants was determined by quantitative PCR and Western blot. Skin-homing receptor expression and IL-13 production by peripheral blood SSc CD8+ T cells were measured by flow cytometry, whereas immunohistochemistry identified IL-13+ and CD8+ cells in sclerotic skin. RESULTS IL-13-producing circulating SSc CD8+ T cells express skin-homing receptors and induce a pro-fibrotic phenotype in normal dermal fibroblasts that is inhibited by an anti-IL-13 antibody. High numbers of CD8+ T cells and IL-13+ cells are found in the skin lesions of patients, particularly in the early inflammatory phase of the disease. Thus, IL-13-producing CD8+ T cells are directly involved in modulating dermal fibrosis in SSc. CONCLUSIONS We make an important mechanistic contribution to understanding the pathogenesis of dermal fibrosis in SSc by showing that CD8+ T cells homing to the skin early in the disease are associated with accumulation of IL-13 and may represent an important target for future therapeutic intervention. PMID:23001877

  19. Endothelial dysfunction correlates with liver fibrosis in chronic HCV infection.

    PubMed

    Barone, Michele; Viggiani, Maria Teresa; Amoruso, Annabianca; Schiraldi, Serafina; Zito, Annapaola; Devito, Fiorella; Cortese, Francesca; Gesualdo, Michele; Brunetti, Natale; Di Leo, Alfredo; Scicchitano, Pietro; Ciccone, Marco Matteo

    2015-01-01

    Background. Hepatitis C virus (HCV) infection can exert proatherogenic activities due to its direct action on vessel walls and/or via the chronic inflammatory process involving the liver. Aims. To clarify the role of HCV in atherosclerosis development in monoinfected HCV patients at different degrees of liver fibrosis and with no risk factors for coronary artery disease. Methods. Forty-five patients were included. Clinical, serological, and anthropometric parameters, liver fibrosis (transient liver elastometry (fibroscan) and aspartate aminotransferase to platelet ratio index (APRI)), carotid intima-media thickness (c-IMT), and brachial artery flow-mediated vasodilatation (FMD) were assessed. Patients were divided into 3 tertiles according to fibroscan values. Results. Patients in the third tertile (fibroscan value >11.5 KPa) showed FMD values were significantly lower than second and first tertiles (4.7 ± 1.7% versus 7.1 ± 2.8%, p = 0.03). FMD values were inversely related to liver elastomeric values. c-IMT values were normal. The risk for endothelial dysfunction development in the third tertile (p = 0.02) was 6.9 higher than the first tertile. A fibroscan value >11.5 KPa had a positive predictive power equal to 79% for endothelial dysfunction. Conclusions. HCV advanced liver fibrosis promotes atherosclerosis by inducing endothelial dysfunction independently of common cardiovascular risk factors. PMID:26000012

  20. Endothelial Dysfunction Correlates with Liver Fibrosis in Chronic HCV Infection

    PubMed Central

    Barone, Michele; Viggiani, Maria Teresa; Amoruso, Annabianca; Schiraldi, Serafina; Devito, Fiorella; Brunetti, Natale; Di Leo, Alfredo; Ciccone, Marco Matteo

    2015-01-01

    Background. Hepatitis C virus (HCV) infection can exert proatherogenic activities due to its direct action on vessel walls and/or via the chronic inflammatory process involving the liver. Aims. To clarify the role of HCV in atherosclerosis development in monoinfected HCV patients at different degrees of liver fibrosis and with no risk factors for coronary artery disease. Methods. Forty-five patients were included. Clinical, serological, and anthropometric parameters, liver fibrosis (transient liver elastometry (fibroscan) and aspartate aminotransferase to platelet ratio index (APRI)), carotid intima-media thickness (c-IMT), and brachial artery flow-mediated vasodilatation (FMD) were assessed. Patients were divided into 3 tertiles according to fibroscan values. Results. Patients in the third tertile (fibroscan value >11.5 KPa) showed FMD values were significantly lower than second and first tertiles (4.7 ± 1.7% versus 7.1 ± 2.8%, p = 0.03). FMD values were inversely related to liver elastomeric values. c-IMT values were normal. The risk for endothelial dysfunction development in the third tertile (p = 0.02) was 6.9 higher than the first tertile. A fibroscan value >11.5 KPa had a positive predictive power equal to 79% for endothelial dysfunction. Conclusions. HCV advanced liver fibrosis promotes atherosclerosis by inducing endothelial dysfunction independently of common cardiovascular risk factors. PMID:26000012

  1. The fibrosis-cell death axis in heart failure.

    PubMed

    Piek, A; de Boer, R A; Silljé, H H W

    2016-03-01

    Cardiac stress can induce morphological, structural and functional changes of the heart, referred to as cardiac remodeling. Myocardial infarction or sustained overload as a result of pathological causes such as hypertension or valve insufficiency may result in progressive remodeling and finally lead to heart failure (HF). Whereas pathological and physiological (exercise, pregnancy) overload both stimulate cardiomyocyte growth (hypertrophy), only pathological remodeling is characterized by increased deposition of extracellular matrix proteins, termed fibrosis, and loss of cardiomyocytes by necrosis, apoptosis and/or phagocytosis. HF is strongly associated with age, and cardiomyocyte loss and fibrosis are typical signs of the aging heart. Fibrosis results in stiffening of the heart, conductivity problems and reduced oxygen diffusion, and is associated with diminished ventricular function and arrhythmias. As a consequence, the workload of cardiomyocytes in the fibrotic heart is further augmented, whereas the physiological environment is becoming less favorable. This causes additional cardiomyocyte death and replacement of lost cardiomyocytes by fibrotic material, generating a vicious cycle of further decline of cardiac function. Breaking this fibrosis-cell death axis could halt further pathological and age-related cardiac regression and potentially reverse remodeling. In this review, we will describe the interaction between cardiac fibrosis, cardiomyocyte hypertrophy and cell death, and discuss potential strategies for tackling progressive cardiac remodeling and HF. PMID:26883434

  2. Inflammatory Leukocyte Phenotypes Correlate with Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Moore, Bethany B.; Fry, Chris; Zhou, Yueren; Murray, Susan; Han, MeiLan K.; Martinez, Fernando J.; Flaherty, Kevin R.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive deposition of extracellular matrix, worsening dyspnea, and eventual mortality. Pathogenesis of IPF is poorly understood and the role inflammation and activated leukocytes play in the disease process is controversial. Previous studies demonstrated that activated leukocyte subsets characterize IPF patients. We sought to validate this observation in a well-defined cohort of 35 IPF patients and to correlate the observed leukocyte phenotypes with robust parameters of disease progression. We demonstrate that in univariate and multivariate analyses, increases in the CD14hi, CD16hi subset of monocytes measured at baseline correlated with disease progression, with a threshold value >0.5% of the total peripheral blood mononuclear cells being a significant predictor for worse outcome. In addition, several T cell subsets, including CD25 expressing CD4 cells, and CXCR3 expressing CD4 and CD8 subsets correlated with disease progression when found in increased percentages in the peripheral blood of IPF patients when sampled at baseline. Somewhat surprising in comparison to previous literature, the CD4 T cells did not appear to have lost expression of the co-stimulatory molecule, CD28, but the CD8 T cells did. Taken together, these results are consistent with the presence of an inflammatory process in IPF patients who eventually progress. However, when longitudinal measurements of these same markers were examined, there was significant heterogeneity of expression and these biomarkers did not necessarily remain elevated in IPF patients with progressive disease. We interpret this heterogeneity to suggest that IPF patients experience episodic inflammatory events that once triggered, may lead to disease progression. This longitudinal heterogeneity in biomarker analyses may explain why such markers are not consistently measured in all IPF cohorts. PMID:25580363

  3. Cystic fibrosis gene expression is not correlated with rectifying Cl- channels.

    PubMed

    Ward, C L; Krouse, M E; Gruenert, D C; Kopito, R R; Wine, J J

    1991-06-15

    Cystic fibrosis (CF) involves a profound reduction of Cl- permeability in several exocrine tissues. A distinctive, outwardly rectifying, depolarization-induced Cl- channel (ORDIC channel) has been proposed to account for the Cl- conductance that is defective in CF. The recently identified CF gene is predicted to code for a 1480-amino acid integral membrane protein termed the CF transmembrane conductance regulator (CFTR). The CFTR shares sequence similarity with a superfamily of ATP-binding membrane transport proteins such as P-glycoprotein and STE6, but it also has features consistent with an ion channel function. It has been proposed that the CFTR might be an ORDIC channel. To determine if CFTR and ORDIC channel expression are correlated, we surveyed various cell lines for natural variation in CFTR and ORDIC channel expression. In four human epithelial cell lines (T84, CaCo2, PANC-1, and 9HTEo-/S) that encompass the full observed range of CFTR mRNA levels and ORDIC channel density we found no correlation. PMID:1711224

  4. Cystic fibrosis gene expression is not correlated with rectifying Cl sup minus channels

    SciTech Connect

    Ward, C.L.; Krouse, M.E.; Kopito, R.R.; Wine, J.J. ); Gruenert, D.C. )

    1991-06-15

    Cystic fibrosis (CF) involves a profound reduction of Cl{sup {minus}} permeability in several exocrine tissues. A distinctive, outwardly rectifying, depolarization-induced Cl{sup {minus}} channel (ORDIC channel) has been proposed to account for the Cl{sup {minus}} conductance that is defective in CF. The recently identified CF gene is predicted to code for a 1480-amino acid integral membrane protein termed the CF transmembrane conductance regulator (CFTR). The CFTR shares sequence similarity with a superfamily of ATP-binding membrane transport proteins such as P-glycoprotein and STE6, but it also has features consistent with an ion channel function. It has been proposed that the CFTR might be an ORDIC channel. To determine if CFTR and ORDIC channel expression are correlated, the authors surveyed various cell lines for natural variation in CFTR and ORDIC channel expression. In four human epithelial cell lines (T84, CaCo2, PANC-1, and 9HTEo-/S) that encompass the full observed range of CFTR mRNA levels and ORDIC channel density the authors found no correlation.

  5. Effects of Thoracic Irradiation on Pulmonary Endothelial Compared to Alveolar Type II Cells in Fibrosis-Prone C57BL/6NTac Mice

    PubMed Central

    Kalash, Ronny; Berhane, Hebist; Goff, Julie; Houghton, Frank; Epperly, Michael W.; Dixon, Tracy; Zhang, Xichen; Sprachman, Melissa M.; Wipf, Peter; Franicola, Darcy; Wang, Hong; Greenberger, Joel S.

    2013-01-01

    Background/Aim Thoracic irradiation results in an acute inflammatory response, latent period, and late fibrosis. Little is known about the mechanisms involved in triggering late radiation fibrosis. Materials and Methods Thoracic irradiated fibrosis prone C57BL/6NTac mice were followed for detectable mRNA transcripts in isolated lung cells and micro-RNA in whole tissue, and the effect of administration of water-soluble oxetanyl sulfoxide MMS350 was studied. Marrow stromal cell motility in medium from fibrotic phase explanted pulmonary endothelial and alveolar type II cells was measured. Results RNA and micro-RNA expression in lung correlated with fibrosis. MMS350 reduced pro-fibrotic gene expression in both endothelial and alveolar type II cells in irradiated mice. Conditioned medium from irradiated cells did not alter cell motility in vitro. Conclusion These findings should allow potential new drug targets for ameliorating irradiation-induced pulmonary fibrosis to be identified. PMID:23606683

  6. Bone marrow–derived progenitor cells in pulmonary fibrosis

    PubMed Central

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W.; Phan, Sem H.

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP+ cells to appear in active fibrotic lesions, while only a few GFP+ cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP+ cells in chimera mice and revealed a significant increase in GFP+ cells that also express type I collagen. GFP+ lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not α-smooth muscle actin. Treatment of isolated GFP+ fibroblasts with TGF-β failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell–derived factor-1α and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells. PMID:14722616

  7. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells

    NASA Astrophysics Data System (ADS)

    Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.

    1990-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.

  8. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis

    PubMed Central

    TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI

    2016-01-01

    The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413

  9. 3D Human Adipose-Derived Stem Cell Clusters as a Model for In Vitro Fibrosis.

    PubMed

    Rajangam, Thanavel; Park, Min Hee; Kim, Sang-Heon

    2016-07-01

    Excessive extracellular matrix (ECM) deposition is a cause of progressive fibrosis, which ultimately leads to progressive organ dysfunction. The lack of an in vitro fibrosis model and in vitro drug screening tools limits the development of effective antifibrotic drugs. The profibrotic cytokine transforming growth factor-β1 (TGF-β1), which is secreted by a variety of cells under continuous hypoxic condition, correlates strongly with tissue fibrosis and is largely responsible for the observed increases in ECM deposition in fibrotic diseases. In this study, we established an in vitro fibrosis model in which human adipose-derived stem cells (hASCs) secrete TGF-β1 by engineering three-dimensional cell masses (3DCMs) of hASCs on a maltose-binding protein-basic fibroblast growth factor (MBP-FGF2)-immobilized substrate. We found that the hypoxic microenvironment created in the interior of 3DCMs during the early stages of culture leads to activation and synthesis of TGF-β1. The gene expression of fibrosis-related molecules such as TGF-β1, α-smooth muscle actin (αSMA), and collagen type I was upregulated in 3DCMs. As culture time increased, overexpression of TGF-β1 led to differentiation of hASCs into activated myofibroblasts, which accumulate excessive collagen type I and are characterized by αSMA expression. Furthermore, immunofluorescence data verified the increase in collagen type I synthesis in αSMA-positive cells. Scanning electron microscopy revealed rigid and compact 3DCMs, probably due to accumulation of ECM components and cross-linking of these components. The advantage of this TGF-β1-mediated 3D in vitro fibrosis model is that it opens up new avenues to understand the common mechanism of fibrosis, which will then facilitate the development of broadly effective antifibrotic compounds and the screening of existing antifibrotic agents. To the best of our knowledge, this is the first proper biomimetic 3D in vitro fibrosis model to be developed. PMID

  10. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations.

    PubMed Central

    Delaney, S J; Alton, E W; Smith, S N; Lunn, D P; Farley, R; Lovelock, P K; Thomson, S A; Hume, D A; Lamb, D; Porteous, D J; Dorin, J R; Wainwright, B J

    1996-01-01

    We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations. Images PMID:8605891

  11. Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production.

    PubMed

    González-Mateo, Guadalupe T; Fernández-Míllara, Vanessa; Bellón, Teresa; Liappas, Georgios; Ruiz-Ortega, Marta; López-Cabrera, Manuel; Selgas, Rafael; Aroeira, Luiz S

    2014-01-01

    Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice. PMID:25279459

  12. Paricalcitol Reduces Peritoneal Fibrosis in Mice through the Activation of Regulatory T Cells and Reduction in IL-17 Production

    PubMed Central

    González-Mateo, Guadalupe T.; Fernández-Míllara, Vanessa; Bellón, Teresa; Liappas, Georgios; Ruiz-Ortega, Marta; López-Cabrera, Manuel; Selgas, Rafael; Aroeira, Luiz S.

    2014-01-01

    Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice. PMID:25279459

  13. Correlation of virtual touch tissue quantification and liver biopsy in a rat liver fibrosis model.

    PubMed

    Hu, Zhiwen; Luo, Jialun; Wei, Hongqin; Ou, Wencai; Xiao, Shuyi; Gan, Man; Ma, Suihong; He, Jingguang; Wu, Daihong; Feng, Guiying; Wei, Jinglu; Liu, Jianhua

    2015-05-01

    Liver fibrosis assessment is very important to the treatment of chronic liver disease. In the present study, Virtual Touch Tissue Quantification (VTQ) and eSie Touch™ elasticity imaging techniques were used to examine the rat liver fibrosis model. Rat liver fibrosis was induced with thioacetamide and the degree of liver fibrosis was determined using pathological diagnosis as a gold standard. The right lobe of the liver was also examined with the VTQ and eSie Touch™ techniques. The VTQ and serological results were correlated and analyzed. The results were compared with those obtained from liver biopsies to investigate the accuracy and diagnostic value of eSie Touch™ and VTQ on the classification of liver fibrosis in rats. A total of 30 successful modeling cases were obtained, with a success rate of 86%. The mean acoustic radiation force impulse (ARFI) elastography‑VTQ values were 1.08, 1.51, 1.88 and 2.50 m/sec for the normal and F1/F2, F3 and F4 fibrosis groups, respectively. A significant correlation (r = 0.969) was identified between the ARFI measurements and the degree of fibrosis assessed by pathological examination (P<0.001). The histological staging results correlated with those of the eSie Touch™ elasticity imaging of the biopsy site (r = 0.913, P<0.001). The predictive values of ARFI for various stages of fibrosis were as follows: F≥1 and 2 ‑ cut‑off >1.250 m/sec (when Vs >1.250 m/sec, the pathological grading was ≥F1/F2) [Area under receiver operating characteristic (AUROC) = 1.00], F≥3 ‑ cut‑off >1.685 m/sec (when Vs >1.685 m/sec, the pathological grading was ≥F3; AUROC = 1.00) and F≥4 ‑ cut‑off >2.166 m/sec (when Vs >2.166 m/sec, the pathological grading is cirrhosis; AUROC = 1.00). In conclusion, the eSie Touch™ elasticity imaging and VTQ techniques may be successfully adopted to assess the extent of liver stiffness. These techniques are expected to replace liver biopsy. PMID:25592825

  14. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve

    PubMed Central

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-01-01

    AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures

  15. Langerhans Cell Expression in Oral Submucous Fibrosis: An Immunohistochemical Analysis

    PubMed Central

    Narasimhan, Malathi

    2015-01-01

    Introduction Langerhans cells (LCs), are dendritic cells of the epithelium which play a role in an array of oral lesions from gingivitis to oral cancer. Oral Submucous Fibrosis (OSMF), a potentially malignant disorder (PMD), is an insidious chronic disease with juxta-epithelial inflammatory changes leading to fibrosis. Langerhans cells (LCs) may play a part in the ongoing inflammatory dysregulation of OSMF. Objective The study was aimed at elucidating the distribution of LCs in varying grades of OSMF. Materials and Methods A retrospective study using 39 cases of OSMF, graded using Haematoxylin and Eosin (H&E) stained section. Immunohistochemistry was performed using polyclonal anti- CD1a antibodies to identify LCs in 5 cases of normal tissue and 39 samples of OSMF. The distribution of LCs among the various grades and normal mucosa analysed using Mann-Whitney U test. Results LC population in the OSMF was significantly higher when compared to the normal epithelium (p<0.001). Within the grades the advanced stage had more LCs than the other stages. Conclusion The increase in LCs might indicate the role of antigenic exposure in turn leading to cell mediated immunity in OSMF. Thus the fibrosis in OSMF might have a direct link to LCs. PMID:26393203

  16. Renal Medullary and Cortical Correlates in Fibrosis, Epithelial Mass, Microvascularity, and Microanatomy Using Whole Slide Image Analysis Morphometry.

    PubMed

    Farris, Alton B; Ellis, Carla L; Rogers, Thomas E; Lawson, Diane; Cohen, Cynthia; Rosen, Seymour

    2016-01-01

    Renal tubulointerstitial injury often leads to interstitial fibrosis and tubular atrophy (IF/TA). IF/TA is typically assessed in the renal cortex and can be objectively quantitated with computerized image analysis (IA). However, the human medulla accounts for a substantial proportion of the nephron; therefore, medullary scarring will have important cortical consequences and may parallel overall chronic renal injury. Trichrome, periodic acid-Schiff (PAS), and collagen III immunohistochemistry (IHC) were visually examined and quantitated on scanned whole slide images (WSIs) (N = 67 cases). When tuned to measure fibrosis, IA of trichrome and Trichrome-PAS (T-P) WSIs correlated for all anatomic compartments (among cortex, medulla, and entire tissue, r = 0.84 to 0.89, P all <0.0001); and collagen III deposition correlated between compartments (r = 0.69 to 0.89, P <0.0001 to 0.0002); however, trichrome and T-P measures did not correlate with collagen deposition, suggesting heterogeneous contributions to extracellular matrix deposition. Epithelial cell mass (EPCM) correlated between cortex and medulla when measured with cytokeratin IHC and with the trichrome red portion (r = 0.85 and 0.66, respectively, all P < 0.0001). Visual assessment also correlated between compartments for fibrosis and EPCM. Correlations were found between increasing medullary inner stripe (IS) width and fibrosis in all of the tissue and the medulla by trichrome morphometry (r = 0.56, P < 0.0001, and r = 0.48, P = 0.00008, respectively). Weak correlations were found between increasing IS width and decreasing visual assessment of all tissue EPCM. Microvessel density (MVD) and microvessel area (MVA) measured using a MVD algorithm applied to CD34 IHC correlated significantly between all compartments (r = 0.76 to 0.87 for MVD and 0.71 to 0.87 for MVA, P all < 0.0001). Overall, these findings demonstrate the interrelatedness of the cortex and medulla and the importance of considering the renal parenchyma

  17. Renal Medullary and Cortical Correlates in Fibrosis, Epithelial Mass, Microvascularity, and Microanatomy Using Whole Slide Image Analysis Morphometry

    PubMed Central

    Farris, Alton B.; Ellis, Carla L.; Rogers, Thomas E.; Lawson, Diane; Cohen, Cynthia; Rosen, Seymour

    2016-01-01

    Renal tubulointerstitial injury often leads to interstitial fibrosis and tubular atrophy (IF/TA). IF/TA is typically assessed in the renal cortex and can be objectively quantitated with computerized image analysis (IA). However, the human medulla accounts for a substantial proportion of the nephron; therefore, medullary scarring will have important cortical consequences and may parallel overall chronic renal injury. Trichrome, periodic acid–Schiff (PAS), and collagen III immunohistochemistry (IHC) were visually examined and quantitated on scanned whole slide images (WSIs) (N = 67 cases). When tuned to measure fibrosis, IA of trichrome and Trichrome-PAS (T-P) WSIs correlated for all anatomic compartments (among cortex, medulla, and entire tissue, r = 0.84 to 0.89, P all <0.0001); and collagen III deposition correlated between compartments (r = 0.69 to 0.89, P <0.0001 to 0.0002); however, trichrome and T-P measures did not correlate with collagen deposition, suggesting heterogeneous contributions to extracellular matrix deposition. Epithelial cell mass (EPCM) correlated between cortex and medulla when measured with cytokeratin IHC and with the trichrome red portion (r = 0.85 and 0.66, respectively, all P < 0.0001). Visual assessment also correlated between compartments for fibrosis and EPCM. Correlations were found between increasing medullary inner stripe (IS) width and fibrosis in all of the tissue and the medulla by trichrome morphometry (r = 0.56, P < 0.0001, and r = 0.48, P = 0.00008, respectively). Weak correlations were found between increasing IS width and decreasing visual assessment of all tissue EPCM. Microvessel density (MVD) and microvessel area (MVA) measured using a MVD algorithm applied to CD34 IHC correlated significantly between all compartments (r = 0.76 to 0.87 for MVD and 0.71 to 0.87 for MVA, P all < 0.0001). Overall, these findings demonstrate the interrelatedness of the cortex and medulla and the importance of considering the renal

  18. Genetics and epithelial cell dysfunction in cystic fibrosis

    SciTech Connect

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  19. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    PubMed

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases. PMID:26160865

  20. Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough

    PubMed Central

    Usunier, Benoît; Benderitter, Marc; Tamarat, Radia; Chapel, Alain

    2014-01-01

    Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. PMID:25132856

  1. Cystic fibrosis growth retardation is not correlated with loss of Cftr in the intestinal epithelium

    PubMed Central

    Grady, Brian R.; Mishra, Kirtishri; Cotton, Calvin U.; Drumm, Mitchell L.

    2011-01-01

    Maldigestion due to exocrine pancreatic insufficiency leads to intestinal malabsorption and consequent malnutrition, a mechanism proposed to cause growth retardation associated with cystic fibrosis (CF). However, although enzyme replacement therapy combined with increased caloric intake improves weight gain, the effect on stature is not significant, suggesting that growth retardation has a more complex etiology. Mouse models of CF support this, since these animals do not experience exocrine pancreatic insufficiency yet are growth impaired. Cftr absence from the intestinal epithelium has been suggested as a primary source of growth retardation in CF mice, a concept we directly tested by generating mouse models with Cftr selectively inactivated or restored in intestinal epithelium. The relationship between growth and functional characteristics of the intestines, including transepithelial electrophysiology, incidence of intestinal obstruction, and histopathology, were assessed. Absence of Cftr exclusively from intestinal epithelium resulted in loss of cAMP-stimulated short-circuit current, goblet cell hyperplasia, and occurrence of intestinal obstructions but only slight and transient impaired growth. In contrast, specifically restoring Cftr to the intestinal epithelium resulted in restoration of ion transport and completely protected against obstruction and histopathological anomalies, but growth was indistinguishable from CF mice. These results indicate that absence of Cftr in the intestinal epithelium is an important contributor to the intestinal obstruction phenotype in CF but does not correlate with the observed growth reduction in CF. PMID:21659619

  2. Neutrophilic Bronchial Inflammation Correlates with Clinical and Functional Findings in Patients with Noncystic Fibrosis Bronchiectasis.

    PubMed

    Dente, Federico L; Bilotta, Marta; Bartoli, Maria Laura; Bacci, Elena; Cianchetti, Silvana; Latorre, Manuela; Malagrinò, Laura; Nieri, Dario; Roggi, Maria Adelaide; Vagaggini, Barbara; Paggiaro, Pierluigi

    2015-01-01

    Background. Neutrophilic bronchial inflammation is a main feature of bronchiectasis, but not much is known about its relationship with other disease features. Aim. To compare airway inflammatory markers with clinical and functional findings in subjects with stable noncystic fibrosis bronchiectasis (NCFB). Methods. 152 NFCB patients (62.6 years; females: 57.2%) underwent clinical and functional cross-sectional evaluation, including microbiologic and inflammatory cell profile in sputum, and exhaled breath condensate malondialdehyde (EBC-MDA). NFCB severity was assessed using BSI and FACED criteria. Results. Sputum neutrophil percentages inversely correlated with FEV1 (P < 0.0001; rho = -0.428), weakly with Leicester Cough Questionnaire score (P = 0.068; rho = -0.58), and directly with duration of the disease (P = 0.004; rho = 0.3) and BSI severity score (P = 0.005; rho = 0.37), but not with FACED. Sputum neutrophilia was higher in colonized subjects, P. aeruginosa colonized subjects showing greater sputum neutrophilia and lower FEV1. Patients with ≥3 exacerbations in the last year showed a significantly greater EBC-MDA than the remaining patients. Conclusions. Sputum neutrophilic inflammation and biomarkers of oxidative stress in EBC can be considered good biomarkers of disease severity in NCFB patients, as confirmed by pulmonary function, disease duration, bacterial colonization, BSI score, and exacerbation rate. PMID:26819500

  3. Neutrophilic Bronchial Inflammation Correlates with Clinical and Functional Findings in Patients with Noncystic Fibrosis Bronchiectasis

    PubMed Central

    Dente, Federico L.; Bilotta, Marta; Bartoli, Maria Laura; Bacci, Elena; Cianchetti, Silvana; Latorre, Manuela; Malagrinò, Laura; Nieri, Dario; Roggi, Maria Adelaide; Vagaggini, Barbara; Paggiaro, Pierluigi

    2015-01-01

    Background. Neutrophilic bronchial inflammation is a main feature of bronchiectasis, but not much is known about its relationship with other disease features. Aim. To compare airway inflammatory markers with clinical and functional findings in subjects with stable noncystic fibrosis bronchiectasis (NCFB). Methods. 152 NFCB patients (62.6 years; females: 57.2%) underwent clinical and functional cross-sectional evaluation, including microbiologic and inflammatory cell profile in sputum, and exhaled breath condensate malondialdehyde (EBC-MDA). NFCB severity was assessed using BSI and FACED criteria. Results. Sputum neutrophil percentages inversely correlated with FEV1 (P < 0.0001; rho = −0.428), weakly with Leicester Cough Questionnaire score (P = 0.068; rho = −0.58), and directly with duration of the disease (P = 0.004; rho = 0.3) and BSI severity score (P = 0.005; rho = 0.37), but not with FACED. Sputum neutrophilia was higher in colonized subjects, P. aeruginosa colonized subjects showing greater sputum neutrophilia and lower FEV1. Patients with ≥3 exacerbations in the last year showed a significantly greater EBC-MDA than the remaining patients. Conclusions. Sputum neutrophilic inflammation and biomarkers of oxidative stress in EBC can be considered good biomarkers of disease severity in NCFB patients, as confirmed by pulmonary function, disease duration, bacterial colonization, BSI score, and exacerbation rate. PMID:26819500

  4. Liver fibrosis and Gd-EOB-DTPA-enhanced MRI: A histopathologic correlation.

    PubMed

    Verloh, Niklas; Utpatel, Kirsten; Haimerl, Michael; Zeman, Florian; Fellner, Claudia; Fichtner-Feigl, Stefan; Teufel, Andreas; Stroszczynski, Christian; Evert, Matthias; Wiggermann, Philipp

    2015-01-01

    Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a hepatocyte-specific MRI contrast agent. Because the hepatic uptake of Gd-EOB-DTPA depends on the integrity of the hepatocyte mass, this uptake can be quantified to assess liver function. We report the relationship between the extent of Gd-EOB-DTPA uptake and the degree of liver fibrosis. T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression were acquired before and 20 minutes after contrast injection. Strong correlations of the uptake characteristics of Gd-EOB-DTPA with the relative enhancement (RE) of the liver parenchyma and the grade of fibrosis/cirrhosis, classified using the Ishak scoring system, were observed. The subdivisions between the grades of liver fibrosis based on RE were highly significant for all combinations, and a ROC revealed sensitivities ≥82% and specificities ≥87% for all combinations. MR imaging is a satisfactorily sensitive method for the assessment of liver fibrosis/cirrhosis. PMID:26478097

  5. TGF-β1 induces bone marrow reticulin fibrosis in hairy cell leukemia

    PubMed Central

    Shehata, Medhat; Schwarzmeier, Josef D.; Hilgarth, Martin; Hubmann, Rainer; Duechler, Markus; Gisslinger, Heinz

    2004-01-01

    The mechanisms that lead to reticulin fibrosis of bone marrow (BM) in hairy cell leukemia (HCL) are not fully understood. We therefore investigated the involvement of TGF-β1, a potent fibrogenic cytokine, in this process. Immunoassays revealed that TGF-β1 is present at higher concentrations in BM, serum, and plasma of HCL patients in comparison with healthy donors (P < 0.001). RT-PCR and immunofluorescence studies showed that TGF-β1 is overexpressed at the mRNA and protein levels in peripheral blood, spleen, and BM mononuclear cells and that hairy cells (HCs) are the main source of TGF-β1. Active TGF-β1 correlated significantly with grades of BM fibrosis, infiltration with HCs, and serum procollagen type III aminoterminal propeptide (PIIINP). Ex vivo studies demonstrated that TGF-β1 significantly enhances the production and deposition of reticulin and collagen fibers by BM fibroblasts. In addition, BM plasma of HCL patients increased the synthesis of type I and type III procollagens, the main components of reticulin fibers, at the mRNA and protein levels. This fibrogenic activity of BM plasma was abolished by neutralizing anti–TGF-β1 antibodies. These results show, for the first time to our knowledge, that TGF-β1 is highly expressed in HCs and is directly involved in the pathogenesis of BM reticulin fibrosis in HCL. PMID:14991065

  6. Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis.

    PubMed

    Barczyk, Marek; Schmidt, Matthias; Mattoli, Sabrina

    2015-08-01

    Idiopathic pulmonary fibrosis is a progressive fibrosing disorder for which there is no cure and no pharmacological treatment capable of increasing in a meaningful way the survival rate. Lung transplantation remains the only possible treatment for patients with advanced disease, although the increase in 5-year survival is only 45 %. Some preclinical studies have generated promising results about the therapeutic potential of exogenous stem cells. However, two initial clinical trials involving the endobronchial or systemic delivery of autologous adipose tissue-derived or unrelated-donor, placenta-derived mesenchymal stem cells have not convincingly demonstrated that these treatments are acceptably safe. The results of other ongoing clinical trials may help to identify the best source and delivery route of mesenchymal stem cells and to estimate the risk of unwanted effects related to the mesenchymal nature of the transplanted cells. Considering that most of the therapeutic potential of these cells has been ascribed to paracrine signaling, the use of mesenchymal stem cell-derived secretome as an alternative to the transplantation of single cell suspension may circumvent many regulatory and clinical problems. Technical and safety concerns still limit the possibility of clinical applications of other promising interventions that are based on the use of human amnion stem cells, embryonic stem cells or induced pluripotent stem cells to replace or regenerate the dysfunctional alveolar epithelium. We summarize the current status of the field and identify major challenges and opportunities for the possible future integration of stem cell-based treatments into the currently recommended clinical management strategy for idiopathic pulmonary fibrosis. PMID:25896401

  7. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    PubMed

    O'Flaherty, Brigid M; Matar, Caline G; Wakeman, Brian S; Garcia, AnaPatricia; Wilke, Carol A; Courtney, Cynthia L; Moore, Bethany B; Speck, Samuel H

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice. PMID:26317335

  8. The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    PubMed Central

    Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the

  9. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  10. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis.

    PubMed

    Beaton, Hayley; Andrews, Darrell; Parsons, Martin; Murphy, Mary; Gaffney, Andrew; Kavanagh, David; McKay, Gareth J; Maxwell, Alexander P; Taylor, Cormac T; Cummins, Eoin P; Godson, Catherine; Higgins, Debra F; Murphy, Paula; Crean, John

    2016-07-01

    Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3β (Ser9), nuclear accumulation of β-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-β (TGF-β); Wnt6 reversed TGF-β-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-β-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/β(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis. PMID:27122540

  11. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    PubMed Central

    Takahara, Yoshiyuki; Takahashi, Mitsuo; Wagatsuma, Hiroki; Yokoya, Fumihiko; Zhang, Qing-Wei; Yamaguchi, Mutsuyo; Aburatani, Hiroyuki; Kawada, Norifumi

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylni-trosamine (DMN)-induced hepatic fibrosis. METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells), and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells. RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSC-specific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis, suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocyte-specific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis. CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis. PMID:17072980

  12. Superantigens and Cystic Fibrosis: Resistance of Presenting Cells to Dexamethasone

    PubMed Central

    Ben-Ari, Josef; Gozal, David; Dorio, Raymond J.; Bowman, C. Michael; Reiff, Andreas; Walker, Sharyn M.

    2000-01-01

    Staphylococcus aureus, a common pulmonary pathogen in cystic fibrosis (CF), produces exotoxins that are extremely potent superantigens. A number of animal studies have shown that superantigens cause pulmonary inflammation, but the possible role of superantigens in CF has not been investigated. The present study assessed possible differences between control and CF B cells in presenting superantigens to T cells. Immortalized B-cell lines were used as superantigen-presenting cells to avoid environmental influences (e.g., infection or antibiotics) common to freshly isolated cells. The results show that CF B-cell lines presented a staphylococcal superantigen to the immortalized T-cell line (Jurkat) as effectively as did control B-cell lines as measured by interleukin-2 production. However, in contrast to the case for control B-cell lines, dexamethasone did not inhibit CF B-cell lines from presenting superantigen. The resistance of superantigen-presenting CF B cells to corticosteroids suggests that the pulmonary response to superantigens may be poorly regulated in CF, leading to an exaggerated inflammatory response to S. aureus. PMID:10882650

  13. An autopsy study of combined pulmonary fibrosis and emphysema: correlations among clinical, radiological, and pathological features

    PubMed Central

    2014-01-01

    Background Clinical evaluation to differentiate the characteristic features of pulmonary fibrosis and emphysema is often difficult in patients with combined pulmonary fibrosis and emphysema (CPFE), but diagnosis of pulmonary fibrosis is important for evaluating treatment options and the risk of acute exacerbation of interstitial pneumonia of such patients. As far as we know, it is the first report describing a correlation among clinical, radiological, and whole-lung pathological features in an autopsy cases of CPFE patients. Methods Experts retrospectively reviewed the clinical charts and examined chest computed tomography (CT) images and pathological findings of an autopsy series of 22 CPFE patients, and compared these with findings from 8 idiopathic pulmonary fibrosis (IPF) patients and 17 emphysema-alone patients. Results All patients had a history of heavy smoking. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC%) was significantly lower in the emphysema-alone group than the CPFE and IPF-alone groups. The percent predicted diffusing capacity of the lung for carbon monoxide (DLCO%) was significantly lower in the CPFE group than the IPF- and emphysema-alone groups. Usual interstitial pneumonia (UIP) pattern was observed radiologically in 15 (68.2%) CPFE and 8 (100%) IPF-alone patients and was pathologically observed in all patients from both groups. Pathologically thick-cystic lesions involving one or more acini with dense wall fibrosis and occasional fibroblastic foci surrounded by honeycombing and normal alveoli were confirmed by post-mortem observation as thick-walled cystic lesions (TWCLs). Emphysematous destruction and enlargement of membranous and respiratory bronchioles with fibrosis were observed in the TWCLs. The cystic lesions were always larger than the cysts of honeycombing. The prevalence of both radiological and pathological TWCLs was 72.7% among CPFE patients, but no such lesions were observed in patients with IPF or emphysema

  14. Novel human bronchial epithelial cell lines for cystic fibrosis research

    PubMed Central

    Fulcher, M. L.; Gabriel, S. E.; Olsen, J. C.; Tatreau, J. R.; Gentzsch, M.; Livanos, E.; Saavedra, M. T.; Salmon, P.; Randell, S. H.

    2009-01-01

    Immortalization of human bronchial epithelial (hBE) cells often entails loss of differentiation. Bmi-1 is a protooncogene that maintains stem cells, and its expression creates cell lines that recapitulate normal cell structure and function. We introduced Bmi-1 and the catalytic subunit of telomerase (hTERT) into three non-cystic fibrosis (CF) and three ΔF508 homozygous CF primary bronchial cell preparations. This treatment extended cell life span, although not as profoundly as viral oncogenes, and at passages 14 and 15, the new cell lines had a diploid karyotype. Ussing chamber analysis revealed variable transepithelial resistances, ranging from 200 to 1,200 Ω·cm2. In the non-CF cell lines, short-circuit currents were stimulated by forskolin and inhibited by CFTR(inh)-172 at levels mostly comparable to early passage primary cells. CF cell lines exhibited no forskolin-stimulated current and minimal CFTR(inh)-172 response. Amiloride-inhibitable and UTP-stimulated currents were present, but at lower and higher amplitudes than in primary cells, respectively. The cells exhibited a pseudostratified morphology, with prominent apical membrane polarization, few apoptotic bodies, numerous mucous secretory cells, and occasional ciliated cells. CF and non-CF cell lines produced similar levels of IL-8 at baseline and equally increased IL-8 secretion in response to IL-1β, TNF-α, and the Toll-like receptor 2 agonist Pam3Cys. Although they have lower growth potential and more fastidious growth requirements than viral oncogene transformed cells, Bmi-1/hTERT airway epithelial cell lines will be useful for several avenues of investigation and will help fill gaps currently hindering CF research and therapeutic development. PMID:18978040

  15. Mast cell density in oral submucous fibrosis: a possible role in pathogenesis

    PubMed Central

    Pujari, Ravikumar; Vidya, N

    2013-01-01

    Objective Oral submucous fibrosis (OSMF) is a premalignant condition of oral cavity characterized by inflammation and progressive mucosal fibrosis. It has questionable pathogenesis. Mast cells (MC) have been associated with variety of inflammatory and fibrotic conditions, but little is known about their role in OSMF. Mast cells have been studied in normal gingiva, chronic inflammatory gingivitis, desquamative gingivitis, lichen planus, OSMF and oral cancer. Mast cells exhibit phenotypic plasticity. There is variation in the mast cell mediators with the change in the microenvironment, which makes the study of this cell in various diseases interesting. Study design A retrospective study was conducted to find possible correlation between MC in 25 cases of OSF, 10 cases of oral squamous cell carcinoma (OSCC) and 10 cases of normal buccal mucosa by means of acidified toluidine blue staining method. Results The density of MC increased with disease progression. The densities of MC were significantly higher in OSMF than in normal buccal mucosa (p=0.001). The average numbers of MCs per square millimeter were 25, 49.50, 53.25 & 55.25 respectively. Conclusion The results suggest that MC have a definite role in initiation and progression of OSMF. PMID:23559902

  16. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice

    PubMed Central

    O’Flaherty, Brigid M.; Matar, Caline G.; Wakeman, Brian S.; Garcia, AnaPatricia; Wilke, Carol A.; Courtney, Cynthia L.; Moore, Bethany B.; Speck, Samuel H.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs—despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis—further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice. PMID:26317335

  17. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  18. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    NASA Astrophysics Data System (ADS)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c<0.3, B(N,c) exhibits exponential growth from its initial value according to B(N,c)\\approx {{B}_{0}}exp (2c)\\left[ 1+{{c}^{\\beta }}ln \\left( {{N}^{{{a}_{I}}}} \\right) \\right], where \\beta =0.994+/- 0.024 and {{a}_{I}}=0.54+/- 0.026. For intermediate concentrations of stiffening, 0.3\\leqslant c\\leqslant 0.8, another exponential rule describes the bulk modulus as B(N,c)=4{{B}_{0}}exp \\left[ {{a}_{II}}\\left( c-{{c}_{c}} \\right) \\right], where {{a

  19. Autologous hematopoietic stem cell transplantation reverses skin fibrosis but does not change skin vessel density in patients with systemic sclerosis.

    PubMed

    Daikeler, T; Kump, E; Stern, M; Hügle, T; Hij, A; Haeuserman, P; Farge, D

    2015-09-01

    Hematopoetic stem cell transplantation (HSCT) improves survival in patients with severe systemic sclerosis (SSc) by resetting the immune system. We studied how HSCT acts on the key SSc skin pathology findings (fibrosis and vascularization). In mean, 3 skin punch biopsies per patient (range 2-6) were analyzed from 13 patients (5 females) with severe diffuse SSc before and up to 96 months after HSCT. Fibrosis of the four skin layers was graded semi-quantitatively and an overall fibrosis score was then calculated. Vessel numbers and calibers were assessed in the superficial and deeper dermis after immune-staining for endothelial antigens (CD31, VE-cadherin and vWF). The median age of patients at HSCT was 47 (24-64) years. The overall median modified Rodnan skin score decreased from 24 to 10 (P=0.003) at first follow-up within a median of 9 (6-36) months after HSCT as did the histological skin score (P=0.03). The modified Rodnan skin score and the fibrosis score correlated positively (r=0.589, P<0.001). The vessels density did not significantly change after HSCT nor did the expression of the tested endothelial markers. Although improving skin fibrosis in patients with SSc, HSCT does not alter vessel density within skin biopsies. PMID:26300240

  20. Relevance of activated hepatic stellate cells in predicting the development of pediatric liver allograft fibrosis.

    PubMed

    Venturi, Carla; Reding, Raymond; Quinones, Jorge Abarca; Sokal, Etienne; Rahier, Jacques; Bueno, Javier; Sempoux, Christine

    2016-06-01

    Activated hepatic stellate cells (HSCs) are the main collagen-producing cells in liver fibrogenesis. With the purpose of analyzing their presence and relevance in predicting liver allograft fibrosis development, 162 liver biopsies of 54 pediatric liver transplantation (LT) recipients were assessed at 6 months, 3 years, and 7 years after LT. The proportion of activated HSCs, identified by α-smooth muscle actin (ASMA) immunostaining, and the amount of fibrosis, identified by picrosirius red (PSR%) staining, were determined by computer-based morphometric analysis. Fibrosis was also staged by using the semiquantitative liver allograft fibrosis score (LAFSc), specifically designed to score fibrosis in the pediatric LT population. Liver allograft fibrosis displayed progression over time by PSR% (P < 0.001) and by LAFSc (P < 0.001). The ASMA expression decreased in the long term, with inverse evolution with respect to fibrosis (P < 0.01). Patients with ASMA-positive HSCs area ≥ 8% at 6 months (n = 20) developed a higher fibrosis proportion compared to those with ASMA-positive HSCs area ≤ 8% (n = 34) at the same period of time and in the long term (P = 0.03 and P < 0.01, respectively), but not at 3 years (P = 0.8). ASMA expression ≥ 8% at 6 months was found to be an independent risk factor for 7-year fibrosis development by PSR% (r(2) = 0.5; P < 0.01) and by LAFSc (r(2) = 0.3; P = 0.03). Furthermore, ASMA expression ≥ 8% at 3 years showed an association with the development of fibrosis at 7 years (P = 0.02). In conclusion, there is a high proportion of activated HSCs in pediatric LT recipients. ASMA ≥ 8% at 6 months seems to be a risk factor for early and longterm fibrosis development. In addition, activated HSCs showed inverse evolution with respect to fibrosis in the long term. Liver Transplantation 22 822-829 2016 AASLD. PMID:26851053

  1. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis

    PubMed Central

    Kramann, Rafael; Fleig, Susanne V.; Schneider, Rebekka K.; Fabian, Steven L.; DiRocco, Derek P.; Maarouf, Omar; Wongboonsin, Janewit; Ikeda, Yoichiro; Heckl, Dirk; Chang, Steven L.; Rennke, Helmut G.; Waikar, Sushrut S.; Humphreys, Benjamin D.

    2015-01-01

    Chronic kidney disease is characterized by interstitial fibrosis and proliferation of scar-secreting myofibroblasts, ultimately leading to end-stage renal disease. The hedgehog (Hh) pathway transcriptional effectors GLI1 and GLI2 are expressed in myofibroblast progenitors; however, the role of these effectors during fibrogenesis is poorly understood. Here, we demonstrated that GLI2, but not GLI1, drives myofibroblast cell-cycle progression in cultured mesenchymal stem cell–like progenitors. In animals exposed to unilateral ureteral obstruction, Hh pathway suppression by expression of the GLI3 repressor in GLI1+ myofibroblast progenitors limited kidney fibrosis. Myofibroblast-specific deletion of Gli2, but not Gli1, also limited kidney fibrosis, and induction of myofibroblast-specific cell-cycle arrest mediated this inhibition. Pharmacologic targeting of this pathway with darinaparsin, an arsenical in clinical trials, reduced fibrosis through reduction of GLI2 protein levels and subsequent cell-cycle arrest in myofibroblasts. GLI2 overexpression rescued the cell-cycle effect of darinaparsin in vitro. While darinaparsin ameliorated fibrosis in WT and Gli1-KO mice, it was not effective in conditional Gli2-KO mice, supporting GLI2 as a direct darinaparsin target. The GLI inhibitor GANT61 also reduced fibrosis in mice. Finally, GLI1 and GLI2 were upregulated in the kidneys of patients with high-grade fibrosis. Together, these data indicate that GLI inhibition has potential as a therapeutic strategy to limit myofibroblast proliferation in kidney fibrosis. PMID:26193634

  2. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. PMID:27317686

  3. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    PubMed

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. PMID:27206766

  4. Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients

    PubMed Central

    Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology. PMID:25268127

  5. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    PubMed

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. PMID:27095094

  6. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis.

    PubMed Central

    Gottlieb, R A; Dosanjh, A

    1996-01-01

    We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective acidification in cells expressing delF508 CFTR would interfere with the acidification that accompanies apoptosis, which in turn, would prevent endonuclease activation and cleavage of DNA. We therefore determined whether the function of the CFTR would affect the process of apoptosis in mouse mammary epithelial C127 cells stably transfected with the wild-type CFTR (C127/wt) or the delF508 mutation of the CFTR (C127/508). C127 cells possessed an acid endonuclease capable of DNA degradation at low pH. Sixteen hours after treatment with cycloheximide, C127/wt cells underwent cytoplasmic acidification. In contrast, C127/508 cells failed to demonstrate acidification. Furthermore, the C127/508 cells did not show nuclear condensation or DNA fragmentation detected by in situ nick-end labeling after treatment with cycloheximide or etoposide, in contrast to the characteristic features of apoptosis demonstrated by the C127/wt cells. Measurement of cell viability indicated a preservation of cell viability in C127/508 cells but not in C127/wt cells. That this resistance to the induction of apoptosis depended upon the loss of CFTR activity is shown by the finding that inhibition of the CFTR with diphenylamine carboxylate in C127/wt cells conferred similar protection. These findings suggest a role for the CFTR in acidification during the initiation of apoptosis in epithelial cells and imply that a failure to undergo programmed cell death could contribute to the pathogenesis of cystic fibrosis. Images Fig. 1 Fig. 2 Fig. 3 PMID:8622979

  7. The expression of marker for endometrial stem cell and fibrosis was increased in intrauterine adhesious

    PubMed Central

    Hu, Jianguo; Zeng, Biao; Jiang, Xingwei; Hu, lina; Meng, Ying; Zhu, Yi; Mao, Min

    2015-01-01

    Objectives: The objective of the present study was to evaluate whether fibrotic markers and endometrial stem cell markers were abnormal expressed in endometrium of intrauterine adhesions and a female mouse model for intrauterine adhesions. Methods: We revaluated endometrial fibrosis using Masson’s stain. We detected the expression of endometrium stem cell markers (CD146 and CD140b) and fibrosis markers (TGF-Beta, CTGF, collagen protein I and collagen protein III) in endometrial tissue with intrauterine adhesions using real-time PCR and S-P (Streptavidin-Peroxidase) immunohistochemistry. We create a female mouse model for intrauterine adhesions using mechanical injury, and then revalue the expression of endometrial stem cell markers and fibrosis markers in endometrial tissue of mouse model for intrauterine adhesions. Results: The ratio of the area with endometrial fibrosis to total endometrial area in intrauterine adhesious significantly increased compared with the normal endometrial tissue (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue with intrauterine adhesious compared to normal endometrial tissue (P < 0.05). The animal experiments showed that the ratio of the area with endometrial fibrosis to total endometrial area significantly increased compared with the control group (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue compared to the control group (P < 0.05). Conclusion: Aberrant activation of fibrosis may be involved in the pathology of intrauterine adhesious. PMID:25973037

  8. Fibrosis and Cancer: Do Myofibroblasts Come Also From Epithelial Cells Via EMT?

    PubMed Central

    Radisky, Derek C.; Kenny, Paraic A.; Bissell, Mina J.

    2010-01-01

    Myofibroblasts produce and modify the extracellular matrix (ECM), secrete angiogenic and pro-inflammatory factors, and stimulate epithelial cell proliferation and invasion. Myofibroblasts are normally induced transiently during wound healing, but inappropriate induction of myofibroblasts causes organ fibrosis, which greatly enhances the risk of subsequent cancer development. As myofibroblasts are also found in the reactive tumor stroma, the processes involved in their development and activation are an area of active investigation. Emerging evidence suggests that a major source of fibrosis- and tumor-associated myofibroblasts is through transdifferentiation from non-malignant epithelial or epithelial-derived carcinoma cells through epithelial-mesenchymal transition (EMT). This review will focus on the role of EMT in fibrosis, considered in the context of recent studies showing that exposure of epithelial cells to matrix metalloproteinases (MMPs) can lead to increased levels of cellular reactive oxygen species (ROS) that stimulate transdifferentiation to myofibroblast-like cells. As deregulated MMP expression and increased cellular ROS are characteristic of both fibrosis and malignancy, these studies suggest that increased MMP expression may stimulate fibrosis, tumorigenesis, and tumor progression by inducing a specialized EMT in which epithelial cells transdifferentiate into activated myofibroblasts. This connection provides a new perspective on the development of the fibrosis and tumor microenvironments. PMID:17211838

  9. Skin fibrosis correlates with circulating thyrotropin levels in systemic sclerosis: translational association with Hashimoto's thyroiditis.

    PubMed

    Bagnato, Gian Luca; Roberts, William Neal; Fiorenza, Alessia; Arcuri, Chiara; Certo, Rosaria; Trimarchi, Francesco; Ruggeri, Rosaria Maddalena; Bagnato, Gian Filippo

    2016-02-01

    Systemic sclerosis (SSc) is a connective tissue disease, characterized by cutaneous and multi-organ fibrosis, and vascular abnormalities. Skin thickening is a characteristic feature of SSc and resembles myxedematous skin. Our aim was to correlate the degree of skin involvement in SSc patients with serum TSH levels, since TSH receptors are widely expressed in human tissues, including the skin. In this cross-sectional study, we enrolled 70 SSc patients, all females with a mean age of 47 ± 11 year. Thirty-five age- and sex-matched HT patients were recruited, as controls. Subjects under L-thyroxine therapy and/or with positive anti-TSH receptor antibodies were excluded. In all subjects, we measured serum TSH, FT4, and free tri-iodothyronine (FT3) levels. Skin thickness was evaluated using the modified Rodnan total skin score (mRSS). mRSS averaged 14 ± 9 for SSc and 4 ± 6 for HT patients. TSH levels positively correlated with skin scores in both SSc and HT patients groups. In SSc patients, FT3 and FT4 showed an inverse correlation with mRSS, while in HT only FT4 levels showed this inverse significance. When divided by cutaneous extent, SSc patients with diffuse disease form had higher TSH serum levels compared to those with the limited form; additionally, the correlations between TSH, FT4, and mRSS reached statistical significance. Our preliminary data clearly indicate that serum TSH is higher in SSc patients with more severe skin disease, and significantly correlate with the mRSS. Therefore, TSH could play a role in the development of cutaneous changes in SSc patients. PMID:25994300

  10. Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease

    PubMed Central

    Sass, Laura A.; Hair, Pamela S.; Perkins, Amy M.; Shah, Tushar A.; Krishna, Neel K.; Cunnion, Kenji M.

    2015-01-01

    In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid. PMID:26642048

  11. Correlation between impulse oscillometry and spirometry parameters in Indian patients with cystic fibrosis.

    PubMed

    Raj, Dinesh; Sharma, Ganesh Kumar; Lodha, Rakesh; Kabra, Sushil Kumar

    2014-06-30

    Impulse oscillometry (IOS) is an emerging tool to assess lung function in chronic respiratory diseases, more often in preschool children and patients who are unable to perform spirometry. We conducted a prospective cross-sectional study on patients with cystic fibrosis (CF). Primary objective was to evaluate correlation between IOS and spirometry parameters. Secondary objective was to evaluate the ability of IOS parameters to discriminate patients with airflow limitation at various forced expiratory volume in 1 second (FEV1) cutoffs. Patients with CF above 6 years of age, who were following up on a routine visit, were enrolled in the study. Patients underwent IOS and spirometry as per guidelines. A total of 39 patients (34 children and 5 adults) were enrolled in the study. There was a significant moderate negative correlation between spirometry parameters (FEV1, forced vital capacity, and peak expiratory flow rate) and IOS parameters, that is, impedance at 5 Hz (Z5), resistance at 5 Hz (R5), and reactance area, both between raw values and percent predicted values. Of the various IOS parameters, Z5 percent predicted had the maximum area under the curve (AUC) of 0.8152 and 0.8448 for identifying children with FEV1 <60% and <80%, respectively. R5 percent predicted had an AUC of 0.8185 for identifying children with FEV1 <40%. IOS can be used as an alternative pulmonary function test in patients with CF more so in patients who are unable to perform spirometry. PMID:24980126

  12. CXCR4+ granulocytes reflect fungal cystic fibrosis lung disease.

    PubMed

    Carevic, Melanie; Singh, Anurag; Rieber, Nikolaus; Eickmeier, Olaf; Griese, Matthias; Hector, Andreas; Hartl, Dominik

    2015-08-01

    Cystic fibrosis airways are frequently colonised with fungi. However, the interaction of these fungi with immune cells and the clinical relevance in cystic fibrosis lung disease are incompletely understood.We characterised granulocytes in airway fluids and peripheral blood from cystic fibrosis patients with and without fungal colonisation, non-cystic fibrosis disease controls and healthy control subjects cross-sectionally and longitudinally and correlated these findings with lung function parameters.Cystic fibrosis patients with chronic fungal colonisation by Aspergillus fumigatus were characterised by an accumulation of a distinct granulocyte subset, expressing the HIV coreceptor CXCR4. Percentages of airway CXCR4(+) granulocytes correlated with lung disease severity in patients with cystic fibrosis.These studies demonstrate that chronic fungal colonisation with A. fumigatus in cystic fibrosis patients is associated with CXCR4(+) airway granulocytes, which may serve as a potential biomarker and therapeutic target in fungal cystic fibrosis lung disease. PMID:25929952

  13. Conditional Knockout of Telomerase Reverse Transcriptase in Mesenchymal Cells Impairs Mouse Pulmonary Fibrosis

    PubMed Central

    Liu, Tianju; Yu, Hongfeng; Ding, Lin; Wu, Zhe; Gonzalez De Los Santos, Francina; Liu, Jianhua; Ullenbruch, Matthew; Hu, Biao; Martins, Vanessa; Phan, Sem H.

    2015-01-01

    Telomerase is typically expressed in cellular populations capable of extended replication, such as germ cells, tumor cells, and stem cells, but is also induced in tissue injury, repair and fibrosis. Its catalytic component, telomerase reverse transcriptase (TERT) is induced in lung fibroblasts from patients with fibrotic interstitial lung disease and in rodents with bleomycin-induced pulmonary fibrosis. To evaluate the fibroblast specific role of TERT in pulmonary fibrosis, transgenic mice bearing a floxed TERT allele were generated, and then crossed with an inducible collagen α2(I)-Cre mouse line to generate fibroblast specific TERT conditional knockout mice. TERT-specific deficiency in mesenchymal cells caused attenuation of pulmonary fibrosis as manifested by reduced lung hydroxyproline content, type I collagen and α-smooth muscle actin mRNA levels. The TERT-deficient mouse lung fibroblasts displayed decreased cell proliferative capacity and higher susceptibility to induced apoptosis compared with control cells. Additionally TERT deficiency was associated with heightened α-smooth muscle actin expression indicative of myofibroblast differentiation. However the impairment of cell proliferation and increased susceptibility to apoptosis would cause a reduction in the myofibroblast progenitor population necessary to mount a successful myofibroblast-dependent fibrotic response. These findings identified a key role for TERT in fibroblast proliferation and survival essential for pulmonary fibrosis. PMID:26555817

  14. CD4(+)CD25(hi)Foxp3(+) Cells Exacerbate Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Birjandi, Shirin Z; Palchevskiy, Vyacheslav; Xue, Ying Ying; Nunez, Stefanie; Kern, Rita; Weigt, S Sam; Lynch, Joseph P; Chatila, Talal A; Belperio, John A

    2016-08-01

    Idiopathic pulmonary fibrosis is a fatal lung disease with a median survival of 2 to 5 years. A decade of studies has downplayed inflammation contributing to its pathogenesis. However, these studies preceded the discovery of regulatory T cells (Tregs) and all of their functions. On the basis of human studies demonstrating Tregs can decrease graft-versus-host disease and vasculitides, there is consideration of their use to treat idiopathic pulmonary fibrosis. We hypothesized that Treg therapy would attenuate the fibroplasia involved in a preclinical murine model of pulmonary fibrosis. IL-2 complex was used in vivo to expand CD4(+)CD25(hi)Foxp3(+) cells in the lung during intratracheal bleomycin challenge; however, this unexpectedly led to an increase in lung fibrosis. More important, this increase in fibrosis was a lymphocyte-dependent process. We corroborated these results using a CD4(+)CD25(hi)Foxp3(+) cellular-based therapy. Mechanistically, we demonstrated that CD4(+)CD25(hi)Foxp3(+) cells undergo alterations during bleomycin challenge and the IL-2 complex had no effect on profibrotic (eg, transforming growth factor-β) or type 17 immune response cytokines; however, there was a marked down-regulation of the type 1 and augmentation of the type 2 immune response cytokines from the lungs. Collectively, our animal studies show that a specific lung injury can induce Treg alterations, which can augment pulmonary fibrosis. PMID:27317904

  15. Retroperitoneal fibrosis due to B-cell non-Hodgkin lymphoma: Responding to rituximab!

    PubMed

    Alvarez Argote, Juliana; Bauer, Frank A; Posteraro, Anthony F; Dasanu, Constantin A

    2016-02-01

    Retroperitoneal fibrosis is a rare disease manifesting as chronic soft tissue fibrosis in the retroperitoneum, with potential anatomic and/or functional compromise of adjacent organs. It can be primary (idiopathic) or secondary to other conditions such as cancers, autoimmune disorders, or drugs. We report herein a 66-year-old patient with symptomatic retroperitoneal fibrosis leading to bilateral hydronephrosis and renal failure, in whom, after a complex diagnostic work-up and protracted clinical course, a B-cell non-Hodgkin lymphoma in the retroperitoneal space and several vertebral bodies was identified. The patient was treated with radiation therapy and weekly rituximab infusions, with resolution of hydronephrosis and lower back pain. We include a thorough literature review on etiopathogenesis, diagnosis, therapy, and prognosis of retroperitoneal fibrosis. A meticulous search for malignancy is necessary in this rare condition that, if positive, may have significant therapeutic and prognostic implications. PMID:25013186

  16. Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis

    PubMed Central

    Kitano, Mio; Bloomston, P. Mark

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis. PMID:26999230

  17. A New Metabolism-Related Index Correlates with the Degree of Liver Fibrosis in Hepatitis C Virus-Positive Patients

    PubMed Central

    Aizawa, Nobuhiro; Takata, Ryo; Sakai, Yoshiyuki; Iwata, Yoshinori; Tanaka, Hironori; Ikeda, Naoto; Hasegawa, Kunihiro; Yoh, Kazunori; Hashimoto, Kenji; Ishii, Akio; Takashima, Tomoyuki; Saito, Masaki; Imanishi, Hiroyasu; Iijima, Hiroko; Nishiguchi, Shuhei

    2015-01-01

    Background. Only a few biomarkers based on metabolic parameters for evaluating liver fibrosis have been reported. The aim of this study was to investigate the relevance of an index obtained from three metabolic variables (glycated albumin: GA, glycated hemoglobin: HbA1c, and branched-chain amino acids to tyrosine ratio: BTR) to the degree of liver fibrosis in hepatitis C virus virus- (HCV-) positive patients. Methods. A total of 394 HCV-positive patients were assessed based on the values of a new index (GA/HbA1c/BTR). The index findings were used to investigate the relationship with the degree of liver fibrosis. Results. The new index showed an association with the stage of fibrosis (METAVIR scores: F0-1: 0.42 ± 0.10, F2: 0.48 ± 0.15, F3: 0.56 ± 0.22, and F4: 0.71 ± 0.30). The index was negatively correlated with three variables of liver function: the prothrombin time percentage (P < 0.0001), albumin level (P < 0.0001), and cholinesterase level (P < 0.0001). The new index showed a higher correlation related to liver function than FIB-4 and the APRI did. In addition, the index showed a higher AUROC value than that of FIB-4 and the APRI for prediction of liver cirrhosis. Conclusion. The new metabolism-related index, GA/HbA1c/BTR value, is shown to relate to the degree of liver fibrosis in HCV-positive patients. PMID:25861264

  18. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells

    PubMed Central

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    Background Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. Material/Methods We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) – MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) – were detected by Western blot. Results Results showed that TSLP promoted the production of α-SMA and collagen I (P<0.001), suggesting that it can accelerate MRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. Conclusions This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis. PMID:27385084

  19. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells.

    PubMed

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    BACKGROUND Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. MATERIAL AND METHODS We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) - MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) - were detected by Western blot. RESULTS Results showed that TSLP promoted the production of α-SMA and collagen I (P<0.001), suggesting that it can accelerate MRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. CONCLUSIONS This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis. PMID:27385084

  20. Ineffective correction of PPARγ signaling in cystic fibrosis airway epithelial cells undergoing repair.

    PubMed

    Bou Saab, J; Bacchetta, M; Chanson, M

    2016-09-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) represents a potential target to treat airway mucus hypersecretion in cystic fibrosis (CF). We aimed to determine if PPARγ is altered in CF human airway epithelial cells (HAECs), if PPARγ contributes to mucin expression and HAEC differentiation, and if PPARγ ligand therapy corrects the CF phenotype. To this end, well-differentiated CF and NCF HAEC primary cultures were wounded to monitor the expression of key genes involved in PPARγ activation and mucus homeostasis, and to evaluate the effect of a PPARγ agonist, at different times of repair. Hydroxyprostaglandin dehydrogenase (HPGD) converts prostaglandin E2 to 15-keto PGE2 (15kPGE2), an endogenous PPARγ ligand. Interestingly, PPARγ and HPGD expression dramatically decreased in CF HAECs. These changes were accompanied by an increase in the expression of MUC5B. The correlation between PPARγ and MUC5B was confirmed in an airway epithelial cell line after CFTR knock-down. Exposure of HAECs to 15kPGE2 did not correct the CF phenotype but revealed a defect in the process of basal cell (BC) differentiation. The HPGD/PPARγ axis is deregulated in primary HAEC cultures from CF patients, which may impact the maturation of BCs to differentiated luminal cells. Importantly, PPARγ therapy was inefficient in correcting the CF defect. PMID:27484450

  1. Myofibroblastic Conversion and Regeneration of Mesothelial Cells in Peritoneal and Liver Fibrosis.

    PubMed

    Lua, Ingrid; Li, Yuchang; Pappoe, Lamioko S; Asahina, Kinji

    2015-12-01

    Mesothelial cells (MCs) form a single epithelial layer and line the surface of body cavities and internal organs. Patients who undergo peritoneal dialysis often develop peritoneal fibrosis that is characterized by the accumulation of myofibroblasts in connective tissue. Although MCs are believed to be the source of myofibroblasts, their contribution has remained obscure. We determined the contribution of peritoneal MCs to myofibroblasts in chlorhexidine gluconate (CG)-induced fibrosis compared with that of phenotypic changes of liver MCs. CG injections resulted in disappearance of MCs from the body wall and the accumulation of myofibroblasts in the connective tissue. Conditional linage tracing with Wilms tumor 1 (Wt1)-CreERT2 and Rosa26 reporter mice found that 17% of myofibroblasts were derived from MCs in peritoneal fibrosis. Conditional deletion of transforming growth factor-β type II receptor in Wt1(+) MCs substantially reduced peritoneal fibrosis. The CG treatment also induced myofibroblastic conversion of MCs in the liver. Lineage tracing with Mesp1-Cre mice revealed that Mesp1(+) mesoderm gave rise to liver MCs but not peritoneal MCs. During recovery from peritoneal fibrosis, peritoneal MCs, but not liver MCs, contribute to the regeneration of the peritoneal mesothelium, indicating an inherent difference between parietal and visceral MCs. In conclusion, MCs partially contribute to myofibroblasts in peritoneal and liver fibrosis, and protection of the MC layer leads to reduced development of fibrous tissue. PMID:26598235

  2. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  3. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    PubMed

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  4. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis.

    PubMed

    Nuovo, Gerard J; Hagood, James S; Magro, Cynthia M; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B; Folcik, Virginia A

    2012-03-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68(+) and CD80(+) cells and significantly fewer CD3(+), CD4(+), and CD45RO(+) cells in areas of relatively (histologically) normal lung in biopsy samples from idiopathic pulmonary fibrosis patients compared with controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, chemokine receptor 6 (CCR6), S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared with histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3(+) T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for forkhead box p3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating

  5. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    PubMed Central

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN. PMID:27468195

  6. Epithelial to Mesenchymal Transition induces cell cycle arrest and parenchymal damage in renal fibrosis

    PubMed Central

    Lovisa, Sara; LeBleu, Valerie S.; Tampe, Björn; Sugimoto, Hikaru; Vadnagara, Komal; Carstens, Julienne L.; Wu, Chia–Chin; Hagos, Yohannes; Burckhardt, Birgitta C.; Pentcheva–Hoang, Tsvetelina; Nischal, Hersharan; Allison, James P.; Zeisberg, Michael; Kalluri, Raghu

    2015-01-01

    Kidney fibrosis is marked by an epithelial–to–mesenchymal transition (EMT) by tubular epithelial cells (TECs). Here we find that during renal fibrosis TECs acquire a partial EMT program during which they remain associated with their basement membrane and express markers of both epithelial and mesenchymal cells. The functional consequence of EMT program during fibrotic injury is an arrest in the G2 phase of the cell cycle and lower expression of several transporters in TECs. We also found that transgenic expression of Twist or Snai1 expression is sufficient to promote prolonged TGF-β1–induced G2 arrest of TECs, limiting their potential for repair and regeneration. Also, in mouse models of experimentally-induced renal fibrosis, conditional deletion of Twist1 or Snai1 in proximal TECs resulted in inhibition of the EMT program and the maintenance of TEC integrity, while restoring proliferation, de–differentiation–associated repair and regeneration of the kidney parenchyma and attenuating interstitial fibrosis. Thus, inhibition of EMT program in TECs during chronic renal injury represents a potential anti–fibrosis therapy PMID:26236991

  7. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Lee, Ju-Hee; Jang, Eun Jeong; Seo, Hye Lim; Ku, Sae Kwang; Lee, Jong Rok; Shin, Soon Shik; Park, Sun-Dong; Kim, Sang Chan; Kim, Young Woo

    2014-10-16

    Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs. PMID:25451574

  8. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction.

    PubMed

    Livingston, Man J; Ding, Han-Fei; Huang, Shuang; Hill, Joseph A; Yin, Xiao-Ming; Dong, Zheng

    2016-06-01

    Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors. PMID:27123926

  9. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues

    PubMed Central

    Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar

    2015-01-01

    Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062

  10. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity

    PubMed Central

    Iwayama, Tomoaki; Steele, Cameron; Yao, Longbiao; Dozmorov, Mikhail G.; Karamichos, Dimitris; Wren, Jonathan D.

    2015-01-01

    Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP+ cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism. PMID:26019175

  11. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity.

    PubMed

    Iwayama, Tomoaki; Steele, Cameron; Yao, Longbiao; Dozmorov, Mikhail G; Karamichos, Dimitris; Wren, Jonathan D; Olson, Lorin E

    2015-06-01

    Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP(+) cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism. PMID:26019175

  12. Liver Fibrosis Occurs Through Dysregulation of MyD88-dependent Innate B cell Activity

    PubMed Central

    Thapa, Manoj; Chinnadurai, Raghavan; Velazquez, Victoria M.; Tedesco, Dana; Elrod, Elizabeth; Han, Jin-Hwan; Sharma, Prachi; Ibegbu, Chris; Gewirtz, Andrew; Anania, Frank; Pulendran, Bali; Suthar, Mehul S.; Grakoui, Arash

    2015-01-01

    Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride (CCl4)-treated B cell deficient μMT mice showing that B cells are required. The retinoic acid produced by HSCs augmented B cell survival, plasma cell marker CD138 expression, and IgG production. These activities were reversed following the addition of the retinoic acid inhibitor, LE540. Transcriptional profiling of fibrotic liver B cells revealed an increased expression of genes related to NF-κB activation, proinflammatory cytokine production and CD40 signaling suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expressions), constitutive IgG production and secretion of the proinflammatory cytokines TNF-α, MCP-1 and MIP1-α. Likewise targeted deletion of B-cell-intrinsic MyD88 signaling, an innate adaptor with involvement in RA signaling, resulted in reduced infiltration of migratory CD11c+ dendritic cells and Ly6C++ monocytes, and hence reduced liver pathology. Conclusion Our findings demonstrate that liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B cell activity and highlight B cells as an important ‘first responders’ of the intrahepatic immune environment. PMID:25711908

  13. An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease

    PubMed Central

    Tanaka, Junichi; Moriyama, Hiroshi; Terada, Masaki; Takada, Toshinori; Suzuki, Eiichi; Narita, Ichiei; Kawabata, Yoshinori; Yamaguchi, Tetsuo; Hebisawa, Akira; Sakai, Fumikazu; Arakawa, Hiroaki

    2014-01-01

    Background Hard metal lung disease has various pathological patterns including giant cell interstitial pneumonia (GIP) and usual interstitial pneumonia (UIP). Although the UIP pattern is considered the prominent feature in advanced disease, it is unknown whether GIP finally progresses to the UIP pattern. Objectives To clarify clinical, pathological and elemental differences between the GIP and UIP patterns in hard metal lung disease. Methods A cross-sectional study of patients from 17 institutes participating in the 10th annual meeting of the Tokyo Research Group for Diffuse Parenchymal Lung Diseases, 2009. Nineteen patients (seven female) diagnosed with hard metal lung disease by the presence of tungsten in lung specimens were studied. Results Fourteen cases were pathologically diagnosed as GIP or centrilobular inflammation/fibrosing. The other five cases were the UIP pattern or upper lobe fibrosis. Elemental analyses of lung specimens of GIP showed tungsten throughout the centrilobular fibrotic areas. In the UIP pattern, tungsten was detected in the periarteriolar area with subpleural fibrosis, but no association with centrilobular fibrosis or inflammatory cell infiltration. The GIP group was younger (43.1 vs 58.6 years), with shorter exposure duration (73 vs 285 months; p<0.01), lower serum KL-6 (398 vs 710 U/mL) and higher lymphocyte percentage in bronchoalveolar lavage fluid (31.5% vs 3.22%; p<0.05) than the fibrosis group. Conclusions The UIP pattern or upper lobe fibrosis is remarkably different from GIP in distribution of hard metal elements, associated interstitial inflammation and fibrosis, and clinical features. In hard metal lung disease, the UIP pattern or upper lobe fibrosis may not be an advanced form of GIP. PMID:24674995

  14. Predictive Factors of Late Radiation Fibrosis: A Prospective Study in Non-Small Cell Lung Cancer

    SciTech Connect

    Mazeron, Renaud; Etienne-Mastroianni, Benedicte; Perol, David; Arpin, Dominique; Vincent, Michel; Falchero, Lionel; Martel-Lafay, Isabelle; Carrie, Christian; Claude, Line

    2010-05-01

    Purpose: To determine predictive factors of late radiation fibrosis (RF) after conformal radiotherapy (3D-RT) in non-small cell lung cancer (NSCLC). Methods and Materials: Ninety-six patients with Stage IA-IIIB NSCLC were included in a prospective trial. Clinical evaluation, chest X-ray, and pulmonary functional tests including diffusion parameters were performed before and 6 months after radiotherapy. An independent panel of experts prospectively analyzed RF, using Late Effects in Normal Tissues-Subjective, Objective, Management and Analytic scales classification. Logistic regression analysis was performed to identify relationships between clinical, functional, or treatment parameters and incidence of RF. Variations of circulating serum levels of pro-inflammatory (interleukin-6, tumor necrosis factor alpha, tumor growth factor beta1) and anti-inflammatory (interleukin-10) cytokines during 3D-RT were examined to identify correlations with RF. Results: Of the 96 patients included, 72 were evaluable for RF at 6 months. Thirty-seven (51.4%) developed RF (Grade >=1), including six severe RF (Grades 2-3; 8.3%). In univariate analysis, only poor Karnofsky Performance Status and previous acute radiation pneumonitis were associated with RF (p < 0.05). Dosimetric factors (mean lung dose, percentage of lung volume receiving more than 10, 20, 30, 40, and 50 Gy) were highly correlated with RF (p < 0.001). In multivariate analysis, previous acute radiation pneumonitis and dosimetric parameters were significantly correlated with RF occurrence. It was not significantly correlated either with cytokines at baseline or with their variation during 3D-RT. Conclusions: This study confirms the importance of dosimetric parameters to limit the risk of RF. Contrary to acute radiation pneumonitis, RF was not correlated to cytokine variations during 3D-RT.

  15. Transfer of the Cystic Fibrosis Transmembrane Conductance Regulator to Human Cystic Fibrosis Cells Mediated by Extracellular Vesicles.

    PubMed

    Vituret, Cyrielle; Gallay, Kathy; Confort, Marie-Pierre; Ftaich, Najate; Matei, Constantin I; Archer, Fabienne; Ronfort, Corinne; Mornex, Jean-François; Chanson, Marc; Di Pietro, Attilio; Boulanger, Pierre; Hong, Saw See

    2016-02-01

    Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in a deficiency in chloride channel activity. In this study, extracellular vesicles (EVs), microvesicles, and exosomes were used as vehicles to deliver exogenous CFTR glycoprotein and its encoding mRNA (mRNA(GFP-CFTR)) to CF cells to correct the CFTR chloride channel function. We isolated microvesicles and exosomes from the culture medium of CFTR-positive Calu-3 cells, or from A549 cells transduced with an adenoviral vector overexpressing a GFP-tagged CFTR (GFP-CFTR). Both microvesicles and exosomes had the capacity to package and deliver the GFP-CFTR glycoprotein and mRNA(GFP-CFTR) to target cells in a dose-dependent manner. Homologous versus heterologous EV-to-cell transfer was studied, and it appeared that the cellular uptake of EVs was significantly more efficient in homologous transfer. The incubation of CF15 cells, a nasal epithelial cell line homozygous for the ΔF508 CFTR mutation, with microvesicles or exosomes loaded with GFP-CFTR resulted in the correction of the CFTR function in CF cells in a dose-dependent manner. A time-course analysis of EV-transduced CF cells suggested that CFTR transferred as mature glycoprotein was responsible for the CFTR-associated channel activity detected at early times posttransduction, whereas GFP-CFTR translated from exogenous mRNA(GFP-CFTR) was responsible for the CFTR function at later times. Collectively, this study showed the potential application of microvesicles and exosomes as vectors for CFTR transfer and functional correction of the genetic defect in human CF cells. PMID:26886833

  16. Homing in on the hepatic scar: recent advances in cell-specific targeting of liver fibrosis

    PubMed Central

    Dobie, Ross; Henderson, Neil C.

    2016-01-01

    Despite the high prevalence of liver disease globally, there are currently no approved anti-fibrotic therapies to treat patients with liver fibrosis. A major goal in anti-fibrotic therapy is the development of drug delivery systems that allow direct targeting of the major pro-scarring cell populations within the liver (hepatic myofibroblasts) whilst not perturbing the homeostatic functions of other mesenchymal cell types present within both the liver and other organ systems. In this review we will outline some of the recent advances in our understanding of myofibroblast biology, discussing both the origin of myofibroblasts and possible myofibroblast fates during hepatic fibrosis progression and resolution. We will then discuss the various strategies currently being employed to increase the precision with which we deliver potential anti-fibrotic therapies to patients with liver fibrosis. PMID:27508067

  17. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    PubMed Central

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  18. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    PubMed

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  19. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis.

    PubMed

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao; Ma, Wan-Li

    2016-07-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  20. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis

    PubMed Central

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A.; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao

    2016-01-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  1. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  2. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension.

    PubMed

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A; Le, Thanh-Thuy T; Johnston, Richard A; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH. PMID:25318478

  3. Clinical and Genetic Correlates of Exercise Performance in Young Children with Cystic Fibrosis1,2

    PubMed Central

    McBride, Michael G.; Schall, Joan I.; Zemel, Babette S.; Stallings, Virginia A.; Ittenbach, Richard F.; Paridon, Stephen M.

    2015-01-01

    Summary Exercise performance in individuals with cystic fibrosis has been shown to be related to the degree of pulmonary dysfunction and undernutrition and genetic profile. The aim of this study was to examine these relationships in young children with cystic fibrosis. The participants were 64 children ages 8 to 11 years (M = 9.3, SD = 0.9) with cystic fibrosis and pancreatic insufficiency recruited from 13 different U.S. Cystic Fibrosis Centers. Assigned to one of three groups by ΔF508 status: ΔF508/ΔF508 homozygous, ΔF508/Other heterozygous, and Other/Other, growth, nutritional and pulmonary status, and exercise performance were measured. Differences in exercise performance, pulmonary function, and nutritional status were not observed among the three groups. However, undernutrition and decreased pulmonary function were associated with measures of exercise performance. These results imply no effect of ΔF508 status on overall functional capacity during preadolescence in children with cystic fibrosis. Rather, the degree of pulmonary disease and undernutrition were associated with functional performance. PMID:20865986

  4. Mechanisms of liver fibrosis associated with experimental Fasciola hepatica infection: roles of Fas2 proteinase and hepatic stellate cell activation.

    PubMed

    Marcos, Luis A; Terashima, Angélica; Yi, Pedro; Andrade, Roy; Cubero, Francisco J; Albanis, Efsevia; Gotuzzo, Eduardo; Espinoza, Jose R; Friedman, Scott L

    2011-02-01

    We have evaluated the possible mechanisms of liver fibrosis caused by Fasciola hepatica in an animal model and in culture using immortalized human stellate cells. Liver biopsies of F. hepatica-infected rats were performed at wk 8 and 16. Serum-starved LX-2 cells, a human stellate cell line, were exposed to increasing concentrations of Fas2 antigen. The expression of key fibrosis-related genes was evaluated by qRT-PCR. There was a significant correlation between fibrogenic gene expression and both intensity and duration of infection. LX-2 cells exposed to Fas2 showed progressively increased expression of mRNAs for Collagen I, alpha-smooth muscle-actin, platelet-derived growth factor beta receptor, and tissue inhibitor of metalloproteinase II; inhibition of Fas2 cysteine proteinase activity by E-64 abrogated these increases, suggesting that the protease activity of Fas2 is involved in fibrogenic stimulation. In summary, F. hepatica infection is associated with up-regulation of mRNAs associated with hepatic fibrogenesis in vivo and in activated hepatic stellate cells. PMID:21348611

  5. Treatment with 4-Methylpyrazole Modulated Stellate Cells and Natural Killer Cells and Ameliorated Liver Fibrosis in Mice

    PubMed Central

    Lee, Young-Sun; Jung, Ju Yeon; Park, Seol-Hee; Park, Keun-Gyu; Choi, Hueng-Sik; Suh, Jae Myoung; Jeong, Won-Il

    2015-01-01

    Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis

  6. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium.

    PubMed

    Widdicombe, J H; Welsh, M J; Finkbeiner, W E

    1985-09-01

    The tracheal mucosa from a 12-year-old girl was digested with collagenase 4 hr after her death from cystic fibrosis. Forty million viable cells were obtained. The cells, plated at 10(6) per cm2 onto four Nuclepore filters coated with human placental collagen, formed confluent monolayers after 1 day. Their ultrastructure was similar to that of normal human cells. They were studied in conventional Ussing chambers or with intracellular microelectrodes on days 5-7 after plating. The monolayers displayed resistance of 380 +/- 50 omega X cm2 and short-circuit current (Isc) of 1.8 +/- 0.4 microA X cm-2. This resistance is similar to that obtained for dog or normal human monolayers. The Isc is less than normal human (approximately 3 microA X cm-2) or dog (approximately 10 microA X cm-2) cells. The cystic fibrosis cells resembled normal monolayers in that serosal ouabain and mucosal amiloride inhibited Isc, while mucosal ouabain or serosal amiloride had no effect. They differed from normal human or dog cells in that Isc was not inhibited by bumetanide and the stimulation of Isc by isoproterenol or prostaglandin E2 was greatly reduced or abolished. Addition of isoproterenol depolarized apical membrane potential (psi a) and decreased fractional resistance (fR) in normal human and dog but had no effect on psi a or fR in cystic fibrosis cells. Reduction of mucosal chloride from 120 to 5 mM by replacement with gluconate increased fR of dog and normal human monolayers and depolarized psi a by 22 (dog) or 30 (human) mV. In cystic fibrosis monolayers, chloride replacement hyperpolarized psi a by 2 mV and had little effect on fR. These results suggest that the primary defect in cystic fibrosis is reduced apical membrane chloride conductance. PMID:3862125

  7. IgG antibodies to Aspergillus fumigatus in cystic fibrosis: a laboratory correlate of disease activity.

    PubMed Central

    Forsyth, K D; Hohmann, A W; Martin, A J; Bradley, J

    1988-01-01

    Serum was collected from 50 patients with cystic fibrosis, and IgG antibodies to Aspergillus fumigatus were measured by enzyme linked immunosorbent assay (ELISA). In addition, total IgE and Aspergillus specific IgE antibodies were measured in 41 of the 50. A close association was found between pulmonary function and clinical state, and IgG antibodies to Aspergillus. There was no association between pulmonary function or clinical state and IgE antibodies. It is postulated that in patients with cystic fibrosis, Aspergillus fumigatus may contribute to deterioration in pulmonary function by local pathogenicity, or by hypersensitivity mechanisms mediated by IgG. PMID:3046514

  8. Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis

    PubMed Central

    2012-01-01

    Background Liver fibrosis is a major health problem worldwide and poses a serious obstacle for cell based therapies. Mesenchymal stem cells (MSCs) are multipotent and important candidate cells for future clinical applications however success of MSC therapy depends upon their homing and survival in recipient organs. This study was designed to improve the repair potential of MSCs by transplanting them in sodium nitroprusside (SNP) pretreated mice with CCl4 induced liver fibrosis. Methods SNP 100 mM, a nitric oxide (NO) donor, was administered twice a week for 4 weeks to CCl4-injured mice. MSCs were isolated from C57BL/6 wild type mice and transplanted in the left lateral lobe of the liver in experimental animals. After 4 weeks, animals were sacrificed and liver improvement was analyzed. Analysis of fibrosis by qRT-PCR and sirius red staining, homing, bilirubin and alkaline phosphatase (ALP) serum levels between different treatment groups were compared to control. Results Liver histology demonstrated enhanced MSCs homing in SNP-MSCs group compared to MSCs group. The gene expression of fibrotic markers; αSMA, collagen 1α1, TIMP, NFκB and iNOS was down regulated while cytokeratin 18, albumin and eNOS was up-regulated in SNP-MSCs group. Combine treatment sequentially reduced fibrosis in SNP-MSCs treated liver compared to the other treatment groups. These results were also comparable with reduced serum levels of bilirubin and ALP observed in SNP-MSCs treated group. Conclusion This study demonstrated that NO effectively augments MSC ability to repair liver fibrosis induced by CCl4 in mice and therefore is a better treatment regimen to reduce liver fibrosis. PMID:22533821

  9. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension

    PubMed Central

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F.; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G.; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A.; Le, Thanh-Thuy T.; Johnston, Richard A.; Xia, Yang; Eltzschig, Holger K.; Blackburn, Michael R.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2Bf/f-LysMCre) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2Bf/f-LysMCre mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.—Karmouty-Quintana, H., Philip, K., Acero, L. F., Chen, N.-Y., Weng, T., Molina, J. G., Luo, F., Davies, J., Le, N.-B., Bunge, I., Volcik, K. A., Le, T.-T. T., Johnston, R. A., Xia, Y., Eltzschig, H. K., Blackburn, M. R. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension. PMID:25318478

  10. Bone Marrow-Derived Cells Contribute to Fibrosis in the Chronically Failing Heart

    PubMed Central

    Chu, Po-Yin; Mariani, Justin; Finch, Samara; McMullen, Julie R.; Sadoshima, Junichi; Marshall, Tanneale; Kaye, David M.

    2010-01-01

    Cardiac fibrosis contributes significantly to the phenotype of the chronically failing heart. It is not clear whether in this setting the fibrosis is contributed by native cardiac fibroblasts or alternatively by recruitment of cells arising from the bone marrow. We aimed to determine the contribution of bone marrow-derived cells to cardiac fibrosis in the failing heart and to investigate potentially contributing cytokines. Bone marrow-derived fibrocyte recruitment to the failing heart was studied in a transgenic (Mst1 mice) model of dilated cardiomyopathy. In conjunction, we examined the role of stromal-derived factor-1 (SDF-1), a key chemoattractant, by assessing myocardial expression and secretion by cardiomyocytes and in clinical samples. Bone marrow-derived cells were recruited in significantly greater numbers in Mst1 versus control mice (P < 0.001), contributing 17 ± 4% of the total fibroblast load in heart failure. Patients with heart failure had higher plasma levels of SDF-1 than healthy control subjects (P < 0.01). We found that cardiomyocytes constitutively secrete SDF-1, which is significantly up-regulated by angiotensin II. SDF-1 was shown to increases cardiac fibroblast migration by 59% (P < 0.05). Taken together, our data suggest that recruitment of bone marrow-derived cells under the influence of factors, including SDF-1, may play an important role in the pathogenesis of cardiac fibrosis in heart failure. PMID:20150435

  11. Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease

    PubMed Central

    Oakland, Mayumi; Sinn, Patrick L; McCray Jr, Paul B

    2012-01-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  12. Advances in cell and gene-based therapies for cystic fibrosis lung disease.

    PubMed

    Oakland, Mayumi; Sinn, Patrick L; McCray, Paul B

    2012-06-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  13. A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells

    PubMed Central

    Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl−) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl− transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl− channels to mediate Cl− transport across lipid bilayer membranes is capable of restoring Cl− permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl− channel dysfunction. PMID:22514656

  14. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  15. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations. PMID:27279218

  16. Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis

    PubMed Central

    2011-01-01

    Hyaluronidases (HYALs) comprise a group of enzymes that degrade hyaluronic acid (HA). In this report, we reveal that a single intranasal inoculation of HYAL induces an increase in mononuclear cells within the bronchoalveolar space demonstrating a mesenchymal-like phenotype, expressing stem cell antigen-1 (SCA-1), CD44 and CD73 but not CD34, CD45, CD3, CD4, CD8 or CD19. This influx of mesenchymal stem cell (MSC)-like cells was dependent on leukotriene production within the lung parenchyma. These findings prompted experiments demonstrating that HYAL treatment potently blocked bleomycin-induced lung injury and fibrosis while decreasing transforming growth factor (TGF)-β production and collagen deposition. These data suggest that HYAL is a novel and promising tool to use autologous MSC-like cells in the treatment of pulmonary fibrosis. PMID:21232095

  17. Tamibarotene Ameliorates Bleomycin-Induced Dermal Fibrosis by Modulating Phenotypes of Fibroblasts, Endothelial Cells, and Immune Cells.

    PubMed

    Toyama, Tetsuo; Asano, Yoshihide; Akamata, Kaname; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Ichimura, Yohei; Shudo, Koichi; Sato, Shinichi; Kadono, Takafumi

    2016-02-01

    Tamibarotene (Am80) is a synthetic retinoid that modulates the pathologic processes of various autoimmune and inflammatory diseases and their animal models. We here investigated the therapeutic potential of Am80 against systemic sclerosis using its animal models. Am80 significantly attenuated dermal and hypodermal fibrosis in bleomycin (BLM)-treated mice and tight skin 1 mice, respectively. Consistently, Am80 significantly suppressed the expression of various molecules related to tissue fibrosis, including transforming growth factor-β1, connective tissue growth factor, IL-4, IL-10, IL-13, IL-17A, tumor necrosis factor-α, IFN-γ, and monocyte chemotactic protein 1 in the lesional skin of BLM-treated mice. Furthermore, Am80 decreased the proportion of effector T cells, while increasing that of naïve T cells among CD4+ T cells in the draining lymph nodes of BLM-treated mice. Moreover, a series of BLM-induced pathologic events, including endothelial-to-mesenchymal transition; ICAM-1 expression in endothelial cells; the infiltration of macrophages, mast cells, and lymphocytes; and M2 macrophage differentiation, were attenuated by Am80. Importantly, Am80 directly reversed the profibrotic phenotype of transforming growth factor-β1-treated dermal fibroblasts, suppressed ICAM-1 expression in endothelial cells, and promoted M1 macrophage differentiation in vitro. Collectively, Am80 inhibits the development of experimental dermal fibrosis by reversing the profibrotic phenotype of various cell types and would be a candidate for therapeutic drugs against dermal fibrosis of systemic sclerosis. PMID:26967475

  18. Human Amnion-Derived Mesenchymal Stem Cell Transplantation Ameliorates Liver Fibrosis in Rats

    PubMed Central

    Kubo, Kimitoshi; Ohnishi, Shunsuke; Hosono, Hidetaka; Fukai, Moto; Kameya, Ayano; Higashi, Ryosuke; Yamada, Takahiro; Onishi, Reizo; Yamahara, Kenichi; Takeda, Hiroshi; Sakamoto, Naoya

    2015-01-01

    Background Mesenchymal stem cells (MSCs) are a valuable cell source in regenerative medicine. Recently, several studies have shown that MSCs can be easily isolated from human amnion. In this study, we investigated the therapeutic effect of transplantation of human amnion-derived MSCs (hAMSCs) in rats with liver fibrosis. Methods Liver fibrosis was induced by an intraperitoneal injection of 2 mL/kg of 50% carbon tetrachloride twice a week for 6 weeks. At 3 weeks, hAMSCs (1 × 106 cells) were transplanted intravenously. Rats were sacrificed at 7 weeks, and histological analyses and quantitative reverse-transcription polymerase chain reaction were performed. In vitro experiments were conducted to investigate the effect of hAMSCs on the activation of Kupffer cells. Results Transplantation of hAMSCs significantly reduced the fibrotic area, deposition of type-I collagen, the number of α-smooth muscle actin–positive hepatic stellate cells, and CD68-positive Kupffer cells in the livers. messenger RNA expression of α-smooth muscle actin and tissue inhibitor of metalloproteinase-1 was significantly decreased and the expression of matrix metalloproteinase-9 and hepatocyte growth factor was significantly increased in the liver of hAMSC-treated rats. Transplantation of hAMSCs at 3 weeks plus 5 weeks did not have an additive effect. In vitro experiments demonstrated that Kupffer cell activation induced by lipopolysaccharide was significantly decreased by culturing with conditioned medium obtained from hAMSCs. Conclusions Transplantation of hAMSCs provided significant improvement in a rat model of liver fibrosis, possibly through the inhibition of Kupffer cell and hepatic stellate cell activation. hAMSCs may be a potential new treatment for liver fibrosis.

  19. Early infiltration of p40IL12+CCR7+CD11b+ cells is critical for fibrosis development

    PubMed Central

    Correa‐Costa, Matheus; Azevedo, Hatylas; Silva, Reinaldo Correia; Cruz, Mario Costa; Almeida, Maira Estanislau Soares; Hiyane, Meire Ioshie; Moreira‐Filho, Carlos Alberto; Santos, Marinilce Fagundes; Perez, Katia Regina; Cuccovia, Iolanda Midea; Camara, Niels Olsen Saraiva

    2016-01-01

    Abstract Introduction Macrophages are heterogeneous and thus can be correlated with distinct tissue outcomes after injury. Conflicting data have indicated that the M2‐related phenotype directly triggers fibrosis. Conversely, we hypothesize here that the inflammatory milieu provided by early infiltration of pro‐inflammatory macrophages dictates tissue scarring after injury. Methods and Results We first determined that tissue‐localized macrophages exhibit a pro‐inflammatory phenotype (p40IL12+CCR7+CD11b+) during the early phase of a chronic injury model, in contrast to a pro‐resolving phenotype (Arg1+IL10+CD206+CD11b+) at a later stage. Then, we evaluated the effects of injecting macrophages differentiated in vitro in the presence of IFNγ + LPS or IL4 + IL13 or non‐differentiated macrophages (hereafter, M0) on promoting inflammation and progression of chronic injury in macrophage‐depleted mice. In addition to enhancing the expression of pro‐inflammatory cytokines, the injection of M (IFNγ + LPS), but not M (IL4 + IL13) or M0, accentuated fibrosis while augmenting levels of anti‐inflammatory molecules, increasing collagen deposition and impairing organ function. We observed a similar profile after injection of sorted CCR7+CD11b+ cells and a more pronounced effect of M (IFNγ + LPS) cells originated from Stat6−/− mice. The injection of M (IFNγ + LPS) cells was associated with the up‐regulation of inflammation‐ and fibrosis‐related proteins (Thbs1, Mmp7, Mmp8, and Mmp13). Conclusions Our results suggest that pro‐inflammatory macrophages promote microenvironmental changes that may lead to fibrogenesis by inducing an inflammatory milieu that alters a network of extracellular‐related genes, culminating in tissue fibrosis. PMID:27621813

  20. Cell cycle dependence of ACE-2 explains downregulation in idiopathic pulmonary fibrosis.

    PubMed

    Uhal, Bruce D; Dang, MyTrang; Dang, Vinh; Llatos, Roger; Cano, Esteban; Abdul-Hafez, Amal; Markey, Jonathan; Piasecki, Christopher C; Molina-Molina, Maria

    2013-07-01

    Alveolar epithelial type II cells, a major source of angiotensin-converting enzyme (ACE)-2 in the adult lung, are normally quiescent but actively proliferate in lung fibrosis and downregulate this protective enzyme. It was, therefore, hypothesised that ACE-2 expression might be related to cell cycle progression. To test this hypothesis, ACE-2 mRNA levels, protein levels and enzymatic activity were examined in fibrotic human lungs and in the alveolar epithelial cell lines A549 and MLE-12 studied at postconfluent (quiescent) versus subconfluent (proliferating) densities. ACE-2 mRNA, immunoreactive protein and enzymatic activity were all high in quiescent cells, but were severely downregulated or absent in actively proliferating cells. Upregulation of the enzyme in cells that were progressing to quiescence was completely inhibited by the transcription blocker actinomycin D or by SP600125, an inhibitor of c-Jun N-terminal kinase (JNK). In lung biopsy specimens obtained from patients with idiopathic pulmonary fibrosis, immunoreactive enzyme was absent in alveolar epithelia that were positive for proliferation markers, but was robustly expressed in alveolar epithelia devoid of proliferation markers. These data explain the loss of ACE-2 in lung fibrosis and demonstrate cell cycle-dependent regulation of this protective enzyme by a JNK-mediated transcriptional mechanism. PMID:23100504

  1. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-01

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases. PMID:26297989

  2. Cystic Fibrosis

    MedlinePlus

    ... and Diseases > Lung Disease Lookup > Cystic Fibrosis Cystic Fibrosis Cystic Fibrosis (CF) is an inherited disease that ... quality of life has improved. Learn About Cystic Fibrosis Cystic fibrosis is a genetic (inherited) condition that ...

  3. Spontaneous Lung Dysfunction and Fibrosis in Mice Lacking Connexin 40 and Endothelial Cell Connexin 43

    PubMed Central

    Koval, Michael; Billaud, Marie; Straub, Adam C.; Johnstone, Scott R.; Zarbock, Alexander; Duling, Brian R.; Isakson, Brant E.

    2011-01-01

    Gap junction proteins (connexins) facilitate intercellular communication and serve several roles in regulation of tissue function and remodeling. To examine the physiologic effects of depleting two prominent endothelial connexins, Cx40 and Cx43, transgenic mice were generated by breeding Cx40-deficient mice (Cx40−/−) with a vascular endothelial cell (VEC)-specific Cx43-deficient mouse strain (VEC Cx43−/−) to produce double-connexin knockout mice (VEC Cx43−/−/Cx40−/−). The life span in VEC Cx43−/−/Cx40−/− mice was dramatically shortened, which correlated with severe spontaneous lung abnormalities as the mice aged including increased fibrosis, aberrant alveolar remodeling, and increased lung fibroblast content. Moreover, VEC Cx43−/−/Cx40−/− mice exhibited cardiac hypertrophy and hypertension. Because VEC Cx43−/−/Cx40−/− mice demonstrated phenotypic hallmarks that were remarkably similar to those in mice deficient in caveolin-1, pulmonary caveolin expression was examined. Lungs from VEC Cx43−/−/Cx40−/− mice demonstrated significantly decreased expression of caveolin-1 and caveolin-2. This suggests that expression of caveolin-1 may be linked to expression of Cx40 and endothelial Cx43. Moreover, the phenotype of caveolin-1−/− mice and VEC Cx43−/−/Cx40−/− mice may arise via a common mechanism. PMID:21641379

  4. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  5. Reversal of Hepatic Fibrosis by Human CD34(+) Stem/Progenitor Cell Transplantation in Rats.

    PubMed

    Abdel Aziz, M T; El Asmar, Mf; Mostafa, S; Salama, H; Atta, H M; Mahfouz, S; Roshdy, N K; Rashed, L A; Sabry, D; Hasan, N; Mahmoud, M; Elderwy, D

    2010-05-01

    Human umbilical cord blood (UCB) cells have many advantages as grafts for cell transplantation. Here, we transplant UCB cells into injured liver fibrosis, investigated the hepatic potential of UCB cells both in vitro and in vivo. a CCl4 rat model with liver fibrosis was prepared. Human (UCB) CD34(+) stem cell was separated with MACS (magnetic cell sorting). Cells were cultured with and without hepatic differentiation medium. Rats were divided into 3 groups; group (1): control healthy, group (2): CCl4 injected rats and group 3: CCl4/CD34(+)injected rats with human differentiated and undifferentiated cells through intrahepatic (IH) and intravenous (IV) routes. A significant elevation was detected in serum albumin in CCl4/CD34(+) compared to the CCl4 group (p<0.001). Serum ALT, had a significant decrease of its level after administration of stem cells compared to the CCl4 group (p<0.001). However, it was still significantly higher than control (p<0.001) with no significant difference between the groups that received stem cells. Histopathological examination of liver tissue showed that stem cells have a significant antifibrotic effect. Concerning gene expression, the collagen gene (rat) was highly expressed in the CCl4 group whereas its expression was significantly decreased after administration of stem cells. Human albumin and matrix metalloproteinase (MMP2) genes were expressed in liver tissues in the groups that received stem cells. Highest expression was in the group that received un-differentiated cells I.V. human UCB CD34(+) stem cells can ameliorate liver fibrosis in rats. PMID:24855554

  6. Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells

    PubMed Central

    Wang, Ning; Xu, Qihe; Tan, Hor Yue; Hong, Ming; Li, Sha; Yuen, Man-Fung; Feng, Yibin

    2016-01-01

    Aim. To examine the effect of berberine (BBR) on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC). Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL-) induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibited hepatic fibrosis induced by BDL in rats. It exhibited cytotoxicity to activated HSC at doses nontoxic to hepatocytes. High doses of BBR induced apoptosis of activated HSC, which was mediated by loss of mitochondrial membrane potential and Bcl-2/Bax imbalance. Low doses of BBR suppressed activation of HSC as evidenced by the inhibition of α-smooth muscle actin (α-SMA) expression and cell motility. BBR did not affect Smad2/3 phosphorylation but significantly activated 5′ AMP-activated protein kinase (AMPK) signalling, which was responsible for the transcriptional inhibition by BBR of profibrogenic factors α-SMA and collagen in HSC. Conclusion. BBR is a promising agent for treating liver fibrosis through multiple mechanisms, at least partially by directly targeting HSC and by inhibiting the AMPK pathway. Its value as an antifibrotic drug in patients with liver disease deserves further investigation. PMID:27239214

  7. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    PubMed Central

    Almeda-Valdes, Paloma; Aguilar Olivos, Nancy E.; Barranco-Fragoso, Beatriz; Uribe, Misael; Méndez-Sánchez, Nahum

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs) in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance. PMID:26339640

  8. Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells

    PubMed Central

    Crane, Ana M.; Kramer, Philipp; Bui, Jacquelin H.; Chung, Wook Joon; Li, Xuan Shirley; Gonzalez-Garay, Manuel L.; Hawkins, Finn; Liao, Wei; Mora, Daniela; Choi, Sangbum; Wang, Jianbin; Sun, Helena C.; Paschon, David E.; Guschin, Dmitry Y.; Gregory, Philip D.; Kotton, Darrell N.; Holmes, Michael C.; Sorscher, Eric J.; Davis, Brian R.

    2015-01-01

    Summary Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources—potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC) lines. We then utilized zinc-finger nucleases (ZFNs), designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR). We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells. PMID:25772471

  9. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs.

    PubMed

    Firth, Amy L; Menon, Tushar; Parker, Gregory S; Qualls, Susan J; Lewis, Benjamin M; Ke, Eugene; Dargitz, Carl T; Wright, Rebecca; Khanna, Ajai; Gage, Fred H; Verma, Inder M

    2015-09-01

    Lung disease is a major cause of death in the United States, with current therapeutic approaches serving only to manage symptoms. The most common chronic and life-threatening genetic disease of the lung is cystic fibrosis (CF) caused by mutations in the cystic fibrosis transmembrane regulator (CFTR). We have generated induced pluripotent stem cells (iPSCs) from CF patients carrying a homozygous deletion of F508 in the CFTR gene, which results in defective processing of CFTR to the cell membrane. This mutation was precisely corrected using CRISPR to target corrective sequences to the endogenous CFTR genomic locus, in combination with a completely excisable selection system, which significantly improved the efficiency of this correction. The corrected iPSCs were subsequently differentiated to mature airway epithelial cells where recovery of normal CFTR expression and function was demonstrated. This isogenic iPSC-based model system for CF could be adapted for the development of new therapeutic approaches. PMID:26299960

  10. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells.

    PubMed

    Crane, Ana M; Kramer, Philipp; Bui, Jacquelin H; Chung, Wook Joon; Li, Xuan Shirley; Gonzalez-Garay, Manuel L; Hawkins, Finn; Liao, Wei; Mora, Daniela; Choi, Sangbum; Wang, Jianbin; Sun, Helena C; Paschon, David E; Guschin, Dmitry Y; Gregory, Philip D; Kotton, Darrell N; Holmes, Michael C; Sorscher, Eric J; Davis, Brian R

    2015-04-14

    Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources-potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC) lines. We then utilized zinc-finger nucleases (ZFNs), designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR). We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells. PMID:25772471

  11. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung.

    PubMed

    Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; Lin, Sijie; Meng, Huan; Chung, Choong-Heui; George, Saji; Zhang, Haiyuan; Wang, Meiying; Li, Ning; Yang, Yang; Castranova, Vincent; Mitra, Somenath; Bonner, James C; Nel, André E

    2011-12-27

    We developed a dispersal method for multiwalled carbon nanotubes (MWCNTs) that allows quantitative assessment of dispersion on profibrogenic responses in tissue culture cells and in mouse lung. We demonstrate that the dispersal of as-prepared (AP), purified (PD), and carboxylated (COOH) MWCNTs by bovine serum albumin (BSA) and dipalmitoylphosphatidylcholine (DPPC) influences TGF-β1, PDGF-AA, and IL-1β production in vitro and in vivo. These biomarkers were chosen based on their synergy in promoting fibrogenesis and cellular communication in the epithelial-mesenchymal cell trophic unit in the lung. The effect of dispersal was most noticeable in AP- and PD-MWCNTs, which are more hydrophobic and unstable in aqueous buffers than hydrophilic COOH-MWCNTs. Well-dispersed AP- and PD-MWCNTs were readily taken up by BEAS-2B, THP-1 cells, and alveolar macrophages (AM) and induced more prominent TGF-β1 and IL-1β production in vitro and TGF-β1, IL-1β, and PDGF-AA production in vivo than nondispersed tubes. Moreover, there was good agreement between the profibrogenic responses in vitro and in vivo as well as the ability of dispersed tubes to generate granulomatous inflammation and fibrosis in airways. Tube dispersal also elicited more robust IL-1β production in THP-1 cells. While COOH-MWCNTs were poorly taken up in BEAS-2B and induced little TGF-β1 production, they were bioprocessed by AM and induced less prominent collagen deposition at sites of nongranulomatous inflammation in the alveolar region. Taken together, these results indicate that the dispersal state of MWCNTs affects profibrogenic cellular responses that correlate with the extent of pulmonary fibrosis and are of potential use to predict pulmonary toxicity. PMID:22047207

  12. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis.

    PubMed

    Mahavadi, Poornima; Henneke, Ingrid; Ruppert, Clemens; Knudsen, Lars; Venkatesan, Shalini; Liebisch, Gerhard; Chambers, Rachel C; Ochs, Matthias; Schmitz, Gerd; Vancheri, Carlo; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2014-11-01

    Amiodarone (AD) is a highly efficient antiarrhythmic drug with potentially serious side effects. Severe pulmonary toxicity is reported in patients receiving AD even at low doses and may cause interstitial pneumonia as well as lung fibrosis. Apoptosis of alveolar epithelial type II cells (AECII) has been suggested to play an important role in this disease. In the current study, we aimed to establish a murine model of AD-induced lung fibrosis and analyze surfactant homeostasis, lysosomal, and endoplasmic reticulum (ER) stress in this model. AD/vehicle was instilled intratracheally into C57BL/6 mice, which were sacrificed on days 7, 14, 21, and 28. Extent of lung fibrosis development was assessed by trichrome staining and hydroxyproline measurement. Cytotoxicity was assessed by lactate dehydrogenase assay. Phospholipids (PLs) were analyzed by mass spectrometry. Surfactant proteins (SP) and markers for apoptosis, lysosomal, and ER stress were studied by Western blotting and immunohistochemistry. AECII morphology was evaluated by electron microscopy. Extensive lung fibrosis and AECII hyperplasia were observed in AD-treated mice already at day 7. Surfactant PL and SP accumulated in AECII over time. In parallel, induction of apoptosis, lysosomal, and ER stress was encountered in AECII of mice lungs and in MLE12 cells treated with AD. In vitro, siRNA-mediated knockdown of cathepsin D did not alter the AD-induced apoptotic response. Our data suggest that mice exposed to intratracheal AD develop severe pulmonary fibrosis, exhibit extensive surfactant alterations and cellular stress, but AD-induced AECII apoptosis is not mediated primarily via cathepsin D. PMID:25163675

  13. Genetic Deletion of the Stromal Cell Marker CD248 (Endosialin) Protects against the Development of Renal Fibrosis

    PubMed Central

    Smith, Stuart William; Croft, Adam Paul; Morris, Hannah Louise; Naylor, Amy Jane; Huso, David Leonard; Isacke, Clare Marie; Savage, Caroline Olivia Susan; Buckley, Christopher Dominic

    2016-01-01

    Background Tissue fibrosis and microvascular rarefaction are hallmarks of progressive renal disease. CD248 is a transmembrane glycoprotein expressed by key effector cells within the stroma of fibrotic kidneys including pericytes, myofibroblasts and stromal fibroblasts. In human disease, increased expression of CD248 by stromal cells predicts progression to end-stage renal failure. We therefore, hypothesized that the genetic deletion of the CD248 gene would protect against fibrosis following kidney injury. Methods Using the unilateral ureteral obstruction (UUO) model of renal fibrosis, we investigated the effect of genetic deletion of CD248 on post obstructive kidney fibrosis. Results CD248 null mice were protected from fibrosis and microvascular rarefaction following UUO. Although the precise mechanism is not known, this may to be due to a stabilizing effect of pericytes with less migration and differentiation of pericytes toward a myofibroblast phenotype in CD248-/- mice. CD248-/- fibroblasts also proliferated less and deposited less collagen in vitro. Conclusion These studies suggest that CD248 stromal cells have a pathogenic role in renal fibrosis and that targeting CD248 is effective at inhibiting both microvascular rarefaction and renal fibrosis through modulation of pericyte and stromal cell function. PMID:26633297

  14. Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation

    PubMed Central

    Yang, Juan; Zhu, Fengming; Wang, Xiaohui; Yao, Weiqi; Wang, Meng; Pei, Guangchang; Hu, Zhizhi; Guo, Yujiao; Zhao, Zhi; Wang, Pengge; Mou, Jingyi; Sun, Jie; Zeng, Rui; Xu, Gang; Liao, Wenhui; Yao, Ying

    2016-01-01

    AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis. PMID:26900858

  15. Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation.

    PubMed

    Yang, Juan; Zhu, Fengming; Wang, Xiaohui; Yao, Weiqi; Wang, Meng; Pei, Guangchang; Hu, Zhizhi; Guo, Yujiao; Zhao, Zhi; Wang, Pengge; Mou, Jingyi; Sun, Jie; Zeng, Rui; Xu, Gang; Liao, Wenhui; Yao, Ying

    2016-01-01

    AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis. PMID:26900858

  16. Reduced Mucosal Associated Invariant T-Cells Are Associated with Increased Disease Severity and Pseudomonas aeruginosa Infection in Cystic Fibrosis

    PubMed Central

    Smith, Daniel J.; Hill, Geoffrey R.; Bell, Scott C.; Reid, David W.

    2014-01-01

    Background Primary defects in host immune responses have been hypothesised to contribute towards an inability of subjects with cystic fibrosis (CF) to effectively clear pulmonary infections. Innate T-lymphocytes provide rapid pathogen-specific responses prior to the development of classical MHC class I and II restricted T-cell responses and are essential to the initial control of pulmonary infection. We aimed to examine the relationship between peripheral blood lymphocyte phenotype and clinical outcomes in adults with CF. Methods We studied 41 subjects with CF and 22, age matched, non-smoking healthy control subjects. Lymphocytes were extracted from peripheral blood samples and phenotyped by flow-cytometry. Lymphocyte phenotype was correlated with sputum microbiology and clinical parameters. Results In comparison to healthy control subjects, mucosal associated invariant T (MAIT)-lymphocytes were significantly reduced in the peripheral blood of subjects with CF (1.1% versus 2.0% of T-lymphocytes, P = 0.002). MAIT cell concentration was lowest in CF subjects infected with P. aeruginosa and in subjects receiving treatment for a pulmonary exacerbation. Furthermore a reduced MAIT cell concentration correlated with severity of lung disease. Conclusion Reduced numbers of MAIT cells in subjects with CF were associated with P. aeruginosa pulmonary infection, pulmonary exacerbations and more severe lung disease. These findings provide the impetus for future studies examining the utility of MAIT cells in immunotherapies and vaccine development. Longitudinal studies of MAIT cells as biomarkers of CF pulmonary infection are awaited. PMID:25296025

  17. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation.

    PubMed

    Beliveau, Pascale; Cheriet, Farida; Anderson, Stasia A; Taylor, Joni L; Arai, Andrew E; Hsu, Li-Yueh

    2015-10-01

    Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging can detect the presence of myocardial infarction from ischemic cardiomyopathies (ICM). However, it is more challenging to detect diffuse myocardial fibrosis from non-ischemic cardiomyopathy (NICM) with this technique due to more subtle and heterogeneous enhancement of the myocardium. This study investigates whether high-resolution LGE CMR can detect age-related myocardial fibrosis using quantitative texture analysis with histological validation. LGE CMR of twenty-four rat hearts (twelve 6-week-old and twelve 2-year-old) was performed using a 7T MRI scanner. Picrosirius red was used as the histopathology reference for collagen staining. Fibrosis in the myocardium was quantified with standard deviation (SD) threshold methods from the LGE CMR images and 3D contrast texture maps that were computed from gray level co-occurrence matrix of the CMR images. There was a significant increase of collagen fibers in the aged compared to the young rat histology slices (2.60±0.27 %LV vs. 1.24±0.29 %LV, p<0.01). Both LGE CMR and texture images showed a significant increase of myocardial fibrosis in the elderly compared to the young rats. Fibrosis in the LGE CMR images correlated strongly with histology with the 3 SD threshold (r=0.84, y=0.99x+0.00). Similarly, fibrosis in the contrast texture maps correlated with the histology using the 4 SD threshold (r=0.89, y=1.01x+0.00). High resolution ex-vivo LGE CMR can detect the presence of diffuse fibrosis that naturally developed in elderly rat hearts. Our results suggest that texture analysis may improve the assessment of myocardial fibrosis in LGE CMR images. PMID:26313531

  18. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis.

    PubMed

    Kröger, Nicolaus; Zabelina, Tatjana; Alchalby, Haefaa; Stübig, Thomas; Wolschke, Christine; Ayuk, Francis; von Hünerbein, Natascha; Kvasnicka, Hans-Michael; Thiele, Jürgen; Kreipe, Hans-Heinrich; Büsche, Guntram

    2014-06-01

    We correlate regression of bone marrow fibrosis (BMF) on day 30 and 100 after dose- reduced allogeneic stem cell transplantation (allo-SCT) in 57 patients with primary or post-essential thrombocythemia/polycythemia vera myelofibrosis with graft function and survival. The distribution of International Prognostic Scoring System (IPSS) risk score categories was 1 patient with low risk, 5 patients with intermediate-1 risk, 18 patients with intermediate-2 risk, and 33 patients with high risk. Before allo-SCT, 41 patients (72%) were classified as XXX [myclofibrosis (MF)]-3 and 16 (28%) were classified as MF-2 according to the World Health Organization criteria. At postengraftment day +30 (±10 days), 21% of the patients had near-complete or complete regression of BMF (MF-0/-1), and on day +100 (±20 days), 54% were MF-0/-1. The 5-year overall survival rate at day +100 was 96% in patients with MF-0/-1 and 57% for those with MF-2/-3 (P = .04). There was no difference in BMF regression at day +100 between IPSS high-risk and low/intermediate-risk patients. Complete donor cell chimerism at day +100 was seen in 81% of patients with MF-0/-1 and in 31% of those with MF-2/-3. Patients with MF-2/-3 at day +100 were more likely to be transfusion-dependent for either RBCs (P = .014) or platelets (P = .018). Rapid BMF regression after reduced-intensity conditioning allo-SCT resulted in a favorable survival independent of IPSS risk score at transplantation. PMID:24589549

  19. Stromal Fibrosis and Expression of Matricellular Proteins Correlate With Histological Grade of Intraductal Papillary Mucinous Neoplasm of the Pancreas

    PubMed Central

    Kakizaki, Yasuharu; Makino, Naohiko; Tozawa, Tomohiro; Honda, Teiichiro; Matsuda, Akiko; Ikeda, Yushi; Ito, Miho; Saito, Yoshihiko; Kimura, Wataru; Ueno, Yoshiyuki

    2016-01-01

    Objective The aim of the study was to clarify the correlation between the microenvironmental factors and histological grade in intraductal papillary mucinous neoplasm (IPMN). Methods We investigated 65 IPMNs resected at Yamagata University Hospital between 2000 and 2011, and all cases were categorized to low-inter (including low- and intermediate-grade dysplasia) and high-inv (including high-grade dysplasia and IPMN with an associated invasive carcinoma) groups. We compared between the 2 groups pathologically with regard to fibrosis and the expression of alpha-smooth muscle actin (α-SMA), periostin, and galectin-1 in the periductal stroma of IPMN. Results There were 41 low-inter and 24 high-inv. The subtype was categorized as 22 main duct type (MD-IPMN) and 43 branch duct type (BD-IPMN). The degree of fibrosis and the expression of α-SMA, periostin, and galectin-1 were significantly higher in high-inv than in low-inter within BD-IPMNs. Multivariate logistic regression analysis indicated that high expression of α-SMA (odds ratio, 13.802; 95% confidence interval, 1.108–171.893; P = 0.0414) was a significant independent related factor of high-inv in BD-IPMN. Conclusions Stromal fibrosis and expression of α-SMA, periostin, and galectin-1 are more marked in high-inv than in low-inter within BD-IPMNs, and they could become new markers for determining the indications for surgery in BD-IPMN. PMID:26967452

  20. Graptopetalum Paraguayense Ameliorates Chemical-Induced Rat Hepatic Fibrosis In Vivo and Inactivates Stellate Cells and Kupffer Cells In Vitro

    PubMed Central

    Su, Li-Jen; Chang, Chia-Chuan; Yang, Chih-Hsueh; Hsieh, Shur-Jong; Wu, Yi-Chin; Lai, Jin-Mei; Tseng, Tzu-Ling; Huang, Chi-Ying F.; Hsu, Shih-Lan

    2013-01-01

    Background Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats. Methods Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. Results Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. Conclusions The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis. PMID:23335984

  1. Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis

    PubMed Central

    Zhao, Wei; Li, Jun-Jie; Cao, Da-Yong; Li, Xiao; Zhang, Lin-Ying; He, Yong; Yue, Shu-Qiang; Wang, De-Sheng; Dou, Ke-Feng

    2012-01-01

    AIM: To compare the influence of different transplant sites in bone marrow mesenchymal stem cell (MSC)-based therapy for liver fibrosis. METHODS: MSCs isolated from Sprague Dawley (SD) rats were induced into hepatocyte-like cells. Liver fibrosis in SD rats was induced with carbon tetrachloride. Following hepatocyte induction in vitro, 4’,6-diamidino-2-phenylindole (DAPI)-labeled MSCs were transplanted by intravenous, intrahepatic, and intraperitoneal injection. Histopathological staining, immunohistochemistry, and biochemical analysis were used to compare the morphological and functional liver regeneration among different MSC injection modalities. The expression differences of interleukins, growth factor, extracellular matrix, matrix metalloproteinases, and tissue inhibitor of metalloproteinase were examined by real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). RESULTS: Four days after exposure to hepatocyte differentiation medium, MSCs that did not express hepatocyte markers could express α-fetoprotein, albumin, and cytokeratin 18. The results of histopathological staining, immunohistochemistry, and biochemical analysis indicated that intravenous injection is more effective at rescuing liver failure than other injection modalities. DAPI-labeled cells were found around liver lobules in all three injection site groups, but the intravenous group had the highest number of cells. PCR and ELISA analysis indicated that interleukin-10 (IL-10) was highest in the intravenous group, whereas il1β, il6, tnfα and tgfβ, which can be regulated by IL10 and are promoters of liver fibrosis, were significantly lower than in the other groups. CONCLUSION: MSC administration is able to protect against liver fibrosis. Intravenous injection is the most favorable treatment modality through promotion of IL10 expression. PMID:22416179

  2. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for liver fibrosis. Issues concerning poor MSC survival and engraftment in the fibrotic liver still persist and warrant development of a strategy to increase MSC potency for liver repair. The present study was designed to examine a synergistic role for Interleukin-6 (IL-6) and MSCs therapy in the recovery of carbon tetrachloride (CCl4) induced injured hepatocytes in vitro and in vivo. Methods Injury was induced through 3 mM and 5 mM CCl4 treatment of cultured hepatocytes while fibrotic mouse model was established by injecting 0.5 ml/kg CCl4 followed by treatment with IL-6 and MSCs. Effect of MSCs and IL-6 treatment on injured hepatocytes was determined by lactate dehydrogenase release, RT-PCR for (Bax, Bcl-xl, Caspase3, Cytokeratin 8, NFκB, TNF-α) and annexin V apoptotic detection. Analysis of MSC and IL-6 treatment on liver fibrosis was measured by histopathology, PAS, TUNEL and Sirius red staining, RT-PCR, and liver function tests for Bilirubin and Alkaline Phosphatase (ALP). Results A significant reduction in LDH release and apoptosis was observed in hepatocytes treated with a combination of MSCs and IL-6 concomitant with upregulation of anti-apoptotic gene Bcl-xl expression and down regulation of bax, caspase3, NFκB and TNF-α. Adoptive transfer of MSCs in fibrotic liver pretreated with IL-6 resulted increased MSCs homing and reduced fibrosis and apoptosis. Hepatic functional assessment demonstrated reduced serum levels of Bilirubin and ALP. Conclusion Pretreatment of fibrotic liver with IL-6 improves hepatic microenvironment and primes it for MSC transplantation leading to enhanced reduction of liver injury after fibrosis. Synergistic effect of IL-6 and MSCs seems a favored therapeutic option in attenuation of liver apoptosis and fibrosis accompanied by improved liver function. PMID:23531302

  3. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation‑induced pulmonary fibrosis.

    PubMed

    Choi, Seo-Hyun; Kim, Miseon; Lee, Hae-June; Kim, Eun-Ho; Kim, Chun-Ho; Lee, Yoon-Jin

    2016-05-01

    Lung fibrosis is a major complication in radiation‑induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre‑treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, ‑2 or ‑4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1‑specific inhibitor suppressed radiation‑induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation‑induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  4. Use of mesenchymal stem cells to treat liver fibrosis: Current situation and future prospects

    PubMed Central

    Berardis, Silvia; Dwisthi Sattwika, Prenali; Najimi, Mustapha; Sokal, Etienne Marc

    2015-01-01

    Progressive liver fibrosis is a major health issue for which no effective treatment is available, leading to cirrhosis and orthotopic liver transplantation. However, organ shortage is a reality. Hence, there is an urgent need to find alternative therapeutic strategies. Cell-based therapy using mesenchymal stem cells (MSCs) may represent an attractive therapeutic option, based on their immunomodulatory properties, their potential to differentiate into hepatocytes, allowing the replacement of damaged hepatocytes, their potential to promote residual hepatocytes regeneration and their capacity to inhibit hepatic stellate cell activation or induce their apoptosis, particularly via paracrine mechanisms. The current review will highlight recent findings regarding the input of MSC-based therapy for the treatment of liver fibrosis, from in vitro studies to pre-clinical and clinical trials. Several studies have shown the ability of MSCs to reduce liver fibrosis and improve liver function. However, despite these promising results, some limitations need to be considered. Future prospects will also be discussed in this review. PMID:25624709

  5. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  6. The Potential of Wharton's Jelly Derived Mesenchymal Stem Cells in Treating Patients with Cystic Fibrosis.

    PubMed

    Boruczkowski, D; Gładysz, D; Demkow, U; Pawelec, K

    2015-01-01

    Cystic fibrosis (CF) is a life-threatening autosomal recessive multi-organ disorder with the mean incidence of 0.737 per 10,000 people worldwide. Despite many advances in therapy, patients fail to have a satisfactory quality of life. The end-stage lung disease still accounts for significant mortality and puts patients in the need of lung transplantation. Even though the disease is monogenic, the trials of topical gene transfer into airway epithelial cells have so far been disappointing. It is proven that stem cells can be differentiated into type II alveolar epithelial cells. Wharton's jelly-derived mesenchymal stem cells (MSC) from non-CF carrier third-party donors could be an effective alternative to bone marrow or embryonic stem cells. The harvesting process is an easy and ethically uncontroversial procedure. The MSC cell should be applied through repetitive infusions due to rapid lung epithelial cell turnover. However, the low stem cell incorporation remains a problem. Pre-clinical studies imply that even 6-10% of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) expression could be enough to restore chloride secretion. The route of administration, the optimal dose, as well as the intervals between infusions have yet to be determined. This review discusses the clinical potential of mesenchymal stem cell in CF patients. PMID:25248343

  7. Atrial fibrosis in a chronic murine model of obstructive sleep apnea: mechanisms and prevention by mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background OSA increases atrial fibrillation (AF) risk and is associated with poor AF treatment outcomes. However, a causal association is not firmly established and the mechanisms involved are poorly understood. The aims of this work were to determine whether chronic obstructive sleep apnea (OSA) induces an atrial pro-arrhythmogenic substrate and to explore whether mesenchymal stem cells (MSC) are able to prevent it in a rat model of OSA. Methods A custom-made setup was used to mimic recurrent OSA-like airway obstructions in rats. OSA-rats (n = 16) were subjected to 15-second obstructions, 60 apneas/hour, 6 hours/day during 21 consecutive days. Sham rats (n = 14) were placed in the setup but no obstructions were applied. In a second series of rats, MSC were administered to OSA-rats and saline to Sham-rats. Myocardial collagen deposit was evaluated in Picrosirius-red stained samples. mRNA expression of genes involved in collagen turnover, inflammation and oxidative stress were quantified by real time PCR. MMP-2 protein levels were quantified by Western Blot. Results A 43% greater interstitial collagen fraction was observed in the atria, but not in the ventricles, of OSA-rats compared to Sham-rats (Sham 8.32 ± 0.46% vs OSA 11.90 ± 0.59%, P < 0.01). Angiotensin-I Converting Enzyme (ACE) and Interleukin 6 (IL-6) expression were significantly increased in both atria, while Matrix Metalloproteinase-2 (MMP-2) expression was decreased. MSC administration blunted OSA-induced atrial fibrosis (Sham + Saline 8.39 ± 0.56% vs OSA + MSC 9.57 ± 0.31%, P = 0.11), as well as changes in MMP-2 and IL-6 expression. Interleukin 1-β (IL-1β) plasma concentration correlated to atrial but not ventricular fibrosis. Notably, a 2.5-fold increase in IL-1β plasma levels was observed in the OSA group, which was prevented in rats receiving MSC. Conclusions OSA induces selective atrial fibrosis in a chronic murine model, which can be mediated in part

  8. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression

    PubMed Central

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Rao, Kummara Madhusudana; Park, Soo Yong; Chung, Ildoo; Ha, Chang-Sik; Kim, Sang-Woo; Yun, Yang H.; Jung, Youngmi

    2016-01-01

    Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis. PMID:27001906

  9. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model

    PubMed Central

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K.

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftrtm1UNC mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftrtm1UNC mice and altered the intestinal microbiome similarly in Cftrtm1UNC and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftrtm1UNC mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftrtm1UNC and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftrtm1UNC mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftrtm1UNC mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftrtm1UNC mice. PMID:26754178

  10. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression.

    PubMed

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Rao, Kummara Madhusudana; Park, Soo Yong; Chung, Ildoo; Ha, Chang-Sik; Kim, Sang-Woo; Yun, Yang H; Jung, Youngmi

    2016-01-01

    Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis. PMID:27001906

  11. Vitamin D Attenuates Kidney Fibrosis via Reducing Fibroblast Expansion, Inflammation, and Epithelial Cell Apoptosis.

    PubMed

    Arfian, Nur; Muflikhah, Khusnul; Soeyono, Sri Kadarsih; Sari, Dwi Cahyani Ratna; Tranggono, Untung; Anggorowati, Nungki; Romi, Muhammad Mansyur

    2016-01-01

    Kidney fibrosis is the common final pathway of chronic kidney diseases (CKD). It is characterized by myofibroblast formation, inflammation, and epithelial architecture damage. Vitamin D is known as a renoprotective agent, although the precise mechanism is not well understood. This study aimed to elucidate the effect of vitamin D in fibroblast expansion, inflammation, and apoptosis in kidney fibrosis. We performed unilateral ureteral obstruction (UUO) in male Swiss-Webster background mice (3 months, 30-40 grams) to induce kidney fibrosis. The mice (n=25) were divided into five groups: UUO, 3 groups treated with different oral vitamin D doses (0.125 µg/kg (UUO+VD1), 0.25 µg/kg (UUO+VD2), and 0.5 µg/kg (UUO+VD3), and a Sham operation (SO) group with ethanol 0.2% supplementation. We sacrificed the mice on day14 after the operation and harvested the kidney. We made paraffin sections for histological analysis. Tubular injury and fibrosis were quantified based on periodic acid-Schiff (PAS) and Sirius Red (SR) staining. Immunostaining was done for examination of myofibroblasts (αSMA), fibroblasts (PDGFRβ), TLR4, and apoptosis (TUNEL). We did RNA extraction and cDNA for Reverse transcriptase PCR (RT-PCR) experiment for measuring MCP-1, ICAM-1, TLR4, and collagen 1 expression. TGFβ1 level was quantified using ELISA. We observed a significantly lower levels of fibrosis (p<0.001), tubular injury scores (p<0.001), and myofibroblast areas (p<0.001) in the groups treated with vitamin D compared with the UUO group. The TGFβ1 levels and the fibroblast quantifications were also significantly lower in the former group. However, we did not find any significant difference among the various vitamin D-treated groups. Concerning the dose-independent effect, we only compared the UUO+VD-1 group with SO group and found by TUNEL assay that UUO+VD-1 had a significantly lower epithelial cell apoptosis. RT-PCR analysis showed lower expression of collagen1, as well as inflammation

  12. Presumed prepatellar fibrosis in collegiate wrestlers: imaging findings and clinical correlation.

    PubMed

    Northam, Meredith C; Gaskin, Cree M

    2015-02-01

    Knee pain and injury are common complaints of athletes presenting to the orthopedic clinic. Wrestlers are no exception, and may present more commonly with anterior knee pain because of the nature of their sport. Morel-Lavallée lesions and prepatellar bursitis have been described in the prepatellar region of wrestlers. We report a distinctly different prepatellar finding on MRI, focally prominent and discrete fibrosis in three collegiate wrestlers. This characteristic appearance and clinical setting have already been repeated in our clinical practice; thus, other MRI readers are also likely to encounter this finding, which in our experience can be considered a "don't touch" lesion of no clinical significance. PMID:24997159

  13. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  14. Bone Marrow-Derived Cells in the Pathogenesis of Lung Fibrosis

    PubMed Central

    Moore, Bethany B.; Thannickal, Victor J.; Toews, Galen B.

    2016-01-01

    Progressive pulmonary fibrosis is characterized by failed alveolar reepithelialization and fibroblast/myofibroblast accumulation, with deposition of extracellular matrix. This results in loss of lung elasticity, alveolar collapse and fibrosis, impaired gas exchange and progressive decline in pulmonary function. Myofibroblasts represent an activated, contractile cellular phenotype that are potent producers of collagen and other extracellular matrix proteins. It is generally thought that myofibroblasts derive from local tissue fibroblasts. However, recent evidence suggests a portion of the progenitors for these cells may arise from the bone marrow. Fibrocytes, which share both leukocyte and mesenchymal markers, are found in increased numbers in bone marrow and lung of injured mice. Fibrocytes circulate in blood and are recruited to injured sites via chemotactic signals. Studies with bone marrow chimeric and parabiotic mice suggest that fibroblasts (and in some cases myofibroblasts) arise from circulating bone marrow precursors. Chemokine and chemokine receptor interactions are critical for the recruitment of bone marrow-derived progenitors. Once fibrocytes arrive in injured tissues, local factors induce their differentiation into fibroblasts/myofibroblasts. This review will summarize the experimental findings, supporting a role for the participation of bone marrow-derived cells in animal models of lung fibrosis, and potential implications for the pathogenesis of fibrotic lung diseases.

  15. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  16. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis.

    PubMed

    Elkhafif, Nagwa; El Baz, Hanan; Hammam, Olfat; Hassan, Salwa; Salah, Faten; Mansour, Wafaa; Mansy, Soheir; Yehia, Hoda; Zaki, Ahmed; Magdy, Ranya

    2011-01-01

    The in vivo angiogenic potential of transplanted human umbilical cord blood (UCB) CD133(+) stem cells in experimental chronic hepatic fibrosis induced by murine schistosomiasis was studied. Enriched cord blood-derived CD133(+) cells were cultured in primary medium for 3 weeks. Twenty-two weeks post-Schistosomiasis infection in mice, after reaching the chronic hepatic fibrotic stage, transplantation of stem cells was performed and mice were sacrificed 3 weeks later. Histopathology and electron microscopy showed an increase in newly formed blood vessels and a decrease in the fibrosis known for this stage of the disease. By immunohistochemical analysis the newly formed blood vessels showed positive expression of the human-specific angiogenic markers CD31, CD34 and von Willebrand factor. Few hepatocyte-like polygonal cells showed positive expression of human vascular endothelial growth factor and inducible nitric oxide synthase. The transplanted CD133(+) human stem cells primarily enhanced hepatic angiogenesis and neovascularization and contributed to repair in a paracrine manner by creating a permissive environment that enabled proliferation and survival of damaged cells rather than by direct differentiation to hepatocytes. A dual advantage of CD133(+) cell therapy in hepatic disease is suggested based on its capability of hematopoietic and endothelial differentiation. PMID:21143528

  17. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  18. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  19. MR tracking of SPIO-labeled mesenchymal stem cells in rats with liver fibrosis could not monitor the cells accurately.

    PubMed

    Zhou, Bin; Li, Dan; Qian, Jiesheng; Li, Zhengran; Pang, Pengfei; Shan, Hong

    2015-01-01

    Our previous study showed that in vivo magnetic resonance (MR) imaging is effective in tracking superparamagnetic iron oxide (SPIO)-labeled bone marrow mesenchymal stem cells (BMSCs) in rats with liver fibrosis. SPIO-labeling-induced signal reduction on MR images was completely reversed within 15 days after transplantation. It is still unclear whether the signal changes in MR imaging could reflect the number of transplanted cells in the liver. In the present study, BMSCs of male rats were doubly labeled with enhanced green fluorescent protein (EGFP) and SPIO and injected intravascularly into female rats with liver fibrosis. At different time points after injection, MR imaging was performed. The distribution of SPIO particles and EGFP-positive cells was determined by Prussian blue staining and EGFP immunohistochemistry, respectively. The distribution of transplanted BMSCs in various organs was assessed by detection of the SRY gene using real-time quantitative PCR. At 15 days post transplantation, the numbers of transplanted cells were significantly decreased in the lung, kidney, spleen and muscle, but not liver and heart, in comparison with those at 7 days after transplantation. EGFP staining-positive cells were observed in the liver intralobular parenchyma, while Prussian blue staining was negative at 42 days after transplantation. Taken together, SPIO particles and EGFP-labeled BMSCs show a different tissue distribution pattern in rats with liver fibrosis after a long-term period of monitoring. SPIO-based MR imaging may not be suitable for long-term tracking of transplanted BMSCs in vivo. PMID:26153152

  20. Elevated red cell distribution width is associated with advanced fibrosis in NAFLD

    PubMed Central

    Kim, Hwa Mok; Kim, Bum Soo; Kim, Byung Ik; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Hong Joo; Park, Dong Il; Park, Jung Ho; Joo, Kwan Joong; Kim, Chang Joon; Kim, Yong Sung; Heo, Woon Je; Choi, Won Seok

    2013-01-01

    Background/Aims The red-blood-cell distribution width (RDW) is a newly recognized risk marker in patients with cardiovascular disease, but its role in nonalcoholic fatty liver disease (NAFLD) has not been well defined. The aim of the present study was to determine the association between RDW values and the level of fibrosis in NAFLD according to BARD and FIB-4 scores. Methods This study included 24,547 subjects who had been diagnosed with NAFLD based on abdominal ultrasonography and questionnaires about alcohol consumption. The degree of liver fibrosis was determined according to BARD and FIB-4 scores. The association between RDW values and the degree of fibrosis in NAFLD was analyzed retrospectively. Results After adjusting for age, hemoglobin level, mean corpuscular volume, history of hypertension, history of diabetes, and high-sensitivity C-reactive protein, the RDW values were 12.61±0.41% (mean±SD), 12.70±0.70%, 12.77±0.62%, 12.87±0.82%, and 13.25±0.90% for those with BARD scores of 0, 1, 2, 3, and 4, respectively, and 12.71±0.72%, 12.79±0.66%, and 13.23±1.52% for those with FIB-4 scores of <1.30, 1.31-2.66, and ≥2.67, respectively (P<0.05). The prevalence of advanced fibrosis (BARD score of 24 and FIB-4 score of ≥1.3) increased with the RDW [BARD score: 51.1% in quartile 1 (Q1) vs. 63.6% in Q4; FIB-4 score: 6.9% in Q1 vs. 10.5% in Q4; P<0.001]. After adjustments, the odds ratio of having advanced fibrosis for those in Q4 compared to Q1 were 1.76 (95%CI=1.55-2.00, P<0.001) relative to BARD score and 1.69 (95%CI=1.52-1.98, P<0.001) relative to FIB-4 score. Conclusions Elevated RDW is independently associated with advanced fibrosis in NAFLD. PMID:24133663

  1. Response of hemopoietic, progenitor, and multipotent mesenchymal stromal cells to administration of ketanserin during pulmonary fibrosis.

    PubMed

    Dygai, A M; Skurikhin, E G; Pershina, O V; Stepanova, I E; Khmelevskaya, E S; Ermakova, N N; Reztsova, A M; Krupin, V A; Reikhart, D V; Goldberg, V E

    2014-11-01

    We studied the effect of ketanserin on hemopoietic progenitor cells (Lin(-)Sca-1(+)c-Kit(+)CD34- and Lin(-)Sca-1(+)c-Kit(+)CD34(+)), progenitor hemopoietic cells (Lin(-)Sca-1(+)c-kit(+)), and multipotent mesenchymal stromal cells (CD45(-)CD73(+)CD106(+)) in C57Bl/6 mice during pulmonary fibrosis. It was shown that the blocker of 5-HT2A receptors lowers the activity of bleomycin-induced inflammation in the lungs and prevents the infiltration of alveolar interstitium and alveolar ducts by hemopoietic stem and hemopoietic progenitor cells; in this case, they are more numerous in the bone marrow of sick animals. Ketanserin reduces the capacity for self-renewal of lung multipotent mesenchymal stromal cells in the fibrotic phase of the disease and inhibits their differentiation into stromal cell lines (adipocytes, chondrocytes, and fibroblasts) simultaneously with the decrease in the percentage of connective tissue in the lung parenchyma. PMID:25403389

  2. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis.

    PubMed

    Tanaka, Kensuke; Fujita, Tetsuo; Umezawa, Hiroki; Namiki, Kana; Yoshioka, Kento; Hagihara, Masahiko; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-11-01

    Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and

  3. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  4. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice.

    PubMed

    Shivshankar, Pooja; Brampton, Christopher; Miyasato, Shelley; Kasper, Michael; Thannickal, Victor J; Le Saux, Claude Jourdan

    2012-07-01

    Idiopathic pulmonary fibrosis is associated with a decreased expression of caveolin-1 (cav-1), yet its role remains unclear. To investigate the role of cav-1, we induced pulmonary fibrosis in wild-type (WT) and cav-1-deficient (cav-1(-/-)) mice using intratracheal instillation of bleomycin. Contrary to expectations, significantly less collagen deposition was measured in tissue from cav-1(-/-) mice than in their WT counterparts, consistent with reduced mRNA expression of procollagen1a2 and procollagen3a1. Moreover, cav-1(-/-) mice demonstrated 77% less α-smooth muscle actin staining, suggesting reduced mesenchymal cell activation. Levels of pulmonary injury, assessed by tenascin-C mRNA expression and CD44v10 detection, were significantly increased at Day 21 after injury in WT mice, an effect significantly attenuated in cav-1(-/-) mice. The apparent protective effect against bleomycin-induced fibrosis in cav-1(-/-) mice was attributed to reduce cellular senescence and apoptosis in cav-1(-/-) epithelial cells during the early phase of lung injury. Reduced matrix metalloproteinase (MMP)-2 and MMP-9 expressions indicated a low profile of senescence-associated secretory phenotype (SASP) in the bleomycin-injured cav-1(-/-) mice. However, IL-6 and macrophage inflammatory protein 2 were increased in WT and cav-1(-/-) mice after bleomycin challenge, suggesting that bleomycin-induced inflammatory response substantiated the SASP pool. Thus, loss of cav-1 attenuates early injury response to bleomycin by limiting stress-induced cellular senescence/apoptosis in epithelial cells. In contrast, decreased cav-1 expression promotes fibroblast activation and collagen deposition, effects that may be relevant in later stages of reparative response. Hence, therapeutic strategies to modulate the expression of cav-1 should take into account cell-specific effects in the regenerative responses of the lung epithelium to injury. PMID:22362388

  5. Radiation-induced lung fibrosis after treatment of small cell carcinoma of the lung with very high-dose cyclophosphamide

    SciTech Connect

    Trask, C.W.; Joannides, T.; Harper, P.G.; Tobias, J.S.; Spiro, S.G.; Geddes, D.M.; Souhami, R.L.; Beverly, P.C.

    1985-01-01

    Twenty-five previously untreated patients with small cell carcinoma of the lung were treated with cyclophosphamide 160 to 200 mg/kg (with autologous bone marrow support) followed by radiotherapy (4000 cGy) to the primary site and mediastinum. No other treatment was given until relapse occurred. Nineteen patients were assessable at least 4 months after radiotherapy; of these, 15 (79%) developed radiologic evidence of fibrosis, which was symptomatic in 14 (74%). The time of onset of fibrosis was related to the volume of lung irradiated. A retrospective analysis was made of 20 consecutive patients treated with multiple-drug chemotherapy and an identical radiotherapy regimen as part of a randomized trial. Radiologic and symptomatic fibrosis was one half as frequent (35%) as in the high-dose cyclophosphamide group. Very high-dose cyclophosphamide appears to sensitize the lung to radiotherapy and promotes the production of fibrosis.

  6. Detection of Hepatic Fibrosis in Ex Vivo Liver Samples Using an Open-Photoacoustic-Cell Method: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Stolik, S.; Fabila, D. A.; de la Rosa, J. M.; Escobedo, G.; Suárez-Álvarez, K.; Tomás, S. A.

    2015-09-01

    Design of non-invasive and accurate novel methods for liver fibrosis diagnosis has gained growing interest. Different stages of liver fibrosis were induced in Wistar rats by intraperitoneally administering different doses of carbon tetrachloride. The liver fibrosis degree was conventionally determined by means of histological examination. An open-photoacoustic-cell (OPC) technique for the assessment of liver fibrosis was developed and is reported here. The OPC technique is based on the fact that the thermal diffusivity can be accurately measured by photoacoustics taking into consideration the photoacoustic signal amplitude versus the modulation frequency. This technique measures directly the heat generated in a sample, due to non-radiative de-excitation processes, following the absorption of light. The thermal diffusivity was measured with a home-made open-photoacoustic-cell system that was specially designed to perform the measurement from ex vivo liver samples. The human liver tissue showed a significant increase in the thermal diffusivity depending on the fibrosis stage. Specifically, liver samples from rats exhibiting hepatic fibrosis showed a significantly higher value of the thermal diffusivity than for control animals.

  7. Transforming growth factor-β1 induces fibrosis in rat meningeal mesothelial cells via the p38 signaling pathway.

    PubMed

    Yue, Xue-Jing; Guo, Yan; Yang, Hai-Jie; Feng, Zhi-Wei; Li, Tong; Xu, Yu-Ming

    2016-08-01

    Leptomeningeal fibrosis is important in the pathogenesis of communicating hydrocephalus following subarachnoid hemorrhage; however, the underlying mechanisms of leptomeningeal fibrosis remain largely unclear. In the present study, primary meningeal mesothelial cells (MMCs) were used as a cell model to investigate the effect of transforming growth factor‑β1 (TGF‑β1) on leptomeningeal fibrosis. Firstly, primary MMCs were isolated from rat brains and characterized by immunofluorescene, staining positive for keratin and vimentin, but negative for factor VIII. Upon TGF‑β1 treatment, MMCs were induced to express connective tissue growth factor (CTGF), an indicator of fibrosis, in a dose‑dependent manner. Furthermore, p38 mitogen‑activated protein kinase (MAPK) signaling was significantly activated by TGF‑β1. However, in the presence of a p38 MAPK inhibitor, TGF‑β1‑induced CTGF expression was markedly suppressed. Together, these data suggest that TGF‑β1 could induce fibrosis of MMCs via the p38 MAPK signaling pathway, providing a novel potential target for intervention in TGF‑β1‑induced leptomeningeal fibrosis. PMID:27314440

  8. Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells.

    PubMed

    Mohamed, A; Ferguson, D; Seibert, F S; Cai, H M; Kartner, N; Grinstein, S; Riordan, J R; Lukacs, G L

    1997-02-15

    The gene product affected in cystic fibrosis, the cystic fibrosis transmembrane conductance regulator (CFTR), is a chlorideselective ion channel that is regulated by cAMP-dependent protein kinase-mediated phosphorylation, ATP binding and ATP hydrolysis. Mutations in the CFTR gene may result in cystic fibrosis characterized by severe pathology (e.g. recurrent pulmonary infection, male infertility and pancreatic insufficiency) involving organs expressing the CFTR. Interestingly, in the kidney, where expression of the CFTR has been reported, impaired ion transport in patients suffering from cystic fibrosis could not be observed. To understand the role of the CFTR in chloride transport in the kidney, we attempted to identify an epithelial cell line that can serve as a model. We demonstrate that the CFTR is expressed constitutively in Madine-Darby canine kidney (MDCK) type I cells, which are thought to have originated from the distal tubule of the dog nephron. We show expression at the mRNA level, using reverse transcriptase-PCR, and at the protein level, using Western blot analysis with three different monoclonal antibodies. Iodide efflux measurements indicate that CFTR expression confers a plasma membrane anion conductance that is responsive to stimulation by cAMP. The cAMP-stimulated iodide release is sensitive to glybenclamide, diphenylamine carboxylic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, but not to 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid, an inhibitor profile characteristic of the CFTR chloride channel. Finally, the polarized localization of the CFTR to the apical plasma membrane was established by iodide efflux measurements and cell-surface biotinylation on MDCK I monolayers. Interestingly, MDCK type II cells, which are thought to have originated from the proximal tubule of the kidney, lack CFTR protein expression and cAMP-stimulated chloride conductance. In conclusion, we propose that MDCK type I and II cells can serve as convenient

  9. Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells.

    PubMed Central

    Mohamed, A; Ferguson, D; Seibert, F S; Cai, H M; Kartner, N; Grinstein, S; Riordan, J R; Lukacs, G L

    1997-01-01

    The gene product affected in cystic fibrosis, the cystic fibrosis transmembrane conductance regulator (CFTR), is a chlorideselective ion channel that is regulated by cAMP-dependent protein kinase-mediated phosphorylation, ATP binding and ATP hydrolysis. Mutations in the CFTR gene may result in cystic fibrosis characterized by severe pathology (e.g. recurrent pulmonary infection, male infertility and pancreatic insufficiency) involving organs expressing the CFTR. Interestingly, in the kidney, where expression of the CFTR has been reported, impaired ion transport in patients suffering from cystic fibrosis could not be observed. To understand the role of the CFTR in chloride transport in the kidney, we attempted to identify an epithelial cell line that can serve as a model. We demonstrate that the CFTR is expressed constitutively in Madine-Darby canine kidney (MDCK) type I cells, which are thought to have originated from the distal tubule of the dog nephron. We show expression at the mRNA level, using reverse transcriptase-PCR, and at the protein level, using Western blot analysis with three different monoclonal antibodies. Iodide efflux measurements indicate that CFTR expression confers a plasma membrane anion conductance that is responsive to stimulation by cAMP. The cAMP-stimulated iodide release is sensitive to glybenclamide, diphenylamine carboxylic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, but not to 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid, an inhibitor profile characteristic of the CFTR chloride channel. Finally, the polarized localization of the CFTR to the apical plasma membrane was established by iodide efflux measurements and cell-surface biotinylation on MDCK I monolayers. Interestingly, MDCK type II cells, which are thought to have originated from the proximal tubule of the kidney, lack CFTR protein expression and cAMP-stimulated chloride conductance. In conclusion, we propose that MDCK type I and II cells can serve as convenient

  10. Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells.

    PubMed

    Mazzitelli, Stefania; Borgatti, Monica; Breveglieri, Giulia; Gambari, Roberto; Nastruzzi, Claudio

    2011-06-01

    Entrapment of mammalian cells in natural or synthetic biomaterials represents an important tool for both basic and applied research in tissue engineering. For instance, the encapsulation procedures allow to physically isolate cells from the surrounding environment, after their transplantation maintaining the normal cellular physiology. The first part of the current paper describes different microencapsulation techniques including bulk emulsion technique, vibrating-nozzle procedure, gas driven mono-jet device protocol and microfluidic based approach. In the second part, the application of a microencapsulation procedure to the embedding of IB3-1 cells is also described. IB3-1 is a bronchial epithelial cell line, derived from a cystic fibrosis (CF) patient. Different experimental parameters of the encapsulation process were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of protein secretion, analysing the culture medium by Bio-Plex strategy. The analyzed factors include members of the interleukin family (IL-6), chemokines (IL-8 and MCP-1) and growth factors (G-CSF). The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. PMID:21484183

  11. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis.

    PubMed

    Marmai, Cecilia; Sutherland, Rachel E; Kim, Kevin K; Dolganov, Gregory M; Fang, Xiaohui; Kim, Sophia S; Jiang, Shuwei; Golden, Jeffery A; Hoopes, Charles W; Matthay, Michael A; Chapman, Harold A; Wolters, Paul J

    2011-07-01

    Prior work has shown that transforming growth factor-β (TGF-β) can mediate transition of alveolar type II cells into mesenchymal cells in mice. Evidence this occurs in humans is limited to immunohistochemical studies colocalizing epithelial and mesenchymal proteins in sections of fibrotic lungs. To acquire further evidence that epithelial-to-mesenchymal transition occurs in the lungs of patients with idiopathic pulmonary fibrosis (IPF), we studied alveolar type II cells isolated from fibrotic and normal human lung. Unlike normal type II cells, type II cells isolated from the lungs of patients with IPF express higher levels of mRNA for the mesenchymal proteins type I collagen, α-smooth muscle actin (α-SMA), and calponin. When cultured on Matrigel/collagen, human alveolar type II cells maintain a cellular morphology consistent with epithelial cells and expression of surfactant protein C (SPC) and E-cadherin. In contrast, when cultured on fibronectin, the human type II cells flatten, spread, lose expression of pro- SPC, and increase expression of vimentin, N-cadherin, and α-SMA; markers of mesenchymal cells. Addition of a TGF-β receptor kinase inhibitor (SB431542) to cells cultured on fibronectin inhibited vimentin expression and maintained pro-SPC expression, indicating persistence of an epithelial phenotype. These data suggest that alveolar type II cells can acquire features of mesenchymal cells in IPF lungs and that TGF-β can mediate this process. PMID:21498628

  12. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis

    PubMed Central

    Marmai, Cecilia; Sutherland, Rachel E.; Kim, Kevin K.; Dolganov, Gregory M.; Fang, Xiaohui; Kim, Sophia S.; Jiang, Shuwei; Golden, Jeffery A.; Hoopes, Charles W.; Matthay, Michael A.; Chapman, Harold A.

    2011-01-01

    Prior work has shown that transforming growth factor-β (TGF-β) can mediate transition of alveolar type II cells into mesenchymal cells in mice. Evidence this occurs in humans is limited to immunohistochemical studies colocalizing epithelial and mesenchymal proteins in sections of fibrotic lungs. To acquire further evidence that epithelial-to-mesenchymal transition occurs in the lungs of patients with idiopathic pulmonary fibrosis (IPF), we studied alveolar type II cells isolated from fibrotic and normal human lung. Unlike normal type II cells, type II cells isolated from the lungs of patients with IPF express higher levels of mRNA for the mesenchymal proteins type I collagen, α-smooth muscle actin (α-SMA), and calponin. When cultured on Matrigel/collagen, human alveolar type II cells maintain a cellular morphology consistent with epithelial cells and expression of surfactant protein C (SPC) and E-cadherin. In contrast, when cultured on fibronectin, the human type II cells flatten, spread, lose expression of pro- SPC, and increase expression of vimentin, N-cadherin, and α-SMA; markers of mesenchymal cells. Addition of a TGF-β receptor kinase inhibitor (SB431542) to cells cultured on fibronectin inhibited vimentin expression and maintained pro-SPC expression, indicating persistence of an epithelial phenotype. These data suggest that alveolar type II cells can acquire features of mesenchymal cells in IPF lungs and that TGF-β can mediate this process. PMID:21498628

  13. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis.

    PubMed

    Sun, Zhaorui; Wang, Cong; Shi, Chaowen; Sun, Fangfang; Xu, Xiaomeng; Qian, Weiping; Nie, Shinan; Han, Xiaodong

    2014-05-01

    Acute lung injury may lead to fibrogenesis. However, no treatment is currently available. This study was conducted to determine the effects of bone marrow-derived mesenchymal stem cells (MSCs) in a model of HCl-induced acute lung injury in Sprague-Dawley (SD) rats. Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor (CXCR)4 have been shown to participate in mobilizing MSCs. Adenovirus carrying the CXCR4 gene was used to transfect MSCs in order to increase the engraftment numbers of MSCs at injured sites. Histological examination data demonstrated that the engraftment of MSCs did not attenuate lung injury and pulmonary fibrosis. The results showed that engraftment of MSCs almost differentiated into myofibroblasts, but rarely differentiated into lung epithelial cells. Additionally, it was demonstrated that activated canonical Wnt/β-catenin signaling in injured lung tissue regulated the myofibroblast differentiation of MSCs in vivo. The in vitro study results demonstrated that activation of the Wnt/β-catenin signaling stimulated MSCs to express myofibroblast markers; however, this process was attenuated by Wnt antagonist DKK1. Therefore, the results demonstrated that the aberrant activation of Wnt signaling induces the myofibroblast differentiation of engrafted MSCs, thus contributing to pulmonary fibrosis following lung injury. PMID:24573542

  14. Effect of spiperone on mesenchymal multipotent stromal and hemopoietic stem cells under conditions of pulmonary fibrosis.

    PubMed

    Skurikhin, E G; Khmelevskaya, E S; Ermakova, N N; Pershina, O V; Reztsova, A M; Krupin, V A; Stepanova, I E; Reztsova, V M; Reikhart, D V; Dygai, A M

    2014-05-01

    The antifibrotic properties of spiperone and its effect on stem and progenitor cells were studied on the model of reversible bleomycin-induced pulmonary fibrosis in C57Bl/6 mice. Spiperone reduced infiltration of the alveolar interstitium and alveolar ducts with inflammatory cells and prevented the growth of the connective tissue in the parenchyma of bleomycin lungs. Apart from anti-inflammatory effect, spiperone suppressed bone marrow hemopoietic cells (CD3, CD45R (B220), Ly6C, Ly6G (Gr1), CD11b (Mac1), TER-119)-, Sca-1+, c-Kit+, CD34- and progenitor hemopoietic cells (granulocyte-erythroid-macrophage-megakaryocytic and granulocyte CFU). Spiperone-induced disturbances of fi brogenesis were paralleled by restoration of endothelial cells in the lung parenchyma, reduction of the number of circulating bone marrow cells and lung mesenchymopoietic cells (mesenchymal multipotent stromal cells (CD31-, CD34-, CD45-, CD44+, CD73+, CD90+, CD106+) and progenitor fi broblast cells), and suppression of multilineage differentiation of multipotent mesenchymal stromal cells (including fi broblast-lineage cells). PMID:24913578

  15. Liver Fibrosis and Protection Mechanisms Action of Medicinal Plants Targeting Apoptosis of Hepatocytes and Hepatic Stellate Cells

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, Maria Teresa; Rodríguez-Montalvo, Carlos; Cruz-Vega, Delia Elva

    2014-01-01

    Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis. PMID:25505905

  16. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis

    PubMed Central

    Hammerich, Linda; Tacke, Frank

    2015-01-01

    Myeloid derived suppressor cells (MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bone marrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11b and Gr1 (Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins (SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma (HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases. PMID:26301117

  17. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis.

    PubMed

    Hammerich, Linda; Tacke, Frank

    2015-08-15

    Myeloid derived suppressor cells (MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bone marrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11b and Gr1 (Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins (SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma (HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases. PMID:26301117

  18. Depletion of CD8+ T Cells Exacerbates CD4+ T Cell-Induced Monocyte-to-Fibroblast Transition in Renal Fibrosis.

    PubMed

    Dong, Yanjun; Yang, Min; Zhang, Jing; Peng, Xiaogang; Cheng, Jizhong; Cui, Taigeng; Du, Jie

    2016-02-15

    Bone marrow-derived monocyte-to-fibroblast transition is a key step in renal fibrosis pathogenesis, which is regulated by the inflammatory microenvironment. However, the mechanism by which the inflammatory microenvironment regulates this transition is not fully understood. In this study, we examined how the CD8(+) T cell/IFN-γ microenvironment regulates the monocyte-to-fibroblast transition in renal fibrosis. Genetic ablation of CD8 promoted a monocyte-to-fibroblast transition and increased renal interstitial fibrosis, whereas reconstitution of CD8 knockout (KO) mice with CD8(+) T cells decreased fibrosis. However, depletion of CD4(+) T cells in CD8 KO mice also reduced fibrosis. To elucidate the role of CD4(+) T cells in mediating CD8-regulated monocyte-to-fibroblast transition, CD4(+) T cells were isolated from obstructed kidneys of CD8 KO or wild-type mice. CD4(+) T cells isolated from CD8 KO obstructed kidney expressed more IL-4 and GATA3 and less IFN-γ and T-bet and showed increased monocyte-to-fibroblast transition in vitro compared with those isolated from wild-type obstructed kidney. To examine the role of IFN-γ-expressing CD8(+) T cells, we reconstituted CD8 KO mice with CD8(+) T cells isolated from IFN-γ KO mice. The IFN-γ KO CD8(+) cells had no effect on IL-4, GATA3, IFN-γ, and T-bet mRNA expression in obstructed kidneys or renal fibrosis. Taken together, our findings identify the axis of CD8(+) T cells and IFN-γ-CD4(+) T cells as an important microenvironment for the monocyte-to-fibroblast transition, which negatively regulates renal fibrosis. PMID:26773152

  19. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology

    NASA Astrophysics Data System (ADS)

    Mederacke, Ingmar; Hsu, Christine C.; Troeger, Juliane S.; Huebener, Peter; Mu, Xueru; Dapito, Dianne H.; Pradere, Jean-Philippe; Schwabe, Robert F.

    2013-11-01

    Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective antifibrotic therapies. Different cellular sources, including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells, have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis these findings, HSCs should be considered the primary cellular target for antifibrotic therapies across all types of liver disease.

  20. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections

    PubMed Central

    Zeng, Ming; Smith, Anthony J.; Wietgrefe, Stephen W.; Southern, Peter J.; Schacker, Timothy W.; Reilly, Cavan S.; Estes, Jacob D.; Burton, Gregory F.; Silvestri, Guido; Lifson, Jeffrey D.; Carlis, John V.; Haase, Ashley T.

    2011-01-01

    The hallmark of HIV-1 and SIV infections is CD4+ T cell depletion. Both direct cell killing and indirect mechanisms related to immune activation have been suggested to cause the depletion of T cells. We have now identified a mechanism by which immune activation-induced fibrosis of lymphoid tissues leads to depletion of naive T cells in HIV-1 infected patients and SIV-infected rhesus macaques. The T regulatory cell response to immune activation increased procollagen production and subsequent deposition as fibrils via the TGF-β1 signaling pathway and chitinase 3-like-1 activity in fibroblasts in lymphoid tissues from patients infected with HIV-1. Collagen deposition restricted T cell access to the survival factor IL-7 on the fibroblastic reticular cell (FRC) network, resulting in apoptosis and depletion of T cells, which, in turn, removed a major source of lymphotoxin-β, a survival factor for FRCs during SIV infection in rhesus macaques. The resulting loss of FRCs and the loss of IL-7 produced by FRCs may thus perpetuate a vicious cycle of depletion of T cells and the FRC network. Because this process is cumulative, early treatment and antifibrotic therapies may offer approaches to moderate T cell depletion and improve immune reconstitution during HIV-1 infection. PMID:21393864

  1. Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025

  2. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line.

    PubMed

    Fernández Fernández, Elena; Santos-Carballal, Beatriz; Weber, Wolf-Michael; Goycoolea, Francisco M

    2016-04-11

    Successful gene therapy requires the development of suitable vehicles for the selective and efficient delivery of genes to specific target cells at the expense of minimal toxicity. In this work, we investigated a non-viral gene delivery system based on chitosan (CS) to specifically address cystic fibrosis (CF). Thus, electrostatic self-assembled CS-pEGFP and CS-pEGFP-siRNA complexes were prepared from high-pure fully characterized CS (Mw ∼ 20 kDa and degree of acetylation ∼ 30%). The average diameter of positively-charged complexes (i.e. ζ ∼+25 mV) was ∼ 200 nm. The complexes were found relatively stable over 14h in Opti-MEM. Cell viability study did not show any significant cytotoxic effect of the CS-based complexes in a human bronchial cystic fibrosis cell line (CFBE41o-). We evaluated the transfection efficiency of this cell line with both CS-pEGFP and co-transfected with CS-pEGFP-siRNA complexes at (N/P) charge ratio of 12. We reported an increase in the fluorescence intensity of CS-pEGFP and a reduction in the cells co-transfected with CS-pEGFP-siRNA. This study shows proof-of-principle that co-transfection with chitosan might be an effective delivery system in a human CF cell line. It also offers a potential alternative to further develop therapeutic strategies for inherited disease treatments, such as CF. PMID:26875537

  3. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder

    PubMed Central

    Kim, Aram; Yu, Hwan Yeul; Heo, Jinbeom; Song, Miho; Shin, Jung-Hyun; Lim, Jisun; Yoon, Soo-Jung; Kim, YongHwan; Lee, Seungun; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 106) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy. PMID:27481042

  4. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder.

    PubMed

    Kim, Aram; Yu, Hwan Yeul; Heo, Jinbeom; Song, Miho; Shin, Jung-Hyun; Lim, Jisun; Yoon, Soo-Jung; Kim, YongHwan; Lee, Seungun; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 10(6)) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy. PMID:27481042

  5. Ketoconazole activates Cl- conductance and blocks Cl- and fluid absorption by cultured cystic fibrosis (CFPAC-1) cells.

    PubMed Central

    Kersting, U; Kersting, D; Spring, K R

    1993-01-01

    The role of arachidonic acid metabolites in the regulation of apical cell membrane Cl- conductance and transepithelial transport of fluid and Cl- by cultured pancreatic cells from cystic fibrosis (CFPAC-1) and corrected (PAC-1) cell lines was evaluated by the use of inhibitors. CFPAC-1 cells did not exhibit an apical membrane Cl- conductance, absorbed Cl- and fluid, and did not respond to stimulation or inhibition of cAMP action. PAC-1 cells exhibited a cAMP-responsive apical Cl- conductance, which was blocked by indomethacin, a cyclooxygenase inhibitor. Ketoconazole, an epoxygenase inhibitor, had virtually no effects on PAC-1 cell Cl- conductance but caused CFPAC-1 cells to develop a cAMP-insensitive Cl- conductance, blocked Cl- and fluid absorption, and reduced transepithelial electrical resistance. Ketoconazole treatment effectively reversed the cystic fibrosis defect in these cultured cells. PMID:7683418

  6. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    SciTech Connect

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.; Jilling, T.; Blalock, J.E.; LeBoeuf, R.D. )

    1991-09-01

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.

  7. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells.

    PubMed Central

    Sorscher, E J; Kirk, K L; Weaver, M L; Jilling, T; Blalock, J E; LeBoeuf, R D

    1991-01-01

    We have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropyl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment (3.9 or 1.3 microM) for 24 hr virtually abolished Cl- transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br- uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatment, but not after treatment for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl- transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl- permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl- permeability. Images PMID:1715578

  8. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis

    PubMed Central

    Gharib, Sina A.; Johnston, Laura K.; Huizar, Isham; Birkland, Timothy P.; Hanson, Josiah; Wang, Ying; Parks, William C.; Manicone, Anne M.

    2014-01-01

    Members of the MMP family function in various processes of innate immunity, particularly in controlling important steps in leukocyte trafficking and activation. MMP28 (epilysin) is a member of this family of proteinases, and we have found that MMP28 is expressed by macrophages and regulates their recruitment to the lung. We hypothesized that MMP28 regulates other key macrophage responses, such as macrophage polarization. Furthermore, we hypothesized that these MMP28-dependent changes in macrophage polarization would alter fibrotic responses in the lung. We examined the gene expression changes in WT and Mmp28−/− BMDMs, stimulated with LPS or IL-4/IL-13 to promote M1 and M2 cells, respectively. We also collected macrophages from the lungs of Pseudomonas aeruginosa-exposed WT and Mmp28−/− mice to evaluate changes in macrophage polarization. Lastly, we evaluated the macrophage polarization phenotypes during bleomycin-induced pulmonary fibrosis in WT and Mmp28−/− mice and assessed mice for differences in weight loss and total collagen levels. We found that MMP28 dampens proinflammatory macrophage function and promots M2 programming. In both in vivo models, we found deficits in M2 polarization in Mmp28−/− mice. In bleomycin-induced lung injury, these changes were associated with reduced fibrosis. MMP28 is an important regulator of macrophage polarization, promoting M2 function. Loss of MMP28 results in reduced M2 polarization and protection from bleomycin-induced fibrosis. These findings highlight a novel role for MMP28 in macrophage biology and pulmonary disease. PMID:23964118

  9. Smoking-related interstitial fibrosis combined with pulmonary emphysema: computed tomography-pathologic correlative study using lobectomy specimens

    PubMed Central

    Otani, Hideji; Tanaka, Tomonori; Murata, Kiyoshi; Fukuoka, Junya; Nitta, Norihisa; Nagatani, Yukihiro; Sonoda, Akinaga; Takahashi, Masashi

    2016-01-01

    Purpose To evaluate the incidence and pathologic correlation of thin-section computed tomography (TSCT) findings in smoking-related interstitial fibrosis (SRIF) with pulmonary emphysema. Patients and methods Our study included 172 consecutive patients who underwent TSCT and subsequent lobectomy. TSCT findings including clustered cysts with visible walls (CCVW) and ground-glass attenuation with/without reticulation (GGAR) were evaluated and compared in nonsmokers and smokers and among lung locations. TSCT findings, especially CCVW, were also compared with histological findings using lobectomy specimens. Results The incidence of CCVW and GGAR was significantly higher in smokers than in nonsmokers (34.1% and 40.7%, respectively, vs 2.0% and 12.2%). CCVW and GGAR were frequently found in the lower and peripheral zones. Histologically, CCVW corresponded more often with SRIF with emphysema than usual interstitial pneumonia (UIP, 63.3% vs 30%). CCVW of irregular size and shape were seen in 19 of 20 SRIF with emphysema and in seven of nine UIP-manifested areas with similar round cysts. A less-involved subpleural parenchyma was observed more frequently in SRIF with emphysema. Conclusion SRIF with emphysema is a more frequent pathological finding than UIP in patients with CCVW on TSCT. The irregular size and shape of CCVW and a less-involved subpleural parenchyma may be a clue suggesting the presence of SRIF with emphysema. PMID:27445472

  10. Evidence that the cells responsible for marrow fibrosis in a rat model for hyperparathyroidism are preosteoblasts.

    PubMed

    Lotinun, Sutada; Sibonga, Jean D; Turner, Russell T

    2005-09-01

    We examined proliferation of cells associated with PTH-induced peritrabecular bone marrow fibrosis in rats as well as the fate of those cells after withdrawal of PTH. Time-course studies established that severe fibrosis was present 7 d after initiation of a continuous sc PTH infusion (40 microg/kg.d). To ascertain cell proliferation, rats were coinfused for 1 wk with PTH (treated) or vehicle (control) and [3H]thymidine (1.5 mCi/rat). Groups of control and treated rats were killed immediately (d 0) and 1 wk (d 7) later. Few osteoblasts (Obs) and osteocytes in treated and control groups were radiolabeled on d 0. Peritrabecular cells expressing a fibroblastic (Fb) phenotype and surrounded by an extracellular matrix were not present in controls on either d 0 or d 7. Multiple cell layers of Fbs lined most (70%) of the bone surface on d 0 in treated rats and nearly all (85%) of the Fbs were radiolabeled. Fbs had entirely disappeared from bone surfaces on d 7. Eighty-five percent of the Obs on and 73% of the osteocytes within the active remodeling sites were radiolabeled. Immunohistochemistry revealed that Fbs induced by PTH treatment produced osteocalcin, osteonectin, and core binding factor-alpha1. These data provide compelling evidence that Fbs recruited to bone surfaces in response to a continuous PTH infusion undergo extensive proliferation, express osteoblast-specific proteins, and produce an extracellular matrix that is similar to osteoid. After restoration of normal PTH levels, Fbs differentiated to Obs, providing further evidence that Fbs are preosteoblasts. PMID:15947001

  11. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis.

    PubMed

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-01-01

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell-derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occurred when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4. PMID:26643997

  12. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling

    PubMed Central

    Ni, Shirong; Wang, Dexuan; Qiu, Xiaoxiao; Pang, Lingxia; Song, Zhangjuan; Guo, Kunyuan

    2015-01-01

    Pulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant may play an important role in many of the processes of inflammation and fibrosis. Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress. Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. In the present study, we investigated bone marrow mesenchymal stem cells (BMSCs) for the treatment of bleomycin-induced pulmonary fibrosis. Our results showed that BMSCs administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. The gene expression levels of NAD(P)H: quinine oxidoreductase 1 (NQO1), gama-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), attenuated by bleomycin, were increased up to basal levels after BMSCs transplantation. BMSCs significantly increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) production in the injured lung. The present study provides evidence that BMSCs may be a potential therapeutic reagent for the treatment of lung fibrosis. PMID:26339340

  13. Tissue culture of normal and cystic fibrosis sweat gland duct cells. I. Alterations in dome formation.

    PubMed

    Hazen-Martin, D J; Spicer, S S; Sens, M A; Jenkins, M Q; Westphal, M C; Sens, D A

    1987-01-01

    The elucidation of the underlying defect in fluid secretion by cystic fibrosis (CF) sweat glands is hindered by the unavailability of an experimental model for investigating this disease. As a potential model system, a serum-free growth medium was developed that supports the explant growth of epithelial cells from fragments of human skin. Immunohistochemical analysis demonstrated that these epithelial cell outgrowths originated from the duct of the sweat gland. By electron microscopy, the cells were demonstrated to possess keratinocyte-like morphology as noted by the presence of a multilayered outgrowth of cells containing well-defined keratin bundles. Identical outgrowths from skin biopsies of CF patients were compared to normal outgrowths and alterations were noted to occur in dome formation and in the number of intercellular spaces between cells. Doming alterations were also noted to occur in the CF heterozygous state. No differences in cell fine structure or in growth factor requirements for cell proliferation were noted between normal and CF cells. The potential use of this system as a model for CF research is discussed. PMID:2432458

  14. Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells.

    PubMed

    Schögler, Aline; Kopf, Brigitte S; Edwards, Michael R; Johnston, Sebastian L; Casaulta, Carmen; Kieninger, Elisabeth; Jung, Andreas; Moeller, Alexander; Geiser, Thomas; Regamey, Nicolas; Alves, Marco P

    2015-02-01

    Virus-associated pulmonary exacerbations, often associated with rhinoviruses (RVs), contribute to cystic fibrosis (CF) morbidity. Currently, there are only a few therapeutic options to treat virus-induced CF pulmonary exacerbations. The macrolide antibiotic azithromycin has antiviral properties in human bronchial epithelial cells. We investigated the potential of azithromycin to induce antiviral mechanisms in CF bronchial epithelial cells. Primary bronchial epithelial cells from CF and control children were infected with RV after azithromycin pre-treatment. Viral RNA, interferon (IFN), IFN-stimulated gene and pattern recognition receptor expression were measured by real-time quantitative PCR. Live virus shedding was assessed by assaying the 50% tissue culture infective dose. Pro-inflammatory cytokine and IFN-β production were evaluated by ELISA. Cell death was investigated by flow cytometry. RV replication was increased in CF compared with control cells. Azithromycin reduced RV replication seven-fold in CF cells without inducing cell death. Furthermore, azithromycin increased RV-induced pattern recognition receptor, IFN and IFN-stimulated gene mRNA levels. While stimulating antiviral responses, azithromycin did not prevent virus-induced pro-inflammatory responses. Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway. Clinical studies are needed to elucidate the potential of azithromycin in the management and prevention of RV-induced CF pulmonary exacerbations. PMID:25359346

  15. Partial correction of defective Cl(-) secretion in cystic fibrosis epithelial cells by an analog of squalamine.

    PubMed

    Jiang, C; Lee, E R; Lane, M B; Xiao, Y F; Harris, D J; Cheng, S H

    2001-11-01

    Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion. PMID:11597908

  16. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease.

    PubMed

    Rieber, Nikolaus; Brand, Alina; Hector, Andreas; Graepler-Mainka, Ute; Ost, Michael; Schäfer, Iris; Wecker, Irene; Neri, Davide; Wirth, Andreas; Mays, Lauren; Zundel, Sabine; Fuchs, Jörg; Handgretinger, Rupert; Stern, Martin; Hogardt, Michael; Döring, Gerd; Riethmüller, Joachim; Kormann, Michael; Hartl, Dominik

    2013-02-01

    Pseudomonas aeruginosa persists in patients with cystic fibrosis (CF) and drives CF lung disease progression. P. aeruginosa potently activates the innate immune system, mainly mediated through pathogen-associated molecular patterns, such as flagellin. However, the host is unable to eradicate this flagellated bacterium efficiently. The underlying immunological mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells generated in cancer and proinflammatory microenvironments and are capable of suppressing T cell responses. We hypothesized that P. aeruginosa induces MDSCs to escape T cell immunity. In this article, we demonstrate that granulocytic MDSCs accumulate in CF patients chronically infected with P. aeruginosa and correlate with CF lung disease activity. Flagellated P. aeruginosa culture supernatants induced the generation of MDSCs, an effect that was 1) dose-dependently mimicked by purified flagellin protein, 2) significantly reduced using flagellin-deficient P. aeruginosa bacteria, and 3) corresponded to TLR5 expression on MDSCs in vitro and in vivo. Both purified flagellin and flagellated P. aeruginosa induced an MDSC phenotype distinct from that of the previously described MDSC-inducing cytokine GM-CSF, characterized by an upregulation of the chemokine receptor CXCR4 on the surface of MDSCs. Functionally, P. aeruginosa-infected CF patient ex vivo-isolated as well as flagellin or P. aeruginosa in vitro-generated MDSCs efficiently suppressed polyclonal T cell proliferation in a dose-dependent manner and modulated Th17 responses. These studies demonstrate that flagellin induces the generation of MDSCs and suggest that P. aeruginosa uses this mechanism to undermine T cell-mediated host defense in CF and other P. aeruginosa-associated chronic lung diseases. PMID:23277486

  17. Mast cell accumulation precedes tissue fibrosis induced by intravenously administered amorphous silica nanoparticles.

    PubMed

    Zhuravskii, Serge; Yukina, Galina; Kulikova, Olga; Panevin, Alexey; Tomson, Vladimir; Korolev, Dmitry; Galagudza, Michael

    2016-05-01

    Despite the increasing use of amorphous silica nanoparticles (SNPs) in biomedical applications, their toxicity after intravenous administration remains a major concern. We investigated the effects of single 7 mg/kg intravenous infusions of 13 nm SNPs on hemodynamic parameters in rats. Hematological and biochemical parameters were assessed at 7, 30, and 60 d post treatment. Silicon content in the liver, lungs, heart, and kidney was analyzed, as well as tissue histology with special emphasis on mast cell (MC) content. SNP infusion had no effect on hemodynamics, nor did it alter hematological or biochemical parameters. SNP retention in the liver was conspicuous for up to 60 d. Among the other organs analyzed, silicon content was significantly increased only in the lung at 1-h post infusion. Despite the relatively low dose, SNP administration caused extensive liver remodeling, including the formation of multiple foreign body-type granulomas starting 7 d post treatment, and subsequent development of fibrosis. Histopathological changes in the liver were not preceded by hepatocyte necrosis. We found increased MC abundance in the liver, lungs, and heart starting on day 30 post treatment. MC recruitment in the liver preceded fibrosis, suggesting that MCs are involved in liver tissue remodeling elicited by intravenously administered SNPs. PMID:27055490

  18. Phloridzin derivatives inhibiting pro-inflammatory cytokine expression in human cystic fibrosis IB3-1 cells.

    PubMed

    Milani, R; Marcellini, A; Montagner, G; Baldisserotto, A; Manfredini, S; Gambari, R; Lampronti, I

    2015-10-12

    Cystic Fibrosis (CF) is the most diffuse autosomal recessive genetic disease affecting Caucasians. A persistent recruitment of neutrophils in the bronchi of CF patients contributes to exacerbate the airway tissue damage, suggesting that modulation of chemokine expression may be an important target for the patient's well being thus the identification of innovative anti-inflammatory drugs is considered a longterm goal to prevent progressive tissue deterioration. Phloridzin, isolated from Malus domestica by a selective molecular imprinting extraction, and its structural analogues, Phloridzin heptapropionate (F1) and Phloridzin tetrapropionate (F2), were initially investigated because of their ability to reduce IL-6 and IL-8 expression in human CF bronchial epithelial cells (IB3-1) stimulated with TNF-α. Release of these cytokines by CF cells was shown to be controlled by the Transcription Factor (TF) NF-kB. The results of the present investigation show that of all the derivatives tested, Phloridzin tetrapropionate (F2) is the most interesting and has greatest potential as it demonstrates inhibitory effects on the expression and production of different cytokines involved in CF inflammation processes, including RANTES, VEGF, GM-CSF, IL-12, G-CSF, MIP-1b, IL-17, IL-10 and IP-10, without any correlated anti-proliferative and pro-apoptotic effects. PMID:26209880

  19. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and Treg T cells

    PubMed Central

    Sun, Jiaying; Zhang, Yadong; Lu, Yongju; Battelli, Lori; Porter, Dale W.; Chen, Fei

    2015-01-01

    Mineral dust-induced gene (mdig, also named Mina53) was first identified from alveolar macrophages of the coal miners with chronic lung inflammation or fibrosis, but how this gene is involved in lung diseases is poorly understood. Here we show that heterozygotic knockout of mdig (mdig+/−) ameliorates silica-induced lung fibrosis by altering the balance between Th17 cells and Treg cells. Relative to the wild type (WT) mice, infiltration of the macrophages and Th17 cells was reduced in lungs from silica-exposed mdig+/− mice. In contrast, an increased infiltration of the T regulatory (Treg) cells to the lung intestitium was observed in the mdig+/− mice treated with silica. Both the number of Th17 cells in the lung lymph nodes and the level of IL-17 in the bronchoalveolar lavage fluids were decreased in the mdig+/− mice in response to silica. Thus, these results suggest that mdig may contribute to silica-induced lung fibrosis by altering the balance between Th17 and Treg cells. Genetic deficiency of mdig impairs Th17 cell infiltration and function, but favors infiltration of the Treg cells, the immune suppressive T cells that are able to limit the inflammatory responses by repressing the Th17 cells and macrophages. PMID:25669985

  20. Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis

    PubMed Central

    Maron, Bradley A.; Oldham, William M.; Chan, Stephen Y.; Vargas, Sara O.; Arons, Elena; Zhang, Ying-Yi; Loscalzo, Joseph; Leopold, Jane A.

    2014-01-01

    Background The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in PAH. Methods and Results Patients with PAH, rats with Sugen/hypoxia-PAH, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia-StAR signaling in HPAECs. Hypoxia (2.0% FiO2) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography-mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein (AP-1) site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR-siRNA or treated with the AP-1 inhibitor, SR-11302, hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro, and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in Conclusions Our findings identify autonomous aldosterone synthesis in HPAECs due to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular

  1. Role for Krüppel-Like Transcription Factor 11 in Mesenchymal Cell Function and Fibrosis

    PubMed Central

    Mathison, Angela; Grzenda, Adrienne; Lomberk, Gwen; Velez, Gabriel; Buttar, Navtej; Tietz, Pamela; Hendrickson, Helen; Liebl, Ann; Xiong, Yuning Y.; Gores, Gregory; Fernandez-Zapico, Martin; LaRusso, Nicholas F.; Faubion, William; Shah, Vijay H.; Urrutia, Raul

    2013-01-01

    Krüppel-like factor 11 (KLF11) and the highly homologous KLF10 proteins are transcription factors originating from duplication of the Drosophila melanogaster ancestor cabut. The function of these proteins in epithelial cells has been previously characterized. In the current study, we report a functional role for KLF11 in mesenchymal cells and in mesenchymal cell dysfunction, namely, fibrosis, and subsequently perform a detailed cellular, molecular, and in vivo characterization of this phenomenon. We find that, in cultured mesenchymal cells, enhanced expression of KLF11 results in activated extracellular matrix pathways, including collagen gene silencing and matrix metalloproteinases activation without changes in tissue inhibitors of metalloproteinases. Combined, reporter and chromatin immunoprecipitation assays demonstrate that KLF11 interacts directly with the collagen 1a2 (COL1A2) promoter in mesenchymal cells to repress its activity. Mechanistically, KLF11 regulates collagen gene expression through the heterochromatin protein 1 gene-silencing pathway as mutants defective for coupling to this epigenetic modifier lose the ability to repress COL1A2. Expression studies reveal decreased levels of KLF11 during liver fibrogenesis after chemically induced injury in vivo. Congruently, KLF11-/- mice, which should be deficient in the hypothesized anti-fibrogenic brake imposed by this transcription factor, display an enhanced response to liver injury with increased collagen fibril deposition. Thus, KLFs expands the repertoire of transcription factors involved in the regulation of extracellular matrix proteins in mesenchymal cells and define a novel pathway that modulates the fibrogenic response during liver injury. PMID:24069400

  2. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis.

    PubMed Central

    Cheng, P W; Boat, T F; Cranfill, K; Yankaskas, J R; Boucher, R C

    1989-01-01

    Cystic fibrosis (CF) respiratory epithelia exhibit abnormal anion transport that may be linked to abnormal lung defense. In these studies, we investigated whether primary cultures of CF respiratory epithelial cells regulate abnormally the sulfate content of high molecular weight glycoconjugates (HMG) participating in airways' mucosal defense. HMG, including glycosaminoglycans and mucin-type glycoproteins released spontaneously into medium and HMG released from cell surfaces by trypsin, were metabolically labeled with 35SO4- and [6-3H]-glucosamine (GlcN) or 35SO4- and [3H]serine. All three classes of HMG from CF cells exhibited 35S/3H labeling ratios 1.5-4-fold greater than HMG from normal or disease control cells. Differences for labeling ratios of HMG from CF cells were shown to be the consequence of increased 35SO4- incorporation rather than decreased peptide synthesis and release or HMG glycosylation. The buoyant density of CF mucin-type HMG also was increased, consistent with increased sulfation. These observations suggest that oversulfation of a spectrum of HMG is a genetically determined characteristic of CF epithelial cells and may play an important pathophysiological role by altering the properties of mucous secretions and/or the interactions between selected bacteria and HMG at the airways' surface. Images PMID:2738159

  3. AGEs in human lens capsule promote the TGFβ2-mediated EMT of lens epithelial cells: implications for age-associated fibrosis.

    PubMed

    Raghavan, Cibin T; Smuda, Mareen; Smith, Andrew J O; Howell, Scott; Smith, Dawn G; Singh, Annapurna; Gupta, Pankaj; Glomb, Marcus A; Wormstone, Ian Michael; Nagaraj, Ram H

    2016-06-01

    Proteins in basement membrane (BM) are long-lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial-to-mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age-dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC-MS/MS. The TGFβ2-mediated upregulation of the mRNA levels (by qPCR) of EMT-associated proteins was significantly enhanced in cells cultured on AGE-modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2-mediated α-smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2-mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes-associated fibrosis. PMID:26853893

  4. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis. PMID:27010252

  5. Refractory Ascites with Liver Fibrosis Developed in Late Phase Allogeneic Hematopoietic Stem Cell Transplantation: Report of Three Patients

    PubMed Central

    Hosoi, Hiroki; Warigaya, Kenji; Murata, Shogo; Mushino, Toshiki; Kuriyama, Kodai; Nishikawa, Akinori; Tamura, Shinobu; Hatanaka, Kazuo; Hanaoka, Nobuyoshi; Muragaki, Yasuteru; Murata, Shinichi; Nakakuma, Hideki; Sonoki, Takashi

    2016-01-01

    We report cases of three patients of refractory ascites without other fluid retention that occurred around five months after allogeneic hematopoietic stem cell transplantation (allo-HSCT). All three patients expired and postmortem examinations revealed unexpected liver fibrosis lacking histological evidences of graft-versus-host-disease (GVHD). The three patients showed normal hepatic function and size before transplantation. During their clinical courses, serum biochemistry test showed no elevation of hepatic enzymes and bilirubin; however, imaging studies demonstrated hepatic atrophy at the onset of ascites. One of the liver specimens showed bile obstruction, which could be seen in hepatic damage by GVHD. Although ascites resulting from venoocclusive disease in early phase allo-HSCT is well documented, ascites associated with hepatic fibrosis in late phase allo-HCST has not been reported. Further clinico-pathological studies on similar patients should be required to ascertain refractory ascites associated with liver fibrosis after allo-HSCT. PMID:27499838

  6. Two-cell correlations in biological tissues

    NASA Astrophysics Data System (ADS)

    Mombach, J. C. M.; de Almeida, R. M. C.; Iglesias, J. R.

    1993-05-01

    We present two-cell correlation functions ml(n), which give the average number of l-sided cells adjacent to n-sided ones, obtained experimentally from vegetable tissues and through a numerical simulation that includes mitosis of biological-tissue growth. The correlation functions are not always linear in n, but the Aboav-Weaire law is obeyed, indicating that it is valid for biological tissues and that recent arguments applied to purely topological models are not valid for all natural systems.

  7. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    SciTech Connect

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  8. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis

    PubMed Central

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-01-01

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy

  9. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE PAGESBeta

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  10. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis.

    PubMed

    Warsinske, Hayley C; Wheaton, Amanda K; Kim, Kevin K; Linderman, Jennifer J; Moore, Bethany B; Kirschner, Denise E

    2016-01-01

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy

  11. Transformed sweat gland and nasal epithelial cell lines from control and cystic fibrosis individuals.

    PubMed

    Buchanan, J A; Yeger, H; Tabcharani, J A; Jensen, T J; Auerbach, W; Hanrahan, J W; Riodan, J R; Buchwald, M

    1990-01-01

    We undertook to extend the in vitro lifespan of epithelial cell cultures useful for the study of the cellular defect underlying cystic fibrosis (CF). Primary cultures from sweat glands of four CF and four non-CF and from nasal polyps of one non-CF and two CF individuals were transformed using a chimaeric virus, Ad5/SV40 1613 ori-. The extended lifespans ranged from 20 to more than 250 population doublings beyond that of the primary cultures. Despite some degree of aneuploidy (as assayed by total cellular DNA content) all samples tested retained at least one copy of the region of chromosome 7 containing the CF gene (as assayed by probing with flanking DNA markers). Epithelial characteristics, including an epithelioid morphology, tight junctions and desmosomes, apical microvilli, keratin networks, and dome formation were positive in the majority of cells examined, although variably expressed. All cells tested demonstrated outwardly rectifying chloride channels by patch clamp, with some from non-CF cells responsive to the catalytic subunit of cyclic AMP-dependent protein kinase. The cells were used for DNA transfection assays with selectable marker genes in appropriate vectors, in order to develop methodology for assaying the function of the CF gene product and the effects of mutations. PMID:1693627

  12. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.

    PubMed

    Atlante, Anna; Favia, Maria; Bobba, Antonella; Guerra, Lorenzo; Casavola, Valeria; Reshkin, Stephan Joel

    2016-06-01

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy. PMID:27146408

  13. Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis.

    PubMed

    Wiszniewski, Ludovic; Jornot, Lan; Dudez, Tecla; Pagano, Alessandra; Rochat, Thierry; Lacroix, Jean Silvain; Suter, Susanne; Chanson, Marc

    2006-01-01

    The poor ability of respiratory epithelial cells to proliferate and differentiate in vitro into a pseudostratified mucociliated epithelium limits the general use of primary airway epithelial cell (AEC) cultures generated from patients with rare diseases, such as cystic fibrosis (CF). Here, we describe a procedure to amplify AEC isolated from nasal polyps and generate long-term cultures of the respiratory epithelium. AEC were seeded onto microporous permeable supports that carried on their undersurface a preformed feeder layer of primary human airway fibroblasts. The use of fibroblast feeder layers strongly stimulated the proliferation of epithelial cells, allowing the expansion of the cell pool with successive passages. AEC at increasing passage were seeded onto supports undercoated with airway fibroblasts and exposed to air. Either freshly isolated or amplified AEC could differentiate into a pseudostratified mucociliated epithelium for at least 10 mo. Thus, CF epithelia cultures showed elevated Na+ transport, drastic hyperabsorption of surface liquid, and absence of cAMP-induced Cl- secretion as compared with non-CF cultures. They were also characterized by thick apical secretion that hampered the movement of cell surface debris by cilia. However, CF respiratory epithelia did not show increased production of mucins or IL-8. The method described here is now routinely used in our laboratory to establish long-term cultures of well differentiated respiratory epithelia from human airway biopsies. PMID:16179582

  14. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells.

    PubMed

    Poghosyan, Anna; Patel, Jamie K; Clifford, Rachel L; Knox, Alan J

    2016-08-01

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. PMID:27240956

  15. Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model

    PubMed Central

    Yin, Ming-Fu; Lian, Li-Hua; Piao, Dong-Ming; Nan, Ji-Xing

    2007-01-01

    AIM: To investigate the therapeutic effect of tetrandrine on liver fibrosis induced by thioacetamide in rats in vivo and in vitro. METHODS: In vitro study: we investigated the effect of tetrandrine on the apoptosis of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated cells. In vivo study: hepatic fibrosis was induced in rats by thioacetamide. Tetrandrine was given orally to rats at doses of 5, 10 or 20 mg/kg for 4 wk compared with intraperitoneal injection of interferon-г. RESULTS: In vitro study: 5, 10 or 25 μg/mL of tetrandrine-induced activation of caspase-3 in t-HSC/Cl-6 cells occurred dose-dependently. In vivo study: tetrandrine treatment as well as interferon-г significantly ameliorated the development of fibrosis as determined by lowered serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil) and the levels of liver hydroxyproline (Hyp), hyaluronic acid (HA), laminin (LN) and also improved histological findings. The effects of tetrandrine at the concentration of 20 mg/kg were better than the other concentration groups. CONCLUSION: Tetrandrine promotes the apoptosis of activated HSCs in vitro. Tetrandrine administration can prevent liver fibrosis and liver damage induced by thioacetamide in rats in vivo, indicating that it might exert a direct effect on rat HSCs. PMID:17451202

  16. A standardized aqueous extract of Anoectochilus formosanus ameliorated thioacetamide-induced liver fibrosis in mice: the role of Kupffer cells.

    PubMed

    Wu, Jin-Bin; Chuang, Hin-Ru; Yang, Li-Chan; Lin, Wen-Chuan

    2010-01-01

    Anoectochilus formosanus is used in traditional folk medicine as an hepatoprotective agent. The purpose of this study was to investigate the effects of a standardized aqueous extract of A. formosanus (SAEAF) on thioacetamide (TAA)-induced liver fibrosis. An in vitro study showed that the inhibitive effect of kinsenoside, a major component of SAEAF, on tumor necrosis factor alpha (TNF-alpha) secretion from Kupffer cells might be derived at least partly from downregulation of LPS-receptor Toll-like receptor 4 (TLR4) signaling. Hepatic fibrosis was produced by TAA (200 mg/kg, i.p.) 3 times per week for 12 weeks. Mice in the three TAA groups were treated daily with distilled water and SAEAF (1.0, 0.2 g/kg) via gastrogavage throughout the experimental period. The mice that received the SAEAF treatment had significantly reduced plasma alanine aminotransferase activity, relative liver weights, and hepatic hydroxyproline contents. A histological examination also confirmed that SAEAF reduced the degree of fibrosis caused by TAA treatment. RT-PCR analysis showed that SAEAF treatment reduced mRNA expression of collagen (alpha1)(I), lipopolysaccharide-binding protein, CD14, TLR4, and TNF receptor 1. An immunohistochemical examination also indicated that SAEAF reduced the number of CD68-positive cells (macrophages). In conclusion, oral administration of SAEAF significantly reduced TAA-induced hepatic fibrosis in mice, probably through inhibition of hepatic Kupffer cell activation. PMID:20378990

  17. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  18. Skin elasticity as a measure of radiation fibrosis: is it reproducible and does it correlate with patient and physician-reported measures?

    PubMed

    Nguyen, Nhu-Tram A; Roberge, David; Freeman, Carolyn R; Wong, Cindy; Hines, Jerod; Turcotte, Robert E

    2014-10-01

    Current means of measuring RT-induced fibrosis are subjective. We evaluated the DermaLab suction cup system to measure objectively skin deflection as a surrogate for fibrosis. Sixty-nine patients with E-STS were treated with limb-sparing surgery and 50-66 Grays (Gy) of RT. Using a "scleroderma" DermaLab Suction Cup, the skin stiffness was measured by two clinicians. The National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) scale, the Musculoskeletal Tumor Rating Scale (MSTS) and Toronto Extremity Salvage Score (TESS) questionnaires were completed for each patient. Levels of agreement between measurers were estimated using the Kappa (k) coefficient and the concordance correlation coefficient (CCC). All sixty-nine patients were included. The level of agreement between measurers for NCI-CTCAE grading was moderate (range k = 0.41-0.59). The CCC for the elasticity measurements were higher, with CCC = 0.82 for fibrotic skin and CCC 5 0.84 for normal skin. The elasticity measurements were significantly higher when MSTS scores were <30 and or TESS scores were <90. Suction Cup measurement of skin elasticity is more reproducible than CTCAE grading and shows promise in generating reproducible measurements for radiation-induced skin fibrosis. Furthermore, it correlates well with the MSTS and TESS. PMID:24000984

  19. Rhinovirus Load Is High despite Preserved Interferon-β Response in Cystic Fibrosis Bronchial Epithelial Cells

    PubMed Central

    Cammisano, Maria; Chen, He; Singh, Sareen; Kooi, Cora; Leigh, Richard; Beaudoin, Trevor; Rousseau, Simon; Lands, Larry C.

    2015-01-01

    Lung disease in cystic fibrosis (CF) is often exacerbated following acute upper respiratory tract infections caused by the human rhinovirus (HRV). Pathophysiology of these exacerbations is presently unclear and may involve deficient innate antiviral or exaggerated inflammatory responses in CF airway epithelial cells. Furthermore, responses of CF cells to HRV may be adversely affected by pre-exposure to virulence factors of Pseudomonas (P.) aeruginosa, the microorganism that frequently colonizes CF airways. Here we examined production of antiviral cytokine interferon-β and inflammatory chemokine interleukin-8, expression of the interferon-responsive antiviral gene 2’-5’-oligoadenylate synthetase 1 (OAS1), and intracellular virus RNA load in primary CF (delF508 CFTR) and healthy airway epithelial cells following inoculation with HRV16. Parallel cells were exposed to virulence factors of P. aeruginosa prior to and during HRV16 inoculation. CF cells exhibited production of interferon-β and interleukin-8, and expression of OAS1 at levels comparable to those in healthy cells, yet significantly higher HRV16 RNA load during early hours post-inoculation with HRV16. In line with this, HRV16 RNA load was higher in the CFBE41o- dF cell line overexpessing delF508 CFTR, compared with the isogenic control CFBE41o- WT (wild-type CFTR). Pre-exposure to virulence factors of P. aeruginosa did not affect OAS1 expression or HRV16 RNA load, but potentiated interleukin-8 production. In conclusion, CF cells demonstrate elevated HRV RNA load despite preserved interferon-β and OAS1 responses. High HRV load in CF airway epithelial cells appears to be due to deficiencies manifesting early during HRV infection, and may not be related to interferon-β. PMID:26599098

  20. Comprehensive solar cell modeling and correlation studies

    NASA Technical Reports Server (NTRS)

    Lamorte, M. L.

    1985-01-01

    Modeling and correlation studies of solar cells was discussed. Recursive relationships were used to generate solutions at a number of mesh points within the emitter region. Photoexcited hole concentration and built-in electric field were calculated as a function of position. Simulated and experimentally determined I-V curves were shown to have good fit.

  1. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  2. Regulatory role of β-arrestin-2 in cholesterol processing in cystic fibrosis epithelial cells.

    PubMed

    Manson, Mary E; Corey, Deborah A; Bederman, Ilya; Burgess, James D; Kelley, Thomas J

    2012-07-01

    Cystic fibrosis (CF) cells exhibit an increase in the protein expression of β-arrestin-2 (βarr2) coincident with perinuclear accumulation of free cholesterol. Arrestins are proteins that both serve as broad signaling regulators and contribute to G-protein coupled receptor internalization after agonist stimulation. The hypothesis of this study is that βarr2 is an important component in the mechanisms leading to cholesterol accumulation characteristic of CF cells. To test this hypothesis, epithelial cells stably expressing GFP-tagged βarr2 (βarr2-GFP) and respective GFP-expressing control cells (cont-GFP) were analyzed by filipin staining. The βarr2-GFP cells show a late endosomal/lysosomal cholesterol accumulation that is identical to that seen in CF cells. This βarr2-mediated accumulation is sensitive to Rp-cAMPS treatment, and depleting βarr2 expression in CF-model cells by shRNA alleviates cholesterol accumulation compared with controls. Cftr/βarr2 double knockout mice also exhibit wild-type (WT) levels of cholesterol synthesis, and WT profiles of signaling protein expression have previously been shown to be altered in CF due to cholesterol-related pathways. These data indicate a significant regulatory role for βarr2 in the development of CF-like cholesterol accumulation and give further insight into cholesterol processing mechanisms. An impact of βarr2 expression on Niemann-Pick type C-1 (NPC1)-containing organelle movement is proposed as the mechanism of βarr2-mediated alterations on cholesterol processing. It is concluded that βarr2 expression contributes to altered cholesterol trafficking observed in CF cells. PMID:22523395

  3. Correlated FLIM and PLIM for cell metabolism

    NASA Astrophysics Data System (ADS)

    Rück, A.; Breymayer, J.; Kalinina, S.

    2016-03-01

    Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. A defective mitochondrial function associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimers disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect the underlying metabolic mechanisms are therefore of prominent interest. They offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways. Moreover oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NADH and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.

  4. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma

    PubMed Central

    LAO, XIAO-MEI; LIANG, YU-JIE; SU, YU-XIONG; ZHANG, SI-EN; ZHOU, XI; LIAO, GUI-QING

    2016-01-01

    Inflammation and desmoplasia are frequently identified in the tumor microenvironment, and have been demonstrated to be effective modulators of malignant biological events. However, the mechanisms by which the inflammatory microenvironment and interstitial fibrosis interact with one another remain to be elucidated. The present study aimed to investigate the degree of inflammation and interstitial fibrosis in tongue squamous cell carcinoma (TSCC), and how this acts to affect the outcome of TSCC. Tissue samples from 93 cases of TSCC and paired tumor-adjacent non-neoplastic tongue epithelium, as well as 14 cases of epithelial dysplasia, were used. Interstitial collagen fibers were assessed using Masson's trichrome stain. Immunohistochemical identification of cancer-associated fibroblasts (CAFs) and stroma-infiltrating B cells was performed via detection of α-smooth muscle actin (SMA), vimentin, desmin and cluster of differentiation 19 (CD19). The clinicopathological significance and overall survival of the TSCC patients were statistically analyzed. Regularly distributed CAFs and CD19+ B cells were identified in the TSCC stroma, whereas no CAFs or CD19+ B cells were observed in epithelial dysplasia samples or paired tumor-adjacent non-neoplastic tongue epithelium samples. The distribution of interstitial collagen fibers and CAFs was closely associated with the tumor stage of the primary cancer, and high levels of CD19+ B cells together with low CAF infiltration were identified to be associated with favorable prognosis in TSCC. In conclusion, the inflammatory and interstitial fibrotic microenvironments coexist in TSCC, and each has specific effects on disease outcome, individually or perhaps collectively. However, it remains to be determined exactly how the microenvironments affect one another in TSCC. PMID:26998116

  5. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation

    PubMed Central

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  6. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation.

    PubMed

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  7. Variable Expression of Neural Cell Adhesion Molecule Isoforms in Renal Tissue: Possible Role in Incipient Renal Fibrosis

    PubMed Central

    Müller, Claudia A.; Tampe, Björn; Ćirović, Sanja; Vještica, Jelena; Tomanović, Nada; Zeisberg, Michael; Müller, Gerhard A.

    2015-01-01

    Rare neural cell adhesion molecule (NCAM) positive cells have been previously described within the normal human adult kidney interstitium, speculating that they could increase in the interstitium with incipient interstitial renal fibrosis (IRF). In the present study, among 93 biopsy samples of various kidney diseases, NCAM+ interstitial cells were detected in 62.4% cases. An increased number of NCAM+ cells was significantly observed only in incipient IRF compared to normal renal tissues and advanced IRF stages (p<0.001), independently of underlying diseases (p = 0.657). All three major NCAM isoforms’ RT-PCR bands were visible either in normal or in kidneys with incipient IRF, albeit their mRNA expression levels measured by qRT-PCR were different. Applying qRT-PCR on pure NCAM+ cells population, obtained by laser capture microdissection, significant mRNA over-expression of NCAM140kD isoform was found in NCAM+ cells within incipient IRF (p = 0.004), while NCAM120kD and NCAM180kD isoforms were not changed significantly (p = 0.750; p = 0.704; respectively). Simultaneously, qRT-PCR also showed significant αSMA (p = 0.014) and SLUG (p = 0.004) mRNAs up-regulation within the NCAM+ cells of incipient IRF, as well as highly decreased matrix metalloproteinases (MMP) -2 and -9 mRNAs (p = 0.028; p = 0.036; respectively). However, using double immunofluorescence MMP-9 could still be detectable on the protein level in rare NCAM+ cells within the incipient IRF. Further characterization of NCAM+ cells by double immunofluorescent labeling revealed their association with molecules involved in fibrosis. Fibroblast growth factor receptor 1 (FGFR1) and α5β1 integrin were extensively expressed on NCAM+ cells within the incipient IRF areas, whereas human epididymis protein-4 (HE4) was found to be present in few NCAM+ cells of both normal and interstitium with incipient fibrosis. Heterogeneity of NCAM+ interstitial cells in normal and incipient IRF, concerning molecules related to

  8. Coronary adventitial cells are linked to perivascular cardiac fibrosis via TGFβ1 signaling in the mdx mouse model of Duchenne Muscular Dystrophy

    PubMed Central

    Ieronimakis, Nicholas; Hays, Aislinn L.; Janebodin, Kajohnkiart; Mahoney, William M.; Duffield, Jeremy S.; Majesky, Mark W.; Reyes, Morayma

    2013-01-01

    In Duchenne Muscular Dystrophy (DMD), progressive accumulation of cardiac fibrosis promotes heart failure. While the cellular origins of fibrosis in DMD hearts remain enigmatic, fibrotic tissue conspicuously forms near the coronary adventitia. Therefore, we sought to characterize the role of coronary adventitial cells in the formation of perivascular fibrosis. Utilizing the mdx model of DMD, we have identified a population of Sca1+, PDGFRα+, CD31−, CD45− coronary adventitial cells responsible for perivascular fibrosis. Histopathology of dystrophic hearts revealed Sca1+ cells extend from the adventitia and occupy regions of perivascular fibrosis. The number of Sca1+ adventitial cells increased two-fold in fibrotic mdx hearts vs. age matched wild-type hearts. Moreover, relative to Sca1−, PDGFRα+, CD31−, CD45− cells and endothelial cells, Sca1+ adventitial cells FACS-sorted from mdx hearts expressed the highest level of Collagen1α1 and 3α1, Connective tissue growth factor, and Tgfβr1 transcripts. Surprisingly, mdx endothelial cells expressed the greatest level of the Tgfβ1 ligand. Utilizing Collagen1α1-GFP reporter mice, we confirmed that the majority of Sca1+ adventitial cells expressed type I collagen, an abundant component of cardiac fibrosis, in both wt (71% ±4.1) and mdx (77% ±3.5) hearts. In contrast, GFP+ interstitial fibroblasts were PDGFRα+ but negative for Sca1. Treatment of cultured Collagen1α1-GFP+ adventitial cells with TGFβ1 resulted in increased collagen synthesis, whereas pharmacological inhibition of TGFβR1 signaling reduced the fibrotic response. Therefore, perivascular cardiac fibrosis by coronary adventitial cells may be mediated by TGFβ1 signaling. Our results implicate coronary endothelial cells in mediating cardiac fibrosis via transmural TGFβ signaling, and suggest that the coronary adventitia is a promising target for developing novel anti-fibrotic therapies. PMID:23911435

  9. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    PubMed

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis. PMID:26525850

  10. Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells.

    PubMed

    Mayer, Matthew L; Blohmke, Christoph J; Falsafi, Reza; Fjell, Chris D; Madera, Laurence; Turvey, Stuart E; Hancock, Robert E W

    2013-02-01

    A hallmark feature of cystic fibrosis (CF) is progressive pulmonary obstruction arising from exaggerated host proinflammatory responses to chronic bacterial airway colonization. The mechanisms for these heightened inflammatory responses have been only partially characterized, hampering development of effective anti-inflammatory therapies. The aim of this study was to identify and validate novel dysfunctional processes or pathways driving the hyperinflammatory phenotype of CF cells using systems biology and network analysis to examine transcriptional changes induced by innate defense regulator (IDR)-1018, an anti-inflammatory peptide. IDR-1018 selectively attenuated hyperinflammatory cytokine production from CF airway cells and PBMCs stimulated with multiple bacterial ligands, including flagellin (FliC). Network analysis of CF cell transcriptional responses to FliC and IDR-1018 identified dysfunctional autophagy as the target of the peptide via modulation of upstream adenosine monophosphate-activated protein kinase (AMPK)-Akt signaling. After treatment with FliC, CF cells were found to have elevated levels of the autophagosome marker LC3-II, and GFP-LC3-transfected CF airway cells showed abnormal perinuclear accumulation of GFP(+) structures. In both instances, treatment of CF cells with IDR-1018 abolished the accumulation of LC3 induced by FliC. Furthermore, inhibition of autophagosome-lysosome fusion with bafilomycinA1 attenuated the anti-inflammatory and autophagosome-clearing effects of IDR-1018, as did a chemical inhibitor of Akt and an activator of AMPK. These findings were consistent with hypotheses generated in silico, demonstrating the utility of systems biology and network analysis approaches for providing pathway-level insights into CF-associated inflammation. Collectively, these data suggest that dysfunctional autophagosome clearance contributes to heightened inflammatory responses from CF transmembrane receptor mutant cells and highlight autophagy and

  11. miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis.

    PubMed

    Niu, Xuemin; Fu, Na; Du, Jinghua; Wang, Rongqi; Wang, Yang; Zhao, Suxian; Du, Huijuan; Wang, Baoyu; Zhang, Yuguo; Sun, Dianxing; Nan, Yuemin

    2016-08-01

    MicroRNA (miRNA) play a pivotal role in the development of liver fibrosis. However, the functions of miRNA in hepatitis C virus (HCV)-related liver fibrosis remain unclear. In this study, we systematically analyzed the microarray data of the serum miRNA in patients with HCV-induced hepatic fibrosis. Among 41 dysregulated miRNA, miR-1273g-3p was the most significantly upregulated miRNA and correlated with the stage of liver fibrosis. Overexpression of miR-1273g-3p could inhibit translation of PTEN, increase the expression of α-SMA, Col1A1, and reduce apoptosis in HSCs. Hence, we conclude that miR-1273g-3p might affect the activation and apoptosis of HSCs by directly targeting PTEN in HCV-related liver fibrosis. PMID:27423040

  12. Toward an animal model of cystic fibrosis: Targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells

    SciTech Connect

    Koller, B.H.; Hyungsuk Kim; Latour, A.M.; Brigman, K.; Boucher, R.C. Jr.; Smithies, O. ); Scambler, P.; Wainwright, B. )

    1991-12-01

    A gene-targeting construct was made containing 7.8 kilobases of DNA spanning exon 10 of the mouse cystic fibrosis transmembrane regulator (CFTR) gene in which part of the exon has been replaced by two neomycin-resistance (Neo) genes driven by different promoters. (This replacement introduces a chain-termination codon at amino acid position 489 in the CFTR sequence). A herpes simplex thymidine kinase gene was on each end of the construct, which was electroporated into embryonic stem (ES) cells. Colonies resistant to G418, or to G418 plus ganciclovir, were selected and screened by Southern blotting or by PCR amplification. Five pools of G418-resistant cells gave PCR products diagnostic of targeting. Four independent clones of ES cells with a disrupted CFTR gene have been isolated from these pools. The frequency of targeting was 1/2500 G418-resistant colonies. This low frequency is not the consequence of marginal expression of the Neo genes in the targeted cells. The CFTR targeting events were clustered among our experiments in a manner suggesting that some unidentified factor(s), possible passage number, influences the recovery of CFTR-targeted cells.

  13. Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells.

    PubMed Central

    Koller, B H; Kim, H S; Latour, A M; Brigman, K; Boucher, R C; Scambler, P; Wainwright, B; Smithies, O

    1991-01-01

    A gene-targeting construct was made containing 7.8 kilobases of DNA spanning exon 10 of the mouse cystic fibrosis transmembrane regulator (CFTR) gene in which part of the exon has been replaced by two neomycin-resistance (Neo) genes driven by different promoters. (This replacement introduces a chain-termination codon at amino acid position 489 in the CFTR sequence). A herpes simplex thymidine kinase gene was on each end of the construct, which was electroporated into embryonic stem (ES) cells. Colonies resistant to G418, or to G418 plus ganciclovir, were selected and screened by Southern blotting or by PCR amplification. Five pools of G418-resistant cells gave PCR products diagnostic of targeting. Four independent clones of ES cells with a disrupted CFTR gene have been isolated from these pools. The frequency of targeting was 1/2500 G418-resistant colonies. This low frequency is not the consequence of marginal expression of the Neo genes in the targeted cells. The CFTR targeting events were clustered among our experiments in a manner suggesting that some unidentified factor(s), possibly passage number, influences the recovery of CFTR-targeted cells. Images PMID:1720548

  14. Alteration and localization of glycan-binding proteins in human hepatic stellate cells during liver fibrosis.

    PubMed

    Zhong, Yaogang; Qin, Yannan; Dang, Liuyi; Jia, Liyuan; Zhang, Zhiwei; Wu, Haoxiang; Cui, Jihong; Bian, Huijie; Li, Zheng

    2015-10-01

    Glycan-binding proteins (GBPs) play an important role in cell adhesion, bacterial/viral infection, and cellular signaling pathways. However, little is known about the precision alteration of GBPs referred to pathological changes in hepatic stellate cells (HSCs) during liver fibrosis. Here, the carbohydrate microarrays were used to probe the alteration of GBPs in the activated HSCs and quiescent HSCs. As a result, 12 carbohydrates (e.g. Gal, GalNAc, and Man-9Glycan) showed increased signal, while seven carbohydrates (e.g. NeuAc, Lac, and GlcNAc-O-Ser) showed decreased signal in activated HSCs. Three carbohydrates (Gal, GalNAc, and NeuAc) were selected and subsequently used to validate the results of the carbohydrate microarrays as well as assess the distribution and localization of their binding proteins in HSCs and liver tissues by cy/histochemistry; the results showed that GBPs mainly distributed in the cytoplasma membrane and perinuclear region of cytoplasm. The immunocytochemistry was further used to verify some GBPs really exist in Golgi apparatus of the cells. The precision alteration and localization of GBPs referred to pathological changes in HSCs may provide pivotal information to help understand the biological functions of glycans how to exert through their recognition by a wide variety of GBPs. This study could lead to the development of new anti-fibrotic strategies. PMID:26058380

  15. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    PubMed Central

    Zhang, Caiyuan; Liu, Huanhuan; Cui, Yanfen; Li, Xiaoming; Zhang, Zhongyang; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs) at different stages of liver fibrosis induced by carbon tetrachloride (CCl4) in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI) with arginine-glycine-aspartic acid (RGD) peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) specifically targeting integrin αvβ3. Materials and methods All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10) received pure olive oil. The change in T2* relaxation rate (ΔR2*) pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation. Results Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively). After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001). The accumulation of iron particles in fibrotic liver specimen is significantly greater for RGD-USPIO than naked USPIO after being injected with equal dose of iron. Conclusion Molecular MRI of integrin αvβ3 expressed on activated HSCs by using RGD-USPIO may distinguish different liver fibrotic stages in CCl4 rat model and shows promising to noninvasively monitor the progression of the liver fibrosis and therapeutic response to

  16. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis.

    PubMed

    El-Akabawy, Gehan; El-Mehi, Abeer

    2015-06-01

    The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells. PMID:25857836

  17. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model

    PubMed Central

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-01

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3+ CD25+ Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. DOI: http://dx.doi.org/10.7554/eLife.09394.001 PMID:26809474

  18. Phase correlation imaging of unlabeled cell dynamics.

    PubMed

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U; Popescu, Gabriel

    2016-01-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function. PMID:27615512

  19. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  20. Endotoxin Induces Fibrosis in Vascular Endothelial Cells through a Mechanism Dependent on Transient Receptor Protein Melastatin 7 Activity

    PubMed Central

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A.; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  1. Fibrosis and Simple Cysts

    MedlinePlus

    ... lobular) Lobular carcinoma in situ (LCIS) Adenosis Fibroadenomas Phyllodes tumors Intraductal papillomas Granular cell tumors Fat necrosis ... caused by fibrosis and/or cysts, which are benign changes in breast tissue that happen in many ...

  2. Indazole inhibition of cystic fibrosis transmembrane conductance regulator Cl(-) channels in rat epididymal epithelial cells.

    PubMed

    Gong, X D; Linsdell, P; Cheung, K H; Leung, G P H; Wong, P Y D

    2002-12-01

    Previous studies have shown that two indazole compounds, lonidamine [1-(2,4-dichlorobenzyl)-indazole-3-carboxylic acid] and its analogue AF2785 [(1-(2,4-dichlorobenzyl)-indazol-3-acrylic acid], suppress fertility in male rats. We also found that these compounds inhibit the cystic fibrosis transmembrane conductance regulator chloride (CFTR-Cl(-)) current in epididymal epithelial cells. To further investigate how lonidamine and AF2785 inhibit the current, we used a spectral analysis protocol to study whole-cell CFTR current variance. Application of lonidamine or AF2785 to the extracellular membrane of rat epididymal epithelial cells introduced a new component to the whole-cell current variance. Spectral analysis of this variance suggested a block at a rate of 3.68 micro mol(-1)/sec(-1) and an off rate of 69.01 sec(-1) for lonidamine, and an on rate of 3.27 micro mol(-1)/sec(-1) and an off rate of 108 sec(-1) for AF2785. Single CFTR-Cl(-) channel activity using excised inside-out membrane patches from rat epididymal epithelial cells revealed that addition of lonidamine to the intracellular solution caused a flickery block (a reduction in channel-open time) at lower concentration (10 micro M) without any effect on open channel probability or single-channel current amplitude. At higher concentrations (50 and 100 micro M), lonidamine showed a flickery block and a decrease in open-channel probability. The flickery block by lonidamine was both voltage-dependent and concentration-dependent. These results suggest that lonidamine and AF2785, which are open-channel blockers of CFTR at low concentrations, also affect CFTR gating at high concentrations. We conclude that these indazole compounds provide new pharmacological tools for the investigation of CFTR. By virtue of their interference with reproductive processes, these drugs have the potential for being developed into novel male contraceptives. PMID:12444067

  3. Cystic fibrosis

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000107.htm Cystic fibrosis To use the sharing features on this page, please enable JavaScript. Cystic fibrosis is a disease that causes thick, sticky mucus ...

  4. Pulmonary Fibrosis

    MedlinePlus

    Pulmonary fibrosis is a condition in which the tissue deep in your lungs becomes scarred over time. This tissue ... may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ...

  5. Cystic Fibrosis

    MedlinePlus

    ... for the Public » Health Topics » Cystic Fibrosis Explore Cystic Fibrosis What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Living With Clinical Trials Links Related Topics Bronchiectasis ...

  6. Renal Fibrosis

    PubMed Central

    Zeisberg, Michael; Maeshima, Yohei; Mosterman, Barbara; Kalluri, Raghu

    2002-01-01

    During progression of chronic renal disease, qualitative and quantitative changes in the composition of tubular basement membranes (TBMs) and interstitial matrix occur. Transforming growth factor (TGF)-β1-mediated activation of tubular epithelial cells (TECs) is speculated to be a key contributor to the progression of tubulointerstitial fibrosis. To further understand the pathogenesis associated with renal fibrosis, we developed an in vitro Boyden chamber system using renal basement membranes that partially mimics in vivo conditions of TECs during health and disease. Direct stimulation of TECs with TGF-β1/epithelial growth factor results in an increased migratory capacity across bovine TBM preparations. This is associated with increased matrix metalloproteinase (MMP) production, namely MMP-2 and MMP-9. Indirect chemotactic stimulation by TGF-β1/EGF or collagen type I was insufficient in inducing migration of untreated TECs across bovine TBM preparation, suggesting that basement membrane integrity and composition play an important role in protecting TECs from interstitial fibrotic stimuli. Additionally, neutralization of MMPs by COL-3 inhibitor dramatically decreases the capacity of TGF-β1-stimulated TECs to migrate through bovine TBM preparation. Collectively, these results demonstrate that basement membrane structure, integrity, and composition play an important role in determining interstitial influences on TECs and subsequent impact on potential aberrant cell-matrix interactions. PMID:12057905

  7. Suppression of renal fibrosis by galectin-1 in high glucose-treated renal epithelial cells

    SciTech Connect

    Okano, Kazuhiro Tsuruta, Yuki; Yamashita, Tetsuri; Takano, Mari; Echida, Yoshihisa; Nitta, Kosaku

    2010-11-15

    Diabetic nephropathy is the most common cause of chronic kidney disease. We investigated the ability of intracellular galectin-1 (Gal-1), a prototype of endogenous lectin, to prevent renal fibrosis by regulating cell signaling under a high glucose (HG) condition. We demonstrated that overexpression of Gal-1 reduces type I collagen (COL1) expression and transcription in human renal epithelial cells under HG conditions and transforming growth factor-{beta}1 (TGF-{beta}1) stimulation. Matrix metalloproteinase 1 (MMP1) is stimulated by Gal-1. HG conditions and TGF-{beta}1 treatment augment expression and nuclear translocation of Gal-1. In contrast, targeted inhibition of Gal-1 expression reduces COL1 expression and increases MMP1 expression. The Smad3 signaling pathway is inhibited, whereas two mitogen-activated protein kinase (MAPK) pathways, p38 and extracellular signal-regulated kinase (ERK), are activated by Gal-1, indicating that Gal-1 regulates these signaling pathways in COL1 production. Using specific inhibitors of Smad3, ERK, and p38 MAPK, we showed that ERK MAPK activated by Gal-1 plays an inhibitory role in COL1 transcription and that activation of the p38 MAPK pathway by Gal-1 plays a negative role in MMP1 production. Taken together, two MAPK pathways are stimulated by increasing levels of Gal-1 in the HG condition, leading to suppression of COL1 expression and increase of MMP1 expression.

  8. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    PubMed Central

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  9. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis

    PubMed Central

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. Methods mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. Results mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. Conclusions These results suggest that andrographolide could be used to improve quality of life in individuals with DMD. PMID:24655808

  10. Role of TGF-β signaling in differentiation of mesothelial cells to vitamin A-poor hepatic stellate cells in liver fibrosis.

    PubMed

    Li, Yuchang; Lua, Ingrid; French, Samuel W; Asahina, Kinji

    2016-02-15

    Mesothelial cells (MCs) form a single layer of the mesothelium and cover the liver surface. A previous study demonstrated that, upon liver injury, MCs migrate inward from the liver surface and give rise to hepatic stellate cells (HSCs) in biliary fibrosis induced by bile duct ligation (BDL) or myofibroblasts in CCl4-induced fibrosis. The present study analyzed the role of transforming growth factor-β (TGF-β) signaling in mesothelial-mesenchymal transition (MMT) and the fate of MCs during liver fibrosis and its regression. Deletion of TGF-β type II receptor (Tgfbr2) gene in cultured MCs suppressed TGF-β-mediated myofibroblastic conversion. Conditional deletion of Tgfbr2 gene in MCs reduced the differentiation of MCs to HSCs and myofibroblasts in the BDL and CCl4 models, respectively, indicating that the direct TGF-β signaling in MCs is responsible to MMT. After BDL and CCl4 treatment, MC-derived HSCs and myofibroblasts were distributed near the liver surface and the thickness of collagen was increased in Glisson's capsule beneath the liver surface. Fluorescence-activated cell sorting analysis revealed that MC-derived HSCs and myofibroblasts store little vitamin A lipids and have fibrogenic phenotype in the fibrotic livers. MCs contributed to 1.4 and 2.0% of activated HSCs in the BDL and CCl4 models, respectively. During regression of CCl4-induced fibrosis, 20% of MC-derived myofibroblasts survived in the liver and deactivated to vitamin A-poor HSCs. Our data indicate that MCs participate in capsular fibrosis by supplying vitamin A-poor HSCs during a process of liver fibrosis and regression. PMID:26702136