Science.gov

Sample records for field ionization-photoion technique

  1. Communication: Rovibrationally selected study of the N{sub 2}{sup +}(X; v{sup +}= 1, N{sup +}= 0-8) + Ar charge transfer reaction using the vacuum ultraviolet laser pulsed field ionization-photoion method

    SciTech Connect

    Chang, Yih Chung; Xu Hong; Xu Yuntao; Lu Zhou; Ng, C. Y.; Chiu, Yu-Hui; Levandier, Dale J.

    2011-05-28

    By employing an electric field pulsing scheme for vacuum ultraviolet laser pulsed field ionization-photoion (PFI-PI) measurements, we have been able to prepare a rovibrationally selected PFI-PI beam of N{sub 2}{sup +}(v{sup +}= 1, N{sup +}) with not only high intensity and high quantum state purity, but also high kinetic energy resolution, allowing absolute total cross sections [{sigma}(v{sup +}= 1, N{sup +})] for the N{sub 2}{sup +}(X; v{sup +}= 1, N{sup +}) + Ar, N{sup +}= 0-8 charge transfer reaction to be measured at center-of-mass collision energies (E{sub cm}) down to thermal energies. The {sigma}(v{sup +}= 1, N{sup +}= 0-8) values determined at E{sub cm}= 0.04-10.00 eV are in good agreement with the theoretical predictions based on the Landau-Zener-Stueckelberg formulism. Taking into account the experimental uncertainties, the {sigma}(v{sup +}= 1, N{sup +}), N{sup +}= 0-8, measured at E{sub cm}= 1.56 eV are found to be independent of N{sup +}.

  2. Communication: rovibrationally selected study of the N2+(X; v+=1, N+= 0-8) + Ar charge transfer reaction using the vacuum ultraviolet laser pulsed field ionization-photoion method.

    PubMed

    Chang, Yih Chung; Xu, Hong; Xu, Yuntao; Lu, Zhou; Chiu, Yu-Hui; Levandier, Dale J; Ng, C Y

    2011-05-28

    By employing an electric field pulsing scheme for vacuum ultraviolet laser pulsed field ionization-photoion (PFI-PI) measurements, we have been able to prepare a rovibrationally selected PFI-PI beam of N(2)(+)(v(+) = 1, N(+)) with not only high intensity and high quantum state purity, but also high kinetic energy resolution, allowing absolute total cross sections [σ(v(+) = 1, N(+))] for the N(2)(+)(X; v(+) = 1, N(+)) + Ar, N(+) = 0-8 charge transfer reaction to be measured at center-of-mass collision energies (E(cm)) down to thermal energies. The σ(v(+) = 1, N(+) = 0-8) values determined at E(cm) = 0.04-10.00 eV are in good agreement with the theoretical predictions based on the Landau-Zener-Stückelberg formulism. Taking into account the experimental uncertainties, the σ(v(+) = 1, N(+)), N(+) = 0-8, measured at E(cm) = 1.56 eV are found to be independent of N(+). PMID:21639416

  3. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    PubMed

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  4. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2; N{sup +}= 0-9) + Ar

    SciTech Connect

    Chang, Yih Chung; Xu Yuntao; Lu Zhou; Xu Hong; Ng, C. Y.

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N{sub 2}{sup +}(v{sup +}, N{sup +}) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}, v{sup +}= 0-2, N{sup +}= 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N{sub 2}{sup +} PFI-PI beam can be formed with a laboratory kinetic energy resolution of {Delta}E{sub lab}={+-} 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E{sub cm}'s) down to thermal energies. Absolute total rovibrationally selected cross sections {sigma}(v{sup +}= 0-2, N{sup +}= 0-9) for the N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2, N{sup +}= 0-9) + Ar CT reaction have been measured in the E{sub cm} range of 0.04-10.0 eV, revealing strong vibrational enhancements and E{sub cm}-dependencies of {sigma}(v{sup +}= 0-2, N{sup +}= 0-9). The thermochemical threshold at E{sub cm}= 0.179 eV for the formation of Ar{sup +} from N{sub 2}{sup +}(X; v{sup +}= 0, N{sup +}) + Ar was observed by the measured {sigma}(v{sup +}= 0), confirming the narrow {Delta}E{sub cm} spread achieved in

  5. Field techniques for sampling ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants occur in most environments and ecologists ask a diverse array of questions involving ants. Thus, a key consideration in ant studies is to match the environment and question (and associated environmental variables) to the ant sampling technique. Since each technique has distinct limitations, usi...

  6. Gravity field determination and error assessment techniques

    NASA Technical Reports Server (NTRS)

    Yuan, D. N.; Shum, C. K.; Tapley, B. D.

    1989-01-01

    Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.

  7. Techniques of magna-field irradiation

    SciTech Connect

    Shank, B.

    1983-12-01

    Total body irradiation (TBI) techniques have evolved over the years, with the basic goals remaining adequate immunosuppression and/or tumor eradication. TBI technique variables include: machine type and energy, prescription parameters (dose, number of fractions, dose/fraction, dose rate), patient position, therapy room and machine constraints (field size, distance) and beam modifiers (bolus, compensators, shields). Related variables include chemotherapy agents and schedules, and 'boost' radiotherapy. Seven representative institutions that treat a large number of TBI patients were surveyed for these variables. Homogeneity has been achieved generally within +/-10% with the use of these techniques. One 'sentinel' effect is discussed, namely interstitial pneumonitis, as a measure of normal tissue effects with varying techniques. There is an indication that more fractionated methods, used either daily or in a hyperfractionated fashion, are leading to a decreased incidence of pneumonitis.

  8. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  9. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  10. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  11. Emerging Techniques for Field Device Security

    SciTech Connect

    Schwartz, Moses; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a system will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.

  12. Emerging Techniques for Field Device Security

    DOE PAGESBeta

    Schwartz, Moses; Bechtel Corp.; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a systemmore » will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.« less

  13. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  14. Techniques for the generation and monitoring of vapors

    SciTech Connect

    Nelson, G.O.

    1981-02-06

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow.

  15. Far field fallout prediction techniques. Doctoral thesis

    SciTech Connect

    Bigelow, W.S. Jr.

    1983-12-01

    A calculational technique for use in predicting fallout far downwind from nuclear bursts is developed and validated. Possible siting strategies for the next generation of missiles might invite a concentrated attack by thousands of nuclear warheads. The resulting fallout field could consist of the superposition of thousands of single burst patterns. The downwind extent of damaging radiation levels would extend beyond the distances to which calculations are usually performed for single bursts. Numerical models currently available cannot be extended to these large downwind distances because of the artificial pattern break up inherent in their numerical quadrature and because of prohibitive computing requirements. Two approaches to this problem are taken here. First, a numerical smoothing which conserves radioactivity is developed to help prevent pattern break up. This is partially successful in that it extends the predictive range farther downwind, but not far enough. The second approach is to abandon the numerical quadrature -- known as disc tossing -- and adopt a whole cloud smearing approach. The key function needed for the smearing approach, the fractional arrival rate of activity on the ground, is derived directly from physical principles and validated by comparison with an extensive series of numerical (disc tosser) predictions.

  16. FIELD STUDIES OF GEOMEMBRANE INSTALLATION TECHNIQUES

    EPA Science Inventory

    Fourteen construction sites where geomembranes were being installed were visited to observe subgrade preparation and liner installation techniques. These sites were visited during a study conducted for the U.S. EPA, Solid and Hazardous Waste Research Division. The sites included ...

  17. Track and Field: Technique Through Dynamics.

    ERIC Educational Resources Information Center

    Ecker, Tom

    This book was designed to aid in applying the laws of dynamics to the sport of track and field, event by event. It begins by tracing the history of the discoveries of the laws of motion and the principles of dynamics, with explanations of commonly used terms derived from the vocabularies of the physical sciences. The principles and laws of…

  18. DISTANT GALAXY IDENTIFICATION TECHNIQUE IN HUBBLE FIELD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Series of four panels that illustrate the distant-galaxy identification technique. Four panels that show (top to bottom, or right to left when rotated correctly) F814W filter, F606W filter, F450W filter, and F300W filter images, or near-infrared through near-ultraviolet images. The identified galaxy is prominent in the near-infrared image but totally absent in any of the other images. It is this spectroscopic signature that identifies this galaxy as a very distant object. Credit: Ken Lanzetta and Amos Yahil (State University of New York at Stony Brook), and NASA

  19. Frequency-offset separated oscillatory fields technique

    NASA Astrophysics Data System (ADS)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  20. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  1. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  2. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  3. Analysis techniques used on field degraded photovoltaic modules

    SciTech Connect

    Hund, T.D.; King, D.L.

    1995-09-01

    Sandia National Laboratory`s PV System Components Department performs comprehensive failure analysis of photovoltaic modules after extended field exposure at various sites around the world. A full spectrum of analytical techniques are used to help identify the causes of degradation. The techniques are used to make solder fatigue life predictions for PV concentrator modules, identify cell damage or current mismatch, and measure the adhesive strength of the module encapsulant.

  4. Use of Field Research Sites to Teach Field Techniques in Graduate Level Soil Physics.

    ERIC Educational Resources Information Center

    Cassel, D. K.

    1986-01-01

    Describes how a field research site provides grauduate soil physics students with practical field-oriented experiences. Explains the structure of the course and the nature of the course's investigations. Assesses the advantages and obstacles associated with the field research technique. (ML)

  5. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  6. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  7. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  8. ASD FieldSpec Calibration Setup and Techniques

    NASA Technical Reports Server (NTRS)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  9. An objective analysis technique for extrapolating tidal fields

    NASA Technical Reports Server (NTRS)

    Sanchez, B. V.

    1984-01-01

    An interpolation technique which allows accurate extrapolation of tidal height fields in the ocean basins by making use of selected satellite altimetry measurements and/or conventional gauge measurements was developed and tested. A normal mode solution for the Atlantic and Indian Oceans was obtained by means of a finite difference grid. Normal mode amplitude maps are presented.

  10. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  11. A stochastic filtering technique for fluid flow velocity fields tracking.

    PubMed

    Cuzol, Anne; Mémin, Etienne

    2009-07-01

    In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Itô diffusion process coming from a stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world sequences. PMID:19443925

  12. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  13. The phase field technique for modeling multiphase materials

    NASA Astrophysics Data System (ADS)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  14. The Electron Drift Technique for Measuring Electric and Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; McIlwain, C. E.; Quinn, J. M.; Torbert, R. B.; Whipple, E. C.; Christensen, John (Technical Monitor)

    1998-01-01

    The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.

  15. Dark-field Z-scan imaging technique

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Cassagne, Christophe; Leblond, Hervé; Boudebs, Georges

    2016-05-01

    We report on Dark-Field Z-scan (DFZ-scan) as a new imaging technique combining Z-scan method with Dark-field microscopy in order to measure optical refraction nonlinearity. Numerical and experimental results are provided to validate this concept. The image of the induced phase shift is spatially resolved without introducing a complex interferometric setup. Moreover, the experimental results show almost 3 times increase of the sensitivity when compared to the conventional Z-scan method. New perspective of microscope laser scanning is introduced.

  16. Data acquisition and preprocessing techniques for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  17. Time Delay Integration: A Wide-Field Survey Technique

    NASA Astrophysics Data System (ADS)

    Lapointe, Robert; Hill, E.; Leimer, L.; McMillian, K.; Miller, A.; Prindle, A.

    2009-05-01

    The Advanced Placement Physics class of Orange Lutheran High School has conducted a survey-imaging pro-ject using a Time Delay Integration (TDI) technique. TDI enables very wide-field images to be collected in the form of long strips of the sky. A series of five consecutive nights were captured, calibrated and compared to re-veal possible transient phenomena such as supernovae, asteroids, and other events that have a noticeable change over 24-hour intervals.

  18. Novel Techniques for Pulsed Field Gradient NMR Measurements

    NASA Astrophysics Data System (ADS)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  19. Applying field mapping refractive beam shapers to improve holographic techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim

    2012-03-01

    Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  20. Evaluation of Field-in-Field Technique for Total Body Irradiation

    SciTech Connect

    Onal, Cem; Sonmez, Aydan; Arslan, Gungor; Sonmez, Serhat; Efe, Esma; Oymak, Ezgi

    2012-08-01

    Purpose: To evaluate the clinical use of a field-in-field (FIF) technique for total body irradiation (TBI) using a treatment-planning system (TPS) and to verify TPS results with in vivo dose measurements using metal-oxide-semiconductor field-effect transistor (MOSFET) detectors. Methods and Materials: Clinical and dosimetric data of 10 patients treated with TBI were assessed. Certain radiation parameters were measured using homogenous and regular phantoms at an extended distance of 380 cm, and the results were compared with data from a conventional standard distance of 100 cm. Additionally, dosimetric validation of TPS doses was performed with a Rando phantom using manual calculations. A three-dimensional computed tomography plan was generated involving 18-MV photon beams with a TPS for both open-field and FIF techniques. The midline doses were measured at the head, neck, lung, umbilicus, and pelvis for both open-field and FIF techniques. Results: All patients received planned TBI using the FIF technique with 18-MV photon energies and 2 Gy b.i.d. on 3 consecutive days. The difference in tissue maximum ratios between the extended and conventional distances was <2%. The mean deviation of manual calculations compared with TPS data was +1.6% (range, 0.1-2.4%). A homogenous dose distribution was obtained with 18-MV photon beams using the FIF technique. The mean lung dose for the FIF technique was 79.2% (9.2 Gy; range, 8.8-9.7 Gy) of the prescribed dose. The MOSFET readings and TPS doses in the body were similar (percentage difference range, -0.5% to 2.5%) and slightly higher in the shoulder and lung (percentage difference range, 4.0-5.5%). Conclusion: The FIF technique used for TBI provides homogenous dose distribution and is feasible, simple, and spares time compared with more-complex techniques. The TPS doses were similar to the midline doses obtained from MOSFET readings.

  1. Near-Field Source Localization by Using Focusing Technique

    NASA Astrophysics Data System (ADS)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  2. Field tests of laser ranging using PRBS modulation techniques

    NASA Astrophysics Data System (ADS)

    Kovalik, J.; Wilson, K.; Wright, M.; Williamson, W.

    2011-06-01

    We have developed and tested an optical ranging system using a Pseudo-Random Bit Stream (PRBS) modulation technique. The optical transceiver consisted of an infrared laser transmitter co-aligned with a receiver telescope. The infrared laser beam was propagated to a retro-reflector and then received by a detector coupled to the telescope. The transceiver itself was mounted on a gimbal that could actively track moving targets through a camera that was bore sighted with the optical detector. The detected optical signal was processed in real time to produce a range measurement with sub mm accuracy. This system was tested in the field using both stationary and moving targets up to 5 km away. Ranging measurements to an aircraft were compared with results obtained by differential GPS (Global Positioning System) techniques.

  3. Critical field measurements in superconductors using ac inductive techniques

    NASA Astrophysics Data System (ADS)

    Campbell, S. A.; Ketterson, J. B.; Crabtree, G. W.

    1983-09-01

    The ac in-phase and out-of-phase response of type II superconductors is discussed in terms of dc magnetization curves. Hysteresis in the dc magnetization is shown to lead to a dependence of the ac response on the rate at which an external field is swept. This effect allows both Hc1 and Hc2 to be measured by ac techniques. A relatively simple mutual inductance bridge for making such measurements is described in the text, and factors affecting bridge sensitivity are discussed in the Appendix. Data for the magnetic superconductor ErRh4B4 obtained using this bridge are reported.

  4. Mean field bipartite spin models treated with mechanical techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Pizzoferrato, Andrea; Tantari, Daniele

    2014-03-01

    Inspired by a continuously increasing interest in modeling and framing complex systems in a thermodynamic rationale, in this paper we continue our investigation in adapting well-known techniques (originally stemmed in fields of physics and mathematics far from the present) for solving for the free energy of mean field spin models in a statistical mechanics scenario. Focusing on the test cases of bipartite spin systems embedded with all the possible interactions (self and reciprocal), we show that both the fully interacting bipartite ferromagnet, as well as the spin glass counterpart, at least at the replica symmetric level, can be solved via the fundamental theorem of calculus, trough an analogy with the Hamilton-Jacobi theory and lastly with a mapping to a Fourier diffusion problem. All these technologies are shown symmetrically for ferromagnets and spin-glasses in full details and contribute as powerful tools in the investigation of complex systems.

  5. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  6. CCD mosaic technique for large-field digital mammography

    SciTech Connect

    Jalink, A.; McAdoo, J.; Halama, G.; Liu, H.

    1996-06-01

    The authors present a novel technique for large-field digital mammography. The instrument uses a mosaic of electronic digital imaging [charge coupled device (CCD)] arrays, novel area scanning, and a radiation exposure and scatter reducing mechanism. The imaging arrays are mounted on a carrier platform in a checker-board pattern mosaic. To fill in the gaps between array-active areas the platform is repositioned three times and four X-ray exposures are made. The multiple image areas are then recombined by a digital computer to produce a composite image of the entire region. To reduce X-ray scatter and exposure, a lead aperture plate is interposed between X-ray source and patient. The aperture plate has a mosaic of square holes in alignment with the imaging array pattern and the plate is repositioned in synchronism with the carrier platform. The authors discuss proof-of-concept testing demonstrating technical feasibility of their approach. The instrument should be suitable for incorporation into standard mammography units. Unique features of the new technique are: large field coverage (18 x 24 cm); high spatial resolution (14--17 lp/mm); scatter rejection; and excellent contrast characteristics and lesion detectability under clinical conditions.

  7. Low-Field Accelerator Structure Couplers and Design Techniques

    SciTech Connect

    Nantista, C

    2004-07-29

    Recent experience with X-band accelerator structure development has shown the rf input coupler to be the region most prone to rf breakdown and degradation, effectively limiting the operating gradient. A major factor in this appears to be high magnetic fields at the sharp edges of the coupling irises. As a first response to this problem, couplers with rounded and thickened iris horns have been employed and successfully tested at high power. To further reduce fields for higher power flow, conceptually new coupler designs have been developed, in which power is coupled through the broadwall of the feed waveguide, rather than through terminating irises. A 'mode launcher' coupler, which launches the TM{sub 01} mode in circular waveguide before coupling through a matching cell into the main structure, has been tested with great success. With peak surface fields below those in the body of the structure, this coupler represented a break-through in the NLC structure program. The design of this coupler and of variations which use beamline space more efficiently are described here. The latter include a coupler in which power passes directly through an iris in the broad wall of the rectangular waveguide into a matching cell, also successfully implemented, and a variation which makes the waveguide itself an accelerating cell. The authors also discuss in some detail a couple of techniques for matching such couplers to travelling-wave structures using a field solver. The first exploits the cell number independence of a travelling-wave match, and the second optimizes using the fields of an internally driven structure.

  8. Magnetic field measurement techniques with heavy ion beam probes

    SciTech Connect

    Crowley, T.P.

    1988-08-01

    Spatially (0.1 cm/sup 3/) and temporally (1 ..mu..s) resolved magnetic field measurement techniques using a heavy ion beam probe as a test particle source are described. The measurement of both steady-state and time-varying fields is discussed. The plasma flux function can be determined by measuring the toroidal velocity of the beam ion in an axisymmetric device, because the canonical angular momentum of a particle, P/sub phi/ = qpsi+M..nu../sub phi/R, is conserved in an axisymmetric system. Corrections due to nonaxisymmetry can be significant in tokamaks and must be taken into account for the current profile and fluctuation measurements. The requirements and design of a toroidal velocity detector are discussed. The signals expected in experiments using the Texas Experimental Tokamak (TEXT) heavy ion beam probe with a velocity detector have been calculated, and they are at least two orders of magnitude higher than the amplifier noise for dc measurements of poloidal and ergodic magnetic limiter fields and for sawtooth and MHD oscillations. Low-level turbulence is expected to produce signals below the noise level.

  9. A magnetic field measurement technique using a miniature transducer

    NASA Technical Reports Server (NTRS)

    Fales, C. L., Jr.; Breckenridge, R. A.; Debnam, W. J., Jr.

    1974-01-01

    The development, fabrication, and application of a magnetometer are described. The magnetometer has a miniature transducer and is capable of automatic scanning. The magnetometer described here is capable of detecting static magnetic fields as low as 1.6 A/m and its transducer has an active area 0.64 mm by 0.76 mm. Thin and rugged, the transducer uses wire, 0.05 mm in diameter, which is plated with a magnetic film, enabling measurement of transverse magnetic fields as close as 0.08 mm from a surface. The magnetometer, which is simple to operate and has a fast response, uses an inexpensive clip-on milliammeter (commonly found in most laboratories) for driving and processing the electrical signals and readout. A specially designed transducer holding mechanism replaces the XY recorder ink pen; this mechanism provides the basis for an automatic scanning technique. The instrument has been applied to the measurements of magnetic fields arising from remanent magnetization in experimental plated-wire memory planes and regions of magnetic activity in geological rock specimens.

  10. Pattern recognition techniques and the measurement of solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Lopez Ariste, Arturo; Rees, David E.; Socas-Navarro, Hector; Lites, Bruce W.

    2001-11-01

    Measuring vector magnetic fields in the solar atmosphere using the profiles of the Stokes parameters of polarized spectral lines split by the Zeeman effect is known as Stokes Inversion. This inverse problem is usually solved by least-squares fitting of the Stokes profiles. However least-squares inversion is too slow for the new generation of solar instruments (THEMIS, SOLIS, Solar-B, ...) which will produce an ever-growing flood of spectral data. The solar community urgently requires a new approach capable of handling this information explosion, preferably in real-time. We have successfully applied pattern recognition and machine learning techniques to tackle this problem. For example, we have developed PCA-inversion, a database search technique based on Principal Component Analysis of the Stokes profiles. Search is fast because it is carried out in low dimensional PCA feature space, rather than the high dimensional space of the spectral signals. Such a data compression approach has been widely used for search and retrieval in many areas of data mining. PCA-inversion is the basis of a new inversion code called FATIMA (Fast Analysis Technique for the Inversion of Magnetic Atmospheres). Tests on data from HAO's Advanced Stokes Polarimeter show that FATIMA isover two orders of magnitude faster than least squares inversion. Initial tests on an alternative code (DIANNE - Direct Inversion based on Artificial Neural NEtworks) show great promise of achieving real-time performance. In this paper we present the latest achievements of FATIMA and DIANNE, two powerful examples of how pattern recognition techniques can revolutionize data analysis in astronomy.

  11. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  12. Strengthened electric field technique implemented on CZT detectors

    NASA Astrophysics Data System (ADS)

    Fu, Jianqiang; Li, Yulan; Zhang, Lan; Du, Yingshuai; Yang, Yigang; Liu, Yinong; Niu, Libo; Jiang, Hao; Liu, Yilin; Li, Jun; Zhang, Wei; Liu, Yanqing; Li, Yuanjing

    2015-01-01

    This paper presents the development of a simple electrode structure which only requires a simple readout and is suitable for a large cube CZT crystal, such as a 10×10×10 mm3 crystal. A technique named the strengthened electric field (SEF) is investigated in detail and implemented to improve the performance of the detector. Signal processing was also studied to demonstrate its feasibility to further improve the detector's performance. A SEF line anode (SEFLA) prototype and an SEF point anode (SEFPA) prototype were designed, fabricated and tested. Experimental results demonstrated the effectiveness of the SEF technique. The SEFLA detector achieved an energy resolution of 1.6% (FWHM)@662 keV with 4.0 keV noise (FWHM) and SEFPA 1.8% with 5.0 keV noise. Cathode signal is used to do both the rejection and the correction in the SEFLA prototype. At the cost of detection efficiency, the low energy tail is reduced, while the energy resolution and the P/C ratio are further improved. Possible improvements of the detectors are discussed.

  13. Calculations of transient fields in the Felix experiments at Argonne using null field integrated techniques

    NASA Astrophysics Data System (ADS)

    Han, H. C.; Davey, K. R.; Turner, L.

    1985-08-01

    The transient eddy current problem is characteristically computationally intensive. The motivation for this research was to realize an efficient, accurate, solution technique involving small matrices via an eigenvalue approach. Such a technique is indeed realized and tested using the null field integral technique. Using smart (i.e., efficient, global) basis functions to represent unknowns in terms of a minimum number of unknowns, homogeneous eigenvectors and eigenvalues are first determined. The general excitatory response is then represented in terms of these eigenvalues/eigenvectors. Excellent results are obtained for the Argonne Felix cylinder experiments using a 4 x 4 matrix. Extension to the 3-D problem (short cylinder) is set up in terms of an 8 x 8 matrix.

  14. Determination of the far-field from measured near-field data, theory and measuring technique of the near-field far-field transformation

    NASA Astrophysics Data System (ADS)

    Schrott, A.; Stein, V.

    1980-12-01

    Methods are described for measuring the far field of antennas at distances that are small compared to the wavelength of the field. The so called compact test range is explained and the principle of the near field far field transformation is described. The advantages and disadvantages of the planar, cylindrical, and spherical transformation techniques are discussed. Theory and measuring technique for the spherical method are treated extensively. An assessment of the influence of errors is given and the acceptable tolerances are presented. A proposal is given for the construction of a near field test range. Finally the performance of the method is demonstrated with the aid of some examples.

  15. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    SciTech Connect

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Remi; Fourquet, Alain

    2012-07-01

    We wanted to evaluate a simplified 'field-in-field' technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347-1472) for SFF vs. 779 mL (range, 349-1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0-63) for SFF and 1.9 mL (range, 0-57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  16. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy

    PubMed Central

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-01-01

    ABSTRACT Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population. PMID:26412879

  17. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy.

    PubMed

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-08-01

    Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population. PMID:26412879

  18. Mean field spin glasses treated with PDE techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  19. The virtual microphone technique in active sound field control systems

    NASA Astrophysics Data System (ADS)

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  20. A technique for automatically extracting useful field of view and central field of view images

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    Introduction: It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. Materials and Methods: This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. Results: The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. Conclusion: It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints. PMID:27095858

  1. Field results of antifouling techniques for optical instruments

    USGS Publications Warehouse

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  2. Remote field eddy current technique - Phantom exciter model calculations

    NASA Astrophysics Data System (ADS)

    Atherton, D. L.; Czura, W.

    1993-03-01

    High resolution results of finite element calculations for remote field eddy current 'phantom exciter' simulations of slit defect interactions using single through wall transit are presented. These show that fine circumferential slits cause almost no field perturbations in the case of nonferromagnetic tubes but big perturbations in ferromagnetic tubes where high magnetic H fields occur in the slits. Defect-induced magnetic field perturbations must therefore be considered in addition to eddy current perturbations when ferromagnetic materials are inspected, particularly in the case of fine slits orthogonal to the magnetic field direction. Additional details seen are the funnelling of energy into slits in ferromagnetic pipes and precursor disturbances of fields approaching defects. It is suggested that these are due to the reflection of the electromagnetic waves dictated by boundary conditions at the near-side defect boundary.

  3. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  4. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  5. Advanced measurements and techniques in high magnetic fields

    SciTech Connect

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

  6. Experimental Validation of Simulations Using Full-field Measurement Techniques

    SciTech Connect

    Hack, Erwin

    2010-05-28

    The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

  7. COMPARING FIELD PERFORMANCES OF DENUDER TECHNIQUES IN THE HIGH ARCTIC

    EPA Science Inventory

    A field evaluation between two annular denuder system configurations was conducted during the spring of 2003 in the marine Arctic (Ny-Ålesund, Svalbard). The IIA annular denuder system (ADS) employs a series of five single channel annular denuders, a cyclone and a filter pack to ...

  8. The Development of Teaching and Learning in Bright-Field Microscopy Technique

    ERIC Educational Resources Information Center

    Iskandar, Yulita Hanum P.; Mahmud, Nurul Ethika; Wahab, Wan Nor Amilah Wan Abdul; Jamil, Noor Izani Noor; Basir, Nurlida

    2013-01-01

    E-learning should be pedagogically-driven rather than technologically-driven. The objectives of this study are to develop an interactive learning system in bright-field microscopy technique in order to support students' achievement of their intended learning outcomes. An interactive learning system on bright-field microscopy technique was…

  9. Field inter-comparison of eleven atmospheric ammonia measurement techniques

    NASA Astrophysics Data System (ADS)

    von Bobrutzki, K.; Braban, C. F.; Famulari, D.; Jones, S. K.; Blackall, T.; Smith, T. E. L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M. R.; Percival, C. J.; Whitehead, J. D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Pogany, A.; Junninen, H.; Rantanen, S.; Sutton, M. A.; Nemitz, E.

    2010-01-01

    Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in Southern Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system; DUAL-QCLAS, and a compact system; c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux; Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) Spectrometer. The instruments were compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of -0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the main factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

  10. Field inter-comparison of eleven atmospheric ammonia measurement techniques

    NASA Astrophysics Data System (ADS)

    von Bobrutzki, K.; Braban, C. F.; Famulari, D.; Jones, S. K.; Blackall, T.; Smith, T. E. L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M. R.; Percival, C. J.; Whitehead, J. D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Junninen, H.; Pogany, A.; Rantanen, S.; Sutton, M. A.; Nemitz, E.

    2009-08-01

    Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in S. Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system, DUAL-QCLAS, and a compact system, c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux, Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy. Each instrument was compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of -0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the overruling factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

  11. Work function measurements using a field emission retarding potential technique.

    PubMed

    Hamanaka, M H M O; Dall'Agnol, F F; Pimentel, V L; Mammana, V P; Tatsch, P J; den Engelsen, D

    2016-03-01

    Herein we describe the measurement of the work function of a metal with advanced equipment based on the field emission retarding potential (FERP) method using a carbon nanotube (CNT) as cathode. The accuracy of the FERP method using a CNT emitter is described and a comparison between measurements of the work functions of aluminum, barium, calcium, gold, and platinum with published data will be presented. Our FERP equipment could be optimized with the aid of particle tracing simulations. These simulations led us to insert a magnetic collimator to improve the collection efficiency at the anode. PMID:27036828

  12. Work function measurements using a field emission retarding potential technique

    NASA Astrophysics Data System (ADS)

    Hamanaka, M. H. M. O.; Dall'Agnol, F. F.; Pimentel, V. L.; Mammana, V. P.; Tatsch, P. J.; den Engelsen, D.

    2016-03-01

    Herein we describe the measurement of the work function of a metal with advanced equipment based on the field emission retarding potential (FERP) method using a carbon nanotube (CNT) as cathode. The accuracy of the FERP method using a CNT emitter is described and a comparison between measurements of the work functions of aluminum, barium, calcium, gold, and platinum with published data will be presented. Our FERP equipment could be optimized with the aid of particle tracing simulations. These simulations led us to insert a magnetic collimator to improve the collection efficiency at the anode.

  13. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  14. Near-field imaging techniques for surface inspection

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Hahlweg, Cornelius; Pescoller, Lukas; Zhao, Wenjing

    2014-09-01

    Following the recent work on the characterization of flexo-printing plates a concept for inspection of glossy surfaces using a defined out of focus image of the surface under parallel illumination is presented, which in principle represents a near field distribution of the reflection function of the surface. The image turns out to be equivalent to a focussed shadowgraph as used for the investigation of processes in transparent media. Beside the plain 'reflected shadow imaging' several degrees of freedom can be exploited for configuration of the feature emphasis. The method is especially interesting for the quality control of printed matter. In the paper the definition of the system, the mechanism of the imaging process and its relation to the real image of the surface itself are considered. Further, questions of resolution, extractable features and extended applications are discussed.

  15. Rapid brain MRI acquisition techniques at ultra-high fields.

    PubMed

    Setsompop, Kawin; Feinberg, David A; Polimeni, Jonathan R

    2016-09-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26835884

  16. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science. PMID:27400510

  17. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields.

    PubMed

    Gressier, V

    2014-10-01

    Neutron calibration facilities and monitoring techniques have been developed since the middle of the 20th century to support research and nuclear power energy development. The technical areas needing reference neutron fields and related instruments were mainly cross section measurements, radiation protection, dosimetry and fission reactors, with energy ranging from a few millielectronvolts to about 20 MeV. The reference neutron fields and calibration techniques developed for these purposes will be presented in this paper. However, in recent years, emerging fields have brought new needs for calibration facilities and monitoring techniques. These new challenges for neutron metrology will be exposed with their technical difficulties. PMID:24344349

  18. Electroacoustical imaging technique for encoding incoherent radiance fields as Gabor elementary signals

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.

    1985-01-01

    A technique is presented for directly encoding incoherent radiance fields as Gabor elementary signals. This technique uses an electro-acoustic sensor to modulate the electronic charges induced by the incident radiance field with the electric fields generated by Gaussian modulated sinusoidal acoustic waves. The resultant signal carries the amplitude and phase information required for localizing spatial frequencies of the radiance field. These localized spatial frequency representations provide a link between the either geometric or Fourier transform representations currently used in computer vision and pattern recognition.

  19. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  20. Epidemiological studies on onchocerciasis by means of a new field technique*

    PubMed Central

    Scheiber, P.; Braun-Munzinger, R. A.; Southgate, B. A.; Agbo, K. N.

    1976-01-01

    A new membrane filter concentration technique for the detection and quantification of Onchocerca volvulus microfilariae in skin snips was compared for sensitivity and efficiency with a widely used “standard” technique. A field study was carried out in five villages in an onchocerciasis focus north-east of the town of Sokodé, Mô river valley, Togo. Use of the new technique resulted in a substantial rise in the observed prevalence and density of microfilariae. PMID:1086740

  1. Accessing Interior Vector Magnetic Field Components in Neutron EDM Experiments via Boundary Value Techniques

    NASA Astrophysics Data System (ADS)

    Plaster, Brad

    2012-10-01

    We propose a new technique for the determination and monitoring of the interior vector magnetic field components during the operation of neutron EDM experiments. If a suitable three-dimensional volume surrounding the fiducial volume of an experiment can be defined which contains no interior currents or magnetization, each of the interior vector field components will satisfy the Laplace Equation within this volume. Therefore, if the field components can be measured on the boundary, the interior vector field components can be determined uniquely via numerical solution of the Laplace Equation. We discuss the applicability of this technique to the determination of the magnetic field components and magnetic field gradients in the fiducial volumes of neutron EDM experiments.

  2. Field Techniques: Atlantic Barrier System. Field Guidebook. National Association of Geology Teachers Eastern Section Annual Field Conference (Lewes, Delaware, April 26-29, 1984).

    ERIC Educational Resources Information Center

    O'Connor, James V., Ed.; Tormey, Brian B., Ed.

    The Atlantic barrier system is used as a focal point in this manual of field exercises. A collection of activities and posed questions provide students with opportunities to develop skills basic to the development of sound field techniques. Investigations can be adapted and modified by teachers to specific subject areas and developmental needs.…

  3. Field analytical techniques for mercury in soils technology evaluation. Topical report, November 1994--March 1997

    SciTech Connect

    Solc, J.; Harju, J.A.; Grisanti, A.A.

    1998-02-01

    This report presents the evaluation of the four field analytical techniques for mercury detection in soils, namely (1) an anodic stripping voltametry technique (ASV) developed and tested by General Electric Corporation; (2) a static headspace analysis (SHSA) technique developed and tested by Dr. Ralph Turner of Oak Ridge National Laboratory; (3) the BiMelyze{reg_sign} Mercury Immunoassay (Bio) developed and tested by BioNebraska, Inc.; and (4) a transportable x-ray fluorescence (XRF) instrument/technique developed and tested by Spectrace, Inc.

  4. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  5. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration

  6. Use of amplitude vs offset seismic techniques to delineate subtle stratigraphic traps - Three field studies

    SciTech Connect

    Holton, J.E.; Lausten, C.D.; Blott, J.E. )

    1989-09-01

    Three stratigraphically trapped Wyoming fields which were previously held to be seismically invisible have been examined using amplitude vs. offset seismic techniques. This technology examines the seismic signature changes which take place as a function of source and receiver distance. Such signature changes are directly related to lithology and can be predicted in models and confirmed by the actual data. Two oil fields are located in the Powder River basin: Hartzog Draw and Coyote Creek. The third field, Dripping Rock, is a gas field in the Washakie basin of southwestern Wyoming. The fields produce from sands of the Shannon, Dakota, and Almond formations, respectively. All three fields lack significant velocity differences between the reservoir and trap facies. This results in an inability to delineate the sands using conventional seismic techniques. Amplitude vs. offset techniques, however, present easily identifiable anomalies which reliably delineate the extent of the reservoir sands in each of the cases. Amplitude vs. offset technology has been used successfully in numerous exploratory and development situations throughout the Rocky Mountains and other areas of the US and Canada. It has proven to be a very reliable technique to explore subtle stratigraphic plays which remain relatively immature in mature basins.

  7. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  8. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-03-01

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  9. Pulsed remote eddy current field array technique for nondestructive inspection of ferromagnetic tube

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Li, Xuechao

    2010-03-01

    One pick-up coil with a large inner diameter is usually used in pulsed remote field eddy current technique, which decreases the identification ability to defect. With the purpose of overcoming this problem, array pulsed remote field eddy current technique is proposed to enhance the precision in quantification of defect. The finite element method is used to optimise the structure of probe and analyse of the influence effect of response signal with the variation of the defect depths. The results of experimental work confirm that the array pulsed remote field technique has the advantages of high precision and sensitivity, which can be used as an effective method for quantification of defect in tube.

  10. A Technique for Verification of Isocenter Position in Tangential Field Breast Irradiation

    SciTech Connect

    Prabhakar, Ramachandran Pande, Manish; Harsh, Kumar; Julka, Pramod K.; Ganesh, Tharmar; Rath, Goura K.

    2009-04-01

    Treatment verification and reproducibility of the breast treatment portals play a very important role in breast radiotherapy. We propose a simple technique to verify the planned isocenter position during treatment using an electronic portal imaging device. Ten patients were recruited in this study and (CT) computed tomography-based planning was performed with a conventional tangential field technique. For verification purposes, in addition to the standard medial (F1) and lateral (F2) tangential fields, a field (F3) perpendicular to the medial field was used for verification of the treatment portals. Lead markers were placed along the central axis of the 2 defined fields (F1 and F3) and the separation between the markers was measured on the portal images and verified with the marker separation on the digitally reconstructed radiographs (DRRs). Any deviation will identify the shift in the planned isocenter position during treatment. The average deviation observed between the markers measured from the DRR and portal image was 1.6 and 2.1 mm, with a standard deviation of 0.4 and 0.9 mm for fields F1 and F3, respectively. The maximum deviation observed was 3.0 mm for field F3. This technique will be very useful in patient setup for tangential breast radiotherapy.

  11. The Austin Chalk--Drilling and completion techniques-Marcelina Creek Field study

    SciTech Connect

    Betz, C.A.

    1982-09-01

    Exxon Company, U.S.A. has spent considerable time and effort learning how to minimize formation damage in the lost returns prone and clay sensitive Austin Chalk formation. To date, Exxon has successfully drilled 24 Austin Chalk wells in the Marcelina Creek Field in Wilson County, Texas, utilizing a variety of drilling and completion techniques in an effort to determine the optimum method of drilling and completing Austin Chalk wells. This paper describes these different techniques and reviews actual results. Although Exxon has not concluded which drilling and completion technique yields optimum Austin Chalk wells in this field, this paper attempts to develop a correlation between well productivity and the type of drilling and completion technique used.

  12. Offshore Adriatic marginal gas fields: An approach to the technique of reservoir development

    SciTech Connect

    Montanari, A.; Bolelli, V.; Piccoli, G.

    1986-01-01

    The application of accelerated gas blowdown and wire line techniques in reservoir development and exploitation is presented for an off-shore Adriatic marginal gas field. The approach discussed in this paper utilizes selective completion, very low reserves/production ratio, sequential production, Through Tubing Bridge Plug and Through Tubing Perforation techniques to avoid the use of costly workover rigs and to allow economically convenient exploitation of a structure which otherwise would have been abandoned.

  13. Technique development for field inspection of cracking in seam welded ducts

    NASA Astrophysics Data System (ADS)

    Shell, Eric B.; Liljestrom, Greg C.; Benson, Craig; Shanahan, Stephen

    2014-02-01

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  14. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  15. Application of the TLD albedo technique for monitoring and interpretation of neutron stray radiation fields

    NASA Astrophysics Data System (ADS)

    Piesch, E.; Burgkhardt, B.

    1980-09-01

    A single sphere albedo technique with TLD 600/TLD 700 detectors has been applied in neutron monitoring to calibrate albedo dosimeters and to interpret neutron stray radiation fields in terms of neutron dose equivalent separated for the energy groups below 0.4 eV, 0.4-10 keV and 10 keV-10 MeV, and Eeff for fast neutrons. The paper describes the technique for field and personnel monitoring under the aspect of an on-line computer program for data recording and processing.

  16. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect

    Shell, Eric B.; Benson, Craig; Liljestrom, Greg C.; Shanahan, Stephen

    2014-02-18

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  17. SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients

    SciTech Connect

    Chi, P; Pinnix, C; Dabaja, B; Wang, C; Aristophanous, M; Tung, S

    2014-06-01

    Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patient midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique

  18. Hyphenated low-field NMR techniques: combining NMR with NIR, GPC/SEC and rheometry.

    PubMed

    Räntzsch, Volker; Wilhelm, Manfred; Guthausen, Gisela

    2016-06-01

    Hyphenated low-field NMR techniques are promising characterization methods for online process analytics and comprehensive offline studies of soft materials. By combining different analytical methods with low-field NMR, information on chemical and physical properties can be correlated with molecular dynamics and complementary chemical information. In this review, we present three hyphenated low-field NMR techniques: a combination of near-infrared spectroscopy and time-domain NMR (TD-NMR) relaxometry, online (1) H-NMR spectroscopy measured directly after size exclusion chromatographic (SEC, also known as GPC) separation and a combination of rheometry and TD-NMR relaxometry for highly viscous materials. Case studies are reviewed that underline the possibilities and challenges of the different hyphenated low-field NMR methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854997

  19. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  20. Computational Diagnostic Techniques for Electromagnetic Scattering: Analytical Imaging, Near Fields, and Surface Currents

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.; Talcott, Noel A., Jr.; Shaeffer, John

    1997-01-01

    This paper presents three techniques and the graphics implementations which can be used as diagnostic aides in the design and understanding of scattering structures: Imaging, near fields, and surface current displays. The imaging analysis is a new bistatic k space approach which has potential for much greater information than standard experimental approaches. The near field and current analysis are implementations of standard theory while the diagnostic graphics displays are implementations exploiting recent computer engineering work station graphics libraries.

  1. Near-Field Three-Dimensional Radar Imaging Techniques and Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2010-07-01

    Three dimensional radio frequency imaging techniques have been developed for a variety of near field applications including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and non-destructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range from less than 100 MHz to in excess of 350 GHz with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  2. On Electromagnetic Field-to-Wire Coupling Versus Conducted Injection Techniques

    NASA Technical Reports Server (NTRS)

    Javor, Ken

    1997-01-01

    Since the inception of conducted injection techniques to model radiated susceptibility/immunity coupling, considerable debate has ensued regarding its validity. This paper affirms the viewpoint of Szentkuti, (1989) builds upon test results of Adams (1992) and Trout (1996), and discusses Perini's theoretical observations (1993, 1995A, 1995B). Analytical and test results are presented which further demonstrate under what specific conditions conducted and radiated techniques can be correlated, and how the work of Adams, Trout, and Perini fits into the general problem of modeling field-to-wire coupling. At frequencies where transmission line and antenna effects are minimal, conducted immunity techniques provide excellent correlation with analytical and empirical predictions of radiated coupling. From a practical standpoint, conducted injection techniques provide realistic coupling at frequencies and amplitude levels that would be uneconomical to achieve with traditional radiated techniques.

  3. Development of an expanded-field irradiation technique using a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Yokota, Kenji; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Sawada, Akira; Kokubo, Masaki

    2014-10-15

    Purpose: The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Methods: Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left–right (LR) and superior–inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacent regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured

  4. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    NASA Astrophysics Data System (ADS)

    Gómez, A. M.; Torres, D. A.

    2016-07-01

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  5. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  6. Program Evaluation and Review Technique (PERT): A Planning and Control Tool for Occupational Field Studies.

    ERIC Educational Resources Information Center

    Hemphill, John M., Jr.; And Others

    Program Evaluation and Review Technique (PERT) is used in the U.S. Marine Corps task analysis program for occupational field studies. Scheduling sequential tasks, estimating time requirements, determining staffing needs, and locating checkpoints for control all can be accomplished using PERT. Examples of operational aspects of PERT, PERT…

  7. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  8. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    ERIC Educational Resources Information Center

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  9. Application of the wide-field shadowgraph technique to rotor wake visualization

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.; Light, Jeffrey S.

    1989-01-01

    The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.

  10. Integrated velocity field from ground and satellite geodetic techniques: application to Arenal volcano

    NASA Astrophysics Data System (ADS)

    Muller, Cyril; del Potro, Rodrigo; Biggs, Juliet; Gottsmann, Joachim; Ebmeier, Susanna K.; Guillaume, Sébastien; Cattin, Paul-Henri; Van der Laat, Rodolfo

    2015-02-01

    Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.

  11. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves

    NASA Astrophysics Data System (ADS)

    Jess, David B.; Reznikova, Veronika E.; Ryans, Robert S. I.; Christian, Damian J.; Keys, Peter H.; Mathioudakis, Mihalis; Mackay, Duncan H.; Krishna Prasad, S.; Banerjee, Dipankar; Grant, Samuel D. T.; Yau, Sean; Diamond, Conor

    2016-02-01

    Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G (refs ,,,). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

  12. Unusual well control techniques pay off. [Well drilling techniques in the Elgin gas condensate field, North Sea

    SciTech Connect

    Idelovici, J.L.

    1993-07-01

    Well control and completion operations were seriously complicated by an unusual pressure phenomena encountered while drilling an appraisal well through Jurassic sandstones in a high-pressure, high-temperature (HPHT), gas and condensate field located in the United Kingdom continental shelf. The HPHT sandstone reservoir is located in the Upper Jurassic Franklin formation. Unorthodox well-control techniques were used because it was determined that the abnormally high pressure was generated by a mechanical reaction of the rock under the effect of heavy mud and equivalent circulating density, rather than by entry into the wellbore of formation fluids. This paper reviews the complex drilling fluid control procedures which had to be utilized to maintain an open bore hole during drilling.

  13. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more

  14. A Rapid, Fluorescence-Based Field Screening Technique for Organic Species in Soil and Water Matrices.

    PubMed

    Russell, Amber L; Martin, David P; Cuddy, Michael F; Bednar, Anthony J

    2016-06-01

    Real-time detection of hydrocarbon contaminants in the environment presents analytical challenges because traditional laboratory-based techniques are cumbersome and not readily field portable. In the current work, a method for rapid and semi-quantitative detection of organic contaminants, primarily crude oil, in natural water and soil matrices has been developed. Detection limits in the parts per million and parts per billion were accomplished when using visual and digital detection methods, respectively. The extraction technique was modified from standard methodologies used for hydrocarbon analysis and provides a straight-forward separation technique that can remove interference from complex natural constituents. For water samples this method is semi-quantitative, with recoveries ranging from 70 % to 130 %, while measurements of soil samples are more qualitative due to lower extraction efficiencies related to the limitations of field-deployable procedures. PMID:26988223

  15. [African silhouettes and field photography. M. Griaule's contribution to the Maussian "discovery" of body techniques].

    PubMed

    Despoix, Philippe

    2010-01-01

    This essay focuses on the interaction between the new reproduction media and corresponding reconfiguration of research fields in anthropology using the case of the "techniques of the body" - a concept developed by Marcel Mauss (1872-1950). For Mauss, the initiator of this discipline in France, body skills constituted the most important anthropological entity resulting from the confrontation of technical images and his interest in walking techniques. Three scenarios are especially significant for Mauss's formulation of "body techniques" as a genuine concept: the front during the World War I, a New Yorke hospital in 1926, and an ethnographical field study conducted in Africa during the ate 1920s. Both, the photographic media as well as the Abyssinian expedition of his student Marcel Griaule, whose research publication Mauss co-authored (Silhouettes et graffiti abyssins) n 1933, take centre stage here. PMID:21249525

  16. Investigation of 2D-Trace Gas Field Reconstruction Techniques From Tomographic AMAX-DOAS Measurements

    NASA Astrophysics Data System (ADS)

    Laepple, T.; Heue, K.; Friedeburg, C. V.; Wang, P.; Knab, V.; Pundt, I.

    2002-12-01

    Tomographic-Differential-Optical-Absorption-Spectroscopy (Tom-DOAS) is a new application of the DOAS method designed to measure 2-3-dimensional concentration fields of different trace gases (e.g. NO2, HCHO, Ozone) in the troposphere. Numerical reconstruction techniques are used to obtain spatially resolved data from the slant column densities provided by DOAS instruments. We discuss the detection of emission plumes by AMAX (Airborne Multi AXis) DOAS Systems which measure sunlight by telescopes pointing in different directions. 2D distributions are reconstructed from slant columns by using airmass factor matrices and inversion techniques. We discuss possibilities and limitations of this technique gained with the use of simulated test fields. Therefore the effect of the parameter choice (e.g. flight track, algorithm changes) and measurement errors is investigated. Further, first results from the Partenavia aircraft measurements over Milano (Italy) during the European FORMAT campaign will be presented.

  17. Second Harmonic Technique for Thermal Conductivity Measurement in a Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Betts, Jonathan B.; Migliori, Albert

    2009-03-01

    We describe a second-harmonic technique to be used eventually to probe the thermal conductivity of LSCO with superconductivity suppressed by high magnetic fields. The technique is suitable for the high-noise environment of pulsed magnets. Unlike the 3φ technique, a heater and a thermometer are mounted separately. Therefore, the 2φ signal is the dominant signal in the thermometer output. The frequencies are chosen so that the thermal penetration depth is smaller than the sample thickness. The thermometer response time and thermal impedance associated with material interfaces are carefully tested and compared to calculation. The calculations are based on exact solutions of the full bulk heat transport equations and produce results different from the lumped-constant approximations often used in ac calorimetry. Work performed under the auspices of the National High Magnetic Field Laboratory.

  18. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOEpatents

    Volegov, Petr L.; Matlashov, Andrei N.; Mosher, John C.; Espy, Michelle A.; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  19. Two-field versus three-field irradiation technique in the postoperative treatment of head-and-neck cancer

    SciTech Connect

    Yom, Sue S.; Morrison, William H.; Ang, K. Kian; Rosenthal, David I.; Perkins, George H.; Wong, Pei-Fong M.S.; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2006-10-01

    Purpose: We have increasingly used a two-field noncoplanar 'caudal tilt' technique (CTT) for irradiating postlaryngectomy and pharyngectomy patients to avoid matchline problems that can be encountered with the classic three-field head-and-neck radiation technique (3FT). This report compares the clinical outcomes of patients treated with postoperative radiation (PORT) using either 3FT or CTT. Methods and Materials: We conducted a retrospective review of the medical records of all patients with laryngeal or hypopharyngeal cancers consecutively treated with PORT between 1997 and 2002. Three-dimensional dosimetric planning was carried out for all patients. Results: Of 91 patients, 39 were treated with 3FT and 52 with CTT. The median follow-up was 34 months. Estimated rates of 2-year locoregional control, disease-free survival, and overall survival for patients treated with 3FT and CTT were, respectively, 92% and 85% (p = 0.241), 62% and 55% (p = 0.497), and 77% and 72% (p = 0.616). There were no significant differences in the incidence of acute or late side effects in the two groups. Conclusions: 'Caudal tilt' technique is often used as an alternative to 3FT for postoperative radiotherapy in cases of greater medical and technical complexity. Despite its use in more challenging cases, CTT provides similar long-term clinical outcomes compared with standard 3FT, when computerized three-dimensional dosimetry is used to assure adequate dosimetry throughout the treated volume.

  20. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  1. Three-dimensional near-field MIMO array imaging using range migration techniques.

    PubMed

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques. PMID:22345541

  2. A technique for simulating visual field losses in virtual environments to study human navigation.

    PubMed

    Fortenbaugh, Francesca C; Hicks, John C; Hao, Lei; Turano, Kathleen A

    2007-08-01

    The following paper describes a new technique for simulating peripheral field losses in virtual environments to study the roles of the central and peripheral visual fields during navigation. Based on Geisler and Perry's (2002) gaze-contingent multiresolution display concept, the technique extends their methodology to work with three-dimensional images that are both transformed and rendered in real time by a computer graphics system. In order to assess the usefulness of this method for studying visual field losses, an experiment was run in which seven participants were required to walk to a target tree in a virtual forest as quickly and efficiently as possible while artificial head and eye-based delays were systematically introduced. Bilinear fits were applied to the mean trial times in order to assess at what delay lengths breaks in performance could be observed. Results suggest that breaks occur beyond the current delays inherent in the system. Increases in trial times across all delays tested were also observed when simulated peripheral field losses were applied compared to full FOV conditions. Possible applications and limitations of the system are discussed. The source code needed to program visual field losses can be found at lions.med.jhu.edu/archive/turanolab/Simulated_Visual_Field_Loss_Code.html. PMID:17958167

  3. Local determination of ionospheric electric fields from coherent scatter radar data using the SECS technique

    NASA Astrophysics Data System (ADS)

    Amm, O.; Grocott, A.; Lester, M.; Yeoman, T.

    2009-04-01

    Due to the variable spatio-temporal availability of backscatter from ionospheric coherent scatter radars like SuperDARN or STARE, merging the line-of-sight data of ionospheric plasma velocities that are measured by the radars to spatial maps of such velocities or of electric fields is a non-trivial task. Often this task is solved in a way that statistical a priori information about the global ionospheric electric potential is used in addition to the actual measured data, in order to compensate for lack of measurements in certain regions. However, the disadvantage of such a solution is that the influence of the a priori model may get strong or even dominating the results, in which cases it is hard to determine how well the resulting electric field represents the actual situation for a given point of time and space. Spherical elementary currents systems (SECS) are basis functions that can describe any continuously differentiable vector field on a sphere. Originally, they have successfully been applied to model ionospheric currents based on ground and spacecraft magnetic field data, which explains the historical notion of "current systems" in the name. We present a new technique based on SECS that allows to model distributions of ionospheric plasma flows or electric fields based on coherent scatter radar data of line-of-sight plasma flows without any additional statistical a priori assumptions, on a local region within which the backscatter availability was moderate to good. This region can have any shape and does not need to have boundaries along constant latitude or longitude. Using a synthetic electric field model and variable backscatter availability levels to create input data sets, we test how well the technique is able to reconstruct the original electric field, as a function of available backscatter. Finally, the application of the technique is demonstrated for real data cases, measured by the CUTLASS radars over northern Europe.

  4. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field

    PubMed Central

    Herler, Jürgen; Dirnwöber, Markus

    2011-01-01

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements. PMID:22049248

  5. A New Technique for the Photospheric Driving of Non-potential Solar Coronal Magnetic Field Simulations

    NASA Astrophysics Data System (ADS)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.; Henney, Carl J.; Arge, C. Nick

    2016-05-01

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surface flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.

  6. Determination of internal friction using ultrasonic diffuse field and resonance techniques

    NASA Astrophysics Data System (ADS)

    Panetta, P. D.; Johnson, Ward

    2000-05-01

    Attempts to nondestructively determine mechanical properties of metals and alloys have traditionally focused on empirical correlations or relied on models using static microstructural parameters, such as grain size. Since mechanical properties are dynamic, a more direct approach is to use measurements of defect dynamics coupled with quantitative models to predict mechanical properties. One such measurement is the ultrasonic internal friction as determined by resonance techniques. However, such techniques have limited applicability for testing structural materials, because the techniques require specimens to have free boundaries and, generally, regular geometry. In recent years, diffuse field ultrasound has been used to measure internal friction and shows promise for practical nondestructive materials characterization of irregularly shaped specimens. In this paper, the connection between the resonance and diffuse field techniques will be explored. In addition, measurements performed using these techniques will be compared to traditional pulse echo measurements of attenuation and back scattered grain noise to study the relative contributions of internal friction and scattering in copper and aluminum alloys.—This research was conducted while P. D. Panetta held a National Research Council Research Associateship.

  7. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  8. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  9. Measurements of solar magnetic fields by Fourier transform techniques. II - Saturated and blended lines

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1976-01-01

    Fourier techniques have been exhaustively calibrated using Unno's (1956) results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic-field strengths and inclination angles can be measured very accurately from noisy saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray-light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of the error analysis are presented graphically.

  10. Visualization of a smoke flow field by using a lidar and DIC technique

    NASA Astrophysics Data System (ADS)

    Park, Nak Gyu; Baik, Sung Hoon; Park, Seung Kyu; Kim, Dong Lyul

    2015-11-01

    A visualization technique for the velocity field of plant smoke is described. We intend to present a long-range measurement method for a velocity field calculation from a series of images containing an illuminated planar layer of fluid. The main system is configured with two technical parts. One is a lidar system, which is for measuring the distance from an observer to the plant smoke, and the other is a DIC (digital image correlation) system. We configured the lidar system by using a Nd-YAG pulsed laser (10 Hz, injection seeded), a telescope (Schmidt Cassegrain type, diameter: 30 cm) and a PMT (photomultiplier tube). The DIC system is configured to track smoke images by using the developed fast correlation algorithm of the DIC. We acquired the velocity fields of smoke by using the calculated distance and the DIC algorithm. In this paper, we propose a new method for measuring the smoke velocity and visualizing the flow field.

  11. Research and implementation of visualization techniques for 3D explosion fields

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen

    2015-12-01

    The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.

  12. Investigation of the pressure and velocity fields in a turbulent separated flow using the LES technique

    NASA Astrophysics Data System (ADS)

    Arnal, M.; Friedrich, R.

    1991-01-01

    The large eddy simulation (LES) technique is utilized to investigate the turbulent separating and reattaching flow over a rearward-facing step. Simulations on a series of successively refined grids were performed (maximum resolution: 320 x 64 x 48). Statistical results are compared with experimental data and show good agreement. An examination of the simulated flow fields reveals the instantaneous structure of the separating shear layer, the reattachment zone and the recirculation region. Large departures from the mean in both the velocity and pressure fields are found to occur in all three regions. The shape and size of structures in the velocity and pressure fields varies with the proximity of solid walls and the region of the flow domain. Awareness of the instantaneous flow field structure is shown to be instrumental to having a complete understanding of the unsteady turbulent flow.

  13. The sliding stop: a technique of fielding in cricket with a potential for serious knee injury.

    PubMed

    Von Hagen, K; Roach, R; Summers, B

    2000-10-01

    The sliding stop method of fielding in cricket is gaining popularity in schools and club cricket through its frequent exposure on television. The case history is reported of a cricketer who suffered a torn medial meniscus in his knee, a rare cricketing injury, while performing this technique incorrectly in a club game. The correct method of performing the technique is described in coaching manuals but is not commonly instructed at club or school level. The sliding stop should be discouraged in school and for club cricketers unless appropriately coached. PMID:11049149

  14. 2D Electric field imagery in 4H-SiC power diodes using OBIC technique

    NASA Astrophysics Data System (ADS)

    Hamad, Hassan; Bevilacqua, Pascal; Planson, Dominique; Raynaud, Christophe; Tournier, Dominique; Vergne, Bertrand; Lazar, Mihai; Brosselard, Pierre

    2015-11-01

    Wide band gap semiconductors are more and more used, especially to design high voltage devices. However, some devices show lower breakdown voltages than those predicted in theory. These early breakdown are in general due to imperfections in the peripheral protections of the active junction. The aim of these protections is to reduce electric field peaks at the periphery of the junction. Thus, it is important to study the electric field distribution on the device periphery to detect any protection weakness. This paper presents a 2D electric field imagery using OBIC (optical beam induced current) technique. 2D cartographies are realized on JTE (junction termination extension) protected diodes in order to display electric field on diode peripheries. Other measurements are also performed on circular avalanche diodes protected with a MESA etching and provided with optical window. In both cases, OBIC techniques is demonstrated to be an efficient method to obtain electric field distribution within the device and to locate defects. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  15. A technique for measuring magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    A method is developed and tested by which magnetic-field strengths and area filling-factors of magnetic regions on late-type stars may be inferred from high-resolution, absorption-line profiles that have been broadened by the Zeeman effect. The technique involves fitting such profiles with a triplet of components, the shape of which is derived from profiles of lines of low Zeeman sensitivity. Tests of the systematic and random errors indicate that such magnetic flux measurements have an uncertainty of 20% for stars with field strengths of 2000 gauss if at least 10% of the stellar surface contains magnetic regions.

  16. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  17. A three-field monoisocentric inverse breast treatment planning technique without half-beam blocking.

    PubMed

    Zhang, Tiezhi; Dilworth, Joshua T; Marina, Ovidiu; Chen, Peter; Benedetti, Lisa; Liu, Qiang

    2015-01-01

    The purpose of this study was to introduce a three-field monoisocentric inverse treatment planning method without half-beam blocks for breast cancer radiation treatments. Three-field monoisocentric breast treatment planning with half-beam blocks limits the tangential field length to 20 cm. A dual-isocenter approach accommodates patients with larger breasts, but prolongs treatment time and may introduce dose uncertainty at the matching plane due to daily setup variations. We developed a novel monoisocentric, three-field treatment planning method without half-beam blocking. The new beam-matching method utilizes the full field size with a single isocenter. Furthermore, an open/IMRT hybrid inverse optimization method was employed to improve dose uniformity and coverage. Geometric beam matching was achieved by rotating the couch, collimator, and gantry together. Formulae for three-field geometric matching were derived and implemented in Pinnacle scripts. This monoisocentric technique can be used for patients with larger breast size. The new method has no constraints on the length of tangential fields. Compared with the dual-isocenter method, it can significantly reduce patient setup time anduncertainties. PMID:26699305

  18. In-field assessment of chemical high explosives using immunoassay techniques

    SciTech Connect

    Hardy, D.J.; Crossley, D.B.; O`Connell, M.S.

    1995-12-31

    Base realignment and weapons complex reconfiguration have prompted closure of former military related properties. As a result, chemical high explosives in environmental media are encountered with greater frequency during accelerated site characterization activities. The DOE`s Pantex nuclear weapons production/disassembly facility in Amarillo, Texas has observed nitroaromatic and nitramine compounds in soil and groundwater. Recognizing that phases characterization programs are time consuming and expensive, Pantex has employed compound specific immunoassay screening techniques to semi-quantitatively assess high explosive contamination in environmental media. As a result of using immunoassay techniques at over 500 sample locations, Pantex has achieved significant benefits corollary to reduced analytical expenses and timeframes, waste generation and management expenditures, field mobilization, and site characterization timeframes. Pantex Plant concludes that the use of immunoassay field screening of samples for chemical high explosives results in accelerated site characterization at a decreased expense while maintaining quality protocols and worker protection.

  19. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Semenov, A.; Hübers, H.-W.; Hoehl, A.; Ries, M.; Wüstefeld, G.; Ulm, G.; Ilin, K.; Thoma, P.; Siegel, M.

    2016-03-01

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  20. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  1. Application of the Coupled Finite Element-Combined Field Integral Equation Technique (FEICFIE) to the Radiation Problem

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.; Cwik, T.; Zuffada, C.

    1994-01-01

    A coupled finite element-combined field integral equation technique was originally developed for solving scattering problems involving inhomogeneous objects of arbitrary shape and large dimensions in wavelength.

  2. Diagnostic techniques for measurement of aerodynamic noise in free field and reverberant environment of wind tunnels

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.; Mawardi, O. K.

    1973-01-01

    Techniques for studying aerodynamic noise generating mechanisms without disturbing the flow in a free field, and in the reverberation environment of the ARC wind tunnel were investigated along with the design and testing of an acoustic antenna with an electronic steering control. The acoustic characteristics of turbojet as a noise source, detection of direct sound from a source in a reverberant background, optical diagnostic methods, and the design characteristics of a high directivity acoustic antenna. Recommendations for further studies are included.

  3. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect

    Smith, R. E.; Parkinson, w; Miller, N.

    2002-01-01

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  4. New dimension in the schlieren technique: flow field analysis using color.

    PubMed

    Maddox, A R; Binder, R C

    1971-03-01

    The various techniques for introducing color into a schlieren system were explored, and all of them were found to have drawbacks such that the added dimension of color in a schlieren has never been utilized for extensive quantitative measurements. An entirely new technique using a diffraction grating to produce the color has been introduced as a modification of the conventional schlieren system. It provides solutions to the problems of sensitivity, range of measurement deflection and undesirable effects of diffraction which have limited the usefulness of color systems in the past. Methods for analyzing a conventional schlieren have been modified for the analysis of a color schlieren result. Surface pressures and flow field analysis for some simple two-dimensional airfoil shapes have been obtained by these color techniques developed here, and the results compare very well with theoretical pressure calculations. PMID:20094475

  5. Full-field detection of surface defects using real-time holography and optical correlation techniques

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Duncan, Bradley D.

    1999-02-01

    Innovative optical NDE techniques are being developed for the full-field detection and evaluation of surface defects and defect precursors in titanium and aluminum based alloys. The techniques are based on frequency-translated holography and optical correlation principles, and use bacteriohodopsin (bR) holographic films and temporal correlation techniques for real-time storage and retrieval of Surface Acoustic Waves (SAW) features and embedded surface defect information. The SAW waves induced on the material surface being studied are made to interfere with optical light waves, and fringes are produced that are a function of optical Doppler shifts induced by phonon-photon interaction on the surface of the materials. Visualization of these SAW patterns allow for NDE characterization of features on and near the surface of the materials, including defect and defect precursor sites. Preliminary results are provided for real-time bR holographic recordings of acoustic patterns induced on Al2024-T3 material surfaces.

  6. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  7. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  8. From superresolution to nanodetection: overview of far field optical nanoscopy techniques for nanostructures

    NASA Astrophysics Data System (ADS)

    Montgomery, P. C.; Leong-Hoi, A.; Anstotz, F.; Mitev, D.; Pramatarova, L.; Haeberlé, O.

    2016-02-01

    Far field optical nanoscopy has been brought to the forefront with the 2014 Nobel Prize for chemistry in fluorescent nanoscopy for revealing intra-cellular details of tens of nm. In this review, we present an improved classification scheme that summarizes the many optical nanoscopy techniques that exist. We place particular emphasis on unlabelledsuperresolution techniques that provide real improved resolving power and unlabellednanodetection techniques for characterizing unresolved nanostructures. Superresolution is illustrated with sub-100 nm imaging of diatoms with tomographic diffractive microscopyand adenoviruseswith submerged microsphere optical nanoscopy. Three sub-categories of nanodetectionare then presented. Contrast enhancement is illustrated with surface enhanced ellipsometric contrast microscopy for the study of bacterial motility and strobed phase contrast microscopy for measuring the mechanical properties of vesicle membranes. High sensitivity phase measurement using interference microscopy demonstrates how nanostructured surfaces and structures can be characterized in biomaterials, laser textured stainless steel and defects within thin polymer films. Finally, deconvolution is illustrated with the use of through-focus scanning optical microscopy in critical dimension measurement and characterization of 40 nm linewidths in microelectronic devices. In this way we show how new far field optical nanoscopy techniques are being developed for unlabelled characterization of nano and biomaterials.

  9. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    PubMed

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  10. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small

  11. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  12. Initial field studies in Upper Volta with dichlorvos residual fumigant as a malaria eradication technique*

    PubMed Central

    Quarterman, K. D.; Lotte, M.; Schoof, H. F.

    1963-01-01

    Laboratory and simulated field tests have shown that dichlorvos, a volatile insecticide, can be prepared in a solid formulation which releases the dichlorvos vapour over a period of several months at a relatively uniform rate high enough to kill adult anopheline mosquitos but low enough to have no effect on man and the higher animals. A field experiment is in progress in Wakara, Upper Volta, to evaluate the residual fumigant technique under practical field conditions. Chemical, biological, toxicological and epidemiological data obtained during the first nine months indicate that the method produced dichlorvos vapours in a concentration effective against mosquitos for 3 to 5 months per treatment, that the occupants of the treated dwellings showed no detectable effects from the insecticidal vapours, and that the malaria rates were reduced by 38%-55% among the population of the treated village as compared with a nearby untreated control village. ImagesFIG. 1FIG. 2 PMID:14056276

  13. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    PubMed Central

    Urbanski, Marika; Coubard, Olivier A.; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques. PMID:25324739

  14. Singular Stokes-polarimetry as new technique for metrology and inspection of polarized speckle fields

    NASA Astrophysics Data System (ADS)

    Soskin, Marat S.; Denisenko, Vladimir G.; Egorov, Roman I.

    2004-08-01

    Polarimetry is effective technique for polarized light fields characterization. It was shown recently that most full "finger-print" of light fields with arbitrary complexity is network of polarization singularities: C points with circular polarization and L lines with variable azimuth. The new singular Stokes-polarimetry was elaborated for such measurements. It allows define azimuth, eccentricity and handedness of elliptical vibrations in each pixel of receiving CCD camera in the range of mega-pixels. It is based on precise measurement of full set of Stokes parameters by the help of high quality analyzers and quarter-wave plates with λ/500 preciseness and 4" adjustment. The matrices of obtained data are processed in PC by special programs to find positions of polarization singularities and other needed topological features. The developed SSP technique was proved successfully by measurements of topology of polarized speckle-fields produced by multimode "photonic-crystal" fibers, double side rubbed polymer films, biomedical samples. Each singularity is localized with preciseness up to +/- 1 pixel in comparison with 500 pixels dimensions of typical speckle. It was confirmed that network of topological features appeared in polarized light field after its interaction with specimen under inspection is exact individual "passport" for its characterization. Therefore, SSP can be used for smart materials characterization. The presented data show that SSP technique is promising for local analysis of properties and defects of thin films, liquid crystal cells, optical elements, biological samples, etc. It is able discover heterogeneities and defects, which define essentially merits of specimens under inspection and can"t be checked by usual polarimetry methods. The detected extra high sensitivity of polarization singularities position and network to any changes of samples position and deformation opens quite new possibilities for sensing of deformations and displacement of

  15. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    SciTech Connect

    Crawfis, R.A.

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  16. Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Field Manual of Techniques in Invertebrate Pathology is designed to provide background and instruction on a broad spectrum of techniques and their use in the evaluation of entomopathogens in the field. The intended audience includes researchers, graduate students, practitioners of integrated pes...

  17. Computerized tomography technique for reconstruction of obstructed temperature field in infrared thermography

    NASA Astrophysics Data System (ADS)

    Sham, F. C.; Huang, Y. H.; Liu, L.; Chen, Y. S.; Hung, Y. Y.; Lo, T. Y.

    2010-01-01

    Infrared thermography is a rapid, non-invasive and full-field technique for non-destructive testing and evaluation (NDT&E). With all the achievements on IR instrumentation and image processing techniques attained, it has been extended far beyond simple hot-spot detection and becomes one of the most promising NDT&E techniques in the last decades. It has achieved increasing acceptance in different sectors include medical imaging, manufacturing component fault detection and buildings diagnostic. However, one limitation of IR thermography is that the testing results are greatly affected by object surface emissivity. Surface with various emissivities may lead to difficult discrimination between area of defect and area with different emissivity. Therefore, many studies have been carried out on eliminating emissivity, for example, the time derivative approach, lock-in processing and differential contrast measurements. In these methods, sequence of themo-data/images are recorded and being processed in order to eliminate differences of emissivity. Another problem of IR thermography is that any obstruction may limit stimulations and imaging which leads to the observation of unclear defect image. To solve this problem, this paper proposes an algorithm based on the principle of computerized tomography which permits the reconstruction of unavailable/partially available temperature distribution of the affected area using the measured surrounding temperature field. In the process, a set of imaginary rays are projected from many different directions across the area. For each ray, integration of the temperature derivatives along the ray is equals to the temperature difference between the boundary points intercepted by the ray. Therefore, a set of linear equations can be established by considering the multiple rays. Each equation expresses the unknown temperature derivatives in the affected area in terms of the measured boundary temperature data. Solution of the set of simultaneous

  18. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces

    PubMed Central

    O'Dell, Dakota; Adam, Ian S.; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-01-01

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically “pushing” a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques. PMID:26855473

  19. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  20. High Pressure Techniques for Low Temperature Studies in DC and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tozer, S. W.

    2002-07-01

    Pressure can be used to expand the parameter space available in almost any experiment and allows for the continuous tuning of the electrical and orbital properties of a material. When combined with low temperatures and high magnetic fields, it becomes a powerful tool for the exploration of the band structure and defect levels in semiconductors, exotic transport mechanisms in molecular conductors, and the coexistence of magnetism and superconductivity. We have developed a variety of miniature pressure cells to allow the user to take full advantage of these opportunities. Metallic diamond anvil cells as small as 6 mm in diameter and 8 mm in height allow the sample to be rotated in field at millikelvin temperatures. Miniature plastic DACs and sapphire ball cells, rotators, and specialized He-4 and He-3 systems have also been developed to provide similar experimental capabilities in pulsed magnetic fields. Methods and designs to generate hydrostatic pressure and techniques to perform optical and electrical measurements in DC and pulsed fields will be presented. We would like to acknowledge the technical assistance of Richard Desilets, Howard Kolb, John Farrell, and Mike Pacheco. A portion of this work was performed at the National High Magnetic Field Laboratory, which is sponsored by NSF Cooperative Agreement No. DMR-9527035 and by the State of Florida.

  1. Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2002-02-01

    Optical spectroscopy provides powerful means for studying geophysical gas emissions. An extensive research program in this field has been performed by Swedish researchers in collaboration with European partners during the last 10 years, and a review of the activities and results is given. The techniques suitable for geophysical gas monitoring include the differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), diode laser spectroscopy and gas correlation imaging. Field experiments regarding atomic mercury emissions from geothermal fields were performed with a mobile lidar laboratory in Iceland and in Italy. The atomic mercury concentrations and fluxes from mercury mines were also determined at Abbadia S. Salvatore (Italy) and Almadén (Spain). The volcanic emissions of sulfur dioxide were studied in four ship-borne campaigns concerning the three Italian volcanoes Mt. Etna, Stromboli and Vulcano. Comparisons between the results from the DIAL and passive techniques (DOAS and correlation spectroscopy) were performed. Infrared spectroscopy for geophysical applications is now being developed and will also be discussed.

  2. Field panel method with grid stretching technique for solving transonic potential flow around arbitrary airfoils

    NASA Astrophysics Data System (ADS)

    Zhang, H.-L.; Röttgermann, A.; Wagner, S.

    1995-01-01

    The Field Panel Method (FPM) with grid stretching technique, presented in this paper, was developed for solving transonic full potential flow around arbitrary airfoils at incidence. In this method, the total potential values are represented by boundary integrals together with a volume integral. The volume integral domain includes both inside and finite outside of the configuration and can be discretisized in a Cartesian grid which may penetrate into the configuration surface. Thus, we avoid the very difficult task of generating body-fitted grids around complex configurations. The boundary potential values are obtained by implementing a standard panel method (symmetrical singularity model), whereas the field potential values are estimated by solving the full potential equation (using AF3 scheme in a Cartesian grid) with approximate inner and proper outer boundary conditions. Furthermore, the grid stretching technique has been utilized that allows to capture the shock waves in a much better quality. It is also shown that both field grid and panel distribution have to be stretched at the same time. Results for transonic potential flows about NACA0012 and RAE2822 airfoils at different Mach numbers and incidences are obtained and compared with other numerical solutions. Great improvement in shock wave quality was achieved by using the present method.

  3. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  4. Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.

    2014-01-01

    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.

  5. 5D parameter estimation of near-field sources using hybrid evolutionary computational techniques.

    PubMed

    Zaman, Fawad; Qureshi, Ijaz Mansoor

    2014-01-01

    Hybrid evolutionary computational technique is developed to jointly estimate the amplitude, frequency, range, and 2D direction of arrival (elevation and azimuth angles) of near-field sources impinging on centrosymmetric cross array. Specifically, genetic algorithm is used as a global optimizer, whereas pattern search and interior point algorithms are employed as rapid local search optimizers. For this, a new multiobjective fitness function is constructed, which is the combination of mean square error and correlation between the normalized desired and estimated vectors. The performance of the proposed hybrid scheme is compared not only with the individual responses of genetic algorithm, interior point algorithm, and pattern search, but also with the existing traditional techniques. The proposed schemes produced fairly good results in terms of estimation accuracy, convergence rate, and robustness against noise. A large number of Monte-Carlo simulations are carried out to test out the validity and reliability of each scheme. PMID:24701156

  6. A multi-software modeling technique for field distribution propagation through an optical vertical interconnect assembly

    NASA Astrophysics Data System (ADS)

    Howard, Matthew D.

    2011-12-01

    Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.

  7. Detection and Isolation Techniques for Methanogens from Microbial Mats (in the El Tatio Geyser Field, Chile)

    NASA Astrophysics Data System (ADS)

    Pearson, E. Z.; Franks, M. A.; Bennett, P.

    2010-12-01

    Isolating methanogenic archea from an extreme environment such as El Tatio (high altitude, arid climate) gives insight to the methanogenic taxas able to adapt and grow under extreme conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85° C) with high levels of arsenic and low DIC levels. Despite these challenges, many of El Tatio’s hundred plus hydrothermal features host extensive microbial mat communities, many showing evidence of methanogenesis. When trying to isolate methanogens unique to this area, various approaches and techniques were used. To detect the presence of methanogens in samples taken from the field, dissolved methane concentrations were determined via gas chromatography (GC) analysis. Samples were then selected for culturing and most probable number (MPN) enumeration, where growth was assessed using both methane production and observations of fluorescence under UV light. PCR was used to see if the archeal DNA was apparent directly from the field, and shotgun cloning was done to determine phylogenetic affiliation. Several culturing techniques were carried out in an attempt to isolate methanogens from samples that showed evidence of methanogenesis. The slant culturing method was used because of the increased surface area for colonization combined with the relative ease of keeping anaerobic. After a few weeks, when colonies were apparent, some were aseptically selected and inoculated to observe growth in a liquid media containing ampicillin to inhibit bacterial growth. Culturing techniques proved successful after inoculation, showing a slow growth of methanogens via GC and autofluorescence. Further PCR tests and subsequent sequencing were done to confirm and identify isolates.

  8. On the determination of agricultural prospects using remote sensing and field technique

    NASA Astrophysics Data System (ADS)

    Emetere, Moses Eterigho; Omotosho, T. V.; Olusola, Kayode

    2016-02-01

    The food budget is gradually depleting due to climatic change. The research problem is to see the extent of climate change via catalytic factor e.g. soil compaction. The field work has been reported and the remote sensing technique was used to compliment salient findings established. The Modern Era Retrospective-analysis for Research and Applications (MERRA) was used to obtain five years satellite imagery between 2008 and 2012. The results were used to propound a simple model which shows that the effects of either H >ɛ σ Tr4 or H <ɛ σ Tr4 may be detrimental to crop survival in the nearest future.

  9. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  10. Time-domain incident-field extrapolation technique based on the singularity-expansion method

    SciTech Connect

    Klaasen, J.J.

    1991-05-01

    In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.

  11. Development and application of color schlieren technique for investigation of three-dimensional concentration field

    NASA Astrophysics Data System (ADS)

    Srivastava, Atul

    2013-11-01

    The present work describes the development and application of rainbow schlieren deflectometry technique for the investigation of the three-dimensional concentration field around a crystal growing from its aqueous solution. The imaging technique employs a diverging beam of light to record the projection data of the concentration field. In contrast to the conventional schlieren methods, the present system makes use of a microscopic objective lens to act as the de-collimating lens for focusing the light beam onto the color filter to get the desired schlieren effect. In order to record the projection data of the concentration field from different view angles for tomographic reconstruction, the experiments are conducted in an octagonal growth cell. Detailed quantitative analysis of the schlieren images has then been carried out for each view angle to determine the path-integrated concentration distribution. Principles of tomography have been employed for the reconstruction of concentration field at select horizontal planes above the growing crystal. Results have been presented in the form of rainbow schlieren images of the convective field, path-averaged solute concentration distribution around the growing for each view angle and local concentration distribution at select horizontal planes above the crystal top surface. Recorded color schlieren images have been compared with those of the conventional monochrome schlieren and interferometric techniques for the same experimental conditions. The extent of color re-distribution as seen from the recorded rainbow schlieren images correlate well with the bright intensity regions of monochrome schlieren images and the extent of fringe deformation in the interferometric images. The comparison has been performed for a small as well as a comparatively larger-sized crystal. For small sized-crystal, the observed color redistribution is seen to be weak and restricted to the crystal vicinity only whereas the color changes are more

  12. Development of a Technique for Measuring Local Electric Field Turbulence in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Thompson, D. S.; Fonck, R. J.; Burke, M. G.; McKee, G. R.; Lewicki, B. T.; Winz, G. R.

    2013-10-01

    Accessible methods for measuring Ẽ (R , t) in large-scale magnetic confinement experiments are highly desired for validation studies of plasma turbulence models. A new technique based on neutral beam emission spectroscopy is being developed to address this need. Rapid fluctuations in the separation of spectral components of the motionally induced Stark spectrum can reflect fluctuations in the intrinsic electric field of the plasma. Polarization spectroscopy via high resolution, high-throughput spectrometers that compensate for field-of-view broadening is being developed to isolate and measure these fluctuations. Cross-power correlation analysis between the linewidth fluctuations and plasma density fluctuations will be employed to extract the expected small signals. Electric field fluctuations at mid-minor-radius, normalized to an estimated MSE field, are expected to be on the order of Ẽ /EMSE ~ 1 ×10-3 in the PEGASUS Toroidal Experiment and are comparable to those expected in NSTX and in DIII-D. Work supported by US DOE Grant DE-FG02-89ER53296.

  13. Optical coherence-based techniques for motional Stark effect measurements of magnetic field pitch angle

    NASA Astrophysics Data System (ADS)

    Howard, John

    1999-02-01

    The motional Stark effect measurement of magnetic field pitch angle in tokamaks is a mature and powerful technique for estimating plasma current density in tokamaks. However, its range of applicability is limited by the requirement that 0741-3335/41/2/012/img3 and 0741-3335/41/2/012/img4 manifolds are spectrally sufficiently well separated (high magnetic fields, high beam energies) to ensure adequate net polarization for a successful measurement. This paper proposes alternative schemes based on the optical coherence properties of the Stark multiplet that are somewhat more versatile than the standard method and better suited to measurements on low-field toroidal confinement devices. An interference filter is used to transmit the Stark multiplet to a polarimeter (which uses a single photoelastic plate) that modulates the light temporal coherence and/or its first spectral moment. This light is subsequently processed using a novel electro-optically modulated solid-state interferometer that is sensitive to low-order spectral moments. The modulation of these quantities conveys information about the orientation of the light polarization and hence the magnetic field pitch angle.

  14. An Automatic Technique for Finding Faint Moving Objects in Wide Field CCD Images

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Meech, K. J.

    1996-09-01

    The traditional method used to find moving objects in astronomical images is to blink pairs or series of frames after registering them to align the background objects. While this technique is extremely efficient in terms of the low signal-to-noise ratio that the human sight can detect, it proved to be extremely time-, brain- and eyesight-consuming. The wide-field images provided by the large CCD mosaic recently built at IfA cover a field of view of 20 to 30' over 8192(2) pixels. Blinking such images is an enormous task, comparable to that of blinking large photographic plates. However, as the data are available digitally (each image occupying 260Mb of disk space), we are developing a set of computer codes to perform the moving object identification in sets of frames. This poster will describe the techniques we use in order to reach a detection efficiency as good as that of a human blinker; the main steps are to find all the objects in each frame (for which we rely on ``S-Extractor'' (Bertin & Arnouts (1996), A&ASS 117, 393), then identify all the background objects, and finally to search the non-background objects for sources moving in a coherent fashion. We will also describe the results of this method applied to actual data from the 8k CCD mosaic. {This work is being supported, in part, by NSF grant AST 92-21318.}

  15. Characterization of nanosecond pulse electrical field shock waves using imaging techniques

    NASA Astrophysics Data System (ADS)

    Mimun, L. Chris; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Sardar, Dhiraj K.; Beier, Hope T.

    2015-03-01

    Nanosecond pulsed electric fields (nsPEF) cause the formation of small pores, termed nanopores, in the membrane of cells. Current nanoporation models treat nsPEF exposure as a purely electromagnetic phenomenon, but recent publications showing pressure transients, ROS production, temperature gradients, and pH waves suggest the stimulus may be physically and chemically multifactorial causing elicitation of diverse biological conditions and stressors. Our research group's goal is to quantify the breadth and participation of these stressors generated during nsPEF exposure and determine their relative importance to the observed cellular response. In this paper, we used advanced imaging techniques to identify a possible source of nsPEF-induced acoustic shock waves. nsPEFs were delivered in an aqueous media via a pair of 125 μm tungsten electrodes separated by 100 μm, mirroring our previously published cellular exposure experiments. To visualize any pressure transients emanating from the electrodes or surrounding medium, we used the Schlieren imaging technique. Resulting images and measurements confirmed that mechanical pressure waves and electrode-based stresses are formed during nsPEF, resulting in a clearer understanding of the whole exposure dosimetry. This information will be used to better quantify the impact of nsPEF-induced acoustic shock waves on cells, and has provided further evidence of non-electrical-field induced exposures for elicitation of bioieffects.

  16. Analysis of field data to evaluate performance of optical remote sensing techniques to estimate fugitive emissions

    SciTech Connect

    Paine, R.J.; Lew, F.; Zwicker, J.O.; Feldman, H.

    1999-07-01

    The American Petroleum Institute (API) has developed data sets for the evaluation of dispersion modeling and optical remote sensing (ORS) techniques. An initial field study featuring several tracer gas releases from simulated point, area, and volume sources was conducted in early 1995 at an open field site (Duke Forest, North Carolina). A second experiment (Project OPTEX) took place at an operational petrochemical facility in Texas and featured tracer releases at heights up to 41 meters from points located in an active process unit. This paper discusses the results of an analysis to evaluate the capability for remote sensing techniques to estimate the magnitude and location of emission sources in an industrial complex setting. Three major issues that the paper reports on are: (1) can ORS technology be used to determine emission rates when the source locations are known; (2) can ORS technology be used to locate sources in unknown locations, therefore promising to replace or at least streamline leak detection and repair (LDAR) programs at petrochemical facilities; and (3) what are the constraints for real-time operation, interpretation, and responsiveness involving ORS technology?

  17. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  18. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1999-04-28

    The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration well (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.

  19. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-02-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  20. Program for field validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)

    NASA Astrophysics Data System (ADS)

    Hamlin, D. R.

    1985-11-01

    This final report describes work performed by Southwest Research Institute for the Nuclear Regulatory Commission (NRC) in fulfillment of NRC Contract No. NRC-04-77-145; "Program for Field Validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)." The purpose was to validate the effectiveness of SAFT UT as a nondestructive examination technique for nuclear power and other related industries. SAFT UT is an ultrasonic imaging method for accurate measurement of the spatial location and extent of acoustically reflective surfaces (flaws) contained in objects such as structural components and weldments in nuclear power reactor systems. The increased measurement accuracy offered by SAFT, when compared with that provided by measurement methods now in use, will improve the reliability of flaw severity assessment with resultant safety and economic benefits to the nuclear power industry. This report presents a comprehensive discussion of the work accomplished in evaluating the performance capabilities of the developed SAFT UT inspection system. Inspection results obtained using both 0-degree longitudinal and angle-beam operating modes are presented. These results include laboratory and nuclear power plant field site examinations on a variety of defect types contained within carbon and stainless steel flat plate and cylindrical test specimens or components. The SAFT UT processed data flaw images are evaluated by comparing them to results obtained from destructive sectioning or by using flaw fabrication data which predicted actual flaw depth, orientation and size. On the basis of these evaluations, conclusions are presented which summarize the performance capabilities of the SAFT UT inspection technique.

  1. The efficacy of field techniques for obtaining and storing blood samples from fishes.

    PubMed

    Clark, T D; Donaldson, M R; Drenner, S M; Hinch, S G; Patterson, D A; Hills, J; Ives, V; Carter, J J; Cooke, S J; Farrell, A P

    2011-11-01

    Prompted by the dramatic increase in the use of blood analyses in fisheries research and monitoring, this study investigated the efficacy of common field techniques for sampling and storing blood from fishes. Three questions were addressed: (1) Do blood samples taken via rapid caudal puncture (the 'grab-and-stab' technique) yield similar results for live v. sacrificed groups of fishes? (2) Do rapidly obtained caudal blood samples accurately represent blood properties of fishes prior to capture? (3) Does storage of whole blood in an ice slurry for a working day (8·5 h) modify the properties of the plasma? It was shown that haematocrit, plasma ions, metabolites, stress hormones and sex hormones of caudal blood samples were statistically similar when taken from live v. recently sacrificed groups of adult coho salmon Oncorhynchus kisutch. Moreover, this study confirmed by using paired blood samples from cannulated O. kisutch that blood acquired through the caudal puncture technique (mean ±s.e. 142 ± 26 s after capture) was representative of fish prior to capture. Long-term (8·5 h) cold storage of sockeye salmon Oncorhynchus nerka whole blood caused significant decreases in plasma potassium and chloride, and a significant increase in plasma glucose. Previous research has suggested that these changes largely result from net movements of ions and molecules between the plasma and erythrocytes, movements that can occur within minutes of storage. Thus, blood samples from fishes should be centrifuged as quickly as practicable in the field for separation of plasma and erythrocytes to prevent potentially misleading data. PMID:22026608

  2. TRAINING-INDUCED CHANGES IN DRAG-FLICK TECHNIQUE IN FEMALE FIELD HOCKEY PLAYERS

    PubMed Central

    Gómez, M.; Martín-Casado, L.; Navarro, E.

    2012-01-01

    The penalty corner is one of the most important goal plays in field hockey. The drag-flick is used less by women than men in a penalty corner. The aim of this study was to describe training-induced changes in the drag-flick technique in female field hockey players. Four female players participated in the study. The VICON optoelectronic system (Oxford Metrics, Oxford, UK) measured the kinematic parameters of the drag-flick with six cameras sampling at 250 Hz, prior to and after training. Fifteen shots were captured for each subject. A Wilcoxon test assessed the differences between pre-training and post-training parameters. Two players received specific training twice a week for 8 weeks; the other two players did not train. The proposed drills improved the position of the stick at the beginning of the shot (p < 0.05), the total distance of the shot (p < 0.05) and the rotation radius at ball release (p < 0.01). It was noted that all players had lost speed of the previous run. Further studies should include a larger sample, in order to provide more information on field hockey performance. PMID:24868116

  3. Three-component velocity field measurements of propeller wake using a stereoscopic PIV technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Paik, Bu Geun; Yoon, Jong Hwan; Lee, Choung Mook

    A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.

  4. Training-induced changes in drag-flick technique in female field hockey players.

    PubMed

    de Subijana, C L; Gómez, M; Martín-Casado, L; Navarro, E

    2012-12-01

    The penalty corner is one of the most important goal plays in field hockey. The drag-flick is used less by women than men in a penalty corner. The aim of this study was to describe training-induced changes in the drag-flick technique in female field hockey players. Four female players participated in the study. The VICON optoelectronic system (Oxford Metrics, Oxford, UK) measured the kinematic parameters of the drag-flick with six cameras sampling at 250 Hz, prior to and after training. Fifteen shots were captured for each subject. A Wilcoxon test assessed the differences between pre-training and post-training parameters. Two players received specific training twice a week for 8 weeks; the other two players did not train. The proposed drills improved the position of the stick at the beginning of the shot (p < 0.05), the total distance of the shot (p < 0.05) and the rotation radius at ball release (p < 0.01). It was noted that all players had lost speed of the previous run. Further studies should include a larger sample, in order to provide more information on field hockey performance. PMID:24868116

  5. Application of Strong Field Physics Techniques to X-Ray Free Electron Laser Science

    NASA Astrophysics Data System (ADS)

    Roedig, Christoph Antony

    With the commissioning of the Linac Coherent Light Source (LCLS), the first x-ray free electron laser (XFEL) was realized at the Stanford Linear Accelerator Center. This novel device brings an unprecedented parameter set to a diverse community of scientists. The short wavelengths and short pulse durations enable an entire new class of time resolved structural analysis. The imaging capabilities enabled by the machine will lead to many breakthroughs in the fields of biophysics and nano technology. With the new capabilities of the LCLS come many challenges. The understanding required to effectively utilize the XFEL on complex molecular or biological systems goes back to the basic atomic physics of the interaction of light and matter. The parameter set of this machine is as unprecedented as it will be untested. To make informed measurements with the LCLS beam, a set of novel diagnostic techniques will be required. This report outlines major contributions made to the early experimental atomic physics and diagnostic efforts at LCLS. Building on a rich history of techniques used for ultra short optical lasers and atomic physics experimentation, a diagnostic instrument and experimental techniques are developed to make spectral, energy and temporal measurements of the LCLS pulses possible. Expanding on earlier studies of ionization performed on optical lasers and synchrotron sources, new ionization mechanisms such as multiphoton ionization in the x-ray regime are observed. Leveraging the unique combination of hard x-ray photon energy, extremely short pulse duration and high pulse energy, a technique for the time resolved study of ultrafast inner shell electronic relaxation processes is developed and studied for feasibility. The common theme to the efforts described here is the advancement of proven techniques and interesting atomic physics phenomena to the next generation of ultra short pulsed x-ray laser systems. The atomic physics explored here lay the groundwork for the

  6. A field comparison of techniques to quantify surface water - groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Ward, A. S.; Hatch, C. E.; Wlostowski, A. N.; Singha, K.; Gooseff, M. N.; Haggerty, R.; Harvey, J. W.; Cirpka, O. A.; Brock, J. T.

    2014-12-01

    The challenge of quantifying surface water-groundwater interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied several of these techniques within a single experimental reach in a third-order stream. The techniques that we used include: conservative and "smart" reactive solute tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the streambed, and electrical resistivity imaging. Results from the field experiment consistently indicated that surface water-groundwater interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the 450-m study reach. The NaCl and resazurin tracers suggested different surface-subsurface exchange patterns between the upper two thirds and lower third of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10-20 cm deep hyporheic zone with chemical reactivity of resazurin indicated at 3, 6 and 9 cm sampling depths. Monitoring of hydraulic gradients along transects starting ~ 40 m away from the stream indicated that groundwater flow prevented the development of a larger hyporheic zone, which was shown (from MINIPOINT samples) to progressively vanish from the stream thalweg with depth in the streambed and distance toward the banks. Finally, FO-DTS did not detect extensive inflow of groundwater into the stream and electrical resistivity imaging showed limited large-scale hyporheic exchange. From the experience gained in our experiment, we recommend the following reasoning to decide which technique(s) should be implemented in a particular study: 1) clearly define the nature of the questions to be addressed, i.e., physical, biological or chemical processes, 2) identify the spatial and temporal scales that want to be covered

  7. Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments in Europe

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Gomez-Navarro, J. J.; Zorita, E.; Werner, J.; Luterbacher, J.

    2014-12-01

    In recent years important efforts were focused in the development of Climate Field Reconstructions (CFR). These techniques allow merging a limited number of local reconstructions to produce a regular grid which accommodates climatic information from different proxy sources. Pseudo Proxy Experiments (PPE) are idealized experiments performed with synthetic data, typically generated with comprehensive climate models. The PPEs aim at assessing the accuracy that can be expected by (statistical) state-of-the-art reconstruction techniques, but also at identifying potential shortcomings and improvements.In this study a number of PPEs are investigated in order to assess the ability of three different CFR techniques to reconstruct precipitation over Europe. The methods comprise of a linear fit (Canonical Correlation Analysis, CCA), a simple non-linear approach (the Analog Method, AM) and a Bayesian model (Bayesian Hierarchical Method, BHM). Given the inherent complexity of this variable, hardly reproduced by state-of-the-art global circulation models, some downscaling technique is necessary to design meaningful PPEs. In this study the synthetic data consist of a high-resolution climate simulation performed with a Regional Climate Model over Europe for the last two Millennia. Results indicate that unlike BHM, CCA systematically underestimates the variance. TheAM can be adjusted to overcome this shortcoming, presenting an intermediate behavior between the two aforementioned techniques. However, a trade-off between reconstruction target correlations and reconstructed variance is the drawback common to all CFR techniques. CCA (BHM) represent the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of a loss in variance. While BHM, in the form employed here, has been shown to perform well for temperatures, it does heavily rely on prescribed spatial correlation lengths. For temperature this

  8. Field test of an autocorrelation technique for determining grain size using a digital camera

    NASA Astrophysics Data System (ADS)

    Barnard, P. L.; Rubin, D. M.; Harney, J.; Mustain, N.

    2007-12-01

    An extensive field test using Rubin's (2004) autocorrelation technique shows that median and mean grain size can be determined with suitable accuracy using a digital camera and associated autocorrelation when compared to traditional methods such as mechanical sieving and settling-tube analysis. The field test included 205 sediment samples and > 1200 digital images from a variety of beaches on the west coast of the United States, with grain sizes ranging from sand to granules. To test the accuracy of the digital-image grain-size algorithm, we compared results with manual point counts of a large image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2=0.93; n=79) and had an error of only 1%. Although grain sizes calculated from digital images give an accurate result for grains in the image, natural lateral and vertical variability in grain size can cause differences between grain size measured in digital images of the bed surface and grain size measured by sieving a grab sample that includes subsurface sediment. Lateral spatial variability was tested by analyzing the results of up to 100 images taken in a series of 1 m2 sample areas. Comparisons of calculated grain sizes and grain sizes measured from grab samples show small differences between surface sediment and grab samples on high- energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 > 0.92; n=115). In contrast, on less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, differences between surface and subsurface grain size are greater (r2 > 0.70; n=67; within 3% accuracy). In all field tests the autocorrelation method was able to predict the mean and median grain size with ~96% accuracy, which is more than adequate for the majority of sedimentological applications. When properly automated for large numbers of samples, the

  9. Behavioral scoring using programmable calculators: a technique usable in the field.

    PubMed

    Mutalik, P G; Alreja, M; Nayar, U

    1985-11-01

    A simple method of recording the time spent in various behavioral categories during behavioral scoring is described. Use is made of a programmable calculator which is made to function as a multiple timer, keeping track of each of the categories. Any number of mutually exclusive categories can be scored using a single key press, by assigning a pre-set code to each. A print-out of the analysed frequency or duration data can be obtained either concurrently or at any time after the experiment, as required. The least count of the technique is about 1-2 seconds and this precludes its use for extremely rapidly changing behaviors. Apart from this, it is convenient, time-saving and especially suitable for field use. PMID:3841218

  10. Application of Anisotropic Conductive Film to Fabrication of Molybdenum Field Emitter Arrays Using Transfer Mold Technique

    NASA Astrophysics Data System (ADS)

    Cho, Eou Sik; Ahn, Min Hyung; Kwon, Sang Jik

    2008-08-01

    In the fabrication of molybdenum field emitter arrays (Mo FEA) by the transfer mold technique, anisotropic conductive film (ACF) was applied to the bond between the inverted mold structure and the transferred glass substrate. Without any electrical treatment of electrostatic bonding, the inverted mold was successfully bonded to an indium tin oxide (ITO) glass substrate under optimized thermal and pressure conditions. No additional conductive layers were used in the bonding process, and the bonded ACF was not chemically affected in the wet-etch process of the silicon inverted mold structure. The fabricated Mo FEA was structurally and electrically investigated and an anode current of 10 nA per emitter was obtained at a gate bias of 94 V. The results demonstrate the possibility of selective conduction in the fabrication of transfer mold FEA using ACF bonding.

  11. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The

  12. Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments

    NASA Astrophysics Data System (ADS)

    Gómez-Navarro, Juan José; Werner, Johannes; Wagner, Sebastian; Luterbacher, Jürg; Zorita, Eduardo

    2015-09-01

    This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality of a regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.

  13. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  14. A poloidal field measurement technique: Pitch angle measurements via injected He/sup +/ ions

    SciTech Connect

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He/sup +/ ions injected into the plasma by a perpendicular He/sup 0/ beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b/sub x/ and b/sub y/, respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to /delta/b/sub x/, which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs.

  15. Processing discontinuous displacement fields by a spatio-temporal derivative technique

    NASA Astrophysics Data System (ADS)

    Sousa, A. M. R.; Xavier, J.; Morais, J. J. L.; Filipe, V. M. J.; Vaz, M.

    2011-12-01

    In this paper, a digital image correlation (DIC) method coupling cross-correlation with spatio-temporal differential techniques was proposed for assessing discontinuous displacement fields. The accuracy and robustness of the algorithm was assessed on a set of numerical tests by processing computer generated speckled-pattern images. Fracture mechanical tests in mode I were considered, in which both in-plane and out-of-plane rigid-body movements were taken into account. The ability for recovering the analytical asymptotic displacement field in mode I was analysed, and stress intensity factor, crack opening displacement and crack tip location were used as quantitative parameters for validation purposes. Throughout these tests, the results obtained with the proposed method were systematically compared to the ones from Aramis DIC-2D commercial code. Globally, the results computed from both methods are in good agreement with reference values. However, due to the high spatial resolution (point-wise characteristic), a better matching of the displacements in the neighbour of discontinuities could be obtained by the proposed method.

  16. Combination of various observation techniques for regional modeling of the gravity field

    NASA Astrophysics Data System (ADS)

    Lieb, Verena; Schmidt, Michael; Dettmering, Denise; Börger, Klaus

    2016-05-01

    Modeling a very broad spectrum of the Earth's gravity field needs observations from various measurement techniques with different spectral sensitivities. Typically, high-resolution regional gravity data are combined with low-resolution global observations. To exploit the gravitational information as optimally as possible, we set up a regional modeling approach using radial spherical basis functions, emphasizing the strengths of various data sets by the flexible combination of high- and middle-resolution terrestrial, airborne, shipborne, and altimetry measurements. The basis functions are defined and located in the region of interest in such a manner, which the highest measure of information of the input data is captured. Any functional of the Earth's gravity field can be derived, as, e.g., quasi-geoid heights or gravity anomalies. Here we present results of a study area in Northern Germany. A comprehensive cross validation to external observation data delivers standard deviations less than 5 cm. Differences to an existing regional quasi-geoid model count on average ±6 cm and proof the plausibility of our solution. The comparison with existing global models reaches higher standard deviations for the more sensitive gravity anomalies as for quasi-geoid heights, showing the additional value of our solution in the high frequency domain. Covering a broad frequency spectrum, our regional models can be used as basis for various applications, such as refinement of global models, national geoid determination, and detection of mass anomalies in the Earth's interior.

  17. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  18. Measurement of the geometric characteristics of a fire front by stereovision techniques on field experiments

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Molinier, T.; Pieri, A.; Akhloufi, M.; Tison, Y.; Bosseur, F.

    2011-12-01

    This paper presents stereovision techniques for measurement of the geometrical properties (position, rate of spread, fire height, fire inclination angle, fire base width, view factor) of fires obtained by experimental burnings at field scale. The system consists of two synchronized and pre-calibrated multi-baseline stereo cameras operating in the visible spectrum. The cameras are positioned in the back and the lateral positions relatively to the direction of fire propagation. Algorithms have been developed in order to (i) register these cameras, (ii) model in three dimensions the fire front from the back stereoscopic images and (iii) estimate some geometrical properties of fire such as the inclination angle and the fire base width from the lateral stereoscopic images. A user graphical interface was developed as a practical tool to estimate fire propagation features and to display the obtained results. Fire spread experiments were conducted at field scale (about 20 m wide and 3 m high). The fuel consists of Mediterranean shrub vegetation. The obtained results are promising and show interesting performance achieved by the proposed system in operational and complex fire scenarios.

  19. Spacecraft Communications System Verification Using On-Axis Near Field Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Baugh, Mark; Gosselin, R. B.; Lecha, Maria C.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    Determination of the readiness of a spacecraft for launch is a critical requirement. The final assembly of all subsystems must be verified. Testing of a communications system can mostly be done using closed-circuits (cabling to/from test ports), but the final connections to the antenna require radiation tests. The Tropical Rainfall Measuring Mission (TRMM) Project used a readily available 'near-fleld on-axis' equation to predict the values to be used for comparison with those obtained in a test program. Tests were performed in a 'clean room' environment at both Goddard Space Flight Center (GSFC) and in Japan at the Tanegashima Space Center (TnSC) launch facilities. Most of the measured values agreed with the predicted values to within 0.5 dB. This demonstrates that sometimes you can use relatively simple techniques to make antenna performance measurements when use of the 'far field ranges, anechoic chambers, or precision near-field ranges' are neither available nor practical. Test data and photographs are provided.

  20. Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

    NASA Astrophysics Data System (ADS)

    Li, Jing; Cai, Cong-Bo; Chen, Lin; Chen, Ying; Qu, Xiao-Bo; Cai, Shu-Hui

    2015-10-01

    In many ultrafast imaging applications, the reduced field-of-view (rFOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporally-encoded (SPEN) method offers an inherent applicability to rFOV imaging. In this study, a flexible rFOV imaging method is presented and the superiority of the SPEN approach in rFOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging (EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the rFOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest (ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474236, 81171331, and U1232212).

  1. Two-phase flow measurement by chemical tracer technique for Uenotai geothermal field in Japan

    SciTech Connect

    Sato, Tatsuya; Osato, Kazumi; Hirtz, P.

    1996-12-31

    A tracer flow-test (TFT) survey of three production wells was performed in February, 1996, for Akita Geothermal Energy Co., Ltd. (AGECO) at the Uenotai geothermal field in the Akita prefecture of northern Honshu, Japan. The survey was conducted as a demonstration test of the chemical tracer method for two-phase flow measurement. Although the tracer method has been in commercial use for about 4 years this was the first time the technique had been applied on wells with mixing runs of less than 12 meters. The tracers were injected through the wing valve on the side of the wellheads to maximize the tracer dispersion through the 9 meters of pipeline available before sample collection. The three wells tested had steam fractions at the wellhead of 38 to 99.4 % by weight and total flow rates of 31.5 to 51.5 tons/hr. Based on the test results the chemical tracer method is considered accurate under the conditions experienced at the Uenotai geothermal field and has been adopted for routine flow rate and enthalpy monitoring.

  2. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  3. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    SciTech Connect

    Lakeman, T; Wang, IZ

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  4. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  5. Evaluating climate field reconstruction techniques using improved emulations of real-world conditions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; Guillot, D.; Smerdon, J. E.; Rajaratnam, B.

    2014-01-01

    Pseudoproxy experiments (PPEs) have become an important framework for evaluating paleoclimate reconstruction methods. Most existing PPE studies assume constant proxy availability through time and uniform proxy quality across the pseudoproxy network. Real multiproxy networks are, however, marked by pronounced disparities in proxy quality, and a steep decline in proxy availability back in time, either of which may have large effects on reconstruction skill. A suite of PPEs constructed from a millennium-length general circulation model (GCM) simulation is thus designed to mimic these various real-world characteristics. The new pseudoproxy network is used to evaluate four climate field reconstruction (CFR) techniques: truncated total least squares embedded within the regularized EM (expectation-maximization) algorithm (RegEM-TTLS), the Mann et al. (2009) implementation of RegEM-TTLS (M09), canonical correlation analysis (CCA), and Gaussian graphical models embedded within RegEM (GraphEM). Each method's risk properties are also assessed via a 100-member noise ensemble. Contrary to expectation, it is found that reconstruction skill does not vary monotonically with proxy availability, but also is a function of the type and amplitude of climate variability (forced events vs. internal variability). The use of realistic spatiotemporal pseudoproxy characteristics also exposes large inter-method differences. Despite the comparable fidelity in reconstructing the global mean temperature, spatial skill varies considerably between CFR techniques. Both GraphEM and CCA efficiently exploit teleconnections, and produce consistent reconstructions across the ensemble. RegEM-TTLS and M09 appear advantageous for reconstructions on highly noisy data, but are subject to larger stochastic variations across different realizations of pseudoproxy noise. Results collectively highlight the importance of designing realistic pseudoproxy networks and implementing multiple noise realizations of PPEs

  6. Study Of Optimal Reconstruction Techniques In The Field Of X-Ray Tomodensitometry Of The Heart

    NASA Astrophysics Data System (ADS)

    Wetta, P.; Peyrin, F.; Goutte, R.; Amiel, M.

    1983-08-01

    The computerized-aided tomodensitometry by X-rays is a powerful, precise and non invasive tool to investigate the human body as well as different objects and structures. The relatively long examination time, from 2 to 10 sec., which the present state of the art necessitates, limits the field of applications of this tool here to the static on quasistatic organs or objects (e.g. the brain or abdomen in medical diagnosis). When one try to reconstruct images of a dynamic object some errors or artefacts appear. In the case of the heart, in particular, the examination time takes several cardiac periods; so, the reconstructed image is highly blurred and for all purposes unusable. One solution, which can be used with a conventional scanner is the "gating" technique. Taking into account of the repetitive property of the cardiac movement, this technique necessitates to catch the projections in synchronization with the electrocardiogram. Thus a sub-program, controlled by the ECG sianal, has to select a set of projections corresponding to a certain time of the cardiac period. The implementation of this sub-program into the reconstruction code allows to obtain more sharp images of the heart at any given instant of the cardiac period. In this paper we discuss the methodology used to acquire the projections, the problems caused by the small number of projections, some mathematical solutions (extensions of signals and data, interpolations, uses of the redundancy in the information aiven by a FAN-BEAM system). These different possibilities are illustrated by some results we have obtained in our experiments on animals with a FAN-BEAM machine.

  7. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  8. In-Flight Technique for Acquiring Mid- And Far-Field Sonic Boom Signatures

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.; Baize, Daniel G.; Maglieri, Domenic, J.

    1999-01-01

    Flight test experiments have been conducted to establish the feasibility of obtaining sonic boom signature measurements below a supersonic aircraft using the NASA Portable Automatic Triggering System (PATS) mounted in the USMC Pioneer Unmanned Aerial Vehicle (UAV). This study forms a part of the NASA sonic boom minimization activities, specifically the demonstration of persistence of modified boom signatures to very large distances in a real atmosphere. The basic objective of the measurement effort was to obtain a qualitative view of the sonic boom signature in terms of its shape, number of shocks, their locations, and their relative strength. Results suggest that the technique may very well provide quantitative information relative to mid-field and far-field boom signatures. The purpose of this presentation is to describe the arrangement and operation of this in-flight system and to present the resulting sonic boom measurements. Adaption and modification of two PATS to the UAV payload section are described and include transducer location, mounting arrangement and recording system isolation. Ground static runup, takeoff and landing, and cruise flight checkouts regarding UAV propeller and flow noise on the PATS automated triggering system and recording mode are discussed. For the proof-of-concept tests, the PATS instrumented UAV was flown under radar control in steady-level flight at the altitude of 8700 feet MSL and at a cruise speed of about 60 knots. The USN F-4N sonic boom generating aircraft was vectored over the UAV on reciprocal headings at altitudes of about 1 1,000 feet MSL and 13,000 feet MSL at about Mach 1. 15. Sonic boom signatures were acquired on both PATS for all six supersonic passes. Although the UAV propeller noise is clearly evident in all the measurements, the F-4 boom signature is clearly distinguishable and is typically N-wave in character with sharply rising shock fronts and with a mid-shock associated with the inlet-wing juncture

  9. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  10. TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head

    SciTech Connect

    Ono, T; Miyabe, Y; Yamada, M; Kaneko, S; Monzen, H; Mizowaki, T; Hiraoka, M; Sawada, A; Kokubo, M

    2014-06-15

    Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mm from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique

  11. Integrating Novel Field, Laboratory and Modelling Techniques to Upscale Estimates of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Wainwright, John; Parsons, Anthony; Cooper, James; Long, Edward; Hargrave, Graham; Kitchener, Ben; Hewett, Caspar; Onda, Yuichi; Furukawa, Tomomi; Obana, Eiichiro; Hayashi, Hirofumi; Noguchi, Takehiro

    2013-04-01

    Erosion is a particle-based phenomenon, yet most of current understanding and modelling of this process is based on bulk measurements rather than the movement of individual particles. Difficulties with measuring particle motions in dynamically changing conditions are being overcome with the application of two new technologies - particle imaging velocimetry (PIV) and radio frequency identification (RFID). It is thus possible to evaluate the entrainment, transport and deposition of individual particles and these data can be used to parameterize and to test particle-based modelling of the particle-based process. Both PIV and RFID tagging have been used in laboratory experiments to evaluate the detachment process by raindrops on bare surfaces and in shallow flows using rainfall simulation. The results suggest that the processes are more complex than hitherto thought with multiple detachment and transfer mechanisms. Because both mechanisms affect travel distance, they affect the ways in which estimates of soil erosion can be scaled from plot to hillslope and catchment scales. To evaluate movements at larger scales, we have also used RFID-tagged particles in field settings to look at sediment transfers following the Fukushima accident in Japan, 2011. A marker-in-cell model (MAHLERAN-MiC) has been developed to enable the laboratory results to be upscaled and tested in a field setting. Markers (representing sediment particles), containing sediment-property information, are initially distributed on a cellular grid. A cellular model is used to set up the boundary conditions and determine the hydrology and hydraulics on the hillslope. The markers are then moved through the grid according to these properties. This technique combines the advantages of Eulerian and Lagrangian methods while avoiding the shortcomings of each (computational efficiency vs. accuracy). The model simulates all the processes of detachment and transport; raindrop detachment and transport, interrill

  12. A TECHNIQUE FOR PRIMARY BEAM CALIBRATION OF DRIFT-SCANNING, WIDE-FIELD ANTENNA ELEMENTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Jacobs, Daniel C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Parashare, Chaitali R.; Carilli, Chris L.; Gugliucci, Nicole E.

    2012-02-15

    We present a new technique for calibrating the primary beam of a wide-field, drift-scanning antenna element. Drift-scan observing is not compatible with standard beam calibration routines, and the situation is further complicated by difficult-to-parameterize beam shapes and, at low frequencies, the sparsity of accurate source spectra to use as calibrators. We overcome these challenges by building up an interrelated network of source 'crossing points'-locations where the primary beam is sampled by multiple sources. Using the single assumption that a beam has 180 Degree-Sign rotational symmetry, we can achieve significant beam coverage with only a few tens of sources. The resulting network of crossing points allows us to solve for both a beam model and source flux densities referenced to a single calibrator source, circumventing the need for a large sample of well-characterized calibrators. We illustrate the method with actual and simulated observations from the Precision Array for Probing the Epoch of Reionization.

  13. Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures

    NASA Astrophysics Data System (ADS)

    Li, Jie; Dault, Daniel; Liu, Beibei; Tong, Yiying; Shanker, Balasubramaniam

    2016-08-01

    The analysis of electromagnetic scattering has long been performed on a discrete representation of the geometry. This representation is typically continuous but not differentiable. The need to define physical quantities on this geometric representation has led to development of sets of basis functions that need to satisfy constraints at the boundaries of the elements/tessellations (viz., continuity of normal or tangential components across element boundaries). For electromagnetics, these result in either curl/div-conforming basis sets. The geometric representation used for analysis is in stark contrast with that used for design, wherein the surface representation is higher order differentiable. Using this representation for both geometry and physics on geometry has several advantages, and is elucidated in Hughes et al. (2005) [7]. Until now, a bulk of the literature on isogeometric methods have been limited to solid mechanics, with some effort to create NURBS based basis functions for electromagnetic analysis. In this paper, we present the first complete isogeometry solution methodology for the electric field integral equation as applied to simply connected structures. This paper systematically proceeds through surface representation using subdivision, definition of vector basis functions on this surface, to fidelity in the solution of integral equations. We also present techniques to stabilize the solution at low frequencies, and impose a Calderón preconditioner. Several results presented serve to validate the proposed approach as well as demonstrate some of its capabilities.

  14. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  15. Remote field eddy current technique applied to the inspection of nonmagnetic steam generator tubes

    NASA Astrophysics Data System (ADS)

    Shin, Young-Kil; Chung, Tae-Eon; Lord, William

    2001-04-01

    As steam generator (SG) tubes have aged, new and subtle degradations have appeared. Most of them start growing from outside the tubes. Since outer diameter defects might not be detected by conventional eddy current testing due to skin effect phenomena, this paper studies the feasibility of using the remote field eddy current (RFEC) technique, which has shown equal sensitivity to inner diameter (ID) and outer diameter (OD) defects in ferromagnetic pipe inspection. Finite element modeling studies show that the operating frequency needs to be increased up to a few hundred kHz in order for RFEC effects to occur in the nonmagnetic SG tube. The proper distance between exciter and sensor coils is also found to be 1.5 OD, which is half of the distance used in ferromagnetic pipe inspection. The resulting defect signals show equal sensitivity to ID and OD defects. These results demonstrate superior capability of the proposed RFEC probe compared to the differential ECT probe in detecting OD defects.

  16. Application of near-field microwave sensing techniques for segregation detection in concrete members

    NASA Astrophysics Data System (ADS)

    Bois, K. J.; Benally, A. D.; Zoughi, R.; Nowak, P. S.

    2000-05-01

    In this presentation, a simple, low-cost near-field microwave nondestructive inspection technique for segregation detection in concrete members is presented. This process employs information from the measured magnitude of reflection coefficient at the aperture of an open-ended rectangular waveguide sensor. These measurements, whose results will be presented, were conducted using a Hewlett-Packard HP8510B network analyzer. However, in practice a simple and relatively inexpensive inspection apparatus constructed from discrete microwave components can easily be employed. It is shown that the standard deviation of magnitude of reflection coefficient measurement is linearly correlated with the aggregate density in concrete. Furthermore, for concrete in which the aggregate has segregated, this measurable parameter will change as a function of vertical position of the microwave scan. Results correlating the microwave measurements to the actual aggregate density of a well consolidated concrete specimen and a specimen in which the aggregate has segregated will be presented. Finally, the simple and low cost application of this method for in situ detection of aggregate segregation in concrete structures will be discussed.

  17. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    SciTech Connect

    Hamido, Aliou; Frapiccini, Ana Laura; Piraux, Bernard; Eiglsperger, Johannes; Madronero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick

    2011-07-15

    We present an ab initio approach to solving the time-dependent Schroedinger equation to treat electron- and photon-impact multiple ionization of atoms or molecules. It combines the already known time-scaled coordinate method with a high-order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time-scaled coordinate method, namely, that the scaled wave packet stays confined and evolves smoothly toward a stationary state, of which the squared modulus is directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multiresolution techniques like, for instance, wavelets are the most appropriate ones to represent the scaled wave packet spatially. The approach is illustrated in the case of the interaction of a one-dimensional model atom as well as atomic hydrogen with a strong oscillating field.

  18. A Physics-based Automated Technique for the Detection of Field Line Resonance Frequency in Ground Magnetometer Data

    NASA Astrophysics Data System (ADS)

    Boudouridis, A.; Zesta, E.; Moldwin, M.

    2015-12-01

    The accurate determination of the Field Line Resonance (FLR) frequency of a resonating geomagnetic field line is necessary for the remote monitoring of the plasmaspheric mass density during geomagnetic storms and quiet times alike. Under certain assumptions the plasmaspheric mass density at the equator is inversely proportional to the square of the FLR frequency. The most common techniques to determine the FLR frequency from ground magnetometer measurements are the amplitude ratio and phase difference techniques, both based on geomagnetic field measurements at two latitudinally separated ground stations. Previously developed automated techniques have used statistical methods to pinpoint the FLR frequency using the amplitude ratio and phase difference calculations. We now introduce a physics-based automated technique that can reproduce the resonant wave characteristics from the two ground station data, and from those determine the FLR frequency. The advantage of the new technique, besides moving away from ambiguous statistical manipulations of the ground data, is the estimation of physically determined errors of the FLR frequency, which can yield physically determined errors of the equatorial plasmaspheric mass density. We present preliminary results of the new technique calculations, and test it using data from the new Inner-Magnetospheric Array for Geospace Science (iMAGS) ground magnetometer chain along the coast of Chile and the east coast of the United States. We compare the results with the results of previously published statistical automated techniques.

  19. A framework for validating light fields created using physically based rendering techniques

    NASA Astrophysics Data System (ADS)

    Whittinghill, David M.

    This research study presents a framework for applying physically based global illumination techniques to the creation of software models of light fields that are then validated against actual light fields measured in physical experiments. A prior experiment was performed by horticulture scientists in which the light field of an empty plant growth chamber was measured using quantum sensors at fixed spatial intervals. The result was a light map consisting of a 9 x 45, fixed-width, two-dimensional graph of sensor readings that described the intensity of radiant energy present in the chamber at the chosen locations. A single observation of the growth chamber was made resulting in a single data set consisting of 45 different, location-sensitive irradiance observations. To test this framework a series of simulations were performed in which the physical attributes of the growth chamber were duplicated as closely as possible in a virtual growth chamber software model. Modeled attributes included physical dimensions, wall and light reflectivity, and full-spectrum light characterization. Light transport was modeled using a physically based, global illumination rendering technique called photon mapping. Virtual sensors that recorded the intensity of the light that transmitted through their surface were placed in the virtual chamber at the same position and interval as the ones that were used in the physical experiment. The output of the virtual chamber experiments were represented as a graph in the same configuration as the one in the physical experiment. The experiment was conducted using a modified version of pbrt, a physically based, extensible renderer developed by Matt Pharr and Greg Humphreys [1]. As photon mapping uses a stochastic algorithm, many repetitions of the virtual chamber experiment were performed and the mean and standard deviation were recorded as a global measure for each chamber as well as for each individual sensor location. The global means of the

  20. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  1. Evaluating climate field reconstruction techniques using improved emulations of real-world conditions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; Guillot, D.; Smerdon, J. E.; Rajaratnam, B.

    2013-06-01

    Pseudoproxy experiments (PPEs) have become an essential framework for evaluating paleoclimate reconstruction methods. Most existing PPE studies assume constant proxy availability through time and uniform proxy quality across the pseudoproxy network. Real multi-proxy networks are, however, marked by pronounced disparities in proxy quality, and a steep decline in proxy availability back in time, either of which may have large effects on reconstruction skill. Additionally, an investigation of a real-world global multi-proxy network suggests that proxies are not exclusively indicators of local climate; rather, many are indicative of large-scale teleconnections. A suite of PPEs constructed from a millennium-length general circulation model simulation is thus designed to mimic these various real-world characteristics. The new pseudoproxy network is used to evaluate four climate field reconstruction (CFR) techniques: truncated total least square embedded within the regularized EM algorithm (RegEM-TTLS), the Mann et al. (2009) implementation of RegEM-TTLS (M09), canonical correlation analysis (CCA), and Gaussian graphical models embedded within RegEM (GraphEM). Each method's risk properties are also assessed via a 100-member noise ensemble. Contrary to expectation, it is found that reconstruction skill does not vary monotonically with proxy availability, but rather is a function of the type of climate variability (forced events vs. internal variability). The use of realistic spatiotemporal pseudoproxy characteristics also exposes large inter-method differences. Despite the comparable fidelity in reconstructing the global mean temperature, spatial skill varies considerably between CFR techniques. Both GraphEM and CCA efficiently exploit teleconnections, and produce consistent reconstructions across the ensemble. RegEM-TTLS and M09 appear advantageous for reconstructions on highly noisy data, but are subject to larger stochastic variations across different realizations of

  2. Tsunakawa-Shaw method - an absolute paleointensity technique using alternating field demagnetization

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Mochizuki, N.; Shibuya, H.; Tsunakawa, H.

    2015-12-01

    Among geologic materials volcanic rocks have been typically used to deduce an absolute paleointensity. In the last decade, however, there seems a becoming consensus that volcanic rocks are not so ideal materials due to such as magnetic grains other than non-interacting single domain particles. One approach to obtain a good paleointensity estimate from the rocks is to reduce and correct the non-ideality, suppress alterations in laboratory and screen out suspicious results. We have been working on a development and an application of the Tsunakawa-Shaw method, which has been previously called the LTD-DHT Shaw method. This method is an AF(alternating field)-based technique and thus a paleointensity is estimated using coercivity spectra. To reduce the non-ideality, all remanences undergo low-temperature demagnetization (LTD) before any AF demagnetizations to remove multi-domain like component. To correct the non-ideality, anhysteretic remanent magnetizations (ARMs) are imparted with their directions parallel to natural remanent magnetizations and laboratory-imparted thermoremanent magnetizations (TRMs) and measured before and after laboratory heating. These ARMs are used to correct remanence anisotropies, possible interaction effects originated from the non-ideal grains and TRM changes caused by laboratory alterations. TRMs are imparted by heating specimens above their Curie temperatures and then cooling to room temperature at once to simulate nature conditions. These cycles are done in vacuum to suppress alterations in laboratory. Obtained results are judged by selection criteria, including a check for validity of the ARM corrections.It has been demonstrated that successful paleointensities are obtained from historical lavas in Japan and Hawaii, and from baked clay samples from a reconstructed ancient kiln, with the flow-mean precision of 5-10%. In case of old volcanic rocks, however, the method does not necessarily seem to be perfect. We will summarize these points in

  3. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah, Class I

    SciTech Connect

    Morgan, Craig D.; Gwynn, Wallace; Deo, Milind D.; Jarrard, Richard; Curtice, Richard; Morris, Thomas H.; Smouse, DeForrest; Tripp, Carol N.

    2000-01-20

    The objective of this project was to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Unita Basin Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that staged-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance.

  4. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    PubMed

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators. PMID:25644219

  5. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  6. Conformal Locoregional Breast Irradiation with an Oblique Parasternal Photon Field Technique

    SciTech Connect

    Erven, Katrien; Petillion, Saskia; Weltens, Caroline; Van den Heuvel, Frank; Defraene, Gilles; Van Limbergen, Erik; Van den Bogaert, Walter

    2011-04-01

    We evaluated an isocentric technique for conformal irradiation of the breast, internal mammary, and medial supra-clavicular lymph nodes (IM-MS LN) using the oblique parasternal photon (OPP) technique. For 20 breast cancer patients, the OPP technique was compared with a conventional mixed-beam technique (2D) and a conformal partly wide tangential (PWT) technique, using dose-volume histogram analysis and normal tissue complication probabilities (NTCPs). The 3D techniques resulted in a better target coverage and homogeneity than did the 2D technique. The homogeneity index for the IM-MS PTV increased from 0.57 for 2D to 0.90 for PWT and 0.91 for OPP (both p < 0.001). The OPP technique was able to reduce the volume of heart receiving more than 30 Gy (V{sub 30}), the cardiac NTCP, and the volume of contralateral breast receiving 5 Gy (V{sub 5}) compared with the PWT plans (all p < 0.05). There is no significant difference in mean lung dose or lung NTCP between both 3D techniques. Compared with the PWT technique, the volume of lung receiving more than 20 Gy (V{sub 20}) was increased with the OPP technique, whereas the volume of lung receiving more than 40 Gy (V{sub 40}) was decreased (both p < 0.05). Compared with the PWT technique, the OPP technique can reduce doses to the contralateral breast and heart at the expense of an increased lung V{sub 20}.

  7. Development of novel techniques to study the magnetic field evolution in wire array Z-pinches and X pinches

    NASA Astrophysics Data System (ADS)

    Syed, Wasif

    Understanding the magnetic field topology in wire-array Z-pinches is of great significance for their ultimate application to stockpile stewardship and inertial confinement fusion. We have developed and tested several novel techniques involving material-based sensors to measure magnetic fields as a function of space and time in high energy density plasmas on pulsed power machines. We first briefly introduce a technique that was used to measure a lower limit of the maximum magnetic field of a sub-microsecond duration pulse using magnetic reversal in CoPt thin films. The time-varying magnetic field was generated by an exploding wire array plasma called an X pinch produced on the 0.5 MA, 100 ns pulse duration, XP pulsed power generator. We then introduce a technique based on Faraday rotation that was used to measure magnetic fields in wire-array Z-pinches produced on the 1 MA, 100 ns rise time, COBRA pulsed power generator as well as on the XP generator. This technique measures magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide, multicomponent terbium borate glass, placed adjacent to, or within, the wire array. We have measured fields > 10 T with 100 ns rise times outside of a wire-array Z-pinch for the entire duration (˜250 ns) of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using the terbium borate glass. The third method, also based on Faraday rotation of SLM laser light utilized an integrated optical fiber sensor (a fiber-sensor-fiber assembly) on the XP pulsed power generator that also yielded a measurement of the magnetic field of a wire-array Z-pinch for part of the current pulse. Finally, we repeated the third method by fabricating a "thin film waveguide" of terbium borate glass to increase the spatial resolution

  8. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  9. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  10. Performance of marking techniques in the field and laboratory for Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reliable marking technique was needed for a mark-release-recapture experiment with adults of Diabrotica speciosa (Germar). Four marking techniques, acrylic paint (spattered or brushed on the surface of the insect); and fluorescent pigments (dusted on surfaces or mixed with diet to produce an inges...

  11. Fusing Observations and Model Results for Creation of Enhanced Ozone Spatial Fields: Comparison of Three Techniques

    EPA Science Inventory

    This paper presents three simple techniques for fusing observations and numerical model predictions. The techniques rely on model/observation bias being considered either as error free, or containing some uncertainty, the latter mitigated with a Kalman filter approach or a spati...

  12. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    SciTech Connect

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion.

  13. A mountain watershed hydrology field course: Experiential learning in hydrologic concepts and measurement techniques

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Kinoshita, A. M.; Randell, J.

    2013-12-01

    A field mountainshed hydrology course was offered annually since April 2006 to investigate and quantify hydrologic processes in the Sagehen experimental watershed in the Sierra Nevada, California. This advanced field-based course was offered through the University of California, Los Angeles (UCLA) Civil and Environmental Engineering (CEE) and was primarily for upper division undergraduate students in the hydrology emphasis track. This unique ten-week course focused on the study of catchment processes in snow-dominated and mountainous regions. The course offered a range of activities, including quantifying distributed watershed fluxes, investigating geochemical properties of surface and groundwater systems, measuring channel dynamics and stream morphology, and analysis of snowpack properties. A major component of the course included an extended field trip to Sagehen where students undertook a range of observations and field experiments. Pre-field trip coursework required an in-depth analysis of historical streamflow, precipitation, snow and other regional hydroclimatological data. At Sagehen, students worked together in teams while gaining a range of field experiences. Post-field trip labs included analysis of their collected field data and comparison to previous years' data, culminating in a comprehensive final report and shared with the Sagehen Creek Field Station as part of a cooperative effort. This presentation will highlight course, laboratory and field design, a compilation of observational results, and insight on lessons learned through the course history.

  14. Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion

    PubMed Central

    Kimura, Masayo; Nozaki, Miho; Yoshida, Munenori; Ogura, Yuichiro

    2016-01-01

    Purpose Optical coherence tomography angiography (OCTA) is a newly developed technology which allows us to reconstruct the three-dimensional chorioretinal vasculature without dye injection. OCTA is a noninvasive, rapid, and reproducible method to assess retinal ischemia. However, one of its limitations is the size of scanning area. A novel yet simple technique to expand the scan length on optical coherence tomography has been reported as an extended field imaging (EFI) technique. It involves imaging the posterior pole through trial frames fitted with a +20 diopter lens. We applied this technique to OCTA to evaluate retinal vein occlusion. Materials and methods Ten eyes of nine patients with retinal vein occlusion were studied. The average age was 69.0 years (range: 49–93 years). We obtained OCTA images by using RTVue XR Avanti OCT with AngioVue®. The images of OCTA with scan size of 8×8 mm were obtained with and without EFI, and then they were compared. Results OCTA with EFI technique was performed successfully in all eyes. The nonperfusion area was well defined in superficial capillary plexus layer. The images with EFI were able to capture the larger area of the fundus by an average of 188.5% than those without EFI. The posterior pole inside the vascular arcade was well covered with this technique. The area of the fundus imaged by OCTA with EFI technique was even larger than that of fluorescein angiography using Heidelberg Retina Angiograph 2, which captured a 30° field. Conclusion Our results suggested that OCTA with EFI technique is very useful to evaluate the retinal ischemia in retinal vein occlusion. PMID:27471374

  15. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    PubMed

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization. PMID:25629264

  16. GRAIL gravity field recovery using the short-arc integral equation technique: development of the latest Graz lunar gravity field model (GrazLGM)

    NASA Astrophysics Data System (ADS)

    Krauss, S.; Klinger, B.; Baur, O.; Mayr-Guerr, T.

    2015-10-01

    We present an updated version of the lunar gravity field model GrazLGM300a,b [1,2] based on intersatellite Ka-band ranging (KBR) observations collected by the GRAIL mission. We propose to exploit the ranging measurements by an integral equation approach using short orbital arcs [4].Compared to the predecessor model we increase the spectral resolution to degree and order 450 and refined the parameterization. Validation shows that the applied technique is well suited to recover the lunar gravity field.

  17. Development of a Rapid Soil Water Content Detection Technique Using Active Infrared Thermal Methods for In-Field Applications

    PubMed Central

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil

  18. Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications.

    PubMed

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity

  19. Geometric and Dosimetric Approach to Determine Probability of Late Cardiac Mortality in Left Tangential Breast Irradiation: Comparison Between Wedged Beams and Field-in-Field Technique

    SciTech Connect

    Pili, Giorgio; Grimaldi, Luca; Fidanza, Christian; Florio, Elena T.; Petruzzelli, Maria F.; D'Errico, Maria P.; De Tommaso, Cristina; Tramacere, Francesco; Musaio, Francesca; Castagna, Roberta; Francavilla, Maria C.; Gianicolo, Emilio A.L.; Portaluri, Maurizio

    2011-11-01

    Purpose: To evaluate the probability of late cardiac mortality resulting from left breast irradiation planned with tangential fields and to compare this probability between the wedged beam and field-in-field (FIF) techniques and to investigate whether some geometric/dosimetric indicators can be determined to estimate the cardiac mortality probability before treatment begins. Methods and Materials: For 30 patients, differential dose-volume histograms were calculated for the wedged beam and FIF plans, and the corresponding cardiac mortality probabilities were determined using the relative seriality model. As a comparative index of the dose distribution uniformity, the planning target volume (PTV) percentages involved in 97-103% of prescribed dose were determined for the two techniques. Three geometric parameters were measured for each patient: the maximal length, indicates how much the heart contours were displaced toward the PTV, the angle subtended at the center of the computed tomography slice by the PTV contour, and the thorax width/thickness ratio. Results: Evaluating the differential dose-volume histograms showed that the gain in uniformity between the two techniques was about 1.5. With the FIF technique, the mean dose sparing for the heart, the left anterior descending coronary artery, and the lung was 15% (2.5 Gy vs. 2.2 Gy), 21% (11.3 Gy vs. 9.0 Gy), and 42% (8.0 Gy vs. 4.6 Gy) respectively, compared with the wedged beam technique. Also, the cardiac mortality probability decreased by 40% (from 0.9% to 0.5%). Three geometric parameters, the maximal length, angle subtended at the center of the computed tomography slice by the PTV contour, and thorax width/thickness ratio, were the determining factors (p = .06 for FIF, and p = .10 for wedged beam) for evaluating the cardiac mortality probability. Conclusion: The FIF technique seemed to yield a lower cardiac mortality probability than the conventional wedged beam technique. However, although our study

  20. Obtaining oblique technique source-to-skin distances for irregular field (Clarkson) calculations: The Mayo Off-axis Distance Indicator

    SciTech Connect

    Lajoie, W.N. )

    1988-09-01

    Significant dose inhomogeneities may exist between the supraclavicular fossa (SCF) and the internal mammary chain (IMC) regions in the irregular L-shaped (hockey stick) field associated with breast cancer treatments. This dose inhomogeneity exists, in part, because of a positive air gap in the SCF and a negative air gap in the IMC locations. Independent of treatment technique, (i.e., whether anterior-posterior (AP) or oblique fields are used), accurate source-to-skin distance (SSD) values for the SCF, IMC, and axilla are necessary when doing an irregular field (Clarkson) dose calculation. However, when an oblique technique is used to treat the hockey stick field, obtaining non-central-axis SSDs is not as straightforward as when an AP technique is employed. The Mayo Off-axis Distance Indicator was constructed to slide into the blocking tray slot of the simulator or treatment machine. This mechanical measuring device provides quick and accurate SSD measurements for non-central-axis points under either AP or, more importantly, oblique treatment conditions.

  1. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  2. Ultrasonic propagation: a technique to reveal field induced structures in magnetic nanofluids.

    PubMed

    Parekh, Kinnari; Patel, Jaykumar; Upadhyay, R V

    2015-07-01

    The paper reports the study of magnetic field induced structures in magnetic nanofluid investigated through ultrasonic wave propagation. Modified Tarapov's theory is used to study variation in velocity anisotropy with magnetic field. The types of field induced structures depend upon the chemical structure of the carrier in which magnetic nanoparticles are dispersed. Our study indicates formation of fractals and chain respectively, in transformer oil and kerosene based fluid. This difference is explained on the basis of particle-particle interaction and particle-medium interaction. PMID:25791205

  3. A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis

    SciTech Connect

    Chiampi, M.; Repetto, M.; Chiarabaglio, D.

    1995-11-01

    The hysteresis phenomenon can significantly affect the behavior of magnetic cores in electrical machines and devices. This paper presents a finite element solution of periodic steady state magnetic field problems in soft materials with scalar hysteresis. The Jiles-Atherton model is employed for the generation of symmetric B-H loops and it is coupled with the Fixed Point Technique for handling magnetic nonlinearities. The proposed procedure is applied to a hysteretic model problem whose analytical solution is available. The results show that the Fixed Point Technique can efficiently deal with non-single valued material characteristics under periodic operating conditions.

  4. A comparison of TPS and different measurement techniques in small-field electron beams.

    PubMed

    Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-01-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. PMID:25219322

  5. A comparison of TPS and different measurement techniques in small-field electron beams

    SciTech Connect

    Donmez Kesen, Nazmiye Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  6. Expert knowledge techniques applied to the analysis of electric field mill data

    NASA Technical Reports Server (NTRS)

    Nicholson, James R.; Mulvehill, Alice M.

    1990-01-01

    NASA operates a network of ground-based electric field mills at Kennedy Space Center (KSC) to identify clouds which might be an electrical hazard to space vehicle prior to and during launch or to the various ground operations performed at the center. Artificial intelligence has been used to develop an expert system for analyzing electric field mill data. The application of the system to expert system to small thunderstorms at KSC is shown.

  7. Field Emission studies of Silicon nanowires grown by Vapor-Liquid-Solid (VLS) technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, Niraj; Bae, Joonho; Stanley, Scott; Coffee, Shawn; Ekerdt, John; Yao, Zhen; Shih, Chih-Kang

    2004-03-01

    Semiconductor nanowires among other 1-D nanostructures are potential candidates for field emission applications by virtue of their small tip radii and large aspect ratios. In this regard field emission properties of silicon nanowires are investigated. Silicon as a material has processing advantages over others because it has been well researched over the past decades. Silicon nanowires are grown by hot wire chemical vapor deposition (CVD) of disilane at approximately 600 C. The growth takes place via vapor-liquid-solid (VLS) mechanism with a thin film (20 nm) of gold acting as a catalyst. VLS growth enables large area coverage and also offers scalability. Field emission studies of these samples will be reported. Preliminary studies indicate a threshold field of 10-15 V/μ m. As a consequence of VLS growth, the catalyst (gold) resides at the tip of the nanowire and can be etched away by aqua regia. The effect of gold removal on the field emission characteristics will be reported. Silicon also offers an additional degree of freedom in terms of doping to engineer the position of the Fermi level. The effect of doping on the field emission characteristics will also be reported.

  8. Non-linear force-free field modeling: model techniques, boundary conditions, hares, and hounds

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; De Rosa, M. L.; Metcalf, T.

    2005-05-01

    Understanding the conditions under which solar magnetic fields can destabilize to erupt in flares and coronal mass ejections requires a quantitative understanding of the coronal magnetic field and of the currents that it carries. The increased availability of vector magnetograms, together with EUV and X-ray coronal images, should provide adequate constraints to model the coronal field, and thus to visualize its 3D geometry and to measure the available free energy and helicity. Non-linear force-free fields (NLFFF) are likely a useful model to use when extrapolating the solar surface field upward into the coronal volume. It may even be possible to use the observed trajectories of coronal loops, evident in EUV images of the corona, as a further constraint. We present initial results of a team effort to understand the intricacies of NLFFF modeling: we discuss and evaluate comparisons of NLFFF models computed with different models and applications of boundary conditions, and look ahead to full coronal field modeling for the upcoming Solar-B and SDO missions.

  9. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications.

    PubMed

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G; Koronyo, Yosef; Medina-Kauwe, Lali K; Gross, Zeev; Gray, Harry B; Farkas, Daniel L

    2011-01-01

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications. PMID:21339880

  10. Micro gel column technique is fit for detecting mixed fields post ABO incompatible hematopoietic stem cell transplantation.

    PubMed

    Li, Min-Fang; Liu, Feng; Zhang, Min

    2015-04-01

    How to choose suitable serologic method for assessment of the actual stages of ABO chimera is more important to establish transfusion strategy for patients post-ABO incompatible hematopoietic stem cell transplantation. We reported ABO phenotypes of a patient post-ABO minor incompatible hematopoietic stem cell transplantation from 1+ weak agglutination by tube method was obviously reaffirmed to mixed fields with 4+ positive reaction by micro gel column card. Hence, blood bank technologists must continually work together with hematologist to establish appropriate transfusion strategy, and micro gel column technique can be more appropriate for detecting mixed fields during the whole period of transplantation. PMID:25578650