Science.gov

Sample records for field frog deformities

  1. Field evidence for linking Altosid applications with increased amphibian deformities in southern leopard frogs [abstract

    USGS Publications Warehouse

    Sparling, D.W.

    1998-01-01

    During the summer of 1997 we repeatedly sprayed Altosid, a formulation of 4% methoprene used for mosquito control, on six constructed macrocosms. Six additional macrocosms were sprayed with Abate4E, containing the organophosphate pesticide temephos, and six were sprayed with water (controls). The wetlands were created on an impermeable foundation for research purposes and averaged 215 m2 in area and 0.5 m deep. Application rates and frequency of Abate4E and Altosid followed label directions and mimicked procedures for mosquito control in National Wildlife Refuges. In early September juvenile frogs and metamorphing tadpoles were collected with dip nets from each pond and examined for deformities. In all, 91 juveniles and metamorph southern leopard frogs (Rana utricularia) were collected from Altosid sprayed wetlands with 14 (15%) demonstrating deformities. Seventyseven juveniles and metamorphs were collected from control wetlands with three (4%) showing deformities. Only six juveniles and metamorphs were collected from Abate4E wetlands and none showed deformities. Deformities included missing or deformed hind limbs (9 of 10 involving only the right hind limb), missing eyes, and abnormal color. The differences in rate of deformities was dependent on treatment (X2=6.44, p< 0.02). The number of leopard frogs caught per unit effort (tadpoles and juveniles) differed among treatments (p=0.032) with Abate4E wetlands producing fewer individuals per capture effort than either Altosid or control wetlands.

  2. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed Central

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-01-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9831545

  3. Field hydration state varies among tropical frog species with different habitat use.

    PubMed

    Tracy, Christopher R; Tixier, Thomas; Le Nöene, Camille; Christian, Keith A

    2014-01-01

    We have previously shown that ecological habit (e.g., arboreal, terrestrial, amphibious) correlates with thermoregulatory behaviors and water balance physiology among species of hylid frogs in northern Australia. We hypothesized that these frogs would be different with respect to their field hydration states because of the challenges associated with the different ecological habits. There are very few data on the hydration levels that frogs maintain in the field, and the existing data are from disparate species and locations and do not relate hydration state to habit or changes in seasonal water availability. We measured the hydration state of 15 species of frogs from tropical northern Australia to determine the influences of ecological habit and season on the hydration state that these frogs maintain. As predicted, frogs were significantly less hydrated in the dry season than they were in the wet season and showed significantly higher variation among individuals, suggesting that maintaining hydration is more challenging in the dry season. In the wet season, terrestrial species were significantly less hydrated than arboreal or amphibious species. During the dry season, amphibious species that sought refuge in cracking mud after the pond dried were significantly less hydrated than terrestrial or arboreal species. These data suggest that hydration behaviors and voluntary tolerance of dehydration vary with habitat use, even within closely related species in the same family or genus. Terrestrial and arboreal species might be expected to be the most vulnerable to changes in water availability, because they are somewhat removed from water sources, but the physiological characteristics of arboreal frogs that result in significant cutaneous resistance to water loss allow them to reduce the effects of their dehydrating microenvironment. PMID:24642537

  4. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    NASA Astrophysics Data System (ADS)

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized.

  5. Statistical field theories deformed within different calculi

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Borysov, S. S.; Shuda, I. A.

    2010-09-01

    Within the framework of basic-deformed and finite-difference calculi, as well as deformation procedures proposed by Tsallis, Abe, and Kaniadakis and generalized by Naudts, we develop field-theoretical schemes of statistically distributed fields. We construct a set of generating functionals and find their connection with corresponding correlators for basic-deformed, finite-difference, and Kaniadakis calculi. Moreover, we introduce pair of additive functionals, which expansions into deformed series yield both Green functions and their irreducible proper vertices. We find as well formal equations, governing by the generating functionals of systems which possess a symmetry with respect to a field variation and are subjected to an arbitrary constrain. Finally, we generalize field-theoretical schemes inherent in concrete calculi in the Naudts manner. From the physical point of view, we study dependences of both one-site partition function and variance of free fields on deformations. We show that within the basic-deformed statistics dependence of the specific partition function on deformation has in logarithmic axes symmetrical form with respect to maximum related to deformation absence; in case of the finite-difference statistics, the partition function takes non-deformed value; for the Kaniadakis statistics, curves of related dependences have convex symmetrical form at small curvatures of the effective action and concave form at large ones. We demonstrate that only moment of the second order of free fields takes non-zero values to be proportional to inverse curvature of effective action. In dependence of the deformation parameter, the free field variance has linearly arising form for the basic-deformed distribution and increases non-linearly rapidly in case of the finite-difference statistics; for more complicated case of the Kaniadakis distribution, related dependence has double-well form.

  6. Noncommutative scalar fields from symplectic deformation

    SciTech Connect

    Daoud, M.; Hamama, A.

    2008-02-15

    This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.

  7. Marginal deformations of nonrelativistic field theories

    NASA Astrophysics Data System (ADS)

    Mallayev, Davron; Vázquez-Poritz, Justin F.; Zhang, Zhibai

    2014-11-01

    We construct the supergravity duals of marginal deformations of a (0, 2) Landau-Ginsburg theory that describes the supersymmetric lowest Landau level. These deformations preserve supersymmetry and it is proposed that they are associated with the introduction of a phase in the (0, 2) superpotential. We also consider marginal deformations of various field theories that exhibit Schrödinger symmetry and Lifshitz scaling. This includes countably infinite examples with dynamical exponent z =2 based on the Sasaki-Einstein spaces Yp ,q and Lp ,q ,r, as well as an example with general dynamical exponent z ≥1 .

  8. Field surveys of Midwestern and Northeastern Fish and Wildlife Service lands for the presence of abnormal frogs and toads

    USGS Publications Warehouse

    Converse, K.A.; Mattsson, J.; Eaton-Poole, L.

    2000-01-01

    The national distribution of information on the discovery of malformations in Minnesota frogs in 1995 stimulated collection and examination of newly metamorphosed frogs during 1996. By late summer and early fall of 1996, malformed frogs and toads were reported on U.S. Fish and Wildlife Service (USFWS) lands in Vermont (Northeast, Region 5) and Minnesota (Midwest, Region 3). In response to these reports, biologists in USFWS Regions 3 and 5 conducted a survey, during the summer of 1997 to determine the distribution and type of malformations in frogs and toads on selected federal lands. Region 3 personnel surveyed 38 field stations at National Wildlife Refuges (NWR's) and Wetland Management Districts. Malformed frogs and toads were collected at 23 (61%) of the Region 3 sites. External malformations were detected in 110 of 6632 individuals representing seven of 13 frog species and one of three toad species examined for an overall of 1.7% affected (percentages for affected species ranged from 0.4-5.2%). In Region 5, 17 NWR's and one National Park were surveyed. Malformed frogs were collected at 10 (56%) of the Region 5 sites. External malformations were detected in 58 of 2267 individuals representing six of 11 frog species and one of two toad species examined for an overall total of 2.6% affected (percentages for affected species ranged from 1.8-15.6%). The majority of malformations observed in frogs and toads collected in Regions 3 and 5 were partially or completely missing hind limbs and digits (50%)or malformed hind limbs and digits (14%). A few individuals had an extra limb or toe, missing or malformed front limb, missing eye, or malformation of the mandible. Despite small sample sizes at some sites, malformations were confirmed to be present in eight species of frogs and two species of toads on Federal lands in USFWS Regions 3 and 5. Further study is needed to determine the extent and distribution of amphibian malformations in these Regions. Data from this study

  9. A nonlinear field theory of deformable dielectrics

    NASA Astrophysics Data System (ADS)

    Suo, Zhigang; Zhao, Xuanhe; Greene, William H.

    Two difficulties have long troubled the field theory of dielectric solids. First, when two electric charges are placed inside a dielectric solid, the force between them is not a measurable quantity. Second, when a dielectric solid deforms, the true electric field and true electric displacement are not work conjugates. These difficulties are circumvented in a new formulation of the theory in this paper. Imagine that each material particle in a dielectric is attached with a weight and a battery, and prescribe a field of virtual displacement and a field of virtual voltage. Associated with the virtual work done by the weights and inertia, define the nominal stress as the conjugate to the gradient of the virtual displacement. Associated with the virtual work done by the batteries, define the nominal electric displacement as the conjugate to the gradient of virtual voltage. The approach does not start with Newton's laws of mechanics and Maxwell-Faraday theory of electrostatics, but produces them as consequences. The definitions lead to familiar and decoupled field equations. Electromechanical coupling enters the theory through material laws. In the limiting case of a fluid dielectric, the theory recovers the Maxwell stress. The approach is developed for finite deformation, and is applicable to both elastic and inelastic dielectrics. As applications of the theory, we discuss material laws for elastic dielectrics, and study infinitesimal fields superimposed upon a given field, including phenomena such as vibration, wave propagation, and bifurcation.

  10. Effective field theory for deformed atomic nuclei

    DOE PAGESBeta

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  11. Effective field theory for deformed atomic nuclei

    NASA Astrophysics Data System (ADS)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  12. Representation of the visual field in the anterior thalamus of the leopard frog, Rana pipiens.

    PubMed

    Skorina, Laura K; Recktenwald, Eric W; Dudkin, Elizabeth A; Saidel, William M; Gruberg, Edward R

    2016-05-16

    We used physiological and anatomical methods to elucidate how the visual field is represented in the part of the dorsal anterior thalamus of the leopard frog that receives direct retinal projections. We recorded extracellularly while presenting visual stimuli, and characterized a physiologically defined region that encompasses the retinal projections as well as an extended zone beyond them. We probed the area systematically to determine if the zone is organized in a visuotopic map: we found that it is not. We found that units in this region respond only to stimuli in the contralateral half of the visual field, which is similar to what is seen in the dorsal lateral geniculate nucleus in mammals. When we backfilled retinal ganglion cells from application of HRP to the anterior thalamus, we found labeled cells only in those parts of the retina corresponding to the contralateral hemifield, confirming our physiological observations. PMID:27064110

  13. Itraconazole treatment reduces Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile Cascades frogs.

    PubMed

    Hardy, Bennett M; Pope, Karen L; Piovia-Scott, Jonah; Brown, Richard N; Foley, Janet E

    2015-01-15

    The global spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to widespread extirpation of amphibian populations. During an intervention aimed at stabilizing at-risk populations, we treated wild-caught Cascades frogs Rana cascadae with the antifungal drug itraconazole. In fall 2012, we collected 60 recently metamorphosed R. cascadae from 1 of the 11 remnant populations in the Cascades Mountains (CA, USA). Of these, 30 randomly selected frogs were treated with itraconazole and the other 30 frogs served as experimental controls; all were released at the capture site. Bd prevalence was low at the time of treatment and did not differ between treated frogs and controls immediately following treatment. Following release, Bd prevalence gradually increased in controls but not in treated frogs, with noticeable (but still non-significant) differences 3 wk after treatment (27% [4/15] vs. 0% [0/13]) and strong differences 5 wk after treatment (67% [8/12] vs. 13% [1/8]). We did not detect any differences in Bd prevalence and load between experimental controls and untreated wild frogs during this time period. In spring 2013, we recaptured 7 treated frogs but none of the experimental control frogs, suggesting that over-winter survival was higher for treated frogs. The itraconazole treatment did appear to reduce growth rates: treated frogs weighed 22% less than control frogs 3 wk after treatment (0.7 vs. 0.9 g) and were 9% shorter than control frogs 5 wk after treatment (18.4 vs. 20.2 mm). However, for critically small populations, increased survival of the most at-risk life stage could prevent or delay extinction. Our results show that itraconazole treatment can be effective against Bd infection in wild amphibians, and therefore the beneficial effects on survivorship may outweigh the detrimental effects on growth. PMID:25590775

  14. Inflation and deformation of conformal field theory

    SciTech Connect

    Garriga, Jaume; Urakawa, Yuko E-mail: yurakawa@ffn.ub.es

    2013-07-01

    It has recently been suggested that a strongly coupled phase of inflation may be described holographically in terms of a weakly coupled quantum field theory (QFT). Here, we explore the possibility that the wave function of an inflationary universe may be given by the partition function of a boundary QFT. We consider the case when the field theory is a small deformation of a conformal field theory (CFT), by the addition of a relevant operator O, and calculate the primordial spectrum predicted in the corresponding holographic inflation scenario. Using the Ward-Takahashi identity associated with Weyl rescalings, we derive a simple relation between correlators of the curvature perturbation ζ and correlators of the deformation operator O at the boundary. This is done without specifying the bulk theory of gravitation, so that the result would also apply to cases where the bulk dynamics is strongly coupled. We comment on the validity of the Suyama-Yamaguchi inequality, relating the bi-spectrum and tri-spectrum of the curvature perturbation.

  15. Deformed bubbles in inhomogeneous ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Zaleski, Stéphane; Popinet, Stéphane

    1998-11-01

    We study numerically a bubble undergoing expansions and contractions under an ultrasonic acoustic field. The bubble deforms under the influence of intrinsic instabilities as well as inhomogeneities in the pressure field. Interface kinematics through connected marker chains, with cut-cell reconstructions are used to solve the Navier-Stokes equations in axisymmetric geometry. A series of embedded grids is used to follow large expansions and contractions. Test cases involve a bubble oscillating at a variable distance from a solid wall as well as a levitating bubble subject to a net force (the Bjerknes force). The numerical scheme is able to follow relatively small bubbles down to 3 μm, in the sonoluminescence regime. The Rayleigh-Taylor instability predicted in that regime is reproduced. Larger, millimeter size bubbles may also be followed. In that case the numerical results show a typical jet formation analogous to the experimental observations of Lauterborn. Preliminary observations of jet velocities are made and compared to experiment.

  16. A field evaluation of frogs as a potential source of secondary organophosphorus insecticide poisoning

    USGS Publications Warehouse

    Powell, G.V.N.; DeWeese, L.R.; Lamont, T.G.

    1982-01-01

    Because amphibians are relatively resistant to organophosphorus insecticides and can bioaccumulate residues to high levels, they may be a source of secondary poisoning for vertebrates that feed on them. This hypothesis was tested by determining residues in breeding upland chorus frogs Pseudacris triseriata, that were collected from ponds treated with the organophosphorus insecticide fenthion. Frogs were collected up to 3-days posttreatment in four areas that were treated with fenthion formulated in either diesel oil or water. No residues of fenthion were detected above the 0.01 ppm level of analytical sensitivity. These results indicate that the frogs were not a likely source of secondary poisoning for predatory vertebrates.

  17. Static deformation of a ferromagnet in alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.

    2016-05-01

    Static deformation of a ferromagnet under an action of ac magnetic field was observed and investigated in this work. The effect is due to even and nonlinear dependence of magnetostriction on magnetic field. It is shown that the deformation is proportional to the second derivative of magnetostriction over the field at low fields and depends on the static bias field. The deformation grows nearly linearly and then saturates with increasing ac field. For the samples with very different parameters like permendur and nickel the ac field induced static strain can reach ~50% of the saturation magnetostriction.

  18. Density dependent growth in adult brown frogs Rana arvalis and Rana temporaria - A field experiment

    NASA Astrophysics Data System (ADS)

    Loman, Jon; Lardner, Björn

    2009-11-01

    In species with complex life cycles, density regulation can operate on any of the stages. In frogs there are almost no studies of density effects on the performance of adult frogs in the terrestrial habitat. We therefore studied the effect of summer density on the growth rate of adult frogs during four years. Four 30 by 30 m plots in a moist meadow were used. In early summer, when settled after post-breeding migration, frogs ( Rana arvalis and Rana temporaria that have a very similar ecology and potentially compete) were enclosed by erecting a fence around the plots. Frogs were captured, measured, marked and partly relocated to create two high density and two low density plots. In early autumn the frogs were again captured and their individual summer growth determined. Growth effects were evaluated in relation to two density measures: density by design (high/low manipulation), and actual (numerical) density. R. arvalis in plots with low density by design grew faster than those in high density plots. No such effect was found for R. temporaria. For none of the species was growth related to actual summer density, determined by the Lincoln index and including the density manipulation. The result suggests that R. arvalis initially settled according to an ideal free distribution and that density had a regulatory effect (mediated through growth). The fact that there were no density effects on R. temporaria (and a significant difference in its response to that of R. arvalis) suggests it is a superior competitor to R. arvalis during the terrestrial phase. There were no density effects on frog condition index, suggesting that the growth rate modifications may actually be an adaptive trait of R. arvalis. The study demonstrates that density regulation may be dependent on resources in frogs' summer habitat.

  19. Electric field-induced deformation of polyelectrolyte gels

    SciTech Connect

    Adolf, D.; Hance, B.G.

    1995-08-01

    Water-swollen polyelectrolyte gels deform in an electric field. We observed that the sign and magnitude of the deformation is dependent on the nature of the salt bath in which the gel is immersed and electrocuted. These results are compatible with a deformation mechanism based upon creation of ion density gradients by the field which, in turn, creates osmotic pressure gradients within the gel. A consistent interpretation results only if gel mobility is allowed as well as free ion diffusion and migration.

  20. Nonclassical Properties of Q-Deformed Superposition Light Field State

    NASA Technical Reports Server (NTRS)

    Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong

    1996-01-01

    In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.

  1. Computational field simulation of temporally deforming geometries

    SciTech Connect

    Boyalakuntla, K.; Soni, B.K.; Thornburg, H.J.

    1996-12-31

    A NURBS based moving grid generation technique is presented to simulate temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such a grid for every time step. The Non Uniform Rational B Spline (NURBS) based control point information is used for geometry description. The parametric definition of the NURBS is utilized in the development of the methodology to generate well distributed grid in a timely manner. The numerical simulation involving temporally deforming geometry is accomplished by appropriately linking to a unsteady, multi-block, thin layer Navier-Stokes solver. The present method greatly reduces CPU requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. This current effort is the first step towards multidisciplinary design optimization, which involves coupling aerodynamic heat transfer and structural analysis. Applications include simulation of temporally deforming bodies.

  2. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2015-12-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  3. 3D deformation field throughout the interior of materials.

    SciTech Connect

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  4. Effects of Altosid and Abate-4E on deformities and survival in southern leopard frogs under semi-natural conditions

    USGS Publications Warehouse

    Sparling, D.W.

    2000-01-01

    Experimental wetlands were sprayed with Abate-4E (a.i. temephos) and Altosid (a.i. methoprene) through the summer following label directions. In late August and early Septemeber metamorphing tadpoles were captured and examined for deformities. Tadpoles captured from ponds sprayed with Altosid had a 15% deformity rate mostly involving total or partially missing hind limbs. Tadpoles from control ponds had a 5% rate of deformities. The difference was statistically significant. The relative abundance of tadpoles from ponds sprayed with Abate-4E was significantly lower than those from Altosid-sprayed or control wetlands.

  5. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  6. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  7. Effects of raising frogs and putting pest-killing lamps in paddy fields on the prevention of rice pests and diseases

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Luo, Fan; Cao, Ming-Yang

    2014-05-01

    Frogs in paddy fields become less and less due to applying large amounts of pesticides and human hunting for a long time, which causes the aggravation of rice pests and diseases. A field experiment was carried out in the suburb of Shanghai to study the effects of artificially raising frogs and putting frequency oscillation pest-killing lamps in paddy fields on the prevention of rice pests and diseases. The field experiment includes three treatments. Treatment I: 150 frogs, each 20 g in weight, per 100 m2 were put in the fields; Treatment II: a frequency oscillation pest-killing lamp was put in the fields; Treatment III: no frogs and pest-killing lamps were put in the fields. All the experimental fields were operated based on the organic faming system. The amount of organic manure, 7500 kg/hm2, was applied to the fields as base fertilizer before sowing in early June, 2013. No any chemical fertilizers and pesticides were used during the entire period of rice growth. Each treatment is in triplicate and each plot is 67 m2 in area. The results are as follows: (1) During the entire growth period, the incidences of rice pests and diseases with Treatment I and II are significantly lower than those with CK (Treatment III). The incidence of chilo suppressalis with Treatment I, II and III is 0, 0.46% and 1.69%, respectively; that of cnaphalocrocis medinalis is 7.67%, 6.62% and 10.10%, respectively; that of rice sheath blight is 0, 11.11% and 5.43%, respectively; that of rice planthopper is 4.25 per hill, 5.75 per hill and 11 per hill, respectively. (2) The grain yield of the three treatments is significantly different. That of Treatment I, II and III is 5157.73 kg/hm2, 4761.60 kg/hm2 and 3645.14kg/hm2 on average, respectively. (3) Affected by frog activities, the contents of NH4-N, available P and available K in the soil with Treatment I are significantly raised. All the above suggest that artificially raising frogs in paddy fields could effectively prevent rice pests and

  8. Deformational stress fields of Casper Mountain, Wyoming

    SciTech Connect

    Burfod, A.E.; Gable, D.J.

    1985-01-01

    Casper Mountain is an east-west-trending Laramide feature located immediately west of the north termination of the Laramie Mountains in central Wyoming. Precambrian rocks are exposed as its core; off-dipping Paleozoic and Mesozoic strata characterize the flanks and ends. The north side is abruptly downthrown along a major east-west fault or faults. A complex of stress fields of Precambrian and younger ages is indicated by high-angle shears and shear zones, steep-dip foliations, and multiple joint systems. One or more of the indicated Precambrian stress fields may be equivalent to that of the Cheyenne belt of the southern Laramie Mountains. In addition, at least two well-developed Laramide stress fields were active during the formation of the mountain structure. The principal maximum compressive stress of each was oriented north-south; the mean compressive axis of one was vertical whereas in the other the minimum compressive axis was vertical. Some structural features of Precambrian age, faulting in particular, appear to have influenced structures of younger ages. Prominent east-northeast-trending, high-angle faults lie approximately parallel to the Precambrian structural grain; they offset structural features of Laramide age and may be of late Laramide and/or post-Laramide age.

  9. Deformation of an elastic capsule in a uniform electric field

    NASA Astrophysics Data System (ADS)

    Karyappa, Rahul B.; Deshmukh, Shivraj. D.; Thaokar, Rochish. M.

    2014-12-01

    The deformation of a thin elastic capsule subjected to a uniform electric field is investigated in the Stokes flow regime. The electrohydrodynamic flow is analyzed using a perfect conductor and a perfect dielectric model for the capsule and the fluid phase, respectively. A theoretical analysis is carried out using an asymptotic expansion in the electric capillary number (Ca) (a ratio of the electric stress to the elastic tension) in the small deformation limit using the finite deformation Hooke's law. The analysis is used to determine the elasticity of polysiloxane capsules suspended in oil, the deformation of which is obtained using videography. The boundary element method is implemented to seek numerical solutions to the hydrodynamic, elastic, and electrostatics equations. The finite deformation Hooke's law, the Mooney-Rivlin, and Skalak's model for elasticity are employed. The effect of electric capillary number, unstressed geometry, and the type of membrane material on the deformation of a capsule is presented in the high Ca number limit using numerical simulation. Capsules synthesized with higher monomer concentration displayed electric stress induced wrinkling process at high electric field strengths. Burst of a capsule is characterized by poration of the polymer membrane, which could be symmetric or asymmetric at the two poles, depending upon the value of the capillary number. The results should be useful in understanding the response of elastic capsules such as red blood cells and polymerized membranes, to an electric field, in applications such as electrodeformation and electroporation. It also provides a theoretical framework for a possible way of determining the elastic parameters of a capsule.

  10. Landscape resistance to frog movements

    USGS Publications Warehouse

    Mazerolle, M.J.; Desrochers, A.

    2005-01-01

    An animal's capacity to recolonize a patch depends on at least two components: its ability to detect the patch and its ability to reach it. However, the disruption of such processes by anthropic disturbances could explain low animal abundance patterns observed by many investigators in certain landscapes. Through field experiments, we compared the orientation and homing success of northern green frogs (Rana clamitans melanota Rafinesque, 1820) and northern leopard frogs (Rana pipiens Schreber, 1782) translocated across disturbed or undisturbed surfaces. We also monitored the path selected by individuals when presented with a choice between a short distance over a disturbed surface and a longer, undisturbed route. Finally, we measured the water loss and behaviour of frogs on substrates resulting from anthropogenic disturbances and a control. When presented with a choice, 72% of the frogs avoided disturbed surfaces. Although able to orient towards the pond of capture when translocated on disturbed surfaces, frogs had a lower probability of homing successfully to the pond than when translocated at a similar distance on an undisturbed surface. Frogs lost the most water on substrates associated with disturbance and in the absence of cover. Our data illustrate that anthropically disturbed areas devoid of cover, such as mined peatlands and agricultural fields, disrupt the ability of frogs to reach habitat patches and are likely explanations to their reduced abundance patterns in such environments. ?? 2005 NRC Canada.

  11. Gauge fields in graphene with nonuniform elastic deformations: A quantum field theory approach

    NASA Astrophysics Data System (ADS)

    Arias, Enrique; Hernández, Alexis R.; Lewenkopf, Caio

    2015-12-01

    We investigate the low-energy continuum limit theory for electrons in a graphene sheet under strain. We use the quantum field theory in curved spaces to analyze the effect of the system deformations into an effective gauge field. We study both in-plane and out-of-plane deformations and obtain a closed expression for the effective gauge field due to arbitrary nonuniform sheet deformations. The obtained results reveal a remarkable relation between the local-pseudomagnetic field and the Riemann curvature, so far overlooked.

  12. Deformation of human erythrocytes in a centrifugal field.

    PubMed Central

    Corry, W D; Meiselman, H J

    1978-01-01

    A new method for altering red cell morphology by high-speed centrifugation of cells through a physiological medium is described. Cell shape is preserved for microscopic analysis by allowing the sedimenting cells to pass from the physiological medium into a glutaraldehyde fixative solution. Examination of the deformed, fixed cells indicates that the vast majority resemble spheres with a flat, triangular tail. Measurements of the overall length of deformed cells show a nearly linear relationship between cell length and centrifugal force; average cell length increased from 8 to 11 micrometer as the centrifugal field was increased from 2,000 to 15,000 g. These data suggest that this centrifugal technique may be useful for evaluating cellular deformability and, potentially, the material properties of red cells. Images FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 7 PMID:413592

  13. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan

    USGS Publications Warehouse

    Liu, Wan-Yi; Wang, Ching-Yuh; Wang, Tsu-Shing; Fellers, Gary M.; Lai, Bo-Chi; Kam, Yeong-Choy

    2011-01-01

    Butachlor is the most commonly used herbicide on paddy fields in Taiwan and throughout Southeast Asia. Since paddy fields provide habitat for pond breeding amphibians, we examined growth, development, time to metamorphosis, and survival of alpine cricket frog tadpoles (Fejervarya limnocharis) exposed to environmentally realistic concentrations of butachlor. We documented negative impacts of butachlor on survival, development, and time to metamorphosis, but not on tadpole growth. The 96 h LC50 for tadpoles was 0.87 mg/l, much lower than the 4.8 mg/l recommended dosage for application to paddy fields. Even given the rapid breakdown of butachlor, tadpoles would be exposed to concentrations in excess of their 96 h LC50 for an estimated 126 h. We also documented DNA damage (genotoxicity) in tadpoles exposed to butachlor at concentrations an order of magnitude less than the 4.8 mg/l recommended application rate. We did not find that butachlor depressed cholinesterase activity of tadpoles, unlike most organophosphorus insecticides. We conclude that butachlor is likely to have widespread negative impacts on amphibians occupying paddy fields with traditional herbicide application.

  14. Fantastic Frogs!

    ERIC Educational Resources Information Center

    Scott, Kym

    2002-01-01

    Number rhymes can be used in many exciting and different ways to support the early learning goals for mathematics. The rhyme "five little speckled frogs" provides the theme for this display, which was set up in Lewisham's professional development center. It provides a range of ideas which would help develop young children's mathematical learning…

  15. On the Equivalence of Two Deformation Schemes in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Lechner, Gandalf; Schlemmer, Jan; Tanimoto, Yoh

    2013-04-01

    Two recent deformation schemes for quantum field theories on two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.

  16. Electrohydrodynamic Model of Vesicle Deformation in Alternating Electric Fields

    PubMed Central

    Vlahovska, Petia M.; Gracià, Rubèn Serral; Aranda-Espinoza, Said; Dimova, Rumiana

    2009-01-01

    Abstract We develop an analytical theory to explain the experimentally observed morphological transitions of quasispherical giant vesicles induced by alternating electric fields. The model treats the inner and suspending media as lossy dielectrics, and the membrane as an impermeable flexible incompressible–fluid sheet. The vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. Our approach, which is based on force balance, also allows us to describe the time evolution of the vesicle deformation, in contrast to earlier works based on energy minimization, which are able to predict only stationary shapes. Our theoretical predictions for vesicle deformation are consistent with experiment. If the inner fluid is more conducting than the suspending medium, the vesicle always adopts a prolate shape. In the opposite case, the vesicle undergoes a transition from a prolate to oblate ellipsoid at a critical frequency, which the theory identifies with the inverse membrane charging time. At frequencies higher than the inverse Maxwell-Wagner polarization time, the electrohydrodynamic stresses become too small to alter the vesicle's quasispherical rest shape. The model can be used to rationalize the transient and steady deformation of biological cells in electric fields. PMID:19527639

  17. Awareness of the light field: the case of deformation

    PubMed Central

    van Doorn, Andrea J.; Koenderink, Jan J.; Todd, James T.; Wagemans, Johan

    2012-01-01

    Human observers group local shading patterns into global super-patterns that appear to be illuminated in some unitary fashion. Many years ago, this was noticed for the case of uniform, unidirectional illumination. Recently, we found that it also applies to convergent and divergent illumination flows, but that human observers are blind to rotational light flow patterns (in the sense of being unable to group the local shading patterns). We now report that human observers are also blind to deformation patterns. This is perhaps interesting because convergent, divergent, rotational, and deformation patterns all occur in natural light fields. This is an idiosyncrasy of the human visual system, on par with the fact that visual awareness fails to present the observer with saddle shapes. PMID:23145298

  18. Deformation field of the soft substrate induced by capillary force

    NASA Astrophysics Data System (ADS)

    Liu, J. L.; Nie, Z. X.; Jiang, W. G.

    2009-05-01

    Prediction on the deformation of a soft substrate induced by capillary force has been widely paid attention in the broad range of applications, such as metallurgy, material science, astronavigation, micro/nano-technology, etc., which is also a supplementary result to the classical Young's equation. We quantitatively analyzed the deformation of an elastic substrate under capillary force by means of the energy principle and the continuum mechanics method. The actual drop's morphology was investigated and was compared with that calculated based on the classical spherical shape assumption of the droplet. The displacement field of the substrate was obtained, especially, its singularity at the droplet edge was also discussed. The results are beneficial to engineering application and micro/nano-measurement.

  19. Deformable homeotropic nematic droplets in a magnetic field

    NASA Astrophysics Data System (ADS)

    Otten, Ronald H. J.; van der Schoot, Paul

    2012-10-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find that small drops have a lens shape with a homogeneous director field for any magnetic-field strength, whereas larger drops are spherical and have a radial director field, at least if the magnetic field is weak. For strong magnetic fields the hedgehog configuration transforms into a split-core line defect that, depending on the anchoring strength, can be accompanied by an elongation of the tactoid itself. We present a three-dimensional phase diagram that shows the tactoid shape and director field for a given anchoring strength, tactoid size, and magnetic-field strength. Our findings rationalize the different shapes and structures that recently have been observed experimentally for nematic droplets found in dispersions of gibbsite platelets in two types of solvent.

  20. Phase field modeling of partially saturated deformable porous media

    NASA Astrophysics Data System (ADS)

    Sciarra, Giulio

    2016-09-01

    A poromechanical model of partially saturated deformable porous media is proposed based on a phase field approach at modeling the behavior of the mixture of liquid water and wet air, which saturates the pore space, the phase field being the saturation (ratio). While the standard retention curve is expected still^ to provide the intrinsic retention properties of the porous skeleton, depending on the porous texture, an enhanced description of surface tension between the wetting (liquid water) and the non-wetting (wet air) fluid, occupying the pore space, is stated considering a regularization of the phase field model based on an additional contribution to the overall free energy depending on the saturation gradient. The aim is to provide a more refined description of surface tension interactions. An enhanced constitutive relation for the capillary pressure is established together with a suitable generalization of Darcy's law, in which the gradient of the capillary pressure is replaced by the gradient of the so-called generalized chemical potential, which also accounts for the "force", associated to the local free energy of the phase field model. A micro-scale heuristic interpretation of the novel constitutive law of capillary pressure is proposed, in order to compare the envisaged model with that one endowed with the concept of average interfacial area. The considered poromechanical model is formulated within the framework of strain gradient theory in order to account for possible effects, at laboratory scale, of the micro-scale hydro-mechanical couplings between highly localized flows (fingering) and localized deformations of the skeleton (fracturing).

  1. Strategies for assessing the implications of malformed frogs for environmental health.

    PubMed

    Burkhart, J G; Ankley, G; Bell, H; Carpenter, H; Fort, D; Gardiner, D; Gardner, H; Hale, R; Helgen, J C; Jepson, P; Johnson, D; Lannoo, M; Lee, D; Lary, J; Levey, R; Magner, J; Meteyer, C; Shelby, M D; Lucier, G

    2000-01-01

    The recent increase in the incidence of deformities among natural frog populations has raised concern about the state of the environment and the possible impact of unidentified causative agents on the health of wildlife and human populations. An open workshop on Strategies for Assessing the Implications of Malformed Frogs for Environmental Health was convened on 4-5 December 1997 at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. The purpose of the workshop was to share information among a multidisciplinary group with scientific interest and responsibility for human and environmental health at the federal and state level. Discussions highlighted possible causes and recent findings directly related to frog deformities and provided insight into problems and strategies applicable to continuing investigation in several areas. Possible causes of the deformities were evaluated in terms of diagnostics performed on field amphibians, biologic mechanisms that can lead to the types of malformations observed, and parallel laboratory and field studies. Hydrogeochemistry must be more integrated into environmental toxicology because of the pivotal role of the aquatic environment and the importance of fates and transport relative to any potential exposure. There is no indication of whether there may be a human health factor associated with the deformities. However, the possibility that causal agents may be waterborne indicates a need to identify the relevant factors and establish the relationship between environmental and human health in terms of hazard assessment. PMID:10620528

  2. Development and field test of deformation sensors for concrete embedding

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta; Osa-Wyser, Annette

    1996-05-01

    Our laboratories have developed a measurement system called SOFO, based on low-coherence interferometry in singlemode optical fibers and allowing the measurement of deformations of the order of 1/100 mm. This system is especially useful for the long-term monitoring of civil structures such as bridges, tunnels, dams and geostructures. The SOFO system requires the installation of two fibers in the structure to be monitored. The first fiber should be in mechanical contact with the structure in its active region and follow the structure deformation in both elongation and shortening. The second fiber has to be installed freely in a pipe near the first one. This fiber acts as a reference and compensates for the temperature dependence of the index of refraction in the measurement fiber. This contribution presents the design process as well as the lab and field tests of a sensor responding to these requirements and adapted to the installation in concrete structures. The active region can be between 25 cm and 8 m in length, while the passive region can reach at least 20 m. While the reference is free, the measurement fiber (installed in the same pipe) is pre-stressed between two glue-points at each end of the active region. The glue was chosen in order to avoid any creeping problems even at temperatures up to 160 degree(s)C and elongation up to 2%. The sensor was tested in laboratory and field conditions. The lab tests included survival to concreting, high temperatures, freezing, thermal cycling, vibrations, cracking and corrosion; response to elongation and compression, measurement range and creeping of the glue points at high temperatures and high tensions. The field tests included installation of a number of these sensors in a bridge deck and in a tunnel vault. In these applications we tested the ease of use, the rapidity of installation and the survival rate.

  3. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  4. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGESBeta

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  5. AC electric field induced droplet deformation in a microfluidic T-junction.

    PubMed

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-01

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal. PMID:27173587

  6. Frog eat frog: exploring variables influencing anurophagy.

    PubMed

    Measey, G John; Vimercati, Giovanni; de Villiers, F André; Mokhatla, Mohlamatsane M; Davies, Sarah J; Edwards, Shelley; Altwegg, Res

    2015-01-01

    Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions. We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species. PMID:26336644

  7. Frog eat frog: exploring variables influencing anurophagy

    PubMed Central

    Vimercati, Giovanni; de Villiers, F. André; Mokhatla, Mohlamatsane M.; Davies, Sarah J.; Edwards, Shelley; Altwegg, Res

    2015-01-01

    Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions. We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species. PMID:26336644

  8. Fitting a Structured Juvenile-Adult Model for Green Tree Frogs to Population Estimates from Capture-Mark-Recapture Field Data

    USGS Publications Warehouse

    Ackleh, A.S.; Carter, J.; Deng, K.; Huang, Q.; Pal, N.; Yang, X.

    2012-01-01

    We derive point and interval estimates for an urban population of green tree frogs (Hyla cinerea) from capture-mark-recapture field data obtained during the years 2006-2009. We present an infinite-dimensional least-squares approach which compares a mathematical population model to the statistical population estimates obtained from the field data. The model is composed of nonlinear first-order hyperbolic equations describing the dynamics of the amphibian population where individuals are divided into juveniles (tadpoles) and adults (frogs). To solve the least-squares problem, an explicit finite difference approximation is developed. Convergence results for the computed parameters are presented. Parameter estimates for the vital rates of juveniles and adults are obtained, and standard deviations for these estimates are computed. Numerical results for the model sensitivity with respect to these parameters are given. Finally, the above-mentioned parameter estimates are used to illustrate the long-time behavior of the population under investigation. ?? 2011 Society for Mathematical Biology.

  9. Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivraj. D.; Thaokar, Rochish. M.

    2012-03-01

    A detailed nonlinear analysis of the deformation and breakup of a perfect dielectric (PD) drop, suspended in another perfect dielectric fluid, in the presence of a quadrupole electric field is presented using analytical (asymptotic) and numerical (boundary integral) methods. The quadrupole field is the simplest kind of an axisymmetric non-uniform electric field. A drop, when placed at the center of such a field, does not translate, thus allowing systematic investigation of the effect of non-uniformity of the electric field. The deformation of a drop under a quadrupole field for PD-PD systems exhibits several novel features as compared to that of a drop under a uniform electric field. The first order analysis predicts oblate deformation for a PD-PD system when the dielectric constant of the suspending medium is larger than that of the drop (Q = ɛi/ɛe < 1). This is in sharp contrast to uniform electric fields where oblate shapes are observed only in leaky dielectric systems. Prolate shapes are observed for Q > 1, and the deformation is larger than that for uniform fields for similar electric capillary numbers. The steady state shapes are defined by higher harmonics as compared to the uniform field. At large capillary numbers, prolate deformations (Q > 1) show breakup whereas oblate deformations (Q < 1) do not. Positive and negative dielectrophoresis is observed when the drop is placed off center, and its translation and simultaneous deformation under quadrupole fields is also investigated. The electro-hydrostatics is unaffected by the viscosity ratio. However, the breakup of the drop and the dielectrophoretic motion and deformation strongly depend upon the viscosity ratio.

  10. Experimental analysis of crack tip fields in rubber materials under large deformation

    NASA Astrophysics Data System (ADS)

    Xiao, Xia; Song, Hai-Peng; Kang, Yi-Lan; Li, Xiao-Lei; Tan, Xiao-Hua; Tan, Hao-Yun

    2012-04-01

    A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation. The model is inspired by the distribution of the measured in-plane and out-of-plane deformation. The inplane displacement of crack-tip fields under both Mode I and mixed-mode (Mode I-II) fracture conditions is measured by using the digital Moiré method. The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes. The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.

  11. Grid-based matching for full-field large-area deformation measurement

    NASA Astrophysics Data System (ADS)

    Du, Xian; Anthony, Brian W.; C. Kojimoto, Nigel

    2015-03-01

    Grid-based measurement can facilitate metrology and inspection of flexible electronics manufacturing. Multiple fundamental difficulties, however, arise in the large-area and full-field deformation measurement of deformable grid patterns including noise, occlusions, and artifacts. This paper addresses one of the key issues in deformation measurement: the registration and matching of deformed grid patterns. The emphasis is on accurate and robust periodicity tracing registration and constellation matching algorithms for grid pattern fidelity. The registration algorithm uses deviation metrics in deformed grids to estimate global translation, rotation and scaling; the matching algorithm uses the constellation reference grid to mine buried deformed point patterns. Using synthetic data, the validity of the registration algorithm is proved by registering noisy deformed grid patterns with various distortion scales and transformations; the validity of the matching algorithm is proved by matching deformed grid point patterns with various distortion scales, extra point rates and missing point rates. Compared to established non-rigid registration and point pattern matching algorithms, our algorithms demonstrate higher speed, sub-pixel accuracy and robustness in the matching of highly-deformed and noisy grids.

  12. Yet More Frogs

    ERIC Educational Resources Information Center

    Shutler, Paul M. E.

    2011-01-01

    Extending a recent paper by Derek Holton, we show how to represent the algorithm for the Frog Problem diagrammatically. This diagrammatic representation suggests a simpler proof of the symmetrical case (equal numbers of frogs of each colour) by allowing the even and odd cases to be treated together. It also provides a proof in the asymmetrical…

  13. Application of deformation theory for integrated modeling of gravity gradiometry and magnetic field data

    NASA Astrophysics Data System (ADS)

    Erkan, K.; Jekeli, C.

    2009-12-01

    Today gravity and magnetic field measurements are acquired in grids with high resolution and accuracy. Magnetic field measurements have already been proven for superior accuracy and practicality. Modern gravity gradiometry instruments have boosted the practicality of gravity field measurements for many subsurface problems. As a result of this, advanced algorithms are needed for quantitative integration of the two fields for a specific subsurface problem. These fields are correlated by Poisson relation as a first order approximation. However, subsurface sources generally show large deviations from the ideal conditions; in this case a generalized Poisson relation may be proposed as a perturbation of the ideal conditions. In this study, we take advantage of the abstraction of the deformation theory between two metric fields, and implement it between the two geophysical fields. In this generalized approach, the different geophysical fields are loosely correlated by Poisson relation; so the calculated deformation reflects the deviations from ideal density/susceptibility relationships for the subsurface structure. The resulting deformation field can then be used for detection of a known target with an expected deformation field. The present method introduces a novel algorithm for integration of the gravity gradiometry and magnetic field data. In this method, the results can be directly interpreted without making individual density and magnetic susceptibility assumptions. The method also intrinsically overcomes the scale problem between the two potential fields.

  14. Particle displacements in the elastic deformation of amorphous materials: Local fluctuations vs. non-affine field

    NASA Astrophysics Data System (ADS)

    Goldenberg, C.; Tanguy, A.; Barrat, J.-L.

    2007-10-01

    We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displacements in an elastically deformed 2D Lennard-Jones glass. Unlike the non-affine field, the fluctuations are very localized, and exhibit a much smaller (and system size independent) correlation length, on the order of a particle diameter, supporting the applicability of the notion of local "defects" to such materials. We propose a scalar "noise" field to characterize the fluctuations, as an additional field for extended continuum models, e.g., to describe the localized irreversible events observed during plastic deformation.

  15. Predation by Oregon spotted frogs (Rana pretiosa) on Western toads (Bufo boreas) in Oregon, USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Hayes, M.P.

    2002-01-01

    Toads of the genus Bufo co-occur with true frogs (family Ranidae) throughout their North American ranges. Yet, Bufo are rarely reported as prey for ranid frogs, perhaps due to dermal toxins that afford them protection from some predators. We report field observations from four different localities demonstrating that Oregon spotted frogs (Rana pretiosa) readily consume juvenile western toads (Bufo boreas) at breeding sites in Oregon. Unpalatability thought to deter predators of selected taxa and feeding mode may not protect juvenile stages of western toads from adult Oregon spotted frogs. Activity of juvenile western toads can elicit ambush behavior by Oregon spotted frog adults. Our review of published literature suggests that regular consumption of toadlets sets Oregon spotted frogs apart from most North American ranid frogs. Importance of the trophic context of juvenile western toads as a seasonally important resource to Oregon spotted frogs needs critical investigation.

  16. Finite deformations of metal cylinders subjected to electromagnetic fields and mechanical forces

    NASA Astrophysics Data System (ADS)

    Bilyk, S. R.; Ramesh, K. T.; Wright, T. W.

    2005-03-01

    Strong electromagnetic (EM) fields coupled with mechanical loads may have a profound effect on deforming bodies. The continuum description of the plastic deformation of solids under electric fields and mechanical loads essentially involves the coupling of the field equations of continuum mechanics with Maxwell's equations. This analysis considers the effects of large EM fields on solid metal cylinders undergoing plastic deformations. Other researchers have used an electroplastic effect to explain previous EM and mechanically loaded experimental results. We examine whether it is necessary to invoke this controversial mechanism. First, we consider only EM loading and solve the transient EM distribution in a solid metal cylinder. This determines the EM time scales as compared to thermal diffusion time scales. Next, at the continuum level, we present the mechanical problem of quasi-static finite compressive deformations incorporating thermal expansion, strain hardening, strain rate sensitivity, thermal softening, and heat conduction. A viscoplastic model that is applicable over a wide range of strain rates (10 -4-10 6 s -1) characterizes the material response. Finally, we consider a metal cylinder subjected to uni-axial mechanical loading as well as high axial current pulses. The material is assumed to be isotropic with the plastic incompressibility constraint. The deformations are assumed to remain axisymmetric and no instabilities in the cylinder are considered. Coupled effects of Joule heating and the Lorentz force on the quasi-static deformations are examined.

  17. Deformations of Poisson brackets and extensions of Lie algebras of contact vector fields

    NASA Astrophysics Data System (ADS)

    Ovsienko, V.; Roger, C.

    1992-12-01

    CONTENTSIntroduction § 1. Main theoremsChapter I. Algebra § 2. Moyal deformations of the Poisson bracket and *-product on \\mathbb R^{2n} § 3. Algebraic construction § 4. Central extensions § 5. ExamplesChapter II. Deformations of the Poisson bracket and *-product on an arbitrary symplectic manifold § 6. Formal deformations: definitions § 7. Graded Lie algebras as a means of describing deformations § 8. Cohomology computations and their consequences § 9. Existence of a *-productChapter III. Extensions of the Lie algebra of contact vector fields on an arbitrary contact manifold §10. Lagrange bracket §11. Extensions and modules of tensor fieldsAppendix 1. Extensions of the Lie algebra of differential operatorsAppendix 2. Examples of equations of Korteweg-de Vries typeReferences

  18. Inverse FEM for Full-Field Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Spangler, Jan L.

    2004-01-01

    The inverse problem of real-time reconstruction of full-field structural displacements is addressed through the application of a new variational formulation leading to versatile, robust and computationally efficient inverse shell finite element analysis. Utilizing surface strain measurements from strain sensors mounted on the load-carrying structural components, the methodology enables accurate computations of the three-dimensional displacement field. This high fidelity computational technology is essential for providing feedback to the actuation and control systems of the next generation of aerospace vehicles.

  19. Subsidence in the Parícutin lava field: Causes and implications for interpretation of deformation fields at volcanoes

    NASA Astrophysics Data System (ADS)

    Chaussard, Estelle

    2016-06-01

    Assessment of volcanic hazards includes interpretation of ground deformation signal, which, at polygenetic volcanoes often results from the superposition of deformation due to pressure changes in the magmatic system and due to surficial processes such as cooling of emplaced lava. The deformation signal associated with emplaced lava is sometimes considered negligible if fields are decades old, but if the lava thickness is great, deformation may still be occurring, possibly leading to misinterpretation of the observed deformation. Here I evaluate the 2007-2011 ground motion of the 1943-1952 lava field of the Parícutin monogenetic cinder cone, Mexico. Interferometric Synthetic Aperture Radar (InSAR) time series reveal patchy subsidence restricted to the lava field and following linear rates up to 5.5 cm/year. There is a clear correlation between subsidence rates and topography suggesting a causal relationship with deposits or lava thickness. I estimate these thicknesses in the subsiding areas using pre- and post-eruption topographic maps and show that they reach up to 200 m. A numerical model for lava flow cooling was developed considering radiation and convection from the surface, conductive transfer inside the flow and to the ground, and vesiculation and latent heat generation at the top and bottom of the flow. The model shows that compaction induced by cooling of the thick deposits emplaced ~ 60 years ago explains the observed subsidence when conductive transfer to the ground is considered. These results demonstrate that thick deposits can keep deforming significantly even decades after their emplacement, emphasizing the importance of considering cooling processes when interpreting deformation fields at polygenetic volcanoes producing massive lava fields.

  20. Electron-deformation mechanism of photoexcitation of hypersound in semiconductors in a dc electric field

    SciTech Connect

    Chigarev, N V

    2002-09-30

    The effect of a dc electric field on photoexcitation of a hypersonic pulse in a semiconductor via an electron-deformation mechanism is studied. The profiles of acoustic pulses are simulated for different directions of the electric field. (laser applications and other topics in quantum electronics)

  1. The Vertical Coseismic Deformation Field of the Wenchuan Earthquake Based on the Combination of GPS and InSAR

    NASA Astrophysics Data System (ADS)

    Shan, Xin-jian; Qu, Chun-yan; Guo, Li-min; Zhang, Guo-hong; Song, Xiao-gang; Jiang, Yu; Zhang, Gui-Fang; Wen, Shao-yan; Wang, Chi-sheng; Xu, Xiaobo; Liu, Yunhua

    2015-05-01

    Vertical coseisimic deformation near seismogenic fault provides meaningful information for understanding of rupture characteristics of the seismogenic fault and focal mechanism. Taking Wenchuan thrust earthquake for an example, we interpolate GPS horizontal observed deformation using Biharmonic spline interpolation and derive them into East-Westward or North-Southward deformation field. We first use reliable GPS observed value to correct InSAR reference point and to unify both GPS and InSAR coordinate frame, and then obtain a continuous vertical deformation field by combined calculation of GPS and InSAR LOS deformation field. The results show that the vertical deformation of both hanging wall and foot wall of the fault decreases rapidly, with deformation greater than 30cm within 50km across the fault zone. The uneven distribution of the vertical deformation has some peak values at near fault, mainly distributed at the southern section (Yingxiu), the middle (Beichuan) and the northern end (Qingchuan) of the seismogenic fault.

  2. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies.

    PubMed

    Di Veroli, A; Santoro, F; Pallottini, M; Selvaggi, R; Scardazza, F; Cappelletti, D; Goretti, E

    2014-10-01

    Mouthpart deformities of Chironomus riparius larvae (Diptera) have been investigated to evaluate the toxic effects of contamination by heavy metals in the Genna Stream (Central Italy), situated in an area subjected to intensive swine farms (40000 heads). The livestock farming (fertirrigation) contributes to metal pollution of the Genna Stream with an increase of copper, zinc, cadmium, chromium and nickel in the sediments of the downstream stations. The incidence of mentum deformities was very high at all sampling stations, about 56%. The highest values of deformities were found in the intermediate river reach (St. 3: 65%) and in March (66%), mainly due to an increase in severe deformities. The high incidence of severe deformities (30%) is attributed to the high pollution level by heavy metals in the sediments, in particular to copper and zinc, which showed the highest average value at St. 3 and in March. This field study reflected the relationships between sediment metal concentrations and chironomid mouthpart deformities, previously observed in laboratory tests, and highlighted these deformities as toxicity endpoints. This feature paves the way for their use as an effective tool in freshwater bioassessment monitoring programs to evaluate the toxic effects of metal contamination in freshwater ecosystems. PMID:25048882

  3. Quantum κ-deformed differential geometry and field theory

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  4. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-01

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  5. Gravitational collapse of a homogeneous scalar field in deformed phase space

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Ziaie, A. H.; Marto, J.; Moniz, P. V.

    2014-02-01

    We study the gravitational collapse of a homogeneous scalar field, minimally coupled to gravity, in the presence of a particular type of dynamical deformation between the canonical momenta of the scale factor and of the scalar field. In the absence of such a deformation, a class of solutions can be found in the literature [R. Goswami and P. S. Joshi], whereby a curvature singularity occurs at the collapse end state, which can be either hidden behind a horizon or be visible to external observers. However, when the phase space is deformed, as implemented herein this paper, we find that the singularity may be either removed or instead, attained faster. More precisely, for negative values of the deformation parameter, we identify the emergence of a negative pressure term, which slows down the collapse so that the singularity is replaced with a bounce. In this respect, the formation of a dynamical horizon can be avoided depending on the suitable choice of the boundary surface of the star. Whereas for positive values, the pressure that originates from the deformation effects assists the collapse toward the singularity formation. In this case, since the collapse speed is unbounded, the condition on the horizon formation is always satisfied and furthermore the dynamical horizon develops earlier than when the phase-space deformations are absent. These results are obtained by means of a thoroughly numerical discussion.

  6. Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae).

    PubMed

    Cartledge, Victoria A; Withers, Philip C; McMaster, Kellie A; Thompson, Graham G; Bradshaw, S Don

    2006-09-01

    Burrowed aestivating frogs of the cocoon-forming species Neobatrachus aquilonius and the non-cocooning species Notaden nichollsi were excavated in the Gibson Desert of central Australia. Their hydration state (osmotic pressure of the plasma and urine) was compared to the moisture content and water potential of the surrounding soil. The non-cocooning N. nichollsi was consistently found in sand dunes. While this sand had favourable water potential properties for buried frogs, the considerable spatial and temporal variation in sand moisture meant that frogs were not always in positive water balance with respect to the surrounding soil. The cocoon-forming N. aquilonius was excavated from two distinct habitat types, a claypan in which frogs had a well-formed cocoon and a dune swale where frogs did not have a cocoon. Cocoons of excavated frogs ranged in thickness from 19.4 microm to 55.61 microm and consisted of 81-229 layers. Cocooned claypan N. aquilonius were nearing exhaustion of their bladder water reserves and had a urine osmolality approaching that of the plasma. By contrast, non-cocooned N. aquilonius from the dune swale were fully hydrated, although soil moisture levels were not as high as calculated to be necessary to maintain water balance. Both species had similar plasma arginine vasotocin (AVT) concentrations ranging from 9.4 to 164 pg ml(-1), except for one cocooned N. aquilonius with a higher concentration of 394 pg ml(-1). For both species, AVT showed no relationship with plasma osmolality over the lower range of plasma osmolalities but was appreciably increased at the highest osmolality recorded. This study provides the first evidence that cocoon formation following burrowing is not obligatory in species that are capable of doing so, but that cocoon formation occurs when soil water conditions are more desiccating than for non-cocooned frogs. PMID:16916967

  7. Geometric phase analysis based on the windowed Fourier transform for the deformation field measurement

    NASA Astrophysics Data System (ADS)

    Dai, Xianglu; Xie, Huimin; Wang, Qinghua

    2014-06-01

    The geometric phase analysis (GPA), an important image-based deformation measurement method, has been used at both micro- and nano-scale. However, when a deformed image has apparent distortion, non-ignorable error in the obtained deformation field could occur by using this method. In this paper, the geometric phase analysis based on the windowed Fourier transform (WFT) is proposed to solve the above-mentioned issue, defined as the WFT-GPA method. In WFT-GPA, instead of the Fourier transform (FT), the WFT is utilized to extract the phase field block by block, and therefore more accurate local phase information can be acquired. The simulation tests, which include detailed discussion of influence factors for measurement accuracy such as window size and image noise, are conducted with digital deformed grids. The results verify that the WFT-GPA method not only keeps all advantages of traditional GPA method, but also owns a better accuracy for deformation measurement. Finally, the WFT-GPA method is applied to measure the machining distortion incurred in soft ultraviolet nanoimprint lithography (UV-NIL) process. The successful measurement shows the feasibility of this method and offers a full-field way for characterizing the replication quality of UV-NIL process.

  8. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field.

    PubMed

    Zhu, Gui-Ping; Nguyen, Nam-Trung; Ramanujan, R V; Huang, Xiao-Yang

    2011-12-20

    This paper reports experimental and numerical results of the deformation of a ferrofluid droplet on a superhydrophobic surface under the effect of a uniform magnetic field. A water-based ferrofluid droplet surrounded by immiscible mineral oil was stretched by a magnetic field parallel to the substrate surface. The results show that an increasing flux density increases the droplet width and decreases the droplet height. A numerical model was established to study the equilibrium shape of the ferrofluid droplet. The governing equations for physical fields, including the magnetic field, are solved by the finite volume method. The interface between the two immiscible liquids was tracked by the level-set method. Nonlinear magnetization was implemented in the model. Comparison between experimental and numerical results shows that the numerical model can predict well the nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. PMID:22044246

  9. Frog Swarms: Earthquake Precursors or False Alarms?

    PubMed Central

    Grant, Rachel A.; Conlan, Hilary

    2013-01-01

    juvenile animals migrating away from their breeding pond, after a fruitful reproductive season. As amphibian populations undergo large fluctuations in numbers from year to year, this phenomenon will not occur on a yearly basis but will depend on successful reproduction, which is related to numerous climatic and geophysical factors. Hence, most large swarms of amphibians, particularly those involving very small frogs and occurring in late spring or summer, are not unusual and should not be considered earthquake precursors. In addition, it is likely that reports of several mass migration of small toads prior to the Great Sichuan Earthquake in 2008 were not linked to the subsequent M = 7.9 event (some occurred at a great distance from the epicentre), and were probably co-incidence. Statistical analysis of the data indicated frog swarms are unlikely to be connected with earthquakes. Reports of unusual behaviour giving rise to earthquake fears should be interpreted with caution, and consultation with experts in the field of earthquake biology is advised. PMID:26479746

  10. Impact of the insecticide Alphacypermetrine and herbicide Oxadiazon, used singly or in combination, on the most abundant frog in French rice fields, Pelophylax perezi.

    PubMed

    Mesléard, François; Gauthier-Clerc, Michel; Lambret, Philippe

    2016-07-01

    The potential impact of agricultural pesticides is a major concern with regard to biodiversity conservation. Pesticides are considered as one of the main causes of the worldwide decline of Amphibians. They are rarely used singly, but their cumulative impact and interaction are often neglected, as is the importance of the age or stage of the animal on which the impact of the molecules is assessed. We therefore tested the potential cumulative impact of the only authorized insecticide (Alphacypermetrine) and the main herbicide (Oxadiazon) used in French rice fields on four replicates of 25 eggs, young larvae and prometamorphosis tadpoles of the most abundant frog in paddies (Pelophylax perezi). We found no significant effect of the insecticide and herbicide, used singly or in combination, on hatching and young tadpoles. However, we found a strong impact of insecticide and herbicide used singly and a highly deleterious impact of their combined use on prometamorphosis tadpoles. Among the four replicates, only one of the prometamorphosis tadpoles did not reach this adult stage in the control against 9, 9, 6, 4 and 13, 9, 8, 7 with the herbicide and insecticide, respectively. But when the two pesticides were used in combination, only two prometamorphosis tapdoles reached the adult stage. Our results emphasize the potential impact on amphibians of pesticides used in agriculture and highlight the necessity of testing their role as cocktails. They also stress the importance of the age and/or stage of the target organism, the choice of which can lead to contrasting conclusions. Finally, our results suggest a possible underestimation of the impact of pesticides on non-targeted fauna in the rice fields in particular, and on living organisms in general. PMID:27107241

  11. The use of laser moire interferometry in the study of deformation fields in composites and adhesives

    NASA Astrophysics Data System (ADS)

    Davidson, R.

    Laser moire interferometry is a recently developed optical technique which allows high resolution measurements of deformation fields in stressed materials. This paper describes the technique and illustrates its use in strain concentration measurements around circular holes in CFRP laminates and in a stressed adhesive bond. In the latter example the initiation and growth of damage have been successfully followed.

  12. Seismicity and coupled deformation modeling at the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Kaven, J. O.; Hickman, S. H.; Davatzes, N. C.

    2015-12-01

    Micro-seismicity in geothermal reservoirs, in particular in enhanced geothermal systems (EGS), is a beneficial byproduct of injection and production, as it can indicate the generation of high-permeability pathways on either pre-existing or newly generated faults and fractures. The hazard of inducing an earthquake large enough to be felt at the surface, however, is not easily avoided and has led to termination of some EGS projects. To explore the physical processes leading to permeability creation and maintenance in geothermal systems and the physics of induced earthquakes , we investigated the evolution of seismicity and the factors controlling the migration, moment release rate, and timing of seismicity in the Coso Geothermal Field (CGF). We report on seismicity in the CGF that has been relocated with high precision double-difference relocation techniques and simultaneous velocity inversions to understand hydrologic reservoir compartmentalization and the nature of subsurface boundaries to fluid flow. We find that two distinct compartments are present within the CGF, which are divided by an aseismic gap showing a relatively low Vp/Vs ratio, likely indicating lower temperatures or lower pore pressures within the gap than in the adjacent reservoir compartments. Well-located events with Mw> 3.5 tend to map onto reactivated fault structures that were revealed when imaged by the relocated micro-seismicity. We relate the temporal and spatial migration of moment release rate to the injection and production histories in the reservoir by employing a thermo-poro-elastic finite element model that takes into account the compartment boundaries defined by the seismicity. We find that pore pressure effects alone are not responsible for the migration of seismicity and that poro-elastic and thermo-elastic stress changes are needed in addition to fluid pressure effects to account for the observed moment release rates.

  13. Jan Swammerdam's frogs

    PubMed Central

    Sleigh, Charlotte

    2012-01-01

    Having discussed insect metamorphosis at length, Jan Swammerdam's Bybel der Natuure (1679/1737) reached its climax with a substantial description of the generation and muscular activity of frogs. This paper explores the rhetorical role of frogs in Swammerdam's ‘great work’, showing how they were the Archimedean point from which he aimed to reorder all of creation—from insects to humans—within one glorious, God-ordained natural history and philosophy. Swammerdam linked insects to frogs through a demonstration that all underwent epigenesis; and frogs were then linked to humans through a demonstration of their identical muscular activity. The success of Swammerdam's strategy required a theological reconstruction of the frog, traditionally an ungodly creature, such that trustworthy knowledge could be obtained from its body. Perhaps surprisingly, this act of theological cleansing is shown to be somewhat prefigured in the distinctly non-experimental natural history of Edward Topsell (1608). The paper also examines Swammerdam's interactions with the mystic Antoinette Bourignon, and his challenges in reconciling a spirituality of meletetics with a material epistemology in natural philosophy. Differences are revealed between the natural analogies given by Swammerdam in his published and unpublished writings, undermining to a certain extent the triumphal insect–frog–human rhetorical structure of the Bybel.

  14. A novel digital tomosynthesis (DTS) reconstruction method using a deformation field map

    SciTech Connect

    Ren Lei; Zhang Junan; Thongphiew, Danthai; Godfrey, Devon J.; Jackie Wu, Q.; Zhou Sumin; Yin Fangfang

    2008-07-15

    We developed a novel digital tomosynthesis (DTS) reconstruction method using a deformation field map to optimally estimate volumetric information in DTS images. The deformation field map is solved by using prior information, a deformation model, and new projection data. Patients' previous cone-beam CT (CBCT) or planning CT data are used as the prior information, and the new patient volume to be reconstructed is considered as a deformation of the prior patient volume. The deformation field is solved by minimizing bending energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. The new patient DTS volume is then obtained by deforming the prior patient CBCT or CT volume according to the solution to the deformation field. This method is novel because it is the first method to combine deformable registration with limited angle image reconstruction. The method was tested in 2D cases using simulated projections of a Shepp-Logan phantom, liver, and head-and-neck patient data. The accuracy of the reconstruction was evaluated by comparing both organ volume and pixel value differences between DTS and CBCT images. In the Shepp-Logan phantom study, the reconstructed pixel signal-to-noise ratio (PSNR) for the 60 deg. DTS image reached 34.3 dB. In the liver patient study, the relative error of the liver volume reconstructed using 60 deg. projections was 3.4%. The reconstructed PSNR for the 60 deg. DTS image reached 23.5 dB. In the head-and-neck patient study, the new method using 60 deg. projections was able to reconstruct the 8.1 deg. rotation of the bony structure with 0.0 deg. error. The reconstructed PSNR for the 60 deg. DTS image reached 24.2 dB. In summary, the new reconstruction method can optimally estimate the volumetric information in DTS images using 60 deg. projections. Preliminary validation of the algorithm showed that it is both technically and clinically feasible for image guidance in radiation therapy.

  15. Peatlands and green frogs: A relationship regulated by acidity?

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    The effects of site acidification on amphibian populations have been thoroughly addressed in the last decades. However, amphibians in naturally acidic environments, such as peatlands facing pressure from the peat mining industry, have received little attention. Through two field studies and an experiment, I assessed the use of bog habitats by the green frog (Rana clamitans melanota), a species sensitive to various forestry and peat mining disturbances. First, I compared the occurrence and breeding patterns of frogs in bog and upland ponds. I then evaluated frog movements between forest and bog habitats to determine whether they corresponded to breeding or postbreeding movements. Finally, I investigated, through a field experiment, the value of bogs as rehydrating areas for amphibians by offering living Sphagnum moss and two media associated with uplands (i.e., water with pH ca 6.5 and water-saturated soil) to acutely dehydrated frogs. Green frog reproduction at bog ponds was a rare event, and no net movements occurred between forest and bog habitats. However, acutely dehydrated frogs did not avoid Sphagnum. Results show that although green frogs rarely breed in bogs and do not move en masse between forest and bog habitats, they do not avoid bog substrates for rehydrating, despite their acidity. Thus, bogs offer viable summering habitat to amphibians, which highlights the value of these threatened environments in terrestrial amphibian ecology.

  16. Application of Gaussian expansion method to nuclear mean-field calculations with deformation

    NASA Astrophysics Data System (ADS)

    Nakada, H.

    2008-08-01

    We extensively develop a method of implementing mean-field calculations for deformed nuclei, using the Gaussian expansion method (GEM). This GEM algorithm has the following advantages: (i) it can efficiently describe the energy-dependent asymptotics of the wave functions at large r, (ii) it is applicable to various effective interactions including those with finite ranges, and (iii) the basis parameters are insensitive to nuclide, thereby many nuclei in wide mass range can be handled by a single set of bases. Superposing the spherical GEM bases with feasible truncation for the orbital angular momentum, we obtain deformed single-particle wave-functions to reasonable precision. We apply the new algorithm to the Hartree-Fock and the Hartree-Fock-Bogolyubov calculations of Mg nuclei with the Gogny interaction, by which neck structure of a deformed neutron halo is suggested for 40Mg.

  17. Coseismic Deformation Field and Fault Slip Distribution of the 2015 Chile Mw8.3 Earthquake

    NASA Astrophysics Data System (ADS)

    Qu, Chunyan; Zuo, Ronghu; Shan, Xin Jian; Zhang, Guohong; Zhang, Yingfeng; Song, Xiaogang

    2016-06-01

    On September 16, 2015, a magnitude 8.3 earthquake struck west of Illapel, Chile. We analyzed Sentinel-1A/IW InSAR data on the descending track acquired before and after the Chile Mw8.3 earthquake of 16 September 2015. We found that the coseismic deformation field of this event consists of many semi circular fringes protruding to east in an approximately 300km long and 190km wide region. The maximum coseismic displacement is about 1.33m in LOS direction corresponding to subsidence or westward shift of the ground. We inverted the coseismic fault slip based on a small-dip single plane fault model in a homogeneous elastic half space. The inverted coseismic slip mainly concentrates at shallow depth above the hypocenter with a symmetry shape. The rupture length along strike is about 340 km with maximum slip of about 8.16m near the trench. The estimated moment is 3.126×1021 N.m (Mw8.27) the maximum depth of coseismic slip near zero appears to 50km. We also analyzed the postseismic deformation fields using four interferograms with different time intervals. The results show that postseismic deformation occurred in a narrow area of approximately 65km wide with maximum slip 11cm, and its predominant motion changes from uplift to subsidence with time. that is to say, at first, the postseismic deformation direction is opposite to that of coseismic deformation, then it tends to be consistent with coseismic deformation.It maybe indicates the differences and changes in the velocity between the Nazca oceanic plate and the South American continental plate.

  18. DEFORMED FROGS AND ENVIRONMENTAL RETINOIDS. (R827398)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Natural levels of abnormalities in the trilling frog (neobactrachus centralis) at the Olympic dam mine

    SciTech Connect

    Read, J.L. ); Tyler, M.J. )

    1994-07-01

    Frogs are more susceptible than most vertebrates to environmental contaminants. Unlike amniotes, the frog egg is not protected by a semi-impervious shell, and hence is readily exposed to pollutants. In addition, tadpoles develop in wetlands to which many noxious substances drain from the surrounding landscape. Coupled with this high exposure rate, frogs are also very sensitive to trace elements, some pesticides, heavy metals especially when coupled with exposure to low pH and ionizing radiation. Frogs commonly exhibit discernible deformities following exposure to teratogenic contaminants, and therefore are valuable indicators of the existence of noxious substances in the environment. The abundance and ease of sampling of frogs, along with their sensitivity to environmental contaminants, makes them ideal organisms for environmental monitoring in the Australian arid zone. The study of abnormalities in frogs has become an integral part of the Environmental Management Programme of the Olympic Dam Operations (ODO) copper-uranium-gold-silver mine in northern South Australia. The Trilling Frog (Neobatrachus centralis) is the only frog species which has been recorded at Olympic Dam. It is likely that these frogs, are relatively sedentary, thus enhancing their value as indicator organisms. A pilot survey in 1989 documented frog deformity levels comparable to those found at undisturbed sites in Australia and in other countries. This paper reports on larger study conducted in February and March 1992 when heavy rains provided another opportunity to survey the frog population. The low levels of abnormalities support the conclusion that N. centralis at Olympic Dam does not appear to be accumulating or being influenced by the very low levels of radionuclides present here.

  20. Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields

    NASA Astrophysics Data System (ADS)

    Ma, Zeling; Wang, Xingzhe; Zhou, Youhe

    2016-04-01

    Based on the time-dependent Ginzburg-Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.

  1. Deformation of biological cells in the acoustic field of an oscillating bubble

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Allen, John S., III

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  2. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  3. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  4. It's a Frog's Life

    ERIC Educational Resources Information Center

    Coffey, Audrey L.; Sterling, Donna R.

    2003-01-01

    When a preschool teacher unexpectedly found tadpoles in the school's outdoor baby pool, she recognized an unusual opportunity for her students to study pond life up close. By following the tadpoles' development, students learned about frogs, life cycles, habitats. (Contains 1 resource.)

  5. Note: Dynamic meso-scale full field surface deformation measurement of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Ravindran, S.; Tessema, A.; Kidane, A.

    2016-03-01

    A dynamic experiment at mesoscale is developed to measure local deformation and strain in granular materials at high temporal and spatial resolutions. The experimental setup is comprised of a high-speed camera along with a high magnification extension tube. The method is demonstrated by measuring the full field strain across and in the boundary of the crystals at a high temporal resolution in polymer bonded sugar crystals and glass beads filled epoxy particulate composite specimens under dynamic loading. In both cases, the local strain heterogeneity is captured successfully. The measured strain and deformation field can be further used to obtain the relative motion of each crystal, crystal rotation, and the relative displacement between the polymer interface and the crystal, which are very critical to understand the local failure mechanisms in heterogeneous materials.

  6. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields

    PubMed Central

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M.; San Jose-Estepar, Raul

    2014-01-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  7. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields.

    PubMed

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M; San Jose-Estepar, Raul

    2014-06-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  8. Fidelity of the estimation of the deformation gradient from data deduced from the motion of markers placed on a body that is subject to an inhomogeneous deformation field.

    PubMed

    Průša, Vít; Rajagopal, K R; Saravanan, U

    2013-08-01

    Practically all experimental measurements related to the response of nonlinear bodies that are made within a purely mechanical context are concerned with inhomogeneous deformations, though, in many experiments, much effort is taken to engender homogeneous deformation fields. However, in experiments that are carried out in vivo, one cannot control the nature of the deformation. The quantity of interest is the deformation gradient and/or its invariants. The deformation gradient is estimated by tracking positions of a finite number of markers placed in the body. Any experimental data-reduction procedure based on tracking a finite number of markers will, for a general inhomogeneous deformation, introduce an error in the determination of the deformation gradient, even in the idealized case, when the positions of the markers are measured with no error. In our study, we are interested in a quantitative description of the difference between the true gradient and its estimate obtained by tracking the markers, that is, in the quantitative description of the induced error due to the data reduction. We derive a rigorous upper bound on the error, and we discuss what factors influence the error bound and the actual error itself. Finally, we illustrate the results by studying a practically interesting model problem. We show that different choices of the tracked markers can lead to substantially different estimates of the deformation gradient and its invariants. It is alarming that even qualitative features of the material under consideration, such as the incompressibility of the body, can be evaluated differently with different choices of the tracked markers. We also demonstrate that the derived error estimate can be used as a tool for choosing the appropriate marker set that leads to the deformation gradient estimate with the least guaranteed error. PMID:23760183

  9. Biosensor, ELISA, and frog embryo teratogenesis assay: Xenopus (FETAX) analysis of water associated with frog malformations in Minnesota

    NASA Astrophysics Data System (ADS)

    Garber, Eric A. E.; Erb, Judith L.; Downward, James G.; Priuska, Eric M.; Wittliff, James L.; Feng, Wenke; Magner, Joseph; Larsen, Gerald L.

    2001-03-01

    Between 1995 and 1997 over 62% of the counties in Minnesota reported the presence of malformed frogs. While most sites have recently shown a decline in malformed frog populations, one site in northeastern Minnesota with no prior history of containing malformed frogs was recently discovered to contain > 67% malformed Rana pipiens (northern leopard frogs). As part of an effort to study the presence of hormonally active agents in fresh water sources, water samples were collected from lakes in Minnesota containing malformed frogs and analyzed for the presence of hormonally active compounds using a novel evanescent field fluorometric biosensor and the frog embryo teratogenesis assay: Xenopus (FETAX) bioassay. The waveguide based biosensor developed by ThreeFold Sensors (TFS biosensor, Ann Arbor, MI) detects the presence of estrogenic compounds capable of interacting with free human ER-a and by inhibiting binding to an immobilized estrogen. The FETAX bioassay is a developmental assay, which measures teratogenicity, mortality, and inhibition of growth during the first 96 hours of organogenesis and thereby provides a universal screen for endocrine disruptors. TFS biosensor and FETAX screening of the water samples suggest a relationship between estrogenic activity, mineral supplementation, and the occurrence of malformed frogs.

  10. Strain localization in carbonate rocks experimentally deformed in the ductile field

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  11. Effects of topography on the interpretation of the deformation field of prominent volcanoes - Application to Etna

    USGS Publications Warehouse

    Cayol, V.; Cornet, F.H.

    1998-01-01

    We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.

  12. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.

    2014-12-01

    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.

  13. Deformation analysis of vesicles in an alternating-current electric field

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  14. Deformed SW curve and the null vector decoupling equation in Toda field theory

    NASA Astrophysics Data System (ADS)

    Poghossian, Rubik

    2016-04-01

    It is shown that the deformed Seiberg-Witten curve equation after Fourier transform is mapped into a differential equation for the AGT dual 2d CFT cnformal block containing an extra completely degenerate field. We carefully match parameters in two sides of duality thus providing not only a simple independent prove of the AGT correspondence in Nekrasov-Shatashvili limit, but also an extension of AGT to the case when a secondary field is included in the CFT conformal block. Implications of our results in the study of monodromy problems for a large class of n'th order Fuchsian differential equations are discussed.

  15. Near-field and far-field effects of elastic structure on coseismic deformation of the 2011 Tohoku earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Hashima, Akinori; Becker, Thorsten; Freed, Andy; Sato, Hiroshi; Okaya, David; Suito, Hisashi; Yarai, Hiroshi; Ishiyama, Tatsuya; Iwasaki, Takaya

    2016-04-01

    Coseismic deformation due to the 2011 Tohoku earthquake, Japan, was detected by dense GPS network of over 1200 stations and several seafloor stations. Using these observations, we investigated effects of elastic structure on coseismic deformation with a 3-D finite element model incorporating geometry of the regional plate boundaries and elastic structures. First, we computed displacement fields for different elastic models with the same coseismic slip distribution to understand the effect of elastic structures. We assumed the three structure models: (a) Homogeneous model, (b) two-layered model considering crust-mantle structure (rigidity of 35 and 65 GPa, respectively) (Layered model), (c) crust-mantle model with cold subducting slab (85 GPa) (Slab model). We found the two contradicting effects: (1) In the far field (mostly at onshore stations), the amount of displacement decreases with the increase of the average rigidity. (2) In the near field at offshore stations, the amount of surface displacement increases with the increase of rigidity across the faults. This is because the stiffer (less deformable) footwall requires more movement of the hanging wall to accommodate the slip. Next, we inverted the observed displacements to obtain slip distribution for three elastic structures. The patterns of inverted slip distribution are basically similar for all three models but the amount of maximum slip is not simply related to average rigidity of structure models. The maximum slip increases from 39 m in Homogeneous model to 40 m in Layered model and then falls to 38 m in Slab model. These changes show that crust-mantle layering is more effective on far field while slab effect is more important in the near field.

  16. Fundamental Experiment to Determine Escape Countermeasures for Frogs Falling into Agricultural Canals

    NASA Astrophysics Data System (ADS)

    Watabe, Keiji; Mori, Atsushi; Koizumi, Noriyuki; Takemura, Takeshi

    Frogs often drown in agricultural canals with deep concrete walls, which are installed commonly in paddy fields after land improvement projects in Japan, because they cannot escape after falling into the canal. Therefore, countermeasures that enable frogs to escape from canals are required in some rural areas. An experimental canal with partially sloped walls was used as an escape countermeasure to investigate the preferable angle of slope for the walls, water depth and flow velocity that enables Tokyo Daruma Pond Frogs (Rana porosa porosa), which have no adhesive discs, to easily escape. Walls with slopes of 30-45 degrees allowed 50-60% of frogs to escape from the experimental canals, frogs especially easily climbed the 30 degree sloped walls. When the water depth was 5 cm or flow velocity was greater than 20 cm/s, approximately 80% of the frogs moved downstream and reached the sloped walls because the frogs' toes did not reach the bottom of the canal. However, if the depth was 2 cm and the flow velocity was 5 cm/s, only 4% of the frogs climbed the sloped walls because they could move freely. The frogs appeared to not be good at long-distance swimming and could not remain a long-time under running water. Therefore, walls sloped less than 30 degrees and control of both water depth and flow velocity appears important for enabling frogs to easily escape from canals.

  17. Measurements and full-field predictions of deformation heterogeneities in ice

    NASA Astrophysics Data System (ADS)

    Montagnat, Maurine; Blackford, Jane R.; Piazolo, Sandra; Arnaud, Laurent; Lebensohn, Ricardo A.

    2011-05-01

    We have made creep experiments on columnar grained ice and characterised the microstructure and intragranular misorientations over a range of length scales. A FFT full-field model was used to predict the deformation behaviour, using the experimentally characterised microstructure as the starting material. This is the first time this combination of techniques has been used to study the deformation of ice. The microstructure was characterised at the cm scale using an optical technique, the automatic ice texture analyser AITA and at the micron scale using electron backscattered diffraction EBSD. The crystallographic texture and intragranular misorientations were fully characterised by EBSD (3 angles). The deformed microstructure frequently showed straight subgrain boundaries often originating at triple points. These were identified as kink bands, and for the first time we have measured the precise misorientation of the kink bands and deduced the nature of the dislocations responsible for them. These dislocations have a basal edge nature and align in contiguous prismatic planes enabling deformation along the c-axis. In addition, non-uniform grain boundaries and regions of recrystallization were seen. We present coupling between fine scale characterization of intragranular misorientations, from experiments, and prediction of internal stresses that cause it. The model predicts the morphology of the observed local misorientations within the grains, however it over predicts the misorientation values. This is because the annealing and recrystallization mechanisms are not taken into account in the model. Ice is excellent as a model material for measuring, predicting and understanding deformation behaviour for polycrystalline materials. Specifically for ice this knowledge is needed to improve models of ice sheet dynamics that are important for climatic signal interpretation.

  18. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields.

    PubMed

    Küchler, Niklas; Löwen, Hartmut; Menzel, Andreas M

    2016-02-01

    Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers. PMID:26986380

  19. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields

    NASA Astrophysics Data System (ADS)

    Küchler, Niklas; Löwen, Hartmut; Menzel, Andreas M.

    2016-02-01

    Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.

  20. Frog Swarms: Earthquake Precursors or False Alarms?

    PubMed

    Grant, Rachel A; Conlan, Hilary

    2013-01-01

    -incidence. Statistical analysis of the data indicated frog swarms are unlikely to be connected with earthquakes. Reports of unusual behaviour giving rise to earthquake fears should be interpreted with caution, and consultation with experts in the field of earthquake biology is advised. PMID:26479746

  1. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    DOE PAGESBeta

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2015-09-03

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of whichmore » serves as band head of a rotational band.« less

  2. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    SciTech Connect

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2015-09-03

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.

  3. Investigation of flow and solute transport at the field scale through heterogeneous deformable porous media

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2016-09-01

    This work describes an investigation of the spatial statistical structure of specific discharge field and solute transport process of a nonreactive solute at the field scale through a heterogeneous deformable porous medium. The flow field is driven by a vertical gradient in the excess pore water pressure induced by a step increase in load applied on the upper part of a finite-thickness aquifer. The non-stationary spectral representation is adopted to characterize the spatial covariance of the specific discharge field necessary for the development of the solute particle trajectory statistics using the Lagrangian formalism. We show that the statistics of the specific discharge and particle trajectory derived herein are non-stationary and functions of the coefficient of soil compressibility, μ. The effect of μ on the relative variation of specific discharge and the solute particle trajectory statistics are analyzed upon evaluating our expressions.

  4. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  5. Ultrasonic communication in frogs.

    PubMed

    Feng, Albert S; Narins, Peter M; Xu, Chun-He; Lin, Wen-Yu; Yu, Zu-Lin; Qiu, Qiang; Xu, Zhi-Min; Shen, Jun-Xian

    2006-03-16

    Among vertebrates, only microchiropteran bats, cetaceans and some rodents are known to produce and detect ultrasounds (frequencies greater than 20 kHz) for the purpose of communication and/or echolocation, suggesting that this capacity might be restricted to mammals. Amphibians, reptiles and most birds generally have limited hearing capacity, with the ability to detect and produce sounds below approximately 12 kHz. Here we report evidence of ultrasonic communication in an amphibian, the concave-eared torrent frog (Amolops tormotus) from Huangshan Hot Springs, China. Males of A. tormotus produce diverse bird-like melodic calls with pronounced frequency modulations that often contain spectral energy in the ultrasonic range. To determine whether A. tormotus communicates using ultrasound to avoid masking by the wideband background noise of local fast-flowing streams, or whether the ultrasound is simply a by-product of the sound-production mechanism, we conducted acoustic playback experiments in the frogs' natural habitat. We found that the audible as well as the ultrasonic components of an A. tormotus call can evoke male vocal responses. Electrophysiological recordings from the auditory midbrain confirmed the ultrasonic hearing capacity of these frogs and that of a sympatric species facing similar environmental constraints. This extraordinary upward extension into the ultrasonic range of both the harmonic content of the advertisement calls and the frog's hearing sensitivity is likely to have co-evolved in response to the intense, predominantly low-frequency ambient noise from local streams. Because amphibians are a distinct evolutionary lineage from microchiropterans and cetaceans (which have evolved ultrasonic hearing to minimize congestion in the frequency bands used for sound communication and to increase hunting efficacy in darkness), ultrasonic perception in these animals represents a new example of independent evolution. PMID:16541072

  6. Supersymmetric moose models: An extra dimension from a broken deformed conformal field theory

    NASA Astrophysics Data System (ADS)

    Erlich, Joshua; Anly Tan, Jong

    2006-09-01

    We find a class of four dimensional deformed conformal field theories which appear extra dimensional when their gauge symmetries are spontaneously broken. The theories are supersymmetric moose models which flow to interacting conformal fixed points at low energies, deformed by superpotentials. Using a-maximization we give strong nonperturbative evidence that the hopping terms in the resulting latticized action are relevant deformations of the fixed-point theories. These theories have an intricate structure of RG flows between conformal fixed points. Our results suggest that at the stable fixed points each of the bulk gauge couplings and superpotential hopping terms is turned on, in favor of the extra-dimensional interpretation of the theory. However, we argue that the higher-dimensional gauge coupling is generically small compared to the size of the extra dimension. In the presence of a brane the topology of the extra dimension is determined dynamically and depends on the numbers of colors and bulk and brane flavors, which suggests phenomenological applications. The RG flows between fixed points in these theories provide a class of tests of Cardy’s conjectured a-theorem.

  7. Supersymmetric moose models: An extra dimension from a broken deformed conformal field theory

    SciTech Connect

    Erlich, Joshua; Anly Tan, Jong

    2006-09-15

    We find a class of four dimensional deformed conformal field theories which appear extra dimensional when their gauge symmetries are spontaneously broken. The theories are supersymmetric moose models which flow to interacting conformal fixed points at low energies, deformed by superpotentials. Using a-maximization we give strong nonperturbative evidence that the hopping terms in the resulting latticized action are relevant deformations of the fixed-point theories. These theories have an intricate structure of RG flows between conformal fixed points. Our results suggest that at the stable fixed points each of the bulk gauge couplings and superpotential hopping terms is turned on, in favor of the extra-dimensional interpretation of the theory. However, we argue that the higher-dimensional gauge coupling is generically small compared to the size of the extra dimension. In the presence of a brane the topology of the extra dimension is determined dynamically and depends on the numbers of colors and bulk and brane flavors, which suggests phenomenological applications. The RG flows between fixed points in these theories provide a class of tests of Cardy's conjectured a-theorem.

  8. Modeling surface deformation due to CO2 injection at an enhanced oil recovery field in Texas

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Abdollahzadeh, M.; Dixon, T. H.; Malservisi, R.; Hosseini, S.

    2013-12-01

    The Geodesy Laboratory at the University of South Florida has operated 3 C-GPS stations at an enhanced oil recovery field in Texas since October 2011. Our GPS sites recorded vertical uplift during the injection phase when the reservoir was initially pressurized, and localized subsidence in phase with reservoir pressure after oil extraction started. In this study, we use analytical and numerical models to better understand the small-scale surface deformation observed by GPS due to CO2 injection. First, we use an analytical model of a pressurized horizontal circular crack in an elastic half-space to fit the surface deformation data. Then, constrained by the analytical modeling results, we develop a poroelastic Finite Element Model (FEM) to investigate the influence of reservoir geometry and overlying stratigraphy on surface displacement. A sensitivity study is carried out to understand the effects of realistic geometry and material properties on surface deformation. Our preliminary results show that a poroelastic FEM can explain the location-dependant time delay between the injection and surface response.

  9. High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method.

    PubMed

    Claus, Daniel

    2010-06-01

    This paper discusses the potential of the synthetic-aperture method in digital holography to increase the resolution, to perform high accuracy deformation measurement, and to obtain a three-dimensional topology map. The synthetic aperture method is realized by moving the camera with a motorized x-y stage. In this way a greater sensor area can be obtained resulting in a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction combined with a smaller depth of field. The depth of field can be increased by applying the extended depth of field method, which yields an in-focus reconstruction of all longitudinal object regions. Moreover, a topology map of the object can be obtained. PMID:20517390

  10. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized. PMID:26530048

  11. Light-like κ-deformations and scalar field theory via Drinfeld twist

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Samsarov, Andjelo

    2015-08-01

    In this article we will use the Drinfeld twist leading to light-like κ-deformations of Poincaré algebra. We shall apply the standard Hopf algebra methods in order to define the star-product, which shall be used to formulate a scalar field theory compatible with κ-Poincaré-Hopf algebra. Using this approach we show that there is no problem with formulating integration on κ-Minkowski space and no need for introducing a new measure. We have shown that the ★-product obtained from this twist enables us to define a free scalar field theory on κ-Minkowski space that is equivalent to a commutative one on a usual Minkowski space. We also discuss the interacting ϕ4 scalar field model compatible with κ-Poincaré-Hopf algebra.

  12. The effects of mine field subsoil deformations on construction`s supports

    SciTech Connect

    Klosek, K.

    1997-12-31

    The interaction between construction`s supports (supported slope) and ground medium in mine-field subsoil deformation conditions is discussed. Basing on the results of analog model investigation, the phenomenon of the soil thrust on the vertical elements of buildings structures in mining areas was found to be entirely different from classical soil pressure in view of Coulombe`s theory. The novel theoretical concept of this phenomenon is based on the granular media mechanics and variable values of the earth pressure coefficient in the conditions described by horizontal unitary compacting strains in the subsoil.

  13. Water relations of the burrowing sandhill frog, Arenophryne rotunda (Myobatrachidae).

    PubMed

    Cartledge, V A; Withers, P C; Thompson, G G; McMaster, K A

    2006-05-01

    Arenophryne rotunda is a small (2-8 g) terrestrial frog that inhabits the coastal sand dunes of central Western Australia. While sand burrowing is a strategy employed by many frog species inhabiting Australia's semi-arid and arid zones, A. rotunda is unique among burrowing species because it lives independently of free water and can be found nocturnally active on the dune surface for relatively extended periods. Consequently, we examined the physiological factors that enable this unique frog to maintain water balance. A. rotunda was not found to have any special adaptation to reduce EWL (being equivalent to a free water surface) or rehydrate from water (having the lowest rehydration rate measured for 15 Western Australian frog species), but it was able to maintain water balance in sand of very low moisture (1-2%). Frogs excavated in the field were in dune sand of 4.4% moisture content, as a consequence of recent rain, which was more than adequate for these frogs to maintain water balance as reflected by their low plasma and urine osmotic concentrations. We suggest that in dry periods of the year, A. rotunda can achieve positive water balance by cutaneous water uptake by burrowing deeper into the substrate to where the percent water content is greater than 1.5%. PMID:16315052

  14. Pure Ultrasonic Communication in an Endemic Bornean Frog

    PubMed Central

    Arch, Victoria S.; Grafe, T. Ulmar; Gridi-Papp, Marcos; Narins, Peter M.

    2009-01-01

    Huia cavitympanum, an endemic Bornean frog, is the first amphibian species known to emit exclusively ultrasonic (i.e., >20 kHz) vocal signals. To test the hypothesis that these frogs use purely ultrasonic vocalizations for intraspecific communication, we performed playback experiments with male frogs in their natural calling sites. We found that the frogs respond with increased calling to broadcasts of conspecific calls containing only ultrasound. The field study was complemented by electrophysiological recordings from the auditory midbrain and by laser Doppler vibrometer measurements of the tympanic membrane's response to acoustic stimulation. These measurements revealed that the frog's auditory system is broadly tuned over high frequencies, with peak sensitivity occurring within the ultrasonic frequency range. Our results demonstrate that H. cavitympanum is the first non-mammalian vertebrate described to communicate with purely ultrasonic acoustic signals. These data suggest that further examination of the similarities and differences in the high-frequency/ultrasonic communication systems of H. cavitympanum and Odorrana tormota, an unrelated frog species that produces and detects ultrasound but does not emit exclusively ultrasonic calls, will afford new insights into the mechanisms underlying vertebrate high-frequency communication. PMID:19401782

  15. Teams Explore the Whole Frog

    ERIC Educational Resources Information Center

    Cessna, Clair E.

    1973-01-01

    Describes the content and organization of a laboratory session in which student teams work on the organs, tissues, and parasites of a pithed frog. The procedure maximizes participation by every student, makes possible the fullest use of each frog, and permits a rather broad study in a limited time. (JR)

  16. Mosquito repellents in frog skin

    PubMed Central

    Williams, C.R; Smith, B.P.C; Best, S.M; Tyler, M.J

    2006-01-01

    The search for novel insect repellents has been driven by health concerns over established synthetic compounds such as diethyl-m-toluamide (DEET). Given the diversity of compounds known from frog skin and records of mosquito bite and ectoparasite infestation, the presence of mosquito repellents in frogs seemed plausible. We investigated frog skin secretions to confirm the existence of mosquito repellent properties. Litoria caerulea secretions were assessed for mosquito repellency by topical application on mice. The secretions provided protection against host-seeking Culex annulirostris mosquitoes. Olfactometer tests using aqueous washes of skin secretions from L. caerulea and four other frog species were conducted to determine whether volatile components were responsible for repellency. Volatiles from Litoria rubella and Uperoleia mjobergi secretions were repellent to C. annulirostris, albeit not as repellent as a DEET control. The demonstration of endogenous insect repellents in amphibians is novel, and demonstrates that many aspects of frog chemical ecology remain unexplored. PMID:17148373

  17. Evolution operators in conformal field theories and conformal mappings: Entanglement Hamiltonian, the sine-square deformation, and others

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Ryu, Shinsei; Ludwig, Andreas W. W.

    2016-06-01

    By making use of conformal mapping, we construct various time-evolution operators in (1+1)-dimensional conformal field theories (CFTs), which take the form ∫d x f (x )H (x ) , where H (x ) is the Hamiltonian density of the CFT and f (x ) is an envelope function. Examples of such deformed evolution operators include the entanglement Hamiltonian and the so-called sine-square deformation of the CFT. Within our construction, the spectrum and the (finite-size) scaling of the level spacing of the deformed evolution operator are known exactly. Based on our construction, we also propose a regularized version of the sine-square deformation, which, in contrast to the original sine-square deformation, has the spectrum of the CFT defined on a spatial circle of finite circumference L , and for which the level spacing scales as 1 /L2 , once the circumference of the circle and the regularization parameter are suitably adjusted.

  18. Panamanian frog species host unique skin bacterial communities.

    PubMed

    Belden, Lisa K; Hughey, Myra C; Rebollar, Eria A; Umile, Thomas P; Loftus, Stephen C; Burzynski, Elizabeth A; Minbiole, Kevin P C; House, Leanna L; Jensen, Roderick V; Becker, Matthew H; Walke, Jenifer B; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  19. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  20. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.

    PubMed

    Pillai, R; Berry, J D; Harvie, D J E; Davidson, M R

    2015-07-01

    The deformation and breakup of an axisymmetric, conducting drop suspended in a nonconducting medium and subjected to an external electric field is numerically investigated here using an electrokinetic model. This model uses a combined level set-volume of fluid formulation of the deformable surfaces, along with a multiphase implementation of the Nernst-Planck equation for transport of ions, that allows for varying conductivity inside the drop. A phase diagram, based on a parametric study, is used to characterize the stability conditions. Stable drops with lower ion concentration are characterized by longer drop shapes than those achieved at higher ion concentrations. For higher drop ion concentration, greater charge accumulation is observed at drop tips. Consequently, such drops break up by pinching off rather than tip streaming. The charge contained in droplets released from unstable drops is shown to increase with drop ion concentration. These dynamic drop behaviors depend on the strength of the electric field and the concentration of ions in the drop and result from the interplay between the electric forces arising from the permittivity jump at the drop interface and the ions in the bulk. PMID:26274270

  1. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  2. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGESBeta

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  3. Effect of the particular temperature field on a National Ignition Facility deformable mirror

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Huang, Lei; Ma, Xingkun; Xue, Qiao; Gong, Mali

    2016-09-01

    The changes caused by temperature in the surface shape of a deformable mirror used at the National Ignition Facility has been investigated previously. In this paper the temperature induced surface shape under different temperature fields is further studied. We find that the changes of the peak and valley (PV) or root-mean-square (RMS) value rely on the temperature gradient as well as the difference between the mirror and the environment with a certain rule. This work analyzes these quantitative relationship, using the finite element method. Some experiments were carried out to verify the analysis results. The conclusion provides guidance to minimize the effect of the temperature field on the surface shape. Considerations about how to improve the temperature induced faceplate in actual work are suggested finally.

  4. Central and eastern Anatolian crustal deformation rate and velocity fields derived from GPS and earthquake data

    NASA Astrophysics Data System (ADS)

    Simão, N. M.; Nalbant, S. S.; Sunbul, F.; Komec Mutlu, A.

    2016-01-01

    We present a new strain-rate and associated kinematic model for the eastern and central parts of Turkey. In the east, a quasi N-S compressional tectonic regime dominates the deformation field and is partitioned through the two major structural elements of the region, which are the conjugate dextral strike-slip North Anatolian Fault Zone (NAFZ) and the sinistral strike slip East Anatolian Fault Zone (EAFZ). The observed surface deformation is similar to that inferred by anisotropy studies which sampled the region of the mantle closer to the crust (i.e. the lithospheric mantle and the Moho), and is dependent on the presence or absence of a lithospheric mantle, and of the level of coupling between it and the overlaying crust. The areas of the central and eastern parts of Turkey which are deforming at elevated rates are situated above areas with strong gradients in crustal thickness. This seems to indicate that these transition zones, situated between thinner and thicker crusts, promote more deformation at the surface. The regions that reveal elevated strain-rate values are 1) the Elaziğ-Bingol segment of the EAFZ, 2) the region around the Karlıova triple-junction including the Yedisu segment and the Varto fault, 3) the section of the NAFZ that extends from the Erzincan province up to the NAFZ-Ezinepazarı fault junction, and 4) sections of the Tuz Gölü Fault Zone. Other regions like the Adana basin, a significant part of the Central Anatolian Fault Zone (CAFZ), the Aksaray and the Ankara provinces, are deforming at smaller but still considerable rates and therefore should be considered as areas well capable of producing damaging earthquakes (between M6 and 7). This study also reveals that the central part of Turkey is moving at a faster rate towards the west than the eastern part Turkey, and that the wedge region between the NAFZ and the EAFZ accounts for the majority of the counter clockwise rotation between the eastern and the central parts of Turkey. This

  5. Field and experimental constraints on the deformation and break-up up of injected magma (Invited)

    NASA Astrophysics Data System (ADS)

    Hodge, K. F.; Carazzo, G.; Jellinek, M.

    2010-12-01

    Understanding the mechanics that control mafic schlieren and enclave formation is a central issue in volcanology for interpreting the conditions of the unerupted material in a chamber. Field observations from the Tuolumne Intrusive Suite (TIS), USA, demonstrate that meter-scale migrating tubes, or “ladder dikes,” can be strongly deformed by shearing motions in the magma chamber. These delicate features offer preserved length scales of deformation that can be used to infer fundamental quantities controlling the rheology of silicic magma. Here we investigate what governs the dynamics of these tube-like structures in a shear flow using analog experiments, which are motivated by field observations from the TIS. Using variations in yield strength of the injected material, buoyancy, and ambient flow behavior, we aim to characterize the deformation of the tubes under a wide range of conditions. The experiments are conducted in an 8 cm high and 60 cm wide cylindrical tank. In all experiments the tank is filled to a depth of 7 cm with corn syrup (ρ = 1430 kg/m3, µ = 280 Pa s). A rigid rotating plate is driven from above by an external motor creating a simple shear flow in the corn syrup with rotation speeds varying between 0.08 - 12 rpm. The experiment involves a downward injection of a controlled volume of a particle-fluid mixture. The fluid is the same corn syrup used for the ambient fluid and the particles are glass powder (ρ = 2600 kg/m3, d = 1µm) and zirconium silicate spheres (ρ = 3600 kg/m3, d=0.4mm). Our results show that the particle-fluid tube may follow two end-member regimes depending on the shear stress/buoyancy force ratio (V*) and the viscous stress/yield stress ratio (R) imposed initially. At low R values (< 1) and low V* values (<100) as well as all R values for V* > 100, the injected tube becomes gravitationally unstable and breaks up into blobs separated by thin strands of interstitial tube material. At high R values (> 1) and low V* values (<100

  6. Modeling interseismic deformation field of North Tehran Fault extracted from precise leveling observation

    NASA Astrophysics Data System (ADS)

    Amighpey, Masoome; Voosoghi, Behzad; Arabi, Siyavash

    2016-06-01

    The North Tehran Fault (NTF) stands out as a major active thrust fault running for approximately 110 km north of Tehran, the capital province of Iran. It has been the source of several major historical earthquakes in the past, including those in 958, 1665, and 1830. In this paper, interseismic strain accumulation on the NFT was investigated using precise leveling measurements obtained over the time frame 1997-2005. The relationship between surface deformation field and interseismic deformation models was evaluated using simulated annealing optimization in a Bayesian framework. The results show that the NTF fault follows an elastic dislocation model creep at a rate of 2.5 ± 0.06 mm/year in the eastern part and 6.2 ± 0.04 mm/year in the western part. Moreover, the locking depth of the fault was evaluated to be ± 1.1 km in the eastern part and 1.3 ± 0.2 km in the western part.

  7. Crustal Velocity Field from InSAR and GPS reveals Internal Deformation of Western Tibet

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wright, T. J.

    2010-12-01

    Two contrasting views continue to dominate the debate about continental tectonics - do the continents behave like the oceans, with a few large plates (blocks) separated by major faults (e.g. Tapponnier et al., 1982, 2001; Thatcher, 2007; Meade, 2007), or is a smooth continuum a more appropriate and compact description (e.g. England and Molnar, 1997, 2005). The Tibetan plateau has long been the testing ground for this debate and despite decades of research it has yet to be put to bed. Existing observations of crustal deformation in Tibet are largely derived from the Global Positioning System (GPS). Because large gaps in the GPS coverage exist, particularly in central and Western Tibet, the data have been used to support both the models (e.g. England and Molnar, 2005; Thatcher, 2007; Meade, 2007). On the other hand, Interferometric Synthetic Aperture Radar (InSAR) offers an independent means of measuring present-day crustal deformation with a spatial resolution of a few tens of meters and an accuracy comparable to with GPS (e.g., Wright et al., 2001, 2004; Wang et al 2009). We have used InSAR data from multiple tracks in conjunction with available GPS to constrain a 2D velocity field model for the Tibetan plateau. About 300 ERS/Envisat interferograms are produced spanning 6 tracks (five descending and one ascending), covering ~200,000 km2 of Western Tibet. Each track is analysed using a network approach which yields line-of-sight deformation rates and realistic uncertainties (Biggs et al., 2007; Elliott et al., 2008; Wang et al., 2009). These are combined with the GPS, using full covariances, by adapting the velocity field method of England and Molnar (1997) to incorporate InSAR observations. Initially, we set up a triangular mesh spanning the target area; we then solve for the horizontal velocities on each node, as well as additional orbital and atmospheric terms for the InSAR data. The solution is regularised using Laplacian smoothing, whose weight is determined as

  8. Deformation and Interaction of Droplet Pairs in a Microchannel Under ac Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Song, Yongxin; Li, Dongqing; Hu, Guoqing

    2015-08-01

    The deformation and interaction of a droplet pair in an electric field determine the success of droplet coalescence. Electric intensity and initial droplet separation are crucial parameters in this process. In this work, a combined theoretical and numerical analysis is performed to study the electrohydrodynamics of confined droplet pairs in a rectangular microchannel under ac electric fields. We develop a theoretical model to predict the relationship between critical electric intensity and droplet separation. A geometrical model relating the initial droplet separation to the cone angle is also established to determine the critical separation for partial coalescence. These models are validated by comparisons with existing experimental observations. According to the initial separation and electric intensity, five regimes of droplet interactions are classified by direct numerical simulations, namely noncoalescence, coalescence, partial coalescence, ejection after coalescence, and ejection with partial coalescence. According to their controlling mechanisms, the five regimes are distinguished by three well-defined boundaries. The detailed dynamics of the partial coalescence phenomenon is resolved when the droplet separation exceeds the critical value. A dynamic liquid bridge between the droplets is sustained by the competition between surface tension and electric stress. The dynamics of ejected microjets at the exterior ends are also addressed to show their responses to the oscillating electric field. The full understanding of the droplet dynamics under electric fields can be used to predict the droplet fusion behaviors and thus to facilitate the design of droplet-based microfluidic devices.

  9. Leopard frog and wood frog reproduction in Colorado and Wyoming

    USGS Publications Warehouse

    Corn, Paul Stephen; Livo, Lauren J.

    1989-01-01

    Between 1978 and 1988, we recorded reproductive information from populations of ranid frogs in Colorado and Wyoming. Egg masses from five plains and montane populations of northern leopard frogs (Rana pipiens) contained 645-6272 eggs (x̄ = 3045, N = 68 egg masses). In two montane populations of wood frogs (Rana sylvatica) numbers of eggs per egg mass varied from 711-1248 (x̄ = 876, N = 15) and probably were equal to total clutch size. Mean hatching success was 90% in egg masses from one R. sylvatica population and ranged from 70% to 99% in R. pipiens egg masses. Rana pipiens egg masses from one location were assigned to three overlapping size distributions, which we believe reflects the underlying age structure of female frogs.

  10. Drainage ditches facilitate frog movements in a hostile landscape

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    Ditches are common in landscapes influenced by agricultural, forestry, and peat mining activities, and their value as corridors remains unassessed. Pond-breeding amphibians can encounter hostile environments when moving between breeding, summering, or hibernation sites, and are likely to benefit from the presence of ditches in the landscape. Within a system consisting of ditch networks in bogs mined for peat in eastern New Brunswick, Canada, I quantified the breeding, survival, and movements of green frogs (Rana clamitans melanota) in drainage ditches and also surveyed peat fields. Frogs rarely ventured on peat fields and most individuals frequented drainage ditches containing water, particularly in late summer. Though frogs did not breed in ditches, their survival rate in ditches was high (88%). Ditches did not hinder frog movements, as frogs moved independently of the current. Results indicate that drainage ditches containing water enable some movements between habitats isolated by peat mining, in contrast to peat surfaces, and suggest they function as amphibian movement corridors. Thus, such drainage ditches may mitigate the effects of peat extraction on amphibian populations. At the very least, these structures provide an alternative to hostile peat surfaces. This study highlights that small-scale corridors are potentially valuable in population dynamics. ?? Springer 2005.

  11. Experimental characterization of crack tip deformation fields in Alloy 718 at high temperatures

    SciTech Connect

    Liu, J.; Lyons, J.; Sutton, M.; Reynolds, A.

    1998-01-01

    A series of fracture mechanics tests were conducted at temperatures of 650 C and 704 C in air, using Inconel 719. A noncontacting measurement technique, based on computer vision and digital image correlation, was applied to directly measure surface displacements and strains prior to and during creep crack growth. For the first time, quantitative comparisons at elevated temperatures are presented between experimentally measured near-crack-tip deformation fields and theoretical linear elastic and viscoelastic fracture mechanics solutions. The results establish that linear elastic conditions dominate the near-crack-tip displacements and strains at 650 C during crack growth, and confirm that K{sub 1} is a viable continuum-based fracture parameter for creep crack growth characterization. Postmortem fractographic analyses indicate that grain boundary embrittlement leads to crack extension before a significant amount of creep occurs at this temperature. At higher temperatures, however, no crack growth was observed due to crack tip blunting and concurrent stress reduction after load application.

  12. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Keiding, M.; Árnadóttir, T.; Jónsson, S.; Decriem, J.; Hooper, A.

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10 cm is observed during the first 2 years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction.

  13. Hierarchical estimation of a dense deformation field for 3-D robust registration.

    PubMed

    Hellier, P; Barillot, C; Mémin, E; Pérez, P

    2001-05-01

    A new method for medical image registration is formulated as a minimization problem involving robust estimators. We propose an efficient hierarchical optimization framework which is both multiresolution and multigrid. An anatomical segmentation of the cortex is introduced in the adaptive partitioning of the volume on which the multigrid minimization is based. This allows to limit the estimation to the areas of interest, to accelerate the algorithm, and to refine the estimation in specified areas. At each stage of the hierarchical estimation, we refine current estimate by seeking a piecewise affine model for the incremental deformation field. The performance of this method is numerically evaluated on simulated data and its benefits and robustness are shown on a database of 18 magnetic resonance imaging scans of the head. PMID:11403198

  14. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  15. Snow cover and late fall movement influence wood frog survival during an unusually cold winter.

    PubMed

    O'Connor, Jason H; Rittenhouse, Tracy A G

    2016-07-01

    Understanding how organisms will respond to altered winter conditions is hampered by a paucity of information on the winter ecology for many species. Amphibians are sensitive to environmental temperature and moisture conditions and may be vulnerable to changes in winter climate. We used a combination of radio telemetry and field enclosures to monitor survival of the freeze-tolerant wood frog (Lithobates sylvaticus) during the unusually cold winter of 2013-2014. We experimentally manipulated snow cover to determine the effect of snow removal on winter survival. In addition, we placed a group of untracked frogs at locations used by tracked frogs prior to long-distance late fall movement to investigate whether late fall movement entailed survival consequences. Winter survival was highest (75.3 %) among frogs at post-movement locations that received natural snow cover. The odds of surviving the winter for frogs in the snow removal treatment was only 21.6 % that of frogs in the natural snow treatment. Likewise, paired frogs placed at pre-fall movement locations had only 35.1 % the odds of surviving as tracked frogs at post-fall movement locations. A comparison of a priori models that included microhabitat conditions measured at wood frog overwintering locations revealed that the minimum temperature experienced and the depth of the frog in the substrate explained additional variation in winter survival. Our results suggest that acute exposure to lethal temperature conditions is the most likely cause of mortality during this study, rather than energy exhaustion or desiccation. They also demonstrate the importance of snow cover to the winter survival of wood frogs. PMID:26497126

  16. The Study of Internal Deformation Fields in Borosilicate Glass Using X--Ray Flash Photography

    NASA Astrophysics Data System (ADS)

    Grantham, Stephen; Proud, William; Field, John

    2001-06-01

    Studying the ballistic performance of brittle materials such as borosilicate glass is of particular interest in fields such as transparent armour plating, security glazing and blast-proof windows. Here we extend studies already carried out on the response of borosilicate glass to rod impacts^1 by using flash X-rays to look at the damage occurring behind the damage front. Measurements such as this are impossible using conventional high speed cameras due to optical opacity caused by damage. The new technique of 3--dimensional digital flash X-ray speckle photography, which has been successfully applied to polyester^2 and sand^3 specimens is also utilised. The technique involves seeding the specimen with a layer of lead filings and then taking flash X-ray images before and during an impact event. Digital cross-correlation can then be used to make measurements of the internal displacements occurring throughout the specimen. Using a stereoscopic geometry the out-of-plane displacements can also be determined and a full 3--dimensional displacement map constructed. In this paper these two powerful and complementary techniques are used to study the ballistic response of a borosilicate glass sample. ^1Bourne, N.K., Forde, L.C., Millet, J.C.F., Field, J.F., Impact and Penetration of a Borosilicate Glass, J.Phys.IV FRANCE Colloq. C3, 7 (1997), pp 157-162. ^2Synnergren, P., Goldrein, H.T., Dynamic Measurements of Internal Three-Dimensional Displacement Fields with Digital Speckle Photography and Flash X--Rays, Applied Optics 38 (1999) pp 5956-5961. ^3Grantham, S.G., Proud, W.G., Goldrein, H.T., Field, J.F., The Study of Internal Deformation Fields in Granular Materials Using 3--D Digital X--Ray Flash Photography, Laser Interferometry X, Proc. SPIE 4101 (2000) pp 321-328.

  17. Internal deformation and velocity field measurements by use of digital speckle radiography

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Grantham, Stephen G.

    2003-05-01

    Using X-rays as information carriers it is possible to obtain data about motion inside an object that is opaque to visible light. An image correlation algorithm can be applied to a set of two X-ray images taken sequentially during a process, where the interior of the object is in motion. A displacement field describing the projected intermediate motion is thus obtained to sub-pixel accuracy. If this image set is expanded to contain several pictures separated in time, together describing the whole process, the images can be sequentially correlated to obtain a dynamic displacement field. In this paper, dynamical displacement field measurements have been carried out on two different objects, the first being a silo, where the motion of the flowing material in the center plane is investigated. In the second case, the motion in a layer of glue between two wooden plates is examined during a process where a shearing force acts on the system. The plane in which the measurements are carried out is defined by the use of a contrast agent, usually a tungsten powder seeding. The obtained displacement field, together with the known intermediate time interval between exposures, gives the velocity field in the seeded plane. The results show good agreement with the expected motion in the respective processes, but also provide evidence of behavior that would be undetectable using other existing techniques. A third experiment has also been carried out on a material requiring no contrast enhancing media. These measurements were performed on a chicken thigh being deformed by an external force. The results will be discussed in relation to their reliability and applicability. Further, the direction of future research will be indicated.

  18. Effects of polychlorinated biphenyl 126 on green frog (Rana clamitans) and leopard frog (Rana pipiens) hatching success, development, and metamorphosis

    SciTech Connect

    Rosenshield, M.L.; Jofre, M.B.; Karasov, W.H.

    1999-11-01

    Although increasing evidence links plana chlorinated hydrocarbons, such as polychlorinated biphenyls (PCBs), to decreases in survival and reproduction of fish, mammals, and birds near Green Bay, Wisconsin, and the Great Lakes, USA, relatively little is known of their bioaccumulation or of their possible effects in amphibians. The authors exposed embryos and larvae of two ranid species commonly occurring in the Green Bay ecosystem, the green frog (Rana clamitans) and the leopard frog (Rana pipiens), to PCB 126, a model coplanar PCB compound. Nominal concentrations ranged from 0.005 to 50 {micro}g/L, and exposure lasted through metamorphosis. Tissue concentrations of PCB 126 in tadpoles that did not metamorphose by the end of the experiment ranged from 1.2 to 9,600 ng/g wet mass. No significant mortality of embryos occurred before hatching; however, survival of larvae was significantly reduced at the highest concentration for both species. Few deformities were observed, but the incidence of edema was significantly higher in tadpoles exposed to 50 {micro}g/L. Swimming speed and growth of tadpoles was also significantly reduced in this treatment. The percent of tadpoles that reached metamorphosis was significantly lower in green frogs at the highest concentration, and no leopard frogs survived past day 47 of the experiment in this treatment. At high concentrations, PCB 126 affected both ranid species; however, sublethal effects were not apparent for the parameters the authors measured at concentrations that occur in water in the Green Bay ecosystem.

  19. Optical Acquisition and Polar Decomposition of the Full-Field Deformation Gradient Tensor Within a Fracture Callus

    PubMed Central

    Kim, Wangdo; Kohles, Sean S.

    2009-01-01

    Tracking tissue deformation is often hampered by material inhomogeneity, so local measurements tend to be insufficient thus lending to the necessity of full-field optical measurements. This study presents a novel approach to factoring heterogeneous deformation of soft and hard tissues in a fracture callus by introducing an anisotropic metric derived from the deformation gradient tensor (F). The deformation gradient tensor contains all the information available in a Green-Lagrange strain tensor, plus the rigid-body rotational components. A recent study [Bottlang et al., J. Biomech. 41(3), 2008] produced full-field strains within ovine fracture calluses acquired through the application of electronic speckle pattern interferometery (ESPI). The technique is based on infinitesimal strain approximation (Engineering Strain) whose scheme is not independent of rigid body rotation. In this work, for rotation extraction, the stretch and rotation tensors were separately determined from F by the polar decomposition theorem. Interfragmentary motions in a fracture gap were characterized by the two distinct mechanical factors (stretch and rotation) at each material point through full-field mapping. In the composite nature of bone and soft tissue, collagen arrangements are hypothesized such that fibers locally aligned with principal directions will stretch and fibers not aligned with the principal direction will rotate and stretch. This approach has revealed the deformation gradient tensor as an appropriate quantification of strain within callus bony and fibrous tissue via optical measurements. PMID:19647826

  20. Ductile deformation mechanisms of synthetic halite: a full field measurement approach

    NASA Astrophysics Data System (ADS)

    Dimanov, Alexandre; Bourcier, Mathieu; Héripré, Eva; Bornert, Michel; Raphanel, Jean

    2013-04-01

    Halite is a commonly used analog polycristalline material. Compared to most rock forming minerals, halite exhibits extensively ductile behavior at even low temperatures and fast deformation rates. Therefore, it allows an easier study of the fundamental mechanisms of crystal plasticity, recrystallization, grain growth and texture development than any other mineral. Its high solubility also makes it an ideal candidate for investigating pressure solution creep. Most importantly, halite is very convenient to study the interactions of simultaneously occurring deformation mechanisms. We investigated uniaxial deformation of pure synthetic NaCl polycrystals with controlled grain sizes and grain size distributions at room and moderate temperatures (400°C). The mechanical tests were combined with "in-situ" optical and scanning electron microscopy, in order to perform 2D digital image correlation (2D-DIC) and to obtain the full surface strain fields at the sample scale and at the scales of the microstructure. We observed dominantly intracrystalline plasticity, as revealed by the occurrence of physical slip lines on the surface of individual grains and of deformation bands at the microstructure (aggregate) scale, as revealed by DIC. Crystal orientation mapping (performed by EBSD) allowed relating the latter to the traces of crystallographic slip planes and inferring the active slip systems considering the macroscopic stress state and computing Schmid factors. The strain heterogeneities are more pronounced at low temperature, at both the aggregate scale and within individual grains. The local activity of slip systems strongly depends on the relative crystallographic and interfacial orientations of the adjacent grains with respect to the loading direction. The easy glide {110} <110> systems are not the only active ones. We could identify the activity of all slip systems, especially near grain boundaries, which indicates local variations of the stress state. But, we also clearly

  1. High temperature and deformation field measurements at the vicinity of dynamically growing shear bands

    SciTech Connect

    Rosakis, A.J.; Ravichandran, G.; Zhou, M.

    1995-12-31

    The phenomenon of dynamic initiation and propagation of adiabatic shear bands is experimentally and numerically investigated. Pre-notched metal plates are subjected to asymmetric impact load histories (dynamic mode-II loading). Dynamic shear bands emanate from the notch tip and propagate rapidly in a direction nearly parallel to the direction of the impact. Real time temperature histories along a line intersecting and perpendicular to the shear band paths are recorded by means of a high-speed infrared detector system. The materials studied are C-300 (a maraging steel) and Ti - 6 Al - 4 V alloy. Experiments show that the peak temperatures inside the propagating shear bands are approaching 90% of the melting point for C-300 and are significantly lower for the titanium alloy (up to 600{degrees}C). Additionally, measured distances of shear band propagation indicate stronger resistance to shear banding by the Ti - 6Al - 4V alloy. Deformation fields around the propagating shear bands are recorded using high-speed photography. Shear band speeds are found to strongly depend on impact velocities, and are as high as 1200 m/s for C-300 steels. Finite Element simulations of the experiments are carried out under the context of plane strain, considering finite deformations, inertia, heat conduction, thermal softening, strain hardening and strain-rate hardening. In the simulations, the shear band propagation is assumed to be governed by a critical plastic strain criterion. The results are compared with experimental measurements obtained using the high-speed infrared detectors and high-speed photography.

  2. Near-Field Deformation Associated with the M6.0 South Napa Earthquake Surface Rupture

    NASA Astrophysics Data System (ADS)

    Brooks, B. A.; Hudnut, K. W.; Glennie, C. L.; Ericksen, T.

    2014-12-01

    We characterize near-field deformation associated with the surface rupture of the M6.0 South Napa earthquake from repeat mobile laser scanning (MLS) surveys. Starting the day after the main shock, we operated, sometime simultaneously, short (~75 m range) and medium (~400m range) range laser scanners on a truck or backpack. We scanned most of the length of the principal and secondary surface ruptures at speeds less than 10 km/hr. Scanning occurred primarily in either suburban subdivisions or cultivated vineyards of varying varietals with differing leaf patterns and stages of maturity. Spot-spacing is dense enough (100s of points/m^2) to permit creation of 10-25cm digital elevation models of much of the surface rupture. Scanned features of the right-lateral rupture include classic mole tracks through a variety of soil types, en echelon cracks, offset vine rows, and myriad types of pavement-related deformation. We estimate coseismic surface displacements ranging from 5 to 45 cm by examining offset cultural features and vine rows and by comparing the MLS data with preexisting airborne laser scans from 2003 using point-cloud and solid-modeling methodologies. Additionally, we conducted repeat MLS scans to measure the magnitude and spatial variation of fault afterslip, exceeding 20 cm in some places, particularly in the southern portion of the rupture zone. We anticipate these data sets, in conjunction with independently collected ground-based alinement arrays and space-based geodetic data will contribute significant insight into topics of current debate including assessing the most appropriate material models for shallow fault zones and how shallow and deeper fault slip relate to one another.

  3. Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field

    NASA Astrophysics Data System (ADS)

    Bos, Annemarie G.; Spakman, Wim; Nyst, Marleen C. J.

    2003-10-01

    We have determined the present-day surface deformation of Taiwan by computing the velocity gradient field and fault slip from 143 GPS velocity vectors. In southern Taiwan the derived strain and rotation rates and fault slips are indicative of lateral extrusion toward the south. In northern Taiwan we infer the onset of gravitational collapse which is induced by the on-land extension of the Okinawa Trough. In the eastern Central Range the observed inverted NW-SE extension is consistent with geological observations and high heat flow measurements. This could be the result of exhumation of crustal material. The model further shows a significant decrease in slip rate northward along the Longitudinal Valley fault at 23.7°N. The northern Coastal Range shows high strain rates and two oppositely rotating blocks. By combining the surface deformation model with seismicity data and seismic tomography we are able to propose a coherent model for the present-day tectonic activity. Both seismicity and tomography show further evidence for active, southward propagating exhumation of a crustal slice in the eastern Central Range. Offshore east Taiwan we deduce strong evidence of a southward propagating crustal tear fault, accommodating most of the Philippine Sea Plate-Eurasian Plate convergence. The tear is the crustal response to incipient northwestward subduction of the Philippine Sea Plate. Thus the Ryukyu Trench is bending southward becoming almost perpendicular to the convergence direction, while subduction of the Philippine Sea Plate continues. In this setting a sudden rapid southward propagation of the afore mentioned tear is conceivable.

  4. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units. PMID:27335235

  5. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  6. To Be or Not to Be...a Frog: The Frog Prince and Shifting Paradigms.

    ERIC Educational Resources Information Center

    Crane, Lisa Marie

    1997-01-01

    Discusses three modern variations of the classic "Frog Prince" folk tale: "Pondlarker" (Fred Gwynne); "The Frog Prince Continued" (Jon Scieszka); and "The Prince of the Pond" (Donna Jo Napoli). Notes that these variants create a world in which frogs can have values, wisdom, and emotion, and in which frogs can influence the ways of humanity. (RS)

  7. A Comparison of V-Frog[C] to Physical Frog Dissection

    ERIC Educational Resources Information Center

    Lalley, James P.; Piotrowski, Phillip S.; Battaglia, Barbara; Brophy, Keith; Chugh, Kevin

    2010-01-01

    The purpose of the present study was to examine and compare the effectiveness of virtual frog dissection using V-Frog[C] and physical frog dissection on learning, retention, and affect. Subjects were secondary students enrolled in year-long life science classes in a suburban high school (N=102). Virtual dissections were done with V-Frog[C], a…

  8. Effects of fault movement and material properties on deformation and stress fields of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Xiong, Xiong; Chen, Yong; Shan, Bin

    2011-04-01

    We compare the factors which affect the movement of Tibetan Plateau by building three types of finite element models: an elastic materials (M-EC), a continuous model composed by non-linear materials (M-PC), and an elastic model with discontinuous fault movements (M-ET). Both in M-ET and M-EC, the materials in Qiangtang and Lhasa block are elastic, and in M-ET, discontinuous movement of faults is considered for evaluating the effects of strike-slip faults. In model M-PC Druker-Prager plastic materials are used in Qiangtang and Lhasa block. Comparisons of the numerical simulation and the GPS observations show following characteristics: (1) Under present tectonic environment, short-term deformation of Tibetan Plateau can be simulated well by elastic models; (2) Discontinuous fault activities increase the lateral extrusion of the eastern part of Tibetan Plateau, reduce the stress field level in Qiangtang, Tarim and Qaidam blocks and strengthen the E-W extensional force in the east and the west parts of Qiangtang block; (3) Properties of plastic materials reduce the total stress field and the E-W extensional force, thus, the normal fault earthquakes in southern Tibet is mainly owed to the effect of active fault movement. Based on the numerical simulations we speculate that faults movement may play a more important role on the kinematic pattern of Tibetan Plateau than bulk properties.

  9. The Homing Frog: High Homing Performance in a Territorial Dendrobatid Frog Allobates femoralis (Dendrobatidae)

    PubMed Central

    Pašukonis, Andrius; Ringler, Max; Brandl, Hanja B; Mangione, Rosanna; Ringler, Eva; Hödl, Walter; Tregenza, T

    2013-01-01

    Dendrobatidae (dart-poison frogs) exhibit some of the most complex spatial behaviors among amphibians, such as territoriality and tadpole transport from terrestrial clutches to widely distributed deposition sites. In species that exhibit long-term territoriality, high homing performance after tadpole transport can be assumed, but experimental evidence is lacking, and the underlying orientation mechanisms are unknown. We conducted a field translocation experiment to test whether male Allobates femoralis, a dendrobatid frog with paternal extra-territorial tadpole transport, are capable of homing after experimental removal, as well as to quantify homing success and speed. Translocated individuals showed a very high homing success for distances up to 200 m and successfully returned from up to 400 m. We discuss the potential orientation mechanisms involved and selective forces that could have shaped this strong homing ability. PMID:25104869

  10. The Classroom Animal: The Leopard Frog.

    ERIC Educational Resources Information Center

    Science and Children, 1985

    1985-01-01

    Describes the natural history of the leopard frog and factors which make it appropriate for short-term study in the classroom. Information on the frog's habits, life cycle, housing, care, and health is included. (DH)

  11. The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests.

    PubMed

    Prasad, Priya; Dalmotas, Dainius; German, Alan

    2014-11-01

    A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test. The field relevance is indicated by the frequency of occurrence of real world crashes that are simulated by the test conditions, the proportion of serious-to-fatal real world injuries explained by the test condition, and rates of serious injury to the head, chest and other body regions in the real world crashes resembling the test condition. The database examined for real world crashes is NASS. Results of the study indicate that 1.4% of all frontal 11-to-1 o'clock crashes are simulated by the test conditions that account for 2.4% to 4.5% of all frontal serious-to-fatal (MAIS3+F) injuries. Injury rates of the head and the chest are substantially lower in far-side than in near-side frontal impacts. Crash test ATD rotational responses of the head in the tests overpredict the real world risk of serious-to-fatal brain injuries. PMID:26192954

  12. Microhydrodynamics of deformable particles: surprising responses of drops and vesicles to uniform electric field or shear flow

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia

    2015-11-01

    Particle motion in a viscous fluid is a classic problem that continues to surprise researchers. In this talk, I will discuss some intriguing, experimentally-observed behaviors of droplets and giant vesicles (cell-size lipid membrane sacs) in electric or flow fields. In a uniform electric field, a droplet deforms into an ellipsoid that can either be steadily tilted relative to the applied field direction or undergo unsteady motions (periodic shape oscillations or irregular flipping); a spherical vesicle can adopt a transient square shape or reversibly porate. In a steady shear flow, a vesicle can tank-tread, tumble or swing. Theoretical models show that the nonlinear drop dynamics originates from the interplay of Quincke rotation and interface deformation, while the vesicle dynamics stems from the membrane inextensibility. The practical motivation for this research lies in an improved understanding of technologies that rely on the manipulation of drops and cells by flow or electric fields.

  13. Implementation and Evaluation of the Virtual Fields Method: Determining Constitutive Model Parameters From Full-Field Deformation Data.

    SciTech Connect

    Kramer, Sharlotte Lorraine Bolyard; Scherzinger, William M.

    2014-09-01

    The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.

  14. 49 CFR 213.137 - Frogs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Frogs. 213.137 Section 213.137 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.137 Frogs. (a) The flangeway depth measured from a plane across the wheel-bearing area of a frog on Class 1 track shall not be less than 13/8 inches,...

  15. 49 CFR 213.137 - Frogs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Frogs. 213.137 Section 213.137 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.137 Frogs. (a) The flangeway depth measured from a plane across the wheel-bearing area of a frog on Class 1 track shall not be less than 13/8 inches,...

  16. 49 CFR 213.137 - Frogs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Frogs. 213.137 Section 213.137 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.137 Frogs. (a) The flangeway depth measured from a plane across the wheel-bearing area of a frog on Class 1 track shall not be less than 13/8 inches,...

  17. 49 CFR 213.137 - Frogs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Frogs. 213.137 Section 213.137 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.137 Frogs. (a) The flangeway depth measured from a plane across the wheel-bearing area of a frog on Class 1 track shall not be less than 13/8 inches,...

  18. 49 CFR 213.137 - Frogs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Frogs. 213.137 Section 213.137 Transportation... TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.137 Frogs. (a) The flangeway depth measured from a plane across the wheel-bearing area of a frog on Class 1 track shall not be less than 13/8 inches,...

  19. What's the Difference between Frogs and Toads?

    ERIC Educational Resources Information Center

    Brown, Herrick

    2004-01-01

    The difference between frogs and toads can be determined scientifically but is based in the historic use of the terms frog and toad. These are Old English words for the common frog, "Rana temporaria," and the common toad, "Bufo bufo," both inhabitants of the British Isles. In the process of describing a new anuran species, scientists refer to it…

  20. Spargana infection of frogs in Malaysia.

    PubMed

    Mastura, A B; Ambu, S; Hasnah, O; Rosli, R

    1996-03-01

    Frogs caught from two States (Selangor and Langkawi) in Malaysia were examined for spargana of Spirometra sp. Infected frogs usually show no marks of infection but some had swelling and bleeding at the infection site. The size and weight of the infected frogs did not correlate with the infection status. The infection status in relation to human health is discussed. PMID:9031400

  1. Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses

    NASA Astrophysics Data System (ADS)

    Holst, Christoph; Kuhlmann, Heiner

    2016-03-01

    Due to improved laser scanning technology, laser scanner based deformation analyses are presently widespread. These deformation analyses are no longer based on individual points representing the deformation of an object at selected positions. Instead, they are based on a large number of scan points sampling the whole object. This fact either leads to challenges regarding metrological aspects as well as regarding modeling aspects: Estimating and quantifying spatial correlations between scan points and incorporating them into the deformation analysis Separating the laser scanners' internal systematic errors from areal deformations Minimizing the bias at areal deformation analyses due to a worse network configuration and limited object knowledge Developing freeform parameterizations to reproduce arbitrary areal deformations of an object by individual parameters Incorporating an extended uncertainty model considering also model errors due to imperfect knowledge and simplification of the sampled object. Only when considering all of these aspects, laser scanner based deformation analyses can benefit from the potential of the areal object sampling. This study aims at naming and reasoning these aspects. Furthermore, it introduces first methodologies and approaches for dealing with them.

  2. A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary

    2015-11-01

    Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.

  3. Characterization of a MEMS deformable mirror by far field intensity evaluation

    NASA Astrophysics Data System (ADS)

    Greiner, Cherry; Finn, Susanna; Choi, Stacey; Doble, Nathan

    2013-03-01

    The performance of an adaptive optics (AO) system is typically measured using the wavefront sensor (WFS). However, another method is to use the point spread function (PSF), which is sensitive to scatter, does not act as a low pass filter and is not dependent on the WFS calibration. We decided to examine the performance of an AO system built for vision science that employed a micromechanical systems (MEMS) based deformable mirror (DM). Specifically, the MEMS DM consists of 489 actuators, resulting in 163 segments each with individual piston/tip/tilt control. Initial evaluation of the DM with a model eye included determining the ability of the DM to generate individual Zernike polynomials and evaluating the far field PSF to measure wavefront correction performance. For individual Zernike polynomial terms, the DM was found to be capable of correcting the aberration magnitudes expected from previously published human population studies.1, 2 Finally, the DM was used in an AO fundus camera to successfully acquire images of cone photoreceptors in a living human eye. This is part of ongoing work which will incorporate the MEMS DM into both an AO scanning laser ophthalmoscope (SLO) and an AO optical coherence tomography (OCT) system where the form of the PSF at the confocal pinhole/optical fiber is important for optimal imaging.

  4. Acoustic Monitoring System for Frog Population Estimation Using In-Situ Progressive Learning

    NASA Astrophysics Data System (ADS)

    Aboudan, Adam

    Frog populations are considered excellent bio-indicators and hence the ability to monitor changes in their populations can be very useful for ecological research and environmental monitoring. This thesis presents a new population estimation approach based on the recognition of individual frogs of the same species, namely the Pseudacris Regilla (Pacific Chorus Frog), which does not rely on the availability of prior training data. An in-situ progressive learning algorithm is developed to determine whether an incoming call belongs to a previously detected individual frog or a newly encountered individual frog. A temporal call overlap detector is also presented as a pre-processing tool to eliminate overlapping calls. This is done to prevent the degrading of the learning process. The approach uses Mel-frequency cepstral coefficients (MFCCs) and multivariate Gaussian models to achieve individual frog recognition. In the first part of this thesis, the MFCC as well as the related linear predictive cepstral coefficients (LPCC) acoustic feature extraction processes are reviewed. The Gaussian mixture models (GMM) are also reviewed as an extension to the classical Gaussian modeling used in the proposed approach. In the second part of this thesis, the proposed frog population estimation system is presented and discussed in detail. The proposed system involves several different components including call segmentation, feature extraction, overlap detection, and the in-situ progressive learning process. In the third part of the thesis, data description and system performance results are provided. The process of synthetically generating test sequences of real frog calls, which are applied to the proposed system for performance analysis, is described. Also, the results of the system performance are presented which show that the system is successful in distinguishing individual frogs, hence capable of providing reasonable estimates of the frog population. The system can readily be

  5. Seismicity and deformation in the Coso Geothermal field from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Kaven, J. Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2015-04-01

    Induced micro-seismicity in geothermal reservoirs, in particular in enhanced geothermal systems (EGS), is an intended byproduct of injection and production, as it often indicates the generation of permeability pathways on either pre-existing or newly generated faults and fractures. The hazard of inducing an earthquake large enough to cause damage to surface structures, however, is not easily avoided and has led to termination of geothermal projects. To explore the physical processes leading to damaging earthquakes, we investigate the evolution of seismicity and the factors controlling the migration, moment release rate, and structure within the seismicity in the Coso Geothermal Field (CGF). The CGF has been in production since the 1980s and includes both naturally occurring geothermal resources and portions of the reservoir that are EGS projects. We report on seismicity in the CGF that has been relocated with high precision double-difference relocation and simultaneous velocity inversion to understand the reservoir compartmentalization, in particular, where boundaries to flow exist both vertically and horizontally. We also calculate moment magnitudes (Mw) from the initial displacement pulse of the seismograms to relate moment directly to the deformation. We find that two distinct compartments form the CGF, which are divided by an aseismic gap that also shows a relatively low Vp/Vs ratio. Further, we find that events with Mw> 3.5 tend to map onto larger fault structures that are imaged by the relocated seismicity. We relate the temporal and spatial migration of moment release rate to the injection and production records in the reservoir by employing a thermo-poro-elastic finite element model in which the compartment boundaries are defined by the seismicity. We find that pore pressure effects alone are not responsible for the migration of seismicity and that poro-elastic and thermo-elastic strain changes can account for more of the observed moment release rate than

  6. Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)

    NASA Astrophysics Data System (ADS)

    Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo

    2016-04-01

    Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10‑2 ‑ 10‑1 Hz) and Ultra Long Period (ULP, 10‑4 ‑ 10‑2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10‑4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection

  7. Copper and nickel effects on survival and growth of northern leopard frog (Lithobates pipiens) tadpoles in field-collected smelting effluent water.

    PubMed

    Leduc, Joël; Echaubard, Pierre; Trudeau, Vance; Lesbarrères, David

    2016-03-01

    Trace metals can have subtle yet chronic impacts on organisms by inducing physiological stress that reduces their survival or impedes their ability to tolerate additional environmental stressors. The toxicity literature indicates, however, that aquatic organisms react differently to trace metals depending on the environments in which they reside. The objective of the present study was to understand the response of northern leopard frog (Lithobates pipiens) larvae to ionic copper (Cu), nickel (Ni), and their combination within an effluent water collected downstream of a tailings wetland area. Tadpoles were assigned randomly to 1 of 8 Cu concentrations (8-200 μg/L), 7 Ni concentrations (160-1200 μg/L), or 8 Cu and Ni combined concentrations (8:160-200:1200 μg/L) and showed significant differences in survival and life history traits among treatments. In the Cu and Cu and Ni combined treatments, tadpole survival decreased with increased Cu exposure starting at Cu = 160 μg/L and in the Ni treatment, tadpole survival decreased with increased Ni exposure starting at Ni = 650 μg/L. All Cu-exposed treatments induced a growth increase as the concentration increased, whereas the tadpoles showed a significant decrease in growth rate in Ni treatments. These contrasting outcomes suggest a plastic response to trace metals whereby tadpoles allocate energy reserves toward either escaping or coping with stress. Finally, the authors' argue that future studies will benefit from examining the impacts of multiple stressors in aquatic ecosystems to provide better environmental mitigation. PMID:26329298

  8. Geodetic Measurements and Numerical Modeling of Deformation at Raft River Geothermal Field, Idaho, U.S.A.

    NASA Astrophysics Data System (ADS)

    Ali, S. T.; Feigl, K. L.; Moore, J.; Plummer, M. A.; Warren, I.

    2015-12-01

    To measure time-dependent deformation at the Raft River geothermal field in Cassia County in Southwestern Idaho, we analyze interferometric synthetic aperture radar (InSAR) data acquired between 2006 and 2015 by several satellite missions, including: Envisat, ALOS, TerraSAR-X, and TanDEM-X. The resulting time-series analysis indicates that the deformation began in late 2007, shortly after a 13-megawatt geothermal power plant began commercial production. The rate of deformation appears to be decreasing over time since 2008. The resulting maps of deformation show primarily uplift with some subsidence. The uplift signal is located in an ~8-km-by-5-km area centered near three injection wells that recycle produced brine into the Salt Lake formation, which consists of Miocene-Pliocene lacustrine deposits, volcanic tuffs, and lava flows. Subsidence occurs in an adjacent ~4-km-by-4-km area to the northwest. These two signatures remain in the same location in all of the well-correlated interferometric pairs since 2008. Although all production wells are also located inside the area experiencing uplift, most of them are close to the boundary that separates the two areas, and likely associated with the steeply dipping Bridge Fault zone. We explore the relative roles of thermal (T), and hydrological (H) processes on mechanical deformation (M). To do so, we use finite element based numerical models to calculate the time-dependent deformation field due to thermal contraction/expansion of rock (T-M coupling), and changes in pore pressure (H-M coupling).

  9. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  10. Recovery of secular deformation field of Mojave Shear Zone in Southern California from historical terrestrial and GPS measurements

    NASA Astrophysics Data System (ADS)

    Liu, Shaozhuo; Shen, Zheng-Kang; Bürgmann, Roland

    2015-05-01

    The 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes struck the Eastern California Shear Zone (ECSZ) in the Mojave Desert, Southern California. Coseismic and postseismic deformation from these events affect efforts to use Global Positioning System (GPS) observations collected since these events to establish a secular surface velocity field, especially in the near field of the coseismic ruptures. We devise block motion models constrained by both historical pre-Landers triangulation and trilateration observations and post-Landers GPS measurements to recover the secular deformation field and differentiate the postseismic transients in the Mojave region. Postseismic transients are found to remain in the Southern California Earthquake Center Crustal Motion Map Version 4, Plate Boundary Observatory, and Scripps Orbit and Permanent Array Center GPS velocity solutions in the form of 2-3 mm/yr excess right-lateral shear across the Landers and Hector Mine coseismic ruptures. The cumulative deformation rate across the Mojave ECSZ is 13.2-14.4 mm/yr, at least twice the geologic rate since the late Pleistocene (≤6.2 ± 1.9 mm/yr). Postseismic GPS time series based on our secular velocity field reveal enduring late-stage transient motions in the near field of the coseismic ruptures that provide new constraints on the rheological structure of the lower crust and upper mantle.

  11. FROG: Time-series analysis

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair

    2014-06-01

    FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

  12. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Ring, P.; Gambhir, Y. K.; Lalazissis, G. A.

    1997-09-01

    We present a Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the framework of Relativistic Mean Field Theory (RMF). In this approach a set of coupled partial differentials has to be solved self-consistently: the Dirac equation for the nucleons moving in self-consistent fields and the Klein-Gordon equations for the meson fields and the electromagnetic field, whose sources are scalar and vector densities determined of the nucleons. For this purpose the Dirac spinors as well as the meson fields are expanded in terms of anisotropic oscillator wave functions in cylindrical coordinates. This requires a matrix diagonalization for the solution of the Dirac equations and the solution of an inhomogeneous matrix equation for the meson fields. For the determination of the Coulomb field the Greens function method is used.

  13. Field And Structural Constraints On Batholith Growth, Mush Deformation, And The Size Of A Magma Chamber

    NASA Astrophysics Data System (ADS)

    Yoshinobu, A. S.; Coint, N.; Barnes, C. G.; Leopold, M. B.

    2012-12-01

    Much like the mid-ocean ridge and ophiolite communities, geologists working on arc plutonic rocks are faced with a fascinating problem: What mechanisms attend the assembly of batholiths from what may be small, even ephemeral magma increments emplaced into a mush or solid rock? Field and structural observations from the Wooley Creek batholith (WCB), CA, provide a glimpse of the structural complexity of batholith assembly and point to a conclusion that magma homogenization by repeated injection and then "mushification" may occur at low melt fractions in a reasonably large magma chamber. The tilted WCB exposes 9 km of structural relief and is divided into three units: a lower (650 MPa contact aureole pressures) biotite-hornblende-two pyroxene gabbro to tonalite, a central biotite-hornblende quartz-diorite to tonalite with numerous swarms of mingled microgranitoid enclaves and syn-plutonic intrusions, and an upper unit (300 MPa) that is zoned upward from biotite-hornblende tonalite to biotite-hornblende granodiorite and granite (Coint et al., 2012, EGU Abs.; in review, Geol.). Five upper unit samples yield preliminary CA-ID-TIMS U/Pb ages of 158.25 Ma with uncertainties from 0.16 to 0.95 Ma (K. Chamberlain, in prog.). The WCB is moderately to strongly discordant to host rock structure and existing gravity data and regional structural relations indicate a minimum thickness of > 3 km. A narrow contact aureole is variably developed, particularly in the structurally deepest exposures. Quantifying displacement of the metamorphic host rocks during batholith growth is hampered because host rocks are largely serpentine-matrix mélange and chert argillite with little structural coherency. Field relations in the host rocks indicate that both elastic (diking) and inelastic (creep, folding) deformation facilitated space for the WCB. Internal features include variations in texture, crystal size, fabric development, and multiple generations of co-magmatic gabbro, diorite, qtz

  14. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Gribanovskii, S. L.; Golovin, D. Yu.; Klyachko, N. L.; Kabanov, A. V.

    2014-07-01

    The forces, deformations, and stresses generated in macromolecules attached to single-domain magnetic nanoparticles under the influence of a low-frequency (nonheating) magnetic field have been analyzed analytically and numerically. It has been shown that, in bioactive macromolecules, an alternating magnetic field with an induction of 0.1-1.0 T and a circular frequency of ≲104 s-1 can induce forces up to several hundred piconewtons, absolute deformations up to a few tens of nanometers, as well as compressive and shear stresses exceeding 107 Pa. These mechanical stimuli are sufficient for a significant change of interatomic distances in active centers, conformation of macromolecules, and even a breaking of some bonds, which makes it possible to develop a new technological platform for targeted delivery of drugs, remote control of their activity, and cancer-cell destruction.

  15. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    SciTech Connect

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water as a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.

  16. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    DOE PAGESBeta

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less

  17. FROG - Fingerprinting Genomic Variation Ontology.

    PubMed

    Abinaya, E; Narang, Pankaj; Bhardwaj, Anshu

    2015-01-01

    Genetic variations play a crucial role in differential phenotypic outcomes. Given the complexity in establishing this correlation and the enormous data available today, it is imperative to design machine-readable, efficient methods to store, label, search and analyze this data. A semantic approach, FROG: "FingeRprinting Ontology of Genomic variations" is implemented to label variation data, based on its location, function and interactions. FROG has six levels to describe the variation annotation, namely, chromosome, DNA, RNA, protein, variations and interactions. Each level is a conceptual aggregation of logically connected attributes each of which comprises of various properties for the variant. For example, in chromosome level, one of the attributes is location of variation and which has two properties, allosomes or autosomes. Another attribute is variation kind which has four properties, namely, indel, deletion, insertion, substitution. Likewise, there are 48 attributes and 278 properties to capture the variation annotation across six levels. Each property is then assigned a bit score which in turn leads to generation of a binary fingerprint based on the combination of these properties (mostly taken from existing variation ontologies). FROG is a novel and unique method designed for the purpose of labeling the entire variation data generated till date for efficient storage, search and analysis. A web-based platform is designed as a test case for users to navigate sample datasets and generate fingerprints. The platform is available at http://ab-openlab.csir.res.in/frog. PMID:26244889

  18. Deformation of leaky-dielectric fluid globules under strong electric fields: Boundary layers and jets at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud

    2013-11-01

    In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.

  19. CARE AND FEEDING OF FROGS

    SciTech Connect

    Pan, Margaret; Chiang, Eugene

    2012-01-15

    'Propellers' are features in Saturn's A ring associated with moonlets that open partial gaps. They exhibit non-Keplerian motion (Tiscareno et al.); the longitude residuals of the best-observed propeller, 'Bleriot', appear consistent with a sinusoid of period {approx}4 years. Pan and Chiang proposed that propeller moonlets librate in 'frog resonances' with co-orbiting ring material. By analogy with the restricted three-body problem, they treated the co-orbital material as stationary in the rotating frame and neglected non-co-orbital material. Here we use simple numerical experiments to extend the frog model, including feedback due to the gap's motion, and drag associated with the Lindblad disk torques that cause Type I migration. Because the moonlet creates the gap, we expect the gap centroid to track the moonlet, but only after a time delay t{sub delay}, the time for a ring particle to travel from conjunction with the moonlet to the end of the gap. We find that frog librations can persist only if t{sub delay} exceeds the frog libration period P{sub lib}, and if damping from Lindblad torques balances driving from co-orbital torques. If t{sub delay} << Pl{sub ib}, then the libration amplitude damps to zero. In the case of Bleriot, the frog resonance model can reproduce the observed libration period P{sub lib} {approx_equal} 4 yr. However, our simple feedback prescription suggests that Bleriot's t{sub delay} {approx} 0.01P{sub lib}, which is inconsistent with the observed libration amplitude of 260 km. We urge more accurate treatments of feedback to test the assumptions of our toy models.

  20. Research on moving object detection based on frog's eyes

    NASA Astrophysics Data System (ADS)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  1. Mechanical Properties of the Frog Sarcolemma

    PubMed Central

    Fields, R. Wayne

    1970-01-01

    The elastic properties of cylindrical segments of sarcolemma were studied in single striated fibers of the frog semitendinosus muscle. All measurements were made on membranes of retraction zones, cell segments from which the sarcoplasm had retracted. Quantitative morphological studies indicated that three deforming forces interact with the intrinsic elastic properties of the sarcolemma to determine membrane configuration in retraction zone segments. The three deforming forces, namely intrazone pressure, axial fiber loads, and radial stresses introduced by retracted cell contents, could all be experimentally removed, permitting determination of the “undeformed” configuration of the sarcolemma. Analysis of these results indicated that membrane of intact fibers at rest length is about four times as wide and two-thirds as long as undeformed membrane. Membrane geometry was also studied as a function of internal hydrostatic pressure and axial loading to permit calculation of the circumferential and longitudinal tension-strain (T-S) diagrams. The sarcolemma exhibited nonlinear T-S properties concave to the tension axis in both directions. Circumferential T-S slopes (measures of membrane stiffness) ranged from 1500 to greater than 50,000 dynes/cm over the range of deformations investigated, while longitudinal T-S slopes varied from 23,000 to 225,000 dynes/cm. Thus, the membrane is anisotropic, being much stiffer in the longitudinal direction. Certain ramifications of the present results are discussed in relation to previous biomechanical studies of the sarcolemma and of other tissues. ImagesFigure 2Figure 3Figure 4 PMID:5439320

  2. Full-field Deformation Measurement Techniques for a Rotating Composite Shaft

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.

    2012-01-01

    Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.

  3. Semiclassical strings in electric and magnetic field deformed AdS{sub 5}xS{sup 5} spacetimes

    SciTech Connect

    Huang, W.-H.

    2006-01-15

    We first apply the transformation of mixing azimuthal and internal coordinate or mixing time and internal coordinate to the 11D M-theory with a stack N M2-branes to find the spacetime of a stack of N D2-branes with magnetic or electric flux in 10 D IIA string theory, after the Kaluza-Klein reduction. We then perform the T-duality to the spacetime to find the background of a stack of N D3-branes with magnetic or electric flux. In the near-horizon limit the background becomes the magnetic or electric field deformed AdS{sub 5}xS{sup 5}. We adopt an ansatz to find the classical string solution which is rotating in the deformed S{sup 5} with three angular momenta in the three rotation planes. The relations between the classical string energy and its angular momenta are found and results show that the external magnetic and electric fluxes will increase the string energy. Therefore, from the AdS/CFT point of view, the corrections of the anomalous dimensions of operators in the dual SYM theory will be positive. We also investigate the small fluctuations in these solutions and discuss the effects of magnetic and electric fields on the stability of these classical rotating string solutions. Finally, we find the possible solutions of string pulsating on the deformed spacetimes and show that the corrections to the anomalous dimensions of operators in the dual SYM theory are non-negative.

  4. Source processes of near-field deformation accompanying recent lava lake level decrease at Nyiragongo, DR. Congo

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Cayol, Valerie; Samsonov, Sergey; De Rauw, Dominique; Kervyn, Francois

    2016-04-01

    Nyiragongo volcano in the Democratic Republic of Congo, Central Africa, is one of the rare volcanoes that host a long-living lava lake. The evolution of this lava lake is very dynamic, with height changes spanning hundreds of meters over the past decades and including drastic height changes in relation to flank eruptions of the volcano in 1977 and 2002 (Smets et al., this meeting). Since September 30, 2011, the level of the lava lake has been progressively falling, reaching ~70 m below the lowest platform (termed "platform P3" hereafter) in July 2014. Platform P3 is constructed from successive overflows of the lava lake from 2002 to 2011, amounting to ~400 m thickness since the emptying of the lava lake following the 2002 flank eruption. Coinciding with the recent fall of the lava lake, differences of photogrammetry-derived DEM models, and InSAR time series, show a very near-field (out to ~200-300 m distance from the ~200 m-wide lava lake, i.e. on platform P3) deformation signal with up to meter-scale deformation near the crater. Ring-fractures have also formed in platform P3. Here we compare and contrast plausible models of processes contributing to this near-field deformation, including thermal contraction, elastic response, block rotation, structural weaknesses, and subsurface shape of the lava lake.

  5. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    SciTech Connect

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.; Taylor, A.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a general parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.

  6. In-situ SEM investigation of sub-microscale deformation fields around a crack-tip in silicon

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Zhao, C. W.; Xing, Y. M.; Hou, X. H.; Fan, Z. C.; Jin, Y. J.; Wang, Y.

    2012-12-01

    A combination of in-situ scanning electron microscopy (SEM) and geometric phase analysis (GPA) was used to study the deformation fields around a crack-tip in single-crystal silicon under uniaxial tensile load. The sub-microscale silicon pillars grating was fabricated using holographic lithography followed by inductively coupled plasma etching. A series of SEM images of dynamic crack with the sub-microscale grating were obtained during tensile testing. The strain fields around the crack-tip were mapped by GPA. The strain fields were compared with the linear elastic fracture mechanics solutions. It was determined that the deformation is performed around the crack-tip area. The normal strain εxx and shear strain εxy are nearly zero, and the strain fields are dominated by the normal strain εyy component. With the increase of displacement load, the crack propagated mainly along the [010] crystal direction and the strains around the crack-tip increased gradually. It is noted that the theoretical prediction is lower than the experimental results from 0 to 2 μm ahead of the crack-tip. However, the agreement between experimental results and theoretical prediction is very good far from the crack-tip (>2 μm).

  7. Simulation study of the in-situ formation deformation behavior of a shallow formation in the Southern Kanto Natural gas field, Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Matsuyama, R.; Nakagawa, T.; Kuroshima, S.; Ogatsu, T.; Adachi, R.

    2015-11-01

    In 2010, eight companies which are exploiting natural gas and brine water in the Southern Kanto natural gas field, Chiba prefecture, Japan constructed an in-situ formation deformation monitoring well with a depth of approximately 80 m, and in-situ formation deformation was measured on a trial basis. After this field test, by conducting the simulation study, we verified whether the deformation behavior at the monitoring well was perfectly elastic or not. In addition, we compared in-situ rock properties like Young's modulus and Poisson's ratio which were estimated by the simulation study with those determined from a triaxial compression test.

  8. The Ups and Downs of Frogs.

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Tamme, Tina

    2001-01-01

    Presents a science activity in which students simulate increases and decreases in frog populations to get a better understanding of different environmental issues affecting animal populations. Includes simulations for both natural frog populations as well as populations affected by human activities. (YDS)

  9. Semi-automated identification of leopard frogs

    USGS Publications Warehouse

    Petrovska-Delacrétaz, Dijana; Edwards, Aaron; Chiasson, John; Chollet, Gérard; Pilliod, David S.

    2014-01-01

    Principal component analysis is used to implement a semi-automatic recognition system to identify recaptured northern leopard frogs (Lithobates pipiens). Results of both open set and closed set experiments are given. The presented algorithm is shown to provide accurate identification of 209 individual leopard frogs from a total set of 1386 images.

  10. Trapped ions in laser fields: A benchmark for deformed quantum oscillators

    NASA Astrophysics Data System (ADS)

    Man'ko, V.; Marmo, G.; Porzio, A.; Solimeno, S.; Zaccaria, F.

    2000-11-01

    Some properties of the nonlinear coherent states (NCS), recognized by Vogel and de Matos Filho as dark states of a trapped ion, are extended to NCS on a circle, for which the Wigner functions are presented. These states are obtained by applying a suitable displacement operator Dh(α) to the vacuum state. The unity resolutions in terms of the projectors \\|α,h><α,h-1\\|,\\|α,h-1><α,h\\| are presented together with a measure allowing a resolution in terms of \\|α,h><α,h\\|. Dh(α) is also used for introducing the probability distribution funtion ρA,h(z) while the existence of a measure is exploited for extending the P representation to these states. The weight of the nth Fock state of the NCS relative to a trapped ion with Lamb-Dicke parameter η, oscillates so wildly as n grows up to infinity that the normalized NCS fill the open circle η-1 in the complex α plane. In addition, this prevents the existence of a measure including normalizable states only. This difficulty is overcome by introducing a family of deformations that are rational functions of n, each of them admitting a measure. By increasing the degree of these rational approximations, the deformation of a trapped ion can be approximated with any degree of accuracy and the formalism of the P representation can be applied.

  11. Image-based calibration of a deformable mirror in wide-field microscopy

    PubMed Central

    Turaga, Diwakar

    2014-01-01

    Optical aberrations limit resolution in biological tissues, and their influence is particularly large for promising techniques like light-sheet microscopy. In principle, image quality might be improved by adaptive optics (AO), in which aberrations are corrected using a deformable mirror (DM). To implement AO in microscopy, one requires a method to measure wavefront aberrations, but the most commonly used methods have limitations for samples lacking point-source emitters. Here we implement an image-based wavefront-sensing technique, a variant of generalized phase-diverse imaging called multi-frame blind deconvolution, and exploit it to calibrate a DM in a light-sheet microscope. We describe two methods of parameterizing the influence of the DM on aberrations: a traditional Zernike expansion requiring 1,040 parameters, and a direct physical model of the DM requiring just 8 or 110 parameters. By randomizing voltages on all actuators, we show that the Zernike expansion successfully predicts wavefronts to an accuracy of approximately 30 nm (rms) even for large aberrations. We thus show that image-based wavefront sensing, which requires no additional optical equipment, allows for a simple but powerful method to calibrate a deformable optical element in a microscope setting. PMID:20390001

  12. Bayesian exploration of coseismic seafloor deformation process during the 2011 Tohoku-Oki earthquake using near-field tsunami records

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Simons, M.

    2014-12-01

    The diverse range of data for the 2011 Mw 9.0 Tohoku-oki earthquake are unprecedented. However, several models using joint data sets still disagree on the estimated slip distribution due to (1) choice of fault geometry and elastic structure; (2) choice of regularization scheme in optimization approaches; (3) lack or under-estimation of model prediction error due to imperfect forward modeling. Some important questions therefore remain unresolved, e.g., what is the profile of fault slip as one approaches the trench, and how much of the co-seismic signals is recorded in seafloor geodetic measurements. To obtain robust and detailed features of the co-seismic process, we present an approach to invert for the seafloor deformation field using only tsunami waveforms recorded by near-field stations, including GPS buoys, ocean bottom pressure gauges, cable pressure gauges and open ocean DART buoys. In addition to observational error, we incorporate model prediction error by considering the uncertainty in dispersion characteristics of tsunami propagation simulations. We adopt an analytical Bayesian approach to derive the posterior distributions for the coseismic seafloor deformation with minimal a priori assumptions. The analytical approach provides fast and robust characterization of coseismic seafloor deformation using the first arrivals of tsunami waveforms with potential for real-time applications. Our models show that large seafloor uplift is required at the trench, with maximum seafloor uplift occurring about 50 km from the trench. The actual fault slip depends on the assumed elastic structure and fault geometry; in the case of a homogeneous half-space and simplified fault geometry, slip decreases towards the trench. This method also provides direct comparisons with seafloor geodetic measurements and a quantitative estimation of the respective contributions from co- and post-seismic processes.

  13. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  14. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  15. Field-enhanced piezoelectric deformation during the high temperature/low temperature rhombohedral (FERh/FERL) phase transformation for tin modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Pin; Moore, Roger H.; Burns, George R.

    2002-06-01

    An unusual field-enhanced piezoelectric deformation near the FERH/FERL structural phase transformation was observed in a tin modified lead zirconate titanate solid solution. In addition to the typical field-induced domain reorientation and the piezoelectric strain, this additional field-enhanced deformation only observed near the phase transformation increases linearly with external electric field strength. A 78% increase in field-enhanced strain was observed at a field strength of 32 kV/cm. Comparison of the dielectric susceptibility at low and high field conditions suggests that the observed unusual behavior is created by a field-induced lattice softening during the structural phase transformation. Experimental observations on the field-induced softening phenomena are reported.

  16. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR.

    PubMed

    Oskin, Michael E; Arrowsmith, J Ramon; Hinojosa Corona, Alejandro; Elliott, Austin J; Fletcher, John M; Fielding, Eric J; Gold, Peter O; Gonzalez Garcia, J Javier; Hudnut, Ken W; Liu-Zeng, Jing; Teran, Orlando J

    2012-02-10

    Large [moment magnitude (M(w)) ≥ 7] continental earthquakes often generate complex, multifault ruptures linked by enigmatic zones of distributed deformation. Here, we report the collection and results of a high-resolution (≥nine returns per square meter) airborne light detection and ranging (LIDAR) topographic survey of the 2010 M(w) 7.2 El Mayor-Cucapah earthquake that produced a 120-kilometer-long multifault rupture through northernmost Baja California, Mexico. This differential LIDAR survey completely captures an earthquake surface rupture in a sparsely vegetated region with pre-earthquake lower-resolution (5-meter-pixel) LIDAR data. The postevent survey reveals numerous surface ruptures, including previously undocumented blind faults within thick sediments of the Colorado River delta. Differential elevation changes show distributed, kilometer-scale bending strains as large as ~10(3) microstrains in response to slip along discontinuous faults cutting crystalline bedrock of the Sierra Cucapah. PMID:22323817

  17. Molecular orientation and dynamics of flexible polymers in strongly deforming flow fields

    NASA Astrophysics Data System (ADS)

    Kilfoil, Maria Lynn

    A method of spatially resolved magnetic resonance spectroscopy has been developed to allow studies of order and dynamics in complex fluids having transverse relaxation times on the order of tens of milliseconds, studies which were otherwise not possible using existing techniques. The model of Doi and Edwards is a microscopic description for stress transmission in concentrated polymer solutions and melts under deformation. Central to the Doi-Edwards model is the dependence of the stress on bond orientational order of the chain segments. Different elements of the segmental alignment tensor for a polymer melt under strong shearing flow are measured here using localized deuterium NMR spectroscopy on a 610K molecular weight poly(dimethyl siloxane) melt in a concentric cylinder Couette rheometric cell. This approach provides a new means of testing the Doi-Edwards model and its refinements, in the important regime far from equilibrium where the entangled polymers exhibit nonlinear viscoelastic behaviour. The same rheo-NMR methodology is also used to test predictions of the model of Leslie and Ericksen which describes director dynamics in semi-flexible rod-like polymers subjected to viscous stresses. Director dynamics are studied in a lyotropic liquid crystal polymer PBLG (300K) in a highly ordered, nematic phase in a planar extensional flow around a stagnation point. In addition, bulk 2H NMR studies are carried out on PBLG under shear, in concentric cylinder Couette and cone and plate rheometric cells. Magnetic alignment (equivalent to the dynamic Freedericksz transition) is investigated in all three cells following deformation. Values are obtained for the Leslie viscosity coefficients alpha2 and alpha3, scaled by the diamagnetic susceptibility. Possible development of mesoscale structure under shear is discussed.

  18. Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field

    SciTech Connect

    Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

    1985-01-01

    In 1983 and 1984 Oak Rdige National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conasauga Shale. Each fracture was produced by the injection of approximately 500,000 L of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted.

  19. Deformation of the Bellingham Basin in the Northern Cascadia Forearc as Inferred from Potential Field Data

    NASA Astrophysics Data System (ADS)

    Taylor, J.; Wolf, L. W.; Blakely, R. J.; Sherrod, B. L.; Brown, J.

    2013-12-01

    The Bellingham basin, spanning onshore and offshore regions of northwestern Washington state and southwestern British Columbia, is deforming under north-south shortening in the north Cascadia forearc. Accommodating the regional strain are Holocene-active faults within the basin that have been traced both offshore and onshore on the basis of gravity, aeromagnetic, and limited seismic data. In this study, we add 160 new gravity measurements to an existing database to better define the geometry of the Bellingham basin and its relation to recently discovered NW-trending faults. The new gravity data, spaced at ~ 1 km in the study area, were collected to address gaps in the irregular spatial distribution of existing data and extrapolate deformation recorded in coastal areas eastward into the basin. Regional-residual separation methods and derivative maps suggest that the Bellingham basin is segmented into three smaller basins. The southeast-trending Birch Bay fault extends 30 km into the basin, in agreement with previous work. The Sandy Point fault to the south of Birch Bay and the Drayton Harbor fault to the north appear as pronounced NW-SE trending lineations in magnetic data but are not as apparent as the Birch Bay fault in the new gravity data. The new data indicate that the northern margin of the Bellingham basin follows an arcuate path, southeastward from Birch Bay, then curving northeastward to connect with the Boulder Creek Fault. Two cross-sectional 2.5D models crossing the Bellingham basin show that the Birch Bay fault is steeply dipping and closely associated with a NW-SE trending anticlinal structure involving the underlying Chuckanut Formation and older rocks. An industry seismic line located ~2 km north of the Birch Bay fault shows an anticline involving Quaternary strata, consistent with the cross-sectional models. Results from the study suggest that the Bellingham basin contains evidence of Holocene-active faulting that, like other forearc basins to the

  20. Coseismic Faults and Crust Deformation Accompanied the 2008 Wenchuan Earthquake, China by Field Investigation and InSAR Interferogram

    NASA Astrophysics Data System (ADS)

    Hao, K.; Si, H.; Fujiwara, H.; Ozawa, T.

    2008-12-01

    The devastated Mw 7.9 Wenchuan earthquake occurred along the steep eastern margin of the Tibetan plateau in Sichuan, China, on 12 May 2008. Over 86,592 people were dead or missing, 374159 injured, and more than 4.8 million homeless. The ruptures possibly occurred over a length of 285 km along the northeast striking Longmen Shan (LMS) thrust belt. In order to study the oversized fault ruptures, existing active faults related and relationships with the damages caused, we conducted field investigations during 4-15 June and 3-9 October 2008, covered about 140km length of LMS faults, including Beichuan(BC), Anxian(AC), Mianzhu, Shifang, Pengzhou, Dujiangyan, Yingxiu (YX) and Wenchuan. On the field investigation we found coseismic surface faults along several profiles perpendicular to the LMS faults. The coseismic surface faults we discovered were at Leigu(L), Hanwang(H), Yinghua(Y), Bailu(BL), Xiaoyudong(X), and Baiyunding (BYD). Of them the maximum vertical displacement reached 4.6m at L, Beichuan County. The uplifting displacements dominated in the southwestern section of the rupture. Moreover, the northwest-striking left-lateral fault was found with horizontal displacement of 2.8m, and vertical of 1.5m as well, at X, Pengzhou City. The left-lateral fault, inversely under-controlled movement of right- lateral fault in the area, showed the complexity of the fault movements. The field results showed the coseismic surface ruptures locally while the overall faults movements and Crust deformation could be understood by the Interferometric SAR(InSAR) technique (NIED, 2008) using data from the Phased Array L-band SAR sensor (PALSAR) equipped on Advanced Land Observing Satellite (ALOS). The larger deformation zones detected by InSAR interferogram occurred with a width of ~30 km in southwestern section, and of ~10km in northeastern section of LMS faults. In the southwestern section, the deformation zone occurred mostly within the existing active faults zones: Guanxian

  1. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    NASA Technical Reports Server (NTRS)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  2. A generalized DGS method for studying the deformation field around a crack tip

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Guo, Ran; Cheng, Heming

    2016-04-01

    A generalized method for calculating the stress intensity factor from angular deflection of light rays is proposed. The method is based on 2D digital image correlation (DIC) to measure angular deflection of light rays, however, when a specimen is subjected to loading, deformation measurement from DIC is not perfect because of the existence of small in-plane and out-of-plane motions of the test sample surface that occurred after loading. These disadvantages will lead to errors in the measured angular deflections and fracture parameters. The influence of unavoidable in-plane and out-of-plane motions is discussed, and a generalized method to eliminate them to show the pure stress gradient of the crack tip of Polymethyl Methacrylate (PMMA) is demonstrated. At the same time, the fracture parameter of stress intensity was calculated. The experimental angular deflection of light rays was compared with the theoretical angular deflection predicted by generalized model using data points in an array around the crack tip region. To show the potential and efficacy of the method, K values were obtained from experimental data during tests conducted in a PMMA three-point-bend specimen. Results show an excellent level of agreement with K values predicted from FEM, highlighting the potential of the proposed methodology.

  3. Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations

    NASA Astrophysics Data System (ADS)

    Gavrylenko, P.; Marshakov, A.

    2016-02-01

    We consider the conformal blocks in the theories with extended conformal W-symmetry for the integer Virasoro central charges. We show that these blocks for the generalized twist fields on sphere can be computed exactly in terms of the free field theory on the covering Riemann surface, even for a non-abelian monodromy group. The generalized twist fields are identified with particular primary fields of the W-algebra, and we propose a straightforward way to compute their W-charges. We demonstrate how these exact conformal blocks can be effectively computed using the technique arisen from the gauge theory/CFT correspondence. We discuss also their direct relation with the isomonodromic tau-function for the quasipermutation monodromy data, which can be an encouraging step on the way of definition of generic conformal blocks for W-algebra using the isomonodromy/CFT correspondence.

  4. Phase-field-crystal modeling of glass-forming liquids: Spanning time scales during vitrification, aging, and deformation

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Grant, Martin

    2014-06-01

    Two essential elements required to generate a glass transition within phase-field-crystal (PFC) models are outlined based on observed freezing behaviors in various models of this class. The central dynamic features of glass formation in simple binary liquids are qualitatively reproduced across 12 orders of magnitude in time by applying a physically motivated time scaling to previous PFC simulation results. New aspects of the equilibrium phase behavior of the same binary model system are also outlined, aging behavior is explored in the moderate and deeply supercooled regimes, and aging exponents are extracted. General features of the elastic and plastic responses of amorphous and crystalline PFC solids under deformation are also compared and contrasted.

  5. Phase-field-crystal modeling of glass-forming liquids: spanning time scales during vitrification, aging, and deformation.

    PubMed

    Berry, Joel; Grant, Martin

    2014-06-01

    Two essential elements required to generate a glass transition within phase-field-crystal (PFC) models are outlined based on observed freezing behaviors in various models of this class. The central dynamic features of glass formation in simple binary liquids are qualitatively reproduced across 12 orders of magnitude in time by applying a physically motivated time scaling to previous PFC simulation results. New aspects of the equilibrium phase behavior of the same binary model system are also outlined, aging behavior is explored in the moderate and deeply supercooled regimes, and aging exponents are extracted. General features of the elastic and plastic responses of amorphous and crystalline PFC solids under deformation are also compared and contrasted. PMID:25019772

  6. Swim stress, motion, and deformation of active matter: effect of an external field.

    PubMed

    Takatori, Sho C; Brady, John F

    2014-12-21

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations. PMID:25330273

  7. Near-field postseismic deformation associated with the 1992 Landers and 1999 Hector Mine, California, earthquakes

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Prescott, W.H.

    2003-01-01

    After the Landers earthquake (Mw = 7.3, 1992.489) a linear array of 10 monuments extending about 30 km N50??E on either side of the earthquake rupture plus a nearby offtrend reference monument were surveyed frequently by GPS until 2003.2. The array also spans the rupture of the subsequent Hector Mine earthquake (Mw = 7.1, 1999.792 . The pre-Landers velocities of monuments in the array relative to interior North America were estimated from earlier trilateration and very long baseline interferometry measurements. Except at the reference monument, the post-Landers velocities of the individual monuments in the array relaxed to their preseismic values within 4 years. Following the Hector Mine earthquake the velocities of the monuments relaxed to steady rates within 1 year. Those steady rates for the east components are about equal to the pre-Landers rates as is the steady rate for the north component of the one monument east of the Hector Mine rupture. However, the steady rates for the north components of the 10 monuments west of the rupture are systematically ???10 mm yr1 larger than the pre-Landers rates. The relaxation to a steady rate is approximately exponential with decay times of 0.50 ?? 0.10 year following the Landers earthquake and 0.32 ?? 0.18 year following the Hector Mine earthquake. The postearthquake motions of the Landers array following the Landers earthquake are not well approximated by the viscoelastic-coupling model of Pollitz et al. [2000]. A similar viscoelastic-coupling model [Pollitz et al., 2001] is more successful in representing the deformation after the Hector Mine earthquake.

  8. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.

    PubMed

    Dananay, Kacey L; Krynak, Katherine L; Krynak, Timothy J; Benard, Michael F

    2015-10-01

    Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments. PMID:26033303

  9. Distributed deformation structures in shallow water carbonates subsiding through a simple stress field (Jandaira Formation, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol

    2016-04-01

    Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.

  10. Crustal deformation and magmatic processes at Laguna del Maule volcanic field (Chile): Geodetic measurements and numerical models

    NASA Astrophysics Data System (ADS)

    Le Mevel, Helene

    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation measured by interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2016, and data from the Global Positioning System (GPS) recorded since 2012 at five stations. The inflating region includes most of the 16--km-by--14--km ring of rhyolitic domes and coulees. The fastest-moving GPS station (MAU2) has a velocity vector of [[special character omited]72 +/- 4, 19 +/- 1, 194 +/- 3] mm/yr between 2012 and 2016 for the eastward, northward, and upward components, respectively. First, we model the InSAR observations assuming a rectangular dislocation in a half space with uniform elastic properties. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2011. Modeling of historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation and present a new dynamic model to describe this process. A Newtonian fluid characterized by its viscosity, density, and pressure flows through a vertical conduit, intruding into a reservoir embedded in an elastic domain and leading to time-dependent surface deformation. Using a grid-search optimization, we minimize the misfit to the InSAR displacement data by varying the three parameters governing the analytical solution: the characteristic timescale tauP for magma propagation, the injection pressure, and the inflection time when the acceleration switches from positive to negative. For a spheroid with semi-major axis a = 6200 m, semi-minor axis c = 100 m, located at a

  11. Critical Currents of MgB2 Wire and Tape in Magnetic Field under Bending Deformations

    NASA Astrophysics Data System (ADS)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovsky, S. V.; Rudnev, I. A.

    Nowadays MgB2 wires are attractive for designing real devices like motors and magnets. The latest production technologies allow to increase critical current value of wires. However, there is a problem of wire performance degradation under bending strain. Thus, there is a problem of manufacturing solenoids with small diameters, especially from ex situ MgB2 wires produced by powder-in-tube (PIT) technology. In this work, influence of bending on critical current Ic multifilament PIT ex situ MgB2 tape and wire has been studied. Critical current dependencies on external magnetic field Ic(H) were measured at liquid helium temperature in the range of fields from 2.5 T up to 8 T. Measurements were carried out in parallel (H||), and perpendicular (H⊥) orientation of external magnetic field to the sample surface. Voltage current characteristics (V-I) on tape samples were measured with bending on diameters D=30; 40; 60; 70; 80; 90;100 mm. It was shown that critical current density (Jc) decreases by 24% and by 28% for tape and wire respectively with decreasing bending diameter from 100 mm to 60 mm. It was found that the tape still had superconductive properties even with bending diameter D=30 mm, but its Jc decreased by 44% in comparison with Jc(D=100 mm). One more feature that was found is the appearance of resistive component in the voltage current characteristics for all bend diameters in magnetic fields H>3.5 T.

  12. Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation

    PubMed Central

    Dai, Ming; Gao, Cun-Fa; Ru, C. Q.

    2015-01-01

    Multiple elastic inclusions with uniform internal stress fields in an infinite elastic matrix are constructed under given uniform remote in-plane loadings. The method is based on the sufficient and necessary condition imposed on the boundary value of a holomorphic function that guarantees the existence of the holomorphic function in a multiply connected region. The unknown shape of each of the multiple inclusions is characterized by a conformal mapping. This work focuses on a major large class of multiple inclusions characterized by a simple condition that covers and is much beyond the known related results reported in previous works. Extensive examples of multiple inclusions with or without geometrical symmetry are shown. Our results showed that the inclusion shapes obtained for the uniformity of internal stress fields are independent of the remote loading only when all of the multiple inclusions have the same shear modulus as that of the matrix. Moreover, specific conditions are derived on remote loading, elastic constants of the inclusions and uniform internal stress fields, which guarantee the existence of multiple symmetric inclusions or multiple rotationally symmetrical inclusions with uniform internal stress fields.

  13. Chytridiomycosis in frogs of Mount Gede Pangrango, Indonesia.

    PubMed

    Kusrini, M D; Skerratt, L F; Garland, S; Berger, L; Endarwin, W

    2008-12-22

    Batrachochytrium dendrobatidis (Bd) is a fungus recognised as one of the causes of global amphibian population declines. To assess its occurrence, we conducted PCR diagnostic assays of 147 swab samples, from 13 species of frogs from Mount Gede Pangrango National Park, Indonesia. Four swab samples, from Rhacophorus javanus, Rana chalconota, Leptobrachium hasseltii and Limnonectes microdiscus, were positive for Bd and had low to moderate levels of infection. The sample from L. hasseltii was from a tadpole with mouthpart deformities and infection was confirmed by histology and immunohistochemistry. An additional sample from Leptophryne cruentata showed a very low level of infection (< or = 1 zoospore equivalent). This is the first record of Bd in Indonesia and in Southeast Asia, dramatically extending the global distribution of Bd, with important consequences for international amphibian disease control, conservation and trade. Consistent with declines in amphibian populations caused by Bd in other parts of the world, evidence exists for the decline and possible extirpation of amphibian populations at high elevations and some decline with recovery of populations at lower elevations on this mountain. Therefore, it is essential to manage Bd in Indonesia where it is likely to be threatening amphibian populations. This will require a national strategy to mitigate the spread of Bd in Indonesia and neighboring countries as well as the impact of that spread. It is also important to collect information on the extent of the impact of Bd on frog populations in Indonesia. PMID:19244970

  14. Sinusoïdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field

    NASA Astrophysics Data System (ADS)

    Drochon, Agnès

    2016-03-01

    The present work provides an analytical solution for the Sinusoïdal flow of blood in a cylindrical elastic vessel exposed to an external magnetic field. The vessel is supposed to have non-conducting walls and the induced electric and magnetic fields are neglected. In other words, the well-known calculation of Womersley is revisited through the inclusion of the Lorentz force in the Navier-Stokes equations. A dispersion equation is obtained. This equation admits two types of solutions: the Young waves (mainly associated with radial deformation of the vessel) and the Lamb waves (mainly associated with longitudinal displacements in the vessel wall). It is demonstrated that the external magnetic field has an influence on the wave celerities, on the fluid velocity profiles, and on the wall displacements. It tends to reduce the blood flow and flatten the velocity profile, in the case of Young waves. The pulsatile character of the flow is also dampened. However, these effects become detectable for high values of the Hartmann number (M > 4, corresponding to B0 > 36 T with numerical data pertaining to large human arteries) and remain negligible in the context of magnetic resonance imaging (B0 ≤ 3 T, or even 7 T).

  15. Obesity epidemic: time to swallow the frog.

    PubMed

    Andersen, Ross E

    2003-11-01

    Mark Twain once said, "If you have to swallow a frog, don't stare at it too long." I believe that members of the healthcare community have been staring at the obesity epidemic for too long. PMID:20086443

  16. Meeting the "Standards" with Vanishing Frogs.

    ERIC Educational Resources Information Center

    Davidson, Cindy B.; Matthews, Catherine E.; Patrick, Patricia

    2001-01-01

    Explains methods for introducing high school students to the issue of the declining amphibian population. Plays the game Frogs' Futures following a seminar as an instructional strategy. Describes the game, procedures, and rules. (YDS)

  17. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet

    PubMed Central

    Panciera, Federico; Norton, Michael M.; Alam, Sardar B.; Hofmann, Stephan; Mølhave, Kristian; Ross, Frances M.

    2016-01-01

    Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour–liquid–solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth. PMID:27470536

  18. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet

    NASA Astrophysics Data System (ADS)

    Panciera, Federico; Norton, Michael M.; Alam, Sardar B.; Hofmann, Stephan; Mølhave, Kristian; Ross, Frances M.

    2016-07-01

    Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour-liquid-solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth.

  19. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet.

    PubMed

    Panciera, Federico; Norton, Michael M; Alam, Sardar B; Hofmann, Stephan; Mølhave, Kristian; Ross, Frances M

    2016-01-01

    Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour-liquid-solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth. PMID:27470536

  20. Solomon Islands 2007 Tsunami Near-Field Modeling and Source Earthquake Deformation

    NASA Astrophysics Data System (ADS)

    Uslu, B.; Wei, Y.; Fritz, H.; Titov, V.; Chamberlin, C.

    2008-12-01

    The earthquake of 1 April 2007 left behind momentous footages of crust rupture and tsunami impact along the coastline of Solomon Islands (Fritz and Kalligeris, 2008; Taylor et al., 2008; McAdoo et al., 2008; PARI, 2008), while the undisturbed tsunami signals were also recorded at nearby deep-ocean tsunameters and coastal tide stations. These multi-dimensional measurements provide valuable datasets to tackle the challenging aspects at the tsunami source directly by inversion from tsunameter records in real time (available in a time frame of minutes), and its relationship with the seismic source derived either from the seismometer records (available in a time frame of hours or days) or from the crust rupture measurements (available in a time frame of months or years). The tsunami measurements in the near field, including the complex vertical crust motion and tsunami runup, are particularly critical to help interpreting the tsunami source. This study develops high-resolution inundation models for the Solomon Islands to compute the near-field tsunami impact. Using these models, this research compares the tsunameter-derived tsunami source with the seismic-derived earthquake sources from comprehensive perceptions, including vertical uplift and subsidence, tsunami runup heights and their distributional pattern among the islands, deep-ocean tsunameter measurements, and near- and far-field tide gauge records. The present study stresses the significance of the tsunami magnitude, source location, bathymetry and topography in accurately modeling the generation, propagation and inundation of the tsunami waves. This study highlights the accuracy and efficiency of the tsunameter-derived tsunami source in modeling the near-field tsunami impact. As the high- resolution models developed in this study will become part of NOAA's tsunami forecast system, these results also suggest expanding the system for potential applications in tsunami hazard assessment, search and rescue operations

  1. Perturbation analysis of deformed Q-balls and primordial magnetic fields

    SciTech Connect

    Uesugi, Tomoko; Shiromizu, Tetsuya; Aoki, Mayumi

    1999-11-19

    We study the excited states of the Q-balls by performing stationary perturbation on the spherical Q-balls. We find the exact solution of the stationary perturbation of the global Q-ball. For local Q-balls we solve the equations of motion for the perturbative part approximately by using expansion about the coupling constant. Furthermore we comment on the magnetic field generated by the excited states of local Q-balls during the phase transition.

  2. Lasing characteristics of a pendant drop deformed by an applied electric field.

    PubMed

    Pu, X Y; Lee, W K

    2000-04-01

    The lasing properties of an oval-shaped resonant cavity (ORC) with a continuously variable aspect ratio have been studied. The ORC was formed with a dye-doped pendant drop placed inside a variable static electric field. When the drop ORC was pumped by a nitrogen laser, lasing from the ORC was found to have strong directional emission characteristics and an intensity enhancement factor as great as 19.5. Calculated results of light rays escaping from ORC's by refraction are in good agreement with the experimental data. PMID:18064081

  3. Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation

    NASA Astrophysics Data System (ADS)

    Li, Tiefeng; Qu, Shaoxing; Yang, Wei

    2012-08-01

    Dielectric elastomer generators convert mechanical work into electrical energy. Previous tests on membrane inflation elastomer generators, however, indicated rather low efficiency on energy harvesting. To characterize this phenomenon, an analytical model for viscoelastic dielectric elastomer generators is presented to maximize the energy conversion. The analysis is intended for inhomogeneous fields. The result indicates that viscoelasticity and instabilities during inflation and deflation degrade the efficiency of energy conversion and the specific electrical energy generated per cycle. Rapid loading and unloading, as well as appropriate pre-stretches, are found to upgrade the performances of the dielectric elastomer generators. The analysis may guide the design of dielectric elastomer generators.

  4. Horizontal and vertical deformation field in New Caledonia, South West Pacific, derived from more than 20 years of GNSS measurements

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Calmant, S.; Valty, P.; Gravelle, M.; Sakic, P.; Aucan, J.; Pelletier, B.

    2015-12-01

    New Caledonia is located in the South West Pacific Ocean, on the Australian Plate just before its subduction under the North Fiji Basin. Because it is on the subducting side of the plate interface, New Caledonia is considered to be stable to first order and not to undergo rapid deformation. However, moderate seismicity is recorded close to the plate interface, in the southern part of the main land and along the Loyalty ridge. In addition, the main island and Loyalty ridge are subjected to long-term vertical deformation due to the flexure of the plate entering subduction. A geodetic network was installed since the early days of GPS (~1990) and has been further developed and occasionally measured since. Due to the low number of global GNSS recording stations in the early 1990s, the positioning accuracy that can be achieved with these data is poor compared to present-day standards, and expected movements are slow (possibly less than 1 mm/yr). However, the >20 year length of the time series may allow us to determine the current deformation field in New Caledonia and Loyalty Ridge. We pay special care in using older GNSS data for characterizing ground motions, reprocessing all available data using a range of different processing strategies and products. We calculated daily positions from double-differenced ionosphere-free carrier phase data in a global network using the GAMIT software and combined and aligned the results on the ITRF2008 using the CATREF software, according to the processing strategy developed as part of the current ULR6 (www.sonel.org) reprocessing campaign for IGS. We compare the double difference results with those obtained in PPP mode using JPL GIPSY software as well as CNES GINS software and different products (MIT, JPL and GRG orbits and clocks provided in the framework of the IGS2 reprocessing campaign). We present both the results for New Caledonia and an analysis of the applicability of these different processing strategies to older GNSS

  5. Factors influencing survival and mark retention in postmetamorphic boreal chorus frogs

    USGS Publications Warehouse

    Swanson, Jennifer E; Bailey, Larissa L.; Muths, Erin L.; Funk, W. Chris

    2013-01-01

    The ability to track individual animals is crucial in many field studies and often requires applying marks to captured individuals. Toe clipping has historically been a standard marking method for wild amphibian populations, but more recent marking methods include visual implant elastomer and photo identification. Unfortunately, few studies have investigated the influence and effectiveness of marking methods for recently metamorphosed individuals and as a result little is known about this life-history phase for most amphibians. Our focus was to explore survival probabilities, mark retention, and mark migration in postmetamorphic Boreal Chorus Frogs (Psuedacris maculata) in a laboratory setting. One hundred forty-seven individuals were assigned randomly to two treatment groups or a control group. Frogs in the first treatment group were marked with visual implant elastomer, while frogs in the second treatment group were toe clipped. Growth and mortality were recorded for one year and resulting data were analyzed using known-fate models in Program MARK. Model selection results suggested that survival probabilities of frogs varied with time and showed some variation among marking treatments. We found that frogs with multiple toes clipped on the same foot had lower survival probabilities than individuals in other treatments, but individuals can be marked by clipping a single toe on two different feet without any mark loss or negative survival effects. Individuals treated with visual implant elastomer had a mark migration rate of 4% and mark loss rate of 6%, and also showed very little negative survival impacts relative to control individuals.

  6. DNA repair and resistance to UV-B radiation in western spotted frogs

    USGS Publications Warehouse

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  7. From Virtual Frog to Frog Island: Design Studies in a Development Project.

    ERIC Educational Resources Information Center

    Dev, Parvati; Walker, Decker F.

    1999-01-01

    Explores the efforts of a curriculum development team who set out to create a virtual frog for use in biology education, but instead, after several design studies, developed a virtual world called Frog Island. Argues for incorporating educational design studies into other educational development projects. (CMK)

  8. A coupled phase-field and volume-of-fluid method for accurate representation of limiting water wave deformation

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Yu, Xiping

    2016-09-01

    A coupled phase-field and volume-of-fluid method is developed to study the sensitive behavior of water waves during breaking. The THINC model is employed to solve the volume-of-fluid function over the entire domain covered by a relatively coarse grid while the phase-field model based on Allen-Cahn equation is applied over the fine grid. A special algorithm that takes into account the sharpness of the diffuse-interface is introduced to correlate the order parameter obtained on the fine grid and the volume-of-fluid function obtained on the coarse grid. The coupled model is then applied to the study of water waves generated by moving pressures on the free surface. The deformation process of the wave crest during the initial stage of breaking is discussed in details. It is shown that there is a significant variation of the free nappe developed at the front side of the wave crest as the wave steepness differs. It is of a plunging type at large wave steepness while of a spilling type at small wave steepness. The numerical results also indicate that breaking occurs later and the duration of breaking is shorter for waves of smaller steepness and vice versa. Neglecting the capillary effect leads to wave breaking with a sharper nappe and a more dynamic plunging process. The surface tension also has an effect to prevent the formation of a free nappe at the front side of the wave crest in some cases.

  9. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF

  10. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000

    USGS Publications Warehouse

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.

    2003-01-01

    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the

  11. Observations of deformation and mixing of the total ozone field in the Antaractic Polar Vortex

    SciTech Connect

    Bowman, K.P. ); Mangus, N.J. )

    1993-09-01

    Total Ozone Mapping Spectrometer (TOMS) images of the springtime Southern Hemisphere commonly show concentric layers in the total ozone field outside the Antarctic polar vortex. The layering appears to result from horizontal folding and stretching of regions on the equatorward flank of the polar vortex near the midlatitude ozone maximum. This folding and stretching interleaves low and high ozone air from the subtropics and midlatitudes, respectively. Occasional large amplitude wave events can extract very low ozone air from the interior of the polar vortex (the Antarctic ozone hole), but the folding and stretching results in relatively rapid horizontal mixing of the atmosphere on the equatorward flank of the jet. This type of lagrangian behavior may be common in the atmosphere, but is only visible when local tracer gradients are large and observations with high spatial resolution are available. Also, experimentation has shown that gray-scale images of TOMS data show the details of the spatial distribution of ozone much more clearly than contour maps of false-color images. 22 refs., 3 figs., 2 tabs.

  12. Deformation of the total ozone content field in the tropical zone

    NASA Technical Reports Server (NTRS)

    Vasilyev, Victor I.

    1994-01-01

    Presented are the ozone investigation results obtained in the tropical zone. Measurements of the total ozone content (TOC) were carried out by the ozonometer M-124. The ozonometer was automated to investigate the ozone intradiurnal variations and to increase precision of the TOC measurements. Obtained results allowed us to follow the effect of tropical cyclones (TC) on the TOC field. Several days before the TC formation the TOC increase is observed in daily mean course compared with the background one. Three types of trend can be singled out in the TOC intradiurnal course: zero, parabolic, quasi-linear. Maximum velocities of a trend are observed some days before the TC formation. Analogous harmonic constituents are mainly presented as spectrum of daily means of ozone, mean and absolute velocities of trend and dispersion as well as spectra of meteorological, hydrometeorological and actinometric values. Revealed is a number of day-to-day ozone variations concerned with large-scale circulations; moisture content in the atmosphere. Obtained are the data about short-period ozone waves (period less than a day). Thin-film silver sensors were used to measure the vertical ozone distribution (VOD). Atmospheric aerosol and VOD measurements were carried out simultaneously, they gave data of the VOD layered structure, where the VOD local minima coincided with the position of aerosol layers' maxima.

  13. Ionic Conductivity, Structural Deformation and Programmable Anisotropy of DNA Origami in Electric Field

    PubMed Central

    Li, Chen-Yu; Hemmig, Elisa A.; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia

    2015-01-01

    The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA. PMID:25623807

  14. TERATOGENESIS, TOXICITY, AND BIOCONCENTRATION IN FROGS EXPOSED TO DIELDRIN

    EPA Science Inventory

    Teratogenesis, acute and chronic toxicity, and bioconcentration were investigated in various like stages of African clawed frogs (Xenopus laevis), bullfrogs (Rana catesbeiana) and leopard frogs (Rana pipiens) exposed to aqueous dieldrin in static-renewal and continuous-flow tests...

  15. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    USGS Publications Warehouse

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  16. Two-dimensional shear bands growing dynamically in plates: An investigation of transient deformation fields, temperature fields and shear band toughness

    SciTech Connect

    Rosakis, A.J.

    1995-12-31

    The phenomenon of dynamic initiation and propagation of two-dimensional adiabatic shear bands is experimentally and numerically investigated. Prenotched metal plates are subjected to asymmetric impact load histories (dynamic mode-II loading). Dynamic shear bands emanate from the notch-tip and propagate rapidly in a direction nearly parallel to the direction of impact. Real time temperature histories along a line intersecting and perpendicular to the shear band paths are recorded by means of a high speed infrared detector system. The materials studied are C-300 (a maraging steel), HY-100 steel and Ti-6Al-4V. Experiments show that the peak temperatures inside the propagating shear bands are approaching 90% of the melting point for C-300 and are significantly lower for the titanium alloy (up to 6000C). Additionally, measured distances of shear band propagation indicate stronger resistance to shear banding by HY-100 steel and Ti-6Al-4V. Deformation fields around the propagating shear band are recorded using high speed photography. Shear band speeds are found to strongly depend on impact velocity are as high as 1200 m/s for C-300 steel. Finite element simulations of the experiment are carried out under the context of plane strain, considering finite deformations, inertia, heat conduction, thermal softening, strain hardening and strain-rate hardening. In the simulations, the shear band propagation is assumed to be governed by a critical plastic strain criterion. The results are compared with experimental measurements obtained using the high speed infrared detectors and high speed photography. Finally, the numerical calculations are used to investigate motions of shear band toughness. The shear band driving force is calculated as a function of shear band velocity and compared to the crack driving force versus velocity relations for mode-I, opening cracks in the same material.

  17. Spinning string and giant graviton in electric/magnetic field deformed AdS{sub 3}xS{sup 3}xT{sup 4}

    SciTech Connect

    Huang, W.-H.

    2006-06-15

    We apply the transformation of the mixing azimuthal and internal coordinate or the mixing time and internal coordinate to the 11D M theory with a stack of M2-branes perpendicular M2-branes, then through the mechanism of Kaluza-Klein reduction and a series of the T duality we obtain the corresponding background of a stack of D1-branes perpendicular D5-branes which, in the near-horizon limit, becomes the magnetic or electric Melvin field deformed AdS{sub 3}xS{sup 3}xT{sup 4}. We find the giant graviton solution in the deformed spacetime and see that the configuration whose angular momentum is within a finite region could have a fixed size and become more stable than the pointlike graviton, in contrast to the undeformed giant graviton which only exists when its angular momentum is a specific value and could have arbitrary size. We discuss in detail the properties of how the electric/magnetic Melvin field will affect the size of the giant gravitons. We also adopt an ansatz to find the classical string solutions which are rotating in the deformed S{sup 3} with an angular momentum in the rotation plane. The spinning string and giant graviton solutions we obtained show that the external magnetic/electric flux will increase the solution energy. Therefore, from the anti-de Sitter (AdS)/conformal field theory (CFT) point of view, the corrections of the anomalous dimensions of operators in the dual field theory will be positive. Finally, we also see that the spinning string and giant graviton in the near-horizon spacetime of Melvin field deformed D5-branes background have similar properties to those in the deformed AdS{sub 3}xS{sup 3}xT{sup 4}.

  18. Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress

    NASA Astrophysics Data System (ADS)

    Lim, Ji-Song; Yang, Xiaodong; Nishida, Toshikazu; Thompson, Scott E.

    2006-08-01

    An experimental method to determine both the hydrostatic and shear deformation potential constants is introduced. The technique is based on the change in the gate tunneling currents of Si-metal oxide semiconductor field effect transistors (MOSFETs) under externally applied mechanical stress and has been applied to industrial n-type MOSFETs. The conduction band hydrostatic and shear deformation potential constants (Ξd and Ξu) are extracted to be 1.0±0.1 and 9.6±1.0eV, respectively, which is consistent with recent theoretical works.

  19. Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Lei-Gang; Liang, Jin; Guo, Xiang; Guo, Cheng; Hu, Hao; Tang, Zheng-Zong

    2014-06-01

    In this paper, a new non-contact scheme, based on 3D digital image correlation technology, is presented to measure the full-field wing deformation of in-flight cantilever monoplanes. Because of the special structure of the cantilever wing, two conjugated camera groups, which are rigidly connected and calibrated to an ensemble respectively, are installed onto the vertical fin of the aircraft and record the whole measurement. First, a type of pre-stretched target and speckle pattern are designed to adapt the oblique camera view for accurate detection and correlation. Then, because the measurement cameras are swinging with the aircraft vertical trail all the time, a camera position self-correction method (using control targets sprayed on the back of the aircraft), is designed to orientate all the cameras’ exterior parameters to a unified coordinate system in real time. Besides, for the excessively inclined camera axis and the vertical camera arrangement, a weak correlation between the high position image and low position image occurs. In this paper, a new dual-temporal efficient matching method, combining the principle of seed point spreading, is proposed to achieve the matching of weak correlated images. A novel system is developed and a simulation test in the laboratory was carried out to verify the proposed scheme.

  20. 49 CFR 213.141 - Self-guarded frogs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Self-guarded frogs. 213.141 Section 213.141..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.141 Self-guarded frogs. (a) The raised guard on a self-guarded frog shall not be worn more than three-eighths of an inch. (b) If...

  1. 49 CFR 213.141 - Self-guarded frogs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Self-guarded frogs. 213.141 Section 213.141..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.141 Self-guarded frogs. (a) The raised guard on a self-guarded frog shall not be worn more than three-eighths of an inch. (b) If...

  2. 49 CFR 213.141 - Self-guarded frogs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Self-guarded frogs. 213.141 Section 213.141..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.141 Self-guarded frogs. (a) The raised guard on a self-guarded frog shall not be worn more than three-eighths of an inch. (b) If...

  3. 49 CFR 213.141 - Self-guarded frogs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Self-guarded frogs. 213.141 Section 213.141..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.141 Self-guarded frogs. (a) The raised guard on a self-guarded frog shall not be worn more than three-eighths of an inch. (b) If...

  4. 49 CFR 213.141 - Self-guarded frogs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Self-guarded frogs. 213.141 Section 213.141..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.141 Self-guarded frogs. (a) The raised guard on a self-guarded frog shall not be worn more than three-eighths of an inch. (b) If...

  5. 49 CFR 213.139 - Spring rail frogs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Spring rail frogs. 213.139 Section 213.139..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Structure § 213.139 Spring rail frogs. (a) The... wing rail shall be solidly tamped and fully and tightly bolted. (c) Each frog with a bolt hole...

  6. Hands-on Science. How Do Polliwogs Become Frogs?

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    Describes a miniscience unit on frogs for elementary grades that teaches students about how frogs develop from tadpoles and how frogs need water during their entire life cycle. Students learn such skills as observation, collecting, and recording data. Provides addresses for ordering resources for teachers and students. (SM)

  7. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  8. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  9. The Propeller and the Frog

    NASA Astrophysics Data System (ADS)

    Pan, Margaret; Chiang, Eugene

    2010-10-01

    "Propellers" in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the "frog" resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Blériot in Saturn's A ring, our theory predicts a libration period of ~4 years, similar to the ~3.7 year period over which Blériot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  10. THE PROPELLER AND THE FROG

    SciTech Connect

    Pan, Margaret; Chiang, Eugene

    2010-10-20

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of {approx}4 years, similar to the {approx}3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.